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Abstract 

During the recent years, as the world becomes more digitalized, there has been a rise in 

cybercrime and rise of activity from stealthy threat actors such as advanced persistent 

threats, which poses a challenge for many companies to effectively secure their networks. 

The goal of the IMMUNE project is to focus on the security of modern industrial networks 

with an aim on self-defending resilient networks that use the modern networking 

paradigm software-defined networking. 

The internship investigates the feasibility of using reinforcement learning, which has 

enjoyed many breakthroughs in the past few years, in an adversarial setting. The main 

idea is to simulate 2 reinforcement learning agents: the attacker and the defender in a 

same partially observable network environment where they compete against each other 

with a goal for the network defender to learn the best countermeasures in each stage of 

the attack and therefore contribute towards the larger goal of the project of enabling 

autonomous network self-deference. 

As a result, a novel proof-of-concept reinforcement learning approach is devised, that 

allows defender to learn a policy of best reconfigurations provided by software-defined 

networking paradigm to take into account the given situational picture provided by the 

sensors in the network and information from risk assessment system that detects 

anomalous behaviour. This approach allows to take into account the known 

vulnerabilities in the system and devise countermeasures based on the behaviour they 

cause to the system. 
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Résumé 

Au cours des dernières années, alors que le monde se numérise de plus en plus, on a 

assisté à une augmentation de la cybercriminalité et à un accroissement de l'activité des 

acteurs de menaces furtives telles que les Advanced Persistent Threat (APT), ce qui pose 

un défi à de nombreuses entreprises pour sécuriser efficacement leurs réseaux. L'objectif 

du projet IMMUNE est de se concentrer sur la sécurité des réseaux industriels modernes 

dans le but de mettre en place des réseaux autodéfendables et résistants qui utilisent le 

paradigme moderne de la mise Software-Defined Networking (SDN). 

Le stage étudie la faisabilité de l'utilisation de l'apprentissage par renforcement, qui a 

connu de nombreuses percées ces dernières années, dans un cadre contradictoire. L'idée 

principale est de simuler deux agents d'apprentissage par renforcement: l'attaquant et le 

défenseur dans un même environnement de réseau partiellement observable où ils sont en 

compétition l'un contre l'autre avec pour objectif que le défenseur du réseau apprenne les 

meilleures contre-mesures à chaque étape de l'attaque et contribue ainsi à l'objectif plus 

large du projet qui est de permettre l'autodéfense autonome du réseau. 

En conséquence, une nouvelle approche d'apprentissage du renforcement de la preuve de 

concept est conçue, qui permet au défenseur d'apprendre une politique des meilleures 

reconfigurations fournies par un paradigme de réseau défini par logiciel pour prendre en 

compte l'image donnée de la situation fournie par les capteurs du réseau et les 

informations du système d'évaluation des risques qui détecte les comportements 

anormaux. Cette approche permet de prendre en compte les vulnérabilités connues du 

système et de concevoir des contre-mesures basées sur le comportement qu'elles 

entraînent pour le système. 
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Executive Summary 

The internship took part between March and August 2020 in the Predictive Modelling 

Department (IZ60) in the context of the IMMUNE project, which aims to develop a 

resilient and self-defending industrial network using the novel paradigm called software-

defined network. The IMMUNE project is conducted by a consortium of companies and 

institutions including IABG, Airbus, Fraunhofer, IFAK, Siemens and University of 

Hamburg.  

The IABG IMMUNE team is responsible for developing the tools to monitor and model 

the network’s risk. After the team developed the tools to model the risk of the network, 

there was an idea to use this risk metric as an input for the agent who can effectively react 

to lower that risk score in case of attacks to the system. This internship investigated the 

possibilities and feasibility of using reinforcement learning agents in an adversarial 

setting, where attacker and defender are simulated by intelligent agents in a network. The 

main interest is whether the network risk scores are sufficient to provide defender with 

accurate situational picture, so the agent is able to learn effective countermeasures from 

that information. 

Reinforcement learning is a machine learning technique, where an agent is simulated in 

an environment where it learns the behaviour only based on the given reward. There have 

been many breakthroughs in this field over the past years, mostly by combining the 

traditional methods with deep learning techniques. 

During the internship, a framework was developed using the IMMUNE network models, 

that simulates the attacker by taking into account all the possible attack paths in the 

network, that are derived from all currently known vulnerabilities, and the defender 

whose goal is to reduce the risk to the network. The attacker’s actions cause unusual 

behaviour in the network sensors, which are used as an input to calculate the current risk 

metrics. The defender receives only this information and needs to learn which 

countermeasures to take in order to minimize the network’s risk. The results of the 
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experiments showed that by using the risk score as a part of defender’s reward function, 

it was able to learn to select countermeasures that reduce the overall risk of the network. 

There has been previous works related using adversarial reinforcement learning in a cyber 

security setting, but to the best knowledge of the author, there has not been a similar setup 

where an attacker is simulated using all the possible attack paths and defender needs to 

react based on aggregated information from the risk assessment system by changing the 

actual topology of the network. 
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1 Introduction 

In this paragraph, the brief overview is given on the company, the project in which context 

the internship work is carried out, and the motivation and goals behind the internship. 

1.1 Company 

The internship is carried in a company Industrieanlagen-Betriebsgesellschaft mbH 

(abbreviated as IABG) located in Ottobrunn, Germany, on the outskirts of the Bavarian 

state capital Munich. The company was founded in 1961 by the West-German federal 

government as a central analysis and testing facility for the Ministry of Defence and the 

aeronautical industry. Since 1993, the company has been fully privatized and over time 

many additional business areas have added. IABG is active in fields such as: 

• Automotive 

• InfoCom 

• Defence & Security 

• Aeronautics and space 

• Energy. [1] 

IABG is a partner for EURECOM and an industrial member of the EURECOM 

consortium. [2] 

1.2 Project 

The internship is carried out in the context of applied research project IMMUNE which 

aims to develop and implement resilient and self-defending industrial network for next 

generation industry 4.0 factories and uses Airbus’ factory of the future as a case study. 

The project is focused on using software-defined networking technology and distributed 
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systems as main underlying technologies. The project focuses on a variety of stages of 

cyber defence such as attack mitigation, detection and treatment. [3]  

The project is carried out by a consortium of both industrial and academic partners and is 

funded by a German Ministry for Economic Affairs and Energy. [4] 

1.3 Internship objectives 

IABGs role in the IMMUNE consortium is to mainly work on network monitoring, 

intrusion detection and risk assessment. Before the start of the internship, there are already 

tools that have been developed by the IMMUNE team in IABG to model the network risk 

and attacker lateral movement using attack graphs. 

The main goal of the internship is to implement and analyse effectives the usage of 

reinforcement learning in context of IMMUNE project for minimizing the network 

defender’s risk and evaluate the feasibility of reinforcement learning for network self-

defence. 

The setting and initial starting point of the internship is to apply reinforcement learning 

in an adversarial setting, where both attacker and defender have limited information about 

the network and other actors. Defender is able to observe only aggregated, processed 

information (such as the output of a risk assessment system). Meanwhile the attacker tries 

to exploit system flaws to gain reward while the defender – equipped with a number of 

defence strategies – tries to mitigate costs.  

Goals and objectives of the internship are as follow: 

• Familiarize with the current state of the project. 

• Comprehend literature concerning reinforcement learning. 

• Implement and evaluate reinforcement learning in the IMMUNE project setting 

for autonomous self-defence to minimize the defender’s risk. 

• Assure the knowledge transfer to the project team and the company. 
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2 Theoretical foundations 

This chapter gives an overview of the theoretical foundations behind reinforcement 

learning and the main concepts for technologies used in IMMUNE project such as 

software-defined networking. 

2.1 Reinforcement Learning 

This section gives a brief introduction to the basics of reinforcement learning and the 

algorithms implemented during the internship. 

Reinforcement learning is a subfield of machine learning where instead of learning from 

a predefined dataset, an agent must learn behaviour through trial and error from a dynamic 

environment while maximizing its numerical reward signal. The agent is not aware of 

which actions return the maximum long-term reward and it has to learn it over time. The 

rewards can be immediate or subsequent, hence, the agent must be able to estimate the 

future consequences of current actions. [5, pp. 1-2] 

One way for classifying the taxonomy of machine learning is presented in figure 1. 

Supervised learning represents classical machine learning where the labelled dataset is 

provided, and the task is to find a function to fit the input to the labels as either regression 

for continuous label or classification for discrete ones. Unsupervised machine learning is 

performed when the given data is unlabelled, and the algorithm’s task is to find patterns 

in the underlying dataset, usually through classification, but other methods such as 

dimensionality reduction or anomaly detection are possible. Reinforcement learning, on 

the other hand, does not require any training data set, however the agent must be provided 

with rewards to make the learning possible. 
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Figure 1. Taxonomy of Machine Learning 

 

2.1.1 Markov Decision Process 

Reinforcement learning environment is modelled as a Markov decision process (MDP) 

[6] which consists of 5 components: 

• Set of states: S 

• Set of actions: A – can be both discrete or continuous 

• Transition probability function – given state s and next state s’ and action a, 

returns the probability of transition: 𝑃(𝑠!|𝑠, 𝑎)  

• Reward function –given state s and next state s’ and action a, returns the numeric 

reward: 𝑅(𝑎, 𝑠, 𝑠!) 

• Discounting factor for future rewards – 𝛾	 ∈ (0:	1) 

2.1.2 Fundamentals of Reinforcement Learning 

The main components in a reinforcement learning process are: 

• Agent 

• Environment 

• Actions 

During the learning process the agent interacts with the environment by taking an action 

during each timestep. The environment, which represents everything external to the agent, 

gives back a numeric reward and the new state of the environment. The goal of the agent 

is to maximize the rewards by learning which actions result in maximum future rewards 
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given the current state of the environment. The reinforcement learning process is 

visualized in figure 2. [5, pp. 47-48] 

 
Figure 2. Reinforcement Learning process 

 

The learning process happens during the sequence of time steps 𝑡 = 0… 	𝑇 (where T is 

the terminal/final state). The sequence 𝑆", 𝐴", 𝑅", 𝑆#, 𝐴#, 𝑅#	… 𝑆$ , 𝐴$ , 𝑅$ is called an 

episode. [5, p. 48] 

2.1.2.1 Policy 

The main goal of reinforcement learning is to learn a policy which defines the agent’s 

behaviour during each time step [5, p. 58]. Policy p is a function that maps agents actions 

defined as follows: 

𝜋(𝑠) 	→ 	𝑎 

The policy can be deterministic or stochastic (probabilistic). The goal of the learning 

process is to learn the optimal policy which returns the action that maximizes the future 

rewards: 

𝜋∗(𝑠) 	→ 	𝑎 

2.1.2.2 Return 

As already mentioned before, the agent’s goal is to maximize the future reward. The 

return G in the simplest case is the sum of all the rewards: 

𝐺	 = 	𝑅#	+	. . . +	𝑅$ 

However, the issue with cumulative return is that for continuous tasks where T is 

approaching infinity, the return would also approach infinity. Furthermore, the immediate 
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and short-term rewards are more valuable than larger rewards in the future, hence the idea 

of discounting the future rewards with g: 

𝐺	 = 	:𝛾& 	𝑅'(&(#

)

&*"

 

2.1.2.3 Value 

The value estimates for the agent how good it is to be in a given state [5, p. 58]. More 

formally, it is a function that takes a state as an input under a given policy and gives back 

the expected return: 

𝑉+ 	= 	𝐸,[𝐺$|𝑆' = 𝑠] 	= 	𝐸,[:𝛾& 	𝑅'(&(#

)

&*"

|𝑆' 	= 	𝑠]	 

2.1.2.4  Q- value 

The value of taking some action while being in a given state is called the Q-value or 

alternatively state-action value [5, p. 58]. Formally noted as: 

𝑄,(𝑠, 𝑎) 	= 	𝐸,[𝐺$|𝑆' = 𝑠, 𝐴' 	= 	𝑎] 	= 	𝐸,[:𝛾& 	𝑅'(&(#

)

&*"

|𝑆' = 𝑠, 𝐴' 	= 	𝑎]	 

2.1.2.5 On-policy and Off-policy 

There exist 2 types of reinforcement learning algorithms: on-policy and off-policy. On-

policy methods attempt to evaluate or improve the policy that is used to make decisions, 

whereas off-policy methods evaluate or improve a policy different from the one that is 

used to generate the data. [5, p. 100] 

2.1.2.6 Model based and model-free 

Another way to distinguish algorithms is whether they are model-based or model-free. In 

model-based reinforcement learning the agent’s goal is to learn the model of the 

environment and to solve the task via planning. However, as the task is difficult for larger 

environments, in practice most used methods are model-free where the agent learns via 

trial and error and does not have access to the full model of the environment. [5, p. 7] 
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2.1.2.7 Temporal Difference Learning Methods 

Temporal difference learning methods are model-free reinforcement learning paradigms, 

where the main idea is to bootstrap the intermediate estimates. During each step in the 

environment, the agent immediately updates the target value from the received reward: 

𝑉(𝑆') 	← 	𝑉(𝑆') 	+ 	𝛼	[𝑅'(# 	+ 	𝛾	𝑉(𝑆'(#) 	− 	𝑉(𝑆')] 

where hyperparameters 𝛼 is the learning rate (0 ≤ 	𝛼	 ≤ 	1) and 𝛾 is the discount factor 

of the future rewards (also 0 ≤ 	𝛾	 ≤ 	1). [5, p. 120] 

There is a trade-off with temporal difference methods between the agent exploring the 

environment versus the agent exploiting (taking the currently known best action). On the 

one hand, after too little exploitation, there is a danger to get stuck in a local maximum, 

on the other hand, when exploring too much, the algorithm may not converge or converge 

slower. The epsilon-greedy algorithm [5, p. 26] is commonly used in practice. The 𝜀 

parameter (0 ≤ 	𝜀	 ≤ 	1) represents the probability of the agent exploring versus 

exploiting. The decaying epsilon strategy can be also used where during the first episodes 

the epsilon value is close to one and decreases as the training process proceeds. 

2.1.2.8 Policy Gradient Learning Methods 

In contrast to the temporal difference learning where the main unit in the learning process 

is the value function that is being updated via state-action pairs, the policy gradient 

methods focus on directly optimizing the policy itself. The paradigm involves policy 

parameter (noted as 𝜃) and parameterized policy (noted 𝜋-). During the training the 

function 𝐽(𝜃') is used to measure the performance of the policy parameter as a loss 

function. [5, p. 321] 

During the learning process, the goal is to maximize the policy parameter with regards to 

the loss function using the gradient ascent algorithm noted formally as: 

𝜃'(# 	= 	 𝜃' 	+ 	𝛼	∀	𝐽(𝜃') 

Where 𝛼 is the learning rate (0 ≤ 	𝛼	 ≤ 	1) and ∀	𝐽(𝜃') is an estimate which expectation 

approximates the gradient of the performance measure with respect to 𝜃' . [5, p. 321] 
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2.1.3 Algorithms Implemented 

During the internship, the following reinforcement learning algorithms were 

implemented: 

• Q-Learning 

• Deep Q-learning 

• Advantage Actor Critic (A2C) 

The first 2 are examples of temporal difference learning and the Advantage Actor Critic 

algorithm belongs to the policy gradient methods family. 

2.1.3.1 Q-learning 

Q-learning [7] is a model-free off-policy reinforcement learning technique using the 

temporal difference learning concept and is defined as: 

𝑄(𝑆' , 𝐴',) 	← 	𝑄(𝑆' , 𝐴',) 	+ 	𝛼	[𝑅'(# 	+ 	𝛾	𝑚𝑎𝑥/𝑄(𝑆'(#, 𝑎) 	− 	𝑄(𝑆' , 𝐴',)] 

Hyperparameter 𝛼 is the learning rate (0 ≤ 	𝛼	 ≤ 	1) and 𝛾 is the discount factor of the 

future rewards (also 0 ≤ 	𝛾	 ≤ 	1).  

Q-learning is an off-policy algorithm which means that during the update step of the Q-

value, the maximum action value for the next state is used instead of the action provided 

by the current policy. 

The Q-table with state-action values are stored in the memory in a tabular format during 

the training process, which means that the table size is 𝑆	 × 	𝐴, making the Q-learning 

infeasible for problems with large action and/or state spaces. Example tabular 

representation is presented in table 1 below. 

 Action 1 Action 2 

State 1 Q(state 1, Action 1) Q(state 2, Action 2) 

State 2 Q(state 2, Action 2) Q(state 2, Action 2) 

Table 1. Example temporal difference state-action value representation 
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Pseudocode for the Q-learning algorithm is as follows: 

1. Initialize Q-table 

2. Loop until terminal state s or maximum steps are reached 

a. Observe state s 

b. Select action a based on 𝜀-greedy algorithm 

i. Generate random value r 

ii. If 𝑟	 > 𝜀-parameter: 𝑎	 ← 	𝑟𝑎𝑛𝑑𝑜𝑚(𝐴) 

iii. Otherwise 𝑎	 ← 	𝑎𝑟𝑔𝑚𝑎𝑥/𝑄(𝑠) 

c. Take action a 

d. Receive reward r and next state s' from the environment 

e. Update Q-table:  

𝑄(𝑠, 𝑎) ← 	𝑄(𝑠, 𝑎) 	+ 	𝛼	[𝑟	 + 	𝛾	𝑚𝑎𝑥/𝑄(𝑠′) 	− 	𝑄(𝑠, 𝑎)] 

f. Set s = s' as current state 

 

2.1.3.2 Deep Q-learning 

As mentioned in the previous chapter, traditional Q-learning has issues with large action-

state spaces. Researchers from Deepmind proposed a deep Q-network [8] that uses deep 

learning and replaces Q-table with a deep neural network that approximates the Q-table 

to address that issue. The goal of the Deep Q-learning is to train approximator 𝜃	such that: 

𝑄(𝑆, 𝐴, 𝜃) 	≈ 	𝑄(𝑆, 𝐴) 

with a loss function: 

𝐿(𝜃) 	= 	𝐸[(𝑟	 + 	𝛾	𝑚𝑎𝑥/𝑄(𝑠′, 𝑎′, 𝜃′)) 	− 	𝑄(𝑠, 𝑎, 𝜃))0] 

Where 𝜃′ represents the parameters from the previous iteration. In [8], the rolling replay 

buffer is used to store the states, actions, rewards, and next states and during the learning 
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process minibatch is randomly sampled from the buffer and the network is trained with 

stochastic gradient descent. 

In the context of the internship, the Deep Q-network was implemented not because of the 

infeasibility of Q-learning for the given problem, but to compare the performance of deep 

learning-based Q-learning to other algorithms. Furthermore, similar to the researchers in 

Deepmind who implemented the Deep Q-network using a technique called experience 

replay, which stores the previous states-action-rewards transitions in a buffer in the 

memory, and then during the training, it samples a random minibatch from there. During 

the internship, 2 different implementations were made of Deep Q-network, one using the 

replay buffer, and the other without it to compare the approach. 

The pseudocode for the Deep Q-learning algorithm with replay buffer is as follows: 

1. Initialize replay buffer B and Q-network with weights 𝜃 

2. Loop until terminal state or maximum steps are reached 

a. Observe state s 

b. Select action a  

i. Generate random value r 

ii. If 𝑟	 > 𝜀-parameter: 𝑎	 ← 	𝑟𝑎𝑛𝑑𝑜𝑚(𝐴) 

iii. Otherwise 𝑎	 ← 	𝑎𝑟𝑔𝑚𝑎𝑥/𝑄(𝑠, 𝜃) 

c. Take action a 

d. Receive reward r and next state s' from the environment 

e. Store the following tuple to replay buffer B: (s, a, r, s’) 

f. Sample set of random transitions (s, a, r, s’) from replay buffer B and 

calculate target value for each of the transitions: 

i. If s’ is terminal state: 𝑡𝑎𝑟𝑔𝑒𝑡	 ← 	𝑟  

ii. Otherwise: 𝑡𝑎𝑟𝑔𝑒𝑡	 ← 𝑟	 + 𝛾	𝑚𝑎𝑥/𝑄(𝑠′, 𝜃) 
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iii. Adjust the weight parameter 𝜃 using gradient descent method of 

the Q-network with a L2 loss function: (𝑡𝑎𝑟𝑔𝑒𝑡	 − 	𝑄(𝑠, 𝑎))0 

 

The pseudocode for the Deep Q-learning algorithm without replay buffer is as follows: 

1. Initialize Q-network with weights 𝜃 

2. Loop until terminal state or maximum steps are reached 

a. Observe state s 

b. Select action a  

i. Generate random value r 

ii. If 𝑟	 > 𝜀-parameter: 𝑎	 ← 	𝑟𝑎𝑛𝑑𝑜𝑚(𝐴) 

iii. Otherwise 𝑎	 ← 	𝑎𝑟𝑔𝑚𝑎𝑥/𝑄(𝑠, 𝜃) 

c. Take action a 

d. Receive reward r and next state s' from the environment 

e. Compute target 

i. If s’ is terminal state: 𝑡𝑎𝑟𝑔𝑒𝑡	 ← 	𝑟  

ii. Otherwise: 𝑡𝑎𝑟𝑔𝑒𝑡	 ← 𝑟	 + 𝛾	𝑚𝑎𝑥/𝑄(𝑠′) 

iii. Adjust the weight parameter 𝜃 using gradient descent method of 

the Q network with a L2 loss function: (𝑡𝑎𝑟𝑔𝑒𝑡	 − 	𝑄(𝑠, 𝑎))0 

 

2.1.3.3 Advantage Actor Critic (A2C) 

Advantage Actor Critic [9] method is policy gradient method used in an actor-critic 

setting. As discussed in the section on policy gradient methods, the main idea is to 

optimize the policy directly. An actor-critic setting is an interesting hybrid approach 

where two models are used together (visualized in a figure 3): an actor model that learns 
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the policy (as probability distribution of actions) and a critic model, that learns the value 

function. During the training phase, the advantage operator A is used which gives the 

actor (policy) model feedback on how well the policy is performing, and in which 

direction the actor should adjust it. Formally, the actor model updates the policy 

parameter (noted as 𝜃) and parameterized policy (noted 𝜋-) and the critic model the value 

parameter 𝜃1 which tracks the state-value function 𝑉(𝑠, 𝜃1). The beforementioned 

advantage operator is defined as follows: 

𝐴(𝑎' , 𝑠') 	= 	𝑄(𝑎' , 𝑠' , 𝜃) 	− 	𝑉(𝑠' , 𝜃1), 

where Q and V functions are estimated by their respective models. 

 
Figure 3. Actor-Critic architecture [10] 

 
The pseudocode for the Advantage Actor Critic algorithm is as follows: 

1. Initialize actor network 𝜃 and critic network 𝜃1 

2. Loop until terminal state or maximum steps are reached 

a. Observe state s 

b. Select action a according to actor model: 

i. Receive categorical distribution from the policy model: 

	𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛	 ← 	𝜋-(𝑠) 
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ii. Sample action from distribution 𝑎	 ← 	𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛	. 𝑠𝑎𝑚𝑝𝑙𝑒() 

iii. Receive the log-probability of the action from distribution 

 𝑝 ← 	𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛(𝑎) 

c. Compute the state s value v from critic model: 𝑣	 ← 	𝑉(𝑠, 𝜃1) 

d. Take action a 

e. Receive reward r and next state s' from the environment 

f. Store (p v, r) to buffer 

3. After the episode is done: 

a. Compute the actual discounted returns for each timestep from the buffer: 

i. 𝑅	 ← 	0 

ii. for each (p, v, r) from the end of the buffer to beginning  

1. Compute actual discounted return: 𝑅	 ← 	𝑟	 + 	𝛾	𝑅 

2. Compute advantage: 𝐴 ← 	𝑅	 − 	𝑣 

3. Train the actor with a loss function: −p	 ∗ A 

4. Train the critic with a L2 loss function: (𝑟 − 𝑣)0 

 

2.1.4 Known Issues with Reinforcement Learning 

Although reinforcement learning has enjoyed many breakthroughs during the past few 

years, mainly due to combining older learning techniques with deep neural networks. 

Great contribution to the field of reinforcement learning was the event in 2016 where 

research company DeepMind developed an algorithm branded as AlphaGo that managed 

to defeat the world champion in an ancient Chinese board game Go. However, there are 

still many unsolved issues with reinforcement learning, most of which become especially 

problematic when applied to real-life environments, out of toy simulations and games. 
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The biggest issues [11] can be generalized between efficiency and reward engineering 

and safety. 

Efficiency in reinforcement learning is a major issue, as the learning happens online and 

the agent needs to generate its own training data, in many cases the episodes take long 

time to play and the agent, usually, only obtains the reward in the end of the episode and 

needs to generalize it over the whole trajectory of actions taken. As already mentioned, 

when discussing Q-learning, classical tabular learning methods suffer from Bellman’s 

curse of dimensionality, while deep learning methods help to manage this issue, they 

introduce the black-box models in the form of neural networks, making the model less 

interpretable. 

The second big issue with reinforcement learning is reward engineering and 

accompanying potential safety issues. In supervised learning the data is labelled and some 

standard algorithm such as mean squared error is used to calculate the loss and the goal 

of the learning is to minimize that loss. In reinforcement learning, the reward function has 

to be manually set for each learning task. Furthermore, as the agent’s goal is to maximize 

the reward, it can learn unintended ways to maximize the reward, while not actually 

learning to solve the intended problem, which in real-life scenarios can bring about 

potential safety issues. 

2.2 Multi-Agent Reinforcement Learning 

Reinforcement learning can be applied to the environment where multiple agents operate 

together in the same environment and depending on the goals of the agents, this setting 

can be either cooperative, competitive or mixed, based on the agent’s given reward 

strategy. Typically, in cooperative tasks the agents share the reward function, and both 

get positive reward when accomplishing a common goal. In the competitive task, the 

rewards are typically zero-sum, which means that one agent’s positive reward is 

symmetrical to the other’s negative. [12] 

2.3 Software-Defined Networking (SDN) 

The IMMUNE project takes advantage of networking technology called software-defined 

networking (SDN), which is a paradigm that reinvents the management of the network 
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by splitting up the control and forwarding functionality into control and data planes 

(figure 4). Although this internship does not focus on the technicalities of software-

defined networks, it is crucial to understand the capabilities offered by this concept, in 

order to model the capabilities of the network defender for reinforcement learning as the 

IMMUNE project is built on top of it. 

In traditional network architectures, both control and forwarding logic is implemented in 

the network devices itself, meaning that for especially large multi-vendor networks the 

maintenance is very expensive and prone to errors due to misconfiguration. On the other 

hand, as SDN separates the routing and forwarding decisions of networking elements 

(routers, switches, and access points) from the data plane, the network administration and 

management becomes less complicated because the control plane only deals with the 

information related to logical network topology, the routing of traffic. In contrast, the data 

plane orchestrates the network traffic in accordance with the established configuration in 

the control plane which is centralized in a controller that dictates the network policies. 

[13] 

 

Figure 4. SDN architecture [14] 
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In the context of this internship, the main functionality of interest that software-defined 

networking brings to the table is the central management of the network, which allows to 

effectively reconfigure the network and therefore isolate or disconnect hosts or subnets 

that are infected or under attack. Since the IMMUNE consortium is not yet as far with the 

project to have a live running instance of the software-defined network, the model that 

mimics the same functionality is used instead. 
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3 IMMUNE project overview 

This chapter describes the working blocks of the IMMUNE project and gives more 

detailed description in which context the reinforcement learning is applied and what are 

all the working blocks it has to work together or relies upon. 

3.1 IMMUNE models 

The IMMUNE team also uses different types of which represent different types of models 

and graphs to carry out various tasks. These data structures with their abbreviations are 

as follows: 

• IMMUNE model (IMM) 

• IMMUNE Risk assessment (IRA) 

• Attack graph (AG) 

3.1.1 IMMUNE model (IMM) 

IMMUNE model is an object-oriented representation of industrial network. It consists of 

following parts: 

• Hosts 

• Routers 

• Sensors 

The hosts represent devices in the network. They can be either PCs, servers or 

programmable logic controllers (PLCs). The hosts have network interfaces and IP 

addresses. The IMMUNE model also describes the current software that is installed on a 

host and which ports (if any) the software is using. The software is described using the 

Common Platform Enumeration (CPE) which is a standard developed by National 

Institute of Standards and Technology (NIST) [15]. 
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The routers represent the networking infrastructure with different IP address ranges and 

subnets. The routers also model the network firewall rules; therefore, they contain the 

information that describes which hosts and which parts of the network can communicate 

with each other and whether the ports are open. 

The sensors that network contain are meant to model the host-based intrusion detection 

system, so if the host will be compromised or exhibits anomalous behaviour, then the 

sensors can detect it with some probability, on the other hand, the sensor are modelled in 

a way that false negatives are also present, so intrusion can go undetected. 

The main IMMUNE network model is developed by the consortium to imitate the 

industrial network. It has a large multi-segment network with many different hosts, 

industrial devices and deployed sensors. 

The main model is visualized in a figure below, with yellow nodes as industrial devices, 

green nodes as sensors, dark blue nodes as routers in a network and blue as hosts in the 

network. 

 

Figure 5. Main IMMUNE network model 
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The issue with the large network model is that it is much more complex to use to validate 

the initial approach for the reinforcement learning, instead a simplified network model is 

used for the reinforcement learning task which has only 5 hosts: Attacker, Webserver, 

SSH, FTP and DB, is used for that. The simplified model is illustrated in a figure below. 

 

Figure 6. Simplified IMMUNE network model 

 

3.1.2 IMMUNE Risk Assessment (IRA) 

IMMUNE risk assessment model is responsible for computing the network risk. The 

underlying modelling technology is Bayesian networks, which is a graph-based 

representation for conditional probabilities. In the context of IMMUNE, Bayesian 

networks are useful to model the conditional probabilities of certain host being 

compromised with respect to the other hosts and sensor observation in the network, 

considering the attacker’s possible attack paths. The IRA model allows to query 

probabilities that some host in the network has been compromised given the current 

sensor observation information. In the context of reinforcement learning, the IMMUNE 

Risk Assessment model will be used as defender’s state observation. 
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3.1.3 Attack Graph (AG) 

The attack graph is a model to represent the possible ways an attacker can perform lateral 

movement in the network. The attack graph is generated from the IMMUNE model by 

considering the vulnerabilities present in the network and the router’s firewall rules to 

determine which parts of the network are reachable from different hosts.  

The result is a directed acyclic graph with the attacker visibility vector as a vertex and 

vulnerability to be exploited to reach the next state as edge. The visibility vector 

represents attacker access privileges with respect to certain hosts in the network. The state 

values numbers have following meaning: 

0.  No visibility for attacker 

1. Attacker has network access (can communicate, but some packets might be 

dropped due to network/firewall configuration) for the host 

2. Attacker has access to the same subnet 

3. Attacker has low privilege access on the host 

4. Attacker has high privilege (root access) on the host 

In the figure below, there is a resulting attack graph from the simplified IMMUNE 

network. There are 5 hosts in the network and the state vector represents the attacker’s 

privileges in the following order: attacker host, Webserver, FTP, SSH, DB. For example, 

in the start of the attack, the state is [4,1,0,0,0] which means that attacker has root access 

on her host and has visibility on Webserver (since it is available on public web). By 

exploiting the vulnerability CVE-1 on the Webserver host, attacker obtains user level 

access on webserver, and now due to the configuration of the internal network, can also 

communicate with the FTP host, hence the new state value is [4,3,1,0,0]. 
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Figure 7. Attack graph of the simplified IMMUNE network 

 

3.2 IMMUNE processes 

The IMMUNE toolset has 3 different blocks of processes: 

1. Network model construction 

2. Risk analysis pipeline 

3. Reinforcement learning cycle. 

The figure below illustrates the processes and their interdependencies. The green colour 

illustrates the network model construction, grey colour illustrates the Risk analysis 

pipeline and the pink colour illustrates the Reinforcement learning cycle. 
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Figure 8. IMMUNE processes 

 

3.2.1 Network model construction 

The goal of network model construction is to turn the physical network with its switches, 

routers, interfaces and hosts into a representation of which it is possible to model the 

network risk and perform reinforcement learning. In other words, the goal of network 

model construction part of the pipeline is to turn the physical network into IMMUNE 

network model (introduced in section 3.1.1). 

The main parts of network model construction part of the IMMUNE software are 

responsible for the following tasks: 

• Network discovery 

• Software discovery 

• Vulnerability attribution 

3.2.1.1 Network discovery 

The network discovery is responsible for discovering the physical backbone of the 

network such as switches, routers and firewalls and active hosts in order to generate the 

IMMUNE network model. For the standard networks this step is performed using 

standard protocols such as SNMP, SSH and ARP. For software-defined industrial 
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networks, this step can be performed by querying the required information from the 

control plane. 

3.2.1.2 Software discovery 

Software discovery is the step to attribute the software that is installed on each component 

of the network. The standard that is used for this is called Common Platform Enumeration 

(CPE), which has following structure [16]:  

cpe:/<part>:<vendor>:<product>:<version>:<update>:<edition>:<language> 

The software discovery step is not possible to implement using common protocols, 

therefore the centralised database for each host’s software needs to be created. 

3.2.1.3 Vulnerability attribution 

Having a centralised database of all the software used in a network in a structured and 

standardised way allows easy vulnerability attribution using openly available databases 

and the software CPE values. The source that IMMUNE project uses for this is CVE 

Search offered by Luxembourg’s Computer Incident Response Centre [17]. 

3.2.2 Risk Analysis Pipeline and Reinforcement Learning Cycle 

The goal of the IABG in the context of the IMMUNE project is to work on the network 

monitoring and risk assessment. In the risk analysis pipeline, the IMMUNE network 

model is used first to generate the Attack Graph representation. Together with the attack 

graph and the current network observation from the deployed sensors, the probabilities 

are derived for each node in the network indicating the likelihood that they are 

compromised by utilizing the Bayesian networks. The risk score for each component is 

computed by multiplying the derived probability with the component value score. 

The main idea of the Reinforcement Cycle is for the defender to actively respond to the 

intrusions to the network by changing the configuration of the network in a way that 

minimizes the impact of the attack. The defender is trained by using adversarial learning 

where both attacker and defender are competing against each other in the same network. 

This process and methodology are explained in detail in chapter 4. 
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4 IMMUNE Reinforcement Learning 

This chapter gives a more detailed overview, methodology and results of the 

implementation of the Reinforcement Learning Cycle that was introduced in the previous 

chapter. 

This section describes the main contributions made to the IMMUNE project during the 

internship. The work started first with familiarizing with the concepts of reinforcement 

learning, the algorithms, and the concepts of software-defined networks presented in 

chapter 2. Next, the author got familiar with the current state of the project, on which a 

brief overview was given in the previous chapter. The goal after that was to design and 

implement the IMMUNE Reinforcement Learning Cycle and report the findings in order 

for the project team and the company to gain experience with the technology and assess 

the feasibility for the future projects. 

4.1 Overview 

The goal of using reinforcement learning in the IMMUNE project is to enable the 

defender to actively react to the intrusions reported by the sensors and the risk analysis 

pipeline in order to minimize the risk to its network. In order to train the defender to learn 

the optimal policy countermeasures for each stage of the attack, the attacker is simulated 

using the attack graph introduced in the previous chapter. 

4.2 Previous Work with Reinforcement Learning in Cyber Defence 

The researchers [18] from University of Groningen and TU Eindhoven have previously 

applied reinforcement learning in an adversarial cyber security setting. In the simulation, 

they modelled an environment, where the network has a set of nodes, each with a vector 

of values that represents attack and defence strengths that are only known to the attacker 

and defender respectively. During the attack, the attacker agent can change the attack 

strength while the defender can modify the defence values. Attacker’s goal is to 

compromise the nodes in a network to reach to the final node which contains the asset 

Different learning algorithms were implemented such as Q-learning, deep learning, and 

various Monte Carlo algorithms such as UCB and simulated pairwise against each other. 



34 

The main findings from this simulation were that tabular and Monte Carlo algorithms 

performed much better than neural networks-based agents due to the fact that the latter 

ones were slower to adapt for the changes in the environment. They also discovered that 

while Q-learning was the best algorithm for the defender it was the one of the worst for 

the attacker side, which they believed is due to the slow convergence of the Q-learning 

algorithm. 

4.3 Environment Setup 

Both agents are operating in the same network environment with limited observability 

with respect to the other agent. The aim is to model the real-life scenario, where both the 

attacker and the defender might interfere their opponent’s action, but not directly. The 

attacker must act with caution in order not to get caught, while the defender might notice 

some anomalous behaviour in the network, while not being able to pinpoint the exact 

source. 

Both the defender and the attacker agents are operating in the same environment - the task 

can be considered as an adversarial setup between the attacker and the defender. More 

generally, the training loop looks as visualized in figure 9. In each step both attacker and 

defender receive their partial observation of the environment, and according to this 

knowledge they pick the best action that results with maximum reward (according to the 

algorithm they are using). 
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Figure 9. Agents Network Setup 

 

Although, as mentioned previously, usually in multi-agent adversarial games, the reward 

function is a zero-sum, meaning that the reward is symmetrical between the winner and 

the loser. In IMMUNE’s adversarial reinforcement learning, the strategy was selected to 

not use the symmetric reward. The rationale behind this decision is that the real-life cyber-

attack scenario is asymmetric, as one side attacks and the other tries to defend. Usually, 

the defender does not have means to cause damage on the attacker but can only try to 

minimize the effect and damage while being attacked, and not win or gain any reward. 

Even if the attack is detected in the early phase, there is still costs and energy spent to 

deal with the incident from the defender side. 

4.4 Attacker 

The main idea behind an attacker is to simulate the intrusion by using the known 

vulnerabilities in the system. Attacker’s environment is an attack graph (figure 7), which 

contains all the possible attack paths given the available vulnerabilities in the network, 

and also considering which hosts are reachable from each other with regards to the 

network configuration and the firewall rules. The attacker exploits different 
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vulnerabilities while moving laterally in the network. The attacker agent’s state is its 

current position in an attack graph, which contains the information about the privileges 

and network visibility it has obtained for each known host in the network, so the attacker 

still has only partial observability with regards to the full network. Furthermore, as the 

defender takes countermeasures to mitigate the impact of the intrusion, the attack graph 

will change, so the environment for the attacker is dynamic. This will be described in 

more details later in the chapter. 

The attacker’s whole action space contains all the vulnerabilities available in the attack 

graph and during each timestep, the attacker can select between vulnerabilities available 

in its current position. Alternatively, the attacker can choose not to exploit any 

vulnerability and effectively stay in the same position. The state-actions space is 

presented in a table 2. 

State Action 

• Position in an attack graph • Do nothing 

• Select vulnerability v from all 

vulnerabilities 

Table 2. Attacker State and Actions 

 

For example, in the attack graph introduced in figure 7, the attacker’s starting position is 

[4,1,0,0,0]. At this position, it can choose to exploit the vulnerability CVE-1 or 

alternatively, do nothing and stay in the current position. When an attacker decides to 

start an attack and exploit the vulnerability, its new position is [4,3,1,0,0], where in the 

next timestamp, the attacker can choose between doing nothing and exploiting either 

vulnerabilities CVE-2 or CVE-3. The agent receives positive reward for each of the 

vulnerabilities exploited and receives the cumulative result at the end of the episode. 

To validate the attacker, the model 0 network configuration was used without the 

defender. First, when the attacker was run with a function where it receives fixed positive 

reward for every vulnerability exploited, the attacker intuitively learned to take the 

longest path between the start and terminal state. When the reward function was modified 
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as the attacker would receive negative reward for each of the vulnerability exploited, on 

the contrary to the previous experiment, the attacker now learned to take the shortest path 

between start and terminal state. 

4.5 Defender 

The goal of the defender agent is to learn the optimal policy of countermeasures to react 

to the attack effectively. The defender operates on the network model, which it has full 

knowledge of, however, the defender cannot observe the attacker directly and has to rely 

on the signals coming from the sensors which are stochastic in their nature, which means 

that there is a small probability of false positive and false negative readings. 

The defender’s state consists of sensor readings that have been processed by the risk 

assessment system (from the risk analysis pipeline) and returns the probability for each 

host in the network whether it is compromised by the attacker given the current network 

observation from the sensors. 

As IMMUNE uses software-defined networking as its underlying technology, it is easy 

to reconfigure the network centrally via the control plane. This idea is captured in the 

defender’s action space, where it has a set of possible configurations of the network and 

based on the observation it can choose either to stick to the given network configuration 

or change to a different one. 

State Action 

• Network observation – P(host = 

compromised | observation) for each host in 

the network 

• Index of current configuration c from all 

configurations 

• Do nothing 

• Select new 

configuration c’ from 

all configurations 

Table 3. Defender state and actions 

 

In reinforcement learning, the agent’s goal is to learn a policy that maximizes the reward 

function. The formulated goal for the internship is for the defender to learn 
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countermeasures that minimize the risk to the system, in this case the total risk to the 

system is computed by summing up the risk scores of individual hosts. The goal of the 

defender is to also minimize the impact of the attack, so the duration of the attack needs 

to be considered as well. Finally, as the goal is to minimize the number of configuration 

changes, the agent receives a penalty for each network reconfiguration. 

 
Taking all of these requirements into account, the defender’s reward function has 3 

components: 

1. Costs of action taken 𝑅/ – fixed penalty for each configuration change 

2. Duration of the attack 𝑅' – fixed penalty for each time step of attack duration 

3. Cumulative risk 𝑅2 – Risk score for each host during each step of the simulation. 

As similar to attacker, the agent receives the cumulative reward in the end of each episode 

that is sum of the 3 components: 

𝑅	 = 	𝑅/ 	+ 	𝑅2 	+ 	𝑅' 

Note here that, as opposed to the attacker, the defender’s reward is negative for all of the 

components, so in fact, while the agent is maximizing its reward, it is actually minimizing 

the negative reward. 

4.6 Experiments Setup 

The experiments are run on the simplified IMMUNE network (figure 6) with 5 different 

hosts: Attacker, Webserver, SSH, FTP and DB and some sensors to detect anomalies. The 

network firewall is configured in a way that the Webserver is in a demilitarized zone 

(DMZ), but due to misconfiguration it can communicate with the FTP host. There are 

also 7 different vulnerabilities present in the network model, which enable attacker for 

lateral movement in a network, that is represented in the resulting attack graph (figure 7). 

As mentioned in the previous paragraph, the defender has a set of configurations it can 

apply in order to mitigate the attack. The underlying software-defined networking 

technology used in IMMUNE network allows for fast and centralized  
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For experiment purposes, there were 3 additional configurations given to the defender to 

apply. In the default network the SSH, FTP, and DB hosts are all located in the same 

subnet 10.0.0.0/24. In each of the reconfigurations, there is one host that is ‘moved’ to 

the different subnet 10.0.1.0/24. Since the ‘moved’ host is now in a different subnet, and 

cannot communicate with any other host, the attacker might not be able to use all the 

possible vulnerabilities for lateral movement. 

The first configuration (noted as model0) is the simple network model (figure 6), as 

already mentioned, the model contains several vulnerabilities which can be used for 

lateral movement by the attacker. All the possible attack paths are illustrated in the attack 

graph (figure 7). 

In the second configuration (noted as model0) of the network (figure 10), the FTP host is 

in a subnet 10.0.1,0/24.  

 

 

Figure 10. Network configuration model1 

 

In model0, the network was configured in a way that the Webserver and the FTP host 

were able to communicate with each other, making it possible to exploit vulnerabilities 

in an FTP host and after that compromise other hosts in 10.0.0.0/24 subnet. In model1 the 

FTP host is in the 10.0.1.0/24 subnet, which is isolated from other network segments. 

Meaning that the attacker can still attack the Webserver and gain root privileges there, 



40 

but the rest of the lateral movement is not possible. The resulting attack graph is presented 

in a figure 11. 

 

Figure 11. Attack graph model1 

 

In the third configuration (noted as model2) of the network the SSH host is in the 

10.0.1.0/24 subnet and in the fourth configuration (noted as model3) of the network the 

DB host is in a separate subnet. In both cases, the vulnerabilities from either SSH or DB 

host are not exploitable for the attacker, meaning that some of the vulnerabilities are not 

represented in the attack graphs (figures 12 and 13). 
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Figure 12. Attack graph model2 

 

 

Figure 13. Attack graph model3 
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In the experiments, the defender can switch between those four configurations resulting 

in changes in the attack graph, and therefore the attacker’s environment is constantly 

changing as well. In the conducted experiments, the starting point is model0. Agents using 

different algorithms were implemented in both attacker’s and defender’s side. 

Implemented algorithms include: Q-learning, Deep Q-learning, Deep-Q learning with 

experience replay and A2C. In addition to the reinforcement learning agents, a random 

agent was also implemented that takes random action during each step. During the 

experiments 1000 episodes were used and all implemented agents were simulated against 

each other. The metrics used to compare the agents are steps, attacker and defender 

rewards averaged for each episode. 

4.7 Experiments Results 

The goal of the experiments was first to run attacker and defender against each other in 

an adversarial simulation starting with Q-learning and validate that the agents are able to 

learn. Following the validation, the results are interpreted by visually interpreting the 

agent’s behaviour after the training process. Finally, all implemented agents were 

simulated against each other. 

4.7.1 Proof of Learning 

First learning validation run was conducted using Q-learning agents for both attacker and 

defender sides for 1000 episodes. The metrics kept track on were steps per each episode 

and the attacker and the defender rewards. The average for these metrics during the initial 

training run were:  

• Mean steps per episode – 5.04 

• Mean attacker reward per episode – 33.05 

• Mean defender reward per episode – -115.31 

In figure 14 is the plot of the average steps per each 10 consecutive episodes. The plot 

illustrates how the steps converge already after ca 50 episodes. Same behaviour can be 

observed with both attacker and defender rewards (figure 15) where similar convergence 

happens. 
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Figure 14. Q-learning steps 

 

Figure 15. Q-learning rewards 

 

4.7.2 Learned Policy Interpretation 

Good way to interpret the attacker’s and the defender’s learned behaviours is to analyse 

the actions that the trained agents take. In order to do so, the attack graph is used to 

visualize the attacker’s movement and current configuration. The trained Q-learning 

agents from the previous paragraph are used and a single episode is played with agent’s 

only taking the best actions according to their learned policy.  

4.7.2.1 Step 0 

The start of the episode (figure 16), the attacker is in a position [4, 1, 0, 0, 0] and the 

network uses the first configuration (model0). 



44 

 

Figure 16. Scenario - Step 0 

 

4.7.2.2 Step 1 

Attacker starts the lateral movement by exploiting CVE-1 on the Webserver host and 

gains the user-level privileges there. New attacker’s state is [4, 3, 1, 0, 0]. 

 

Figure 17. Scenario - Step 1 

4.7.2.3 Step 2 

Defender reacts to the attack by changing the network configuration to model3 (figure 

18). The attacker remains in the same state and still has the opportunity to exploit either 

the CVE-2 or CVE-3 next. 
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Figure 18. Scenario - Step 2 

 

4.7.2.4 Step 3 

The attacker continues by exploiting the CVE-2, which gains her root privileges on 

Webserver (figure 19). Her new state is [4, 4, 1, 0, 0]. 

 

Figure 19. Scenario - Step 3 
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4.7.2.5 Step 4 

Defender switches to configuration model2 and since the attacker is in the final state of 

the attack graph the episode finishes as the terminal state has been reached. 

 

Figure 20. Scenario - Step 4 

 

4.7.2.6 Interpretation with Risk 

Defender reward components consist of penalty for time of the attack, number of 

configuration changes, and the total risk. As the goal of the reinforcement learning agent 

is to maximize the long-term rewards (in the case of defender to minimize the negative 

reward) the agent must try to make sure that the episode is as short as possible, with 

minimum amount of configuration changes and lowest total reward. 

In figure 21 below, there is a plot of the risk score from the risk assessment system in the 

y-axis for each of the configurations with different sensors being activated in the x-axis. 

Intuitively, the total risk scores match with the size of the attack graphs and attack 

surfaces for different network models, and also larger the number of intrusion detection 

sensors being activated correlates with higher risk. Therefore, in order for the defender to 

minimize the risk and duration of the attack, the defender should switch to a configuration 

with lower risk and least number of vulnerabilities that result with less steps during the 

attack. 
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Figure 21. Configurations' risk 

 

4.7.3 Simulation 

In order to analyse how well different algorithms perform on both attacker and defender 

side, the experiment was conducted where all different implemented algorithms are run 

against each other and the average steps, attacker and defender rewards are measured. 

The simulation is 1000 episodes long and to minimize one-off statistical anomalies for 

each attacker and defender pair, the simulation was repeated 10 times, and the average 

values from there were used for the comparison. 

4.7.3.1 Steps 

From the defender’s side, the biggest outlier is A2C defender with much higher average 

steps than other agents. Other attacker-defender pairs seem to perform similarly with the 

lowest average number of steps from both attacker’s and defender’s side is Q-learning.  
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Figure 22. Steps Heatmap 

4.7.3.2 Defender’s Reward 

When analysing the defender’s reward, the first thing to notice is that similarly to the 

number of steps, the A2C agent performs the worst on both the attacker and the defender 

side. On defence it has the highest number of negative reward and during the attack on 

average all the defenders have managed to gain the highest amount of reward against it. 

The best overall defender is the Q-learning agent with the highest amount of reward 

against all attackers.  
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Figure 23. Defender Reward Heatmap 

 

4.7.3.3 Attacker’s Reward 

When analysing the reward from the attacker’s perspective it also stands out that all 

agents have received on average the most reward against the A2C defender agent. The 

best performing attackers are Deep Q-learning agents. From the defender’s side, again all 

attackers have managed to gain on average the least amount of reward against the Q-

learning agent. 
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Figure 24. Attacker Reward Heatmap 

4.8 Discussion of Results 

The goal of simulating the attacker and defender against each other was to validate 

whether reinforcement learning approach could be used to simulate the attacker in order 

for the defender to learn countermeasures. With this proof of concept, it was validated 

that indeed the defender can learn from the risk scores to change to network configuration 

with lower risk. 

Similar to the results from [18], the overall best defender agent is Q-learning while during 

the attack the Deep Q-learning agents outperformed it. Based on the conducted 

experiments, the Advantage Actor Critic algorithm does not seem to be the best solution 

for a dynamic environment. One of the reasons for poor performance could be that it has 

been discussed in literature [19] [20] that policy gradient methods can be highly unstable, 

and since the adversarial multi-agent environment is highly dynamic and non-stationary, 

this combination could lead to bad performance. 
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4.9 Further Work and Possible Improvements 

The limitations of using attack graphs generated by known public vulnerabilities means 

that although it would be possible to accurately simulate the attacker for known 

vulnerabilities, it also means that the same is not possible for not yet known or publicised 

vulnerabilities. This is a downside since industrial networks could be targeted by highly 

sophisticated attackers. For example, the Stuxnet virus launched against Iranian nuclear 

facilities that relied on similar PLCs used four different zero-day vulnerabilities [21]. 

Furthermore, as the attack graphs rely on publicised CVEs, they are not covering cases 

where cyber-attacks start from phishing emails, which trick the employees to install 

malware to their systems and by doing that give attackers persistence, these kind of 

attacks do not exploit any technical vulnerabilities and rather rely on social engineering. 

Possible improvement of the IMMUNE reinforcement learning approach, that IABG is 

already working on, is how to include the cost model to different configurations in the 

network in a way it could be also used as defender’s reward function. The solution 

developed in the context of this proof of concept does not consider the possibility that 

some reconfigurations might be really expensive due to their impact on the business 

process. 

Possibly the biggest prerequisite for using a reinforcement learning approach for network 

defence is having good sensor observations, which was not yet validated on a real-world 

operational network or with network data due to fact that the state of the IMMUNE project 

is not there yet. 

4.10 Knowledge Transfer and Project Handover 

As reinforcement learning is a relatively new technique for the department and the 

company, an integral part of the internship was to ensure that the knowledge would stay 

in the IMMUNE team even after the end of the internship. Furthermore, as IMMUNE 

consists of many interdependent software packages and components (introduced in 

chapter 3), the code implementing the reinforcement learning functionality was 

developed from the beginning with an aim to make use of the other components and 

become itself as a part of the bigger IMMUNE software framework. 
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This means that the software repository written during this internship must remain 

maintainable even after the internship. In order to do so, following strategies were used: 

• Documenting the code and methods 

• Unit testing 

• Code handover sessions with IMMUNE team 

First, an extensive documentation was created that included documentation of every class 

and function, usage guide, and a documentation in the format of an internal website about 

the background of reinforcement learning and experiments, which is essentially a more 

condensed version of this report. Second strategy to make sure that the software is reliable 

and easier to make further changes to, was to cover the code with unit tests. The final unit 

test line code coverage was 87%. Third, to make sure that the team members have 

sufficient understanding on how the software works, multiple handover sessions were 

conducted, where the whole codebase was covered and explained. 
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5 Conclusions 

The goal of this work was to implement and then analyse the feasibility of the 

reinforcement learning in an autonomous network self-defence with underlying 

technology as software-defined networking. As a result of this work, the adversarial 

simulation was developed which utilises attack graphs to simulate attacker and the 

IMMUNE risk assessment system for defender to learn the best countermeasures to 

defend against an attack. Finally, several different reinforcement learning algorithms 

were implemented and compared against each other.  

As a result, a proof-of-concept simulation the defender was able to learn to reconfigure 

the network in a way that results with lower risk and shortest attack paths. However, there 

is still further work to be done on the intrusion detection, cost modelling and finally 

deployment of the system. Among the different algorithms that were implemented, the 

Q-learning performed best on the defender side and deep Q-learning from the attacker 

side. 

During the latter stage of the internship, the main focus was on knowledge transfer on 

reinforcement learning and documenting my experiment code as the IABG is also looking 

to expand on this work, and also find other applications for reinforcement learning in 

other projects. There is already a proposal of another project which relies heavily on the 

developed reinforcement learning framework from IMMUNE, with an extension for 

different types of attackers and different network types  

The main contributions on this internship were to show that it is possible to train the 

defender to deploy countermeasures to the attacks based only from the output of the risk 

assessment system. This work can be used as a framework where the attacker is simulated 

using the specific vulnerabilities and attack vectors of the given system to train the 

defending agent. Furthermore, the approach can also generalise to different types of 

countermeasures as the actions in reinforcement learning is an abstract concept, so the 

underlying system does not need to be implemented by relying on software-defined 

networking concepts, but can define its own countermeasures which the reinforcement 

learning agent can use as actions. 
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It must be also considered that developed approach has some drawback and possible 

future improvements. First, it relies on the of network sensor information, which may not 

be always possible to obtain or may contain noise. Furthermore, this approach does not 

consider zero-day vulnerabilities or social engineering attacks such as phishing emails. 

The main lessons that can be learned from this work is that competitive multi-agent setup 

can be used as a tool to simulate the cyber-attacks and the response. This setup can be 

useful in cases in where real datasets are not available or easily accessible. Furthermore, 

based on the goal of the research, this setup can generalize to different types of attacker 

and defenders, which are modelled according to their respective goals. 
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