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Abstract

Human body motion tracking has important applications in many fields, not restricted
to medical, biological science, virtual reality, sports and animation. While solving
the problem of human motion tracking it is not always possible to obtain a large
dataset without missing data or annotation. This creates challenges in developing
algorithms that require such datasets. Moreover, reducing the number of sensors
by generating data for these reduced sensors for motion capture can decrease the
usage complexity. This thesis aims to design and evaluate efficient and precise ma-
chine learning models to impute the missing data for sensors used in body tracking
solutions. Firstly, various traditional methods for data imputation and their shortcom-
ings are introduced briefly. The characteristics of these methods that make them
unsuitable for our tasks are then discussed. The human motion tracking datasets
used in this thesis are obtained from sensors used in Xsens MVN Link inertial mo-
tion tracking system. Inspired by the traditional data imputation methods, we develop
machine learning algorithms to deal with data imputation issues for human body mo-
tion tracking datasets. We first generate a model based on Hidden Markov Model
(HMM) for data imputation in a time-series sensor signal. Further, an autoencoder
based on convolutional and deconvolutional neural networks has been designed to
impute the missing data in the motion tracking dataset. Finally, we investigate a
Generative Adversarial Network (GAN) based method to solve the data imputation
problem on the same dataset. The experiments are carried out with different lengths
of missing data. The results of these three methods are evaluated and visualized.
These algorithms are compared against two single data imputation methods: Mean
Imputation and Zero Imputation. Dynamic Time Warping (DTW) and the Root Mean
Square Error (RMSE) distance between the original dataset and the estimated im-
puted output are used for the evaluation of the three algorithms. The DTW measure
shows that the proposed machine learning perform better than the two simpler sin-
gle imputation methods. The DTW measure shows that proposed machine learning
models produce better suited time series output as compared to Zero Imputation
and Mean Imputation. HMM and autoencoder based models have better results on
our datasets. Among the three algorithms, MisGAN based model achieves the best
results. For the dataset with missing data of length 32 time frames, our MisGAN re-
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VI ABSTRACT

duces the DTW value by 50.2% compared to Zero Imputation and reduces the DTW
value by 50.4% compared to Mean Imputation. However, our models do not show
obvious better performance than the two single imputation methods when evaluated
using the RMSE measure. Through the analysis and visualization of these results,
we consider that DTW is more suitable for analyzing the difference between time se-
ries data than RMSE. This research can be applied as solutions for data imputation
for human motion tracking datasets, but further research needs to be conducted to
make our models more suitable to human motion tracking datasets and to tune the
parameters of models to improve the performance of them.
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Chapter 1

Introduction

In the motion tracking area, it is not always possible to obtain a large number of
datasets that are without any missing data. Moreover, sometimes it is difficult to ob-
tain a large number of fully labelled datasets. Failures happen when signals received
from sensors are interrupted due to hardware or software malfunctions. Most algo-
rithms for human body tracking use forward kinematics based on the human body
skeletal model. The absence of sensors or data on body segments in the biome-
chanical chain makes the estimation using kinematics impossible. At the same time,
algorithms that require motion tracking data usually rely on complete and labelled
datasets, which emphasizes the integrity of labels and datasets.

From another perspective, in the human motion tracking area, it is considered
desirable to reduce the number of sensors that collect motion data information [1] [2].
If the intention is to reduce the number of sensors for motion tracking, it can minimize
the need for ‘new and labelled data’ while developing a sparse sensor solution for
body motion tracking system. Additionally, a spare sensor based solution for body
tracking reduces both the cost and complexity of use.

Many methods have been proposed to solve the missing data imputation prob-
lems. In general, these methods can be divided into two categories [3]:

• Using only the available partial data to estimate the parameters of the model

• Attempting to impute or predict the missing values with plausible values and
then estimating the model’s parameters

The disadvantage of the first category is that, with the remaining available data,
the parameters of the model may not be estimated accurately. The second process-
ing method is preferred, because it can use the imputed complete dataset for a more
exhaustive and reasonable analysis as mentioned above.

The human body motion tracking datasets we processed in this thesis are col-
lected by Xsens MVN Link systems. Xsens has two motion capturing systems: MVN
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2 CHAPTER 1. INTRODUCTION

Link (wired) and MVN Awinda (wireless) 4.2. This thesis will focus on the MVN Link
system. Xsens MVN consists of 17 (7 for lower body) inertial and magnetic motion
trackers that capture full-body human motion in all environments [4]. This technology
has found use in animation, sports, physical therapy, etc.

There are previous works to deal with data imputation. The most commonly used
method is matrix completion [5] [6]. These methods require the matrix to meet the
low-rank condition. The values of the entire matrix can be recovered from a limited
number of entries. However, not all datasets satisfy the requirement of low-rank ma-
trices. When the dataset is large, the complexity of the algorithm increases sharply.
The classic imputation techniques, using the mean, median, or mode of observed
data in the dataset to replace those missing data [3]. These methods are not pre-
cise in some situations, because the imputed dataset cannot reflect the real data
distribution. Some other statistical based methods, like multiple interpolations and
maximum likelihood estimation [7] are hardly scalable to large datasets. Compared
to traditional statistical methods, machine learning techniques lead to statistically
significant improvements in prediction and imputation accuracy [8]. In this thesis, we
propose to apply more flexible and accurate methods to solve the data imputation
problem on human body motion dynamic measurement during human movements.

As a method of exploring raw and unknown data, unsupervised learning is widely
used as a method of machine learning algorithms. With the advancement of society
and technology, the amount and complexity of data are rapidly increasing. Machines
can find out unknown patterns in data without any form of training data or guidance
with unsupervised learning [9]. These characteristics make unsupervised learning
suitable for human motion dataset with a huge amount of data and sometimes suf-
fering from missing data or labels. Meanwhile, artificial neural network algorithms
are applied in various fields [10]. Neural networks can discover complex structures
in high-dimensional data and extract different features [11]. The most important fea-
ture is their scalability, suitable for large datasets and flexible structural composition.

As one of the unsupervised learning and neural networks based methods, since
the initiation of Generative Adversarial Networks (GANs), it has been extensively
studied due to its huge application prospects in the image and visual computing,
speech and language processing [12]. GANs have been proven to be a powerful
machine learning tool in image data analysis and generation [13]. Many GAN based
models are applied to data imputation for image processing. Compared to image
data, time series data contains more information and data distribution is denser.
GANs are rarely used to do data imputation for time series datasets. GAN based
MisGAN is designed to impute image datasets [14]. In this thesis, we propose var-
ious supervised and unsupervised learning methods to deal with the issue of data
imputation. To compare the MisGAN based method with other machine learning
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based methods, we design experiments based on Hidden Markov Models (HMMs)
and Autoencoders. After that, we conduct experiments to explore the feasibility
and intuitive effect of applying MisGAN to impute human body motion time series
datasets obtained by the Xsens MVN Link system. Finally, to study metrics to reflect
the quality of correction for data imputation achieved using these aforementioned
methods.

1.1 Research Goals

Based on the motivation, our goals are:

1. To study the previously used methods for data imputation and analyze their
characteristics and limitations. Explain why these traditional data imputation
methods are not suitable for human body motion data and the reason why
choosing machine learning based methods.

2. To investigate machine learning algorithms that have been employed in the
problems of data imputation. Discuss the possibility of applying these methods
to the human body motion data imputation area.

3. To explore and develop algorithms selected in Research Goal 2, which help
to compensate for the missing data in the human body motion datasets or to
minimize the need for ‘new and labelled data’ for human body motion tracking
datasets.

4. To develop metrics to report the quality of correction achieved using the afore-
mentioned methods.

1.2 Outcomes

This thesis develops innovative machine learning based solutions for data imputa-
tion issues in the human body motion tracking area. It proves that: Traditional data
imputation methods are not suitable for solving the problem of imputing human mo-
tion data. Our machine learning algorithms based data imputation methods can be
applied to impute missing data or sensors in motion tracking datasets accurately.
These imputed complete datasets can be further applied to related existing algo-
rithms that deal with human motion tracking datasets.
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1.3 Contributions

This section briefly presents the contributions of this thesis.

1. This thesis investigates previous mathematical methodologies that deal with
data imputation and point out their limitations, which prompt us to figure out
more efficient and suitable methods for our problem.

2. Machine learning based methods: HMM and autoencoder are developed to
impute human body motion tracking data. These models are compared against
MisGAN. MisGAN is applied to the imputation of human motion tracking data
or sensors for the first time.

3. Dynamic Time Warping (DTW) and Root Mean Square Error (RMSE) are used
for evaluation. DTW is more suitable for reflecting the difference between time
series.

4. Comparisons are carried out among the aforementioned three methods. The
experiments include the application of two single imputation methods in the
meanwhile. It is demonstrated that those machine learning solutions perform
better than two single imputation methods and MisGAN based framework has
the best results. Under different lengths of missing data, MisGAN reduces the
value of DTW to about half of the two single imputation methods.

1.4 Report Organization

In Chapter 2, previous works dealing with missing data and their limitations and fea-
tures are discussed. Some machine learning algorithms applied to deal with data
imputation issues in this thesis are presented. In Chapter 3, the missing data mech-
anisms used in the later chapters are introduced. Some basic concepts and potential
training difficulties of GANs are discussed. At the same time, other machine learning
based data imputation methods: autoencoders and HMMs are proposed. Chapter
3 then introduces a model called MisGAN, which is a GAN based framework that
generates missing data distribution. It introduces a more reliable training method
that uses the gradient penalty with Wasserstein GAN (WGAN). Finally, it discusses
some metrics for the evaluation of the results of different methods. In Chapter 4, we
first briefly introduce the human body tracking datasets used in the experiments. A
HMM based model is generated to do data imputation with different missing rates.
Then we develop a deconvolution and convolution neural network based autoen-
coder called Conv-AE to impute missing data. Finally, we present the architecture
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of the neural networks applied in the MisGAN based framework. It then provides
the methodologies of MisGAN based framework for our datasets. In Chapter 5, it
first shows the results of applying HMM and Conv-AE on human body motion track-
ing datasets. Then we do some visualizations of data imputation. Secondly, we
do experiments on MisGAN framework to explore the possibility of MisGAN method
and visualize data imputation results. Moreover, these experiments are conducted
under different model parameters (e.g. Different missing rate of datasets). Chapter
6 discusses the conclusions of the Research Goals and experiments. It formulates
further research to be carried out in the future.



Chapter 2

Background

As discussed earlier, developing the capability to estimate the missing components
of a dataset or data stream allows improvement in the performance of various data
dependent tasks. The body tracking problem will also benefit from the introduc-
tion of data imputation methods. This chapter discusses some existing methods for
solving the problem of data imputation and further explains the characteristics and
shortcomings of these methods, which prompted us to find more accurate and re-
liable data imputation methods. Based on the previous findings, we develop some
machine learning algorithm based methods to deal with missing data imputation
issues.

Firstly, several traditional methods that solving data imputation are discussed in
Section 2.1 and Section 2.2.1. The comparative advantages and shortcomings of
these methods are introduced. Finally, we present some machine learning based
methods that we applied in this thesis to deal with data imputation issues in Section
2.2.2 to 2.5.

2.1 Traditional Data Imputation Methods

In this section, we introduce various existing traditional methods used to deal with
data imputation problems as well as their limitations and characteristics.

2.1.1 Matrix Completion

Matrix completion is a method of imputing in missing entries in a partially observed
matrix. It aims to impute missing entries in an incomplete matrix with certain con-
ditions. Low-rank matrices are the most commonly used assumption. In a low-rank
matrix, each column of the matrix can be represented by a linear combination of
a small number of basis vectors. The following part briefly introduces two specific
implementation methods and their attributes.

6



2.1. TRADITIONAL DATA IMPUTATION METHODS 7

Jian-Feng Cai et al. propose a novel method to complete a large matrix from a
small subset of its entries. By applying various convex constraints, they recover the
matrix with minimum nuclear norm [5]. The methods are used in recovering approx-
imately low-rank matrix or unknown low-rank matrix from limited information. These
methods can be applied in machine learning, control, or computer vision area. It
can also be used to restore the missing data in a survey. In their experiments, they
recovered several examples of 1000 × 1000 size matrices within 1 minute. Rahul
Mazumder et al. develop their matrix imputation by replacing the missing elements
in the incomplete matrix with those elements obtained from a soft-thresholded Sin-
gular Value Decomposition (SVD) [6]. Their methods fit a rank 95 approximation to
the full Netflix training set in 3.3 hours in computing approximations of a 106 × 106

incomplete matrix with 107 observed entries [15]. They focus on matrix factorization
and decomposition. However, matrix completion algorithms usually require matrices
to satisfy the conditions of low-rank and are not suitable for every dataset. Moreover,
these methods are computationally expensive and time consuming when applied to
large datasets.

2.1.2 Single Imputation

Mean substitution, using the mean value of data. The advantage is that it does not
change the overall sample mean. In addition, a single imputation can be imple-
mented in a process of regression, and a regression model based on observable
variables can be used to estimate missing data. But often overfitting occurs.

2.1.3 Multiple Imputation

For the Multiple Imputation, instead of replacing a single value for each missing
element, the missing elements are substituted with a set of reasonable elements
that contain the natural variability and uncertainty of the right values. Its purpose is
not to recreate the missing data as close as possible to the real ones, but to deal with
missing elements to achieve valid statistical significance. The advantage of Multiple
Imputation is that it recovers the natural variability of missing data and contains the
uncertainty caused by missing data so that effective complementary data can be
obtained [7].

2.1.4 Maximum Likelihood

The first step in maximum likelihood is to construct the likelihood function. Getting
the maximum likelihood is to find the parameter that makes the likelihood function
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as large as possible. If there are missing values, then we can generate the joint
probability that observation is just the probability of observing the remaining vari-
ables. The overall likelihood is the product of the likelihoods for all the observations.
As mentioned above, the next step is to modify parameters in order to make the
likelihood function as large as possible [16].

In the case of a large proportion of missing data, the maximum likelihood method
may be difficult to converge, thus it is complicated. There are such datasets that the
distribution and maximum likelihood of the observed dataset cannot be analyzed [7].

2.2 Machine Learning based Data Imputation Meth-
ods

The methods described above have many defects. For instance, they are not being
suitable for large scale datasets, difficult to generate complex distributed data and
insufficient accuracy of results, which urges us to seek more efficient ways to solve
the problem. Machine learning algorithms can be used as the solution because
it can assist missing data in uncertain scenarios by discovering the distribution in
latent space. Below we briefly introduce some machine learning methods and later
verify some of them.

2.2.1 K-Nearest Neighbours Imputation

K neighbors’ estimation can be selected based on some distance metrics and their
average or weight average values. The mean value of weight is related to the dis-
tance between the K neighbors and the missing data. The closer the distance, the
greater the weight [17]. In other words, use the observed data in the missing data
neighbors to impute those missing data [18]. This method suffers from the con-
straints that the complexity of the algorithm is high. It is easy to have large errors
with the real value, and difficult to determine the value of K.

2.2.2 Hidden Markov Models

A Markov chain is a model that provides us information about the probabilities of
sequences of random variables, states, etc. They are values taken from some set.
With a Markov chain, there is an assumption that the state before the current has no
impact on the states after the current state [19]. Based on the Markov chain, HMM
is a method of assisting a sequence of observations with a series of hidden classes
or hidden states that explain the observations. The key point of HMMs is that the
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likelihood of the observations depends on the states of the system are hidden to the
observer (e.g. part-of-speech tags in a text).

HMMs have a strong probabilistic framework for recognizing patterns in stochas-
tic processes. HMMs are widely used in data analysis to predict and generate new
data, such as speech analysis, image processing, etc. Moreover, HMMs are applied
to stock sequence analysis recently and significant results have been obtained. The
advantage of HMM can be summarized as follow [20]:

• HMMs have a strong statistical foundation

• HMMs are able to handle new data robustly

• Computationally efficient and easy to evaluate

• Predicting similar patterns efficiently

In this thesis, we refer to Nguyet Minh Nguyen’s paper on applying HMM to stock
price prediction [21]. We generate an HMM model similar to theirs and use it to the
human body motion tracking dataset. Therefore, new data (missing data) can be
predicted based on previous data. The detail of this process is discussed in Section
4.2.

2.2.3 Autoencoder

As an unsupervised machine learning method, autoencoders can be used to com-
press and extract data, remove noise from the data, etc. However, the models it
generates are often vague and lack the authenticity and accuracy of the models
generated by the GANs framework [22]. An autoencoder, shown in Figure 2.1 is
a neural network with three parts: An input layer, an encoding block with hidden
layers, and a decoding block with hidden layers. The purpose of this network is to
reconstruct its inputs. Map input to code through the encoder and then map the
code to the reconstruction of the original input. In effect, the encoder learns a good
low-dimensional representation of the input data and the decoder component of the
autoencoder learns to accurately recreate the data from the low dimensional repre-
sentation. As a result, autoencoders are trained to minimize reconstruction errors
(such as Root Mean Square Error).

Autoencoder can be applied for data imputation [23]. John T.McCoy et al. pro-
pose a recent deep learning technique, variational autoencoders (VAEs). It has
been used for missing data imputation. Missing data in the original data can be
recovered through the extraction and reconstruction of VAEs [24]. Haw-minn Lu et
al. create a multiple imputation model using Denoising Autoencoders (DAE) to learn
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Figure 2.1: The structure of autoencoder

the representation of data, which is used to generated completed data for further
processing [25].

2.3 Generative Adversarial Networks

With the development of machine learning technology, models based on deep learn-
ing provide us with novel ways to solve data imputation problems. These methods
are usually easy to expand, which makes them suitable for datasets of different
sizes and types, without requiring large training sets and test sets and they have
features such as flexible structure. GANs can be used to generated distributions
with a different dimension, which provides us with a solution to the problem of data
imputation. The basic structure of a GAN is introduced below, and its application in
data imputation will be discussed in Chapter 3.

GANs are unsupervised learning methods. Acquiring labeled data is a manual
process that takes a lot of time. However, GANs do not require this labeling pro-
cess. They can be trained using an unlabeled dataset as they can learn the internal
representations of the dataset. GANs allow a deep learning model to capture the
distribution of the input training dataset [26] and generate accurate results [27]. Ian
J. Goodfellow et al. first proposed GANs. The specific workflow of GAN is discussed
in Section 3.4.
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2.4 Wasserstein GAN and Gradient Penalty

Martin Arjovsky et al. generate Wasserstein GAN to solve the delicate and unstable
problems of GANs [28]. They direct their attention on the various way to measure
how close the generated distribution and the real distribution are. They propose a
new way to measure the distance between two distributions: The Earth-Mover (EM)
distance, which is a measure of the distance between two probability distribution
over a region [29]. To a certain extent, many issues such as generators’ instabil-
ity and gradient disappearance in GAN training are avoided by applying the new
measurement of distance.

However, in the process of calculating the EM distance, unreasonable restrictions
on the network may cause capacity underuse as well as exploding and vanishing
gradient. Ishaan Gulrajani et al. propose a new method to clipping weight: penalize
the norm of the gradient to the critical part about its input [30]. The algorithm is
described in detail in Chapter 3.

2.5 MisGAN: a GAN for Missing Data

Various neural network based solutions [31] [32] [33] for sparse sensors tracking
have been proposed. These solutions are based on supervised learning on real or
synthetic data and do not exploit the available, albeit incomplete model information.
Machine Learning based methods like Domain Adaptation (DA) [34], GANs can be
employed to learn model information or to share information from one dataset to
another. These methods can be used to extract useful knowledge from models or
datasets and employ it to solve a task on another dataset with some mutually shared
properties. GANs have been used for missing data imputation, which makes these
methods suitable for sparse sensor based solutions.

Jinsung Yoon et al. propose a novel method for data imputation based on GANs
called GAIN [35]. The GAIN imputes the unobserved part based on the available
data, which indicates that the GAN-based structure can be used to impute data on
incomplete datasets. Based on the previous work [35] [28], Li S et al. generate a
GAN based framework MisGAN to learn the complex and high dimensional distribu-
tion of incomplete datasets [14]. The training process follows the WGAN-GP method
mentioned in Section 2.4.

From the results of their paper [14], compared with some previous methods (e.g.
GAIN), MisGAN has obtained significantly better results when imputing missing data
in image processing. Inspired by it, we want to explore how to deal with data impu-
tation problem using MisGAN framework in human body motion tracking datasets. It
is further discussed in Chapter 3.



Chapter 3

Related Work and Definitions

Earlier we discussed some classical methods for solving data imputation problems.
In this chapter, we begin with a discussion of three kinds of missing data mecha-
nisms’ characteristics in Section 3.1. We then focus on HMM, a supervised learning
based generative model, which can be applied to data prediction in Section 3.2. In
Section 3.3, we talk about a convolutional and deconvolutional neural network based
autoencoder Conv-AE. We then present MisGAN, a neural network-based data im-
putation method. Section 3.4 presents GAN and Wasserstein GAN with Gradient
Penalty (WGAN-GP). After that, Section 3.5 introduces the novel approach MisGAN
taken by Steven Cheng-Xian Li and Bo Jiang and Benjamin M. Marlin [14], which
uses WGAN-GP based training strategy to generate distributions and imputation of
missing data. Afterwards, MisGAN will be further improved to be applied to deal
with data imputation of the body tracking problem mentioned in Chapter 1. Finally,
the metrics applied to evaluate the performance of various methods are presented
in Section 3.6.

3.1 Missing Data Mechanisms

In order to deal with missing data, we are concern with the missing data mecha-
nisms. Especially whether the value of missing data is related to the underlying
value of the variables in the dataset. The nature of the dependencies in these
mechanisms is crucial for choosing missing data methods. Some methods of data
imputation require special conditions for missing data mechanisms, which will be
discussed in detail when introducing these methods in this Section. Literature about
missing data theory describes three main mechanisms [8]. Among the three missing
mechanisms, we mainly focus on the first two forms.

Here we start to give some definition of missing data mechanisms. Let Y = (yij)

denote the dataset without missing data. yij is the value of the variable Yj for subject

12
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i. Let M = (mij) denote the missing data indicator matrix, such that mij = 1 if yij is
missing and mij = 0 if yij is not missing. Thus, the matrix M defines the pattern of
missing data.

Missing Completely at Random

As mentioned above, we define the complete data Y = (yij) and the missing data
indicator M = (mij). The mechanism of missing data can be formally defined by
a conditional distribution f (M |Y, φ), where φ denotes unknown parameters. If the
missing situation does not correlate with the values in dataset Y , then:

f (M |Y, φ) = f (M |φ) for all Y, φ. (3.1)

A missing data matrix is said to follow the Missing Completely at Random (MCAR)
mechanism. Note that under this condition, it does not mean that the pattern of
missing data is random, but the missing data does not depend on the dataset Y .

Missing at Random

Let denote Y = [Yobs, Ymis], where Yobs denotes the observed data in dataset Y
and Ymis denotes the missing data according to the missing data indicator M =

(mij). The second missing data mechanism has fewer restrictions than the first
mechanism. The missing data in the dataset Y is only related to the observable
data Yobs and does not depend on the missing data Ymiss. The Missing at Random
(MAR) can be formally defined as follow:

f (M |Y, φ) = f (M |Yobs, φ) for all Ymis, φ. (3.2)

Missing Not at Random

If the distribution of M is related to Ymis, then this mechanism is called Missing Not
at Random (MNAR).

3.2 Hidden Markov Models for Data Prediction

Nguyet Nguyen proposes a HMM for stock price prediction [21]. As mentioned in
Section 2.2.2, HMM is a generative probabilistic model. The system is considered
to be transitioning in a certain finite number of states. The state transition can be
defined by a matrix of state transition probabilities.
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Consider At is the value of one element in a certain state and St to be the state
on time frame t, which can be one of the assumed states. Then define some termi-
nologies that are used to generate HMMs [21]:

• Number of observations: T

• Observation Sequence: O = o1o2 . . . oT , a sequence of T observations

• Number of states: N

• States: Q = q1, q2, ...qN , , a sequence of N states

• State transition matrix: A = [ai,j], which reflects the probability of transition
from si to sj. (s.t.

∑N
j=1 aij = 1 ∀i)

• A sequence of observation likelihoods: B = bi (ot) (
∑

t bi (ot) = 1). Each ex-
pressing the probability of an observation ot being generated from a state i

• An initial probability distribution over states πi, indicates that the probability that
the Markov chain will start in state i: π = π1, π2, . . . , πN (

∑n
i=1 πi = 1)

Hence the HMM can be represented as:

λ = (A,B, π) .

Moreover, a hidden Markov Model has two simplifying assumptions. Firstly, the
probability of a certain state only depends on the previous state of it.

P (qi | q1 . . . qi−1) = P (qi | qi−1) (3.3)

Secondly, ”the probability of an output observation oi depends only on the state
that produced the observation qi and not on any other states or any other observa-
tions” [19]. Thus we have:

P (oi | q1 . . . qi, . . . , qT , o1, . . . , oi, . . . , oT ) = P (oi | qi) (3.4)

With these definitions and assumptions, we can build up a specific HMM for data
prediction of human motion tracking data.

3.3 Working Principle of Autoencoder

In this section, we explain the possibility to apply autoencoders to recover the datasets
with missing data. Autoencoder can be applied for data imputation [23]. An autoen-
coder is an unsupervised learning model.
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Autoencoder is usually divided into two parts, namely encoder, and decoder.
First, the encoder is used to encode the input data, and then the decoder is used to
decode the encoded inputs. The purpose is to reduce the reconstruction error be-
tween the generated data and the original data as well as to find a low-dimensional
representation of the input data. The basic structure of the autoencoder includes
two parts: the encoder and the decoder. They are written as,

φ : X → F ,
ψ : F → X .

(3.5)

Generally, the autoencoder is a neural network with more than one layer, but the
basic working principle is the same as that of a single hidden layer autoencoder.
Suppose in the simplest case there is only one hidden layer, we have:

h = σ(Wx + b), (3.6)

where x ∈ Rd = X and h ∈ Rp = F from Equation 3.3. σ is an activation function
in neural networks. W is a weight matrix and b is a bias vector. The decoder maps
h to the reconstruction of x′, which has the same shape as x:

x′ = σ′ (W′h + b′) . (3.7)

Autoencoders are trained to minimise reconstruction errors (such as squared
errors). In order to minimize the difference between the data reconstructed by the
autoencoder and the original data:

L (x,x′) = ‖x− x′‖2 = ‖x− σ′ (W′(σ(Wx + b)) + b′)‖2 . (3.8)

The autoencoder obtained after training on the complete dataset has the ability
to restore the original data. At this time, the dataset with missing data is used as
the input of the trained autoencoder. Then the trained autoencoder can output the
imputed dataset.

3.4 Data Imputation of Minimax Optimization with GAN

As mentioned before, GANs can be used to generated distributions with a complex
dimension and provides us with a solution to the data imputation issue. The basic
structure of a GAN is introduced below and its application in data imputation will be
discussed in this section.
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Figure 3.1: The structure of GANs

This workflow of this framework is shown in Figure 3.1. The arrows in this work-
flow represent the outputs or inputs of different modules. There are two parts in
this framework: a generator G and a discriminator D. First use random noise (e.g.
coming from Gaussian distribution) as the input of G. G is used to capture the distri-
bution of real data by generating generated data. Generated data and real data are
used as input for D. D is used to judge whether the input data comes from the real
distribution or G. It distinguishes between real data and generated data as much as
possible. The generator G minimizes the gap between the generated data and the
real samples as much as possible. The most ideal state is that the discriminator
cannot discriminate between the generated data and the samples from the real dis-
tribution. Fix G while training D, and vice versa. Take turns to train G and D until the
desired results are obtained.

The GANs training strategy can be defined as:

min
G

max
D

E
x∼Pr

[log(D(x))] + E
G(z)∼Pg

[log(1−D(G(z)))], (3.9)

where Pr is the real data distribution and Pg is the distribution from G. x is real
data and G(z) is data generated by G, where z is random noise. We train D to
maximize the possibility of correct classification of training examples and G gener-
ated samples. The strategy is to let G and D play a two-player minimax game with
Equation 3.9.
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3.4.1 Wasserstein GAN and Gradient Penalty

The purpose of training the GAN is to make the distribution Pg generated by the
generator closer to the real data distribution Pr. In actual operation, the distribu-
tion generated by the generator is close to the distribution of real data, that is, the
process of maximizing the value of Equation:

E
x∼Pr

[log(D(x))] + E
G(z)∼Pg

[log(1−D(G(z)))] (3.10)

is equivalent to maximizing the following equation based on Jensen-Shannon
Divergence:

−2log2 + 2JS(Pr||Pg). (3.11)

Jensen-Shannon Divergence is defined as follow:

JS (Pr‖Pg) =
1

2
KL

(
Pr‖

Pr + Pg
2

)
+

1

2
KL

(
Pg‖

Pr + Pg
2

)
. (3.12)

KL in the equation refers to the Kullback-Leibler (KL) divergence, defined as:

KL (Pr‖Pg) =

∫
log

(
Pr(x)

Pg(x)

)
Pr(x)dx (3.13)

Since most of these distributions that need to be generated by the generator are
low-dimensional manifold distributions in high dimensions, the generated model and
the true distribution’s support do not have a non-negligible intersection [28]. This
fact results in Equation 3.11 equal to a constant: log2, which means that the KL

divergence is not defined, which causes the vanishing gradient of generator G [36].
To be able to measure the distance between two distributions that do not overlap.

Martin Arjovsky et al. generate Wasserstein GAN to solve the delicate and unstable
problems of GANs [28]. They direct their attention on the various way to measure
how close the generated distribution Pg and the real distribution Pr are. In other
words, to define better measures for distance or divergence ρ (Pg, Pr). To ensure
that even when the two distributions do not overlap, the distance between them can
be measured. After comparing different kinds of distances and divergence property,
the distance between the real distribution and the generated distribution is defined
as follows:

• The Earth-Mover (EM) distance or Wasserstein-1:

W (Pr, Pg) = inf
γ∈(Pr,Pg)

E(x,y)∼γ[‖x− y‖], (3.14)

where Π (Pr, Pg) is the set of all joint distribution γ(x, y) whose marginals are re-
spectively Pr and Pg [28]. Simultaneously, they define a loss function for the model
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as a mapping g 7→ ρ (Pg, Pr) based on the EM distance, which can be used to mea-
sure the quality of the generated distribution. The EM distance solves the problem
of the Jensen-Shannon (JS) divergence non-convergence used in traditional GANs.

Because the infimum in Equation 3.14 is highly intractable, based on the Kantorovich-
Rubinstein duality it can be rewritten as [37]:

max
D(x)∈1−Lipschitz

Ex∼Pr [D(x)]− EG(x)∼Pg [D(G(x))], (3.15)

and solve Equation 3.4.1 where the supremum is overall the 1-Lipschitz function
(K is a positive real constant).

‖D(x1)−D(x2)‖ ≤ K ‖x1 − x2‖ . (3.16)

In order to enforce a Lipschitiz constraint, it is proposed to clip the weights to a fixed
interval (e.g. W = [−0.001, 0.001]l) after each gradient update. However, such a
simple restriction on weight will lead to capacity underuse as well as exploding and
vanishing gradient. Ishaan Gulrajani et al. propose a new method to clipping weight:
penalize the norm of the gradient to the critical part about its input [30]. Their new
objective for loss function is:

L = Ex̃∼Pg [D(x̃)]− Ex∼Pr [D(x)] + λEx̂∼Px̂
[(|| 5x̂ D(x̂)||2 − 1)2]. (3.17)

The specific details of the equation are described in detail in the paper [38]. The
last part of Equation 3.17 (the part after λ) is a penalty on the gradient norm for
random samples x̂ ∼ Px̂. D(x) is the function of discriminator and x̃ is the distribu-
tion generated by the generator, which is equal to G(x). The specific algorithm is
described as follows:
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Algorithm 1 WGAN with gradient penalty
Require: The gradient penalty coefficient, λ; The number of critic iteration per gen-

erator iteration, ncritic; The batch size, m; Adam optimizer is chosen as the opti-
mization algorithm. The hyperparameters of Adam, α, β1, β2;

Require: Initial critic parameters, w0; Initial generator parameters, θ0;
1: while θ has not converged do
2: for t = 1, . . . , ncritic do
3: for i = 1, . . . ,m do
4: Sample real data x ∼ Pr,latent variable z ∼ p(z), a random number ε ∼ U [0, 1]

5: x̃← Gθ(z)

6: x̂← εx + (1− ε)x̃
7: L(i) ← Dw(x̃)−Dw(x) + λ (‖∇x̂Dw(x̂)‖2 − 1)2

8: end for
9: w ← Adam

(
∇w

1
m

∑m
i=1 L

(i), w, α, β1, β2
)

10: end for
11: Sample a batch of latent variables

{
z(i)
}m
i=1
∼ p(z)

12: θ ← Adam
(
∇θ

1
m

∑m
i=1−Dw (Gθ(z)) , θ, α, β1, β2

)
13: end while

3.5 Learning from Incomplete Data with Generative
Adversarial Networks

Based on the previous work [35] [28], Li S et al. generate a GAN based framework
to learn the complex and high dimensional distribution of incomplete datasets [14].
It is further discussed in the following sections.

3.5.1 Incomplete Dataset

In a specific question, a dataset is denoted: D = {(xi,mi)}i=1,...,N , where x ∈ Rn

is a partially observed data vector and m ∈ {0, 1}n is the corresponding mask. If
md = 1, xd is observed, otherwise xd is missing. They define a masking operator
fτ that can use a constant τ to fill in missing data. This masking operator converts
incomplete data instances into vectors of the same size, where all missing items in
x are replaced by the constant τ :

fτ (x,m) = x�m + τm̄, (3.18)

where m̄ is the complement of set m and � is element-wise multiplication.
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Dataset and strategy for Generating Masks

They apply three types of missing data pattern and only one situation is described
in detail below:

1. Square available. Only the data in a square area randomly located in the
image is available, and the rest of the data is missing.

2. Variable-size rectangular observation. Only the data in a rectangular area
that appears randomly in the image is available, and the rest of the data is lost.
The area of the rectangle is random.

3. Dropout. Every pixel in the image is randomly lost according to the Bernoulli
distribution.

The dataset used is the collection of handwritten numbers: MNIST. For each
image with a size of 28 × 28 pixels, only a square with a size of 12 × 12 areas is
observed, and the rest is the mask part, which is shown in Figure 3.2. Moreover,
there is no dependency between the mask and the content of each image, which
follows the MCAR missing data mechanisms mentioned in Section 3.1.

Figure 3.2: For each image with a size of 28 × 28 pixels, only a square with a size
of 12 × 12 area is observed, the rest is unobservable, data which the
authors describe as masked data.

3.5.2 MisGAN: a GAN for Data Imputation

Figure 3.3 shows the structure of the MisGAN. The arrows in the workflow represent
the input of each part. The specific process is described below. They use gener-
ator Gm and discriminator Dm for masks as well as generator Gx and discriminator
Dx for data. Random noise is input to the data generator and the mask generator
to generate fake data and fake masks, respectively. Using the earlier mentioned
Equation 3.18, the mask and the data are combined to create a masked data. Then
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they are masked by fτ with Equation 3.18. Similarly, real data and real masks are
also masked by fτ , then those two masked values are sent to the data discriminator.
At the same time, real masks and fake masks are distinguished by the mask dis-
criminator. As a result, compared with the traditional GAN method, MisGAN model
not only learns the complete data distribution but also generates the distribution of
the missing data through a mask generator. The following two loss functions for
the masks and the data are defined separately. The losses follow the WGAN for-
mulation mentioned in Section 3.4.1. It follows the WGAN-GP procedure to train
discriminators with the gradient penalty:

Lm (Dm, Gm) = E(x,m)∼pD [Dm(m)]− Eε∼pε [Dm (Gm(ε))] , (3.19)

where z and ε are random noise. As a result, the optimization of the generators
and discriminators are according to the following formulas:

Lx (Dx, Gx, Gm) = E(x,m)∼pD [Dx (fτ (x,m))]− Eε∼pε,z∼pz [Dx (fτ (Gx(z), Gm(ε)))] .

(3.20)

The generators and the discriminators are optimized subject to the condition that
Dx and Dm conform to the restrictions, 1-Lipschitz, based on WGAN-GP mentioned
in Section 3.4.1

min
Gx

max
Dx∈Fx

Lx (Dx, Gx, Gm) , (3.21)

min
Gm

max
Dm∈Fm

Lm (Dm, Gm) + αLx (Dx, Gx, Gm) . (3.22)

This equation uses α equals to a small constant to force the generated masks
to match the distribution of real masks as well as the generated complete samples
with masks to match masked real data.
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Figure 3.3: Overall structure of the MisGAN framework. The image is taken from
the paper [14]

3.5.3 Missing Data Imputation

Missing data imputation is an important part when dealing with missing data. The
whole framework is shown in Figure 3.5. The goal of missing data imputation is
to complete the missing data according to p(xmis|xobs). Complete the imputation of
the data through imputer Gi and the corresponding Discriminator Di. Through the
imputer Gi, the observed part of the dataset remains unchanged, while the masked
part passes through Ĝi. Ĝi is an imputer network that generates the imputation
result. As shown in Figure 3.4, the red box is the observed part of the dataset, while
the rest is generated by the imputer.

The imputer Gi is defined as follow:

Gi(x,m,ω) = x�m + Ĝi(x�m + ω �m)�m. (3.23)

Figure 3.4: Imputation results. Inside of each red square is the observed pixels and
the rest of the pixels are generated by the imputer.

The input of the imputer is the incomplete data (x,m) and a random vector ω
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taken from a noise distribution. Through the observed part in x, the imputer out-
puts the completed sample. To train MisGAN containing the imputer, in addition to
the loss functions 3.19 and 3.20 mentioned above, they defined the following loss
function for the imputer:

Li (Di, Gi, Gx) = Ez∼pz [Di (Gx(z))]− E(x,m)∼pD,ω∼pω [Di (Gi(x,m,ω))] . (3.24)

Jointly learning the data generating process and the imputer according to the
following objectives:

minGi
maxDi∈Fi

Li (Di, Gi, Gx) ,

minGx maxDx∈Fx Lx (Dx, Gx, Gm) + βLi (Di, Gi, Gx) ,

minGm maxDm∈Fm Lm (Dm, Gm) + αLx (Dx, Gx, Gm) .

Figure 3.5: Architecture for MisGAN imputation. The image is taken from paper [14]

3.6 Evaluation Metrics

In this section, two metrics used to evaluate the performance of our models are
discussed.

3.6.1 Root Mean Square Error

The Root Mean Square Error (RMSE) is usually used to compare the difference
between two sequences. In this thesis, we use RMSE to calculate the gap between
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the original time series and the generated time series. The definition is as follow:

RMSE(X, g) =

√√√√ 1

m

m∑
i=1

(g (xi)− yi)2, (3.25)

where g(xi) is the generated data and yi is the original data. RMSE is always a
non-negative value, and a value of 0 indicates a perfect fit to the data.

3.6.2 Dynamic Time Warping

Dynamic Time Warping (DTW) is a useful, powerful technique that can be applied to
many different domains. Originally. it was designed to treat automatic speech recog-
nition [39]. In time series classification, DTW is one of the algorithms for measuring
similarity between two temporal sequences. These two sequences may have differ-
ent speeds. It can find optimal global alignment between two time series and exploit
temporal distortion between them. Figure 3.6 shows the difference between DTW
and Euclidean distance. In general, DTW is a method that calculates an optimal
match between two given sequences with certain restriction and rules:

• Every index from the first sequence must be matched with one or more indices
from the other sequence and vice versa

• The first index from the first sequence must be matched with the first index
from the other sequence (but it does not have to be its only match)

• The last index from the first sequence must be matched with the last index
from the other sequence (but it does not have to be its only match)

• The mapping of the indices from the first sequence to indices from the other
sequence must be monotonically increasing, and vice versa, i.e. if j > i are
indices from the first sequence, then there must not be two indices l > k in
the other sequence, such that index i is matched with index l and index j is
matched with index k, and vice versa

We use the DTW method in the experiments and evaluation process to obtain
the similarity of the time series of two sensors. The specific applications of DTW
method will be discussed in detail in Chapter 5.
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Figure 3.6: Comparison between two sequences: (a) while Euclidean distance is
time-rigid, (b) the DTW is time-flexible in dealing with possible time dis-
tortion between the sequences [40].

3.7 Summary

Inspired by previous works, we intend to explore a data imputation solution for Mis-
GAN based motion tracking. In paper [14], MisGAN is used to impute missing parts
in image datasets. Similar to image data with missing parts (masks), the absence
of data on sensors caused by malfunctions or failures is regarded as the ”masks”
mentioned in Section 3.5.1. The complete dataset of lower body motion tracking
can be generated by the MisGAN, which can be further processed and analysed in
existing algorithms. In Steven Cheng-Xian Li et al.’s paper, they applied MisGAN
for image data completion (e.g. MNIST dataset). In this thesis, we focus on the
MisGAN model to the imputation of time series for the first time in order to obtain
a complete time series datasets for human body motion tracking. Moreover, other
machine learning methods are developed to do comparisons. Compared with image
data, time series data is denser and changes more rapidly. We also propose met-
rics of accuracy and effectiveness of the algorithms which are more conducive to the
time series data that we are working with. The next two chapters will now discuss
the specific steps in more details, Chapter 4 discusses the specific methodologies
that we applied to data imputation issues on human motion tracking data. Moreover,
Chapter 5 conducts the experiments based on Chapter 4.



Chapter 4

Methodology

Most existing algorithms for motion tracking using forward kinematics based on the
human skeleton model and random data missing is a challenge to these existing
algorithms. The methodologies in this chapter aim to establish that the missing data
from the sensor set can be estimated using supervised and unsupervised learn-
ing. These estimated values can be used to create a full information dataset, which
can be further used in existing relevant algorithms. Figure 4.1 explains the whole
structure of our methodologies.

In this chapter, we talk about how to apply HMMs, autoencoder and data impu-
tation MisGAN framework mentioned in Section 3.3 to Section 3.5, to human body
motion tracking dataset to impute missing data. First of all, this chapter introduces
a description of the datasets used in experiments. Section 4.1 includes the charac-
teristics and collection process of the datasets. Secondly, HMM is designed to solve
the data imputation problem in Section 4.2. Then the data imputation process based
on an autoencoder model is presented in Section 4.3. Finally, the MisGAN based
data imputation framework is described in Section 4.4.

Figure 4.1: The overall process of our models.

4.1 Datasets

As Xsens MVN Link systems mentioned in Chapter 1, there is a sparse sensor setup
as the original MVN solution only uses five sensors from the lower body. These five
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Figure 4.2: Two persons wearing the MVN Awinda (Left) and the MVN Link (Right).

sensors are located in: pelvis, left upper leg, left lower leg, right upper leg and
right lower leg. The locations of these lower body sensors are shown in the right of
Figure 4.3. For each sensor, we have values from X, Y and Z axis. Therefore, we
can obtain 15 values from these five sensors. The whole analysis and the proposed
methodology of this chapter only focus on these five sensors of the Lower body.
Moreover, to simplify the experiments from the beginning, only the data regarding
the acceleration of these sensors from the lower body are used in the experiments.
The acquisition frequency of the data coming from the MVN Link is of 240 Hz,
which means that it contains 240 time frames per second. All the acquisitions are
performed indoor.

Dataset I

A total of 8 people participated in the data collection process. For each individual,
the collection steps are as follows:

1. First carry out a calibration procedure in which the tracked subjects need to
stand still in the N-pose for a few seconds, walk a distance about five meters
back and forth and coming back to the initial N-pose (to stand still with the
arms neutral besides body) for another few seconds [42].

2. The participant was asked to walk at normal speed (depends on the partici-
pant) for 3 minutes.

The datasets of four of them are simply connected end to end as the training set,
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Figure 4.3: On the left there are all the sensors of Xsens MVN Link system, while
on the right there are the specific five sensors from the lower body that
we focus on in this thesis [41]

and the remaining data is connected end to end as the test set. The training set
contains 117862 time frames and test set contains 118555 time frames.

Dataset II

A total of 8 people participated in the data collection process. For each individual,
the collection steps are as follows:

1. First carry out a calibration procedure in which the tracked subjects need to
stand still in the N-pose for a few seconds, walk a distance about five meters
back and forth and coming back to the initial N-pose (to stand still with the
arms neutral besides body) for another few seconds [42].

2. The participant was asked to jogging (the speed depends on the participant)
five times back and forth, one way is about 30 meters long.

The datasets of four of them are simply connected end to end as the training
set, and the remaining data are connected as the test set. The training set contains
52164 time frames and test set contains 51616 time frames.
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Figure 4.4: The training and prediction process of HMM.

4.2 Imputation of Human Body Motion Tracking Data
based on HMMs

In Section 3.2, the working principle of HMM is presented. According to that, we
design an HMM to impute those missing data with different missing rates of it. In
Section 4.2.1, we briefly introduce the application of HMM.

4.2.1 Data Imputation Based on HMM

As mentioned in Section 2.2.2, we need to determine the parameters of our HMM.
Using the training dataset for estimating the parameter set (A,B, π) for our HMM,
then we can apply the trained HMM to predict data in future. For calculating A and
B in the parameter set, we apply Forward-Backward Algorithm to train the HMM,
which is a special case of the Expectation-Maximization Algorithm. For calculating
π, a random number was chosen and normalized. Thus we have:

N∑
i=1

πi = 1.

With the trained HMM, likelihood values for the current time frame’s data are cal-
culated. For instance, the likelihood value for the current time frame is X. Then from
the past sequence using HMM, we try to figure out the time frame that produces
the same X or nearest to the X likelihood value. We then assume that the next
time frame next to the current one will follow the same pattern we find above. Thus
the value of the next time frame is established by adding the difference, which is
calculated between the time frame we find above and the time frame next to it. Fig-
ure 4.4 shows the process mentioned above. The specific algorithm for generating
parameter sets A and B is given out in [19].
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4.3 Imputation of Human Body Motion Tracking Data
based on autoencoder

In Section 3.3, we introduce the working principle and process of the autoencoder.
In this section, we design a convolutional and deconvolutional layer based Conv-AE
for the missing data imputation problem. The specific process is shown in Figure
4.5. First, we describe how to create masked data as the input of the Conv-AE in
Section 4.3.1. Secondly, in Section 4.3.2, we introduce the neural network structure
of the Conv-AE in detail. Finally, the procedure for data imputation on Dataset I
using the Conv-AE mentioned in Section 4.3.2 is described.

Figure 4.5: The training process of Conv-AE.

4.3.1 Masked Data Generation

In this section, we discuss how to create the input vector: Masked Data, which is
shown in Figure 4.5. Firstly, as mentioned before, we only focus on the acceleration
part of the datasets. For each of the five sensors, there are acceleration values for
three coordinate axes: X-axis, Y-axis and Z-axis. When reading a dataset to obtain
Original Data, each time frame with a length of 64 is read randomly from it. From
these five sensors from the lower body, we randomly pick up one sensor to add a
mask on it. When adding masks, X, Y and Z axes are all masked and the length of it
is chosen from 0 to 64 (with different missing rates). The strategy of adding masks
is visualized in Figure 4.6. Values from the masked data part is equal to 0, and the
rest values are keeping still the original values. Finally, we get the input vector of
Conv-AE: Masked Data.

With different sizes of masks, we generate parameter: Missing Rate. When
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adding a mask to one of the five sensors, we calculate the missing rate as follow:

Missing Rate =
Length of Mask

Length of T ime Frames Read from Dataset Each T ime

For instance, each time wee read a vector with the length of 64 time frames. If
the mask size equals to 32, then we have the missing rate equals to 50%.

Figure 4.6: A simplified diagram of the generated mask and masked data

4.3.2 Neural Network Architecture

To create a convolutional and deconvolutional neural network based Conv-AE, we
refer to the structural design of convolutional DAE [43]. For the encoder part, we
generate three convolution layers with ReLU activation functions and Max Pooling
2D layers in between. For the decoder part, we apply three deconvolution layers
followed by a convolution layer and with ReLUs in between [44]. The output vector
of the Conv-AE has the same size as its input vector. Figure 4.7 plots the detail of
the structure of Conv-AE.
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Figure 4.7: The neural network structure of DAE. [43]

4.3.3 Data Imputation Based on DAE

First, we manually add masks to the original data, where the mask represents the
missing part of the data according to Section 4.3.1. We then use these masked
data as the input vector of Conv-AE and get generated data after reconstruction
of the Conv-AE described in Section 4.3.2. Finally, we calculate the mean square
error between the original data and the generated data, which forces the Conv-AE
to reconstruct data that similar to the original data. We optimize the parameters of
the Conv-AE based on gradient descent via the backpropagation algorithm.

Through the above training process, the Conv-AE gains the ability to impute
missing data. The Conv-AE framework trained on training datasets is used for
the same type of test datasets with missing data to obtain reconstructed complete
datasets. In other words, the purpose of training the model is to reduce the gap
between the reconstructed data and the original data. The specific experiments and
results are discussed in Section 5.2. The process are shown as follow:

1. Read the original data xoriginal data from the dataset and the Conv-AE will re-
ceive masked data xmasked data as the input vector

2. Use xmasked data as the input of the DAE and the Conv-AE generates recon-
structed data: xgenerated data = fθ(xmasked data). Among them, f(x) stands for
DAE for reconstructed data and θ is the parameters in DAE, which are trained
to minimize the reconstruction mean square error
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3. The reconstruction mean square error (the loss function) is calculated as:

L(xoriginal data, xgenerated data) =
1

n

n∑
i=1

(xoriginal data, xgenerated data)
2,

n is the number of elements

4. With the loss function mentioned above, the Conv-AE is optimized by back-
propagation algorithms

4.4 MisGAN based Framework for Human Body Mo-
tion Datasets

In this section, based on the MisGAN framework discussed in Section 3.5, we
present how to apply the MisGAN framework for data imputation of human body mo-
tion tracking dataset. In Section 4.4.1, we describe how to desgin the input vectors
of MisGAN framework. Then the architecture of neural networks used in MisGAN
framework is introduced in Section 4.4.2.

4.4.1 Input Vector of MisGAN Framework Design

In this section, we introduce the input vectors (m, x, ω, etc.) of the MisGAN frame-
work shown in Figure 4.8.

Figure 4.8: The input values of MisGAN framework. The blue squares in the figure
indicate the input vectors that need to be defined.
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Masked Data Generation

As discussed in Section 4.3.1, we generate the input vector: x(data) similarly. We
only focus on the acceleration part of the datasets mentioned in 4.1. For each of the
five sensors from the lower body, there are acceleration values for three coordinate
axes: X-axis, Y-axis and Z-axis. When reading a dataset, each time range with a
length of 64 frames is read randomly from the training set.

Masks Generation

In this section, we describe how to generate the input vector: m(data). According
to Section 4.3.1, we create a mask dataset m ∈ {0, 1}n as the same size as the
masked data in Section 5.3.2. When md = 1 means that xd is observed, otherwise
xd is missing. The pattern of these missing data is the same as mentioned in Section
5.3.2.

Masking operator

Here we implement the mask fτ :

fτ (x,m) = x�m + τm̄, (4.1)

where m̄ is the complement of set m and � is element-wise multiplication. As
we mentioned before, an incomplete data instance can be represented as a vectors
(x,m). The masking operator transforms an incomplete data into a vector of the
same size with all missing data in x replaced by a constant value τ and τ is a
constant.

Noise Generation

z and ε are two different noise taken from their own noise distribution pz and pε. pz
and pε are standard normal distribution.

The shape of the vector pz and pε are:

[batch size, in features = 128]

The noise ω is taken from standard normal distribution pω. The shape of the
vector is the same as m (data) and x (data)
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4.4.2 Neural Network Architecture

In this thesis, we refer to the structural design of deep neural networks by Steven
Cheng-Xian Li et al. to create generators, discriminators and imputer [45]. With
these well-defined neural network units, we generate the MisGAN based framework
shown in Figure 3.5.

Generator

For each generator, we generate a linear layer followed by three deconvolution lay-
ers with ReLUs in between shown in Figure 4.9. In particular, we apply a sigmoid
activation function defined in Equation 4.2 for the output of the mask generator Gm

in order to keep the output of the Gm closer to zero or one.

σλ (x) =
1

1 + exp (−x/λ)
, (4.2)

where 0 < λ < 1.

Figure 4.9: The neural network structure of the generator G. The numbers in the
figure represent the number of input or output units. Besides, use ”view”
to reshape the tensors in the neural network to adjust the input shape.

Discriminator

We implement the discriminator (or referred to as the critic in Wasserstein GANs
[28]) with three convolutional layers followed by a linear layer for both Dx discrimina-
tor for data and Dm discriminator for masks in Figure 4.10.
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Figure 4.10: The neural network structure of the discriminator D. The numbers in
the figure represent the number of input or output units. In addition,
use ”view” to reshape the tensors in the neural network to adjust the
input shape.

Imputer

We generateGi as a three-layer fully-connected network with ReLUs activation func-
tion in between in Figure 4.11.

Figure 4.11: The neural network structure of the imputer Gi. The numbers in the
figure represent the number of input or output units.
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4.5 Imputation of Human Body Motion Tracking Data
based on MisGAN

In this section, first of all, based on Section 4.4.2, we use the Gx, Gm and fτ to
generate fτ (x̃, m̃) indistinguishable from the masked real incomplete data fτ (x,m)

with discriminator Dx. The specific experimental methods and results are discussed
in Section 5.3.2.

Secondly, according to Section 4.4.2, we use the imputer Gi and the correspond-
ing discriminator Di to impute the missing part of our dataset. The generated data
and the original data are plotted to show the intuitive visual comparison between the
expected and estimated data windows in Section 5.3.1.

4.5.1 MisGAN for Human Body Motion Tracking Datasets

In this section, based on the framework shown in Figure 3.3, we apply data generator
Gx, mask discriminator Gm as well as corresponding data discriminator Dx, mask
discriminator Dm to generate fτ (x̃, m̃) similar to the masked real incomplete data
fτ (x,m).

The loss functions for this process are defined in Equation 3.20 for data discrim-
inator and 3.19 for mask discriminator. Then we can optimize the generators and
discriminators according to Equation 3.21 and 3.22, which meet 1-Lipschitz condi-
tions according to paper [28]. At the same time, we follow the usual practice of GAN
based framework training, which is to alternate between optimization discriminators
several times and optimization generators several times. The specific experiments
process and results are shown in Chapter 5.

4.5.2 Missing Data Imputation for Human Body Motion Datasets

In this section, we indicate how to impute missing data by equipping imputer Gi and
corresponding discriminator Di.

The imputer is a function of the incomplete data (x,m) and a random vector ω
that taken from a noise distribution pω. The formula is shown as follow:

Gi(x,m,ω) = x�m + Ĝi(x�m + ω �m)�m (4.3)

Same as in paper [14], we apply loss function 3.20, 3.19 and 3.24. As a result, we
can jointly learn the data generating process and imputer Gi according to Equation
3.5.3.

As a result, through the function of this function, Gi will generate new imputed
data in the masked part of the original dataset with missing data. When m = 1, the
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above equation is: Gi(x,m,ω) = x. Otherwise, when m = 0, the above equation is:
Gi(x,m,ω) = Ĝi(ω).

To validate the proposed methods of data imputation in the sparse sensor setup,
we experiment on the dataset described in Section 4.1. We attempt to impute the
missing acceleration values of the sensor using MisGAN framework.

The loss functions mentioned in Section 4.5.1 and Section 4.5.2 meet 1-Lipschitz
conditions according to paper [14]. At the same time, we follow the usual practice of
GAN based framework training, which is to alternate between optimization discrimi-
nators several times and optimization generators several times.

4.6 Summary

In this chapter, we first discuss two datasets we use in this thesis. Then we develop
three machine learning algorithm based models to deal with data imputation issues
on human motion tracking datasets, which have different characteristics and appli-
cation fields. In the next chapter, we describe the specific experiment procedures,
parameters and model structure, etc., and then show the experiment results.



Chapter 5

Experiments and Results

In this chapter, we conduct the experiments inspired by the algorithms discussed
in Chapter 4. These experiments aim at generating the missing data or sensors
of human body motion tracking using HMM, Conv-AE as well as MisGAN based
framework. These missing values in human motion tracking datasets can be caused
due to a sensor missing for the entire recording, or in the event of hardware or
software failure.

This chapter describes the experiments and reports the results obtained. The
experiments in this chapter verify the feasibility of applying HMM, Conv-AE and Mis-
GAN base framework to deal with missing data imputation for human body motion
tracking dataset. Our models and corresponding evaluation experiments are imple-
mented using PyTorch [46] from Python, and the experiment processes are run on
a GPU: GeForce GTX 1080.

5.1 Data Imputation Based on HMM

In this section, we evaluate our HMM model on the training set of Dataset I intro-
duced in Section 4.1. In these experiments, we use hmmlearn library in Python,
which is an open source library to train the model, calculate the likelihood of the ob-
servation and parameters of the HMM model. In each prediction, we use 500 time
frames of data. We keep aside the last several observations for testing and used the
rest of them to train the model. For the number of states, we calculate the negative
log-likelihood of the training set of each model and choose the model has the lowest
value with the restriction of BIC value. The optimal number of states is determined
by the algorithm in hmmlearn library.

39
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5.1.1 Results and Discussion

Similarly as the aforementioned section. To evaluate how good the HMM performed,
we apply the two metrics discussed in Section 3.6.2 and 3.6.1 to test our model with
different lengths of mask: 8, 16 and 32. In the experiments, we assume that at a
certain moment the signal from the chosen sensor becomes 0, that is, the signal
disappears. The length of the time sequence of lost signal is the length of the mask.
As a generative model of supervised learning, HMMs need to generate a model
and its parameters through previous sequences. We train our HMMs with a time
sequence of length 500 before the signal disappears and then do the prediction for
a time sequence with the different size of masks: 8, 16 and 32.

Especially, we only compare the gap between the generated data and the origi-
nal data of the masked part by performing calculations on the whole training set (In
One Epoch) of Dataset I and take the average. At the same time, we also compare
the HMM results with some simple methods: Zero Imputation and Mean Imputa-
tion. These two data imputation methods are single imputation mentioned in Section
2.1.2.

By observing the results in Table 5.1 and 5.2, with the metric of DTW, our HMM
performs better than two simple single imputation methods. However, with the eval-
uation of RSME, there is no obvious improvement effect by applying HMMs.

Imputation Strategy
Size of the Mask

8 16 32

Zero Imputation 21.664546 45.815017 88.421334
Mean Imputation 21.871443 45.443609 88.624361

HMM 20.068047 28.466772 72.235297

Table 5.1: DTW is applied to calculate the gap between original data and imputed
data.

Imputation Strategy
Size of the Mask

8 16 32

Zero Imputation 1.573452 2.354871 2.587613
Mean Imputation 1.579386 2.358139 2.584171

HMM 4.444647 4.439613 4.419325

Table 5.2: RMSE is applied to calculate the gap between original data and imputed
data.
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5.1.2 Visualization of Data Imputation on HMM

This section plots the comparison between the predicted data and the original data.
Similarly, we use 500 time frames to train our HMM model and then apply the HMM
we obtain to do a prediction for the next 240 time frames. Because the sampling
frequency of the MVN Link system is 240Hz, we take 240 time frames for our visu-
alization, which equivalent to simulation for one second. Figure 5.1 shows the result
for our visualization for 240 time frames with HMM of the sensor on right upper leg
(X-axis). The visualization results from other two axes are shown in Appendix A.1.

Figure 5.1: Comparison of the original and the imputed IMU measures of the ac-
celeration part from HMM on the right upper leg (X-axis) for 240 time
frames (Dataset I).

5.2 Data Imputation Based on DAE

In this section, we evaluate our Conv-AE model on Dataset I. This dataset includes
a training set and a test set, each of which consists of 4 people walking at a normal
speed. Details are introduced in Section 4.1. The structure we use is shown in
Figure 4.5.

Moreover, some parameters of the Conv-AE model are decided:

• Learning rate, λ = 1e− 3

• Batch size, batch size = 128

• Epochs of training and test, epoch = 200
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• Parameters in Adam optimizer: betas = (0.9, 0.999)

• Missing rate, Missing Rate = [0.125, 0.25, 0.5]

• The shape of the input vector, [batch size, number of channels, height in pixels,
width in pixels]→ [128, 1, 64, 15]

For this experiment, we train the Conv-AE on the training set of Dataset I for 200
epochs and the entire training set is traversed in each epoch. In each batch, we
input a vector with a length of 64 time frames. At the same time, the model is tested
on the test set of Dataset I. During the training and test process, we plot the mean
square error between the original data and the generated data with different lengths
of mask: 8, 16 and 32 (Missing Rate=[0.125, 0.25, 0.5]) in Figure 5.2.

(a) Loss during the training process with different
size of mask

(b) Loss during the test process with different size
of mask

Figure 5.2: Training and test loss of Conv-AE with different size of mask.

5.2.1 Results

In order to evaluate the performance of our Conv-AE performed, we apply metrics
discussed in Section 3.6.2 and 3.6.1 to test our model with different lengths of mask:
8, 16 and 32. (Missing Rate=[0.125, 0.25, 0.5]). Especially, we only compare the
gap between the generated data and the original data of the masked part. In the
entire training set, we perform calculations in the 200th epoch for a vector with a
length of 64 time frames and take the average of them.

In the reported Table 5.3 and 5.4, it is possible to observe that with the DTW
metric, our Conv-AE decreases the difference between the original complete data
and the data generated by our Conv-AE compare to two single imputation methods.
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Imputation Strategy
Size of the Mask

8 16 32

Zero Imputation 21.963547 45.622097 88.922368
Mean Imputation 21.681453 45.749508 88.412032

Conv-AE 20.255444 44.935510 75.137959

Table 5.3: DTW is applied to calculate the gap between original data and imputed
data.

Imputation Strategy
Size of the Mask

8 16 32

Zero Imputation 1.578851 2.353271 2.588315
Mean Imputation 1.575381 2.357739 2.587146

Conv-AE 1.594706 2.437528 2.632676

Table 5.4: RMSE is applied to calculate the gap between original data and imputed
data.

5.2.2 Visualization of Data Imputation on Conv-AE

In this Section, we do visualization for comparison between the data generated by
Conv-AE and the original data. We apply the model we obtain after 200 epochs in
the aforementioned section to do this visualization with a longer sequence for 240
time frames in Figure 5.3. The result is for the sensor on right upper leg (X-axis).
The results for the other two axes for the same sensor are plotted in Appendix A.2.

5.3 Data Impuation Based on MisGAN

In this Section, we develop our MisGAN model for data imputation on Dataset I in-
troduced in Section 4.1. Firstly, we evaluate the possibility of applying the MisGAN
to our human motion tracking datasets. Secondly, we do some preliminary experi-
ments focus on the structure discussed in Section 3.5.2 to visualize how good the
generated results are. Finally, we conduct experiments on data imputation focus on
the structure in Section 3.5.3 of MisGAN with doing comparisons with simple data
imputation methods and the two machine learning based data imputation algorithms
in the aforementioned sections.
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Figure 5.3: Comparison of the original and the generated IMU measures of the ac-
celeration part from Conv-AE on the right upper leg (X-axis) for 240 time
frames (Dataset I).

5.3.1 Possibility of Applying MisGAN

In the previous research, most of the GAN based frameworks were used for image
processing and generation. GAN based frameworks are rarely applied for process-
ing time series datasets. For evaluating the possibility of applying MisGAN to the
human body motion tracking dataset, we first visualize the loss functions for discrim-
inators and imputer defined in Section 3.5. Obviously, the loss functions reflect the
gap between the distribution of generated data and the distribution of original data.
We take absolute values of the output values of all those loss functions, so the closer
the value of the loss is to 0, the closer the generated data is to the original data. The
value of the loss function reflects that the generators is constantly learning how to
generate more accurate data during the training process. In this section, we conduct
experiments based on the framework mentioned in Section 3.5.3. In this experiment,
we use the training set from Dataset I (4.1) to train the MisGAN framework shown
in Figure 3.5 for 400 epochs. In each batch, we input a vector with the length of 64
time frames and the mask size of this experiment is equal to 16 time frames.

Some parameters of the MisGAN model are decided as follows:

• Learning rate: λ = 1e− 4

• Batch size, batch size = 128

• Epochs of training, epoch = 400
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• Parameters in Adam optimizer, β = (0.5, 0.9)

• Missing rate, Missing Rate = 0.25

• The shape of the input vector, [batch size, number of channels, height in pixels,
width in pixels]→ [128, 1, 64, 15]

Results

We can draw conclusions by observing the results: the loss of discriminator for data,
masks and imputer show an overall downward trend in 400 epochs. The loss values
of discriminators for data generator, mask generator and imputer are reducing during
the training process, which means that the MisGAN is learning how to generate the
data with the same distribution as the original dataset. In conclusion, it is possible
for us to apply MisGAN framework to human motion body tracking datasets. Figure
5.4 to 5.6 show the specific changes in the discriminator’s loss function within the
training process.

Figure 5.4: Loss value of Dx in 400 epochs
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Figure 5.5: Loss value of Di in 400 epochs

Figure 5.6: Loss value of Dm in 400 epochs

5.3.2 Masked Data Generation

In this section, we carry out experiments based on the framework shown in Fig-
ure 3.3. We use generator Gx for masked data, Gm for masks and fτ to generate
fτ (x,m). Then we apply discriminator Dx and let fτ (x,m) indistinguishable from the
masked real incomplete data fτ (x,m).

To validate the proposed methods of data generation in the framework in Section
4.4, we conducted experiments on the dataset described in Section 4.1. The Mis-
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Figure 5.7: Comparison of the original and the generated IMU measures of the ac-
celeration part on the left upper leg (X-axis). Time range from 64 to 72
and 100-108 are masked.

GAN architecture learns to recreate the acceleration of a given sensor after observ-
ing the full sequence of the sensor recordings having masked values. Effectively, the
sensor masks in the full acceleration sequence are filled by the MisGAN. We train
the discriminator and generator for 250 epochs with Adam optimizer with a learning
rate 10−4. For training WGAN with gradient penalty, we use all the default hyperpa-
rameters applied in paper [28]. In this section, we will now describe the results of
the experiments in some detail.

Preliminary Experiments

The entire time series is continuously read in a time series of 45 lengths. In other
words, each time range with a length of 45 is read one by one from the whole
dataset. We generate two datasets as the input, namely the Mask and the Masked
Data and set them as the input of the MisGAN framework: m and x. At the same
time, we use random noise as input to data and mask generator. Therefore, the
inputs m and x of the MisGAN framework will be two dimensional: time range ×
IMU Measures = 45× 45.

We plot the comparison of the original and generated data for 150 time units on
the left upper leg and pelvis in Figure 5.7. More images of the experimental results
are in Appendix A.3.

Conclusion

With these experiments conducted in Section 5.3.2, by observing the results of read-
ing the entire dataset continuously, it is found that the generated can better fit the
original data, but it may have certain specificity and may not be applicable to time
series data in different situations. In these experiments, we only visually visualize
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the results of data completion. In the following experiments, we focus on the data
imputation part of MisGAN and develop metrics to analyse the quality of correction
achieved using these methods.

5.3.3 Data Imputation with MisGAN

Based on the methodology discussed in Section 4.5, we carry out the experiment for
data imputation on MisGAN. We conduct the experiments on Dataset I and Dataset
II. This dataset contains a training and a test set, each of which consists of 4 people
walking at a normal speed. Details are introduced in Section 4.1.

Some parameters of the MisGAN model are decided as follows:

• Learning rate: λ = 1e− 4

• Batch size, batch size = 128

• Epochs of training, epoch = 400

• Parameters in Adam optimizer, β = (0.5, 0.9)

• Missing rate, Missing Rate = [0.125, 0.25, 0.5]

• The shape of the input vector, [batch size, number of channels, height in pixels,
width in pixels]→ [128, 1, 64, 15]

For this experiment, we train the MisGAN model for 400 epochs with different
learning rate (Missing Rate=[0.125, 0.25, 0.5]) and the entire training set is traversed
in each epoch.

Results and Discussion

In order to evaluate how our model performs, the two metrics introduced in Section
3.6.1 and 3.6.2 are applied to our training set in Dataset I with different learning rate
(Missing Rate=[0.125, 0.25, 0.5]). We only compare the gap using the two metrics
between the generated data and the original data of the masked part. In the entire
training set, we perform calculations in the 400th epoch for inputting vectors with a
length of 64 time frames and take the average of them. Similarly, as before, we do
comparisons among MisGAN model and two single data imputation algorithms. The
results on Dataset I and II are shown in Table 5.5 to 5.8.
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Imputation Strategy
Size of the Mask

8 16 32

Zero Imputation 28.718901 51.394067 112.414015
Mean Imputation 28.727416 51.963509 112.764129

MisGAN 15.424699 25.756295 55.985976

Table 5.5: DTW is applied to calculate the gap between original data and imputed
data (Dataset I).

Imputation Strategy
Size of the Mask

8 16 32

Zero Imputation 1.671638 2.957502 2.144072
Mean Imputation 1.672439 2.956034 2.154157

MisGAN 1.225829 1.707168 2.477405

Table 5.6: RMSE is applied to calculate the gap between original data and imputed
data (Dataset I).

Imputation Strategy
Size of the Mask

8 16 32

Zero Imputation 79.546674 130.331768 319.435240
Mean Imputation 79.426123 131.421742 319.441254

MisGAN 73.675379 72.131524 199.315319

Table 5.7: DTW is applied to calculate the gap between original data and imputed
data (Dataset II).

Imputation Strategy
Size of the Mask

8 16 32

Zero Imputation 4.391675 6.816055 9.941666
Mean Imputation 4.564742 6.932234 9.674574

MisGAN 4.535847 4.182040 5.657422

Table 5.8: RMSE is applied to calculate the gap between original data and imputed
data (Dataset II).

Moreover, here we also output the comparison results calculated by DTW be-
tween the three machine learning based algorithms in order to highlight the perfor-
mance of MisGAN on Dataset I.
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Imputation Strategy
Size of the Mask

8 16 32

HMM 20.068047 28.466772 72.235297
Conv-AE 20.255444 44.935510 75.137959
MisGAN 15.424699 25.756295 55.985976

Table 5.9: DTW is applied to calculate the gap between original data and imputed
data (Dataset I).

Visualization of Data Imputation on MisGAN

This section plots the comparison between the data generated by the imputer and
the original datasets. Different from the visualization mentioned before, the working
principle of imputer is different from the machine learning based model mentioned
above. The imputer only imputes the masked part of the data, and the rest remains
unchanged. We apply the imputer of MisGAN model of 400th epoch in Section 4.4 to
do data generation for 240 time frames in Figure 5.8 and 5.9 with mask size of 32,
which is the imputed results from sensor on right upper leg (X-axis) on Dataset I and
II. Results from other two axes are plotted in Appendix A.4. In the following figures,
the parts of the blue line are the values generated by the imputer. By observing
the blue curves generated by the imputer, we can figure out that they reflect the
changing trend of the original data. Compared with the original data, generating
data is more gentle.

Figure 5.8: Comparison of the original and the generated IMU measures of the ac-
celeration part from Imputer in MisGAN on the right upper leg (X-axis)
for 240 time frames (Dataset I).
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Figure 5.9: Comparison of the original and the generated IMU measures of the ac-
celeration part from Imputer in MisGAN on the right upper leg (X-axis)
for 240 time frames (Dataset II).

5.4 Discussion

In Section 5.1, we conduct experiment based on HMM. From the visualization in Fig-
ure 4.4, in some points when the original data changes rapidly, the data generated
by the HMM changes more drastically and the fluctuation range is greater than the
original data, which is the reason for the larger value with RSME. When the data
does not change significantly, the HMM fits the original data better. However, when
HMM predicts the missing data of a certain sensor during a period of time, it needs
data from the sequence before the sensor fails to train the model. The trained model
can then be adopted to impute the missing data. Therefore, it is clear that HMM is
not suitable to establish a sparse sensors setup, because the data from the reduced
sensor is missing for the whole sequence and the HMM cannot be trained.

Section 5.2 explains the application of autoencoders. As an unsupervised learn-
ing method, autoencoder can learn the hidden information of the dataset. The new
features learned by the autoencoder can be fed into the supervised learning model,
thus reducing the need for ’new and labelled data’. However, compared with HMM,
Conv-AE cannot reflect such changes in the generated data when the data under-
goes large and rapid changes.

In Section 5.3.3, we explore the possibility of exploiting MisGAN to our human
motion tracking dataset. The results show that it is feasible to apply MisGAN to hu-
man motion tracking data, and the effect is greater than other methods for compari-
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son. MisGAN can be trained using an unlabeled human motion tracking dataset as
they can learn the internal representations of the dataset. It allows a deep learning
model to capture the distribution of the input training dataset and generate accurate
results. Thus without any information from the previous sequence or other sensors,
MisGAN can generate new data with the same distribution as the original data.

In general, through the experiments in this chapter, the results meet our expec-
tations. We apply two metrics: RMSE and DTW, to evaluate the experiment results.
In order to highlight the effects of the three machine learning algorithm based data
imputation methods on our human motion datasets, we also conduct experiments
on two single imputation approaches. We set different data missing rates to carry
out experiments on our models and get the results. With the application of DTW, the
three machine learning methods are more exceptional than the two single comple-
tion methods with different missing rates. Table 5.1, 5.3 and 5.5 indicate the specific
results on Dataset I and II. Comparing these three machine learning models in Ta-
ble 5.9 on Dataset I, MisGAN obtained the best results. In the case of different
missing rates, compared to Zero Imputation and Mean Imputation, the DTW value
is reduced to about half of the original. However, with the application of RMSE,
the results of machine learning approaches do not show a significant improvement
compare to the two single imputation methods. RMSE represents the mean value of
the sum of squared errors of the corresponding points between the predicted data
and the original data. Since the mean value of our human motion tracking datasets
is close to 0, using zeros or the mean value of the available part of the dataset to
impute the missing values, the calculated RMSE value will be smaller. But obviously
using these two single data imputation methods lacks some practical significance,
because they cannot fit the characteristics of time series data changes well. In this
chapter, experiment results prove that MisGAN can be applied to generate missing
parts in the human motion dataset, and the effect is greater than HMM and Conv-AE.
Thus MisGAN can be used to impute time series data.



Chapter 6

Conclusions and Future Work

In this chapter, we first explain how we achieve the Research Goals we listed in
Chapter 1 by briefly concluding our findings and contributions. Finally, Future Work
for this thesis is discussed.

6.1 Conclusions

• (RG 1) To study the previously used methods for data imputation and analyze
their characteristics and limitations. Explain why these traditional data imputa-
tion methods are not suitable for human body motion data and the reason why
choosing neural networks or unsupervised learning based methods.

For RG 1, we have studied several traditional data imputation methods. In gen-
eral, these methods are not suitable for human motion tracking datasets for the
following reasons: 1. High computational complexity on large datasets. 2. Not
suitable for time series data imputation 3. The accuracy of the generated data
is low, etc. These inspire us to find more suitable methods for data imputation
for human motion tracking data. Machine learning algorithms provide solutions
for solving sparse sensor setup and missing data imputation issues in various
domains. Machine learning algorithms give us solutions to assist in missing
data with high uncertainty estimation scenarios. Their capabilities indicate that
they can generate data with more complex distributions.

• (RG 2) To investigate machine learning algorithms that have been employed
in the problems of data imputation. Discusses the possibility of applying these
methods to human body motion data imputation area.

For RG 2, we apply HMM, Conv-AE, and MisGAN based framework to investi-
gate data imputation issues. As a kind of unsupervised learning, autoencoder
can be used to discover latent patterns in datasets and extract information

53
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from it. HMM is a type of generative model that predicts future data through
past sequences and can be used as an imputation to missing data. MisGAN
framework can be used to learn the complex and high dimensional distribution
of incomplete datasets in image processing and generation.

• (RG 3) To explore and develop algorithms selected in Research Goal 2, which
help to compensate for the missing data in the human body motion datasets
or to minimize the need for ‘new and labelled data’ for human body motion
tracking datasets.

For RG3, we design models based on HMMs, autoencoders and MisGAN
framework and conduct specific experiments on them. We design the struc-
tures and experiments based on different parameters. Under the condition
of applying DTW as the evaluation metrics, HMM, autoencoder and MisGAN
have achieved better results than the two traditional single imputation algo-
rithms. Among them, MisGAN achieved the best results. But when using
RMSE to do the evaluation, the three machine learning algorithms are not sig-
nificantly improved compared to the two traditional methods.

• (RG 4) To develop metrics to report the quality of correction achieved using
the aforementioned methods.

For reporting the quality of the aforementioned methods, we develop two met-
rics: DTW and RMSE to evaluate the results we obtain from experiments. As
a result, we discover that DTW can better reflect the difference between the
time series.

This thesis uses the MisGAN framework to impute human motion tracking datasets
with different missing rates. This is the first time that MisGAN framework has been
applied to time series datasets. At the same time, we also generate models based
on HMMs and autoencoders, compare these results and evaluate them. Using Mis-
GAN to impute the missing data, the processed complete datasets can be used in
existing algorithms and learning models, which makes it possible for us to use a
reduced sensors set up or improve the robustness of the motion tracking system.

While experimenting with three machine learning algorithms, we also developed
two single imputation methods to highlight the superiority of the three machine learn-
ing algorithms. Under the evaluation of DTW, the effects of the three machine learn-
ing methods are better than the two single imputation methods. Taking the exper-
imental result with a missing rate of 50% as an example, HMM reduces the DTW
value by 18.3% compared to Zero Imputation. Compared with Mean Imputation,
HMM reduces the DTW value by 18.5%. For Conv-AE, DTW is reduced by 15.5%

and 15.0%, respectively. In particular, MisGAN reduced the DTW value by 50.2%
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and 50.4% separately. However, with RMSE, the effects of the three machine learn-
ing algorithms and the two traditional methods are not significantly different. Thus,
we can conclude that DTW is more suitable to evaluate time series data (human
motion tracking data) than RMSE.

This thesis can be applied as solutions for data imputation issues of human mo-
tion tracking data. Through those aforementioned data imputation algorithms, we
are able to obtain complete datasets, which can be applied to existing algorithms
for human motion tracking models. At the same time, having the ability to generate
complete datasets can also be applied to reduce the number of sensors required in
motion capture in order to reduce the cost and complexity of usage.

6.2 Future Work

We only conduct experiments on relatively small datasets, which may lead to the lack
of generalization ability and robustness of our machine learning based models. In
future experiments, we will apply larger scale datasets with multiple types of human
movement, and divide them into training sets and test sets.

The tuning of the parameters and the optimal structure of the models are not be
explored thoroughly. A systematic and rigorous process should be done by tuning
the parameters and structures until reaching the optimal results. For example, differ-
ent values of the learning rate, numbers of layers of neural networks, etc. Especially,
for the structure of our neural networks, we need to explore the structure that more
suitable to human motion tracking data, which can take the sensors’ locations and
features into consideration. With these modifications, we are able to improve the
performance of our existing models.

This thesis only studies the data imputation of the acceleration part of our human
motion tracking datasets. In addition to acceleration data, there is also orientation
data in our human motion tracking datasets. In the future, research will be conducted
on different characteristics of orientation data and to deal with data imputation issues
on it.

This research does not take the connection among different sensors into con-
sideration when imputing missing data. When there are some missing values in a
certain sensor, the remaining sensors can still work normally. The information con-
tained in the data collected from available sensors can be used for data imputation
of missing values. For instance, we can calculate the gap between the time se-
ries from the sensor with missing data and time series from other available sensors.
Thus the available sensor values can be input into our imputation models to improve
the accuracy of the generated data.
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This thesis develops innovative machine learning based solutions for data impu-
tation issues in the human body motion tracking area. The complete datasets after
being imputed by our models will be used in the existing algorithm, and the effect
of applying the complete original dataset will be compared to observe the effect of
data imputation.
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[24] V. Fortuin, D. Baranchuk, G. Rátsch, and S. Mandt, “Gp-vae: Deep probabilistic
time series imputation,” arXiv: Machine Learning, 2019.

[25] H. minn Lu, G. Perrone, and J. Unpingco, “Multiple imputation with denois-
ing autoencoder using metamorphic truth and imputation feedback,” ArXiv, vol.
abs/2002.08338, 2020.

[26] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio, “Generative adversarial networks,” 2014.

[27] T. Karras, T. Aila, S. Laine, and J. Lehtinen, “Progressive growing of gans for
improved quality, stability, and variation,” CoRR, vol. abs/1710.10196, 2017.
[Online]. Available: http://arxiv.org/abs/1710.10196

[28] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein gan,” 2017.

[29] C. T. F. L. Hitchcock, Y. Rubner and L. J. Guibas, “The earth mover’s dis-
tance,” http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL COPIES/RUBNER/
emd.htm Accessed September 20, 2020.

[30] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville, “Improved
training of wasserstein gans,” CoRR, vol. abs/1704.00028, 2017. [Online].
Available: http://arxiv.org/abs/1704.00028

[31] Y. Huang, M. Kaufmann, E. Aksan, M. J. Black, O. Hilliges, and G. Pons-Moll,
“Deep inertial poser: Learning to reconstruct human pose from sparse inertial
measurements in real time,” CoRR, vol. abs/1810.04703, 2018. [Online].
Available: http://arxiv.org/abs/1810.04703

[32] S. Li, Y. Zhou, H. Zhu, W. Xie, Y. Zhao, and X. Liu, “Bidirectional
recurrent autoencoder for 3d skeleton motion data refinement,” Computers
& Graphics, vol. 81, pp. 92 – 103, 2019. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S0097849319300330

https://medium.com/@prakashpandey9/deep-generative-models-e0f149995b7c
https://medium.com/@prakashpandey9/deep-generative-models-e0f149995b7c
http://www.sciencedirect.com/science/article/pii/S2405896318320949
http://arxiv.org/abs/1710.10196
http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/RUBNER/emd.htm
http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/RUBNER/emd.htm
http://arxiv.org/abs/1704.00028
http://arxiv.org/abs/1810.04703
http://www.sciencedirect.com/science/article/pii/S0097849319300330
http://www.sciencedirect.com/science/article/pii/S0097849319300330


BIBLIOGRAPHY 61

[33] Z. Wang, J. Chai, and S. Xia, “Combining recurrent neural networks and
adversarial training for human motion synthesis and control,” CoRR, vol.
abs/1806.08666, 2018. [Online]. Available: http://arxiv.org/abs/1806.08666

[34] Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F. Laviolette,
M. Marchand, and V. Lempitsky, “Domain-adversarial training of neural net-
works,” 2015.

[35] J. Yoon, J. Jordon, and M. van der Schaar, “Gain: Missing data imputation using
generative adversarial nets,” 2018.

[36] M. Arjovsky and L. Bottou, “Towards principled methods for training generative
adversarial networks,” ArXiv, vol. abs/1701.04862, 2017.

[37] C. Villani, Optimal Transport. Grundlehren der mathematischen Wis-
senschaften, 2009.

[38] T. Salimans, I. J. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and
X. Chen, “Improved techniques for training gans,” CoRR, vol. abs/1606.03498,
2016. [Online]. Available: http://arxiv.org/abs/1606.03498

[39] H. Sakoe and S. Chiba, “Dynamic programming algorithm optimization for spo-
ken word recognition,” IEEE Transactions on Acoustics, Speech, and Signal
Processing, vol. 26, no. 1, pp. 43–49, 1978.

[40] A. G. K. M. Csillik O, Belgiu M, “Object-based time-constrained dynamic
time warping classification of crops using sentinel-2,” Remote Sensing, vol.
11(10):1257, 2019.

[41] A. Karatsidis, G. Bellusci, M. Schepers, M. de Zee, M. Andersen, and P. Veltink,
“Estimation of ground reaction forces and moments during gait using only iner-
tial motion capture,” Sensors, vol. 17, p. 75, 01 2017.

[42] Xsens, “Mvn user manual,” 2020, https://www.xsens.com/hubfs/Downloads/
Manuals/MVN User Manual.pdf Accessed August 2, 2020.

[43] L. Barbosa, “Convolution autoencoder - pytorch,” 2019, https://www.kaggle.
com/ljlbarbosa/convolution-autoencoder-pytorch Accessed August 2, 2020.

[44] T. Contributors, “Torch.nn,” 2019, https://pytorch.org/docs/stable/nn.html Ac-
cessed August 2, 2020.

[45] S. C. Li, B. Jiang, and B. M. Marlin, “Misgan: Learning from incomplete data
with gans,” 2019, https://github.com/steveli/misgan/blob/master/misgan.ipynb
Accessed July 13, 2020.

http://arxiv.org/abs/1806.08666
http://arxiv.org/abs/1606.03498
https://www.xsens.com/hubfs/Downloads/Manuals/MVN_User_Manual.pdf
https://www.xsens.com/hubfs/Downloads/Manuals/MVN_User_Manual.pdf
https://www.kaggle.com/ljlbarbosa/convolution-autoencoder-pytorch
https://www.kaggle.com/ljlbarbosa/convolution-autoencoder-pytorch
https://pytorch.org/docs/stable/nn.html
https://github.com/steveli/misgan/blob/master/misgan.ipynb


62 BIBLIOGRAPHY

[46] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative style, high-
performance deep learning library,” in Advances in Neural Information
Processing Systems 32, H. Wallach, H. Larochelle, A. Beygelzimer,
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A.1 Visualization Results of HMM

Figure A.1: Comparison of the original and the imputed IMU measures of the ac-
celeration part from HMM on the right upper leg (Y-axis) for 240 time
frames (Dataset I).
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Figure A.2: Comparison of the original and the imputed IMU measures of the ac-
celeration part from HMM on the right upper leg (Z-axis) for 240 time
frames (Dataset I).

A.2 Visualization Results of Conv-AE

Figure A.3: Comparison of the original and the generated IMU measures of the
acceleration part from Conv-AE on the right upper leg (Y-axis) for 240
time frames (Dataset I).
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Figure A.4: Comparison of the original and the generated IMU measures of the
acceleration part from Conv-AE on the right upper leg (Z-axis) for 240
time frames (Dataset I).

A.3 Data Generation

Figure A.5: Comparison of the original and the generated IMU measures of the
acceleration part on the left upper leg (Y-axis) Time range from 64 to
72 and 100-108 are masked.
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Figure A.6: Comparison of the original and the generated IMU measures of the
acceleration part on the left upper leg (Z-axis) Time range from 64 to
72 and 100-108 are masked.

A.4 Visualization Results of MisGAN

Figure A.7: Comparison of the original and the generated IMU measures of the
acceleration part from Imputer in MisGAN on the right upper leg (Y-
axis) for 240 time frames (Dataset I).
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Figure A.8: Comparison of the original and the generated IMU measures of the
acceleration part from Imputer in MisGAN on the right upper leg (Z-
axis) for 240 time frames (Dataset I).

Figure A.9: Comparison of the original and the generated IMU measures of the
acceleration part from Imputer in MisGAN on the right upper leg (Y-
axis) for 240 time frames (Dataset II).
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Figure A.10: Comparison of the original and the generated IMU measures of the
acceleration part from Imputer in MisGAN on the right upper leg (Y-
axis) for 240 time frames (Dataset II).
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