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ABSTRACT 

Extreme wind speeds, especially maximum wind speeds, have great impacts on human society and natural 

environments in both positive and negative aspects. It is one of the most important source of renewable 

energy, but it can also disrupt traffic, damage farming and destroy buildings. Extreme wind speed 

modelling, therefore, should be done to obtain the distribution, the regularities and probabilities of 

extreme wind speed events. In theory, there are well-developed methods to solve univariate extreme 

model in single location. But there would be difficult to model regional extreme events with multi-variate 

extreme value theories. 

 

This thesis explore the use of the spatial extreme model, which is based on max-stable processes, for 

fitting extreme events in two aspects, the extreme spatial dependence structure and marginal distributions. 

The composite likelihood method is used to fit annual maximum wind speed in 44 years and for 35 

stations in the Netherlands. The spatial extreme model obtained can be used to predict and analyse 

extreme wind speed events in the Netherlands. The results show that compared with the generalized 

extreme value (GEV) distribution in single meteorological station, the max-stable processes model has a 

lower degree of dispersion and smoother values of extreme wind speeds. This can be regarded as the 

modification of single location models since it do not model the spatial dependence for different stations. 

The results also shows the spatial dependence between different stations through the extremal coefficients. 

With station distances from 50km to 300km, the value extremal coefficient ranges from 1.6 to 1.8, which 

means the correlation becomes weaker with the increasing distance. Moreover, maps of return level in 25-

year, 50-year, 100-year and 200-year return period in the Netherlands are given in the thesis, this can 

provide a reference for the construction projects. These maps also tell that there are correlation between 

the value of distance from stations to coastline and the distribution of extreme wind speeds. The extreme 

wind speed will increase from the south to the north and from east to the west parts of the Netherlands. 

The study conducted that missing data that are regularly occurring in wind speed data can be dealt with 

and that the max-stable process model was adequate to model extreme wind speed in the Netherlands. 

 

Keywords: Spatial modelling, Extreme wind speed, Max-stable processes, Data and model selection, 

Composite likelihood 
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1. INTRODUCTION 

1.1. Motivation 

Nowadays, renewable energy is becoming more and more important since it is an environmentally friendly 

power and its source is available everywhere. The Netherlands is a country with rich wind power and great 

experience in wind power using. According to the data by the Dutch government, by December 2013, 

1,975 wind turbines were operational on land in the Netherlands with an aggregate capacity of 2,479 MW 

(Centraal Bureau voor de Statistiek, 2015). With plenty of wind turbines, safety should be taken into 

consideration since the integrity of turbines’ structures can be threatened by extreme wind speeds 

(Palutikof, Brabson, Lister, & Adcock, 1999). Furthermore, extreme wind speeds have a great negative 

impact on human society and natural environments, for instance they may disrupt air, train and bus travel, 

damage the growth of crops and livestock and destroy man-made structure. So it is necessary to do 

research on extreme wind speeds, especially on its trends and laws of spatial distribution.  

 

Since extreme events have their particularities, classical statistical models have limitations and cannot be 

used in the analysis because of the following problems: firstly, the extreme wind speed event is an 

expression of wind speed variability, that means wind is a stochastic event, and climatic factors which 

cause wind speed variability are also stochastic and not easy to identify. So it is difficult to model 

stochastic extreme wind speed events. However, there are statistical regularities in extreme wind speed 

values, so sufficient and effective statistical models can be built to analyse the regularities and probabilities 

of extreme wind speed events. Secondly, for spatial data analysis, a key insight is that observations in space 

cannot typically be assumed to be mutually independent and that those observations that are close to each 

other are likely to be similar (Lee et al., 2013). Studies on a single location are not sufficient to interpret the 

intrinsic link between different locations throughout the region, which is called the spatial dependence or 

correlation structure of the regional extremes. So it is necessary to study and analyse the probability of 

regional extreme wind speed events and their distribution. For the vast area of land in Netherlands, it is 

important to study models for spatial extremes, to understand their correlation and predict the occurrence 

regularities and probabilities. 

 

1.2. Study background 

Over the past few decades, statistical theory on extremes has been developed fast and comprehensively on 

single locations. It has been widely used in environmental statistical analysis and extreme models can 

explain laws of random variation in environmental phenomena well. Some extreme models which are used 

in analysis of rainfall, wind speeds, temperature and sea-level can perfectly obtain the characteristics of the 

corresponding environmental phenomena on single locations and are theoretically dependent on the 

univariate extreme model, which has some limitations in the space modelling and analysis. Firstly, 

environmental changes are often area-related, but univariate extreme models cannot consider the 

dependence between stations. For example, if a strong wind affects a large area, wind speed data from 

weather stations in this area surely represent the regional correlation; and also when there is a flood, all 

cities and villages located around the river will be affected, but this regional correlation cannot be 

theoretically explained in univariate extreme models. So the multivariate extreme model has been 

developed. However, multi-variate extreme model can explain the question of regional correlation 

theoretically, but for practical application, since there are many dimensions (for wind speed data, each 
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weather station is a dimension), the curse of dimensionality is always met in practice, and this makes the 

model fit badly. For example, in research of regional rainfall, if there are too many weather stations like 20 

or 50, the multi-variate model cannot even be used, and the regional correlation of environmental 

phenomena cannot be explained as well. 

 

Because of the limitations mentioned above, more spatial extreme models have been developed rapidly on 

both theoretical and practical aspects, the aims of these models and methods are to use analyse, quantify 

and explain the change of regional environmental phenomena like wind speed, precipitation and 

temperature. For example, Coles & Casson (1998), Casson & Coles (1999)and Sang & Gelfand (2009) use 

latent variables processes to model and analyse the spatial extremes, however, the results appear 

unreasonable because they cannot explain the risk behaviour of spatial extremes well; Heffernan & Tawn 

(2004)and Butler, Heffernan, Tawn, & Flather (2007) use a conditional model of extreme events to analyse 

extreme values, it explains the spatial dependence of different weather stations, but this model cannot be 

used in places where there are no weather stations. 

 

Considering the limitations, a class of models called max-stable processes was introduced by de Haan 

(1984). Max-stable processes are a class of asymptotically-justified models that are capable of representing 

spatial dependence among extreme values, and also an extension of multivariate extreme value theory 

(Shaby, 2012). A first max-stable process model built from spectral representation is designed by Smith 

(1990). After that many researchers have studied max-stable processes widely, and different spatial max-

stable process models have been proposed such as the Schlather model built by Schlather (2002), the 

Brown-Resnick model generalized by Kabluchko, Schlather, & de Haan (2009)and the extremal-t model 

built by Davison, Padoan, & Ribatet (2012). There are two advantages in using max-stable processes: 

firstly, this model can calculate the multi-variate distribution family without dimension curse; secondly, 

max-stable processes are generally a spatial model, it can be used to explain spatial problems which multi-

variate models cannot solve, like spatial dependence structure and spatial data aggregation problems. So 

spatial models for extreme values which is based on max-stable processes can be used for more detailed 

methods for statistics and analysis and provide explanation on regional commonality and correlation. 

 

This thesis builds a model for regional extreme wind speed events. The model is based on max-stable 

processes. The aim is to analyse the multi-station extreme wind speed data in the Netherlands. In this 

thesis we will use the composite likelihood method for modelling analysis and statistical inference. 

Furthermore, this thesis will analyse the spatial dependence structure and infer the characteristics of spatial 

dependence of extreme wind speeds in the Netherlands. There is also another paper which use the similar 

data to model spatial extremes in the Netherlands by Ribatet (2013). In that paper, annual wind speed data 

from 1971-2012 are used as data to find best model to describe the distribution and makes some 

simulation. However, the difference between Ribatet (2013) and this research is as follows. Firstly, as 

missing wind speed data will affect the model building, so further discussion and methods are used to 

choose research data and keep its quality. Secondly, since the research area are the European part of the 

Netherlands but not just single locations, so spatial dependence should be taken into consideration and 

thus the distance between different meteorological stations should be calculated, so variables of longitude 

and latitude should be transformed to other geographic coordinate to calculate the distance in this 

research. Thirdly, the results of Ribatet (2013) tells that the distribution of maximum wind speed has some 

connection with the coast distance of observed stations, so for further study, the coast distance of stations 

becomes one variable in our research to find the most fitted model.  

 

The following parts are the introduction of thesis structure: the first chapter is the introduction of the 

thesis, it tells the motivation and background of the thesis. The second chapter has two parts, the first 



SPATIAL MODELLING OF EXTREME WIND SPEED IN THE NETHERLANDS 

3 

parts reviews basic theories in the thesis, including extreme theory, which focus on the generalized 

extreme value (GEV) distribution, max-stable processes (MSP), the composite likelihood method and the 

Takeuchi’s information criterion (TIC). The second parts are the data and research area of the thesis. The 

third chapter is results, it elaborates the methods and results of data and model selection. With the most 

fitted model, spatial analysis are taken to learn the characteristics of extreme wind speed events in the 

Netherlands. The forth chapter is about discussion of the thesis. And the last chapter draws the 

conclusion of the research and summarizes the whole thesis. 

 

1.3. Objectives 

The objectives of this thesis are as follow, 

a) Since the Netherlands has great opportunity to meet extreme wind events, it is necessary to model 

the extreme wind speed in the Netherlands and study its distribution, probability and regularity.  

b) For distribution of extreme wind events, the model can show wind speed return level for specific 

return period, this can help prevent extreme wind disasters. 

c) For correlation of extreme wind events between different locations, the model can show the intrinsic 

correlation between different locations in one wind events. 

d) For extreme wind speed in single location and regional area, different model should be chosen. 

Comparison and analysis between different results from these two models can show which model is 

better fitting with the Netherlands. This will help improve the precision of the model. 

 

1.4. Research questions 

The research question of this thesis are as follows, 

a) Which method are chosen to be the best method to model extreme wind speed events in the 

Netherlands? 

b) Which variables should be considered into model of extreme wind speed events since there are many 

factors which can cause extreme wind speed events? 

c) How to reflect the correlation between different meteorological stations in one extreme wind events? 

d) Which method are chosen to select the extreme wind speed data since there are missing data? 

e) Which methods are chosen for model-selection, and why? 

f) What can we obtain from the results of the spatial analysis of extreme wind speed model in the 

Netherlands? 
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2. METHODS 

2.1. Extreme value theory 

This section gives an introduction on theoretical fundamentals of extreme value theory which will be used 

in the thesis, the first part is the introduction and theorem of univariate extreme value theory and 

generalized extreme value (GEV) distributions. The second part are the introduction and theorem of max-

stable processes. 

 

2.1.1. Univariate extreme value theory 

The distribution of extreme events in single locations has been widely studied on modelling its tails and 

many applications have been presented (Chen et al., 2015; García-cueto & Santillán-soto, 2007). The basic 

theorem of method for modelling extreme events in single location is the existence of a domain of 

attraction for the maximum, that is: Let X1,…, Xn be independent identically distributed ( i.i.d.) 

observation of daily maximum wind speed. We suppose that are random and have the distribution 

function F. Then there exists two sequences (𝑎𝑛) with n ∈ and (𝑏𝑛) with n ∈  where 𝑎𝑛 > 0, 𝑏𝑛 ∈

, and a distribution function G such that 

 𝑙𝑖𝑚
𝑛→∞

𝑃{
𝑚𝑎𝑥
1≤𝑖≤𝑛

𝑋𝑖−𝑏𝑛

𝑎𝑛
≤ 𝑥} = 𝑙𝑖𝑚

𝑛→∞
𝐹𝑛(𝑎𝑛𝑥 + 𝑏𝑛) = 𝐺(𝑥). (2.1) 

The distribution function G such that (2.1) is referred to as the generalized extreme value (GEV) (Bortot 

& Gaetan, 2013). It has the parametric form 

 𝐺(𝑥) = 𝑒𝑥𝑝 {− (1 + 𝜉
𝑥−𝜇

𝜎
)

−
1

𝜉
},       (2.2) 

for location parameter 𝜇 ∈ , scale parameter  𝜎 > 0 and shape parameter 𝜉 ∈ . This distribution 
combines three extreme probability distributions, the Gumbel, Fréchet and Weibull distributions into one 
model. It makes generalized extreme value (GEV) distribution a continuous probability distribution in 

extreme events at single location. In extreme wind speed distribution, the location parameter 𝜇 represents 

the mean value of extreme wind speeds, the scale parameter 𝜎 represents the range of extreme wind 

speeds and the shape parameter 𝜉 represents the distribution model among these three models. 
 

For extreme wind speeds, we cannot use just the maximum value of one sample for analysis and 

modelling. Therefore a practical way is to separate samples into multiple blocks, extract the extreme value 

in each block and set the block maxima in a sequence. The sequence can be regarded as the independent 

and identically GEV distribution only if the amount of samples in each block is large enough (Faranda et 

al., 2011). We can set the original daily extreme wind speed data as X1, X2, …, XNK, and Z is the annual 

extreme wind speed over all data and time. The sequence of block maxima is shown as, 𝑍𝑖 =

𝑚𝑎𝑥
𝑁(𝑖−1)+1≤𝑗≤𝑁∗𝑖

𝑋𝑗 , 𝑖 = 1,2, … , 𝑘. In this formula, the 𝑍𝑖 is the maximum wind speed in year i, k is the 

number of blocks and parameter N is the number of samples in one block (number of days in each year) 

and function 𝑁(𝑖 − 1) + 1 ≤ 𝑗 ≤ 𝑁 ∗ 𝑖 represents the first day and last day of each year. With the 

interpretation maximum wind speeds sequence 𝑍𝑖 follows the GEV distribution. 
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However, spatial data like wind speed or precipitation are collected at different places. Therefore the joint 

distribution of extreme values is of interest by researchers. Since univariate extreme value theory cannot 

represent the joint distribution, multivariate extreme value theory is needed, especially max-stable 

processes. 

 

 

2.1.2. Max-stable processes 

The aims of statistical modelling and analysis of extreme wind speed events are to fit all stations' data into 

the model, find the laws of marginal distribution and spatial dependence between different stations and 

predict extreme wind speeds in space and time from places where there is no weather station. To meet this 

requirement, max-stable processes, the extreme value theory of stochastic processes is introduced into the 

research. It can be regarded as the extension of multivariate extreme distribution. Since max-stable 

processes can model and quantify the spatial dependence of extreme events, they can be used in this thesis 

to study the distribution of extreme wind speed throughout the country, e.g. the Netherlands. The 

following parts will be the introduction of the definition, function, characterizing and fitting methods of 

max-stable processes. 

 

A stochastic process 𝑍 is said to be max-stable if there exist continuous normalizing functions {𝑎𝑛 > 0} 

and {𝑏𝑛 ∈ } such that 

 
1, ,

Z= max , n ,
d

i n

i n
n

Z b

a 


  (2.3) 

where the 𝑍𝑖  are independent copies of 𝑍 ( Ribatet, 2013). In this thesis, 𝑍𝑖 is the maximum wind speed in 

day i, n is the size of  blocks and usually for 365 years. d  represents that the left and right parts in (2.3) has 

the same distribution, that means the distribution of  process 𝑍 is fit for the distribution of  formula (2.4) 
below. 
 

In spatial modelling of extreme events, max-stable processes are widely used because they arise as the 

pointwise maximum taken over an infinite number of (appropriately rescaled) stochastic processes 

( Ribatet, 2013). More precisely, for a stochastic process X, which represent the extreme wind speed, if 

{ 𝑋𝑖 ∶ 𝑖 ∈ } is the collection of its independent copy and there exists normalizing functions {𝑐𝑛 > 0} 

and {𝑑𝑛 ∈ }, the extreme wind speed X can be shown as 

 𝑚𝑎𝑥
𝑖=1,…,𝑛

𝑋𝑖(𝑠)−𝑑𝑛(𝑠)

𝑐𝑛(𝑠)
→ 𝑍(𝑠),      𝑛 → ∞,    𝑠 ∈ 𝑆, (2.4) 

Then Z is called max-stable process (de Haan, 1984). In the extreme wind speed events, the 𝑋𝑖(𝑠) 

represent a random variable of daily maximum wind speed in location s and day i, n is the size of blocks. 

 

In extreme wind speed events, the marginal distribution is the generalized extreme value (GEV) 

distribution with unknown parameters. It is however difficult to model the marginal distribution and the 

spatial dependence at the same time. So for theoretical purposes, data transformation can be done to make 

the data following a simple distribution. The unit Fréchet distribution is usually chosen as the simple 

distribution for wind speed. This helps to study the spatial dependence of the data. It can be assumed that 

the limiting process Z is simple, that is, with unit Fréchet margins (De Haan & Ferreira, 2006), i.e. 

 𝑃𝑟{𝑍(𝑠) ≤ 𝑧} = 𝑒𝑥𝑝 (−
1

𝑧
) ,    𝑧 > 0,    𝑠 ∈ 𝑆, (2.5) 

we call this the simple max-table processes. This means in extreme wind speed events, all marginal 
distributions at individual observation in stations will follow the unit Fréchet distribution with same 
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parameters. Therefore the probability of different stations are all the same. This theoretical assumption 
does benefits on the study of spatial dependence, but for concrete applications, the marginal distribution 
of extreme events varying in space (Ribatet, 2013). So other methods should be taken in this thesis. 
 

To consider the representation of max-stable processes, researchers paid attention on it and proposed a 

method called spectral representation. Let {𝜁𝑖 ∶  𝑖 ∈ } be the points of a Poisson process on (0, ∞) with 

intensity of 𝜁−2𝑑𝜁 ( Ribatet, 2013). There exists a non-negative stochastic process Y with continuous 

sample paths such that    1Y s   for all 𝑥 ∈
2

 and for which Z has the same distribution as 

 𝑚𝑎𝑥
𝑖≥1

𝜁
𝑖
𝑌𝑖(𝑠),     𝑠 ∈ 𝑆 , (2.6) 

Where 𝑌𝑖  are independent copies of 𝑌.  In practical application, the spectral representation of a max-stable 

process has its explanation. In the extreme wind speed event, the 𝜁𝑖 is the magnitude of extreme wind in 

location s, stronger wind has higher magnitude. 𝑌𝑖(𝑠) represents the spatial profile and stochastic 

distribution of this extreme wind events. Therefore 𝜁𝑖𝑌𝑖(𝑠) represents the daily wind speed event, 𝑚𝑎𝑥
𝑖≥1

 is 

the function that extract the maximum daily wind speeds. Our attention in this thesis will focus on the 

characterization (2.6). 

 

The finite dimensional distribution of a max-stable process can be obtained from the spectral 

characterization (2.6). For 𝑧1, . . . , 𝑧𝑘 > 0 and the location 𝑠1, . . . , 𝑠𝑘, the distribution equation 

 𝑃𝑟{𝑍(𝑠1) ≤ 𝑧1, … , 𝑍(𝑠𝑘) ≤ 𝑧𝑘} = 𝑒𝑥𝑝 [− { 𝑚𝑎𝑥
𝑗=1,…,𝑘

𝑌(𝑠𝑗)

𝑧𝑗
}].  (2.7) 

In (2.7), the 𝑌(𝑠𝑗) represents the spatial profile of extreme wind at location 𝑠𝑗, and 𝑧𝑗 is individual copy of 

max-stable process Z, also the distribution of extreme wind events. 

 

Based on (2.3) and (2.4), max-stable processes can be characterized by several models, and they have been 

proposed or applied in the last few decades, like Brown & Resnick (1977), Smith (1990), Schlather (2002) 

and Kabluchko, Schlather, de Haan (2009). There are three models that we choose in this research, the 

Schlather model, the Brown–Resnick model and the extremal–t model. The difference between the three 

models are as follows (Ribatet, 2013): 

a. The Schlather model: according to the formula (2.6), we set 

 𝑌𝑖(𝑥) = √2𝜋 𝑚𝑎𝑥{0, 𝜀𝑖(𝑥)}, (2.8) 
where 𝜀𝑖 are independent copies of a standard Gaussian process with correlation function ρ, which are 

chosen as powered exponential correlation function family 𝜌(ℎ) = 𝑒𝑥𝑝 {−(ℎ/𝜆)𝑘}.  

b. The Brown-Resnick model: in formula (2.6), we set 

 𝑌𝑖(𝑥) = 𝑒𝑥𝑝 {𝜀𝑖(𝑥) − 𝜎2(𝑥)/2}, (2.9) 
where 𝜀𝑖 are independent copies of a centered Gaussian process with stationary increments, and we 

choose 𝛾(ℎ) = (ℎ/𝜆)𝑘 as semi-variogram model.  

c. The Extremal-t model: according to formula (2.6), we set  

 𝑌𝑖(𝑠) = 𝑐𝑣𝑚𝑎𝑥 {0, 𝜀𝑖(𝑠)}𝑣  ,       𝑐𝑣 = √𝜋2−
𝑣−2

2  (
𝑣+1

2
)−1 ,    𝑣 ≥ 1, (2.10) 

where 𝜀𝑖(𝑠) are standard Gaussian process with correlation function 𝜌 and  are the Gamma function. 

This model is a generalization of Schlather model (Opitz, 2013, Ribatet & Sedki, 2013). Its bivariate 

cumulative distribution equals  

   𝑃𝑟{𝑍(𝑠1) ≤ 𝑧1, 𝑍(𝑠2) ≤ 𝑧2} = 𝑒𝑥𝑝 [−
1

𝑧1
𝑇𝜈+1 {−

𝜌(𝑠1−𝑠2)

𝑏
+

1

𝑏
(

𝑧2

𝑧1
)

1

𝜈
} 
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                                                                                       −
1

𝑧2
𝑇𝜈+1 {−

𝜌(𝑠1−𝑠2)

𝑏
+

1

𝑏
(

𝑧1

𝑧2
)

1

𝜈
}], (2.11) 

where Tν is the cumulative distribution function of a Student random variable with 𝜈 degrees of freedom 

and 𝑏2 = {1 − 𝜌(𝑥1 − 𝑥2)2}/(𝜈 + 1). 

 

The difference between these three models are the choice of spatial dependence model and the function 

of correlation coefficients. In practical application like extreme wind speed events, the difference of spatial 

model means the impact of one extreme wind event to different locations are different, it will affect the 

distribution of extreme wind speeds to a large extent. 

 

When considering the method to assess the ability of max-stable processes to capture the spatial 

dependence structure of extreme events, a convenient way is using the extremal coefficient function 

(Schlather & Tawn, 2003), 

 𝜃(𝑠1 − 𝑠2) = −𝑧𝑙𝑜𝑔𝑃𝑟{𝑍(𝑠1) ≤ 𝑧, 𝑍(𝑠2) ≤ 𝑧} = [𝑚𝑎𝑥 {𝑌(𝑠1), 𝑌(𝑠2)}]. (2.12) 

The extremal coefficient function takes value in the interval [1,2], the lower bound 𝜃 = 1 represent 

complete dependence and the upper bound 𝜃 = 2 is correspond to complete independence (Ribatet & 

Sedki, 2013). In this thesis, the formula (2.12) has its practical meaning. The extremal coefficients of 

extreme wind speeds can be obtained from extracting the maximum of stochastic distribution of extreme 

wind event in location s1 and s2. If 𝜃 = 1, it means that the extreme wind speed event in location s1 and s2 

are totally dependent, if there is an extreme wind event happens in location s1, this wind event definitely 

happens in s2. And if the 𝜃 = 2, it means one extreme wind event will never affect location s1 and s2 at the 

one time. 

 

2.1.3. Composite likelihood method 

 

In spatial extreme model based on max-stable processes, the format of data are like {𝑍𝑛(𝑠), 𝑠 =

1, 2, … , 𝑆; 𝑛 = 1, 2, … , 𝑁}, s represents the stations and n is the block, 𝑍𝑛(𝑠) is the maximum data in 

station s and block n. Since one block represents one year in the thesis, so 𝑍𝑛(𝑠) means annual maximum 

wind speed data, and the joint inference of data from research area stations is close related to the spatial 

extreme model analysis, but classical maximum likelihood method is intractable to be used in such 

problems, because there is no joint probability density functions of annual maximum wind speed for all 

stations. However, the bivariate cumulative distribution function and marginal distribution of the max-

stable processes can be obtained, so we can use composite likelihood method, and focus on the pairwise 

likelihood, to deal with the model fitting problems. The method is introduced by Padoan et al. (2009). 

 

Assume that 𝑧 = (𝑧1, … , 𝑧𝑘) are single observations, then the pairwise log-likelihood is 

 𝑙𝑝(𝜓; 𝑧) = ∑ ∑ 𝜔𝑖,𝑗𝑙𝑜𝑔𝑓(𝑧𝑖 , 𝑧𝑗; 𝜓),𝑘
𝑗=𝑖+1

𝑘−1
𝑖=1  (2.13) 

where 𝜔𝑖,𝑗 are suitable non-negative weights and 𝑓(; 𝜓) are the bivariate density. From the formula above 

we can see composite likelihoods are linear combination of log-likelihoods (Ribatet, 2013). 

 

Since the composite likelihood estimator has the same regularity condition with the maximum likelihood 

estimator, and the parameter 𝜓 is recognizable in (2.10), so the maximum pairwise likelihood estimator is 

shown as follows, 
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 �̂�𝑝 = arg max


𝑙𝑝(𝜓; 𝑧). (2.14) 

 

2.1.4. Model selection 

It is necessary to compare different models and select a best one when facing different spatial extreme 

models. According to the composite likelihood method, difference between models are based on the 

marginal distribution parameters and geographic information of stations. 

 

Normally, the model selection method which used on the non-nested model is as follows. Since we pay 

attention on the method of composite likelihood, we define a composite Kullback-Leibler divergence 

based on (2.12) and g and 𝑓𝜓 are the two statistical models that need to compare(Varin and Vidoni, 2005) 

 𝐷𝑃(𝑓𝜓; 𝑔) = ∑ ∑ 𝜔𝑖,𝑗
𝑘
𝑗=𝑖+1

𝑘−1
𝑖=1 {𝑙𝑜𝑔

𝑔(𝑍𝑖,𝑍𝑗)

𝑓𝜓(𝑍𝑖,𝑍𝑗;𝜓)
}, (2.15) 

where 𝑍 = (𝑍1, … , 𝑍𝑘) ~ 𝑔. In (2.14),  methods of composite likelihood are adopted to compare the 

model g and model 𝑓𝜓 to find which model is more precision and simpler., results of model selection can 

be judged by the minimize value of composite information criterion because of the composite Kullback-

Leibler divergence consists off a linear combination of Kullback-Leibler divergences 

 𝑇𝐼𝐶(𝑓𝜓) = −2𝑙𝑝(𝜓𝑝;̂ 𝑍) + 2𝑡𝑟{𝐽(𝜓0) ∗ �̂�(𝜓0)−1}, (2.16) 

where �̂�(𝜓0) and 𝐽(𝜓0) are consistent estimator of the matrices 𝐻(𝜓0) and 𝐽(𝜓0). Formula (2.16) is a 
generalization of the Takeuchi’s information criterion (TIC) (Ribatet, 2013). The first part of the formula 

{−2𝑙𝑝(𝜓𝑝;̂ 𝑍)} describe the precision of model, high score means more precise of the model; the second 

part {2𝑡𝑟{𝐽(𝜓0) ∗ �̂�(𝜓0)−1} }is penalty factor, low score means more simple of the model 

 

2.2. Data and research area 

2.2.1. Research area 

 

The research area in this thesis is the European parts of Netherlands (Netherland also has territory in 

three Caribbean islands), which is located in western Europe and lies between latitudes 50° and 54°N, 

longitudes 3°and 8°E. There is Germany in the east, Belgium and Luxembourg in the south, and the 

North Sea in the northwest. The Netherlands shares maritime borders with Belgium, the United Kingdom 

and Germany. It is geographically a very low and flat country, with about 26% of its area and 21% of its 

population located below sea level, and only about 50% of its land exceeding one meter above sea level 

(Centraal Bureau voor de Statistiek, 2015). There are 35 weather stations provided by KNMI, the basic 

information of the weather stations are listed in Table 2.1  Geographic information of weather stations 

and the location of the weather stations are shown in Figure 2.1. 

 
Station No. NAME Lon(east) Lat(north) Alt(m) X(km) Y(km) Coast Distance(km) 

210 Valkenburg 4.419 52.165 -0.2 88.736 464.426 3.977  

225 Ijmuiden 4.575 52.463 4.4 99.779 497.446 0.873  

235 De kooy 4.785 52.924 0.5 114.477 548.596 4.811  

240 Schiphol 4.774 52.301 -4.4 113.149 479.290 18.955  

242 Vlieland 4.942 53.255 0.9 125.261 585.350 0.406  

249 Berkhout 4.979 52.644 -2.5 127.346 517.352 23.929  

251 Hoorn  5.346 53.393 0.5 152.230 600.616 2.708  

260 De Bilt 5.177 52.101 2 140.569 456.885 53.086  

265 Soesterberg 5.274 52.13 13.9 147.220 460.069 57.847  
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267 Stavoren 5.384 52.896 2.6 154.755 545.311 44.719  

269 Lelystad 5.526 52.458 -4 164.403 496.599 63.458  

270 Leeuwarden 5.755 53.225 1.5 179.532 581.982 26.187  

273 Marknesse 5.889 52.703 -3.1 188.884 523.955 82.094  

275 Deelen 5.888 52.061 50 189.310 452.532 99.536  

277 Lauwersoog 6.196 53.409 3 208.751 602.697 9.744  

278 Heino 6.263 52.437 4 214.517 494.603 113.232  

279 Hoogeveen 6.575 52.75 15.6 235.158 529.726 85.706  

280 Eelde 6.586 53.125 3.5 235.208 571.459 45.654  

283 Hupsel 6.65 52.073 29 241.534 454.501 148.188  

286 Nieuw Beerta 7.15 53.196 0.2 272.760 580.133 61.311  

290 Twenthe 6.897 52.273 34.5 258.001 477.070 142.382  

310 Vlissingen 3.596 51.442 8 30.460 385.086 0.082  

319 Westdorpe 3.862 51.226 1.4 48.446 360.641 28.993  

323 Wilhelminadorp 3.884 51.527 1.4 50.673 394.087 16.312  

330 Hoek van Holland 4.124 51.993 12.5 68.224 445.604 0.498  

340 Woensdrecht 4.349 51.448 14.9 82.809 384.387 47.491  

344 Rotterdam 4.444 51.955 -4.8 90.143 441.043 20.041  

348 Cabauw 4.927 51.972 -0.7 123.351 442.613 44.833  

350 Gilze-rijen 4.933 51.568 11.1 123.483 397.670 67.407  

356 Herwijnen 5.145 51.858 0.9 138.287 429.859 64.388  

370 Eindhoven 5.414 51.446 20.3 156.832 384.001 103.330  

375 Volkel 5.706 51.657 21.1 177.027 407.520 108.959  

377 Ell 5.764 51.197 30 181.304 356.370 138.165  

380 Maastricht 5.768 50.91 114 181.749 324.447 157.674  

391 Arcen 6.196 51.498 19 211.124 390.096 147.067  

Table 2.1  Geographic information of weather stations including the longitude, latitude, altitude, X and Y 
coordinates. 

In Table 2.1, parameter lon and lat represent the longitude (east) and latitude (north) of meteorological 

stations, and since the distances between stations cannot be calculated directly with the longitude and 

latitude, so geographic coordinates of stations are needed. Parameter X and Y are the parameter of 

geographic coordinate which are defined and transformed by the longitude and latitude. The defined 

geographic coordinate are “GCS_AMERSFOOT”, and projection coordinate are “RD_NEW”. 

Amersfoort / RD New is a projected coordinate reference system last revised on 05/27/2005 and is 

suitable for use in Netherlands. 
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Figure 2.1  Locations of the 35 Netherlands weather stations and the blue line shows the coastline of the 
Netherlands. 

2.2.2. Data 

The data used in the thesis are wind speed series (km/h) observed at 35 stations located all around the 

Netherlands, and they are obtained from the Royal Netherlands Meteorological Institute 

(http://www.knmi.nl/home). In the thesis, we set one year as a block and extract annual maximum wind 

speeds from the raw data, daily maximum wind speed, for the time period 1971--2014. As a result, we can 

obtain 44 data for one station and set data from all stations into one sequence. We write the sequence 

as {𝑧𝑠
𝑛, 𝑠 = 1,2, … ,35; 𝑛 = 1,2, … ,44}, where s represent stations and n represent years. 

 
Figure 2.2  Time period of available annual maximum wind speed. 

http://www.knmi.nl/home
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Figure 2.2 shows that there are some data missing in part of the stations. Wind speed data are the basic of 

further research. But in actual measurements, data missing and exceptions might be happened because of 

the instrument failure, this will affect the reasonableness and completeness of the research. In order to 

fully and effectively use the measured data and get the more precise research results, it is essential and 

necessary to assess the quality and validity of extreme wind speed data, and detailed examinations of 

extreme wind data are needed before the research. 
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370 EINDHOVEN 

 
375 VOLKEL 

 
377 ELL 

 
380 MAASTRICHT 

 
391 ARCEN 

 

Figure 2.3  Boxplot of daily maximum wind speed (km/h) from 1971 to 2014 in 35 stations.  
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Figure 2.4  Boxplot of annual maximum wind speed (km/h) from 1971 to 2014 in 35 stations. 

In statistical analysis, boxplots can show the distribution function of data clearly. Figure 2.3 and Figure 2.4 

are the boxplot of daily and yearly maximum wind speed in 35 meteorological stations. Boxplot figures has 

5 parts, the bottom and top of the box are always the first and third quartiles, and the band inside the box 

is always the second quartile (the median), if the band is not in the middle of the box, it shows that the 

data contains skewness.  

 

From the Figure 2.3 we see some regularities of distribution of daily maximum wind speeds in time and 

space series. For single stations, the difference between the top and bottom and the length of boxes are 

not too much, that means the distribution of daily maximum wind speeds in one locations are similar in 

time series ( Massart et al., 2005). From the aspect of space, since the second quartile of boxplot can 

roughly represent the average daily maximum wind speed in each location, from Figure 2.3 we can see that 

the larger wind speed the station has, the closer coast distance the station has. It is also a reflection on the 

results got from Ribatet (2013), the coast distance from stations may has some connection with the 

distribution of maximum wind speeds. From Figure 2.4, the boxplot of annual maximum wind speed in 

each station, we see clearly that the difference because of the length of the boxes are not the same. 
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3. RESULTS 

3.1. Data selection 

The occurrence of missing data is a serious research problem, and the discontinuity of meteorological 

records becomes a major limitation of research and adds complexity to the analysis. Data in this research 

are daily maximum wind speeds provided by the Royal Netherlands Meteorological Institute (KNMI). Our 

aim was to extract the yearly maximum wind speeds. As Figure 2.2 shows, due to the instrument failure, 

human error and environmental influence, part of data provided by KNMI are missing. The occurrence of 

missing data should be taken into consideration. Typically it is important to know how many data are 

missing in one year and how they will actually affect the quality of yearly data and the results of the 

research. 
 

To solve this problem, the occurrences of annual maximum wind speeds in each month are counted 

clearly, wind speeds have seasonal characteristics and most high wind speeds concentrate in a few months. 

That means that wind speeds in specific months have a higher probability to become yearly maximum 

wind speed, whereas wind speed in other months have a much lower probability. Therefore, data in 

different months have different influence, also call those as different weights, on yearly maximum wind 

speed. The resulting histogram is shown in Figure 3.1. 

 
Figure 3.1  Times of annual maximum wind speed (km/h) appears in different months in 35 stations during 44 years. 

 
From the results we observe that compared with other months, annual maximum wind speed have much 

higher probability to occur from January to March and from October to December, and lower probability 

to occur in the other six months. So we can simplify the problem of data selection and restrict the range 

of missing data from one year to these six months. 

 

After simplifying the data quality questions, the next step is to find the number of missing data in one year 

which will not affect the quality of data and the results of the research. We call the number of missing data 

the threshold. If the number of missing data in one station in a specific year is larger than the threshold, 

the quality of wind speed data in these years and stations cannot be regarded as reliable. Therefore data in 
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this year should not be used in the research. If the number of missing data is smaller than the threshold, 

the quality of data is reliable and the data will be used. We calculate the number of the missing data from 

January to March and October to December from 35 stations and 44 years. The results are shows in 

Figure 3.2. 

  
Figure 3.2  Number of missing days from January to March and October to December from 35 stations and 44 years. 

The starting points 0 and ending point 182 has the largest number of 702 and 397. 

 

Missing days 0 1 2 3 4 5 6 7 8 9 

Number 702 44 57 42 35 25 26 30 18 9 

 

Missing days 10 11 12 13 14 15 16 17 18 19 

Number 10 13 8 9 6 2 1 5 1 0 

 

Missing days 20 21 22 23 24 25 26 27 28 29 

Number 6 1 0 2 2 2 0 0 0 1 

Table 3.1  Number of missing days from January to March and October to December from 35 stations and 44 years. 
This table shows numbers from 0 to 29 to give direct information on potential threshold. 

Figure 3.2 shows that nearly 2/3 raw data in 44 years and 35 stations have no missing data, but also 1/3 

data have missing data, whereas the number of missing data mostly fluctuate between 1 to 7 and 182. 

These numbers are not the appropriate choice for a potential threshold, because if a threshold between 1 

and 7 is chosen, many data cannot be used. Also 182 missing data mean half-year data is missing. These 

will affect the results of the research. According to several studies, the missing data should not exceed 10% 

of the whole data (Köse, 2004). Therefore the range of potential thresholds is chosen between 8 and 18 

(as there is no year with 19 missing data). It will affect only a few data since they account for only 4% and 

10% of the whole days in 6 months. For those reasons, I consider 8—18 is an acceptable and reasonable 

range of threshold. 
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3.2. Model selection  

Two steps are taken to decide the threshold of data selection. The first is to find the best trend surface 

model and the second is using this model to find the best fitting threshold. Focusing on the first step, 

theoretically, the marginal distribution of a max-stable processes is the generalized extreme value (GEV) 

distribution. It has three parameters, the location distribution μ, the scale parameter σ and the shape 

parameter ξ. For concrete applications, different places have different distributions. Therefore, pointwise 

marginal distribution should be allowed to occur locally. Defining a trend surface for the generalized 

extreme value parameters can solve this problems. The trend surface is the model which represents the 

marginal distribution of a max-stable process. Since wind speeds have connections with longitude, latitude 

and altitude, but there is no great change in the altitude of the Netherlands. Therefore longitude and 

latitude of meteorological stations are set as the parameters in the trend surface models. From the results 

of Ribatet (2013), it follows that there is a correlation between the distribution of maximum wind speed 

and the distance to the coast. Therefore, coast distance is set as a model variable. In this thesis, we assume 

several marginal distribution models with different forms (Table 3.2). Parameters μ(s), σ(s), ξ(s), X(s), Y(s) 

and coast(s) represent the location, scale and shape parameters of the generalized extreme value distribution, 

the geographic coordinate and the coast distance from the location s ∈ S, respectively. 

 

M1 

μ= βμ0 +βμ1*X(s)+ βμ2*Y(s) 

σ= βσ0 + βσ1*X(s) + βσ2*Y(s) 

ξ=βξ0 + βξ1*X(s) + βξ2*Y(s) 

M2 

μ= βμ0 +βμ1*X(s)+ βμ2*Y(s) 

σ= βσ0 + βσ1*X(s) + βσ2*Y(s) 

ξ=βξ0 

M3 

μ= βμ0 +βμ1*X(s)+ βμ2*Y(s) 

σ= βσ0 + βσ1*X(s) 

ξ=βξ0 + βξ1*X(s) + βξ2*Y(s) 

 

M4 

μ= βμ0 +βμ1*X(s)+ βμ2*Y(s) 

σ= βσ0 + βσ1*X(s) 

ξ=βξ0 

M5 

μ= βμ0 +βμ1*X(s)+ βμ2*Y(s) 

σ= βσ0 

ξ=βξ0 + βξ1*X(s) + βξ2*Y(s) 

M6 

μ= βμ0 +βμ1*X(s)+ βμ2*Y(s) 

σ= βσ0 

ξ=βξ0 

 

M7 

μ= βμ0 +βμ1*X(s) 

σ= βσ0 + βσ1*X(s) + βσ2*Y(s) 

ξ=βξ0 + βξ1*X(s) + βξ2*Y(s) 

M8 

μ= βμ0 +βμ1*X(s) 

σ= βσ0 + βσ1*X(s) + βσ2*Y(s) 

ξ=βξ0 

M9 

μ= βμ0 +βμ1*X(s) 

σ= βσ0 + βσ1*X(s) 

ξ=βξ0 + βξ1*X(s) + βξ2*Y(s) 

 

M10 

μ= βμ0 +βμ1*X(s) 

σ= βσ0 + βσ1*X(s) 

ξ=βξ0 

M11 

μ= βμ0 +βμ1*X(s) 

σ= βσ0 

ξ=βξ0 + βξ1*X(s) + βξ2*Y(s) 

M12 

μ= βμ0 +βμ1*X(s) 

σ= βσ0 

ξ=βξ0 

 

M13 

μ= βμ0 

σ= βσ0 + βσ1*X(s) + βσ2*Y(s) 

ξ=βξ0 + βξ1*X(s) + βξ2*Y(s) 

M14 

μ= βμ0 

σ= βσ0 + βσ1*X(s) + βσ2*Y(s) 

ξ=βξ0 

M15 

μ= βμ0 

σ= βσ0 + βσ1*X(s) 

ξ=βξ0 + βξ1*X(s) + βξ2*Y(s) 

 

M16 

μ= βμ0 

σ= βσ0 + βσ1*X(s) 

ξ= βξ0 

M17 

μ= βμ0 

σ= βσ0 

ξ= βξ0 + βξ1*X(s) + βξ2*Y(s) 

M18 

μ= βμ0 

σ= βσ0 

ξ= βξ0 
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M19 

μ= βμ0 +βμ1*coast(s) 

σ= βσ0 + βσ1*coast(s) 

ξ=βξ0 + βξ1*coast(s) 

M20 

μ= βμ0 +βμ1*coast(s) 

σ= βσ0 + βσ1*coast(s) 

ξ=βξ0  

M21 

μ= βμ0 +βμ1*coast(s) 

σ= βσ0  

ξ=βξ0 + βξ1*coast(s) 

 

M22 

μ= βμ0 +βμ1*coast(s) 

σ= βσ0  

ξ=βξ0  

M23 

μ= βμ0  

σ= βσ0 + βσ1*coast(s) 

ξ=βξ0 + βξ1*coast(s) 

M24 

μ= βμ0  

σ= βσ0 + βσ1*coast(s) 

ξ=βξ0  

 

M25 

μ= βμ0  

σ= βσ0  

ξ= βξ0 + βξ1*coast(s) 

  

Table 3.2  Potential marginal distribution models with different variables and forms.   

In the equation in Table 3.2, βμ0, βσ0 and βξ0 are the constant parameters of the location distribution μ, the 

scale parameter σ and the shape parameter ξ , βμ1, βσ1 and βξ1 are the coefficients of parameter X or coast(s) 

in coast distance model from M19 to M25, and βμ2, βσ2 and βξ2 are coefficients of the parameters Y of the 

trend surface model. 

 
As explained in chapter 2.4, Takeuchi’s information criterion (TIC) is used to decide which model is fitting 

best. The results are shown in the Table 3.3. 

 

Threshold 8 model selection results 

M1 M3 M4 M5 M2 M21 M19 M20 M6 

8231.754 8234.629 8235.506 8236.844 8237.034 8237.525 8239.563 8242.032 8242.937 

M22 M9 M11 M7 M10 M12 M8 M25 M23 

8244.887 8346.354 8354.747 8354.826 8358.144 8367.256 8368.611 8393.521 8396.129 

M17 M15 M13 M16 M24 M18 M14   

8398.761 8400.463 8401.767 8417.876 8420.142 8424.952 8428.736   

 

Threshold 9 model selection results 

M20 M2 M19 M1 M6 M7 M22 M4 M23 

8481.106 8481.268 8483.277 8483.653 8485.038 8486.248 8486.634 8489.011 8490.679 

M11 M24 M21 M17 M12 M25 M10 M18 M16 

8490.764 8490.985 8491.157 8491.491 8491.797 8491.802 8492.369 8492.781 8493.453 

M14 M9 M8 M15 M5 M13 M3   

8493.902 8493.93 8494.501 8500.123 8504.551 8514.971 8540.718   

 

Threshold 10 model selection results 

M1 M3 M21 M5 M4 M2 M19 M20 M6 

8343.319 8345.73 8346.836 8347.433 8348.462 8348.561 8349.658 8350.714 8353.165 

M22 M9 M7 M11 M10 M12 M8 M25 M23 
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8354.13 8464.986 8466.554 8467.352 8471.508 8479.007 8483.471 8506.373 8508.929 

M15 M17 M13 M16 M24 M14 M18   

8511.296 8514.693 8518.028 8531.04 8532.19 8532.369 8537.365   

 

Threshold 11 model selection results 

M21 M19 M20 M3 M1 M4 M5 M22 M2 

8298.889 8301.353 8301.846 8303.082 8303.457 8305.095 8306.606 8307.27 8309.439 

M6 M9 M7 M11 M10 M12 M8 M25 M23 

8313.46 8402.875 8403.224 8405.094 8415.651 8422.364 8424.375 8445.018 8447.65 

M17 M13 M16 M24 M18 M14 M17   

8451.27 8456.234 8470.402 8471.291 8476.802 8480.823 8451.27   

 

Threshold 12 model selection results 

M1 M3 M4 M5 M19 M2 M21 M20 M6 

8442.545 8444.268 8445.248 8446.773 8446.804 8447.79 8448.177 8448.717 8451.951 

M22 M9 M7 M11 M10 M12 M8 M25 M23 

8452.631 8560.874 8563.106 8563.602 8571.465 8580.02 8584.544 8608.346 8610.73 

M17 M15 M13 M16 M24 M14 M18   

8616.881 8617.676 8619.414 8633.087 8633.574 8633.995 8639.384   

 

Threshold 13 model selection results 

M1 M3 M4 M5 M2 M19 M21 M20 M6 

8495.541 8497.622 8497.824 8499.468 8500.285 8501.173 8501.383 8501.867 8504.3 

M22 M9 M7 M11 M10 M12 M8 M25 M23 

8505.83 8614.505 8622.533 8622.976 8626.002 8634.458 8638.885 8662.815 8665.208 

  

M15 

M13 M17 M16 M24 M14 M18   

8668.115 8671.561 8671.675 8687.732 8687.938 8688.418 8693.934   

 

Threshold 14 model selection results 

M1 M3 M4 M5 M21 M2 M19 M20 M6 

8540.593 8541.984 8542.674 8544.191 8544.78 8545.203 8545.242 8546.727 8549.155 

M22 M9 M7 M11 M10 M12 M8 M25 M23 

8550.376 8662.981 8669.259 8669.605 8672.873 8681.219 8685.695 8711.144 8715.341 

M15 M17 M13 M16 M24 M18 M14   

8718.368 8718.843 8721.667 8735.821 8736.29 8742.101 8748.546   

 

Threshold 15 model selection results 

M1 M3 M4 M5 M2 M21 M19 M20 M6 

8565.275 8567.627 8567.683 8568.506 8570.163 8570.35 8571.042 8571.483 8574.154 

M22 M9 M7 M11 M10 M12 M8 M25 M23 

8575.02 8687.061 8692.59 8693.129 8696.967 8705.194 8710.134 8735.091 8741.522 

M17 M13 M15 M16 M24 M14 M18   

8743.192 8743.781 8743.984 8760.156 8760.628 8760.971 8766.377   
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Threshold 16 model selection results 

M1 M4 M3 M5 M19 M21 M2 M20 M6 

8587.937 8589.988 8590.081 8591.48 8592.372 8592.603 8592.715 8593.83 8596.508 

M22 M9 M7 M11 M10 M12 M8 M25 M23 

8597.21 8707.511 8710.396 8712.68 8719.89 8727.939 8732.899 8758.901 8763.059 

M17 M15 M13 M16 M24 M18 M14   

8766.844 8767.631 8770.632 8784.033 8784.543 8790.161 8796.578   

 

Threshold 17 model selection results 

M1 M4 M3 M5 M2 M21 M19 M20 M6 

8629.824 8632.064 8632.074 8633.007 8634.469 8634.845 8636.081 8636.212 8638.512 

M22 M9 M7 M11 M10 M12 M8 M25 M23 

8639.705 8753.808 8759.23 8759.644 8763.541 8771.742 8773.28 8802.443 8805.033 

M17 M15 M13 M16 M24 M18 M14   

8810.7 8811.384 8812.199 8827.847 8828.34 8834.049 8840.206   

 

Threshold 18 model selection results 

M1 M4 M3 M21 M5 M19 M2 M20 M6 

8643.919 8646.182 8646.425 8646.853 8647.013 8648.224 8648.513 8650.264 8652.443 

M22 M9 M11 M7 M10 M12 M8 M25 M23 

8653.622 8767.534 8769.965 8773.56 8779.137 8786.009 8787.184 8817.088 8819.597 

M15 M17 M13 M16 M24 M18 M14   

8820.853 8825.307 8826.716 8842.636 8843.164 8848.702 8854.531   

Table 3.3  Results of Takeuchi’s information criterion (TIC) in model selection. Models are sorted by score of 
Takeuchi’s information criterion (TIC).  

The results show that according to the results of Takeuchi’s information criterion (TIC), in 11 tests, 9 tests 

among threshold 10 and 12--18 have the same results that M1 has the lowest TIC score and is the best 

fitting model. For the other two tests, thresholds 9 and 11 have different outcomes. So it can be 

concluded that M1 is the best fitted model in most cases. The format of M1 is presented in Table 3.2. 

 

3.3. Threshold selection 

After identifying a model that for most cases fitting well, the next step is to find the optimal threshold. In 

this step, a model sensitivity analysis, the test on the influence of model results on different inputs, is used 

to decide upon the optimal threshold. The range of thresholds has been discussed earlier in this thesis. We 

selected the same range from 8 to 18 as before. The results have presented in 错误!未找到引用源。. 

 

threshold loc1 loc2 loc3 scale1 scale2 scale3 shape1 shape2 shape3 

8 76.42618 -0.08108 0.06714 14.02343 -0.002566 -0.004724 -0.281954 -0.000971 0.000783 

9 85.06437 -0.01907 0.02656 11.02118 -0.010086 0.007287 -2.741e-1 -3.476e-5 3.892e-04 

10 76.57774 -0.08136 0.06712 13.77651 -0.002763 -0.004165 -0.310351 -0.000891 -0.000891 

11 77.31800 -0.07627 0.06370 13.66727 -0.007641 -0.002041 -0.304113 -0.000749 0.000757 

12 76.49291 -0.08201 0.06760 13.70476 -0.003357 -0.003766 -0.313992 -0.000856 0.000820 

13 76.22114 -0.08214 0.06820 13.50392 -0.003488 -0.003334 -0.297530 -0.000849 0.000781 
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14 76.28477 -0.08240 0.06822 13.55185 -0.003217 -0.003535 -0.300906 -0.000846 0.000784 

15 76.41206 -0.08195 0.06788 13.61339 -0.002627 -0.003845 -0.300801 -0.000872 0.000789 

16 76.47423 -0.08309 -0.08309 13.62017 -0.08309 -0.003715 -0.003715 -0.000819 0.000820 

17 76.40538 -0.08256 0.06812 13.58352 -0.003216 -0.003650 -0.269505 -0.000842 0.000712 

18 76.42618 -0.08333 0.06835 13.57343 -0.003725 -0.003475 -0.305263 -0.000800 0.000774 

Table 3.4  Results of model sensitivity test on parameters of marginal distribution model M1 with different threshold. 

 

错误!未找到引用源。 shows that for different thresholds, small changes happen to the model 

parameters. In general, this means that the model selection and parameter estimation were not very 

sensitive to threshold selection. So, basically, any threshold between 8 and 18, except 9, can be chosen, 

because according to the results of sensitivity analysis, no matter which threshold is used, the results of the 

research turned out to be the same. In this research, the threshold was somewhat arbitratily set to 14, in 

the middle of the explored threshold value and corresponding to the time span of two weeks. 

 

3.4. Results of marginal distribution and spatial dependence model  

Considering the trend surface model, no spatial dependence was taken into consideration. Thus, the next 

step is to find the most appropriate spatial dependence model. In the section 2.1.2, several spatial 

dependence models were introduced. Since these models are not nested, Takeuchi’s information criterion 

(TIC) can be used to decide which is the best fitted model. The results are presented in 错误!未找到引用

源。, 

 

Model Extremal-t Schlather Brown-Resnick 

Results 213169.7 213358.9 213427.8 

Table 3.5  Results of spatial dependence model selection according to the Takeuchi’s information criterion (TIC) 
method. Models are sorted by scores of Takeuchi’s information criterion (TIC). 

错误!未找到引用源。 shows that TIC values are not quite similar, but the extremal-t model has a 

slightly smaller TIC score, therefore it is the best fitting spatial dependence model. Also, the best fitting 

trend surface of the extremal-t model has been obtained, and is presented in equation (2.17). 
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  (2.17) 

In this model, the subscripts are the associated standard errors. From the results of model fitting we can 

see that the marginal distribution of extreme wind speed in the Netherlands has a connection with the X 

and Y coordinate of the location, because location parameter μ has a negative and positive correlation with 

X and Y, respectively. For a concrete application it means that the value of parameter μ will increase from 

east to west and from south to north; The scale parameter σ, has a negative correlation with the parameter 

X and has no connection with parameter Y, so the value of parameter σ increaseS from east to west. The 

shape parameter 𝜉 , also, has a negative correlation with parameter X and positive correlation with 

parameter Y and it increases from east to west and from south to north. From the model we further see 

that the parameter 𝜉 has a relative small coefficient, therefore the longitude and latitude have little 

influence on the shape parameter of marginal distributions. From the above analysis we can see that the 

distribution of extreme wind speed have a correlation with the coast distance, the largest wind gusts are 

observed along the coastline. 
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3.5. Comparison and prediction 

After achieving the best max-stable model for extreme wind speed in the Netherlands, the summary of 

characteristics and the prediction of regional extreme events was studied with the best fitting model. For 

regional extreme events, the characteristics are the spatial dependence and marginal distribution of certain 

locations. In particular, we consider three aspects. 

 

The first aspect is the comparison of the return level for return period of 25-year, 50- year, 75-year and 

100-year in 35 stations for the generalized extreme value (GEV) distribution in a single location and the 

marginal distribution in spatial models. The fitting methods to the generalized extreme value (GEV) 

parameters were the calculation of the maximum likelihood function by means of the log-likelihood 

function (2.18). 

 𝐿(𝜃) = 𝐿(𝜇, 𝜎, 𝛾) = −𝑛𝑙𝑛𝜎 − ∑ (1 + 𝛾 (
𝑥𝑖−𝜇

𝜎
))𝑛

𝑖=1

−
1

𝛾
− (1 +

1

𝛾
) ∑ 𝑙𝑛 [1 + 𝛾(

𝑥𝑖−𝜇

𝜎
)]𝑛

𝑖=1  (2.18) 

in where formula (2.18), 𝜃 = (𝜇, 𝜎, 𝛾). The �̂�, �̂�, 𝛾 are the maximum likelihood estimators of the 

parameter vector (2.18) with which the function obtains the maximum likelihood value. The results are 

shown in Table 3.6 and Figure 3.3.  

 

No. Station Return level for 

25 years 

Return level for 

50 years 

Return level for 

75 years 

Return level for 

100 years 

  Single 

GEV 

Model Single 

GEV 

Model Single 

GEV 

Model Single 

GEV 

Model 

210 Valkenburg 138.20 137.10  146.29 145.71  151.01 150.78  154.35 154.41  

225 Ijmuiden 162.43 138.35  175.26 147.26  183.17 152.58  188.96 156.41  

235 De kooy 138.16 140.57  145.77 150.03  150.25 155.78  153.45 159.98  

240 Schiphol 137.94 134.75  146.13 142.85  150.91 147.60  154.29 150.97  

242 Vlieland 155.64 142.05  171.25 151.89  181.77 157.96  189.93 162.43  

249 Berkhout 130.03 135.94  139.01 144.31  144.57 149.28  148.67 152.84  

251 Hoorn  133.60 139.25  144.36 148.39  151.59 153.98  157.19 158.07  

260 De Bilt 116.77 128.82  120.79 135.71  122.90 139.63  124.29 142.36  

265 Soesterberg 122.66 128.14  129.01 134.90  132.63 138.74  135.16 141.42  

267 Stavoren 132.17 134.28  138.81 142.29  142.68 147.03  145.42 150.43  

269 Lelystad 122.07 128.80  128.52 135.69  132.32 139.64  135.03 142.41  

270 Leeuwarden 133.09 133.72  142.37 141.59  148.07 146.28  152.23 149.65  

273 Marknesse 109.63 127.63  111.81 134.29  112.90 138.11  113.61 140.79  

275 Deelen 120.86 121.65  127.32 127.27  131.00 130.37  133.58 132.49  

277 Lauwersoog 139.60 131.22  148.06 138.55  153.11 142.90  156.75 146.01  

278 Heino 112.60 121.70  117.98 127.32  120.98 130.44  123.04 132.59  

279 Hoogeveen 112.81 121.76  114.81 127.38  115.75 130.52  116.33 132.69  

280 Eelde 128.79 125.08  134.72 131.25  138.02 134.78  140.30 137.25  

283 Hupsel 117.08 114.86  121.87 119.45  124.49 121.91  126.26 123.55  

286 Nieuw Beerta 124.10 120.72  128.08 126.14  130.19 129.19  131.61 131.30  

290 Twenthe 120.10 114.53  127.59 119.08  131.99 121.51  135.13 123.14  

310 Vlissingen 143.66 138.76  147.55 147.69  149.51 152.92  150.76 156.63  

319 Westdorpe 116.96 133.74  120.18 141.56  121.82 146.03  122.89 149.15  

323 Wilhelminadorp 123.21 136.49  128.17 144.92  130.95 149.82  132.87 153.28  

330 Hoek van 

Holland 

159.17 138.53  189.53 147.45  213.33 152.73  233.67 156.50  
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340 Woensdrecht 113.49 130.80  118.76 138.05  121.73 142.16  123.78 145.01  

344 Rotterdam 133.63 134.80  144.08 142.89  150.54 147.60  155.29 150.93  

348 Cabauw 125.88 130.06  133.83 137.18  138.57 141.25  141.98 144.09  

350 Gilze-rijen 126.24 126.11  134.42 132.49  139.19 136.04  142.58 138.49  

356 Herwijnen 121.00 126.81  125.62 133.32  128.11 136.98  129.79 139.51  

370 Eindhoven 121.42 120.29  127.04 125.70  130.13 128.62  132.24 130.60  

375 Volkel 128.05 119.54  135.95 124.83  140.45 127.70  143.60 129.64  

377 Ell 114.03 114.65  117.84 119.24  119.87 121.64  121.23 123.24  

380 Maastricht 115.78 111.90  118.70 116.12  120.20 118.30  121.18 119.72  

391 Arcen 109.68 113.55  118.79 117.98  124.77 120.31  135.16 121.85  
Table 3.6  Comparison of predicted return level in 25-year, 50-year, 75-year and 100-year return period in each 

stations by generalized extreme value (GEV) distribution and max-stable processes model. 

a. 25-year return period b.  50-year return period 

c. 75-year return period  d. 100-year return period  

Figure 3.3  Comparison of  predicted return level in each stations by generalized extreme value (GEV) distribution 
and max-stable processes model. The black line in figure is y=x and the red line is the fitted line by least square 
method. 
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From Table 3.6 we see that, for the generalized extreme value (GEV) distribution model in a single 

location, the predicted values of the return level have the highest degree of dispersion. Small values are 

much smaller and large values are much larger than the max-stable processes model return level. This can 

also be seen from Figure 3.3. In Figure 3.3, the x-axis is the value of return level obtained from the 

generalized extreme value (GEV) distribution in single locations, the y-axis is the value of return level 

obtained from the max-stable processes model, thus providing the scatter diagram. There are two lines in 

the figure: the red dotted line is the least square line of predicted return level, and the black line is the line 

y=x. From the two lines we see that the slope of red line is smaller than that of the black line. This means 

that compared with max-stable processes model, the return level obtained from the generalized extreme 

value (GEV) distribution model in single locations has higher values in stations which have a relative large 

annual maximum wind speed, but are underestimated in stations which have relatively small annual 

maximum wind speeds. This difference can be regarded as the result of modifications from max-stable 

process models to traditional generalized extreme value (GEV) distribution model. This can also explained 

by max-stable processes model considers the characteristics of spatial dependence. For further analysis, 

parameters in the generalized extreme value (GEV) distribution model are flexible in the sense that they 

are all fitted by data in single locations. So there are no intrinsic links between locations. Max-stable 

process models can be separated into two components, spatial dependence and marginal distribution. For 

the spatial dependence, the model represents spatial correlation between different locations. So all data 

from different stations should be used in the model at the same time, and the results will be influenced by 

all stations. For the marginal distribution, since method of trend surface model has been used, the variable 

of trend surface in this thesis is projection coordinate X and Y. Since research areas are not far away and 

they have similar geographic features, the results of marginal distribution models will be similar, and the 

results of max-stable process models will be smoother and have less degree of dispersion than the 

generalized extreme value (GEV) distribution. 

 

The second aspect is the prediction of maximum wind speed in individual locations. Regional extreme 

wind speed events analysis can predict wind speed in locations where there are no meteorological stations, 

and this is why for such analyse, spatial extreme models are superior to multivariate extreme models, as 

the objects of max-stable processes modelling is an area, but not individual meteorological stations. The 

method of prediction is specific for the whole Netherlands to grid nodes and calculates the value of return 

levels for each node using the model that we obtained. Figure 3.4 is the map of return level in 25-year, 50-

year, 100-year and 200-year return period in the Netherlands based on the fitted extremal-t model in the 

Netherlands. From the figure we see that the red parts in the south-east have relatively low return levels, 

and the yellow parts in the north-west have much higher return levels, and this distribution is familiar with 

the coast distance. As expected, the largest wind speeds have a connection with the coastline, but the 

maps indicate that the correlations are not strong enough. This conclusion is the same for model selection. 
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a. Return level in 25-year return period b. Return level in 50-year return period  

c. Return level in 100-year return period  d.  Return level in 200-year return period 
Figure 3.4  Map of return level in 25-year, 50-year, 100-year and 200-year return period in the 
Netherlands. 

The third aspect is the spatial dependence of models. The extremal coefficient functions are a convenient 

way to assess whether the model can reflect the spatial correlation structure in regional areas well or not. 

From Figure 3.5 we see that with the longer distance, the spatial dependence weakens. The fitted curve 

indicates that if the distance of two stations equals 50km, then the extremal coefficient is slightly more 
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than 1.6, and if the distance becomes larger than 250km, the spatial dependence of two stations has a weak 

correlation with the extremal coefficient is around 1.8.  

 

 
a. Pairwise estimates; b．Binned estimates (with 100 bins) 
Figure 3.5  Comparison between fitted extreme coefficient function and empirical F-madogram cloud. 
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4. DISCUSSION 

The aim of building spatial extreme value models is to analyse statistical regularities of regional extreme 

events. Due to the characteristics of extreme events, classical statistical methods in this thesis fall short 

when aiming to solve such problems in practical applications. Therefore, spatial extreme models based on 

max-stable processes are proposed and developed recently. Max-stable processes, which focus on the 

property of regionality and on randomness of spatial extreme events, can separate the statistical properties 

of extreme events into two components, spatial dependence, i.e., the spatial relationship of different 

locations, and marginal distribution, i.e., the statistical regularities of extreme events at single locations.  

 

In this thesis, annual maximum wind speed data from 35 meteorological stations measured between 1971 

and 2014 were used to model the distributions and spatial dependences of extreme wind speed events in 

the Netherlands. The specific methods for modelling was to parameterize the distribution of max-stable 

processes, this was done by using the composite likelihood method. After fitting the model, predictions 

can be made via the two dimensional joint distribution function. Even though the composite likelihood 

method has disadvantages in terms of the efficiency, it can fit the spatial extreme model with all stations’ 

data at the same time and obtain an asymptotic and unbiased estimators of the model parameters and 

asymptotic normality of the estimations ( Ribatet, 2013). According to the method of model fitting and 

selection methods described in chapter 3.2 and 3.3, models of marginal distribution and spatial 

dependence can be obtained. The model of the marginal distribution is presented in formula (2.17), 

whereas the model of spatial dependence is the extremal-t model. Then, several spatial analyses and 

comparisons between spatial models and generalized extreme value (GEV) distribution were carried out to 

find regularities in the distributions and spatial dependences of extreme wind speed events in the 

Netherlands. Comparing the results with other similar studies ( Ribatet, 2013), we see that both researches 

obtain similar results, even though we have different geographic and projection coordinates, data selection 

methods and model variables. From the results of the analysis, we notice that the maximum wind speed 

increases from south to north and from east to west, whereas the maximum wind speed have a negative 

correlation with the distance to the coastline. To some degree we can say that a higher distance from the 

coastline to the station corresponds with a lower annual wind speed. 

 

Since De Haan discovered the spectral representation of max-stable processes (de Haan, 1984), statistical 

modelling of spatial extreme events has been studied widely and much progress has been achieved. There 

are, however, some problems and difficulties in the both theoretical and application, which need further 

discussion and improvement. 

 

1 Interpretation of the missing data 

One aim of the thesis was to model extreme wind speed events in the Netherlands, understand their 

characteristics and correlation and predict the occurrence regularities and probabilities. The characteristics 

of annual maximum wind speed must be determined by using at least several years' maximum wind speed 

data. Therefore completeness should be taken into consideration. In the thesis, nearly half of the 

meteorological stations has missing data. So it is really important to minimize the effect of missing data on 

modelling as a spatial data quality issue.  

 

From past studies we obtained that missing data should not exceed 10% according to standards (Köse, 

2004). So in this thesis, 10% is set as a threshold, meaning that the number of missing data in a single year 

should be less than 19 (10.4%). There are two reasons that 1 to 7 days cannot be chosen as threshold. 

Firstly, for a whole year data, the number of missing days from 1 to 7 days is relatively small, so the 



SPATIAL MODELLING OF EXTREME WIND SPEED IN THE NETHERLANDS 

31 

probability that the annual maximum wind speed appears in these days is low; secondly, from table 3.1 we 

see that the number of missing days from 1 to 7 is really large. If one of which value is chosen, large 

amounts of data meeting this conditions will be deleted, this will affect the results of the research. 

 

There are different factors that affect the precision during data selection. Data selection is really important 

in this thesis. If the data are selected too loosely, the results of the research will not be the regularity of 

extreme wind speed but extreme as well as normal wind speed. However, if the data are selected too 

tightly, the results of the research will not show characteristics of extreme wind speed completely. So in 

the future, efforts should be made to propose better and more precise methods of data selection.  

 

2 Usage of other variables in the statistical models 

The model for extreme wind speed can be complicated because of several variations from different 

sources, but can as well as simple, just constant with no variation. Some variations depend on the 

geographical feature of the research area, like hills, valleys, river bluffs, buildings and trees. In this thesis, 

we induced three variables in the model, the projection coordinates X and Y and the distance from coast 

to location s, coast(s), but other geographical features are not considered in the model. There are no 

remarkable hills, valleys and river bluffs in the Netherlands. Buildings and trees, however, are shown 

everywhere around the country, which will lead to irregular surfaces and produce more friction and 

turbulence. The higher the friction, the lower the wind speed is. But for now, inclusion of data on building 

and trees which can affect wind speed and how to affect it are hard to define. Therefore, efforts need to 

be done to improve the precision of spatial models in future studies. 

 

Since the weather model can be applied widely, the method of modelling and analysis used in this thesis 

can be extended towards other places. One of the difficulties in the research is to fit the max-stable 

processes. The maximum composite likelihood estimator implies a loss in efficiency and shows typically 

numerical instabilities (Ribatet, 2013). Therefore, better inferential procedures should be studied for future 

research and analysis. Also we should do efforts to improve the quality of the raw data, the determination 

of model variables and the criteria of model selection, like we can choose those years which have no or 

few missing data to do the research. This will improve the quality of the data. Also, since the wind speed 

has obvious relationships with geographical features of the research area, so it is preferable to do study on 

the topographic and geomorphic conditions of the research area. This will helpful to improve the accuracy 

of the model. 
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5. CONCLUSION 

The conclusions of the thesis are reported in four parts, data selection, model selection split into marginal 

distribution and spatial dependences, and the spatial analysis of annual maximum wind speeds events in 

the Netherlands. 

 

1 Data selection: 

Since the occurrence of missing data is a common phenomenon in meteorological studies, this topic was 

addressed in this thesis. Methods should be applied to maintain the quality of data. In the thesis, data from 

January to March and October to December are chosen during the data selection since these six months 

have much higher probabilities to be the month which annual maximum wind speed occurs. Meanwhile, 

10% of the whole data was set as the threshold of missing data. If the number of missing data is smaller 

than the threshold, it will be regarded as fine data and if the number of missing data is larger than the 

threshold, the quality of data does not meet the standard and data from this year will be given up. Model 

sensitivity tests are used to get the best fitted model after data selection. The results show that there are 

almost no differences between 10 and 18 (10% data), so we rather arbitrarily choose the value 14 as the 

threshold of missing data. 

 

2 Marginal distribution model: 

Composite likelihood methods was used to fit the marginal distribution of spatial extreme models. The 

method use a parameters of the marginal distribution and geographic coordinates to build regression 

models, the maximizing composite likelihood estimation has asymptotic unbiasedness and normality. 

Based upon the composite likelihood methods, the best marginal distribution model for extreme wind 

speed in the Netherlands is obtained and shown in formula (2.17). The model shows that the extreme 

wind speed in the Netherlands has a connection with the longitude and latitude of the stations. Also, to 

some degree, it has a connection with the coast distance of the meteorological stations. The results show 

that a short distance from the coastline corresponds with a large extreme wind speed for the locations 

have. 

 

3 Spatial dependence model: 

The spatial dependence is well explained by the extreme coefficient. In this thesis, the pairwise extreme 

coefficient in two different stations was estimated as it explains partly the interconnections and influences 

of extreme wind speed events in the Netherlands. With the help of Takeuchi’s information criterion (TIC), 

the extremal-t model is chosen as the best model among the three models. Figure 3.5 shows that stations 

have a correlation with each other, and that the correlation reduced with the increasing distance.  

 

4 Spatial analysis: 

Finally, the thesis predicted the return level for different return periods with max-stable processes models. 

It also made a comparison between the prediction results from generalized extreme value (GEV) 

distribution and from marginal extreme distribution fitted by max-stable processes. The results show that 

the max-stable processes model was smoother and had a lower dispersion than the generalized extreme 

value (GEV) distribution. This is partly because the parameters of generalized extreme value (GEV) 

distribution are flexible, whereas parameters of the max-stable process model are defined by trend surface 

with coordinate X and Y. The return level map also shows that the largest wind speeds were connected 

with the distance to the coastline, but the maps show that this correlation is not very strong.  
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