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ABSTRACT 

Classification and mapping of the intertidal vegetation play a critical role in wetland conservation planning 

and policy. Serving as the early indicator of wetland degradation, plant communities in the intertidal zone 

are the most critical ecological variable in wetland assessment. Traditional survey methods are expensive 

and time-consuming. With the development of remote sensing techniques, optical satellite images become 

more popular and efficient compared with field survey. However, the quality of optical images would be 

influenced by clouds and weather. Thus weather-independent SAR data is considered to provide 

complementary information for mapping intertidal plant communities. Vegetation indices derived from 

optical time series data play a crucial role in characterising vegetation phenology. In this study, the 

intertidal plant communities of the Yellow River Delta were classified using random forest algorithm 

based on Sentinel-1 and Sentinel-2 time series images as well as the NDVI statistic parameters derived 

from Sentinel-2 time series. The variable importance of different input data from various classification 

scenarios was also evaluated. It was found that a high mapping accuracy for the intertidal plant 

communities was achieved with an overall mapping accuracy of 75.7% and the Kappa coefficient of 0.73 

when integrating the Sentinel-2 time series images with its associated NDVI statistic parameters, which is 

significantly higher than the mapping accuracies derived from either the single-date Sentinel-2 images, 

Sentinel-1 SAR time series images or the NDVI statistic parameters alone. Besides, when combining 

Sentinel-1 time series, Sentinel-2 time series and NDVI statistic parameters, a further improved mapping 

accuracy was achieved with an overall mapping accuracy of 77.7% and the Kappa coefficient of 0.75. The 

research also showed that autumn image and the red edge bands are the most critical variables for 

mapping intertidal plant communities. The study suggests that combining the Sentinel-2 optical images 

with the Sentinel-1 SAR images makes it possible to map intertidal plant communities in a dynamic 

ecosystem successfully, and with higher accuracy than when using either the Sentinel-2 time series or the 

Sentinel-1 time series. 
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1. INTRODUCTION 

1.1. Background 

The intertidal zones are commonly regarded as one of the most valuable and active wetland ecosystems, 

due to its biological productivity (Lobato et al., 2016; Swennen et al., 1982; Zhang et al., 2016), economic 

value (Han & Yu, 2016), and ecological functions (Costanza et al., 1998). The intertidal zones represent 

the areas which are above water at low tide and under water at high tide, occupying the upper edge of the 

global coastlines extending more than 1.6×106 kilometres (Ortega-Morales et al., 2010). Generally 

composed of rocky platforms, sandy beaches, mud flats, estuaries and salt marshes (Bertness et al., 2001), 

the intertidal zones provide essential habitats for a wide range of both marine (Yates et al., 2014) and 

terrestrial (Rog et al., 2017) life. Due to daily tidal cycles, the intertidal zones are characterized as highly 

dynamic environments, which cause variations of moisture, temperature, nutrients and soil salinity (Menge 

& Branch, 2001). These environmental limitations influence marine and terrestrial biodiversity through 

food chains and interactions, resulting in different evolutions from the same microorganisms or microbial 

groups in order to be better adapted to these extreme environments (Ortega-Morales et al., 2010).  

 

However, such valuable wetland ecosystems are facing a huge threat. Increasing anthropogenic pressure, 

climate change and sea level rise affect intertidal ecosystems (Giri et al., 2011) and decrease the area (Han 

& Yu, 2016; Ottinger et al., 2013) of them. Plant communities in the intertidal zones are also disappearing 

and degenerating, which is not only caused directly by land reclamation, land transformation, 

overexploitation and pollution, but also indirectly by trophic downgrading (Estes et al., 2011) and climate 

change (Jackson et al., 2001; Waycott et al., 2009). In China, the intertidal zones of the Yellow River Delta 

encountered adverse degradation and disappearance (Sun et al., 2017) by tidal flat reclamation (Ma et al., 

2015) and hydrological condition deterioration (Zhang & Li, 2006). The lost area of tidal flats in the 

Yellow River Delta was 15699 hm2 from 2001 to 2008, which is equal to 68.8 million Yuan per year in 

ecological compensation according to the market value and 103.6 million Yuan per year based on 

ecosystem services value (Han & Yu, 2016). Moreover, the area of shrubland in the Dongying 

Municipality, which is located in the main Yellow River basin, reduced by 811.7 km2 from 1995 to 2010 

(Ottinger et al., 2013). Therefore, this severely damaged intertidal ecosystem within the Yellow River Delta, 

which was designated as globally crucial under the Convention on Wetlands in the year of 2013 (Ramsar, 

2013), is becoming a focus of the wetland conservation and research. 

 

Plant communities are the key components of intertidal ecosystems (Kokaly et al., 2003; Yuan & Zhang, 

2006) and indicate the health of the ecosystem, providing early signs of ecological degradation (Dennison 

et al., 1993; Silva et al., 2008). Plant communities in wetlands, having a capacity to remove toxic substance 

and heavy metals (Onaindia et al., 1996), are regarded as an indicator of water pollutions. Intertidal plant 

communities, such as Chinese tamarisk (Tamarix Chinensis), which are highly sensitive to the variation of 

soil conditions (Liu et al., 2017), link a tight connection with the flooding pattern of the landscape of 

seasonal intertidal ecosystems. Moreover, intertidal plant communities provide habitats for wading birds 

and migratory birds (Ambrose, 1986), as well as prevent coastlines from soil erosion, playing a crucial role 

in shore protection and sediment retention (Costanza et al., 1998). Therefore, mapping the spatial 

distribution of intertidal plant communities is the primary step for degradation monitoring of intertidal 

ecosystem, because the change of vegetation distribution and succession reflects the change of soil 

condition and water content. In other words, for formulating tentative vegetation protection program, it is 
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necessary to obtain updated spatial information on vegetation cover and distribution in the study area (He 

et al., 2005). 

  

Traditional methods for mapping plant communities in the wetland are commonly hindered by limited 

data accessibility and time-consuming field work (Lee & Lunetta, 1995; Vis et al., 2003). Due to the 

unstable terrain and relatively tall plant species, wetlands usually have poor accessibility, and field work 

aiming at inventorying vegetation is usually expensive, time-consuming, and sometimes inaccurate ( Lee, 

1991). Satellite remote sensing technique has been widely used due to frequent acquisition, repeat coverage 

and low image cost (Hardisky et al., 1986; Klemas, 2001; Ozesmi & Bauer, 2002; Silva et al., 2008), 

provides efficient and economical approaches to classify plant communities and estimates related 

biophysical and ecological parameters (Adam et al., 2010). The application of satellite images makes it 

possible for a comprehensive understanding of the research objects and the changes in the past years 

(Bhandari et al., 2012; Vrieling et al., 2017). 

 

The information on surface reflectance and emissivity characteristics can be obtained from optical images, 

of which the application for mapping plant communities has been studied for a long time, and many 

classification techniques have been proposed in the literature. Gómez et al. (2016) presented a range of 

data availabilities for optical image sources and various classification methods for plant communities. 

Ozesmi and Bauer (2002) summarised the application of satellite remote sensing for studying wetlands, 

with an emphasis on the various classification techniques used for wetlands identification. The mission of 

Sentinel-2 provides information for agriculture and forestry practices, aiming at mapping changes in land 

cover and monitoring the world’s forests (Sentinel Hub, 2016). The use of Sentinel-2 data has been 

assessed successfully for crop and tree species classification (Immitzer et al., 2016) due to its higher 

spatiotemporal resolution than Landsat and SPOT, and three red edge bands which are of high sensitivity 

to the chlorophyll in vegetation. Csillik & Belgiu (2017) reported the results of dedication to cropland 

mapping from multi-temporal Sentinel-2 data using objects as spatial analysis units. Moreover, Traganos & 

Reinartz (2017) addressed the suitability of the Sentinel-2 satellite for mapping the distribution of 

Mediterranean seagrass meadows, which shows advantages for mapping wetland plant communities.   

 

Recent years, remote sensing images utilized for land cover classification (Rogan, 2004) are increasingly 

from optical satellites to synthetic aperture radar (SAR) sensors, which can capture the dielectric 

properties and the structural features of the Earth surface objects. High-resolution, day-and-night and 

cloud-independent SAR data with different wavelength and polarization modes are being focused on the 

spectral and polarimetric dimensions. They are increasingly explored (Martinez & Letoan, 2007; Sartori et 

al., 2011) because of the sensitivity to plant moisture, canopy texture and surface roughness (Hess et al., 

1995; Hess et al., 1990), all of which are regarded as essential characteristics for distinguishing wetland 

types (Baghdadi et al., 2004). The texture derived from SAR images are more attractive considering the 

Figure 1 The landscape of the intertidal zones in the Yellow River Delta (photographed by Yansha Luo) 
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inherent speckle noise that makes the single pixel confusing. Due to the microwave penetration within the 

canopies of vegetation, SAR images are sensitive to the underlying water in vegetation canopies (Martinez 

& Letoan, 2007). Also, Benefit from the C-band, Sentinel-1 data have a capacity for penetrating and 

receiving the backscattered signal, which provides detailed information on vegetation canopies and ground 

surface (Fu et al., 2017). The relatively high spatiotemporal resolution make it advantageous in 

discriminating rice agriculture and crop (Kumar et al., 2017; Torbick et al., 2017). Fu et al. (2017) 

successfully evaluated the performance of random forest algorithms for mapping wetland plant 

communities using L-band PALSAR and C-band Radarsar-2 data. Furtado et al. (2016) demonstrated that 

“single-season full-polarimetric C-band data could yield more accurate classifications than single-season 

dual-pol C-band SAR imagery and similar accuracies to dual-season dual-pol C-band SAR classification”. 

Vegetation types with dense canopies were accurately classified using dual-season full-polarimetric SAR 

data and achieved high producer’s and user’s accuracies. Horritt et al. (2003) used SAR images of a salt 

marsh to investigate the radar backscattering properties of emergent marsh plant species and successfully 

map the inundated vegetation with a statistical active contour model. Simard et al., (2000) found texture 

measures from Japanese Earth Resources Satellite-1 are essential characteristics for the distinguishing 

submerged vegetation in Central Africa.  

 

Considering seasonal variations in the spectral features and separability of image spectra, increasing 

vegetation classifications have relied on seasonal changes and phenological attributes through multi-season 

or multi-temporal images instead of a single-date image. Multi-season or multi-temporal images which 

capture spectral differences based on vegetation phenology, especially the spectral reflectances at peak 

biomass (Schmidt & Skidmore, 2003; Spanglet et al., 1998), help to improve separability of vegetation 

types over classifications compared with using a single-date image (DeFries et al., 1995). The high 

discrimination potential and capabilities in vegetation mapping applications have been shown through 

exploiting multi-temporal satellite images (Belluco et al., 2006; Dennison & Roberts, 2003; Judd et al., 

2007), e.g. for assessing wetland vegetation in regularly flooded landscapes (Wang et al.,2012). 

Guerschman et al. (2003) explored how many dates of Landsat TM images needed to perform better to 

obtain an accurate land cover map in the Argentine Pampas. Gilmore et al. (2008) examined the 

effectiveness of using multi-temporal multispectral images for classifying and mapping the common plant 

communities of the Ragged Rock Creek marsh. Villa et al. (2012) demonstrated the capabilities of multi-

sensor multi-temporal remote sensing in analyzing the spatial patterns and temporal trajectories of 

vegetation damage and recovery. Villa et al. (2015) showed the capabilities of multi-temporal reflectance 

and vegetation indices in mapping four macrophyte community types. Additionally, multi-temporal SAR 

images have also proven to be useful in urban, forest, and agriculture land cover classification (Le Toan et 

al., 1989; Pellizzeri et al., 2003; Quegan et al., 2000).   

 

Normalized Difference Vegetation Index (NDVI) is a common and widely used vegetation index for 

vegetation monitoring (Nageswara et al., 2005; Tucker, 1979). It is applied in research on crop cover 

(Ayyangar et al., 1980),  drought monitoring (Singh et al., 2003) and agriculture drought assessment for 

detecting global environmental and climatic change (Bhandari et al., 2012). Time series NDVI data are 

used interatively to explore the main determinants of seasonality for the subsequent determination and 

classification of vegetation types (Halabuk & Mojses, 2015). Defries & Townshend (1994) used the 

monthly NDVI values in a global-extent land cover mapping with AVHRR data. Tang et al. (2017) 

investigated the spatiotemporal changes of vegetation growth in upper Shiyang river basin with their 

response to climate changes by using NDVI statistic. Pang et al. (2017) successfully combined NDVI with 

climate data to examine spatial and temporal variations in vegetation and the relationships between climate 

and vegetation for both the growing period and seasons during the period from 1982 to 2012 on the 

Tibetan Plateau. Li et al. (2017) analyzed the temporal changes in vegetation coverage using NDVI over 
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1982 – 2015, and combined topographical factors to interpret the spatial patterns of vegetation as well as 

quantified the contributions of anthropogenic factors to vegetation variations. Gandhi et al. (2015) 

validated the capability of NDVI derived from Landsat TM images for vegetation classification and 

change detection, and the results showed the NDVI was highly useful in detecting the surface features, 

which provides a possibility for distinguishing and mapping different vegetation through phenology 

difference.  

 

1.2. Problem statement 

The intertidal zones of the Yellow River Delta are one of the most important ecosystems in China due to 

its ecological functions and high economical productivity. However, over the past decades, deteriorating 

hydrological conditions (Zhang & Li, 2006) and intensive anthropogenic activities (Ma et al., 2015) 

disturbed this vulnerable ecosystem, resulting in an enormous loss of wetland resource (Han & Yu, 2016). 

Therefore, it is important to provide real-time monitoring of these intertidal zones. Mapping plant 

communities can be an effective way to reflect the real-time conditions of intertidal zones because these 

plant communities are regarded as the indicators of eutrophication and soil contamination (Dennison et 

al., 1993; Silva et al., 2008). However, few studies on mapping vegetation in this special and important 

landscape have been done. The reasons may lie in the poor data accessibility and the properties of 

intertidal zones. Firstly, since the intertidal zones are long and narrow areas along the coastlines, the spatial 

resolution of traditional satellite remote sensing is relatively coarse for detecting and monitoring. Secondly, 

since the intertidal zones are highly dynamic, and the ground surface is successively submerged and 

emerged due to the daily tides, higher temporal resolution data are necessary for higher mapping accuracy. 

Thirdly, the importance of intertidal zones may not be widely realized. To sum up, the lack of high-quality 

images and inadequate concern may lead to the research gap on mapping intertidal plant communities in 

the Yellow River Delta.  

 

Optical remote sensing classification technique for vegetation mapping has been widely applied (Gómez et 

al., 2016). The Sentinel-2 image has great potential for mapping intertidal plant communities thanks to its 

improved spatial and temporal resolution as well as three red edge bands that are sensitive to chlorophyll 

content. Multi-temporal data may capture the seasonality or phenological variation in vegetation types 

through the spectrum which varies with the amount and percentage of plant pigments, leaf water content 

and leaf structure (Key, 2001; Reed et al., 1994) and therefore improve the accuracy of distinguishing 

different vegetation types. In some case, it is difficult to separate the plant communities in wetland 

ecosystems through single-date optical image, because most wetland vegetation species have the same 

basic components contributing to spectral reflectance, such as chlorophyll, carotene and other light-

absorbing pigments (Kokaly et al., 2003; Price, 1992) at common growth season. Also, the mingle poses 

an obstacle to distinguish plant communities (Guyot, 1990; Malthus & George, 1997). However, cases 

were also found that single-date image classification resulted in higher accuracy in some landscapes (Key, 

2001). Therefore, it is worth exploring the capability of single-date image and comparison with multi-

temporal images for classification and mapping the plant communities in such a dynamic and extreme 

ecosystem.  

 

The combination of SAR and optical data is proposed to monitor wetland (Adam et al., 2010; Fu et al., 

2017; Ozesmi & Bauer, 2002), and many studies have been carried out on the mapping wetland vegetation 

(Demers et al., 2015; Fu et al., 2017). Optical images contain the information on surface reflectance and 

emissivity characteristics, while SAR images capture the dielectric properties and the structural features of 

the Earth surface objects. The complementary information contained in the two sensors always 

significantly improve mapping accuracies based on using an individual sensor for certain land cover types, 
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such as agriculture (Blaes et al., 1969; Chust et al., 2004) and wetlands (Augusteijn & Warrender, 1998a; Li 

& Chen, 2005). However, it is rare to find researches on mapping intertidal plant communities through the 

combination of Sentinel-1 SAR and Sentinel-2 optical images, not to mention using multi-temporal time 

series data. This research gap may be caused by poor data availability and high cost for good-quality 

images. Since the advent of Sentinel-1 and Sentinel-2 satellites, which are regarded as the free sources of 

high-quality image data, made it possible for catching the characteristics of plant communities in such a 

fluctuant environment. Therefore, it is worth exploring the integrated use of Sentinel-1 and Sentinel-2 

time series data to map plant communities in the intertidal zones of the Yellow River Delta.     

 

1.3. Research objective 

The overall objective of this study is to map plant communities in the intertidal zones of the Yellow River 

Delta using Sentinel-1 SAR and Sentinel-2 optical data. The specific objectives of this research are to map 

intertidal plant communities in the Yellow River Delta using: 

 

1) Single-date Sentinel-2 images for four different seasons (i.e., spring, summer, autumn and winter). 

2) Multi-season (the aggregation of the four single seasons into a single dataset) Sentinel-2 images. 

3) Time series (the aggregation of twelve monthly time series data into a single dataset) Sentinel-2 images. 

4) NDVI statistic parameters derived from time series Sentinel-2 images. 

5) Time series Sentinel-2 images and the NDVI statistic parameters derived from time series Sentinel-2 

images. 

6) Time series Sentinel-1 VV and VH data. 

7) Time series Sentinel-2 images, NDVI statistic parameters, and time series Sentinel-1 VV and VH data. 

 

1.4. Research questions 

1) Is there a significant difference in intertidal plant communities mapping accuracies between the use of 

four single-date Sentinel-2 images? How does the accuracies of intertidal plant community 

classification vary with the four single-season images?  

2) Does multi-season Sentinel-2 images significantly improve the classification of the intertidal plant 

communities compared to a single season? 

3) Is there a significant difference in intertidal plant communities mapping accuracies between the use of 

multi-season and time series Sentinel-2 images?  

4) What is the intertidal plant communities mapping accuracy derived from the NDVI statistic 

parameters? 

5) Does adding NDVI statistic parameters to the time series Sentinel-2 images further improve the 

intertidal plant communities mapping accuracy? 

6) What is the intertidal plant communities mapping accuracy derived from time series Sentinel-1 VV 

and VH data? 

7) Does adding Sentinel-1 time series data to the time series Sentinel-2 images and NDVI statistic 

parameters can significantly improve the intertidal plant communities mapping accuracy? 

8) Which input variables of satellite images contribute most to the accuracy of intertidal plant 

communities mapping? 
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1.5. Hypotheses 

1) Hypothesis 1 

H0: There is no statistically significant difference in intertidal plant communities mapping accuracies 

between the use of four single-date and multi-season Sentinel-2 images. 

H1: The intertidal plant communities mapping accuracy derived from multi-season Sentinel-2 images is 

statistically significantly higher than the one derived from four single-date images. 

 

2) Hypothesis 2 

H0: There is no statistically significant difference in intertidal plant communities mapping accuracies         

between the use of multi-season and time series Sentinel-2 images. 

H1: The intertidal plant communities mapping accuracy derived from time series Sentinel-2 images is 

statistically significantly higher than the one derived from multi-season Sentinel-2 images. 

 

3) Hypothesis 3 

H0: There is no statistically significant difference in intertidal plant communities mapping accuracies 

between the use of time series Sentinel-2 data with and without NDVI statistic parameters. 

H1: Adding NDVI statistic parameters can significantly improve the intertidal plant communities 

mapping accuracy. 

 

4) Hypothesis 4 

H0: There is no statistically significant difference in intertidal plant communities mapping accuracies 

between the use of the single sensor (Sentinel-1 or Sentinel-2) time series data and the combination 

of them.  

H1: The combination of Sentinel-1 and Sentinel-2 time series data can significantly improve the mapping 

accuracy of the intertidal plant communities based on using the single sensor time series data. 
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2. MATERIALS AND METHODS 

2.1. Study area 

The study area is in the intertidal zones of the Yellow River estuary (37°32’N - 37°54’N, 118°39’E – 

119°21’E), which is part of the Yellow River Delta National Reserve situated in the northeast of Dongying 

City, Shandong Province, China. The modern Yellow River Delta shifted the mouth of the Yellow River 

to the north in the year of 1855, which is flanked to the west of the Laizhou Bay and the south of the 

Bohai Bay (Zhao et al., 2016).  

 

The study area covered by the delta plain is 7879 kilometres with about 15 meters average deposition 

thickness (Wang et al., 2010). The tides in this intertidal zone are irregular semidiurnal tides with 0.73-1.77 

meters of the mean tidal range (Li et al., 1991), which play an important role in hydrodynamics and 

controlling sedimentation in intertidal zones (Sun et al., 2015). Figure 3 shows the average monthly 

temperature and rainfall for Dongying City from the year of 1971 to 2000, which reflects that this nature 

reserve is of typical temperate monsoon climate, with an average annual temperature of 12.1℃, an average 

annual evaporation of 1962 mm and average annual precipitation of 551.6 mm (Sun et al., 2017), resulting 

Figure 2 The location of the study area in the Yellow River Delta (display in RGB band 4,3,2) 
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in a typical water limitation that water resources are only river discharge and groundwater extraction 

(Kong et al., 2015).  

 

The Yellow River Delta supports abundant biodiversity and provides large extend habitat for 220 seed 

plant species, 800 wild animal species and 283 bird species, many of which are in the list of endangered 

species (Cui et al., 2009). The Yellow River Delta is covered by wetlands with an area of 4167 km2, 

consisting of 3131 km2 of natural wetlands (marshes, mud flats, swamps, open water, etc.) and 1036 km2 

of artificial wetlands (aquaculture ponds, rice field, channels, etc.) (Qi & Fang, 2009). The dominant marsh 

type is coastal marsh, covering 63.03% of the entire Yellow River Delta (Cui et al., 2009), with four 

dominant vegetation species: Smooth cordgrass (Spartina alterniflora); Seepweed (Suaeda salsa); Common 

reed (Phragmites australis); Five-stamen tamarisk (Tamarix chinensis). The sequence of geomorphic units 

consists of high marsh, middle marsh and low marsh (Song et al., 2010). The high marsh zone is 

dominantly covered by Smooth cordgrass and Five-stamen tamarisk, while the middle and low march 

zones contain large bare soil interspersed with patches of Smooth cordgrass. And Common reed appears 

at the terrestrial boundary of the marsh (Li et al., 2016). However, the reed marsh, meadow and tidal 

wetland decreased by 17%, 37% and 38% respectively from the year 1986 to 2001 caused by decreased 

runoff and conversion to aqua-cultural ponds and agricultural fields (Li et al., 2009).  

 

Figure 3 The average monthly temperature and rainfall for Dongying City from the year of 1971 to 2000 
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2.2. Data preparing and processing 

2.2.1. Sentinel-2 data and Pre-processing 

Sentinel-2 consists of two optical satellites (i.e., Sentinel-2A and Sentinel-2B), which were launched in June 

2015 and March 2017 respectively (Suhet, 2015). Sentinel-2 serves a wide range of applications including 

various plant indices determination, effective yield prediction, and providing information for agriculture 

and forestry practices which related to Earth’s vegetation. Especially, Sentinel-2 can be used for mapping 

changes in land cover and to monitor the forests in global scale (Sinergise, 2017).  

They are commonly used in:  

➢ Environmental monitoring through monitoring land cover and land use change 

➢ Agricultural applications, such as crop monitoring for helping food security management 

➢ Detailed vegetation and forest monitoring and parameter generation (e.g. leaf area index, chlorophyll 

concentration, carbon mass estimations) 

➢ Coastal zones observation (marine environment monitoring, coastal zone mapping) 

➢ Inland water (lake, river, reservoir) monitoring 

➢ Glacier monitoring, ice extent change, snow cover monitoring  

➢ Flood mapping and management (risk analysis, loss assessment, disaster management during floods) 

 

The spectral and spatial resolution characteristics of Sentinel-2 images are shown in Table 1. In this study, 

twelve multi-temporal Sentinel-2 images with band 2~7, 8a, 11 and 12 from July 2016 to July 2017 are 

acquired from the Copernicus Open Access Hub ( https://scihub.copernicus.eu/dhus/#/home ) of 

European Space Agency (ESA) and these images were atmospherically corrected in the software Sen2cor 

module version 2.2.1 within the Sentinel-2 Toolbox (S2TBX) and all images were resampled to 20 m. The 

used Sentinel-2 optical time series data are shown in Figure 4. 

 
Table 1 Overview of the Sentinel-2 data 

Band Wavelength 

range (nm) 

Spatial 

resolution (m) 

Purpose 

Band 1- Coastal aerosol 433 - 453 60 Aerosol detection 

Band 2 - Blue  458 - 523 10  Soil and vegetation discrimination, 

forest type mapping, man-made features 

Band 3 - Green  543 - 578 10 Clear and turbid water, vegetation  

Band 4 - Red  650 - 680 10 Identifying vegetation types, soils and 

urban features. 

Band 5 - Red edge  698 - 713 20 Classifying vegetations 

Band 6 - Red edge  733 - 748 20 Classifying vegetations 

Band 7 - Red edge   773 - 793 20 Classifying vegetations 

Band 8 - Near infrared 785 - 900 10 Classifying vegetations 

Band 8A - Near infrared  855 - 875 20 Mapping shorelines and biomass 

content, detecting and analysing 

vegetation 

Band 9 - Water vapour 935 - 955 60 Detecting the water vapour 

Band 10 - Shortwave infrared 

/ Cirrus 

1360 - 1390 60 Cirrus cloud detection 

Band 11 - Shortwave infrared   1565 - 1655 20 Moisture content of soil and vegetation, 

snow and clouds 

Band 12 - Shortwave infrared   2100 - 2280 20 Snow/ice/cloud discrimination 

https://scihub.copernicus.eu/dhus/#/home


MAPPING PLANT COMMUNITIES IN THE INTERTIDAL ZONES OF THE YELLOW RIVER DELTA USING SENTINEL-2 OPTICAL AND SENTINEL-1 SAR TIME SERIES 
DATA 

10 

 

To improve the accuracy of intertidal plant community mapping, the vegetation index NDVI705 was 

selected as an additional input variable. The vegetation index NDVI705 is a modification of the common 

used NDVI, from which it differs by using bands along the red edge bands with a very narrow bandwidth. 

And it takes advantage of the sensitivity of red edge bands to small changes in canopy foliage content, gap 

fraction and senescence (Sinergise, 2017). Four statistic parameters (i.e., maximum, minimum, mean and 

standard deviation) were calculated in ENVI as the input variables for image classification, shown in 

Figure 5. The calculation equation of DNVI705 is: 

 

𝑁𝐷𝑉𝐼705 =
𝐵06 − 𝐵05

𝐵06 + 𝐵05
 

Figure 4 Time series Sentinel-2 data used in the study (display in RGB band 4,3,2) 
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2.2.2. Sentinel-1 data and Pre-processing 

Sentinel-1 provided continuity of data with enhancement on revisit, coverage, timeliness and reliability of 

service (Torres et al., 2012). The products of Sentinel-1 are mainly used for: 

➢ monitoring sea ice zones and the arctic environment, and surveillance of marine environment 

➢ monitoring land surface motion risks 

➢ mapping of land surface: forest, water and soil 

➢ mapping in support of humanitarian aid in crisis situations 

  

Level-1 GRD images of Sentinel-1 product with IW mode and dual polarizations VV and VH were used 

in the study. Twenty-four images from July 2016 to July 2017 were acquired from the Copernicus Open 

Access Hub (https://scihub.copernicus.eu/dhus/#/home) of European Space Agency (ESA). The main 

characteristics of the Sentinel-1 IW data are provided in Table 2 (Torres et al., 2012). The Sentinel-1 SAR 

time series images used in this study are shown in Figure 3 and Figure 4. 

 

Several pre-processing steps were implemented in the Sentinel Toolbox (SNAP) developed by ESA. The 

images were transferred from DN values to sigma backscatter images expressed in dB scale. The specific 

pre-processing steps are shown as follows: 

1) Radiometric correction. Radiometric errors always exist in the Level-1 primary products, by using the 

tool Radar – Radiometric - Calibrate in SNAP, radiometric correction were achieved and resulted in 

backscatter σ0. 

2) Speckle filtering. Speckle noise, which is caused by coherent processing of backscattered signals, 

usually makes it difficult for image interpretation. To reduce the influence of speckles, the tool Radar-

Speckle – Filtering - Single Product Speckle Filtering in SNAP was used. Meanwhile, a 3×3 pixel 

window in Refined Lee method was chosen to apply due to the function of conserving the edges. 

Figure 5 NDVI statistic parameters derived from Sentinel-2 time series data 

https://scihub.copernicus.eu/dhus/#/home
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3) Geometric correction. Caused by the side-view characteristic, distortions (overlapping and shadow) 

may reduce the quality of SAR images. Range-Doppler method in the tool Radar – Geometric - 

Terrain Correction was chosen for image registration. Meanwhile, the image resolution was resampled 

to 20 m using nearest neighbourhood method and projected to the UTM coordinate system. 

Then, these processed SAR images were converted to TIFF format for further processing in GIS and 

ENVI software. 

 

 
Table 2 Overview of Sentinel-1 data 

Parameter Interferometric Wide swath mode (IW) 

Incidence angle range 29.1° - 46.0° 

Swath width 250 km 

Sub-swaths 3 

Polarization Dual VV+VH 

Azimuth resolution 20 m 

Ground range resolution 5 m 

Azimuth and range looks Single 

Maximum Noise Equivalent Sigma Zero (NESZ) -22 dB 

Radiometric stability 0.5 dB (3 σ) 

Radiometric accuracy 1 dB (3 σ) 

Phase error 5° 

Pixel size  10 m  

 

 

Figure 6 Time series Sentinel-1 images with VV polarization used in the study 
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2.2.3. Ground data collection 

For the part of ground data collection, the pre-processing steps of selection classification criteria, 

development sampling strategy and selection sampling methods are the precondition for good field work. 

In this study, total vegetation cover from above (CFA), which means like a bird’s eye view from above, 

within a delineated area on aerial image (Brohman et al., 2005) to estimate the relative percentages of non-

overlapping vegetation cover, was selected as the attribute for structural classes determination. Vegetation 

classification criteria were determined based on the floristic composition. “Floristic classifications 

emphasize the plant species comprising the vegetation instead of life forms or structure and are based on 

community composition and diagnostic species” (Jennings et al., 2003). The community composition was 

based on the absolute amounts of each plant species present in a given area or stand, expressing the 

amount of each plant taxon as absolute percent cover. The diagnostic species are “any species or group of 

species whose relative constancy or abundance can be used to differentiate one vegetation type from 

another” (Jennings et al., 2003), which are determined empirically by analysis of filed work. “The 

dominance types are most simply defined by the single species with the greatest amount of canopy cover 

in the uppermost layer. Dominance types based on multiple species requires more rigorous data analysis 

and classification of dominance types requires canopy cover estimates for the species in the uppermost 

vegetation layer and the physiognomic attributes” (Jennings et al., 2003).  

 

In this study, ground observation data for image classification and verification were collected in the field 

during October 2017. Stratified random sampling scheme was build and stratification of the study area was 

based on the landscape distribution map generated in the research of Wanlong Sun (Sun et al., 2017), 

combining with obvious physiognomic types in the field. Random sample plots were generated in ArcGIS 

while actual sample plots were adjusted according to the guidelines: 

➢ The plot should include plant communities with homogeneous physiognomy 

Figure 7 Time series Sentinel-1 images with VH polarization used in the study 
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➢ The predominant type in the same vegetation layer should be consistent 

➢ The plot should not encompass any abrupt changes or obvious gradients in environmental factors, 

such as slope, aspect, geologic parent materials etc.  

 

A software named MAP PLUS uploaded in mobile phone was used for navigation with a 0.6-meter 

accuracy. Each sample point in the field represented approximately 30 * 30 m sample plot, and each plot 

was divided into five subplots oriented towards each cardinal direction and centre point as shown in 

Figure 9. The percentage of plant taxa in each subplot was documented and the sum was calculated for 

each sample plot. Based on vegetation cover, dominance types were identified and classified into seven 

classes of plant communities and two classes of non-vegetation landscapes as shown in Figure 8. The 

description of nine classes was shown in Table 3. In addition, UAV technique was used to provide 

reference information on class identification due to poor accessibility. Totally, 370 sample plots were 

identified and collected in study area with 30 – 50 samples for each stratum. 

 

 

 

 

Figure 8 Field photos of the nine classes mapped. 1) Cordgrass; 2) Mud flats; 3) Open water; 4) Reed; 5) 
Seepweed; 6) Seepweed + Reed; 7) Seepweed + Tamarisk; 8) Seepweed + Tamarisk +Reed; 9) Tamarisk 
+ Reed. 
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Table 3 Nine-categories plant communities and non-vegetation landscape description 

Class Description 

1-Cordgrass Smooth cordgrass has > 70%  

2-Mud flats Total vegetation plot cover < 5% 

3-Open water Includes transient water that obscures other classes and permanent 

water where the water table is above the ground channel, river and sea.  

4-Reed Common reed has > 70% 

5-Seepweed Seepweed has > 70% 

6-Seepweed + Reed Seepweed and Common reed in combination > 80% 

7-Seepweed + Tamarisk Seepweed and Five-stamen tamarisk in combination > 80% 

8-Seepweed + Tamarisk + Reed Seepweed, Common reed and Five-stamen tamarisk in combination > 

80%, each vegetation type > 20% 

9-Tamarisk + Reed Five-stamen tamarisk and Common reed in combination > 80% 

   

Figure 9 Distribution of sample plots in the study area and diagram of stratified sample method 



MAPPING PLANT COMMUNITIES IN THE INTERTIDAL ZONES OF THE YELLOW RIVER DELTA USING SENTINEL-2 OPTICAL AND SENTINEL-1 SAR TIME SERIES 
DATA 

16 

2.3. Methods 

 

Figure 10 Flowchart of research methodology 
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2.3.1. Random Forest Algorithm 

Random Forest (RF) classifier is widely used in various remote sensing classification (Lu & Weng, 2007). 

As one type of supervised classifiers based on machine learning,  random forest classifier can easily detect 

the spectral characteristics of vegetation from ground training data and identify these unidentified data 

with the trained characteristics (Belgiu & Drăguţ, 2016). Compared with other machine learning classifiers, 

random forest classifier can usually get a higher accuracy of classification results (Abdel-Rahman et al., 

2014; Shang & Chisholm, 2014). Also, the requirement for fewer parameters (Chan et al., 2012; Shao et al., 

2015) and less time (Chan & Paelinckx, 2008a) make it advantageous over other classifiers, especially when 

using multi-dimensional data. Moreover, random forest classifier has been widely applicated to map land 

cover classes (Colditz & Roland, 2015; Haas & Ban, 2014), boreal forest habitats (Räsänen et al., 2013) and 

tree canopies (Karlson et al., 2015). Therefore, random forest classifier was used for classifying and 

mapping intertidal plant communities in this study. 

 

Random Forest is a collective classifier combining a range of decision trees which make it advantageous 

for classification (Breiman, 2001). These trees are individually established by a bootstrapped sample of the 

training dataset (Pal, 2005). After several trees grow, the tree will be split using a user-defined number of 

input variables (i.e., Mtry) randomly selected at each node. When the established forest gets the user-

defined number of trees (i.e., Ntree), each tree will vote for the best input variable using the bootstrapped 

samples. So the forest casts the votes and chooses the classification with the majority votes (Millard & 

Richardson, 2013). In each tree, around half of the total samples (i.e., in-bag samples) are used to train the 

trees while the rest (i.e., out-of-bag samples) is used in an internal cross-validation technique for estimating 

model accuracy. In other words, each tree is trained using a certain percentage of randomly selected 

training points with the remaining of training data, serving to estimate the classification accuracy. The out-

of-bag (OOB) error is estimated based on the error classification, which the smaller indicates the higher 

accuracy of classification. Furthermore, the results derived from Random Forest Classification are not 

hindered by overfitting because a lot of trees generated ensures generalization of the patterns in the data 

(Breiman, 2001). In this classification, the value of 1000 for Ntree was proposed, and the Mtry value was 

the default. 

 

Variable importance was evaluated by the difference in classification accuracies between the permuted and 

original out-of-bag samples (Breiman, 2001). To estimate the importance of input variable, the out-of-bag 

samples of the certain variable are randomly permuted first. The permuted out-of-bag samples are run 

through all the classification trees again. “Then the variable importance is computed by averaging the 

difference in accuracies between the original and the permuted out-of-bag samples for all the trees. The 

merit of the variable importance measure compared to univariate screening methods is not only includes 

the influence of each predictor variable separately but also the multivariable interactions with other 

predictor variables, which make this advanced approach more efficient and accurate” (Archer & Kimes, 

2008; Chan & Paelinckx, 2008b). In this study, the Gini index was automatically derived from the random 

forest algorithm, indicating the importance of the input variables for all models with different 

combinations of satellite data.  

2.3.2. Classification scenarios 

In this study, random forest classifier was used to identify nine land cover classes (1-Cordgrass; 2-Mud 

flats; 3-Open water; 4-Reed; 5-Seepweed; 6-Seepweed + Reed; 7-Seepweed + Tamarisk; 8-Seepweed + 

Tamarisk + Reed; 9-Tamarisk + Reed) based on input variables derived from Sentinel-1 SAR and 

Sentinel-2 optical data in R platform. The input variables include Sentinel-1 SAR time series data with dual 

VV + VH polarization, single-date and multi-temporal Sentinel-2 images, NDVI statistic parameters (i.e., 

annual mean, maximum, minimum, and standard deviation) derived from time series Sentinel-2 data.  
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Ten scenarios which were combined with different input variables were implemented for plant community 

classification. For scenario 1 to scenario 4, four single-date images, captured on April 22 of 2017, July 11 

of 2017, October 14 of 2016 and January 12 of 2017, were respectively selected as the representatives of 

the seasons of spring, summer, fall and winter. The selection of single-date images was according to the 

average monthly temperature and rainfall for Dongying City from the year of 1971 to 2000, which is 

shown in Figure 3. Scenario 5 combined multi-season (the aggregation of the four single seasons into a 

single dataset) Sentinel-2 images while scenario six combined total twelve multi-temporal Sentinel-2 

images. Scenario 7 and scenario 8 explored the contribution of NDVI statistic parameters to intertidal 

plant communities mapping. Scenario 9 and scenario 10 explored the integration of Sentinel-1 SAR and 

Sentinel-2 optical time series data. 

 

 

Table 4 Different scenarios of input variables for intertidal plant community classification 

S
ce

n
ar

io
s 

Input variables 

Number 

of input 

variables 

Sentinel-2  Sentinel-1 

Spring 

image 

Summer 

image 

Autumn  

image 

Winter 

image 

Time-series 

images 

NDVI statistic 

parameters 

Time-series 

VV and VH 

1 √       1 

2  √      1 

3   √     1 

4    √    1 

5 √ √ √ √    4 

6     √   12 

7      √  4 

8     √ √  16 

9       √ 24 

10     √ √ √ 40 

Note: Four Sentienl-2 images from different seasons were chosen as the single-date input data, which were 

captured from April 22th 2017 (spring), July 11th 2017 (summer), October 10th 2016 (autumn), January 12th 

2017 (winter).     

2.3.3. Accuracy Assessment 

The performance of different classification results derived from ten ten-fold classification scenarios 

showing in different plant communities maps, were assessed in the confusion matrix, including overall 

accuracy, producer’s accuracy, user’s accuracy and kappa coefficient. The confusion matrix was widely 

used for accuracy assessment as a simple cross-tabulation for providing information of the predicted 

classes against the true field samples at the same certain locations (Foody, 2002). The overall accuracy was 

calculated from the total number of correctly classified samples divided by the total number of samples 

(Congalton, 1991). The producer’s accuracy is the mapping accuracy from the point of view of the map 

producer, which reflects how often are the real feature on the ground correctly shown on the classification 

map; it equals to the number of reference sites classified accurately divided by the total number of 

reference sites for that class. User’s accuracy is the accuracy from the point of view of a map user, which 

tells the users how often the class on the map will be present on the ground; it is calculated by taking the 

total number of correct classifications for a particular class and dividing it by the row total. The kappa 

coefficient is generated from a statistical test to evaluate the accuracy of classification, which evaluates 

how well the classification performed as compared to randomly assigning values; it represents the 
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proportion of agreement obtained after removing the chance effect, which can range from -1 to 1. A value 

of 0 indicates that the classification is no better than a random classification while a negative number 

indicates the classification is significantly worse than random. A value closes to 1 indicates that the 

classification is significantly better than random. 

 

In this study, the same sample sites for both classification and validating were used in accuracy assessment, 

which aims at guaranteeing the comparability between classification results. And ten-fold cross-validation 

analysis with the training dataset was performed. A total of 50% of the ground observation data were 

randomly selected in GIS for training the classifier, while the remaining 50% were used for mapping 

accuracy assessment. The confusion matrices, producer’s accuracy, and user’s accuracy were calculated 

using the remaining 50% for different scenarios. T-tests are wildly used in identification if the averages of 

two groups are statistically different. Two-sample t-tests were used for comparing two different samples. 

Furthermore, paired t-tests are used when observations from one group are paired with the other one. To 

test the significant difference between different scenarios, two sample paired t-test was proposed for the 

normally distributed population. In this study, the level of confidence is 95% (α = 0.05). Thus, the result 

is considered to be statistically different when p-value < 0.05.  
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3. RESULTS 

Due to the different combination of the input data, there are totally ten-fold classification results for each 

scenario, and for each part, the best classification result of each scenario was chosen to be shown.  

3.1. Mapping intertidal plant communities using single-date Sentinel-2 image 

Figure 11 – Figure 14 show the classification results of plant communities and non-vegetation classes in 

the intertidal zones of the Yellow River Delta respectively using four single-date images across seasons (i.e., 

spring, summer, autumn and winter). In these maps, obvious and distinctive differences in spatial 

distribution and extent of different types of plant communities were found, which reflected the large 

difference capability of single-date optical images when mapping intertidal plant communities.  

 

The performances for intertidal plant community classification among various single-season images were 

observed; the season of autumn showed the overall accuracy of 63.58% ± 3.03% and the kappa 

coefficient of 0.59 ± 0.04, followed by the season of winter (overall accuracy 61.28% ± 2.03%, kappa 

coefficient 0.56 ± 0.02). And the seasons of spring (overall accuracy 57.36% ± 4.22%, kappa coefficient 

0.52 ± 0.05) and summer (overall accuracy 58.51% ± 2.71%, kappa coefficient 0.53 ± 0.03) also showed 

lower capability for wetland vegetation classification.  

 

For the best results among ten-fold classifications, the confusion matrix for the plant community 

classification derived from four single-season images is respectively presented in Table 5 – Table 8. 

According to Table 5, the classes of 6-Seepweed+Reed (producer’s accuracy = 21.43%, user’s accuracy = 

37.5%) and 9-Tamarisk+Reed (producer’s accuracy = 30.77%, user’s accuracy = 40%) showed confusion 

classification to be other mixed classes which had the same vegetation species as themselves. In the 

confusion matrix of summer, around half of the class 4-Reed (producer’s accuracy = 34.78%, user’s 

accuracy = 57.14%) was misclassed to the other classed mixed with Reed, such as the classes of 6-

Seepweed+Reed and 9-Tamarisk+Reed; more than half of the class 6-Seepweed+Reed (producer’s 

accuracy = 28.57%, user’s accuracy = 44.44%) were misclassified to 4-Reed and 7-Seepweed+Tamarisk. 

As for Table 7, the confusion matrix of autumn, the confusion classification mostly appeared in the classes 

of 2-Mud flats (producer’s accuracy = 60.00%, user’s accuracy = 50.00%) and 9-Tamarisk+Reed 

(producer’s accuracy = 53.85%, user’s accuracy = 63.64%). Most of the misclassification of 2-Mud flats 

wrong classified to 5-Seepweed while the some of the reference points of 9-Tamarisk+Reed were 

predicted to be 6-Seepweed+Reed. Finally, the Table 8 showed the classes of 2-Mud flats (producer’s 

accuracy = 40.00%, user’s accuracy = 44.44%), 4-Reed (producer’s accuracy = 50.00%, user’s accuracy = 

46.67%) and 6-Seepweed+Reed (producer’s accuracy = 50.00%, user’s accuracy = 46.67%) were inclined 

to be respectively misclassified to 2-Mud flats, 6-Seepweed+Reed and 8-Seepweed+Tamarisk+Reed. 
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Table 5 Confusion matrix for nine-categories plant communities and non-vegetation landscapes 
classification derived from spring Sentinel-2 image 

Prediction 

Reference User’s 

accuracy

（%） 
1 2 3 4 5 6 7 8 9 

1-Cordgrass 13 0 0 0 0 0 0 2 0 86.67 

2-Mud flats 1 14 1 2 6 2 0 1 3 46.67 

3-Open water 0 0 17 0 0 0 0 0 0 100.00 

4-Reed 0 1 0 8 1 4 2 0 4 40.00 

5-Seepweed 0 2 0 0 9 1 0 1 1 64.29 

6-Seepweed+Reed 0 0 0 1 1 3 1 1 1 37.50 

7-Seepweed+Tamarisk 1 1 0 0 0 1 6 2 0 54.55 

8-Seepweed+Tamarisk+Reed 0 0 0 2 0 3 5 13 0 56.52 

9-Tamarisk+Reed 0 2 0 1 1 0 2 0 4 40.00 

Producer’s accuracy （%） 86.67 70.00 94.44 57.14 50.00 21.43 37.50 65.00 30.77   

Overall accuracy 58.78% 

Kappa 0.60 

Figure 11 The map of intertidal plant communities produced using spring Sentinel-2 image 
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Table 6 Confusion matrix for nine-categories plant communities and non-vegetation landscapes 
classification derived from summer Sentinel-2 image 

Prediction 

Reference User’s 

accuracy

（%） 
1 2 3 4 5 6 7 8 9 

1-Cordgrass 13 0 0 1 0 2 0 2 0 72.22 

2-Mud flats 0 13 2 1 4 0 0 1 1 59.09 

3-Open water 0 0 14 0 0 0 0 0 0 100.00 

4-Reed 1 4 0 8 2 4 1 0 3 34.78 

5-Seepweed 0 3 2 1 10 2 0 0 0 55.56 

6-Seepweed+Reed 0 0 0 2 0 4 1 1 1 44.44 

7-Seepweed+Tamarisk 0 0 0 0 0 2 8 3 0 61.54 

8-Seepweed+Tamarisk+Reed 0 0 0 0 0 0 3 12 0 80.00 

9-Tamarisk+Reed 1 0 0 1 2 0 3 1 8 50.00 

Producer’s accuracy （%） 86.67 65.00 77.78 57.14 55.56 28.57 50.00 60.00 61.54   

Overall accuracy 60.81% 

Kappa 0.57 

 

 

 

 

 

 

 

Figure 12 The map of intertidal plant communities produced using summer Sentinel-2 image 



MAPPING PLANT COMMUNITIES IN THE INTERTIDAL ZONES OF THE YELLOW RIVER DELTA USING SENTINEL-2 OPTICAL AND SENTINEL-1 SAR TIME SERIES 
DATA 

23 

 

Table 7 Confusion matrix for nine-categories plant communities and non-vegetation landscapes 
classification derived from autumn Sentinel-2 image 

Prediction 

Reference User’s 

accuracy

（%） 
1 2 3 4 5 6 7 8 9 

1-Cordgrass 13 0 0 0 0 0 0 1 0 92.86 

2-Mud flats 1 12 1 0 4 2 3 1 0 50.00 

3-Open water 0 0 17 0 0 0 0 0 0 100.00 

4-Reed 0 2 0 12 0 2 0 2 0 66.67 

5-Seepweed 0 3 0 0 11 0 1 0 1 68.75 

6-Seepweed+Reed 0 0 0 0 1 10 3 2 4 50.00 

7-Seepweed+Tamarisk 1 0 0 0 0 0 9 2 1 69.23 

8-Seepweed+Tamarisk+Reed 0 1 0 2 0 0 0 12 0 80.00 

9-Tamarisk+Reed 0 2 0 0 2 0 0 0 7 63.64 

Producer’s accuracy （%） 86.67 60.00 94.44 85.71 61.11 71.43 56.25 60.00 53.85   

Overall accuracy 69.59% 

Kappa 0.66 

 

 

 

 

 

 

 

Figure 13 The map of intertidal plant communities produced using autumn Sentinel-2 image 
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Table 8 Confusion matrix for nine-categories plant communities and non-vegetation landscapes 
classification derived from winter Sentinel-2 image 

Prediction 

Reference User’s 

accuracy

（%） 
1 2 3 4 5 6 7 8 9 

1-Cordgrass 14 0 0 1 0 1 0 0 0 87.50 

2-Mud flats 1 8 1 0 4 2 2 0 0 44.44 

3-Open water 0 0 17 0 0 0 0 0 0 100.00 

4-Reed 0 2 0 7 0 2 0 1 3 46.67 

5-Seepweed 0 9 0 0 11 0 1 1 0 50.00 

6-Seepweed+Reed 0 1 0 2 1 7 1 2 1 46.67 

7-Seepweed+Tamarisk 0 0 0 1 2 1 10 3 5 45.45 

8-Seepweed+Tamarisk+Reed 0 0 0 3 0 1 2 12 0 66.67 

9-Tamarisk+Reed 0 0 0 0 0 0 0 1 4 80.00 

Producer’s accuracy （%） 93.33 40.00 94.44 50.00 61.11 50.00 62.50 60.00 30.77   

Overall accuracy 60.81% 

Kappa 0.57 

 

 

 

 

 

 

Figure 14 The map of intertidal plant communities produced using winter Sentinel-2 image 
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3.2. Mapping intertidal plant communities using multi-season Sentinel-2 images 

Multi-season consisting of above four single-date images were used to explore the combination of multi-

temporal images. The overall classification accuracy from this scenario was 70.07% ± 0.66, and the kappa 

coefficient was 0.66 ± 0.04. The classification map was shown in Figure 15 while the confusion matrix is 

in Table 9. 

 

According to the classification result, the class of 3-Open water (producer’s accuracy = 94.44%, user’s 

accuracy = 100%) was well performed and classified which only one reference point was misclassified to 

2-Mud flats and remaining were all correct. However, the classes of 5-Seepweed (producer’s accuracy = 

72.22%, user’s accuracy = 61.90%) and 6-Seepweed+Reed (producer’s accuracy = 71.43%, user’s accuracy 

= 62.50%) were both confused with each other. And the class of 8-Seepweed+Tamarisk+Reed were 

mostly misclassified to 6-Seepweed+Reed and 7-Seepweed+Tamarisk.  

 

 

 

 

 

 

 

 

 

Figure 15 The map of intertidal plant communities produced using multi-season Sentinel-2 images 
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Table 9 Confusion matrix for nine-categories plant communities and non-vegetation landscapes 
classification derived from multi-season Sentinel-2 images 

Prediction 

Reference User’s 

accuracy

（%） 
1 2 3 4 5 6 7 8 9 

1-Cordgrass 13 0 0 1 0 0 0 1 0 86.67 

2-Mud flats 1 14 1 0 3 0 0 0 0 73.68 

3-Open water 0 0 17 0 0 0 0 0 0 100.00 

4-Reed 0 2 0 12 0 2 0 0 1 70.59 

5-Seepweed 0 4 0 0 13 2 1 1 0 61.90 

6-Seepweed+Reed 0 0 0 0 1 10 1 2 2 62.50 

7-Seepweed+Tamarisk 1 0 0 0 0 0 11 3 0 73.33 

8-Seepweed+Tamarisk+Reed 0 0 0 1 0 0 1 13 0 86.67 

9-Tamarisk+Reed 0 0 0 0 1 0 2 0 10 76.92 

Producer’s accuracy （%） 86.67 70.00 94.44 85.71 72.22 71.43 68.75 65.00 76.92   

Overall accuracy 76.35% 

Kappa 0.73 

 

3.3. Mapping intertidal plant communities using time series Sentinel-2 images 

Adding the remaining monthly time series Sentinel-2 images in one year to scenario 5, the scenario 6 used 

the aggregation of twelve monthly multi-temporal Sentinel-2 images from July 2016 to July 2017 to further 

explore the improved multi-temporal optical images. As a result, scenario 6 achieved the overall accuracy 

of 70.81% ± 3.05% and the kappa coefficient of 0.67 ± 0.03. The classification map was shown in Figure 

16 while the confusion matrix is in Table 10. 

 

According to the classification and confusion matrix, the class of 3-Open water (producer’s accuracy = 

94.44%, user’s accuracy = 100%) showed the same result as scenario 5. The confusion classification 

appeared in the class of 7-Seepweed+Tamarisk (producer’s accuracy = 62.50%, user’s accuracy = 66.67%) 

which around 40% reference points were wrongly predicted into other classes such as 2-Mud flats and 8-

Seepweed+Tamarisk+Reed. And the class of 8-Seepweed+Tamarisk+Reed (producer’s accuracy = 

65.00%, user’s accuracy = 86.67%) shows the confusion with the class of 7-Seepweed+Tamarisk. 
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Table 10 Confusion matrix for nine-categories plant communities and non-vegetation landscapes 
classification derived from time series Sentinel-2 images 

Prediction 

Reference User 

accuracy

（%） 
1 2 3 4 5 6 7 8 9 

1-Cordgrass 13 0 0 1 0 0 0 1 0 86.67 

2-Mud flats 1 15 0 0 3 2 2 0 1 62.50 

3-Open water 0 0 17 0 0 0 0 0 0 100.00 

4-Reed 0 2 0 10 0 1 0 0 1 71.43 

5-Seepweed 0 3 1 0 14 0 1 1 0 70.00 

6-Seepweed+Reed 0 0 0 1 1 11 1 1 2 64.71 

7-Seepweed+Tamarisk 1 0 0 0 0 0 10 4 0 66.67 

8-Seepweed+Tamarisk+Reed 0 0 0 1 0 0 1 13 0 86.67 

9-Tamarisk+Reed 0 0 0 1 0 0 1 0 9 81.82 

Producer accuracy （%） 86.67 75.00 94.44 71.43 77.78 78.57 62.50 65.00 69.23   

Overall accuracy 75.68% 

Kappa 0.74 

 

3.4. Mapping intertidal plant communities using NDVI statistic parameters derived from time series 
Sentinel-2 images 

The overall accuracy (54.26% ± 2.40%) and kappa coefficient (0.48 ± 0.03) showed the limitation of using 

only NDVI statistic parameters for intertidal plant community classification, the speckle and noise in 

classification map (shown in Figure 17) may be caused by the confusing information of mixed plant 

Figure 16 The map of intertidal plant communities produced using time series Sentinel-2 images 
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communities within one pixel. The highest user’s accuracy and producer’s accuracy, presented in Table 11, 

were appeared in the classes of 1-Cordgrass (producer’s accuracy = 73.33%, user’s accuracy = 100%) and 

3-Open water (producer’s accuracy = 94.44%, user’s accuracy = 100%) while other classes shows poor 

classification capabilities, especially in the classes of 4-Reed (producer’s accuracy = 21.43%, user’s 

accuracy = 25%), 5-Seepweed (producer’s accuracy = 38.89%, user’s accuracy = 36.84%), 6-Seepweed + 

Reed (producer’s accuracy = 50.00%, user’s accuracy = 35.00%).  

 
Table 11 Confusion matrix for nine-categories plant communities and non-vegetation landscapes 
classification derived from NDVI statistic parameters 

Prediction 

Reference User 

accuracy

（%） 
1 2 3 4 5 6 7 8 9 

1-Cordgrass 11 0 0 0 0 0 0 0 0 100.00 

2-Mud flats 1 10 1 1 6 0 0 1 1 47.62 

3-Open water 0 0 17 0 0 0 0 0 0 100.00 

4-Reed 0 1 0 3 2 2 3 0 1 25.00 

5-Seepweed 0 9 0 0 7 2 0 0 1 36.84 

6-Seepweed+Reed 1 0 0 6 0 7 3 1 2 35.00 

7-Seepweed+Tamarisk 0 0 0 1 0 2 7 3 0 53.85 

8-Seepweed+Tamarisk+Reed 2 0 0 1 0 1 3 15 0 68.18 

9-Tamarisk+Reed 0 0 0 2 3 0 0 0 8 61.54 

Producer accuracy （%） 73.33 50.00 94.44 21.43 38.89 50.00 43.75 75.00 61.54   

Overall accuracy 57.43% 

Kappa 0.52 

 

Figure 17 The map of intertidal plant communities produced using NDVI statistical parameters derived 
from time series Sentinel-2 images 
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3.5. Mapping intertidal plant communities using time seires Sentinel-2 images and NDVI statistic 
parameters  

 

Adding the NDVI statistic parameters to time series Sentinel-2 images, scenario 8 achieved the overall 

accuracy of 70.81% ± 3.05% and the kappa coefficient of 0.67 ± 0.03. And the Figure 18 shows the 

classification result of scenario 8 and the confusion matrix is shown in Table 12. Being the same as 

previous scenarios, the best classification appeared in the class of 3-Open water (producer’s accuracy = 

94.44%, user’s accuracy = 100%) while the confusion classifications of 7-Seepweed+Tamarisk (producer’s 

accuracy = 62.50%, user’s accuracy = 66.67%) and 2-Mud flats (producer’s accuracy = 70.00%, user’s 

accuracy = 60.87%) reflected the limitation of optical time-series images for mapping mixed intertidal 

plant communities, especially these mixed plant communities which have the common vegetation species.  

Figure 18 The map of intertidal plant communities produced using time series Sentinel-2 images with NDVI 
statistical parameters 
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Table 12 Confusion matrix for nine-categories plant communities and non-vegetation landscapes 
classification derived from time series Sentinel-2 images with NDVI statistical parameters 

Prediction 

Reference User 

accuracy

（%） 
1 2 3 4 5 6 7 8 9 

1-Cordgrass 13 0 0 1 0 0 0 1 0 86.67 

2-Mud flats 1 14 1 0 3 2 2 0 0 60.87 

3-Open water 0 0 17 0 0 0 0 0 0 100.00 

4-Reed 0 2 0 12 0 1 0 0 2 70.59 

5-Seepweed 0 3 0 0 14 0 1 1 0 73.68 

6-Seepweed+Reed 0 0 0 0 1 11 1 2 2 64.71 

7-Seepweed+Tamarisk 1 0 0 0 0 0 10 4 0 66.67 

8-Seepweed+Tamarisk+Reed 0 0 0 1 0 0 1 12 0 85.71 

9-Tamarisk+Reed 0 1 0 0 0 0 1 0 9 81.82 

Producer accuracy （%） 86.67 70.00 94.44 85.71 77.78 78.57 62.50 60.00 69.23   

Overall accuracy 75.68% 

Kappa 0.73 

 

3.6. Mapping intertidal plant communities using time series Sentinel-1 VV and VH data 

 

The classification result of scenario 9 (the overall accuracy 59.93% ± 3.93% and kappa coefficient 0.55 ± 

0.04) was showed in Figure 19, lots of the fragment and noise appeared around land shows the confusing 

landscape, which reflected the inability when using time series Sentinel-1 VV and VH data. The result 

showed more confusion classification in most classes, and the obviously confusion appears in the classes 

of 6-Seepweed+Reed (producer’s accuracy = 42.86%, user’s accuracy = 54.55%), 7-Seepweed+Tamarisk 

(producer’s accuracy = 43.75%, user’s accuracy = 43.75%) and 9-Tamarisk+Reed (producer’s accuracy = 

46.15%, user’s accuracy = 54.55%). Most of the class of 6-Seepweed+Reed was wrongly classified into 5-

Seepweed and 7-Seepweed+Tamarisk, while the class of 7-Seepweed+Tamarisk was wrongly classified 

into 8-Seepweed+Tamarisk+Reed and 9-Tamarisk+Reed.  
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Table 13 Confusion matrix for nine-categories plant communities and non-vegetation landscapes 
classification derived from time series Sentinel-1 VV and VH images 

Prediction 

Reference User 

accuracy

（%） 
1 2 3 4 5 6 7 8 9 

1-Cordgrass 14 1 0 1 0 0 0 1 0 82.35 

2-Mud flats 1 12 1 1 2 0 2 0 1 60.00 

3-Open water 0 3 17 0 0 0 0 0 0 85.00 

4-Reed 0 1 0 10 0 2 0 1 0 71.43 

5-Seepweed 0 1 0 1 10 3 0 2 0 58.82 

6-Seepweed+Reed 0 1 0 0 1 6 1 0 2 54.55 

7-Seepweed+Tamarisk 0 0 0 0 1 1 7 3 4 43.75 

8-Seepweed+Tamarisk+Reed 0 0 0 1 1 2 5 13 0 59.09 

9-Tamarisk+Reed 0 1 0 0 3 0 1 0 6 54.55 

Producer accuracy （%） 93.33 60.00 94.44 71.43 55.56 42.86 43.75 65.00 46.15   

Overall accuracy 64.19% 

Kappa 0.61 

 

 

 

 

 

 

 

Figure 19 The map of intertidal plant communities produced using time series Sentinel-1 VV and VH 
images 
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3.7. Mapping intertidal plant communities using time series Sentinel-2 images, NDVI statistic 
parameters and time series Sentinel-1 VV and VH data 

Figure 20 shows the classification result of plant communities and non-vegetation classes using 

combination of Sentinel-1 SAR and Sentinel-2 optical time series data with the NDVI statistic parameters 

derived from the Sentinel-2 time series images. The overall accuracy of scenario 10 is 72.97% ± 3.66% and 

the kappa coefficient is 0.70 ± 0.04. The confusion matrix, shown in Table 14, presented rather good 

performance and got relatively high user’s accuracy and producer’s accuracy, especially in the classes of 1-

Cordgrass (producer’s accuracy = 86.67%, user’s accuracy = 92.86%), 3-Open water (producer’s accuracy 

= 94.44%, user’s accuracy = 100%), 8-Seepweed+Tamarisk+Reed (producer’s accuracy = 70.00%, user’s 

accuracy = 82.35%) and 9-Tamarisk+Reed (producer’s accuracy = 76.92%, user’s accuracy = 90.90%). On 

the other hand, the classes of 7-Seepweed+Tamarisk (producer’s accuracy = 56.25%, user’s accuracy = 

64.29%) and 6-Seepweed+Reed (producer’s accuracy = 78.57%, user’s accuracy = 68.75%). 

 

Figure 20 The map of intertidal plant communities produced using time series Sentinel-1 and Sentinel-2 
images with NDVI statistical parameters 
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Table 14 Confusion matrix for nine-categories plant communities and non-vegetation landscapes 
classification derived from time series Sentinel-1 and Sentinel-2 images with NDVI statistical parameters 

Prediction 

Reference User 

accuracy

（%） 
1 2 3 4 5 6 7 8 9 

1-Cordgrass 13 0 0 1 0 0 0 0 0 92.86 

2-Mud flats 1 16 0 1 3 2 2 0 0 64.00 

3-Open water 0 0 17 0 0 0 0 0 0 100.00 

4-Reed 0 1 0 11 0 1 0 0 1 78.57 

5-Seepweed 0 3 1 0 14 0 1 1 0 70.00 

6-Seepweed+Reed 0 0 0 0 1 11 1 1 2 68.75 

7-Seepweed+Tamarisk 1 0 0 0 0 0 9 4 0 64.29 

8-Seepweed+Tamarisk+Reed 0 0 0 1 0 0 2 14 0 82.35 

9-Tamarisk+Reed 0 0 0 0 0 0 1 0 10 90.90 

Producer accuracy （%） 86.67 80.00 94.44 78.57 77.78 78.57 56.25 70.00 76.92   

Overall accuracy 77.70% 

Kappa 0.75 

 

3.8. Comparing the intertidal plant communities mapping accuracies derived from ten models 

The boxplots of the overall accuracy and kappa coefficient are shown in Figure 21 in sort of the value 

from high to low. Table 15 – 17 shows the statistical overall accuracy and kappa coefficient of ten 

classification scenarios using random forest algorithm.  

Figure 21 The kappa coefficient of ten scenarios with ten repetitions is shown by box plots (models sorted 
by the value from high to low). Level of significant difference (a-e) is annotated based on pairwise two-
sample t-tests (p < 0.05) 
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In general, the boxplot of overall accuracy presents the same trend as kappa coefficient. Using single-date 

image of Sentienl-2 could not generate desirable plant communities map (scenario 1: overall accuracy = 

57.36% ± 4.22%, kappa coefficient = 0.52 ± 0.05; scenario 2: overall accuracy = 58.51% ± 2.71%; kappa 

coefficient = 0.53 ± 0.03; scenario 3: overall accuracy = 63.58% ± 3.03%, kappa coefficient = 0.59 ± 0.04; 

scenario 4: overall accuracy = 61.28% ± 2.03%, kappa coefficient = 0.56 ± 0.02). And the same situation 

also occurs when use the NDVI statistic parameters (scenario 7: overall accuracy = 54.26% ± 2.40%, 

kappa coefficient = 0.48 ± 0.03) extracted from Sentinel-2 time series data, and the time series Sentinel-1 

VV and VH data (scenario 9: overall accuracy = 59.93% ± 3.93%, kappa coefficient = 0.55 ± 0.04). 

However, using multi-season Sentinel-2 images (scenario 5: overall accuracy = 70.07% ± 3.79%, kappa 

coefficient = 0.66 ± 0.04), Sentinel-2 time series images (scenario 6: overall accuracy = 70.81% ± 3.05%, 

kappa coefficient = 0.67 ± 0.03) and Sentinel-2 time series data combined with NDVI statistical 

parameters (scenario 8: overall accuracy = 70.81% ± 3.35%, kappa coefficient = 0.67 ± 0.04) performed 

much better than previous scenarios. Moreover, high overall accuracy can be achieved by using integration 

of multi-sensor images. The integration of time series Sentinel-1 and Sentinel-2 images (scenario 10: 

overall accuracy = 72.97% ± 3.66%, kappa coefficient = 0.70 ± 0.04) were proven to be best classification 

scenario in mapping intertidal plant communities.  

 

Table 15 shows the significant difference between ten scenarios’ kappa coefficient with each other. In 

Figure 21 above the boxplot shows the level of significant difference (a - e) annotated based on pairwise 

two-sample t-tests with 95% confidence interval. Interpretably, the integration of Sentinel-1 SAR and 

Sentinel-2 optical time series images with the NDVI statistic parameters (scenario 10) not only achieved 

the best classification accuracy but also shows the significant difference with other scenarios, which 

proves their complementary information contained in optical and SAR images. It means the intertidal 

plant communities could benefit from the distinctive features of Sentinel-1 SAR and Sentinel-2 optical 

data. Optical sensors receive the reflectance spectrum from ground objects and contain information on 

surface reflectance and emissivity characteristics, while SAR captures the structure and dielectric 

properties of the Earth surface materials, and provide the information on water content, texture and 

characteristics. Land cover types, in this study, especially vegetation types that are impossible to separate in 

optical images might be distinguishable with SAR images and vice versa. Interestingly, the classification 

with integrated Sentinel-2 time series images and NDVI statistic parameters (scenario 8) showed no 

significant difference in the accuracy assessment compared with using only Sentinel-2 time series data and 

multi-season Sentinel-2 images, which means the statistical metrics derived from multi-temporal NDVI 

data into the classification did not contribute to improving the mapping accuracy. The reason might lie in 

the confusion of mixed plant communities within one pixel. Furthermore, the results showed weak 

capability for the single-date image (scenario 1 to scenario 4), individual NDVI statistical parameter 

(scenario 7) and Sentinel-1 time series VV and VH data (scenario 9). For the single-date image, the 

information was limited by the moment of the image was shot, leading to confusing and non-distinctive 
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spectral reflectance. NDVI statistical parameters derived from Sentinel-2 time series data limited by the 

confusion of mixed plant communities within one pixel, while the Sentinel-1 time series VV and VH were 

limited by the acquisition time. For Sentinel-1, the sensor-acquired the images during the flood phase, in 

which most of the plant communities were submerged at high tide, leading an underestimation of 

vegetated area. 

         

Table 15 The significant difference between kappa coefficient of ten scenarios with 95% confidence 
interval 

 

 
Table 16 The statistical overall accuracy of ten scenarios 

Model 
Overall accuracy 

Min Mean Max Standard deviation 

1 51.35% 57.36% 64.19% 4.22% 

2 54.73% 58.51% 62.16% 2.71% 

3 59.46% 63.58% 69.59% 3.03% 

4 58.11% 61.28% 64.86% 2.03% 

5 62.16% 70.07% 76.35% 3.79% 

6 64.19% 70.81% 75.68% 3.05% 

7 50.68% 54.26% 57.43% 2.40% 

8 64.19% 71.08% 75.68% 3.35% 

9 53.38% 59.93% 65.54% 3.93% 

10 65.54% 72.97% 77.70% 3.66% 

 

 

 

 

 

 

 

 

Model 1 2 3 4 5 6 7 8 9 10 

1  * ** ** **** **** **** **** **** **** 

2   ns ns **** **** **** **** **** **** 

3    ns **** **** **** **** **** **** 

4     *** **** **** **** **** **** 

5      ns ** ** *** **** 

6       ns * * **** 

7        ns ns ** 

8         ns *** 

9          ns 

10           



MAPPING PLANT COMMUNITIES IN THE INTERTIDAL ZONES OF THE YELLOW RIVER DELTA USING SENTINEL-2 OPTICAL AND SENTINEL-1 SAR TIME SERIES 
DATA 

36 

Table 17 The statistical kappa coefficient of ten scenarios 

Model 
Kappa coefficient 

Min Mean Max Standard deviation 

1 0.45 0.52 0.60 0.05  

2 0.49 0.53 0.57 0.03  

3 0.54 0.59 0.66 0.04  

4 0.53 0.56 0.60 0.02  

5 0.57 0.66 0.73 0.04  

6 0.60 0.67 0.73 0.03  

7 0.44 0.48 0.52 0.03  

8 0.59 0.67 0.73 0.04  

9 0.47 0.55 0.61 0.04  

10 0.61 0.70 0.75 0.04  

 

 

3.9. Importance of the variables 

Variable importance was estimated by the Gini index acquired from random forest algorithm, and it 

indicated the significance of input data in different combination. The overall important variables were 

selected to display in the following figure. Figure 22 presents the variable importance and ranking of the 

selected Sentinel-1, Sentinel-2 and NDVI statistical metrics for the best classification scenario (scenario 10) 

among ten scenarios bases on the Gini index.  

 

It is not difficult to find that not all the variables performed equally in the classification results. The first 

ten variables presented high contribution for plant communities classification. As shown in Figure 22, 

three red edge bands (band 5,6,7) from the image captured on a certain date of October 14, 2016 appeared 

as the first-ranked metrics under the condition for mapping intertidal plant communities, followed by the 

mean statistical NDVI data. Moreover, the images acquired in September, October, December 

contributed most among all images, and the images acquired in the season of early autumn provided most 

significant information and contribution for plant communities in the intertidal zones of the Yellow River 

Delta. The reason may lie in the growth stage of the plant communities grown in the study area. In the 

early autumn plant species are maturing, some distinctive characteristics reflected through radiation and 

captured by the satellite sensors; seepweeds are turning to be red color, cordgrass are yellowing, while reed 

catkins are growing white. Red edge bands are very sensitive to the chlorophyll content change in 

vegetation especially in autumn. Generally, according to the figure, multi-temporal Sentinel-1 images were 

less important for mapping plant communities in the intertidal zones compared with multi-temporal 

Sentinel-2 images.  

 

 

 

 

 

 



MAPPING PLANT COMMUNITIES IN THE INTERTIDAL ZONES OF THE YELLOW RIVER DELTA USING SENTINEL-2 OPTICAL AND SENTINEL-1 SAR TIME SERIES 
DATA 

37 

 

Figure 22 Random Forest classification variable importance under scenario 10; the Mean Decrease Gini 
index. All 136 variables are sorted in ascending order according to their median importance in the model 
after 10 runs. 
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4. DISCUSSION 

4.1. Mapping plant communities using single-date Sentinel-2 images 

In this study, seven plant communities, consisting of different single and mixed plant species, and two 

non-vegetation classes were successfully distinguished and classified using remotely sensed data. Optical 

data were proposed for wetland identification and vegetation detection. Various applications and 

classification methods of the satellite remote sensing (i.e., Landsat MSS, Landsat TM, SPOT, AVHRR, 

IRD-1B and LISS-II) were summarized (Gómez et al., 2016; Ozesmi & Bauer, 2002). To get over the 

difficulties caused by the similarities of spectral reflectance contributed by the same basic components 

such as chlorophyll, carotene and other light-absorbing pigments and to improve the classification 

accuracy of plant communities, multi-temporal Sentinel-2 images were explored the ability for mapping 

plant communities. However, lots of studies also showed successful classification of wetland vegetation 

and landscape through the single-date image. Therefore, it is worthing exploring the classification 

capability of both single-date and multi-temporal images for distinguishing and mapping the intertidal 

plant communities in the Yellow River Delta. The results of scenarios with multi-temporal optical images 

revealed phenological characteristics of plant communities in highly dynamic wetland landscape. On the 

contrast, the scenarios with single-date images did not. 

 

Because the plant species in the intertidal zones of the Yellow River Delta are annual plants, the multi-

temporal Sentinel-2 images were selected monthly images acquired from July 2016 to July 2017 for 

providing distinctive phenological characteristics. And four single-date images, which were captured on 

April 22 of 2017, July 11 of 2017, October 14 of 2016 and January 12 of 2017, was selected as the 

representatives of different seasons according to the season distinction based on the average monthly 

temperature and rainfall for Dongying City from the year of 1971 to 2000. Through the accuracies 

comparison, the season of autumn (scenario 3: overall accuracy = 63.58% ± 3.03%, kappa coefficient = 

0.59 ± 0.04) was proven to be the better season which significantly contributed more to the classification 

accuracy than others (scenario 1-spring: overall accuracy = 57.36% ± 4.22%, kappa coefficient = 0.52 ± 

0.05; scenario 2-summer: overall accuracy = 58.51% ± 2.71%; kappa coefficient = 0.53 ± 0.03; scenario 4-

winter: overall accuracy = 61.28% ± 2.03%, kappa coefficient = 0.56 ± 0.02). The maximum discrepancy 

on spectral reflectance between different plant species appeared in the season of autumn, making it the 

optimum season for certain plants classification in the study area. The reason may lie in the growth stage 

of the plant communities grown in the study area. In the season of autumn plant species are maturing, 

some distinctive characteristics reflected through radiation and then be captured by the satellite sensors, of 

which the red edge bands are very sensitive to the chlorophyll content change in vegetation; these 

distinctive changes may indicate that seepweeds are turning to be red color, cordgrass are yellowing, while 

reed catkins are growing white in autumn.  

 

It is worth mentioning that salt patches were found in some part of high tide zones, especially in some dry 

seasons. It was these white salt patches cause the confusion of mud flats and mixed plant communities, 

resulting in relatively low overall accuracy and low kappa coefficient. The level of tides is influenced by the 

combined effects of the gravitational forces exerted by the Moon and the Sun as well as the self-rotation 

of the Earth. The water content of the high tide zones decreases with the high tide line getting lower 

during autumn and winter, leading to salt precipitation. On the other hand, the confusion matrix shows 

the same problems, almost half of the class of 2-mud flats were misclassified into plant communities. 
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Therefore, the salt patches make it difficult distinguishing and classifying the mud flats covered by salt. 

The selected season of the single-date image could also influence the mapping accuracy and classification 

results. Therefore, caution should be exercised when mapping highly dynamic landscape with single-date 

data, especially in the dry seasons.   
 

4.2. Mapping plant communities using multi-temporal Sentinel-2 data  

 

In this study, two scenarios (i.e., scenario 5 and scenario 6) were implemented to explore the capability for 

classifying and mapping the intertidal plant communities in the Yellow River Delta in the temporal 

dimension. Scenario 5 aggregated the four single-date Sentinel-2 images to form the multi-season Sentinel-

2 images while Scenario 6 aggregated the twelve-monthly single-date Sentinel-2 images to form the 

Sentinel-2 time series data.    

 

The classification results of scenario 5 (overall accuracy = 70.07% ± 3.79%, kappa coefficient = 0.66 ± 

0.04) and scenario 6 (overall accuracy = 70.81% ± 3.05%, kappa coefficient = 0.67 ± 0.03) shows that 

there is no significant difference between each other. This situation was not difficult to explain when 

taking the variable importance into consideration. According to Figure 22, it was found that among the 

top fifteen variables, nine of them were included in the scenario 5 and twelve variables (including the 

variables in the scenario 5 but except for the NDVI statistical parameters) were included in the scenario 6, 

which means that scenario 5 contained the most important variables with a large proportion of 

contribution to mapping accuracy even though it contained a less amount of images than scenario 6. In 

other words, even though scenario 6 had more time series data than scenario 5, the extra data were of less 

significance and may not make a significant difference between these two scenarios. Therefore, the 

suggestion can be concluded that multi-season Sentinel-2 images which aggregated four single-date images 

Figure 23 The salt patch found in the high tide zones 
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captured in January, April, July and October were adequate for mapping intertidal plant communities in 

this study area and adding other multi-temporal Sentinel-2 images cannot significantly improve the overall 

mapping accuracy and kappa coefficient.    

 

According to the confusion matrix, the classes of 6-Seepweed+Reed and 7-Seepweed+Tamarisk were 

confused with each other and the class of 5-Seepweed was confused with the class of 2-Mud flats for both 

scenarios. And the prediction of the class of 2-Mud flats was partly from mixed plant communities, while 

some of the 9-Tamarisk+Reed were misclassified into the classes of 6-Seepweed+Reed and 4-Reed, which 

means the distinguishing and classifying of mixed plant communities of the intertidal zones still need 

improvement.   

 

4.3. Mapping plant communities when adding the NDVI statistical parameters 

The NDVI statistical parameters are proposed to be used for wetland mapping (Halabuk & Mojses, 2015; 

Nageswara et al., 2005; Tucker, 1979). In this study, the NDVI statistical parameters were generated from 

the Sentinel-2 time series data which as the feature derived from multi-temporal optical images. Scenario 7 

used the only NDVI statistical parameters as the input variables while scenario 8 adding the NDVI 

statistical parameters into Sentinel-2 time series data as the auxiliary data. The classification results of 

scenario 7 (overall accuracy = 54.26% ± 2.40%, kappa coefficient = 0.48 ± 0.03) and scenario 8 (overall 

accuracy = 70.81% ± 3.35%, kappa coefficient = 0.67 ± 0.04) showed large difference between these two 

scenarios. And the performance of scenario 7 was ranking the last classification among ten different 

combinations of input variables, which presented that the single NDVI statistical parameters had the  

inability for mapping intertidal plant communities in this study. As for scenario 8, the paired t-test shows 

that there is no significant difference between scenario 8 and scenario 6, which means that adding 

vegetation index statistical parameters based on the Sentinel-2 time series data did not contribute to 

significantly improving the mapping accuracy. The reason might lie in the confusion of mixed plant 

communities within one pixel.  

 

However, shown in Figure 22, three parameters (i.e., mean, minimum and maximum) were respectively 

ranking 3rd, 6th, 9th important among the most significant fifteen input variables for mapping intertidal 

plant communities in the Yellow River Delta. It seemed that the NDVI statistical parameters played an 

important role as auxiliary data when mapping intertidal plant communities but could not be used as single 

input data. The confusion matrix showed the poor capability for distinguishing 4-Reed and 6-

Seepweed+Reed. Also, the class of 5-Seepweed were mostly misclassified into 2-Mud flats. The reason 

may lie in the chlorophyll content in vegetation and the variation. For the seepweed, it grows to be red in 

the autumn with the decreasing chlorophyll content, leading the seasonal variation of NDVI value of the 

5-Seepweed class similar to 2-Mud flats in autumn and winter, which lead to the confusion of these two 

classes.  

4.4. Mapping plant communities using integretion of Sentinel-1 SAR and Sentinel-2 optical timre 
series data 

 

The Sentinel-1 time series data with dual VV and VH polarization (scenario 9) were used as input variables 

for mapping intertidal plant communities in the Yellow River Delta. The classification results achieved the 

overall accuracy of 59.93% ± 3.93% and the kappa coefficient of 0.55 ± 0.04, reflecting the less capability 

for distinguishing and classification intertidal plant communities compared with Sentinel-2 time series data. 

The classification map and confusion matrix showed the confusion of 3-Open water and 2-Mud flats. 

According to the Figure 19, it was found that in the south of the study area, a large extent was classified 
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into the class of 3-Open water; as well as the northwest part of the study area. Moreover, the classes of 6-

Seepweed+Reed and 7-Seepweed+Tamarisk were largely misclassified into 8-Seepweed+Tamarisk+Reed. 

Also, the class of 9-Tamarisk+Reed were mostly misclassified into the classes of 6-Seepweed+Reed and 7-

Seepweed+Tamarisk. A plausible explanation seems to be that the intertidal wetland landscape was highly 

dynamic, and the characteristics of the plant communities shown in Sentinel-1 time series images might 

not match the ground truth data due to the time difference of satellite passing the study area. For Sentinel-

1, the sensor-acquired the images during the flood phase, in which most of the plant communities were 

submerged at high tide; by contrast, the ground truth data were collected during the ebb phase and most 

of the plant communities were exposed to the air at low tide. Therefore, the integration of Sentinel-1 data 

caused an underestimation of vegetated area.  

 

Many researches using both optical and SAR images have been explored for land cover classification 

(Amarsaikhan & Douglas, 2004; Blaes et al., 2005; Chust et al., 2004) and most of the results from 

integrating optical and SAR sensors are always significantly higher than those obtained from using an 

individual sensor, particularly for certain land cover types, such as urban (Corbane et al., 2008; Toll, 1985) 

agriculture (Blaes et al., 2005; Chust et al., 2004) and wetlands (Augusteijn & Warrender, 1998b; Li & 

Chen, 2005). As mentioned literatures, Scenario 10 integrated the Sentinel-1 time series data and the 

Sentinel-2 time series data combined with features extracted by statistical metrics of multi-temporal 

vegetation index, obtaining a significantly higher overall accuracy of 72.97% ± 3.66% and the kappa 

coefficient of 0.70 ± 0.04 than others. According to the variable importance, the results of scenario 10 has 

the significant difference between others, showing the best performance among all the scenarios. That was 

because SAR images captured the structure and dielectric properties of the intertidal plant communities, 

providing the complementary information which could not be derived from Sentinel-2 time series data. 

However, the confusion matrix reflected the limitation for distinguishing and classifying the mixed plant 

communities such as the classes of 7-Seepweed+Tamarisk and 6-Seepweed+Reed, some of them are 

misclassified into the class of 8-Seepweed+Tamarisk+Reed. The reason may lie in the confusion spectral 

reflectance of mixed plant communities and less distinctive vegetation phonologies. 
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5. CONCLUSION AND RECOMMENDATIONS 

5.1. Conclusions 

This study fulfils the classification and mapping plant communities in the intertidal zones of the Yellow 

River Delta based on the techniques of remote sensing and geographic information system. The intertidal 

zones are highly dynamic wetland ecosystem with spectral mixture among plant species, making it difficult 

distinguishing and mapping the plant communities submerged at high tide. Traditional vegetation mapping 

requires field investigation including visual inspection, field measurement and date record, which need lots 

of expertise on plant taxonomy. In reduce the amount of filed work and obtain accurate information on 

spatial distribution and classification of intertidal plant communities, optical and SAR images have an 

approach to capture all the inherent seasonal variance of plant phenology, and are explored providing 

basic information on texture, feature, and characteristic of vegetation species. In this study, three aspects 

have been explored corresponding to the research objectives: a) use single-date images of Sentinel-2 for 

mapping plant communities in the intertidal zones; b) use multi-season and time series Sentinel-2 images 

with or without the NDVI statistical parameters derived from Sentinel-2 time series data c) use 

integrations of Sentinel-1 SAR and Sentinel-2 optical time series images.  

 

The specific conclusions drawn from this study can be summarized as follows: 

 

➢ The mapping accuracies of the single-date images captured in the seasons of spring (overall accuracy 

= 57.36% ± 4.22%, kappa coefficient = 0.52 ± 0.05) and summer (overall accuracy = 58.51% ± 

2.71%; kappa coefficient = 0.53 ± 0.03) were significantly lower than the results of the seasons of 

autumn (overall accuracy = 63.58% ± 3.03%, kappa coefficient = 0.59 ± 0.04) and winter (overall 

accuracy = 61.28% ± 2.03%, kappa coefficient = 0.56 ± 0.02). The season of autumn performed best 

among all seasons due to the distinctive characteristics of various vegetation species.  

 

➢ The aggregated multi-season Sentinel-2 images with the overall accuracy of 70.07% ± 3.79% and 

kappa coefficient of 0.66 ± 0.04 significantly improve the mapping accuracy and kappa coefficient 

based on using the single-date images through paired t-test. It concluded that the multi-temporal 

Sentinel-2 images can significantly improve the classification of the intertidal plant communities 

compared to a single season. Interestingly, the aggregated monthly Sentinel-2 time series images did 

not significantly improve the mapping accuracy based on using multi-season Sentinel-2 images. A 

plausible explanation seemed to be that the multi-season Sentinel-2 images contained most variable 

importance for mapping vegetation in such dynamic wetland and the extra images did not 

contributed so much in the classification of time series images.  

 

➢ The NDVI statistical parameters derived from the Sentinel-2 time series data have no capability for 

mapping the intertidal plant communities by itself, resulting in the worst performance with the 

overall accuracy of 54.26% ± 2.40% and kappa coefficient of 0.48 ± 0.03. The reason may lie in the 

confusion of mixed plant communities within one pixel. Moreover, adding the NDVI statistical 

parameters to the Sentinel-2 time series images achieved a mean overall accuracy of around 70.81% 

with a mean kappa coefficient of around 0.67, which did not significantly improve the mapping 

accuracy than the scenario without the NDVI statistical parameters.  

 

➢ Using the combination of Sentinel-1 SAR and Sentinel-2 optical time series images can significantly 

improve the mapping accuracy of the plant communities in the intertidal zones, obtaining a 
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significantly higher overall accuracy of 72.97% ± 3.66% and the kappa coefficient of 0.70 ± 0.04 

based on other combination of input variables. However, the classification results (overall accuracy = 

59.93% ± 3.93%, kappa coefficient = 0.55 ± 0.04) showed the inability for classification when using 

the individual Sentinel-1 time series data, due to the time of satellites passing the study area was 

during the flood phase while other images were captured during ebb phase. Therefore, caution 

should be exercised when mapping highly dynamic landscape with multi-sensor data acquired at a 

different time during a day, particularly when land covers may change rapidly with daily tides.   

5.2. Recommendations 

Wetlands play an important role in a natural ecosystem, especially for the globally important area. The 

plant communities in the intertidal zones of the Yellow River Delta were statistically analysed with random 

forest algorithm. In this research, the final map and accuracy assessment were based on ten-fold 

classification of ten different combinations of input variables. The number of training and validating 

samples for mapping intertidal plant communities was limited by the poor accessibility of study area, 

causing more uncertainty in the classification results. And the time difference for Sentinel-1 and Sentinel-2 

being captured caused overestimation of open water because they could not match each other in the daily 

tide phase.   

 

For further research, the combination of ground observations and UAV technique can provide a more 

scientific approach for overcoming the poor accessibility during field work. The sample points collected 

by UAV technique can be interpreted through relevant methods to ensure the quality of ground truth data. 

And caution should be exercised when mapping highly dynamic landscape with multi-sensor data acquired 

at a different time during a day, particularly when land covers may change rapidly with daily tides. It is also 

suggested to use the combination of optical and SAR images during the same phase in such intertidal 

zones.        
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