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Abstract

Sepsis is a condition caused by the body’s response to an infection that affects an
estimated 50 million people globally and is one of the leading contributors to hospi-
tal mortality. Risk-prediction models for sepsis onset prediction are currently used
in hospitals to assist with clinical decision-making. The majority of these systems
have been developed using machine learning and gradient-boosting algorithms on
electronic health records (EHR) data. Recently, the use of natural language pro-
cessing (NLP) on clinical notes has aided in improving patient outcome predictions
and identifying patient diagnosis.

The aim of this study is to improve the prediction of sepsis onset by combin-
ing clinical notes as an added modality with the structured data components of the
EHR data. Our model is trained on the Medical Information Mart for Intensive Care
III (MIMIC-III) dataset, and explores the use of time-series physiological data with
clinical note embeddings. To assess the effect of the input features we evaluated
logistic regression, multinomial Naïve Bayes, and XGBoost (XGB) models on the
following three configurations: (1) structured EHR data (physiological measures),
(2) clinical note embeddings alone, and (3) the combination of physiological and
note features. Furthermore, we assessed the effect of using different prediction time
and look back intervals of time-series physiological data with clinical note embed-
dings. Pointwise mutual information (PMI) was used to find the top 200 informative
words relating to sepsis from all the unique notes per admission. We compared
three methods of clinical notes representations: (1) bag-of-words (BOW) model that
included the top 200 PMI vectors, (2) term-frequency inverse-document frequency
(Tf-idf) weighted PMI vectors, and (3) pre-trained note embeddings of 200 dimen-
sions.

The best-performing model was the XGB model trained on the combined physi-
ological features and pre-trained note embeddings for a 24 hour look back and pre-
diction time interval. Finally, we propose methods to improve the acceptability and
implementation of such systems in a hospital ICU setting using the findings from this
research.

Keywords artificial intelligence · sepsis · risk prediction · clinical decision support
systems · electronic health records
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Chapter 1

Introduction

1.1 Motivation

Sepsis is a severe bacterial infection in the blood that affects 50 million people glob-
ally each year, and accounted for 20% of deaths globally in 2017 (42). A delay in
treatment could lead to serious morbidity and mortality, as each hour of delayed
treatment for septic patients increased patient mortality by 8% compared to the sur-
vival rate of 80% for a patient treated within the first hour of diagnosis (24). There-
fore, it is necessary to be able to detect symptoms ahead of time for a given patient
population (14).

Based on our discussions with clinical domain experts at Cleveland Clinic Abu
Dhabi in the United Arab Emirates (UAE), there is a keen interest in developing
an early detection of sepsis model to improve patient outcomes due to the high
prevalence of sepsis among acute care patients in the UAE (14 – 17% compared to
2 – 4% in the United States). Moreover, the disease occurs mostly among people
who have lower than normal levels of immunity, or high-risk groups.

We used a proprietary algorithm from a leading hospital information system (HIS)
vendor that predicts sepsis four hours in advance based on commonly available
structured EHR data including laboratory values, comorbidity, and procedural vari-
ables. The details of the benchmark sepsis prediction model (BSPM) are not pub-
lished because it is a proprietary model. Although past studies have addressed the
effect of having different prediction and look back time intervals, they have not com-
bined it with clinical note embeddings (45). Furthermore, using time-series analysis
with evidence-based practice has shown to "provide approximately 20% improve-
ment over traditional indices of heart rate entropy in the Area under the Receiver
Operating Characteristic (AUROC) for four-hour advance prediction of sepsis" (47).

Moreover, it has been found that the combination of natural language processing
(NLP) and physiological features in prediction tasks (such as predicting in-hospital
mortality) achieved greater performance compared to using either the physiological
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2 CHAPTER 1. INTRODUCTION

features or NLP features alone (30). Therefore, we are interested in investigating
whether useful information pertaining to a patient’s sepsis risk score can be ob-
tained from doctor’s notes; consequently, providing doctors with a better estimate of
a patient’s score.

1.2 Research Questions

The aim of this thesis research is to improve the performance of an early sepsis
prediction model through incorporating clinical notes. We hypothesize that learn-
ing from both clinical notes and physiological variables (i.e. vital signs, laboratory
results, and medications) will improve the performance of early sepsis prediction
through the use of NLP and other machine learning (ML) techniques. To this end,
we develop a novel sepsis prediction model that learns from physiological factors
and free-text clinical notes from the MIMIC-III dataset (20).

We aim to address the following research questions in our study:

• How can we improve the existing BSPM performance by incorporating clinical
notes with time-series physiological measures on an unseen dataset?

– Which clinical note representations and shallow ML models are best suited
to predict sepsis onset in adult ICU patients?

– What effect do longer look back and prediction windows have on the
model performance?

1.3 Research Tasks

In order to address the research questions, we looked at three different ML mod-
els: logistic regression, multinomial Naïve Bayes (MNB), and tree-based such as
XGBoost (5). Firstly, we investigated the effect of using time series data compared
to single time instant data on the physiological measures within different prediction
times and different look back intervals. Secondly, three novel document encoding
approaches for the clinical notes were juxtaposed to see which one gives the best
prediction for the onset of sepsis. Thirdly, we compared the performances of running
the models trained on the different feature sets: (a) structured data components of
the EHR (physiological measures), (b) clinical note embeddings alone, and (c) multi-
modal system with a combination of structured EHR and note features.

The findings support our hypothesis that incorporating structured EHR data with
clinical note embeddings improved the performance of the model, with the highest
performance achieved using pre-trained word embeddings, followed by the Tf-idf
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weighted one-hot encoded vectors. The XGB model achieved the highest AUROC
and AUPRC scores overall on the combined physiological features with the pre-
trained note embeddings for the 24 hour prediction time interval. Moreover, the
longer history (look back) of the time series variables were also shown to improve
the model performance.

1.4 Thesis Structure

The remainder of this thesis is organized as follows. In Chapter 2, we review the
state-of-the-art works related to NLP applications and early prediction systems. In
Chapter 3, we propose three document embedding approaches and describe the
data preprocessing pipeline for the physiological factors and notes. The experiment
results and discussion are summarized in Chapters 4 and 5, respectively. Finally,
Chapter 6 outlines the conclusions and recommendations for future work.
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Chapter 2

Related Work

This chapter presents the existing literature on the topic of machine learning predic-
tion models within the clinical domain, specifically for sepsis prediction. Section 2.1
outlines the standard scores that are used to discern whether a patient has sepsis,
such as systemic inflammatory response syndrome (SIRS) and sequential organ
failure assessment (SOFA). Section 2.2 presents the machine learning models for
sepsis prediction. Section 2.3 introduces the advantages and the various appli-
cations of using NLP within healthcare, and section 2.4 presents the use of word
embedding models in different prediction tasks.

2.1 Early Prediction Models for Sepsis

Early detection of sepsis can help prevent more serious complications from arising.
However, the main challenge is that it is hard to predict sepsis occurrence with cer-
tainty (13). Recently, many algorithms and machine learning (including deep learn-
ing) models were proposed to help predict the onset of sepsis (22, 45). A systematic
review of studies targeting sepsis in a hospital setting showed that temperature, lab
values, and model type were the main contributors to model performance (15).

The SOFA is an integrated score that helps determine the extent of rate of organ
failure by tracking a person’s status and is used for intensive care unit (ICU) mortality
prediction. It is also used for sepsis prediction which is indicated by a change of two
or more in the SOFA score (25). A score of zero (normal function) to four (abnormal
function) is assigned to each of six organ systems (respiratory, coagulation, hepatic,
cardiovascular, central nervous system and renal), resulting in a final score ranging
from 0-24.

Over the years, there have been many revisions to the sepsis definition. In 1992,
Bone et al. (3) identified sepsis in a patient if they had suspected infection and satis-
fied two out of the four SIRS criteria shown in Table 2.1. Sepsis-3 is the most recent

5



6 CHAPTER 2. RELATED WORK

definition of sepsis developed in 2016 that identified patients at risk due to sepsis if
there is an increase in the SOFA score of two points or more, and probable or con-
firmed infection. The qSOFA (or quick SOFA) is a simplified score used for sepsis
prediction, with the score ranging from 0-3. A score of two or more is associated
with a greater risk of death or poor outcome (46).

Table 2.1: The diagnosis for SIRS is established when there are two or more co-
existing conditions, as shown in the table. Sepsis occurs when SIRS is
induced as a result of infection

Factors Conditions
Temperature (◦C) < 36◦C or > 38◦C
Heart Rate >90/min

Respiratory rate
or

PCO2

>20/min

<32 mmHg
White blood cell count

or
immature band forms

<4k/uL or >12k/uL

>10%

The limitation of the Sepsis-3 criteria is that it was not intended to be used as
a clinical decision support (CDS) tool in the ICU due to "requiring the presence of
organ failure" which could "delay treatment of patients who might benefit from an
early approach" (9). Furthermore, the previous sepsis definition based on the pres-
ence of the SIRS continues to be used by the Centers for Medicare and Medicaid
Services (CMS) to measure compliance with the sepsis quality of care bundles until
it is shown that the newer definition is superior in predicting the onset of sepsis in
patients (9).

2.2 Machine Learning Models for Sepsis Prediction

The MIMIC-III dataset has been used to develop baseline methods for a variety of
tasks: prediction of mortality from early admission data (classification), real-time de-
tection of decompensation (time series classification), forecasting length of stay (re-
gression) and phenotype classification (multilabel sequence classification)(16). Ma-
chine learning models to predict the onset of sepsis are usually left or right aligned,
which refer to making the prediction at the time of admission or after a given pe-
riod of time, respectively (15). Right-aligned models are also known as real-time or
continuous prediction models and will be the focus of our study.
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InSight is a ML-based sepsis prediction algorithm that uses nine commonly avail-
able vital signs to compute a real-time risk score, and predicts sepsis onset at least
three hours prior to a sustained SIRS event (4). The study was done on adult pa-
tients from the MIMIC-II v3 database who were not septic at the time of admission.
The observations were rounded to the nearest hour and modeled as a causal time-
series data (4). The InSight scores were calculated using a higher-order equation,
which worked better than lower order trends which had higher sensitivity and led to
increased false positive rates (4).

Mao et al. (2017) conducted a multicentre validation of InSight with the gradi-
ent tree boosting, or XGBoost(5), model using the time series data of six vital signs
to predict and detect sepsis, severe sepsis and septic shock. Their experiments
also explored the effectiveness of the model in cases where sepsis prevalence is
lower (less effective) or higher (more effective) compared to the dataset they trained
on. The model achieves an AUROC curve of 0.92 (95% CI 0.90 to 0.93) for sepsis
detection (29). Scherpf et al. (2019) implemented a sepsis prediction tool using
the MIMIC-III Database, and compared its performance with InSight (20, 45). Their
study investigated the effect of different prediction times (3, 6, 12 hours) and the
length of the look back (5, 10, 15, 20 hours) (45). Their model showed the im-
portance of having a longer look back due to the ability to exploit time-dependent
patterns from the “symptoms and related vital sign patterns of sepsis" which are
detected by ML algorithms (45). However, the model’s black box nature restricts
its usage as an early warning system rather than a decision system, and limits its
interpretability compared to other interpretable models.

A Multitask Gaussian Process (MGP) recurrent neural network (RNN) classifier
for the prediction of sepsis onset was developed by Bedoya et al. (2020) using
86 variables including patient demographics, comorbidities, vital signs, medications,
and labs from an academic hospital (1). While RNN typically require evenly spaced
inputs, using MGP with the RNN handles the irregular spacing and missing values
in the raw data by maintaining the uncertainty about the variance of the series at
each point (1). This is important when working with sparse data as there is a better
imputation of continuous functions for all vital signs and laboratory measurements.
The study also showed that "SIRS consistently outperforms qSOFA in detecting
sepsis early" (1).

Shashikumar et al.’s team captured the physiological state trajectory through time
using time-lagged embedding and a multiscale network representation (MSNR) (47).
The patient data was extracted from an Emory affiliated ICU, and each patient’s
heart rate (HR) and mean arterial blood pressure (MAP) time series at 2 second
resolution were rank order transformed to eight levels, and time-synchronized with
the patient’s electronic medical records (EMR) data. This was followed by partition-
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ing the state-space into time-varying bins which are transformed to a network from
which different topological attributes can be derived and used as input to train a
support vector machine (SVM) classification model. The performances of the clas-
sifier trained on different combinations of network, multiscale entropy, and EMR fea-
tures were compared. The model with the combined features achieved the highest
AUROC (47).

Yu et al. (2020) developed a framework for dynamic monitoring of ICU patients’
mortality risk that used the BOW representation with a long short-term memory
(LSTM) RNN on the MIMIC-III dataset (53). The model is robust to missing data
and uses latent semantic analysis (LSA) to encode the patient’s state by taking the
BOW representations and applying singular value decomposition (SVD) to perform
dimensionality reduction and simplify matrix calculations (53). They consider a fixed
history and prediction window of 48 and 12 hours, respectively. Different architec-
tures were explored using a logistic regression model for binary classification, and
the bi-directional LSTM model achieved the highest performance compared to the
existing severity scoring system, Simplified Acute Physiology Score (SAPS-II).

The sepsis prediction model that we consider as a benchmark (BSPM) learns
from the following clinical measurements: demographics, vital signs, laboratory test
results and medication orders. A patient is determined to have sepsis through a
list of diagnosis codes four hours before the first clinical intervention is taken or
documented. The list of interventions may be one of the following: positive docu-
mentation of sepsis or suspicion of sepsis, or an order for a lactate lab or one of a
few specific antibiotics used in treatment of sepsis.

2.3 Natural Language Processing applications

The use of NLP within healthcare applications can greatly reduce the time required
to analyse large collections of textual data, by extracting the meaning of the text
for downstream classification tasks. For example, it can notify providers about the
prevalence of a specific disease through topic modelling by capturing key symptoms
of the disease from clinical text, generate "domain-aware automatic chest X-ray ra-
diology reports", or query a medical chatbot (12, 19, 26).

Unstructured (free-text) data contains domain-specific information which can be
missed by structured fields of the EHR. The notes are usually recorded by nurses,
and are a “highly untapped resource in clinical support” (40, 48). In a study that used
a time-series, multi-modal approach for three ICU management related prediction
tasks: in-hospital mortality, decompensation, and length of stay forecasting, it was
found that adding clinical notes as another modality improves the performance of
the model (23). Only patients with clinical notes who were admitted to the ICU for
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48 hours were considered, and a convolutional neural network (CNN) was used to
extract the textual features (23). The best-performance across all the tasks was
achieved for the multimodal model using the convolutional approach, compared to
the baseline (no notes), text only, and multimodal average word embedding without
CNN (23).

Marafino et al. (2018) used data from January 1, 2001, through June 1, 2017
contributed by 20 ICUs at two academic medical centers and one community hos-
pital in the United States. The patient study included the first ICU admission with a
length of stay (LOS) of at least four hours, and used measures of clinical trajectory
with clinical note features for in-hospital mortality prediction task (30). Their findings
showed that incorporating variables measuring clinical trajectory, NLP-derived terms
or both improved the model discrimination, and also demonstrated the "external va-
lidity and portability of models incorporating these variables" (30).

Weng et al. (2017) developed a ML-based NLP pipeline for the medical subdo-
main classification of clinical notes on the Integrating Data for Analysis, Anonymiza-
tion, and Sharing (iDASH) and Massachusetts General Hospital (MGH) datasets,
and found the best performance was achieved using a convolutional RNN and neural
word embeddings with good transferability on the datasets (52). A bag-of-words rep-
resentation was used with Apache clinical Text Analysis and Knowledge Extraction
System (cTAKES), the Unified Medical Language System (UMLS) Metathesaurus,
and learning algorithms to extract the features (52). cTAKES is a NLP-based, open
source tool for medical notes annotation and information extraction from electronic
health record clinical free-text (44).

2.4 Word embedding models

Word embeddings, or word vectors, are distributed representations of words that fall
into two categories: frequency-based and prediction-based embeddings. Word2vec
(32) is an example of a frequency-based embedding which uses negative sampling
and allows transfer learning to take place. Transfer learning is mainly used in deep
learning applications, and is when the knowledge gained when solving a problem
can be applied to a different problem. Negative sampling is a technique that was
developed to reduce computational cost by updating a small percentage of the lan-
guage model’s weights, resulting in an improved quality of the word vectors. FastText
(21) is an efficient tool to learn word representations that uses n-gram characters,
and generates better word embeddings for rare words compared to word2vec. The
fastText architecture allows it to be used as an initializer for transfer learning as it
supports continuous bag of words (CBOW) and skip-gram models (21).

BioWordVec (54) is an open set of pre-trained distributed word embeddings
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based on text sequences from PubMed abstracts and clinical notes from the MIMIC-
III dataset. BioWordVec employs the fastText subword embedding model and has
been shown to have improved representations of rare biomedical terms in differ-
ent NLP tasks in the biomedical domain(54). Hence, we decided to use the word
embeddings from the BioWordVec model to explore whether using pre-trained em-
beddings shows a significant improvement in the model performance.

Bidirectional Encoder Representations from Transformers (BERT) (11) is a re-
cent language model developed by Google which is used to obtain pre-trained deep
bidirectional representations from unlabeled text without requiring "task-specific ar-
chitecture modifications" (11). Transformers have the advantage of learning long-
range dependencies, and uses self-attention to parallelize the computation and the
bidirectional mechanism allows for the context to be incorporated from the left and
right sides. Clinical Bidirectional Encoder Representations from Transformers (Clini-
calBERT) is a contextual word representation model derived from BERT that uses a
fine-tuning approach to group similar medical concepts (18). Two empirical studies
were conducted to study the model performance: the first study explored language
modeling and clinical word similarity which mapped medical terms on a representa-
tion space, and the second study was a 30-day hospital readmission prediction task.
The findings from the two empirical studies showed an improved performance using
clinical word similarities compared to using word2vec and a 15% relative increase
on recall at a fixed rate of false alarms in a 30-day hospital readmission prediction
task (18).

Oleynik et al. (2019) conducted a study aimed to evaluate the impact of using
pretrained embeddings in a clinical text classification task across shallow and deep
classifiers. They found that shallow ML strategies outperformed deep learning meth-
ods on small imbalanced data (36). The XGBoost model uses the Gradient Boosting
Machine (GBM) framework for supervised learning problems, and is one of the “bet-
ter performing shallow learning models in machine learning competitions" (6). We
will choose to evaluate this model in addition to other shallow models including lo-
gistic regression and multinomial Naïve Bayes in our analysis.

Recently, Liu et al. (2019) combined features obtained from NLP of clinical notes
with physiological data for early prediction of septic shock using a XGBoost algo-
rithm (27). They compared two methods for generating NLP features: co-occurence
matrix using document-term matrix (DTM), and RNN and Global Vectors for Word
Representation (GloVe) (39) word embeddings for feature selection (27). Ten data
points were selected per patient for the 28 physiological variables to reduce the
model complexity; through uniform sampling for non-shock and from 1-2 hour time
interval prior to septic shock for shock patients (27). The NLP features were con-
catenated with the physiological variables, and the best performance was achieved
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using NLP features generated using GloVe word embeddings although the features
generated using DTM were "more readily interpretable than those produced by the
deep learning-based method" (27).

2.5 Conclusion

The challenge with relying on machine learning based models (such as neural net-
works) in the medical domain is due to the inherent black-box nature of the models.
However, there does not necessarily need to be a trade-off between accuracy and
interpretability of a model. As we are interested in designing and developing a sys-
tem that will be used in the medical domain, we will focus on using interpretable
models (43). Previous studies have looked at the effect of using multimodal systems
(23, 52), and unlike different look back intervals with multivariate time-series data
(45, 47) but they have not looked at the combination of these factors. We wish to
take advantage of the time-series data by using the time-lagged embedding for the
physiological factors in our model.

Moreover, unlike previous work we chose the 1992 sepsis definition (3) because
it has a greater overlap with the factors in our selected BSPM model compared to
the Sepsis-3 definition. We will focus on obtaining the mutual information between
a set of note variables in combination with physiological time-series data to do a
performance comparison with previous work.
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Chapter 3

Methods

In this chapter, we present our sepsis prediction model and a description of the
preprocessing steps and the algorithms used for training the model.

The tools used in this study were PostgreSQL1 (using the PgAdmin 4 graphical
interface), and Python 3.8 (50). The data cleaning and experimentation were run on
a computer with an Intel Xeon W-2123 processor running at 3.60 GHz with 64.0 GB
of RAM, running Windows 10.

3.1 Dataset

Our study uses the publicly available MIMIC-III2 (v1.4) dataset, that includes EHR
information for patients admitted to the ICU at the Beth Israel Deaconess Medical
Centre in Boston, USA (20). The database consists of 26 linked tables and includes
patient demographics, vital sign measurements, laboratory test results, procedures,
medications, imaging reports, mortality (including post-hospital discharge), and 2
million clinical notes (20). The MIMIC-III dataset uses the International Classification
of Diseases, Ninth Revision (ICD-9) codes that are used to assign diagnosis codes
for classifying diseases, and for billing and clinical purposes. The ICD-9 codes con-
sist of three to five numbers with the first three numbers representing the disease
category, the fourth number narrowing it to a specific disease, and the fifth number
differentiating between disease variants (33).

The database contains information from two distinct critical care information sys-
tems: Philips CareVue and iMDSoft Metavision, which differ according to how the
data is stored and the time period that patients in each system were recorded: be-
tween 2001-2008 in the CareVue system and 2008-2012 in the MetaVision system
(20). For this study, we have chosen the admissions recorded in the MetaVision

1https://www.postgresql.org/
2https://mimic.physionet.org/

13
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system because there is less missing data (better data quality), and it includes the
variables needed for our model.

The relationships between the tables are defined by the primary key (admission
ID), and the relationship tables3 are used to access the data from the relevant tables
in the MIMIC-III database using PostgreSQL. Further processing is done on Python,
and is outlined in section 3.3.

3.2 Patient Cohort

The structured EHR data and clinical notes for adult acute care patients were se-
lected from the MIMIC-III dataset. Several inclusion and exclusion criteria were
applied to the dataset, as shown in Figure 3.1 below. We restricted our analysis to
the MetaVision subset due to the more updated data collection compared to Care-
Vue and to avoid mapping of the two disjoint coding systems (20, 53). Furthermore,
only adult patients (≥18 years old) were considered to reduce model variability that
would be introduced if newborn sepsis cases were also considered (13).

As a six hour interval was chosen as the minimum interval for the look back, pa-
tients with less than six hours of observations before reaching the septic condition
onset time were excluded from the study. Furthermore, patients with an initial diag-
nosis of sepsis, and patient observations recorded after sepsis was detected were
excluded from our study. The final cohort size is 33,928 admissions, comprised of
262,188 observations of which there are 65,395 unique clinical notes. The dataset is
split into the training, validation, and testing sets using a 80-10-10 nonrandom split
of the time-series data. This helps to avoid random variations between the training,
validation and testing sets (34). The validation set is used to optimize the hyperpa-
rameters (described further in section 3.6.1), and the trained model is evaluated for
the different performance metrics on the held-out test set.

The latest observations with unique clinical notes are extracted for each ad-
mission. The final number of observations for the training, validation and testing
collections are 51160, 2116, and 12119, respectively. The reason that the testing
data collection is higher compared to the validation is because the balancing of the
testing and validation datasets was done after the 80-10-10 split through random
undersampling.

3Refer to https://mit-lcp.github.io/ mimic-schema-spy/relationships.html
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Figure 3.1: Admission inclusion chart with the selection criteria at each step, where
p = unique patients, n = admissions. The chart shows the number of
admissions that are included and excluded at each selection level. The
final cohort size for the MIMIC-III dataset after preparation into 48 hour
blocks is 41785 admissions, comprised of 3749 positive sepsis labels
and 38036 negative labels
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3.3 Data Preprocessing

The first step in successfully understanding the data was to identify the features used
in related works (1, 45, 53), and that overlapped with the BSPM. The following li-
braries in Python were used for preprocessing the data: pandas (31) for working with
large datasets, Scikit-learn (38) to code machine learning models, and NLTK (28) as
a natural language toolkit for text processing. As a first step, initial exploratory data
analysis was conducted using the pandas profiling tool to understand the data
characteristics and distribution. The preprocessing steps for the physiological data
imputation as outlined in (53) were followed.

Once the relevant information for each patient was extracted along with the time
stamp for the lab tests and vital sign measurements, the medication count was
recorded for the sepsis order set (described in section 2.1). The extracted time se-
ries data from MIMIC-III was re-sampled to hourly intervals with the last observation
carried forward within each hospital admission stay for the missing vital signs. The
remaining missing values were mean-imputed for each of the physiological factors
(4).

We used two different data representations of the laboratory and vital measures
for the baseline and the models that the experiments were run on. For the baseline
model, the laboratory and vital measures were preprocessed for BSPM. The models
that were developed for the experiments with time series and clinical notes used a
second representation that took the deltas of the raw physiological measurements.

In order to compare the experiment results with the single time step experiments,
a 48-hour time window was chosen for patient observations, given the maximum look
back and prediction windows of 24 hours (53). The prediction time (PT) window is
the time of the prediction ahead of sepsis onset. As a lower bound, only admissions
with at least six observations were considered as a smaller window of observations
would "have resulted in insufficient testing data" to make predictions, and it was also
the shortest look back interval we considered (29). Figure 3.2 shows the feature
windows for the sepsis and non-septic patients. For cases where there are less than
48 hours of observation for a patient, linear interpolation and “carry backward” ex-
trapolation were done using the interpolate() function to standardize the input
to 48-hour blocks.

The resulting admissions were balanced for the sepsis and non-septic patient
admissions, and the number of admissions that satisfy this requirement has been
shown in the admission inclusion chart in Figure 3.1. The differences between con-
secutive observations in the vital signs and laboratory measurements were com-
puted, and transformed into time-series data taking a 24 hour look back for each
observation. The remaining physiological factors are concatenated with the time-
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Figure 3.2: The model uses a combination of right and left aligned models for the
sepsis (red) and non-septic (green) patients, respectively. For patients
who do not develop sepsis for the duration of their stay, the feature
window was taken as the initial 48 hours since admission. For the sepsis
patients, diagnosis is made at a PT interval of 6, 12, or 24 hours ahead
of sepsis onset time. The sepsis prediction will be positive if the sepsis
onset time falls within the PT interval, and a minimum of 6 hours is
considered for the look back interval which overlaps with the feature
window

series variables, resulting in each admission having a 24 hour observation window.
The output prediction labels for each observation depend on when sepsis onset
occurs.

The detailed descriptions of the input and output variables are in sections 3.4
and 3.5 below.

3.4 Input variables

3.4.1 Physiological measures

For every admission in the study, we extracted a set of 38 variables from the MIMIC-
III dataset, including demographics, vital signs, laboratory values, comorbidities,
medications, procedural variables, and patient notes. The four SIRS conditions
(including vital signs measurements and white blood cell (WBC)) were denoted
as Pulse_score, Resp_score, Temp_score, and WBC_score, resulting in a total
number of 54 physiological factors as input features to the model. A binary ‘sus-
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Table 3.1: List of ICD-9 codes related to the suspicion of infection in a patient

Description ICD code
Septicemia 038
Septicemic, bacteremia, disseminated fungal/candida infection 0202, 7907, 1179, 1125
Disseminated fungal endocarditis 11281

pected_infection’ variable was extracted for each patient admission using the ICD-9
diagnosis codes. Table 3.1 defines the ICD-9 codes that were used to define suspi-
cion of infection in a patient.

Each observation corresponds to the time that a new vital chart signal measure-
ment is recorded, and the remaining measurements were extracted according to
their respective history windows up to the vital chart time, shown in Table 3.2. The
missing lab values are left blank to indicate that they are not taken, while the other
variables have the last observation carried forward. The medications were obtained
from the orderid and linkorderid columns in the inputevents_mv table.

Table 3.2: This table illustrates the structured EHR data and clinical notes with the
corresponding history windows from which they are extracted. The his-
tory windows were chosen based on related works and is expected to be
sufficient for an accurate early prediction of sepsis

Category History window
Vital sign measurements All during patient stay
Laboratory results Valid labs in previous 3 days
Comorbidities All during the stay
Medications 1 day
Procedural variables Currently active during stay
Patient notes Latest note in previous 12 hours

3.4.2 Clinical Notes

The clinical notes were extracted from the noteevents table in the MIMIC-III database
for the aforementioned cohort. As the observations were limited to patients who also
had clinical notes, the performance between the physiological measures only model
and the model incorporating the clinical notes are compared while maintaining the
same train-validate-test split as before.

As the latest note is taken for each patient admission, a 12 hour interval was
expected to be sufficient for ensuring that there is at least one note, and carry for-
ward imputation was done for missing notes. Furthermore, discharge notes were
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excluded from our sample because the early prediction of sepsis is made before the
patient has been identified as septic, and before they are discharged from the hos-
pital. The clinical notes are first preprocessed according to the steps used in Huang
et al.’s paper, including text standardization, removing numbers, and fixing com-
mon misspellings (18). Additional preprocessing steps taken for the clinical notes
involved removing section headers, compiling and excluding common stop words,
tokenization, and encoding or vectorization (23). The final list of stopwords is com-
prised of NLTK’s list of English stopwords combined with additional stopwords that
were selected based on a bag-of-words model approach.

A more detailed description of the methodology pipeline is shown in Figure 3.3
below.

Figure 3.3: The graph illustrates the methodology pipeline for the clinical notes. The
preprocessing involves text standardization, replacing common mis-
spellings with correct spellings, and removing special characters. Next,
text vectorization is done and followed by one of the three feature trans-
formations: (1) one-hot encoding (OHE) of the PMI vectors, (2) multiply-
ing the OHE PMI vectors by the Tf-idf weights, and (3) using pre-trained
embedding vectors. Finally, the different models are run on the training
data

Below is an example of the input text after it has been standardized and common
misspellings have been replaced.

resp care pt remains intubated and currently vented on full support with
changes made accordingly per abgs esophageal balloon . measure-
ments obtained this shift and transpulmonary end exp pressure noted
at at cmh peep . esophageal pressure cmh . bs dim course no sxing
done this shfit . ett retaped due to massive edema around the face .
peak plateau pressures respectively . pt remains metabolically acidotic
and severely hypoxic despite vent changes . pt is dnr . will cont with vent
support as needed .

NLTK’s pos_tag was used to obtain the part-of-speech tags, and the plural
nouns (represented with ‘NNS’ and ‘NNPS’) were lemmatized into their singular
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form. Furthermore, words with less than three letters are removed from the list
of tokens as they are either stopwords or do not carry useful information.

As seen from the text below which shows the result of processing the input text,
punctuation and prepositions including stopwords and words with less than three
letters have been removed, leaving only the lemmatized form of the plural nouns.

resp care remains intubated currently vented full support chang made
accordingly per abgs esophageal balloon measurement obtained shift
transpulmonary end exp pressure noted cmh esophageal pressure cmh
dim course sxing done shfit ett retaped due massive edema around
face peak plateau pressur respectively remains metabolically acidotic
severely hypoxic despite vent chang dnr cont vent support needed

Three approaches were proposed for representing the notes as suitable input to
the model, which involved doing text vectorization and feature transformation for the
latest note at each time step, as described in the following sections.

The final note embeddings will be used as input to the model for the notes-only
configuration, and is concatenated with the physiological factors for the multimodal
setting before being fed into the different classifiers. The note embedding dimen-
sions were chosen as 200 to make it comparable to the 200-dimensional pre-trained
BioWordVec embedding vectors. Additionally, models with 200-300 dimensions are
shown to have similar performance to models with larger embedding dimensions, as
the dimensions should be chosen based on corpus statistics (37).

A. Pointwise Mutual Information (PMI) Matrix

The first approach uses pointwise mutual information (PMI) matrix, that is a measure
of association between a feature and a class category to determine the association
between the two words. This statistical measure developed by Church and Hanks
(7) indicates how much the probability of a co-occurrence of events p(x,y) is different
from the individual probabilities, and is represented by the following equation:

pmi(x; y) ≡ log
p(x, y)

p(x)p(y)

This method is used to obtain the most important words relevant to sepsis pre-
diction, and to select better features to model. The notes for a single admission are
initially grouped together and labeled with ‘non-septic’ or ‘sepsis’ in order to extract
the most relevant words that are associated with positive sepsis or negative sepsis.
Once this is done, the following values are evaluated using the CountVectorizer

and the PMI score for each (word, label) pair is calculated.
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• Cw+: the number of sepsis admissions that contain word w

• Cw–: the number of non-septic admissions that contain word w

• C+: the number of sepsis admissions

• C–: the number of non-septic admissions

• C: the total number of admissions, i.e. sum(C+, C–)

• Cw: the total number of admissions that contain w, i.e. sum(Cw+, Cw–)

The PMI measure is obtained using the following formula for the sepsis admis-
sions to find the top correlated words with sepsis.

pmi(word; class) ≡ log
p(word, class)

p(word)p(class)

pmi(w; +) ≡ log
Cw+
C

C+

C
· Cw

C

pmi(w; +) ≡ log
Cw+ · C
C+ · Cw

Only the relevant terms are kept by taking the words with top 200 positive PMI
scores, and one-hot encoding is performed for each of the unique notes. The result-
ing note embeddings are the note features that will be used as input to the model
for the notes-only configuration, and concatenated with the physiological factors ob-
tained earlier for the multimodal setting.

B. Term frequency-inverse document frequency PMI method

The second embedding method uses a TfidfVectorizer which tokenizes the text and
assigns weights to the pre-selected PMI words according to the importance of the
word in a document. TfidfVectorizer is used to get the Tf-idf weights for the
one-hot encoded PMI words from the previous method, and terms that occur more
frequently in one document compared to the rest of the corpus gets assigned higher
importance. The minimum number of times that the word should appear in the
corpus is represented by min_df and it was set to 5. The average embedding
vector per document was calculated by taking the dot product of the Tf-idf vector
and the one-hot encoded vectors obtained in the previous step.
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C. BioWordVec pre-trained embeddings

The third document embedding method uses the distributed representation of words
through the pre-trained word embedding vectors available from BioWordVec (54).
The BioWordVec model is trained on PubMed abstracts and clinical notes in the
MIMIC-III dataset. FastText (21) was applied to compute 200-dimensional word em-
beddings with the following settings: window size = 20, learning rate = 0.05, sam-
pling threshold = 1e-4, and negative examples = 10. Sentence vectors are obtained
for each of the clinical notes by calling the
get_sentence_vector(sent) function, where sent represents the preprocessed
note.

The following functions can be called from the fasttext model:
model.get_word_vector(word): gets the word representation, and
model.get_input_vector(word_ID): gets the word representation with the
given word ID.

3.5 Output variables

A patient is determined to have sepsis if their ICD-9 code is consistent with sus-
pected infection, and two out of four SIRS criteria shown in Table 2.1 are satisfied
(3). Three output variables with a binary value o ∈ {0, 1} are defined for each PT
interval of 6, 12, and 24 hours, as whether the patient has contracted sepsis within
the given PT window.

This means that the output labels for patients who develop sepsis during their
ICU stay will be zero until the sepsis onset occurs within their PT interval.

3.6 Model development

We prepared data collections to explore the effect of using different history of the
variable (using different look back intervals) on the performance of the sepsis on-
set prediction model, by concatenating each row with (n-1) previous observations,
where n ∈ {6, 12, 24}. As shown in Figure 3.2, a combination of left and right aligned
models are used to represent the non-septic and sepsis patients. The methodology
by Hsu et al. (17) was followed to model the temporal classification problem which
was used to assess the sepsis onset risk score on the MIMIC-III dataset.

The baseline performance was evaluated by running the model on the BSPM,
and was compared with the models with physiological (time series) features, note
features alone, and the combination of both to see which gives the best performance
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compared to the BSPM performance. The evaluation metrics are listed in Chapter 4
and include the commonly used c-statistic, or AUROC metric, and the Area under the
Precision-Recall Curve (AUPRC) metric which is useful when the dataset is highly-
skewed (10).

A description of the models used is included below:

• Logistic regression: Multivariable logistic regression methods are used to
explore the risk factors associated. Logistic regression models are used to
estimate the relationships between a dependent variable and one or more in-
dependent variables, or predictors. Implementing a logistic regression model
helps to achieve a better understanding of how the model works, as it is easy
to interpret and trains quickly on the dataset.

• XGBoost (XGB): XGBoost is a decision-tree-based ensemble Machine Learn-
ing algorithm that uses a gradient boosting framework to find an optimal model
that fits the data. Decision Trees do not require normalization of their inputs,
thus the unscaled data can be passed to the model. Furthermore, XGBoost is
useful in feature selection since we are able to obtain the feature importance
of each factor. At each step during the hyperparameter tuning, the AUROC
and precision scores were calculated for the training and validation sets. The
number of decision trees (N_estimators) was set to 100, and the following hy-
perparameters were tuned sequentially/pairwise at each step:

– max_depth: the size of the decision trees. There is a trade-off between
shallow trees (or weak learners) and deeper trees (tends to overfit).

– min_child_weight: the minimum sum of weights of all observations re-
quired in a child, and tuning this parameter helps to control over-fitting.

– gamma (default=0): specifies the minimum loss reduction required to
make a further partition.

– subsample: the fraction of observations to be randomly samples for each
tree.

– colsample_bytree: the fraction of columns randomly sampled for each
tree.

– regularization alpha: L1 regularization term on weight

• Multinomial Naïve Bayes (MNB): This is a commonly used parametric model
for text categorization problems due to its computational advantage as it only
considers words with a non-zero count. MNB maximizes the likelihood over
the accuracy.
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The clinical note embeddings are incorporated with the physiological factors at
the feature-level by concatenating the 200-dimensional note embeddings with the
time series variables and training a single model. Standardization and scaling the
magnitude of each variable is important for the above models, to reduce the effect
of large magnitudes which may have an undesired effect on the final prediction.
MinMaxScaler() is an estimator that scales each feature to a given range, which
is usually between zero and one. This scaler is used to scale the data before running
the the logistic regression and multinomial Naïve Bayes classifiers. The XGB model
does not require scaling as it can handle unscaled input.

3.6.1 Hyperparameters

The model is trained with using a stratified split on the full dataset using 80% as the
training set, 10% as a validation set to select the hyperparameters, and a final 10%
for testing (17). The training and validation sets are balanced for the sepsis and non
sepsis cases while maintaining the same splits over time.

For the LR model, we searched for the regularization parameter using Parame-
terGrid, C ∈ 10[−3,2] on a logarithmic scale. For the MNB model, we searched for
alpha ∈ [0.5, 1.5] on a linear scale, with fit_prior ∈ [True, False]. For the XGB
model, a 5-fold cross validation is used to select the best values for the hyperpa-
rameters using GridSearchCV (38). The number of estimators was fixed at 100, and
the settings for the XGB model were obtained in multiple steps. Firstly, we searched
for the max_depth ∈ [3, 10] and min_child_weight ∈ [1, 6]. Once the best param-
eters were found, we used those values and searched for gamma ∈ [0, 0.5]. Simi-
larly as before, we used the best parameter and searched for subsample ∈ [0.6, 1],
and colsample_bytree ∈ [0.6, 1] on a linear scale. Finally, we searched for the
reg_alpha ∈ [1e− 5, 1e− 2, 0.1, 1, 100].

Once all the hyperparameters are chosen, we ran the model on the test set and
recorded the performance metrics which have been compiled in Chapter 4.



Chapter 4

Results

In this chapter, we present the performance metrics of the different models. Initial
descriptive analytics were first conducted using Python’s pandas profiling tool
to better understand the dataset, and the figures are included in section 4.1. Section
4.2 outlines the evaluation metrics that were used in this study.

Section 4.3 presents the results of running the models on the structured physi-
ological measures: single time data preprocessed similar to the benchmark model
and time-series data. Section 4.4 shows the results for the notes-only model and
Section 4.5 shows the results from running the models on the combined physio-
logical time series and notes data according to the three different note embedding
methods described in the previous chapter.

4.1 Initial Data Analysis

Since the MIMIC-III dataset preparation involved shifting the dates of birth for pa-
tients older than 89 to preserve anonymity, those ages were shifted back to the
realistic age range, while maintaining the median age as 91.4 (20). This was done
by subtracting 200 from all the ages that were originally shifted.

Afterwards the data is split into the training, validation and testing sets which are
normalised using the MinMaxScaler from the sklearn library, and mean-imputed
for the missing values before the models are run. There are 12 distinct note cate-
gories in the original MIMIC-III database, and the top five categories make up more
than 90% of the total notes. The ‘discharge summary’ notes were not considered in
our experiment as they are usually recorded after the patient has been discharged
from the hospital and thus, can not be used to predict sepsis onset in a patient. Table
4.1 below shows the different note categories and their counts. The final training-
validation-testing sample had 65,395 unique doctor notes.

The description of the patient cohort included in the balanced training and valida-

25
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Table 4.1: Overview of the top 5 note categories and their frequencies in the MIMIC-
III database

.

Note category Count (%)
Nursing/other 240537 (54.6)
Radiology 140366 (31.9)
Nursing 27890 (6.3)
Physician 20401 (4.6)
Respiratory 7063 (1.6)

tions sets are presented in Table 4.2. The training set was composed of 56.8% men
with a mean age of 63 years. Of the 22748 patient admissions, 7432 were found to
have sepsis (21.8%). For the validation set, 243 were found to have sepsis (36.0%).

Table 4.2: Description of the patient cohort included in the training and validation
sets used to train and develop our system

Demographics MIMIC-III training set MIMIC-III validation set
Number of admissions 34092 675
Number of observations 145713 16191
Males (%) 19364 (56.8) 381 (56.4)
Mean age 63.19 63.52
Sepsis condition (%) 7432 (21.8) 243 (36.0)

4.2 Evaluation Metrics

We evaluated the model performance using the following metrics:

Area Under the Receiver Operating Characteristic curve (AUROC)

The Area Under the ROC curve (AUROC) summarizes the performance of a model
in terms of its ROC curve and ranges from 0.5 (no skill) to 1.0 (perfect classification).
The ROC curve shows the relationship between clinical sensitivity and specificity
and plots the sensitivity on the y-axis and (1-specificity) on the x-axis. Sensitivity
is the ability of a test to correctly identify patients with the disease. Improving the
sensitivity of a test means reducing the false negative results and minimizing missing
cases of disease.

Sensitivity =
TP

TP + FN
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where TN: true negative, TP: true positive, FN: false negative, and FP: false positive.
Specificity is the ability of the test to correctly identify patients without the disease
and is represented by the following:

Specificity =
TN

TN + FP

Area Under the Precision-Recall Curve (AUPRC)

The Area Under the Precision-Recall Curve (AUPRC) is a useful performance metric
when dealing with imbalanced data where proper classification of the positive cases
is important. The ‘average precision’ method is used to calculate the AUPRC and
the baseline is equal to the fraction of positive examples.

4.3 Physiological-based models

The performance of different machine learning models were evaluated and com-
pared with the baseline model. Only the observations with unique clinical notes are
considered, and the missing input physiological features are imputed as described
in subsection 3.4.1 in chapter 3. Hyperparameter optimization is done on the vali-
dation set using grid search parameter tuning, and the chosen hyperparameters are
run on the test set for all of the models. The hyperparameters for each setting are
given in the last column, and the boldfaced numbers in each column of the table
indicate the highest performance metrics for the given dataset.

4.3.1 Results of Baseline model: single time-instant

The baselines are defined for the logistic regression, multinomial Naïve Bayes, and
XGBoost models as the physiological measures preprocessed similar to the BSPM,
with each row corresponding to EHR data from a single time step. The physiological
measures have been transformed using MinMaxScaler from a range of 0 to 1 for
the logistic regression and MNB models for improved performance. The XGB model
does not require normalization or missing value imputation since it is done natively
by the model.

Table 4.3 summarizes the performance metrics of the baseline model which has
the input physiological features preprocessed for BSPM. As seen from the table, the
highest performing model is the XGBBASE model which achieves an AUROC of 0.78
and AUPRC of 0.30. The LRBASE has the next highest AUROC score, but achieves
a lower AUPRC compared to the MNBBASE model that has the lowest AUROC.
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The precision-recall and receiver operating characteristic (ROC) curves for the
logistic regression, MNB, and XGB models, respectively are shown in Figure A.1 in
Appendix A. The ROC curves

Table 4.3: Results from running the baseline models for the physiological features
preprocessed for BSPM. The XGB model achieves the best performance
in terms of the AUROC and AUPRC, compared to the other models.
There is a directly proportional relationship between the model perfor-
mance and the PT intervals

Model Prediction time (hours) AUROC AUPRC Hyperparameters
LRBASE 6 0.709 0.098 C=0.001

12 0.722 0.144 C=0.001
24 0.733 0.182 C=0.001

MNBBASE 6 0.711 0.113 alpha=1.3, fit_prior=T
12 0.718 0.160 alpha=1.3, fit_prior=T
24 0.724 0.201 alpha=0.7, fit_prior=T

XGBBASE 6 0.745 0.123
max_depth=3, min_child_weight=5,
gamma= 0.2, subsample= 0.6,
colsample_bytree=0.6, reg_alpha= 100

12 0.760 0.212
max_depth=3, min_child_weight=3,
gamma=0.4, subsample=0.9,
colsample_bytree=0.6, reg_alpha=0.1

24 0.780 0.303
max_depth=3, min_child_weight=5,
gamma=0, subsample=0.6,
colsample_bytree=0.9, reg_alpha=1e-5

4.3.2 Time-series data models

In this section, we present the results of running the models on the physiological
measures represented as time series input data to study whether it achieves an
improvement in performance compared to a single time point.

Table A.1 shows the results of running the model on the time series input mea-
sures. The XGB model performed best out of the three models, and the LR model
achieved the worst performance in both metrics. While the MNB and XGB models’
performance is better compared to the single time instant, the LR model performs
worse except for an improved performance for the 12 hour PT. This can be observed
from the precision-recall and ROC curves for the logistic regression and MNB mod-
els shown in Figure A.2.
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4.4 Text-based models

Different clinical notes representations were compared to identify which embedding
approach gives the best performance. We compared three approaches to get the
document embedding; the first two made use of the top 200 PMI words (unweighted
and weighted by Tf-idf), and the third utilized the pre-trained embedding vectors from
the BioWordVec model. The mapping of the notes into the corresponding document
embeddings is described in section 3.4.2. The different models are then run on
the input note features and the results of running the model on these features are
presented below. The boldfaced numbers in each column of the table indicate the
highest performance metrics for the given dataset.

Pointwise Mutual Information (PMI) one-hot encoded embeddings

The first document embedding we explored was the PMI one-hot encoded embed-
ding. The 200 most informative words related to sepsis with the top 200 PMI scores
were obtained, and the notes were represented by one-hot encoded vectors.

Table 4.4 shows the performance results for the models trained on the note fea-
tures. The XGB model achieves the highest performance overall, with 0.769 AU-
ROC, 0.298 AUPRC for the 24 hour PT interval. It is followed by the LR model, and
the MNB model has the lowest performance with 0.628 AUROC, 0.197 AUPRC for
the 24 hour PT interval.

Table 4.4: Results from running the notes-only model with the notes represented as
one-hot encoded PMI vectors with dimensions n=200. The XGB model
achieves the highest AUROC and AUPRC scores, followed by the LR
model, and the MNB achieves the lowest scores

Model Prediction time (hours) AUROC AUPRC Hyperparameters
LR 6 0.731 0.175 C=0.01

12 0.736 0.219 C=0.1
24 0.746 0.252 C=0.01

MNB 6 0.622 0.141 alpha=1.3, fit_prior=T
12 0.628 0.167 alpha=0.5, fit_prior=T
24 0.628 0.197 alpha=1.1, fit_prior=T

XGB 6 0.751 0.191
max_depth=9, min_child_weight=5,
gamma=0.3, subsample=0.8,
colsample_bytree=0.8, reg_alpha=1

12 0.760 0.25
max_depth=9, min_child_weight=5,
gamma=0.2, subsample=0.8,
colsample_bytree=0.7, reg_alpha=1e-5

24 0.769 0.298
max_depth=9, min_child_weight=3,
gamma=0, subsample=0.9,
colsample_bytree=0.6, reg_alpha=0.01,
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Tf-idf weighted PMI one-hot encoded embeddings

The 200 one-hot encoded vectors obtained in the previous embedding are element-
wise multiplied by the Tf-idf weights. Table 4.5 shows the results of running the
model on the note features, and Figure A.3 show the precision-recall and ROC
curves for the LR, MNB, and XGB models.

Table 4.5: Results of running the model with the notes represented by 200-
dimensional tf-idf weighted PMI embeddings. The XGB model achieves
the highest AUROC and AUPRC scores, which are comparable with the
scores of the LR model. The MNB model performs the worst, for all PT
intervals

Model Prediction time (PT) AUROC AUPRC Hyperparameters
LR 6 hr 0.666 0.093 C=0.001

12 hr 0.666 0.107 C=0.001
24 hr 0.673 0.126 C=0.001

MNB 6 hr 0.650 0.095 alpha=0.5, fit_prior=T
12 hr 0.648 0.108 alpha=0.5, fit_prior=T
24 hr 0.652 0.128 alpha=0.5, fit_prior=T

XGB 6 hr 0.741 0.147
max_depth=1, min_child_weight=1,
gamma= 0, subsample=0.9,
colsample_bytree=0.6, reg_alpha=1

12 hr 0.740 0.187
max_depth=7, min_child_weight=3,
gamma=0, subsample=0.6,
colsample_bytree=0.9, reg_alpha=1e-05

24 hr 0.757 0.226
max_depth=7, min_child_weight=3,
gamma=0, subsample=0.6,
colsample_bytree=0.6, reg_alpha=1

A comparison with Table 4.4 shows that for the 24 hour PT interval, the un-
weighted PMI vectors have a higher performance compared to the Tf-idf weighted
PMI vectors. The ROC and PR plots are similar to each other, with only the XGB
model showing an evident difference in the area under the curve for longer PT inter-
vals.

BioWordVec embeddings (n=200)

Finally, the results of running the model on the clinical notes using BioWordVec 200-
dimensional pre-trained embeddings are given in Table A.3. As seen from the table,
the highest performance is observed with the longest PT of 24 hours, for the XGB
model.
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4.5 Multimodal models

The final stage of the experiment is to combine the physiological time series vari-
ables with the note features encoded with the three document encoding approaches.
As in the previous section, we compare the performance of the PMI one-hot encod-
ing with PMI weighted by Tf-idf with the pre-trained embeddings obtained using the
BioWordVec model.

PMI one-hot encoded embeddings

Table 4.6 shows the summary of the results of running the model on the combined
EHR features with the notes represented as PMI one-hot encoded embeddings.
We can observe that the performance metrics for the multimodal model are higher
compared to the physiological-based model (refer Table 4.3) as well as the note em-
beddings model (Table 4.4). This is in accordance with our hypothesis, that adding
note embeddings to the physiological measures will result in an improved prediction.
The XGB model achieves the best performance in terms of the AUROC and AUPRC,
followed by the LR model, and lastly the MNB model.

Figure A.4 shows the ROC and precision-recall curves for the combined time
series physiological input with PMI one-hot embeddings. As seen from the plots, the
area under the curve is highest for the XGB model, followed by the LR model. The
MNB model has the least area under the precision-recall and ROC curves, with lower
variation for the different prediction times. Since the latter has not achieved better
performance in the experiments thus far compared to XGB and LR, we decided to
exclude the MNB model from future iterations.
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Table 4.6: Results of running the model on the combined time series physiological
measures and notes represented as one-hot encoded PMI vectors with
dimensions n=200. The XGB model achieves the best performance in
terms of the AUROC and AUPRC, compared to the LR and MNB mod-
els. We can see that the multimodal model performs better than the
physiological measures model and the PMI encoded notes only model

Model Prediction time (hours) AUROC AUPRC Hyperparameters
LR 6 0.805 0.235 C = 0.1

12 0.805 0.287 C = 0.1
24 0.812 0.336 C = 0.1

MNB 6 0.750 0.154 alpha=0.5, fit_prior=F
12 0.750 0.180 alpha=0.5, fit_prior=T
24 0.755 0.215 alpha=0.5, fit_prior=F

XGB 6 0.826 0.253
max_depth=9, min_child_weight=5,
gamma=0.3, subsample=0.6,
colsample_bytree=0.6, reg_alpha=.1

12 0.831 0.338
max_depth=9, min_child_weight=5,
gamma=0, subsample=0.6,
colsample_bytree=0.7, reg_alpha=1

24 0.834 0.384
max_depth=9, min_child_weight=3,
gamma=0, subsample=0.9,
colsample_bytree=0.6, reg_alpha=1e-5,

Tf-idf weighted PMI one-hot encoded embeddings

Next, the notes are encoded with Tf-idf weighted one-hot encoded PMI vectors.
Figure A.5 shows the precision-recall and ROC curves for the LR and MNB graphs.
The results of the model performance are presented in Table A.2 in Appendix A. We
observe that the performance of the model trained with the combined features are
consistently better compared to the notes-only and and physiological time series
models. The Tf-idf weighted notes-only model has a higher AUROC across the
models compared to the physiological data only.

BioWordVec embeddings (n=200)

Finally, the results of running the model on the combined physiological and notes
features obtained using the BioWordVec embeddings for a 24 hour look back inter-
val are given in Table A.4 in Appendix A. The XGB model achieves the best per-
formance, followed by the LR model, and then the MNB model. While the XGB
and LR models’ performances are higher for the combined BioWordVec embedding
compared to the combined Tf-idf weighted PMI encodings, the MNB performance is
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comparable (ranging from 0.75-0.77).

4.5.1 Comparing different look back intervals

All the models that we have seen so far (for the single time step and time series data)
have used a 24 hour look back interval. Focusing on the time series representation,
a further comparison between the different look back time intervals (6, 12 and 24
hour) was done using the best-performing document embedding to represent the
clinical notes. The results of running the logistic regression and XGB models on the
different look back intervals are shown in Tables 4.7 and 4.8, respectively.

From Table 4.7, we can observe that the LR model achieved the best perfor-
mance for the 24 hour look back interval, and the longest PT interval. A closer look
shows that the AUROC values for the 6 and 12 hour look back intervals are approx-
imately the same, with the AUPRC score slightly higher for the 6 hour look back.
This means that there are more false alerts, and less precise detection for the 12
hour look back compared to the 6 hour interval.

Looking at Table 4.8 for the XGB model, a similar trend is observed with the XGB
model achieving the best performance for the 24 hour look back, and the 24 hour
PT interval. The AUROC and AUPRC values are similar for the 6 and 12 hour look
back intervals, with the latter being slightly better with higher AUPRC scores.

Table 4.7: Comparison of different look back times (6, 12 and 24 hours) of the Lo-
gistic Regression model with the combined factors as time series input,
using BioWordVec embedding representation

Look back (hr) Prediction time (hr) AUROC AUPRC Hyperparameters
6 6 0.691 0.105 C= 0.001

12 0.781 0.214 C = 100
24 0.783 0.241 C = 100

12 6 0.691 0.105 C = 0.001
12 0.782 0.208 C = 100
24 0.784 0.236 C = 100

24 6 0.828 0.194 C = 100
12 0.843 0.266 C = 1
24 0.855 0.331 C = 1
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Table 4.8: Comparison of different look back times (6, 12 and 24 hour) of the XGB
model with the combined factors as time series input, using BioWordVec
embedding representation

Look back (hr) Prediction time (hr) AUROC AUPRC Hyperparameters

6 6 0.810 0.23
max_depth=3, min_child_weight=5,
gamma=0, subsample=0.8,
colsample_bytree=0.9, reg_alpha=1

12 0.812 0.248
max_depth=3, min_child_weight=3,
gamma=0, subsample=0.9,
colsample_bytree=0.7, reg_alpha=0.1

24 0.818 0.293
max_depth=5, min_child_weight=1,
gamma=0.4, subsample=0.8,
colsample_bytree=0.8, reg_alpha=1

12 6 0.808 0.216
max_depth=3, min_child_weight=5,
gamma=0.3, subsample=0.8,
colsample_bytree=0.8, reg_alpha=1e-5

12 0.82 0.256
max_depth=5, min_child_weight=3,
gamma=0, subsample=0.9,
colsample_bytree=0.6, reg_alpha=0.01

24 0.827 0.306
max_depth=5, min_child_weight=1,
gamma=0.4, subsample=0.8,
colsample_bytree=0.8, reg_alpha=1

24 6 0.841 0.201
max_depth=9, min_child_weight=5,
gamma=0.1, subsample=0.9,
colsample_bytree=0.6, reg_alpha=1e-5

12 0.854 0.28
max_depth=9, min_child_weight=3,
gamma=0, subsample=0.8,
colsample_bytree=0.8, reg_alpha=1e-5

24 0.878 0.400
max_depth=7, min_child_weight=5,
gamma=0.4, subsample=0.8,
colsample_bytree=0.6, reg_alpha=1

The chart in Figure 4.1 shows the comparison of the AUROC scores of the logis-
tic regression and XGB models for the combined time series physiological variables
and notes represented by the BioWordVec embeddings, for the 24 hour PT interval.
We observe that the LR notes-only model outperforms the 6 and 12 hour look back
intervals in terms of the AUROC, while the XGB notes-only is comparable to the
same intervals. The 24 hour look back interval achieves the best performance in
terms of the AUROC for both models.
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Figure 4.1: The chart compares the AUROC of the LR and XGB models for the
combined physiological features and notes encoded using BioWordVec
embeddings, for a PT interval of 24 hours. The notes-only model is
compared with the combined features for the 6, 12, and 24 hour look
back intervals. The highest AUROC is achieved for the longest look
back interval by the XGB model followed by the LR model

4.6 Summary

In this chapter we have looked at the different combinations of single versus time se-
ries data, notes-only and multimodal models for three document embedding meth-
ods, and the effect of different look back intervals.

Table 4.9 provides a summary of the performance of the physiological-based,
text-based and multimodal models with the different note embeddings for the best
performing models in each category. The multimodal models achieve the highest
performance out of them all, followed by the text-based which implies that the note
features captured useful information for sepsis onset prediction. The XGB model
achieves the best performance for the Tf-idf weighted PMI one-hot encoding and
the BioWordVec embeddings.

The tuned hyperparameters of the XGB notes-only model were used for the com-
bined model as it did not change much for a given PT as seen from tables 4.4 and
4.6.

Figure 4.1 illustrates the differences for the logistic regression and XGB models
across the different look back intervals for the 24 hour PT interval. As seen in the
figure, the highest AUROC is observed for the longest (24 hour) look back interval.
Interestingly, the notes-only model achieves the next highest AUROC score for the
LR model, and very similar values for the XGB model (notes-only: 0.83, 12 hour look
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Table 4.9: Performance comparison of the physiological-based model, text-based
model, and multimodal model with 24 hour PT for the XGB model which
achieves the best-performance with the different note embedding repre-
sentations. The highest AUROC and AUPRC are obtained for the XGB
model using BioWordVec embedding, for the 24 hour PT

Models Document embedding AUROC AUPRC
Physiological-only - 0.816 0.352
Notes-only PMI one-hot encoding 0.769 0.298

Tf-idf weighted PMI
one-hot encoding

0.740 0.187

BioWordVec embedding 0.830 0.355
Combined PMI one-hot encoding 0.834 0.384

Tf-idf weighted PMI
one-hot encoding

0.855 0.366

BioWordVec embedding 0.878 0.400

back: 0.827). This finding suggests that the NLP features for the LR model includes
terms that are predictive features for sepsis onset.

Figure 4.2: Comparison of the AUROC scores for the LR and XGB models using
the three note-embedding approaches, with a 24 hour PT. The BioWord-
Vec embedding for the notes gives the best performance, then the Tf-idf
weighted one-hot encoded PMI vectors, then one-hot encoded PMI vec-
tors. We observe that the AUROC scores for the latter two encodings
are very similar for the LR model
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Figure 4.2 shows a comparison of the AUROC scores for the LR and XGB mod-
els using the three note-embedding approaches with a 24 hour PT interval. The
document embedding that made use of the pre-trained embedding vectors from the
BioWordVec model performed the best overall, with an AUROC of 87.8% for a 24
hour look back window and 24 hour PT interval.

Furthermore, the AUROC scores of the best performing model are in the range
of 0.78-0.9 which indicate an acceptable to excellent model discrimination.
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Chapter 5

Discussion

In this chapter, we present the discussion of the results from our experiments from
the previous chapter. Our findings support the research hypothesis that models in-
corporating the note embeddings perform better than models taking either the phys-
iological or note features alone as input. We evaluated logistic regression, multino-
mial Naïve Bayes, and XGBoost (XGB) models on three configurations: a) struc-
tured data components of the EHR, b) clinical note embeddings alone, and c) the
combination of structured EHR and note features.

5.1 Prediction Method

The sepsis onset prediction task was framed as a supervised learning problem with
pre-defined labels based on the Sepsis-2 definition. The Sepsis-2 definition was
chosen based on the factors that were present in the BSPM, and future studies could
consider using feature engineering methods such as principal component analysis
(PCA) and linear discriminant analysis (LDA) to reduce the model complexity.

We can see how different sets of features perform on the prediction task by com-
paring the performance of the models for the given prediction time (PT) and look
back intervals (6, 12, and 24 hours). Firstly, it was found that longer look back and
PT windows result in a higher performance compared to the baseline model in terms
of the AUROC and AUPRC scores across the different settings. A fixed interval of
the most recent 48 hours was extracted for each patient: before sepsis onset for
sepsis patients and the first 48 hours for non-septic patients (53). This was chosen
to reflect the the real life scenario a longer patient history may not be accessible for
the look back, nor for the PT intervals.

Secondly, the performance of the baseline model is higher than the note-only
features, but lower than the combined features which suggests that the note fea-
tures alone might not be a good feature set compared to the physiological mea-

39
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sures alone. The combined features always results in an improved prediction for all
the embeddings. While the BioWordVec embedding gives the highest performance
overall for the document embeddings, the Tf-idf weighted PMI encoding is a close
second and may be preferred in cases where the clinicians or doctors wants to know
the specific words (or concepts) that influenced the prediction. As an alternative to
our topic modeling approach of using PMI to extract the thematic words related to
sepsis, we may also use LDA to further improve the model accuracy.

Furthermore, another observation relating to the text-based models is that the
Tf-idf weighted encodings achieved lower performance compared to the unweighted
PMI encodings for the LR and XGB models, and similar performance for the multi-
modal models as seen from Figure 4.2.

5.2 Acceptability in hospitals

Systems that provide clinicians with evidence-based recommendations are imple-
mented in hospitals, such as the AI Pathway Companion at the University Hospital
Basel (USB) that uses NLP on radiology and pathology results to provide patient-
specific risk assessments (51). However, the main challenges facing the full-fledged
implementation of AI systems in medical decision-making is the black-box modeling
nature and the lack of interpretability of those systems.

Efforts need to be taken to involve the clinicians in the design and development
of these systems, and incorporate their feedback following the human-in-the-loop
approach. Further integration into hospital settings could be done with the use of
voice technology and automated text recognition tools which would allow for more
textual information to be recorded and be made available.

The governance of these systems should be done by a committee of different
stakeholders including local policymakers, clinicians, and AI manufacturers to en-
sure that accountability and ethical principles are followed. The Transparent Report-
ing of a Multivariable Prediction Model for Individual Prognosis or Diagnosis (TRI-
POD) guidelines should be followed in publishing and reporting any clinical machine
learning models (8).

The early sepsis prediction tool should be used as an aide for clinicians rather
than a standalone device, and it’s important that the patients are aware of the fact
that these technologies are being used, and clinicians should receive their explicit
consent before using these systems (41).



Chapter 6

Conclusion and Future Works

In this thesis, we have illustrated the different parts of developing an early sepsis pre-
diction model that incorporates clinical notes with structured EHR data to improve
performance. This includes data extraction and processing, defining and formulating
the research questions in Chapter 1, and designing experiments to test our hypoth-
esis. Three different approaches for encoding the clinical notes are presented for
three machine learning models: linear regression, multinomial Naïve Bayes, and
XGB. This chapter summarises the contribution of our research in section 6.1, and
the future work in section 6.2.

6.1 Conclusion

Our main research question is whether a more accurate sepsis prediction model can
be obtained by incorporating clinical notes with time-series physiological measures.
A comparison of the performance metrics indicates that combining the physiological
and note features (in multimodal models) results in the highest performance com-
pared to the disjoint features. In some cases, the performance of the notes only
model is higher than the physiological features model indicating that important infor-
mation for the sepsis onset prediction task is captured by the note features.

The second research question addresses which clinical note representations and
shallow ML models are best suited to predict sepsis onset in adult ICU patients, and
found that the XGBoost model performed better across the different configurations,
followed by the LR model. The multinomial naïve Bayes had the lowest performance
overall. Furthermore, the BioWordVec embeddings achieved better performance
compared to the other document embedding approaches.

We further explored the effect of changing the look back and prediction time (PT)
intervals on the model performance. It was found that the longer look back and
PT intervals results in a higher performance AUROC and AUPRC scores across
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the different settings. In real life scenarios, however, a longer patient history may
not be accessible for the look back intervals. The XGB model attained the highest
performance of 0.88 AUROC, 0.40 AUPRC with the multimodal features and the
notes encoded with BioWordVec embeddings for a 24 hour look back and prediction
time intervals.

6.2 Future Work

The Sepsis-2 definition was chosen to define sepsis in this study instead of the
Sepsis-3 definition from 2016 because it had a greater overlap with the factors
present in the BSPM (49). Future studies could compare the performance of the
model while using the Sepsis-3 definition which uses the SOFA score, which may
be a better discriminant than the traditional SIRS which has a lack of specificity and
increased sensitivity (2, 46).

Future iterations of the sepsis prediction model may use neural network models
such as LSTM networks or RNN which take advantage of memory when dealing with
time-varying input and could be used to uncover hidden factors that lead to sepsis
(22). This should be done while explaining why the algorithm gives the prediction
either through incorporating attention mechanisms into the models, or performing
post-hoc feature importance analysis using the tree SHapley Additive exPlanations
(SHAP) (35).

The current approach of obtaining the PMI features for the clinical note encoding
employs a BOW-based approach. An alternative to using a statistics-based ap-
proach is to use a pattern-based modeling approach that can help to recognize the
features and procedures from the clinical notes which is useful to find out what kind
of features are more prominent in predicting sepsis onset (29).

The research could be improved upon by exploring the use of ensemble mod-
els, where the notes and the physiological features are trained separately at the
classifier-level and then aggregated to predict sepsis onset. The loss of the data
when no clinical notes are available can also be addressed by implementing a
notes_on mode which may be toggled during the running of the prediction model:
‘on’ when clinical notes are available and ‘off’ when not available.

Finally, numerous models were developed and tested on the freely-available
MIMIC-III database which comprises of patients of a particular demographic (4, 23,
27, 29, 45, 53). It is important to carry out a multicentre validation study to ensure
generalizability as the choice of the training data may result in implicit bias that favors
people from certain countries, demographics, or age groups.
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Appendix A

Additional Results

The tables, ROC curves, and precision-recall curves for the different configurations
from the Results section are presented in this section.

Table A.1: Results from running the model on time series physiological measures.
The XGB model achieved the best performance in terms of the AUROC
and AUPRC, and the LR model performed the worst. An interesting ob-
servation is that AUROC and AUPRC of the LR model for the 12 hour PT
is highest for the same model and compared to the MNB models

Model Prediction time (hours) AUROC AUPRC Hyperparameters
LR 6 0.691 0.095 C=0.001

12 0.781 0.192 C=10
24 0.699 0.143 C=0.001

MNB 6 0.714 0.118 alpha=1.5, fit_prior=T
12 0.719 0.155 alpha=1.5, fit_prior=T
24 0.726 0.188 alpha=1.5, fit_prior=T

XGB 6 0.767 0.136
max_depth=3, min_child_weight=5,
gamma= 0, subsample=0.6,
colsample_bytree=0.7, reg_alpha=1e-5

12 0.786 0.226
max_depth=3, min_child_weight=5,
gamma=0, subsample=0.6,
colsample_bytree=0.9, reg_alpha=1

24 0.816 0.352
max_depth=5, min_child_weight=5,
gamma=0.3, subsample=0.7,
colsample_bytree=0.6, reg_alpha=0.1
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Table A.2: Results from running the model on combined notes (tf-idf weighted PMI)
and time series physiological measures, for a 24 hour look back inter-
val. There is consistent improvement in performance compared to the
unweighted PMI document encodings for all of the models, and the XGB
model achieves the best performance followed by the LR model and the
MNB model.

Model Prediction time (hours) AUROC AUPRC Hyperparameters
LR 6 0.809 0.254 C=1

12 0.819 0.248 C=1
24 0.827 0.299 C=1

MNB 6 0.750 0.127 alpha=0.9, fit_prior=T
12 0.760 0.168 alpha=0.7, fit_prior=T
24 0.769 0.213 alpha=1.1, fit_prior=T

XGB 6 0.823 0.175
max_depth=9, min_child_weight=5,
gamma= 0, subsample=0.6,
colsample_bytree=0.7, reg_alpha=1e-5

12 0.849 0.267
max_depth=7, min_child_weight=3,
gamma=0, subsample=0.8,
colsample_bytree=0.8, reg_alpha=0.1

24 0.855 0.366
max_depth=9, min_child_weight=5,
gamma=0.1, subsample=0.6,
colsample_bytree=0.8, reg_alpha=1
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Figure A.1: Precision-recall and ROC curves for the baseline LR (top), MNB (mid-
dle), and XGB (bottom) models for 6, 12 and 24 hour PT interval. While
the ROC curves are almost similar for the different PT intervals, we
observe that the longer PT interval has a higher area under the curve
across all the models
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Figure A.2: Precision-recall and ROC curves for the physiological measures as time
series input features for 6, 12 and 24 hour PT for the LR (top) and MNB
(bottom) models. We can observe for the LR model that the 12 hour
PT has a higher ROC curve (and AUROC score) compared to the other
curves



55

Figure A.3: Precision-recall and ROC curves for the Tf-idf weighted PMI note fea-
tures for 6, 12 and 24 hour PT for the LR (top), MNB (middle), and XGB
(bottom) models. The ROC curves are similar across all the models for
all PT intervals, while the XGB model shows a noticeable increase in
the area under the curve for longer PT intervals
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Figure A.4: Precision-recall and ROC curves for the time series physiological input
features and PMI one-hot encoded notes for the LR (top) and MNB
(bottom) models. The LR model achieves the best performance with
the highest area under the curves, compared to the MNB model curves.
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Figure A.5: Precision-recall and ROC curves for the combined time series input fea-
tures and Tf-idf weighted PMI notes features for 6, 12 and 24 hour PT
for the LR (top) and MNB (bottom) models. It is clear from the graphs
that the longer PT interval has higher specificity for a given sensitivity.
The ROC curves are similar for all PT intervals, with minor improve-
ments for longer PT intervals
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Table A.3: Results of running the model with the notes represented by 200-
dimensional BioWordVec embeddings. The XGB model achieves the
highest AUROC and AUPRC scores, which are comparable with the
scores of the LR model. The MNB model achieved the worst perfor-
mance, for all PT intervals

Model (tfidf) Prediction time (hours) AUROC AUPRC Hyperparameters
LR 6 0.807 0.200 C=10

12 0.813 0.250 C=1
24 0.820 0.293 C=1

MNB 6 0.686 0.110 alpha=0.5, fit_prior=T
12 0.690 0.135 alpha=0.5, fit_prior=T
24 0.694 0.157 alpha=0.5, fit_prior=T

XGB 6 0.807 0.230
max_depth=7, min_child_weight=3,
gamma= 0, subsample=0.7
colsample_bytree=0.9 reg_alpha=0.01

12 0.819 0.304
max_depth=9, min_child_weight=5,
gamma=0.2, subsample=0.9,
colsample_bytree=0.6, reg_alpha=0.1

24 0.830 0.355
max_depth=7, min_child_weight=5,
gamma=0, subsample=0.8,
colsample_bytree=0.8, reg_alpha=1e-5
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Table A.4: Results from running the model on the combined time series physiologi-
cal measures and notes represented using the BioWordVec embeddings
(n=200) for a 24 hour look back interval. The XGB model achieves the
best performance as indicated by the bolded values, followed closely by
the LR model. Furthermore, the improvements in the AUROC are incre-
mental for the PT intervals

Model Prediction time (hours) AUROC AUPRC Hyperparameters
LR 6 0.837 0.254 C=1

12 0.840 0.315 C=1
24 0.846 0.367 C=1

MNB 6 0.761 0.165 alpha=0.5, fit_prior=T
12 0.757 0.192 alpha=0.5, fit_prior=T
24 0.765 0.235 alpha=0.5, fit_prior=T

XGB 6 0.841 0.201
max_depth=7, min_child_weight=3,
gamma= 0, subsample=0.7
colsample_bytree=0.9, reg_alpha=0.01

12 0.854 0.280
max_depth=9, min_child_weight=5,
gamma=0.2, subsample=0.9,
colsample_bytree=0.6, reg_alpha=0.1

24 0.878 0.400
max_depth=7, min_child_weight=5,
gamma=0, subsample=0.8,
colsample_bytree=0.8, reg_alpha=0.1
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