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ABSTRACT 

Vegetation phenology is the study of ‘tracking’ life-cycle events of plants such as the onset, offset and length of 
a growing season in relation to climatic variables. Tracking vegetation growth in savannas is important to 
have timely knowledge on the availability of forage for cattle and wild animals that depend on this for their 
food intake. Satellite-based vegetation phenology studies for the savannas exist at spatial resolutions of 250m 
and coarser. Recently vegetation phenology studies are performed using optical satellite data at spatial 
resolutions of 10-30m. However, such studies have not been performed yet for savanna ecosystems.  

The goal of this study was to evaluate if vegetation phenology can be effectively retrieved from 30m 
resolution data for a savanna site in Kenya that has two vegetation growth periods per year (long and short 
rains). The first method combined NDVI observations from three sensors (Landsat 7, Landsat 8 and 
Sentinel-2A) to model NDVI seasonal dynamics for each season and year separately (2015-2017). The 
second method combined NDVI observations from multiple years of Landsat data (1999-2017) into a single 
‘synthetic year’ to model the multi-annual average vegetation dynamics for each season.  In both cases, a 
double hyperbolic tangent model was used to model the NDVI seasonal dynamics. A threshold approach 
was then applied to extract start- and end-of-season (SOS/EOS), length of the growing season(LGS), 
cumulative NDVI (cumNDVI), maximum NDVI (maxNDVI), growth phase (AMP1) and decay phase 
(AMP2) for each season.  

Despite the various challenges in the region such as persistent cloud cover, inter-annual variation in 
vegetation greenness and two short (~3months) seasons in a single year, vegetation phenology retrievals at 
30m resolution were possible. The single-season retrievals for the long rains of 2017 had the highest 
percentage of pixels (~53%) having a successful retrieval while the long rains of 2016 had the lowest 
percentage (~15%). These differences may be explained partially by the maximum temporal gap between 
the observations where the long rains of 2017 had ~33days and the long rains of 2016 had ~74days. 
Comparison of the multi-annual average retrievals from aggregated Landsat and eMODIS showed an 
RMSD of ±14days (SOS), ±12days (EOS), and an MSD of ±8days for both EOS and SOS on average. 
Contrary to the expectations, these values were considered high for a region that has quick green-up and 
decay phase. This comparison was carried out to assess how multi-annual average phenology from a less 
frequent sensor (Landsat) compared to similar retrievals derived from a more frequent sensor (MODIS).  

Although ground-based validations are required for this study, estimation of vegetation phenology at a finer 
scale in the savanna ecosystem is possible. For multi-annual average retrievals, future research should focus 
on better ways of combining the multiple-years into a ‘synthetic year’ that produces less scattered NDVI 
profiles in each season.  For the single-season persistent cloud cover remains the main issue limiting the 
frequent in-season observation of the vegetation status and thus for estimating phenology. The recent 
availability of Sentinel-2B images increases the chances of getting more cloud-free observations and a 
possibility to estimate vegetation phenology at a 10m resolution scale which was not possible in this study.  
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1. INTRODUCTION 
1.1. Background 

Savannas are a major ecosystem covering one-sixth of the global land surface with the largest area 
(~15.1million km2 ) situated in Africa (Grace et al., 2006; Sankaran et al., 2005). The savanna landscape has 
a unique heterogeneous vegetation distribution of patchy trees with understory shrubs as well as grasses 
(Walker et al., 2014; Whitecross et al., 2017). The co-existence of these vegetation types makes savannas 
rather unique compared to other ecosystems that have a single vegetation type (Baudena et al., 2015). 

Savannas are known as habitats for a diversity of wildlife populations (Cardoso et al., 2002). Other than that, 
a large portion of the savanna is under the rangelands. These rangelands have grass-like plants or shrubs as 
the predominant vegetation cover and are mainly used for grazing or browsing by domesticated and wildlife 
animals (Werner, 2009). For the case of the African savanna, much of the land is for rearing livestock as 
well as hosting a wide variety of wild animals.  Livestock rearing in Africa savannas is usually either privately 
or communally owned and is a key socio-economic activity for communities living in these landscapes 
(Sandhage-Hofmann et al., 2015). 

Despite the importance of the savannas, the seasonal dynamics of its vegetation is still poorly understood 
(Sankaran et al., 2004). For instance, the practicality of how grass and trees co-exist competing for the same 
resources such as water, without one vegetation type outdoing the other remains unclear (Sankaran et al., 
2004; Scholes et al., 1997; Jeltsch et al., 1996; House et al., 2003). It has been argued that the seasonal onset 
and offset of grasses and trees may differ (Higgins et al., 2011; Boke-Olén et al., 2016), and this temporal 
separation could explain the co-existence of the two vegetation types (Scholes et al., 1993). However, only 
a few studies  (Higgins et al., 2011; Moore et al., 2017) have explored and discussed savanna vegetation 
dynamics in relation to this temporal separation.  

Vegetation productivity and plant survival within savannas depend largely on how well plants can adapt to 
the variability of moisture availability (Ma et al., 2013; Moore et al., 2017; Cipriotti et al., 2008). The current 
changes and variations in climate are threatening the vegetation productivity of the savannas. For instance, 
Githeko et al. (2007) indicated that Africa is one of the most vulnerable continents to climate change and 
climate variability. These climate changes and variations are inevitably affecting moisture availability, 
vegetation productivity, forage quality, land use systems and rangeland-based livelihoods in the savannas 
(Hoffman et al., 2008). Githeko et al. (2007) estimated that by the year 2080 the arid and the semi-arid lands 
of Africa will have increased by 5-8% and indicated that a variety of other African ecosystems are 
experiencing changes at a faster rate than expected, e.g., the ecosystems located in the southern part of 
Africa. 

Other than the climatic shift, human pressures such as land use change, human encroachment, wood 
harvesting, human bushfires, land fragmentation and overexploitation of vegetation (Macharia & Ekaya, 
2005) have altered the overall vegetation composition in most of the African savanna. Based on a study 
done by Giglio et al. (2006), 75% of the total burned areas in Africa, mostly initiated by humans, were inside 
the savannas. These forms of land degradation threaten the wildlife and livelihoods of people depending on 
the savanna. To be able to maintain a sustainable structure and health of the rangelands, there is need to 
find better, up-to-date and robust methods for monitoring the savanna vegetation (IPCC, 2007; King, 2008; 
Hoffman et al., 2008). 
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Different methods exist to study the seasonal dynamics of vegetation, often referred to as vegetation phenology. 
By definition, vegetation phenology is the study of ‘tracking’ the life-cycle events of plants such as the onset, 
offset and length of a growing season in relation to climatic variables (Adole et al., 2016). The definitions of 
these life cycles may differ between studies. For instance, onset might be the moment when the increase in 
vegetation greenness reaches some threshold or the moment that flowering starts. Besides regular visual 
observation of plants in the field (Elmendorf et al., 2016), automated approaches exist that ‘track’ vegetation 
greenness over time. These include the use of digital repeat cameras placed in the field (Studer et al., 2007) 
or use of satellite remote sensing data(Vrieling et al., 2017a). Field observations and digital cameras are 
capable of characterizing individual plant species phenology but are limited in spatial coverage and for the 
case of field observations, they are time-consuming (Richardson et al., 2013). On the other hand, while 
satellite-based phenology has proven to be a powerful tool for studying the seasonal greenness at the 
landscape scale, it is sometimes limited by the presence of clouds at satellite overpass time and by the coarse 
spatial resolution (generally ≥ 250m) of the satellite images. While finer resolution imagery is available, in 
most cases, such data have a low temporal frequency due to the trade-off between spatial and temporal 
resolution (Richardson et al., 2013).  

Other than the mentioned issues affecting the use of satellite data to study vegetation phenology, use of this 
data requires a complex stepwise methodology which in most cases is location based (Reed et al., 2009). The 
first step involves calculation of vegetation indices such as the Normalized Vegetation Difference Index 
(NDVI) which is then followed by employing different phenology techniques such as threshold, curve-
derived and model fitting (de Beurs et al., 2010). These phenological techniques can be used together at 
times, but they depend mostly on the nature of the satellite data and the purpose of the study. For instance, 
model fitting methods such as double logistic model tend to explain remotely sensed data better and to 
extract the phenological parameters normally a threshold approach is applied (Ming et al., 2011). 
Nonetheless, the model fitting technique requires estimation of multiple parameters and it is still unclear 
how estimation of these parameters is affected by the temporal resolution of remotely sensed data (Ahl et 
al., 2006). 

A review done by Adole et al. (2016) showed that satellite-based phenology using threshold and or model 
fitting techniques is the most common way of studying vegetation phenology in Africa. Most of these 
satellite-based studies uses coarse (≥250m) satellite remote sensing data such as the Advanced Very High 
Radiometer (AVHRR: e.g. Zhang et al,. 2014), Moderate-resolution Imaging Spectroradiometer (MODIS: 
e.g. Zhang et al,. 2005) and Satellite Pour l’Observation de la Terre (SPOT vegetation: e.g. Meroni et al., 
2013). However, only a few (O’Farrell et al., 2007; Yamagiwa et al., 2008) field-based studies that exist in 
Africa using either ground observations or digital cameras and currently they only exist in the southern part 
of Africa. Lack of financial support is the main reason prohibiting ground-based phenological studies in 
most African countries (Blom et al., 2015) as well as political instability and physical accessibility in these 
countries (Laurance et al., 2006). 

Recently, vegetation phenology is possible to retrieve at finer spatial resolution using satellites such as 
Landsat (30m) and Sentinel-2 (10m). The revisit period of these two sensors ( Sentinel-2 and Landsat) is not 
as frequent as those sensors with coarser resolution (e.g., AVHRR, MODIS). To counter for this trade-off, 
studies have tried fusing fine spatial resolution data with more frequent but coarse resolution data (Frantz 
et al., 2016; Gao et al., 2017; Walker et al., 2014) or combining years of Landsat archive data into a ‘synthetic 
year’ (Melaas et al., 2016; Melaas et al., 2013; Nijland et al., 2016). ‘Synthetic year’ basically means using all 
the available cloud-free Landsat images to generate seasonal curves for each pixel by assuming that these 
pixels are repeated annually within the long-term Landsat time-series (Nijland et al., 2016). Other than fusing 
sensors data or use of synthetic year from finer spatial resolution satellite data, recently a study that was 
done by, Vrieling et al. (2017b)  showed that in some cases, data acquired from sensors like Sentinel-2  could 
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be used alone to estimate phenology for a single season. The single season here means that the satellite data 
used is from individual single years. Nevertheless, this depends on various factors such as the presence of 
clouds and whether the location is near the orbits that happen to have more images than the normal three 
images per month. 

Studies that have been using finer spatial-resolution satellite imagery to estimate vegetation phenology had 
until present existed for the temperate environments. For example, multi-annual average vegetation 
phenology derived from a Landsat ‘synthetic year’ (Melaas et al., 2016, 2013; Nijland et al., 2016; Vrieling et 
al., 2017a) or single season vegetation phenology derived from single use of  Sentinel-2 images (Vrieling et 
al., 2017b). It is still unknown if similar methods can work in a more complex ecosystem such as the Africa 
savanna. The heavy clouds contamination in the tropical climates of the Africa savanna is one of the major 
challenge affecting the quality of satellite-based images (Huete et al., 2002). A study by Hashim et al. (2014) 
showed that for the satellite images acquired over the equator in the tropics in a single year, 75% of the 
images had heavy cloud contamination. Other than that, a large part of the Africa savanna (e.g., East Africa 
savannas) has two relatively short vegetation seasons (~3 months each) within the year. These short seasons 
have high inter-annual variations in vegetation greenness between years, as opposed to the existing studies 
that have a single season which is relatively stable within single years.  These issues coupled with frequent 
droughts (Maitima et al., 2003) makes it even harder to estimate its vegetation phenology. 

This study attempts retrieval of vegetation phenology from multi-temporal high-resolution Landsat and 
Sentinel-2 imagery and to assess how these phenological metrics relate to different vegetation types for a 
savanna grassland ecosystem in the semi-arid rangelands of Kenya. A double hyperbolic tangent model was 
fitted on NDVI values derived from two sets of data separately to achieve the objectives of this study. The 
first dataset was fused Landsat 7, Landsat 8 and Sentinel-2 images from 2015-2017 at Landsat resolution 
and the second dataset was combined years (1999-2017) of Landsat archive (5,7&8) into a synthetic year. 
Assesment of how Landsat ‘synthetic year’ retrievals agreed with a commonly used sensor were performed 
using EROS Moderate Resolution Imaging Spectroradiometer (eMODIS v5). Using coarser resolution to 
assess the ‘validity’ of the retrievals was not the best way but as mentioned ground-based vegetation 
phenological studies are a challenge in Africa. 

 

1.2. Research objectives 

The main objective of this research is to evaluate if vegetation phenology is possible to retrieve from multi-
temporal high-resolution Landsat and Sentinel-2 imagery for a savanna grassland ecosystem in the semi-arid 
rangelands of Kenya. To achieve the main objective, the research aims 

I. to evaluate if the combined use of Sentinel-2 and Landsat satellite imagery provides sufficient 
temporal detail for retrieving phenological parameters for a single season; 

II. to assess if fine-resolution spatial patterns of vegetation phenology can be extracted by combining 
years of Landsat data into a single synthetic year and assess how these spatial patterns compare to 
those obtained from multiple years of eMODIS data; 

III. to explain the retrieved spatial patterns of vegetation phenology based on differences in vegetation 
composition within the study area. 
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1.3. Research questions 

Objective (I) – to evaluate if the combined use of Sentinel-2 and Landsat satellite imagery provides 
sufficient temporal detail for retrieving phenological parameters for a single season  

a) Do the combined use of Sentinel-2 and Landsat imagery provide sufficient observations to enable 
retrieval of phenological parameters within the temporal range of each season? 
 

Hypothesis: Despite the heavy cloud contamination, there is a sufficient number of 
observations to allow fitting of a phenology retrieval model within the temporal range of 
each season. 
 

b) Do the fused Sentinel-2 and Landsat images allow for a spatially-consistent retrieval of vegetation 
phenology across the study site for each of the four growing seasons contained between September 
2015 and September 2017? 

Hypothesis: Derived vegetation phenological parameters shows a spatially-consistent 
pattern within the study area. 

Objective (II) -  to assess if fine-resolution spatial patterns of vegetation phenology can be extracted by 
combining years of Landsat data into a single ‘synthetic year’ and assess how these spatial patterns compare 
to those obtained from multiple years of eMODIS data 

a) Does the combination of multi-year Landsat imagery into a single synthetic year allow retrieval of 
spatially-consistent phenological parameters for the entire landscape? 

Hypothesis: Despite the inter-annual variability in vegetation greenness, combining 
multiple years of Landsat into a ‘synthetic year’ allows estimation of spatially-consistent 
multi-annual average vegetation phenological parameters for the long and the short rains 
seasons. 

b) How do these phenological parameters compare to those estimated from a coarser spatial-
resolution eMODIS but with finer temporal detail? 

Hypothesis: Despite the differences in temporal and spatial resolution between the sensors, 
aggregated Landsat phenological parameters are almost similar to those estimated from 
combined years of eMODIS data. 

c) Would grouping multi-year Landsat NDVI data by use of seasonal precipitation first result in a 
‘synthetic year’ that has less scattered NDVI values?  

Hypothesis: Grouping years of Landsat NDVI based on the amount of seasonal 
precipitation experienced in that year, results in a ‘synthetic year’ that has less scattered 
NDVI temporal trajectories.  

Objective (III) - to explain the retrieved spatial patterns of phenology based on differences in vegetation 
composition within the study area 

a) Do different vegetation types translate into significant differences in retrieved phenological 
parameters from combined years of Landsat? 

Hypothesis: different vegetation types show significant differences in retrieved 
phenological parameters in long and short rains seasons
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2. STUDY AREA AND DATA  
2.1. Study area 

Kenyan rangelands cover approximately 80% of Kenya’s land surface and are home to millions of pastoralist 
and agro-pastoralist communities (Mathu, 2009). These rangelands are mainly used for livestock grazing and 
as habitats for wildlife (Mganga et al., 2011; Mathu, 2009). Statistics from the Government of Kenya (1993) 
showed that the arid and semi-arid lands accommodate 60% of Kenya total livestock population, 25% of 
human population and a large population of wild animals. 

The Athi-Kapiti Plains are an example of semi-arid rangelands in Kenya which are within Machakos, Kajiado 
and Nairobi counties. They cover a land area of approximately ~2010 km2 which is mainly a mixture of 
open grasslands (72%) and bush and woodlands (28%; Bekure et al., 1991).  Grazing intensity, seasonal 
rainfall variation and human disturbances such as land conversions and fire are the main controls of the 
amount of vegetation productivity per moment in time in these rangelands (Bekure et al., 1991). The soil 
type found here is predominantly deep black vertisols and the area drains towards Athi River basin (Leeuw 
et al., 1991). 

The Kamba community is the main occupant of the region and is predominantly agro-pastoralists. Other 
than livestock rearing, these plains host a diverse wildlife population. During the wet seasons, these plains 
fill in as transitory territories for wild animals from Amboseli national park. They are also the favored 
grounds for calving by wildebeest population relocating from southern plains of Tsavo and Chulu 
(Conservation of Kenya, 2010). 

Kapiti Farm is within the Athi-Kapiti plains. The Farm is owned privately by the International Livestock 
Research Institute (ILRI) and covers ~130 km2. The region has bi-modal precipitation seasons that 
approximately run from October to December (locally referred to as short rains) and March to May (long 
rains).  Figure 1 shows the average monthly rainfall as observed from the single rainfall station located in 
Kapiti Farm since 1940. The average seasonal precipitation (1999-2016) from the same rainfall station is 
275mm for the ‘short rains’ and 270mm for the ‘long rains.’ 

Figure 1: Average monthly rainfall. The averages were derived from rainfall data of Kapiti Farm of 1999-2016. The error bars indicate the standard 
deviations between the years. 

0
20
40
60
80

100
120
140
160
180
200

A
ve

ra
ge

 m
on

th
ly

 ra
in

fa
ll 

(m
m

)

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 



ESTIMATING VEGETATION PHENOLOGY AT 30M RESOLUTION MULTI-TEMPORAL OPTICAL IMAGERY FOR A RANGELAND SITE IN KENYA 

 

 

6 

Kapiti Farm is home to approximately 2500 cattle ( Boran breed and a couple of Boran-Friesian crossbreds), 
1200 sheep (Dorper, Kenyan Red Maasai and crossbreds), 250 Galla goats and wild animals such as lions, 
hyenas, jackals, zebras, impalas, giraffes, and ostriches among others. Breeding of disease-free cows and 
performance of research about the East coast fever and African animal trypanosomiasis (GEOGLAM 
RAPP, 2017) is also carried out on this Farm. Figure 2 shows a map of the study area.  

 

 

 

 

 

 

Figure 2: location of the study area. (a) –  Grey faint boundaries represent county boundaries of Kenya, black boundaries represent counties where the Athi-
Kapiti Plains are located, blue polygon represent the approximate Athi-Kapiti extent, the red polygon is Kapiti Farm. Similar colours explained for (a) applies 
to (b) and (c). (c) – the background is a Sentinel-2A RGB image acquired on 20th December 2016. The black triangle in (c) is the rainfall station inside 
Kapiti Farm 
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2.2. Data 

Table 1 summarizes the remotely sensed data that were used to achieve the objectives of this study. 

Table 1: A summary of the remotely sensed data used 

 

Additional data used: Twenty-four sample locations of vegetation collected within Kapiti Farm and rainfall 
data (1940-2016) sheet from the single rain station in Kapiti Farm. 

2.2.1. Landsat 1999-2017 

The complete archive of Landsat Collection-1 imagery that based on visual observation of the quick looks 
contained at least partial cloud-free coverage over the Kapiti Farm was downloaded. Image searching was 
performed using USGS Earth Explorer (https://earthexplorer.usgs.gov/) whereas the ordering of surface 
reflectance and vegetation index products was done through the EROS Science Processing Architecture 
(ESPA) of USGS (https://espa.cr.usgs.gov/). Landsat 4-7 reflectance and vegetation index data are derived 
using the Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS algorithm; Masek et al., 
2006) which was developed by NASA. This algorithm applies MODIS atmospheric correction routines to 
obtain Top of Atmosphere (TOA) reflectance, surface reflectance and masks for clouds, cloud shadows, 
land, adjacent clouds and water (Department of the Interior U.S. Geological Survey, 2017). For Landsat 8 a 
similar algorithm, Landsat Surface reflectance Code (LaSRC), is used to generate the same products as 
LEDAPS. From ESPA, for the whole Landsat archive the Normalized Difference Vegetation Index 
(NDVI), quality layers, and the blue band reflectance were obtained. 

From the quality layer (pixel_qa), all pixels that contained clouds, cloud shadows, or snow (even though 
snow does not occur in the study area) were masked out from the NDVI images. In addition, pixels with a 
blue-band reflection of less than 0.01 were masked out, as it was observed for many locations cloud shadows 
were not effectively detected by the quality layer. A buffer of 60m was also created around the combined 
mask to account for edge-effects. This masking and buffering process inevitably resulted in a loss of some 
useful pixels, but the erroneous inclusion of the vegetation indices that do not relate to the real vegetation 
conditions was considered a more serious problem because it may have a negative impact on the effective 
retrieval of phenology. 

Product Sensor 
Spatial 
resolution 

Spectral 
resolution 

Temporal 
resolution Source Years 

Landsat 5 MSS  30m NDVI, 
pixel_qa  
blue band 

 16 days https://earthexplorer.usgs.gov/ 
https://espa.cr.usgs.gov/ 

1999 - 
2017  

Landsat 7 TM & 
ETM+ 

  30m NDVI, 
pixel_qa  
blue band 

 16 days https://earthexplorer.usgs.gov/ 
https://espa.cr.usgs.gov/ 

1999 - 
2017  

Landsat 8 OLI   30m NDVI, 
pixel_qa  
blue band 

 16 days https://earthexplorer.usgs.gov/ 
https://espa.cr.usgs.gov/ 

1999 - 
2017  

Sentinel-2 MSI  10m B8 (Red) B4 
(NIR) 

 10 days https://scihub.copernicus.eu/dhus/ 
https://earthexplorer.usgs.gov/ 

 2015 - 
2017 

eMODIS MODIS   250m  NDVI  10 days  USGS  2001 - 
2017 

https://earthexplorer.usgs.gov/
https://espa.cr.usgs.gov/
https://earthexplorer.usgs.gov/
https://espa.cr.usgs.gov/
https://earthexplorer.usgs.gov/
https://espa.cr.usgs.gov/
https://earthexplorer.usgs.gov/
https://espa.cr.usgs.gov/
https://scihub.copernicus.eu/dhus/
https://earthexplorer.usgs.gov/
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2.2.2. Sentinel-2 2015-2017 

Sentinel-2 images were downloaded from ESA’s Copernicus Open Access Hub 
(https://scihub.copernicus.eu/dhus/) and some through the USGS Earth Explorer, given that a few good 
scenes were identified that seemingly were unavailable on the Copernicus hub. The images were 
atmospherically corrected using the Sen2Cor programme, which besides surface reflectance also provides a 
scene classification file containing cloud and cloud shadows. Based on the scene classification file, all pixels 
not classified as dark area pixels, vegetation, bare soils and water were masked out 
(https://sentinel.esa.int/web/sentinel/technical-guides/sentinel-2-msi/level-2a/algorithm). In addition to 
this, all pixels with less than 0.01 reflectance in the blue band were masked out and a buffer of 50m was 
created around all masked pixels to cater for edge effects around cloud and cloud shadows. 

NDVI was then calculated using this equation in IDL: 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =  𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 8−𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 4
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 8+𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 4

         Equation 1 

where:  Band 8 = Near infra-red band (0.842 µm) 
 Band 4 = Red band (0.665 µm) 

2.2.3. eMODIS 2001-2017 

NDVI eMODIS v5 images from 2001 – February 2017 were used. The images are a product derived from 
measurements of the Moderate Resolution Imaging Spectroradiometer onboard the Terra satellite and 
comprises of 10-day maximum NDVI value composites at 250m resolution (Vrieling et al., 2016). Originally 
these composites are delivered every five days however just the 1-10, 10-20 and 21 to last day images were 
used. During NDVI pre-processing a piecewise linear regression Swets algorithm (Swets et al., 1999) is 
applied for each pixel time series for data smoothening while still maintaining the vegetation maxima. The 
three images per month were assumed to be from the following dates; 6th, 16th, 26th for every month other 
than February which was set at 25th since information about the exact date of acquisition per pixel are not 
provided with the data. 

2.2.4. Monthly rainfall data 1940-2017 

 Monthly rainfall data for the Kapiti Farm was provided by ILRI from the year 1940-2017 from the single 
rainfall station in the area. This data was used to understand and relate the seasonal precipitation with multi-
year annual deviations of Landsat. It was assumed that the single rainfall station (Figure 2) in Kapiti could 
represent the temporal variability of rainfall for the entire Kapiti Farm. Figure 3 shows an overview of the 
annual seasonal rainfall over the years. Only data from 1999 -2016 are shown because multi-year Landsat 
data used was within that range.  
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2.2.5. Vegetation sample points 

Based on a reconnaissance field survey in Kapiti Farm four different vegetation composition were discerned: 
(A) = Grassland - purely grass 
(B) = Denser tree cover – tall trees (>2m) and understory shrubs and grass 
(C) = Diverse shrublands – more than one shrub type and understory grass 
(D) = Acacia shrublands –  acacia shrubs and understory grass 

A total of twenty-four sample points, six points for each group, was collected during field data collection 
using the global Land-Potential Knowledge System (LandPKS) protocol. LandPKS protocol is a cloud-
based system used for monitoring vegetation in the rangelands (Corinna et al., 2011). This sampling method 
involves finding a central location inside a homogenous vegetation structure and then measuring 25 meters 
in the North, East, West and South direction. After every 5 meters, a one-meter bar (with five marks at 
10cm, 30cm, 50cm, 70cm and 90cm) is steadily dropped down vertical and the vegetation under or over the 
marked position is noted down in the LandPKS form (Appendix 1). For this study, some parts in the original 
form were removed and other sections added, for instance, visual estimation and the photo sections. The 
visual estimation at each location was done to assess how well the LandPKS protocol agreed with a simple 
visual vegetation estimation while the photos were taken at an arm-angle in four directions (NE, SE, NW, 
SW). 

 The twenty-four sample points were equally distributed within the four vegetation structure strata leaving 
each group with six points and their spatial distribution can be seen in Figure 4. These data were used to 
relate the vegetation composition on the ground with the phenological parameters retrieved from multi-year 
Landsat data. 

Figure 4: Spatial distribution of vegetation community within Kapiti Farm. The background is a Sentinel-2A RGB image acquired on 
20th December 2016. 
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2.3. Software 

The following software was used for the accomplishment of this research: 

• ENVI + IDL – data processing and phenology parameters estimation from Landsat, Sentinel-2 and 
eMODIS data. This included an adaptation of existing IDL-code written by Michele Meroni (JRC) 
and Anton Vrieling (University of Twente). 

• Excel 2016 – Statistical analysis 

• ArcMap 10.5 – Raster polygon conversion and cartographic production 

• R version 3.4.1 – spatial-autocorrelation analysis and density scatter plots 
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3. METHODS 
3.1. Phenology retrieval model 

For the NDVI trajectories derived from various data sources (Chapter 2), a model was fitted to the data. 
Here the double hyperbolic tangent model was selected (Meroni et al., 2014) for estimating vegetation 
phenology and other seasonal greenness parameters, which can be written as: 

 NDVI(t) = 𝑎𝑎0 + 𝑎𝑎1
tanh[(𝑡𝑡−𝐵𝐵2)∗𝐵𝐵3]+1

2
 + a4 

tanh[(𝑡𝑡−𝐵𝐵5)∗𝐵𝐵6]+1
2

− 𝑎𝑎4  Equation 2  

where t = time in days and a0 to a6 are the seven model parameters that need to be fitted. The function was 
fitted using MPFIT as implemented in IDL (Markwardt, 2009). The model parameters relate to features of 
the NDVI trajectory and are initiated as written in italics (Vrieling et al., 2017): 

- a0: the minimum NDVI value. The minimum NDVI in the first half of the time series;  

- a1 (a4): the NDVI amplitude of the green-up (senescence) phase. The difference between the maximum 
NDVI and the minimum NDVI in the first (second) half of the time series;   

- a2 (a5): the inflection point (days) for the green-up (senescence phase). The midpoint between the 
start (end) of the time series and the time of maximum NDVI;   

- a3, a6: control the slope at the inflection point for both phases (day-1). Initialized at 0.02 [-0.02].  

The double hyperbolic tangent model, whose functions are similar to a double logistic model, was chosen 
for this study because of the ability to retrieve more accurate and successful fits in regions having multiple 
vegetation types (Vrieling et al., 2017a). The study area has two separate vegetation seasons within one year 
(short and long rains) and to fit the model for each season ‘breakpoints’ needed to be set. These breakpoints 
or rather transition dates that define the time-frame for each season were guided by the average NDVI 
trajectory as observed from multi-year eMODIS v5 data from 2001 to 2017 (Figure 5). Though the minimum 
NDVI value between the end of short rains and start of long rains was observed to be around 6th of March 
15th of march was taken as the transition date based on user preference. Between the end of the long rains 
and the start of short rains, transition dates were set at 15th October and 15th September. The overlap 
between the two seasons was because of the more extended drier period observed (Figure 5).  
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After fitting the double hyperbolic tangent model, a threshold approach (White et al., 1997), which uses 
annually redefined maximum and minimum NDVI values, was used to estimate the following parameters:  

- SOS50: start of season, defined as the first moment when the fitted function reaches 50% of the 
amplitude between maximum VI and the fitted minimum value (growth) for each season;  

- EOS50: end of season, defined as the first moment of the senescence phase when the fitted function 
reaches 50% of the amplitude between maximum VI and the fitted minimum value (senescence) 
for each season; 

- LGS50: length of the season, EOS50 minus SOS50; 
- maxNDVI – the maximum value of the model; 
- cumNDVI – Integral of the fitted model between SOS50 and EOS50; 
- amplitude 1 & 2 –the difference between the maximum and the fitted NDVI value (growth and 

decay phase respectively). 

 

3.2. Phenology from combined Landsat and Sentinel-2 data 

To assess if phenological parameters can be effectively retrieved using finer spatial resolution data of 
individual-year observations, optical images acquired between 2015 to 2017 by three satellites, i.e., Landsat 
7 & 8 and Sentinel-2, were fused together, whereby the Sentinel-2 data was resampled to match the 30m 
Landsat resolution. These sensors were combined because the number of cloud-free observations from each 
sensor alone could not allow retrieval of vegetation phenological parameters in a single season. 

When examining the spatial overlay between imagery, it was found that for the study area Sentinel-2 has a 
20m shift in the northward direction and a 5m shift in the westward direction in relation to Landsat. In this 
case, before aggregation Sentinel-2 was manually shifted by updating the header information describing the 
tie point for the upper-left pixel. While in the y-direction the 10m Sentinel-2 resolution cells precisely fitted 
within a Landsat pixel, in the x-direction this fit is not precise. To account for the 30m Landsat containing 
two full 10m resolution Sentinel-2 pixels and two pixels for 50%, a weighted average was implemented in 
IDL for the spatial aggregation.  For the 10m resolution Sentinel-2A pixels that did not completely cover 
the output Landsat definitions, they received a 0.5 weight. To avoid incorporating pixels with a valid NDVI 
value, due to the clouds and cloud shadows, such pixels were not used to calculate the spatial average NDVI. 
If less than 70% of the 30x30m output pixel had a valid NDVI, a no data value was assigned to that pixel. 

A layer stack of the two Landsat and 30m resampled Sentinel-2 datasets was made and used as input for the 
phenology retrievals with the double hyperbolic tangent model. To appreciate the number of valid NDVI 
data points for each season (2015-2016 short, 2016 long, 2016-2017 short, 2017 long), maps reflecting this 
number were generated. A maximum temporal gap map between the observations at each location was 
generated for the entire landscape for each season separately. The number of valid NDVI observation map 
and the maximum temporal gap map was used to assess for which individual season sufficient observations 
were available to attempt fitting of the double hyperbolic tangent model. 

Model fitting was first tested for the pixels corresponding to the vegetation sample points and later applied 
over the whole region to generate spatial patterns of the phenological parameters. Variograms were 
generated using R packages (gstat, stats4: Gräler et al.,2016)  to test for spatial consistency of the retrieved 
spatial patterns. 
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3.3.  Phenology from combining multi-year Landsat acquisitions  

Combining years of Landsat meant that for each observation only the day of the year (DOY, ranging from 
1 to 366) was retained, and not the year (Melaas et al., 2013). In this way, a so-called ‘synthetic year’ was 
created that combines all NDVI observations for each pixel. This transformation leads to increased number 
of observations within the synthetic year, allowing to overcome issues of few cloud-free observations that 
any individual year may face. To understand the seasonal behavior and the year-to-year variability of NDVI 
for sampled vegetation locations, the NDVI (for all non-masked dates) was plotted against the day-of-year 
(DOY)while still allowing to identify which observation belongs to which year.  

To avoid scattered Enhanced Vegetation Index (EVI) values observed between different years,  Melaas et 
al. (2016) applied some smoothening on the data. For the long-term Landsat images, Melaas et al. (2016) 
calculated the 10th and 90th percentile average of all EVI values at each pixel contained within a moving 
window of three years successively before constructing the ‘synthetic year.’ This procedure was not carried 
out in this study, as it was observed that the high inter-annual variability combined with often missing 
observations particularly for higher NDVI values could have resulted to a not so well successful data 
smoothening.  The double hyperbolic tangent model was fit through the ‘synthetic year’ for the sampled 
locations and then applied to all pixels within Kapiti Farm. To test for spatial consistency, variograms of the 
retrieved spatial patterns were generated using R packages (gstat, stats4; Pebesema et al., 2017). 

The assess how finer spatial resolution phenological retrievals from Landsat agreed with better temporal 
resolution phenological retrievals, eMODIS data were introduced as a benchmark. Studies such as Vrieling 
et al. (2016) used averages of annual phenological parameters extracted from eMODIS time series but for 
this study, all years of eMODIS were used as a synthetic year. To assess to what extent using eMODIS as a 
‘synthetic year’ deviated from annual averages of phenological parameters estimated from eMODIS time 
series the double hyperbolic tangent model was fit for every single year for the twenty-four sample points 
and the averages calculated. The model was then fit for the whole of Kapiti Farm using all years of eMODIS 
as a synthetic year. The phenological parameters retrieved from both methods were recorded for the twenty-
four sample points together with their standard deviations. 

To assess if retrievals from multi-year Landsat were almost similar to those retrieved from multi-year 
eMODIS, Landsat retrievals were aggregated to the eMODIS resolution in IDL.  The aggregation process 
was carried out in IDL and to cater for the cells having a no data value; a condition was set that at least 50% 
of the coarser resolution pixel needed to have a valid data value. Density scatters plots were generated using 
R-Packages (ggplot2, hexbin) where, SOS, EOS, cumNDVI, AMP1 and AMP2 retrievals from Landsat were 
plotted against the same retrievals extracted from eMODIS. The coefficient of determination (R2), Root 
Mean Squared Deviation (RMSD) and Mean Signed Deviation (MSD) were calculated for each phenological 
parameter. The R2 value, in this case, explains how well the spatial variability of the mentioned retrievals 
from eMODIS is explained by the variability of the same retrievals from Landsat; the RMSD value shows 
how retrievals from eMODIS deviate from those extracted from Landsat while the MSD value summarises 
how well each retrieval from the two-dataset matches. 

To help understand if grouping multi-year Landsat NDVI observations using seasonal precipitation would 
result to a ‘synthetic year’ having almost similar NDVI profiles, two sample locations from areas having 
grassland (A) and denser tree cover (B) were used for testing in each season separately. The seasonal 
precipitation was divided into five classes based on the minimum and maximum value seen for each season. 
These classes were as follows: 0 -100, 100-200, 200-300, 300-400 and 400-500. 
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3.4. Explaining spatial variability of phenology from differences in vegetation composition 

 Phenological parameters and greenness measures that were generated from multi-year Landsat were used 
to explain the spatial variability of vegetation composition in Kapiti Farm. Figure 6 shows a summary of the 
average estimated vegetation cover using LandPKS protocol (Herrick et al., 2013) for each group.  

To understand if there were significant differences in vegetation phenological parameters and or seasonal 
greenness measure in these four groups, single factor analysis of variance (ANOVA) was carried out in 
Excel separately for each parameter. The null hypothesis tests if the means of the groups are the same and 
to reject the null hypothesis one needs to check whether the calculated F-value is greater than the critical F-
value that is calculated by setting a certain level of significance (in this case 0.05). A rejected null hypothesis 
only indicates that at least one of the means is significantly different from the other but does not indicate 
which that is. To understand which means were significantly different the Tukey Honest Significant 
Difference (HSD) test was carried out. The HSD test involved making pairwise comparison among the 
means of different groups. Equation 3 was used to calculate the HSD-statistic. The score was then checked 
from Tukey critical value table. If the HSD statistic was greater than the HSD critical value, it was concluded 
that the two means were significantly different (Glen, 2016). 

   

                                                                    HSD =   
𝑀𝑀𝑖𝑖−𝑀𝑀𝑗𝑗

�𝑀𝑀𝑀𝑀𝑀𝑀
𝑛𝑛

                                          Equation 3  

 Where 

  Mi – Mj – the difference between the means of the pairs in question 

  MSE –  Mean Square error between the two pairs 

  n – number observations   
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Figure 6: A summary of estimated vegetation cover per vegetation community using LandPKS protocol.  
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4. RESULTS 
4.1. Phenological parameters from fused Landsat and Sentinel-2 data  

The first set of analyses examined the number of observations per pixel and the maximum temporal gap 
between the observations for each season tested between September 2015 and September 2017 (Figure 7). 
Maximum temporal gap calculations were done for locations having more than eight observations because 
the model requires at least eight observations to initiate the fitting. It was noted that locations with few 
number of observations showed a larger maximum temporal gap in most cases across the different seasons. 

 

Temporal profiles from fused Landsat 7- 8 and Sentinel-2 NDVI for the different vegetation communities 
locations are shown in Figure 8.  These locations were picked purposively from the six sample points per 
each group, ensuring that the location had retrievals from each season. Nevertheless, Acacia shrublands (D) 
did not have any sample with retrievals in all seasons meaning the profiles are from different locations (XY). 
The short rains of 2015/2016 have a relatively higher maximum NDVI (~0.6) compared to the short rains 
of 2016/2017 (~0.45). This likely links to the smaller amount of precipitation during 2016/2017 short 
season (137mm) as compared to 2015/2016 (275mm). SOS and EOS for the short rains are approximately 
in November and January (of the following year) respectively. The LGS for the short rains of 2015 is 84±11 
days while the short rains of 2016 have 45±7 days. For the long rains of 2016, there were no retrievals from 
the representative vegetation samples. As Figure 9 shows, the long rains 2016 has observations gaps existing 
between April and July which could have caused the unsuccessful retrievals because one of the phenology 
model conditions is only to try fitting if there are at least four observations before and after the midpoint. 
The temporal profiles for the long rains of 2017 are shown in Figure 9. On average the start and end of the 
season for the long rains within Kapiti Farm are within April and July respectively.  The LGS for the long 
rains of 2017 is 66±23 days on average. 
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Figure 7 Number of observation with a valid NDVI value per season and the maximum temporal gap between these observations from fused Landsat 7- 8 and Sentinel-2 
data between September 2015 - September 2017 
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To avoid repetition of a similar legend within all the derived phenological and seasonal greenness spatial 
patterns, a detailed legend was made. This Legend can be seen in Figure 10.  

 

Figure 9: Long rains of 2016 and 2017 from the fused Landsat 7, 8 and Sentinel-2 observation. (A) Grasslands, (B) Denser tree cover, (C) Diverse 
shrubs and (D) Acacia shrubs. The black dots indicate SOS50 and EOS50 respectively 

Figure 8: Short rains of 2015/2016 and 2016/2017 from the fused Landsat 7, 8 and Sentinel-2 observation. (A) Grasslands, (B) Denser tree 
cover, (C) Diverse shrubs and (D) Acacia shrubs. The black dots indicate SOS50 and EOS50 respectively 
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Figure 11 shows phenological parameters retrieved after applying the phenology retrieval model to all pixels 
of fused Landsat 7,8 and Sentinel-2 within Kapiti Farm. For the short rainy seasons, 49.10% (2015/2016) 
and 51.04% (2016/2017) of the total pixels had successful phenological retrievals while for the long rains 
of 2016 this was 15.96% and 53.57% for the long rains 2017. The average phenological parameters per 
vegetation community from the twenty-four sample locations are shown in Table 2. The short rains of 
2015/2016 have an early SOS50 and a later EOS50 compared to those from 2016/2017. These differences 
could be because of the differences in nature of the model curve as seen in Figure 8 where the short rains 
2015/2016 curves are more spread than those from 2016/2017. 

Table 2: Phenological parameter retrievals from fused Landsat 7, 8 and Sentinel-2 NDVI time series for the vegetation 
communities of Kapiti Farm. These are means of the six points collected for each group. 

  SOS50 EOS50 LGS50 cumNDVI maxNDVI AMP1 AMP2 No.of 
samples 

Vegetation 
type 

2015/2016 short season 

(A) 11 Nov±14 2 Feb ±5  82±19 1.47±0.31 0.57±0.02  0.37±0.02 0.33±0.04  3 

(B) 16 Nov ± 0 12 Feb ±3  88±3 1.98±0.19 0.70±0.09  0.46±0.08  0.30±0.09 4 

(C) 19 Nov ±1 15 Feb ±2  88±5 1.62±0.12 0.58±0.01  0.38±0.01  0.26±0.07 2 

(D) 4 Dec  13 Feb   71 1.296 0.59  0.37  0.28 1 

  2016/2017 short season 

(A) 21 Nov±2 6 Jan±4  45±4 0.64±0.07 0.46±0.07  0.26±0.05  0.25±0.05 4 

(B) 23 Nov±6 10 Jan±6  47±4 0.79±0.07 0.54±0.04  0.31±0.05  0.25±0.05 5 

(C) 23 Nov±8 29 Dec±2  36±14 0.61±0.17 0.55±0.007  0.34±0.003  0.30±0.001 2 

(D) 22 Nov±5 8 Jan ±5  47±8 0.67±0.06 0.47±0.05  0.27±0.02  0.24±0.04 4 

  2017 long season 

(A) 4 May±18 11 Jul±7  68±21 0.96±0.29 0.46±0.09  0.25±0.08  0.28±0.09 4 

(B) 10 Apr±2 2 Jul±25  83±25 1.53±0.28 0.62±0.09  0.35±0.08  0.37±0.11 4 

(C) 6 May±16 12 Jul±1  67±16 1.08±0.27 0.50±0.03  0.29±0.04  0.29±0.04 6 

(D) 9 May±20 9 Jul±13  62±14 0.55±0.07 0.31±0.09  0.32±0.09  0.34±0.07 4 

Figure 10: detailed legend for different figures used in this study. a) colours for each month; the colours are divided into 10 days in a month, the first 
ring (1) represent day 1-10, (2) day 11-20 and (3) day 21-30, this legend is used for SOS50 and EOS50. b) days of the LGS50. c) the cumNDVI 
values. d) shows theAMP1 and AMP2 values. e) represents the maxNDVI values 
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Further statistical analysis carried out to assess the spatial consistency of the retrieved phenological patterns 
are shown in Figure 12  inform of variograms. The differences in variograms forms could not be explained, 
but it can be concluded that at nearby locations the semi-variance is lower than locations further apart 
indicating that the further the pixels are from each other the less correlated they are.  

Figure 11: Phenological parameters and cumNDVI retrieved from fused Landsat 7, 8 and Sentinel-2 within Kapiti Farm. They are from the four 
different seasons. Short rains 2015/2016, short rains 2016/2017, long rains 2016 and long rains 2017. Detailed legend is in Figure 10 
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4.2. Phenological parameters from multi-year Landsat and eMODIS data 

Temporal profiles from multi-year Landsat NDVI time series as a ‘synthetic year,’ for the representative 
vegetation community are illustrated in Figure 13 for both seasons.  A clearer temporal pattern emerges from 
the plots of the long rains while the short rains plots shows observations that appear to be somewhat noisy 
hence lacking clear spatial patterns. 
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Figure 12: Variograms of phenological and seasonal greenness parameters retrieved from fused Landsat 7, 8 and Sentinel-2 NDVI time series of Kapiti 
Farm 
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Figure 14 shows the spatial patterns of selected phenological parameters after fitting the model through each 
pixel. For the long rains, parameters could successfully be retrieved for 99.1% of the pixels while for short 
rains season this was 64.22%. As seen from the profiles (Figure 13) the short rains observations were very 
noisy which could have translated to the low percentage of successful fits. On average the long rains 
experiences SOS50 on 4 (±9 days) April, EOS50 on June 25 (±9 days). The short rains have SOS50 on 21 (±7 
days) November, EOS50 on January 18 (±12 days). The length of the season is 57±14 (short) and 82±15 
(long) days on average. Figure 15 shows variograms generated to test the spatial consistency of the retrieved 
pattern. The nature of the forms from these variogram depicts that the semi-variance is lower for 
observations near each other than those far from each other. Table 3 provides the average summary of the 
phenological and seasonal greenness parameters as observed from the twenty-four sample locations. 
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Figure 13: Combined years of Landsat archive NDVI time series for the representative vegetation community. The black dots represent SOS50 and EOS50 
respectively. The locations are the same but different vegetation season. (A) Grasslands, (B) Denser tree cover, (C) Diverse shrubs, (D) Acacia shrubs. 

Figure 14: Phenological and seasonal greenness parameters retrieved from combined Landsat archive within Kapiti Farm. For the legend see Figure 10. 
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Table 3: Retrieved phenological and seasonal greenness parameters averaged from the 24 sample points from combined years of Landsat archive 

Phenological retrievals from combined years of Landsat were aggregated to 250m resolution for both 
seasons and compared to those retrieved from eMODIS. Figure 16 shows the spatial patterns of both 
aggregated Landsat and eMODIS. As earlier mentioned for eMODIS first the retrievals for the twenty-four 
sample points were estimated for each year (2001-2017) independently. For each retrieval, annual averages 
were calculated and are summarised in Table 4. This was to assess how combining years of eMODIS into a 
‘synthetic year’ before fitting the model deviated from when the model is fitted in single years and later 
averages of the retrievals calculated. On average the SOS is within April and EOS early July for the long 
rains while for the short rains, SOS is within November and EOS in February. LGS is 53±7 (short) and 
80±9 (long) days on average. 

  SOS50 EOS50 LGS50 cumNDVI maxNDVI AMP1 AMP2 No.of 
samples 

Vegetation 
type 

Combined Landsat archive – short rains 

(A) 27 Nov±7 15 Jan±10  49±12 0.63±0.17 0.41±0.02  0.20±0.03  0.14±0.03 6 
(B) 10 Nov±1 22 Jan±12  73±12 1.12±0.15 0.47±0.02  0.21±0.06  0.09±0.02 2 
(C) 18 Nov±6 25 Jan±16  68±13 0.83±0.16 0.39±0.02  0.17±0.03  0.10±0.01 4 
(D) 23 Nov±4 16 Jan±12  53±10 0.73±0.08 0.44±0.05  0.34±0.05  0.14±0.02 4 
  Combined Landsat archive – long rains 
(A) 6 Apr±14 23 Jun±6  78±18 1.34±0.24 0.57±0.08  0.35±0.05  0.36±0.08 6 
(B) 30 Apr±3 2 Jul±7  94±8 1.72±0.15 0.59±0.07  0.32±0.06  0.33±0.07 6 
(C) 3 Apr±6 19 Jun±4  77±8 1.41±0.16 0.61±0.06  0.39±0.06  0.36±0.05 6 
(D) 8 Apr±9 28 Jun±12  81±19 1.46±0.22 0.61±0.06  0.38±0.06  0.39±0.05 6 

Figure 15: Variograms of phenological and seasonal biomass parameters retrieved from combined years of Landsat archive NDVI time series of Kapiti Farm 
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Table 4: Average phenological parameters and seasonal greenness for Kapiti Farm from eMODIS v5 NDVI time series 

  SOS50 EOS50 LGS50 cumNDVI maxNDVI AMP1 AMP2 No.of 
samples 

Combined eMODIS v5 
Long Rains 

13 Apr±3 2 Jul±3  81±8 1.38±0.11 0.56±0.02  0.39±0.05   0.35±0.02  24 

Single years averages 
Long Rains 

14 Apr±3 25 Jun±8  79±14 1.43±0.076 0.63±0.013  0.34±0.08   0.30±0.05  24 

Combined eMODIS v5 
Short Rains 

16 Nov±4 6 Feb±5  54±7 1.36±0.15 0.52±0.034   0.27±0.03  0.12±0.06  19 

Single years averages 
Short rains 

15 Nov±6 6 Feb±7  52±11 1.26±0.08 0.45±0.022   0.24±0.03  0.10±0.05  19 
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Figure 16: Aggregated combined years of Landsat(250m) and eMODIS v5 phenological parameters for the long and short rains season of Kapiti Farm. For 
detailed legend refer to Figure 10. 
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To assess how well aggregated Landsat agreed with eMODIS retrievals; density scatters plots were generated 
(Figure 17). The SOS50 and EOS50 of the short rains have an RMSD of ±11 days while for the long rains has 
±14 days as well as an MSD value of ±5 days (short rains) and ±10 days for the long rains. The small R2 

exists within a small study area (130km2) and therefore the small variability in eMODIS retrievals could not 
be accurately explained by the Landsat retrievals. 
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Figure 17: Density scatter plots of aggregated phenological parameters of combined years of Landsat (X-axis) against eMODIS v5 (Y-axis) 
phenological  parameters. The X and Y axis for SOS50 and EOS50 are the DOY while for the cumNDVI, maxNDVI, AMP1 and AMP2 are 

the NDVI value. The dashed line in grey represent the slope while the red line represents the regression line 
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To assess if grouping years of Landsat with respect to the amount of precipitation in that year would result 
to a synthetic year having almost similar NDVI profiles two sample locations were used for testing (Figure 
18). While the gradient of the NDVI profile is not clear, it was observed that for drier years (below 100mm) 
the NDVI values always resulted to very low values in all seasons while for the wetter years (above 100mm) 
no clear patterns in the NDVI values could be seen. In general, total seasonal precipitation alone does not 
seem to explain the amount of vegetation greenness in a given location. 

4.3. Retrieved patterns in relation to vegetation composition on ground 
 
Table 5 shows the results of the ANOVA analysis performed in excel to check for the differences of the 
retrieved phenological parameters and seasonal greenness between the vegetation groups for each season. 
The null hypothesis states that all the means of the four different groups are not different at the significance 
level of 0.05. This null hypothesis was rejected if the calculated F-value was greater than F-Critical or when 
the P-value is smaller than the level of significance used. For the long rains, only the ANOVA analysis done 
for the cumulative NDVI rejected the null hypothesis which meant that at least two of the vegetation 
community groups had different means. For the short rains, a significant difference was found for SOS50, 
cumNDVI, maxNDVI, and AMP2 from the ANOVA analysis. 

 

(A) 
 

(B) 
 

Figure 18: shows the combination of all 1999-2017 Landsat-derived NDVI values combined in a single synthetic year for two points. The colour of each observation relates to the 
amount of seasonal precipitation in each specific year. 
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Table 5: ANOVA analysis of the vegetation community within Kapiti Farm. Results shaded in grey are those that rejected null hypothesis 

  

Long rains 

F-Value P-value F critical 

Short rains 

F-value P-value F-critical 

SOS50 0.96373 0.429164 3.098391 4.0859 0.03257 3.490294 

EOS50 2.73219 0.070862 3.098391 0.6646 0.58962 3.490294 

LGS50 1.73683 0.191715  3.098391  3.0680 0.06898 3.490294 

cumNDVI 4.06754 0.020813 3.098391 5.6107 0.01221 3.490294 

maxNDVI 0.34143 0.795617 3.098391 3.6953 0.04300 3.490294 

AMP1 1.88213 0.165136   3.098391 1.8516 0.19447 3.490294 

AMP2 0.56601 0.643752  3.098391  3.9823 0.03732 3.490294 

 

Table 6 shows the results of the Tukey HSD analysis performed for all the parameters that rejected the null 
hypothesis tested in ANOVA.  If the absolute mean difference between the pairs is greater than the 
calculated HSD value, then, it is concluded that there is a significant difference between the mean of the 
mention pairs. Among all the parameters that rejected the null hypothesis in both short and long rain season, 
it can be concluded that areas with denser tree cover (B) are the most different from all other means. 
Nevertheless, for the long rains, the only analysis that showed a significant difference is between the 
cumNDVI of the denser tree covered areas and the pure grassland areas. For the short rains, there is a 
significant difference between the SOS50, cumNDVI, maxNDVI and AMP2 of denser tree covered (B) areas 
and the grasslands (A), cumNDVI and maxNDVI of grasslands (B) and diverse shrubs (C), cumuNDVI of 
grasslands (B) and acacia (D), AMP2 of grasslands (B) and diverse shrubs, AMP2 of denser tree cover (B) 
and acacia shrubs (D) and maxNDVI and AMP2 of diverse shrubs (C) and acacia shrubs (C). 

Table 6: Tukey HSD analysis carried for the parameters that rejected the ANOVA null hypothesis. A = grasslands, B = Denser tree cover, C = 
Diverse shrubs and D = Acacia shrubs. Results shaded in grey are those that rejected the Tukey HSD test 

 

 

 

 

  

    HSD Value AB AC AD BC BD CD 

Long Rains cumNDVI 0.321 0.376 0.078 0.117 0.298 0.259 0.039 

Short rains SOS50 8.7 16.5 8.5  3.5  8  13  5 

cumNDVI 0.241 0.495 0.208  0.106  0.286  0.389  0.102 

maxNDVI 0.056 0.065 0.020  0.037  0.086 0.028  0.057 

AMP2 0.044 0.056 0.046  0.001  0.010  0.057 0.047 
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5. DISCUSSION 
This study showed that it was possible to estimate vegetation phenology in a complex savanna ecosystem at 
a finer spatial resolution (~30m) for a single season or a multi-annual average. Very little was found in the 
literature regarding the possibility of retrieving vegetation phenology for a single season by fusing Landsat 
and Sentinel-2 images. The closely related study is research carried out by Vrieling et al. (2017a) where they 
fused RapidEye and SPOT5 sensors to estimate vegetation phenology for a single season. Recently  Vrieling 
et al. (2017b) showed the possibility of even using  Sentinel-2 images alone to study the vegetation 
phenology, but this is only possible for regions near the overlapping orbits which have more Sentinel-2 
images (~5 images) in a month compared to other regions of the world. In most cases, studies  have been 
fusing sensors having a short revisit time (e.g. MODIS) with finer spatial resolution sensors (e.g. Landsat) 
to increase the number of cloud-free observations to enable vegetation phenology retrievals for a single 
season (Gao et al., 2017; Hazaymeh & Hassan, 2017; Walker et al., 2014). On the other hand, use of a 
Landsat ‘synthetic year’ to estimate multi-annual average vegetation phenology, had until recently only 
existed for temperate climates regions having a relatively homogeneous vegetation structure unlike the 
savannas (Melaas et al., 2016, 2013; Nijland et al., 2016; Vrieling et al., 2017a). While persistent cloud cover 
is an issue during acquisition of satellite images all over the world, the study area is located in the tropics 
near the equator which have 75% of the total images acquired in a single year showing heavy clouds 
contamination  (Hashim et al., 2014). This made it challenging to estimate vegetation phenology, especially 
for a single season. Other than that, the study area has two short seasons (~3 months each), which makes 
it harder to accurately describe the vegetation dynamics for within these short periods of time only a few 
observations are left to capture the quick growth and decay phases. The frequent droughts in the area, which 
can sometimes lead to a failing season (i.e., NDVI values remains low) together with the inter-annual 
variations in vegetation greenness challenged the use of combined years of Landsat into a ‘synthetic year’, 
for until now, this method had only been applied in regions that have a single season that is relatively stable 
between single years. In general, persistent cloud cover, high inter-annual variation in vegetation greenness, 
two short seasons and frequent droughts were the major challenges encountered in this study. 

Despite these difficulties, retrievals for a single season tested between September 2015 and September 2017 
were possible. The long rains of 2017 had the highest percentage (53.7%) of successful pixels retrievals 
which is still lower than that attained (77.5%) by Vrielinget al. (2017b). A possible explanation of these 
differences might be because the location of Vrieling et al. (2017) study has a much longer season with far 
more gradual green-up and decay phase and it is located around the overlapping orbits which have more 
images hence more observations. Nonetheless, from the successful retrievals, the SOS and EOS for the 
short rains was within November and January while for the long rains (2017) was April and July respectively 
which seem to be consistent with other studies (Broadhead et al., 2003; Oscar et al., 2015; Vrieling et al., 
2016) as well as the known seasonality of the area. Although the retrievals showed a consistent spatial 
pattern, analysis of the twenty-four sample locations for the LGS of the short rains showed large differences 
between the 2015/2016 (84±11 days) season and the 2016/2017 (45±7 days) season. These differences can 
be partially explained by the total seasonal precipitation where the short rains of 2015/2016 had 258mm 
and the short rains of 2016/2017 had 136.5mm. These differences in total seasonal precipitation could also 
partially explain the differences in cumNDVI in the same season, confirming the arguments made by 
Hawinkel et al. (2016) that variability of precipitation influence the amount of total seasonal vegetation 
greenness. 

For the multi-annual average phenological results from the Landsat ‘synthetic year’, 99.1% pixels had 
successful retrieval during the long rains and 64.22% during the short rains. On average the start and end 
of the season for the long rains was within April and June while for the short rains it was within November 
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and January which agreed with the single-season results of this study as well as the regions known 
seasonality. Comparisons between aggregated multi-annual average phenology from Landsat with those 
derived from eMODIS showed an RMSD of 14 days (SOS50) and 12 days (EOS50) during the long rains 
while during the short rains had 9 days (SOS50) and 13 days (EOS50). The MSD values of similar comparisons 
were 13 days (SOS50), 8 days (EOS50) for long rains and -6 days (SOS50), 5 days (EOS50) during the short 
rains. However, these deviations differ from similar comparisons done by Melaas et al. (2016) who attained 
an RMSD of ±5 days. There could be several possibilities as to why the RMSD values are different. For 
instance,  Melaas et al. (2016) used the Enhanced Vegetation Index (EVI) calculated from MODIS data 
(MDC43A4 ) to estimate the vegetation phenology while in this study we used NDVI values calculated from 
eMODIS data. Other than that, Melaas et al. (2016) also employed some data normalization, where they 
first made average years of EVI trajectories observed within a window of three years successively from the 
long-term Landsat EVI series before generating the ‘synthetic year.’ This procedure was not carried out in 
this study because some years had very few observations and performing this normalization would have 
somehow resulted in misleading average years. Another possible explanation could be the heterogeneous 
vegetation state of the savannas, compared to the relatively homogenous forest structure in the case of 
Melaas et al. (2016) study. In search of other ways that may in future improve the generation of a ‘synthetic 
year’ that would result to less scattered NDVI values, grouping of the NDVI profiles was attempted based 
on the amount of total seasonal precipitation in each season. The hypothesis here was that years of Landsat 
NDVI within the same range of seasonal precipitation would align along a similar temporal trajectory. 
Surprisingly, seasonal precipitation alone was found not to be a good predictor of the amount of greenness 
experienced in a certain location. It is still difficult to explain these results in the present study.  

Investigations whether the retrieved multi-annual average retrievals (SOS/EOS) would show a significant 
difference between the different vegetation communities at this scale, showed no evidence during the long 
rains season. However, a significant difference from the Tukey HSD test was noted between the start of the 
season of the Acacia shrublands and denser tree cover areas during the short rains. Studies (Boke-Olén, 
2017; Higgins et al., 2011) that have shown the existence of this temporal separation were done at a field-
camera observation scale and that could partly explain the results of this study which was done at a 30m 
resolution scale. Other interesting findings were that at this scale (30m) it was possible to find a significant 
difference of the Tukey HSD test between the cumNDVI of the grasslands and denser tree cover areas 
during both long and short seasons as well as the maxNDVI and AMP2 during the short rains seasons. It 
is therefore likely that such temporal separations exist. 

The combinations of the findings of this study show that even for a complex ecosystem, in a region that 
has two short seasons, inter-annual vegetation greenness variation, frequent droughts and persistent cloud 
cover, estimation of vegetation phenology is still possible using freely available finer spatial resolution data 
even though it is not so frequent. Despite these promising results, further work is required to test the validity 
of these results. While ground-based vegetation phenology studies are still limited in Africa (Adole et al., 
2016), there is hope for this study area with the recent (October 2017), installation of three ‘tracking’ cameras 
: (1) Acacia shrublands, (2) grasslands and (3) areas with denser tree covers (Appendix 4). These cameras 
are set to capture images at an interval of thirty minutes between 0800hrs and 1730hrs and one additional 
image at 0000hrs creating more chances of getting quality images (Appendix 5). 

Future studies focusing on single-season retrievals can consider adding more images from the newly 
launched Sentinel-2B mission which will increase the chances of having more cloud-free observations and 
therefore raise a possibility that could allow phenology retrievals at a 10m resolution. For those focusing on 
multi-annual average phenology, finding better ways of having less scattered NDVI trajectories is key. A 
suggestion could be removing years exhibiting a ‘strange’ NDVI temporal pattern (e.g., years with very low 
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NDVI values probably due to drought) before constructing the ‘synthetic year.’ Nonetheless, there is still 
abundant room for further progress in this topic. 

6. CONCLUSION 
This study set out to investigate if it was possible to use Landsat and Sentinel-2 images to estimate vegetation 
phenology for a rangeland site in Kenya in a single season or as a multi-annual average. This study has shown 
that for a single season (fusing Landsat and Sentinel-2) it was possible to have successful retrieval of ~50% 
of the total pixels in the area during the short rains and long rains of 2017. For the multi-annual average 
(‘synthetic year’ of Landsat), comparisons with frequent sensors (eMODIS) showed a deviation that is 
considered high for this region with fast green-up and decay phase. One significant finding from both 
approaches was that the star- and end- of the season in both seasons agreed with each other as well as the 
known seasonality in the region and other studies carried out here. Although this study focuses on estimating 
vegetation phenology, it was found out that for the single-season retrievals of cumNDVI and maxNDVI 
were partly related to the amount of seasonal precipitation. No clear evidence was found of different SOS 
and EOS dates for different vegetation types. This could be because 30m pixels with a relatively high 
occurrence of trees and shrubs still contained a large amount of grasses that may have an important influence 
on the NDVI trajectory. This study appears to be the first to utilize high spatial resolution data to study the 
vegetation phenology of the savannas therefore laying the groundwork for future research. 
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7. APPENDICES 

7.1. Appendix 1 

This is an example of a LandPKS protocol field form. There were some adjustments compared with the 
original form. Some of the adjustment was the addition of photo-protocol and visual estimate cover %. 
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7.2. Appendix 2 

Other seasonal greenness parameters; maximum NDVI, AMP1 (growth phase), AMP2 (decay phase), for 
the different seasons between September 2015 and September 2017 as extracted from the fused Landsat 
and Sentinel-2 images.  
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7.3. Appendix 3 

Other seasonal greenness parameters from the combined years of Landsat into a synthetic Year. 
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7.4. Appendix 4 

Images retrieved from one cameras installed in Kapiti Farm 

7.5. Appendix 5 

GCC time-series derived from the three cameras located in Kapiti Farm. Source: Dr. A. Vrieling 
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