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ABSTRACT 

This research investigates the effect of tree density on estimating Above Ground Biomass (AGB) using 

Terrestrial Laser Scanner (TLS) and Quantitative Structure Modelling (QSM) in the tropical rainforest of 

Berkelah in Malaysia. A total of 32 plots with 1033 trees were measured and scanned in the field. Using a 

circular plot of 500 m2, REIGLVZ 400 TLS was used in the field and all inventory parameters were collected 

within the circular plot. To increase information captured by TLS for the individual tree and minimize 

occlusion, multi scans were conducted. Pre-processing, registration of points cloud and extraction of the 

individual tree were done in RiSCAN PRO software. Out of 1033 trees, 855 trees were extracted from point 

cloud whereby Diameter at Breast Height (DBH) and height of each individual tree was measured. Based 

on stand basal area, tree density was classified into three categories which are low (1-20m2/ha), medium (21-

40m2/ha) and high (41m2/ha- and above). A total of one hundred and twelve (112) trees were selected for 

reconstruction of the individual tree in QSM in which 33, 37 and 42 trees are in low, medium and high tree 

densities respectively. AGB for each class was calculated by multiplying the volume of the tree from QSM 

and specific wood density. DBH and height from TLS were also used to calculate AGB using allometric 

equation. AGB from the field was also estimated using height from Airborne Laser Scanner (ALS) and DBH 

from the field. DBH measured from the field was compared with DBH derived from TLS. In different trees 

densities (low, medium and high) AGB derived from QSM was compared with AGB estimated from 

corresponding classes in both TLS and field. 

 

The DBH measured from the field showed high agreement with DBH derived from TLS with the high 

coefficient determination of 0.989 and RMSE of 1.37cm. AGB estimated from the field in low, medium 

and high tree densities were compared with AGB estimated from QSM in low, medium and high shows 

high correlation of 0.911, 0.953 and 0.926 with RMSE of 31.91 Kg/tree, 31.26 Kg/tree and 60.97Kg/tree 

respectively. No significant difference was observed in both methods of estimating AGB from different tree 

densities. From three classes of tree densities, AGB was estimated from QSM and compared with AGB 

derived from TLS and shows high correlation coefficient of 0.896, 0.908 and 0.881 with RMSE of 41.05 

Kg/tree, 57.54 Kg/tree and 71.7 Kg/tree in low, medium and high trees densities respectively. No 

significant difference was observed in both methods used for estimating AGB from different tree densities. 

 

For reconstruction of the individual tree in QSM, trees with dense points from Terrestrial Laser Scanner 

were selected. The visible parts of the tree is reconstructed by cover with cylinders. From cylinders volume, 

biomass can be estimated. In this study, only trees with sufficiently points were selected hence the effect of 

trees densities was not observed due to the basic assumption of QSM.  
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1. INTRODUCTION  

1.1. Background information  

Forests provide ecosystem services to human life, support plant species and harbour population of 

many endangered animals (Medjibe et al., 2011). Also, these forests are essential in the global carbon 

cycle; they store about 50% of the global terrestrial carbon (Bunker et al., 2005). It has been reported 

that countries like Malaysia, Indonesia and Philippines export about 80% of their forest products 

(timber) as a vital source of income (Berry et al., 2010). In the case of Cameroon, forestry sector 

contributed about 6% to the national Gross Domestic Product (GDP) in 2004 and created more 

than 150,000 formal and informal jobs (Gideon et al.,  2014). Despite its importance when the forest 

is deforested carbon stored below and above are released into the atmosphere as carbon dioxide. 

The increase of C02 concentration in the atmosphere affects global climatic change (Soares et al., 

2010). 

United Nation Framework Conversion on Climate Change (UNFCCC) was established in 1992 with 

the aim of stabilising greenhouse gases concentration at the level that will prevent dangerous 

anthropogenic interference with the climate system (UN, 1992). Reducing Emissions from 

Deforestation and Forest Degradation (REDD+) is an example of climatic mitigation programme 

which aims at providing financial incentive to developing countries, sustainable forest management 

and enhancement of forest carbon stock (Loki et al., 2014). Biodiversity conservation, environmental 

quality, livelihoods of indigenous and local communities and ecological conservation are also 

considered in REDD+ programme (FFPRI, 2012). 

Financial incentive in REDD+ programme relies on forest carbon stock change that is Measuring 

Recording and Verification (MRV) (FFPRI, 2012). Payments for carbon offsets under REDD+ 

depend on reliable and accurate estimates of carbon stock and change over time (Mauya et al., 2015). 

Carbon stock can be derived from above ground biomass (AGB) with the assumption that half (50%) 

of tree biomass is carbon (Basuki et al., 2009). Destructive/harvesting method is considered as an 

accurate way of estimating above ground biomass. It includes harvesting, drying until constant weight 

and weighting of tree parts (Gibbs et al., 2007). The method is expensive, time and resource 

consuming, and it is impractical in large scale (Rahman et al., 2017). Most preferred methods of 

estimating forest carbon stock involve field measurement and remote sensing techniques (FFPRI, 

2012). Field measurements use tree parameters such as height and Diameter at Breast Height (DBH) 

in the allometric equation to estimate tree biomass (Brown et al., 1989; Chave et al., 2005). The 

method is time-consuming, labour intensive, difficult to implement especially in remote areas and 

cannot provide the spatial distribution of biomass in vast areas (Lu, 2006). 

  

Remote sensing techniques supported by ground measurement can be used to estimate above-

ground biomass and used as the means of MRV in REDD+ program (Defries et al., 2007). The main 

advantage of these techniques is that they can acquire information from areas which are difficult to 

access. The Airborne Laser Scanner (ALS) provides detailed information on forest structure and 

canopy to estimate Above Ground Biomass (AGB) (Popescu et al., 2011). In dense forest, ALS gives 

less information on the woody components of the trees which is useful for estimating volume, 

biomass and carbon (Lovell et al., 2003). Terrestrial Laser Scanner (TLS) can be used to complement 
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ALS since it scans the tree structure from the bottom up rather than top-down (Van der Zande et 

al., 2006).  

 

TLS is a remote sensing technique that captures high-resolution three-dimension (3D) structure of 

the trees within a short time with less labour (Olagoke et al., 2016). TLS is collecting its data on plot 

based e.g. 500 square meters circular plot of radius 12.62 meters. Point clouds from TLS can be used 

to reconstruct accurate and precise 3D model of the tree structure (i.e. stem, branches, twigs) by the 

process known as Quantitative Structure Modelling (QSM). The model was first introduced by 

Raumonen et al. (2013). It present a tree as hierarchical collection of cylinders which provide volume 

and height of the whole trees and branches distribution (Krooks et al., 2014a). From the model 

biomass ca be calculated by multiplying the volume of the tree by specific wood density.  

1.2. Problem statement and justification 

Despite the fact that deforestation and human activities destroy the forest, the remain forests have 

high potential to assimilate and store a significant proportion of carbon (Berry et al., 2010). To benefit 

from the new global REDD+ initiative, carbon stock in forest needs a Monitoring, Recording and 

Verification system (Kenzo et al., 2009). In Sustainable Forest Management (SFM) there is a need to 

balance between environmental, economic, and cultural values for the benefit of present and future 

generations (IUCN, 2009). The estimation of above ground biomass in the forest is necessary to 

demonstrate the sustainability of the management regime (D’Oliveira et al., 2012). The most accurate 

method for the estimation of biomass is through cutting of trees and weighing of their parts  (Basuki, 

et al., 2009). It is destructive sampling method but it has been applied in the most forests to establish 

allometric equation to estimate above ground biomass and validate other methods (Mohd Zaki., et 

al 2018). The technique takes a huge amount of resources and it is limited to large area. Remote 

sensing and light detection and ranging (ALS and TLS) techniques are promising methods that 

provide efficient means of producing highly detailed 3D data from the forest (Krooks et al., 2014a). 

TLS points cloud data can be modelled to provide detailed information of a tree such as branch 

distribution and above ground biomass by a process known as Quantitative Structure Modelling 

(Raumonen et al., 2015).  

 

Amongst the methods of estimating biomass, QSM is a relatively new technique that is promising. 

It reconstructs a 3D model of the tree. Thus, tree volume can be obtained and used to estimate 

biomass. Point clouds from TLS can be used  as input in QSM. Terrestrial Laser Scanner has been 

used in the assessment of forest stand parameters (e.g. height, DBH, canopy dimension and stem 

volume) due to its ability to acquire three-dimensional data of standing trees rapidly and accurately 

(Dassot et al., 2011). Increase in tree density and branching intensity may influence the level of 

information that can be captured by TLS. The quality of information derived from low, medium and 

high trees density is varying depending on point cloud captured in TLS. In high trees densities the  

quality of data captured by TLS is lower due to high number of trees stems and density canopy (Watt 

& Donoghue, 2005). It is also hard to get the whole structure of the tree using TLS in the high dense 

forest due to occlusion and intermingling of branches and surrounding trees (Dassot et al., 2011). 

This phenomenon reduces the number of points per tree, and therefore, only part of the tree is 

detected. Therefore, as  Watt & Donoghue, (2005) reported earlier, it can be hypothesised that in the 

case of low and medium tree densities level of occlusion and intermingling of branches is low hence 

level of information that can be captured by TLS is high. According to Watt & Donoghue, (2005) 

different tree densities or forest stand density can have an influence on the quality of the data 

captured by TLS and thus can reduce the accuracy of assessing AGB/carbon stock using TLS-QSM.   
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The use of TLS-QSM in estimating above ground carbon in tropical and temperate forests is 

relatively new. Some studies have used TLS-QSM for AGB estimation, most of which are done in 

temperate forests. Tilon, (2017) investigated the effect of foliage in estimating AGB using TLS-QSM 

in the temperate forest at Amtsvenn, Germany. On her research, she concluded that there is no 

significant difference between ABG derived from QSM and allometric equation in both seasons 

(winter and summer). This means that QSM can be an accurate technique for MRV to ascertain the 

sustainability of management systems. Calders et al., ( 2015) researched Eucalyptus Open forest in 

Victoria, Australia and discovered that TLS-QSM overestimates AGB by 9.68% while the allometric 

equation underestimates by AGB 29.8%- 36.57%.  They also found that using the allometric equation 

to estimate biomass leads to an error which increases exponentially with increase in DBH while TLS-

QSM is not affected by DBH. This reflects the fact that density may influence the use of QSM for 

carbon estimation. Madhibha, (2016) reported the feasibility of TLS-QSM to determine AGB in the 

tropical forest of Malaysia. She found that no significant different in estimating AGB using TLS and 

QSM. However the use of  TLS-QSM in estimating above ground carbon in a tropical and temperate 

forest is fairly new, there is hardly any literature available on the effect of tree density on carbon 

estimation using TLS-QSM in a tropical forest. This research is aiming at study the effect of tree 

density on the accuracy estimation of ground biomass/carbon stock using TLS and QSM in Berkelah 

tropical forest, Malaysia. 

1.3. General Objective 

The main objective of this study is to assess the effect of tree density on the accuracy of estimating 

above ground biomass/carbon stock using TLS-QSM in Berkelah tropical forest, Malaysia. 

 Specific Objectives  

1. To assess the relationship between DBH derived from TLS and the one measured in the 

field from different trees densities or forest stand densities.   

2. To compare the accuracy of assessing AGB/carbon stock derived from TLS-QSM with 

AGB/carbon stock derived from TLS in different trees densities or forest stand densities. 

3. To compare the accuracy of assessing AGB/carbon stock derived from TLS-QSM with 

AGB/carbon stock derived from field measurement in different trees densities or forest 

stand densities.  

4. To compare the accuracy of assessing AGB/carbon stock derived from TLS with 

AGB/carbon stock derived from field measurement in different trees densities or forest 

stand densities. 

5. To assess the effect of trees densities or forest stand densities on the accuracy of estimating 

AGB/carbon stock derived from TLS-QSM. 

1.4. Research Questions  

1. What is the relationship between DBH derived from TLS and the one measured in the field 

from different trees densities or forest stand densities? 

2. How accurate is AGB/carbon stock derived from TLS-QSM compared to AGB derived 

from TLS in different trees densities or forest stand densities?   

3. How accurate is AGB/carbon stock derived from TLS-QSM compared to AGB/carbon 

stock derived from field measurements approach in different trees densities or forest stand 

densities?  
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4. How accurate is AGB/carbon stock derived from the field compared to AGB/carbon stock 

derived from TLS approach in different trees densities or forest stand densities? 

5. What is the effect of different trees densities or forest stand densities on the accuracy of 

estimating AGB/carbon stock using TLS-QSM? 

1.5. Hypothesis 

 

1. H0: There is no significant difference between DBH derived from TLS and the one 

measured in the field from different trees densities or forest stand densities. 

H1: There is a significant difference between DBH derived from TLS and the one measured 

in the field from different trees densities or forest stand densities. 

2. H0: There is no statistically significant difference between the accuracy of assessing 

AGB/carbon stock derived from TLS-QSM and AGB/carbon stock derived from TLS in 

different trees densities or forest stand densities. 

H1: There is a statistically significant difference between the accuracy of assessing 

AGB/carbon stock derived from TLS-QSM and AGB derived from TLS in different trees 

densities or forest stand densities. 

3. H0: There is no significant difference between the accuracy of assessing AGB/carbon stock 

derived from TLS-QSM and AGB derived from field measurement in different trees 

densities or forest stand densities. 

H1: There is a significant difference between the accuracy of assessing AGB/carbon stock 

derived from TLS-QSM and AGB derived from field measurement in different trees 

densities or forest stand densities. 

4. H0: There is no significant difference between the accuracy of assessing AGB/carbon stock 

derived from field measurement and AGB derived from TLS in different trees densities or 

forest stand densities. 

H1: There is a significant difference between the accuracy of assessing AGB/carbon stock 

derived from field measurement and AGB derived from TLS in different trees densities or 

forest stand densities. 

5. H0: There is no significant difference between the accuracy of assessing AGB derived from 

TLS-QSM in different trees densities or forest stand densities. 

H1: There is a significant difference between the accuracy of assessing AGB derived from 

TLS-QSM in different trees densities or forest stand densities. 
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2. CONCEPTS & DEFINITIONS  

2.1. Biomass estimation 

Biomass is defined as the mass of life or dead organic matter per unit area (Gibbs et al., 2007). 

According to IPCC, (2003) on good practice guidance for Land Use, Land-Use Change and Forestry 

(LULUCF) biomass is divided into above ground biomass (AGB) (stem, stump,  branches bark, 

leaves and seed) and below ground biomass (BGB) (roots). Indirect and direct are methods used to 

estimate above ground biomass. In the direct method, trees can be harvested, dried until constant 

weight and weighted for estimating biomass (Gibbs et al., 2007). The method is accurate, but it is 

time and resource consuming and labour intensive. The direct method is not feasible in a large area 

and cannot be used to monitor biomass when the result is largely extrapolated (Basuki et al., 2009). 

Indirect methods involve sampling and the use of tree parameters such as DBH and height to 

estimate tree biomass. Determining the amount of forest biomass is very important for monitoring 

and estimating the amount of carbon that is lost or emitted during deforestation(Mauya et al., 2015). 

It also gives an idea of the amount of carbon sequestered and stored in the forest ecosystem (Vashum 

& Jayakumar, 2012). Carbon stock is assumed to be 50% of above-ground biomass (Bunker et al., 

2005). 

2.2. Allometric Equation  

Allometric equation relates one or more easily measurable tree variables or biophysical parameters 

such as height and DBH to assess biomass (Forrester et al., 2017; Ketterings et al., 2001). The 

equation can be used to estimate biomass at large geographic footprint. Due to variation in volume 

and wood density of various tree species, the allometric equation is considered to be both species 

and geographical site-specific (Cohen et al., 2013). In the tropical forest where there are many tree 

species (e.g. 1ha has more than 300 different plant species or more than 50 trees species), it is difficult 

to come up with one specific allometric equation to estimate above ground biomass ( Oliveira and 

Mori, 1999). Due to the  presence of many species per hectare in tropical forest various allometric  

equations were developed for the tropical forest (Basuki, et al., 2009; Brown, 2002; Chave et al., 

2005). IPCC has adopted a general allometric equation based on ecology and forest type at different 

levels from local to regional ( Chave et al., 2005). Equation 1 shows allometric equation developed 

by Chave et al. (2005) which is also used in this study. 

AGB=0.0673*( ρD2H)0.976   …………………………………………………………………Equation 1 

AGB= Above ground biomass (kg) 

D=Diameter at Breast Height (cm) 

H= Height (m) 

ρ= Specific wood density (g/cm3) 

2.3. Quantitative Structure Modelling  

QSM is a comprehensive model used for the reconstruction of visible parts of a tree from Terrestrial 

Laser Scanner points cloud data. The model takes into consideration the woody structure of the tree 

that describes the topological (branching structure), geometric and volumetric properties of the tree 

quantitatively (Krooks et al., 2014a). It involves the use of different algorithms to reconstruct 

individual tree. Filtering is a major step in the reconstruction of the individual tree using QSM 

whereby some ground and understories points are removed. Reconstruction of the tree without 
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removing outliers/points cloud which are not part of the tree cause error during reconstruction 

(Raumonen, 2017). Filtered points cloud are covered with small sets (cover set) corresponding to 

connected surface patches on the tree surface (Krooks et al., 2014a). Cover sets are small 

units/building blocks used to segment the point cloud into different tree components (e.g., trunk, 

stem, branches, sub-branches and twigs) by following the surface structure of the tree from the base 

to the top  (Raumonen et al., 2015). Cover sets are connected to each other by neighbour relationship. 

 

 In QSM, cover sets are segmented into different tree components until the whole structure of the 

tree is obtained. Cylinders are fitted to each segment by the least square method, to minimise the 

distance between cylinders a tree is assumed to be a cylindrical object (Kaasalainen et al., 2014). 

Cylinders are segmented into an individual tree by following botanical rule whereby stem is first 

segmented (one-by-one) then the 1st order branches (one-by-one) then the  2nd order branches until 

all the whole tree is constructed (Raumonen et al., 2015). If there is no parent-child relationship 

during segmentation, it creates the gap between the cylinders (Krooks et al., 2014a). To have a good 

structure of the tree, the cylinders between the gaps are either extended, or new cylinder is introduced 

to fill in the gap (Kaasalainen et al., 2014). From the cylinders, branch size distribution, volume and 

branching structure can be approximated for both whole or part of the tree (Kaasalainen et al., 2014). 

Biomass of a tree can be estimated by multiplying the volume of the cylinders by the specific wood 

density (Raumonen et al., 2013). Figure 1 shows the segmented point cloud and cylinders mode. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

             Figure 1: Segmented point cloud (left) and Cylinder model (right) of artificial Scots pine (Raumonen et al., 2013). 

2.4. Terrestrial Laser Scanner (TLS) 

TLS also known as ground-based LiDAR, is an active remote sensing technique which generates 

millions of points and represents an object into a 3-dimensional structure (Wilkes et al., 2017). It 

emits hundred thousand of pulses per second which travel from the transmitter to the target and 

back to the receiver (Dassot et al., 2011). From the points cloud tree parameters such as DBH and 

height can be derived. It is also possible to mount digital single-lens reflex cameras (DSLR) whereby 

the image from the camera can be used to assign the real value (RGB) to the point clouds (Wilkes et 

al., 2017). Figure 2 indicates the TLS equipment and its specification that was used in this study. 
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           Figure 2: RIEGL VZ-400 with a camera. 

Phase-shift and pulsed time-of-flight are two main techniques used for the range measurement in 

current laser scanner system (Liang et al., 2016). In the phase shift, distance is measured by analysing 

the shift between the emitted and received laser wave. It is characterised by wide-field view, high 

accuracy, high acquisition rate, medium measurement range and recording only one discrete return 

per direction (Dassot et al., 2012). In time-of-flight distance are measured by analysing the time 

between emission and reception of a laser pulse. It is characterised by a narrow field of view, lower 

accuracy, lower acquisition rates and long measurement ranges (Dassot et al., 2011). In this study, 

RIEGL VZ-400 TLS measurement was performed by phase-shift techniques. TLS mounted on the 

tripod (Figure 3) and rotated 3600 with the configurable setting to allow good description of points 

cloud and reduce scanning time.   

 

 

 

 

 

 

 

 

 

 

 

                                 Figure 3: Operation principle of TLS (source: Dassot et al. 2011). 

TLS measurements on sample plots can either be single or a multi-scans. In a single scan method, 

the laser scanner is positioned in the centre of sample plot and objects are scanned once. In the 

multi-scans approach, several scans are made inside and outside of the plot (Dassot et al., 2011) as 

shown in Figure 4. The single scan is a simple and quick approach. However, one part or one side 

of the object will be scanned while the others are missing (Bienert et al., 2006). Multiple scans are 

time consuming but describe the detailed 3D structure of an object hence it is the most accurate 
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approach to map all trees in one sample plot (Dassot et al., 2011). In this study, multiple scans (4 

scans) was used.  

 

 

 

 

 

 

 

 

         

             Figure 4: Single and multiple scan mode (source: Bienert et al., 2006). 

2.5. Tree density or Forest Stand Density 

For the purpose of this research tree density or forest stand density has to be clearly defined. In 

general, density is a measure of how compact the mass of materials is in a volume. However, a tree 

density or called forest stand density is a measure of tree cover on an area, that is amount of the tree 

material per unit area or space (Brack Cris, 1999). Tree density/forest stand density  is the fuction of 

number of trees, tree size (stem, crown & root) and spatial distribution of tree on the ground (Brack 

Cris, 1999). According to Ginrich, (1967) it may also be defined as the degree of crowding of the 

stems within the area, using various growing space ratios based on crown length or diameter, tree 

height or diameter, and spacing. Stand Density Index (SDI) is usually well correlated with stand 

volume and growth, and several variable-density yield tables have been created using it. Basal area, 

however, is usually a satisfactory measure of SDI and because it is easier to calculate it is usually 

preferred over SDI (Avery & Burkhart, 2002). The number of trees in a defined area may be a 

satisfactory index of density if trees size is uniform, that is if the trees are in even-age stand (figure 

5), e.g. having similar DBH and height. However, in a case of the natural forest such as tropical rain 

forest, variation in age, DBH and height will be very high.  Therefore, the only measure that can be 

used in such a case in basal area per unit area (e.g. ha) as a measure of trees density or forest stand 

density (Elledge & Barlow, 2012; Fastie, 2010; Ginrich, 1967; Moss, 2005; Nix, 2017; Sagar, S.A, & 

Singh, 2003). Basal area is cross-sectional area of a single tree at breast height (Slik et al., 2010). It is 

measured at 1.3m height and expressed in m2/plot or m2/hectare. 

 

 

 

 

                      Figure 5: Relationship between basal area and trees density in even-even age forest. 
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3. MATERIALS AND METHODS 

3.1. Study area  

Berkelah Forest Reserve is located in Jengka central state of Pahang region. It lies between latitude 

3°46'1"N and longitude 103°1'1"E, about 234 km to the north-east of Kuala Lumpur (Zakaria, 2013). 

The forest is located 218 km to the North-east of Forest Research Institute of Malaysia (FRIM) 

(Sulaiman, 1997). It is dominated by dipterocarp (lowland and upper hill dipterocarp) and mangrove. 

The forest is structured into logged and primary forest (Zakaria, 2013). Logging is allowed every 30 

years and only eight trees per hectare of commercial timber species with the DBH of > or = 50 cm 

are allowed to be harvested (Zakaria, 2013). The forest is also dominated by a high percentage of 

species of the red Meranti group of Shorea (Sulaiman, 1997). Figure 6 shows the study area location 

map. 

 

Figure 6: Study area map. 

 Climate and Topography 

The maximum and minimum monthly temperatures are 300C and 200C respectively with an average 

temperature of 230C. The relative annual rainfall is 1132mm while the altitude ranges between 204 

m and 236 m with a gentle slope (Sulaiman, 1997). 

 Biodiversity  

Berkelah Forest Reserve is the habitat of many different bird species such as Bulbul, Yellow-bellied, 

Purple-naped, Sunbird and Woodpecker, small and large mammals, and arthropods. The forest is 

also dominated by dipterocarp tree under family Dipterocarpaceae (Zakaria, 2013). 
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 Soil 

Soil profiles in Berkelah Forest Reserve can be categorised as Durian Series in the ultisols order. 

The texture of the soil is sandy loam soil (Sulaiman, 1997). 

3.2. Materials  

To meet the objectives of this research, different materials (software and hardware) were taken into 

consideration. The following sections present the software and hardware which were used during 

the whole time of this study. 

 Field equipment and data used for study 

Field equipments listed in Table 1 were used during the field work for different purposes. Different 

field equipment such as TLS, iPAQ, GPS were prepared and tested in advance before real fieldwork.  

 
Table 1: Field equipment used in this research. 

 

 

 

 
 

 

 

 

 Software 

Different software packages were used in this research according to their function, as shown in 

Table 2. 

 

 Table 2: List of software used in this study. 

 

 

 

 

 

 

 

3.3. Research Method  

The method used in this research comprised of mainly four (4) major steps. The first step was field 

data collection whereby diameter tape was used to measure the DBH of all trees with DBH greater 

or equal to 10cm at 1.3m height from the ground. Using height from ALS and DBH from the field, 

biomass was estimated in different tree densities. In the second stage, TLS was used to scans 

(multiple scans) all plots and generate the points cloud. Points cloud from TLS were processed in 

RiSCAN PRO software whereby individual trees were extracted manually. The height and DBH of 

an individual tree from TLS were measured and used to estimate the AGB from different tree 

densities. Allometric equation from  Chave et al. (2005) was used to estimate biomass from field and 

Field Equipment  Uses/function  

Diameter Tape Measure the DBH of the tree 

TLS (RIEGL VZ 400)   Scanning forest and point cloud acquisition  

Garmin GPS Coordinate record 

Worksheet Field data recording  

Marker (chalk) Marking trees 

Pencil and eraser  Write field data 

Densitometer Measuring canopy density 

Software Function 

MATLAB Tree reconstruction in QSM 

RiSCAN PRO v 2.4.2 Point cloud processing  

DBH and height measurement  

SPSS and Excel Statistical analysis  

MS office 2016 Proposal writing  

Arc GIS Generate study area map 
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TLS. The third stage included the use of points cloud from TLS in QSM to estimate biomass of 

individual tree together with specific wood density. The fourth part of the study was to compare 

above ground biomass derived from QSM, and that derived from TLS in different tree densities 

while the above ground biomass from the field was taken as reference/truth biomass. Figure 7 shows 

the detailed flow-chart of the method. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Flowchart showing the methods used in the study. 

3.4. Pre-fieldwork 

Several activities were carried out before going to the field. These are: preparing tale sheets (Appendix 

1), collect and test different instruments to be used in the field such as TLS and understand how its 

work, prepare study area map and upload into iPAQ and generate same grid map and sampling units. 

3.5. Plot size 

Circular plots of a radius of 12.62 m were used as the sampling unit. In each plot DBH, forest canopy 

and tree coordinates were measured and recorded. According to Ruiz et al. (2014) plot area of 500-

RQ 5 

RQ 4 
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600 m2 is commonly used for estimation of biomass, volume and basal area. In this study, plot size 

was 500 m2 and the trees which have a DBH of greater or equal to 10 cm were measured. The trees 

with DBH below 10 cm were not measured because contribution to biomass  is insignificant  (Brown, 

2002). In this study, the circular plots were used because they have one dimension (radius) that 

defines plot boundary and minimises plot boundary effect due to its smaller circumference (Mauya 

et al., 2015). Furthermore, in the circular plot, the single coordinate is needed which is the centre of 

the plot to match data source geographically compared to rectangular or square plots (Mauya et al., 

2015). 

3.6. Sample design 

Purposive sampling  was used in this research. This is a non-probability sampling method where a 

sample is chosen from a population based on the interest of the researcher (Teddlie & Yu, 2007). By 

considering the terrain of Berkelah forest reserve, weight of TLS (27kg) and the time to navigate to 

the sampling plots is limited, purposive sampling was chosen. Sample plots which were easily 

accessible and have less undergrowth were selected to save time. Slashing undergrowth which might 

cause occlusion of the targeted trees during scanning was time consuming process.  

3.7. TLS plot setup 

After identifying the plot, several steps were taking place before starting scanning the plot using TLS. 

These steps are: plot centre identification, clearing undergrowth, tree labelling and putting retro-

reflectors (cylindrical and circular) within a plot. Each step is explained in detailed in following 

sections.  

 Plot centre identification 

After identifying the sample plot, the centre was defined based on an ocular judgment by selecting it 

randomly, measure the radius of 12.62 m circularly from the centre and identify other three outsider 

scans positions. Central positions for all 32 plots were located in such a way that there was minimum 

occlusion during scanning. Based on positions of outer scans (2, 3 and 4) and undergrowth plot 

centre was also identified. In sloppy plots levelling of TLS was the main challenge during the field 

work. 

 Tree tagging 

During inventory process, trees which are within the radius of 12.62 m and have DBH greater than 

or equal to 10 cm were marked with chalk and labelled with unique A4 printed in bold black 

laminated paper with tree number (Figure 8). The numbers were pinned on the stems of trees and 

face directly to the central scan position. The main aim of tree tagging is to facilitate early 

identification of scanned trees in RiSCAN PRO software during data processing. It also facilitates 

the matching process of trees measured in the field and scanned by TLS at the same time during 

extraction of an individual tree. 
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         Figure 8: Tagged trees in the sample plots. 

 Clearing of undergrowth  

 Berkelah forest reserve was logged thirty (30) years ago, this lead to a rapid increase of undergrowth 

which prevents selected trees and reflectors to be seen clearly during scanning. Undergrowth was 

cleared to get a clear view of trees and reflectors during scanning. It also minimises occlusion and 

gives a clear scan of the whole structure of the tree. Clearing of undergrowth is a time-consuming 

process, especially when there is a lot of shrubs hence more time is needed to scan one plot.   

3.8. Terrestrial Laser Scanner data acquisition 

To minimise occlusions and obtain the best information about the wood structure of the tree, 

multiple scans are better than single scan (Dassot et al., 2012). Using RIEGL VZ 400 multiple scans 

(4 scans) were implemented in this study, one from the centre and three outside the plot. Using 

multi-scans is more advantageous because the whole object e.g. tree can be detected and it is a more 

accurate approach to map the sample plot (Bienert et al., 2006). After scanning the centre position, 

the outer scans were set 2-3 m (Figure 9) outside the plot boundary. The outer scans positions were 

set at 1200  apart from each other and retro-reflectors were placed according to setting position of 

TLS. 

 

 

 

 

 

 

 

 

Figure 9: TLS plot scan position. 

 Setting of retro-reflector/tie point 

In the case of multi-scans, it requires tie points registration to merge all scans positions in one single 

points cloud by geometric transformation in RiSCAN PRO software (Wilkes et al., 2017). In this 

study, a total of 18 retro-reflectors were used (12 cylindrical and 6 circulars) as a tie point for 
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registration. Circular reflectors (50 mm diameter) were pinned on the stem of the tree (Figure 10 left) 

facing the direction of the scanner while cylindrical reflectors ( height 15 cm * diameter 50 cm) were 

mounted on the top of the stick to be seen by the scanner in different positions (Figure 10 right). All 

reflectors were placed facing the scanner at the centre position in each plot so that it can be scanned. 

Apart from being seen from the centre it is also placed such that it can be visible from outer scans 

positions.  

 

 

 

 

 

 

 

 
        

 

 Figure 10: Circular (left) and cylindrical (right) retro-reflector used as a tie point. 

 Setting TLS and Scanning 

After identifying plot centre TLS (RIEGL VZ 400) was placed on a tripod stand with the camera 

mounted on top. A digital camera was used to acquire high-resolution photo which was used to 

coloured individual points like corresponding pixels of the assigned image (Dassot et al., 2012). 

Tripod stand legs were set to a certain height on the ground and TLS was mounted with a camera 

firmly fixed by the screw at the base of TLS. To reduce row, pitch and yaw, TLS was levelled by 

adjusting the tripod legs until the bubble position is at the centre (Figure 11). After setup TLS 

position, TLS settings are used as in Table 3 to all 32 plots on this study. 

         Table 3: RIEGL-VZ-400 scanner setting.  

 

       Figure 11: Levelled Terrestrial Laser Scanner (source: RIEGL, 2014). 

Before beginning scanning new project was created (Figure 12) for each plot, four scans positions 

were saved in one project. The camera was also set to capture images in 3600 and to allow overlapping 

of images in the field. 

Minimum range 1.5m 

Reflector diameter 0.10 

Reflectance threshold 0.10 

Image acquisition ON 

Reflector Search ON 

Register reflector auto ON 

Registration Mode Reflector local 

Scan Mode Panorama 40 
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           Figure 12: New project setting in the TLS. 

3.9. Biometric Data After identification of the plot 

Measuring of DBH, canopy density, record plot centre and tree coordinates are the main activities 

which were done in the field work from mid-September to 14th October 2017. Trees with DBH ≥ 

10 cm and are within a boundary of sample plot were measured at the height of 1.3m from the base 

of the trees while trees with DBH ≤ 10cm were not recorded. This is because trees with DBH ≤ 

10cm contributes less to biomass (Brown, 2002). Diameter tape, densitometer and GPS were used 

to measure DBH, canopy density, and record co-ordinate respectively. To maintain consistency of 

measuring DBH, DBH stick of 1.3m was prepared and used to define the measuring point of the 

DBH to all  32 plots. The DBH collected from the field was used to validate the accuracy of DBH 

estimated from the TLS. Both DBH from field and TLS were also used as input parameters in the 

allometric equation to estimate biomass. Forked trees below 1.3 m were counted as two separate 

trees while those trees which are forked above 1.3 m  were counted as one tree. Measuring DBH of 

trees which have large buttresses were the main challenge during the field work. After fieldwork, 

DBH from the field was analysed by using Microsoft Excel and SPSS.  

3.10. Point cloud data pre-processing 

Point clouds are unstructured data that must be reconstructed by dedicated programmes to provide 

meaningful information (Dassot et al., 2011). Different software were available to process points 

cloud from TLS depends on the different purpose. In this research RiSCAN PRO v2.4.2 software 

was used to register and pre-process point cloud from RIEGL VZ 400. The following section 

explains pre-processing of the points cloud. 

 Scan position registration 

Points cloud of each plot was downloaded from RIEGL VZ 400 and imported to RiSCAN PRO 

v2.4.2 for pre-processing. With “help” function in RiSCAN PRO menu, a new project was created, 

and all scanned files were imported using download and conversion wizard. All scans positions were 

automatically registered by the software. Using the tie point/reflectors, all outer scans positions were 

registered to the central scan position. The process of registration in RiSCAN PRO depends on the 

tie point/retro-reflector which is managed by Tie Point List (TPL) (RIEGL, 2014). Outer scans 

positions (2, 3, and 4) were registered one by one to the central position where RiSCAN PRO 

software automatically identified common tie point by finding corresponding points (FCP). All scans 

positions in RIEGL VZ 400 are in Scanner Own Coordinate System (SOCS), each scan position has 

its own local SOCS. Scanner Coordinate System deliver the raw data and describe coordinate of each 

position with respect to the centre (RIEGL, 2014). To register one project, multiple scans which 
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have different local SOCS must be transformed into one Project Coordinate system (PRCS) which 

is defined by the user (RIEGL, 2014). To reduce the error during registration each scan must include 

at least 3 or 4 reflectors within its field of view, but the more reflectors, the better (Hilker et al., 

2012). In this study, more than six reflectors per plot were detected during registration. Registration 

error differs from plot to plot as shown in Table 4. Registered sample plot was displayed in single 

scanned colour from four scanned positions as shown in Figure 13. Points cloud were selected and 

converted into poly-data using “poly-data selection tools” in RiSCAN PRO for individual tree 

extraction.  

 

 

 

 

 

 

 

 

 

 

     Figure 13: Registered point cloud displayed in single colour. 

 
     Table 4: Plot registration error. 

 

 Extraction of Individual tree 

The registered points cloud of each sample plot was processed in RiSCAN PRO software and 

individual trees were manually extracted. Points cloud were displayed in true colour for easy 

identification of trees with the help of tree tags which were labelled during the field work. Using 

“selection tools” from the RiSCAN PRO software, individual tree points cloud was identified and 

separated from sample plot. All the points that associated with a single tree was delineated manually 

by looking at the structure of the tree. Mostly, points from the selected tree can include points from 

the nearest trees especially points from the canopy parts. Outlying points from the closest canopy, 

undergrowth and other trees were deleted until reasonable representation of the tree is obtained by 

making a visual inspection. Individual tree extraction is a time-consuming process, especially when 

the plot has many trees and undergrowth. Figure 14 shows extracted tree from the points cloud. 

Plot No. 1 2 3 4 5 6 7 8 9 10 11 12

Error 0.0078 0.01 0.0059 0.0112 0.0081 0.0081 0.0092 0.0084 0.0107 0.0091 0.0101 0.0072

Plot No. 13 14 15 16 17 18 19 20 21 22 23 24

Error 0.0105 0.0099 0.0084 0.0074 0.0096 0.0049 0.0158 0.0064 0.0067 0.0088 0.0086 0.0057

Plot No. 25 26 27 28 29 30 31 32

Error 0.0066 0.0143 0.0094 0.0083 0.0082 0.0093 0.0092 0.0075
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       Figure 14: Extracted tree in true colour. 

3.11. Extraction of tree parameter 

DBH and height of the individual tree were measured in the RiSCAN PRO software. The following 

section explains how DBH and height were measured. 

 DBH measurement  

Points cloud of the extracted tree was saved as poly-data using “copy selection tool” into new poly-

data in RiSCAN PRO software. DBH of the tree was measured at 1.3m height from the ground 

using distance measuring tools in RiSCAN PRO software. For buttress trees, DBH was measured 

above the buttress while forked trees below 1.3 m considered as separate trees and DBH was 

measured independently. Figure 15 shows measurement of DBH from the point cloud. 

 

 

 

                                                                                                                                     

 

 

 

 

 

 

 

 

  Figure 15: Measuring DBH at 1.3 m above the ground.  
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 Height Measurement 

Using the “measurement distance between two points” tool in RiSCAN PRO software, tree height 

was measured by identifying the difference between the highest points and base/lowest points 

(ground points) (Bienert et al., 2006). Figure 16 shows height measurement in RiSCAN PRO.  

 

                                                

                                                                                                                                                         

                                                                                                                                                         

                                                                                                            

 

 

 

 

 

 

 

       Figure 16: Tree height measurement in RiSCAN PRO. 

3.12. Quantitative Structure Modelling                                                                                                                                                      

Points cloud of the individual tree was exported and converted into x, y, z format (ASCII text) file 

before running QSM in MATLAB (R2017a) software. The following steps were taken in MATLAB 

before getting to the structure of the tree. 

 Conversion of point cloud into ASCII 

For TLS points cloud tree data to run through QSM in MATLAB, points cloud were exported and 

converted into x, y, z format. Using export function in RiSCAN PRO v2.4.2 software, total of 112 

trees were selected and converted to ASCII text format so that can be readable in MATLAB for 

reconstruction of the individual tree. 

 Filtering of point cloud 

In the reconstruction of the individual tree in QSM, points cloud are assumed to be part of the stem 

or branches, and it is used in the reconstruction process. However, not all points are used in QSM. 

Unwanted points which are not part of the woody structure of the tree can cause noise/error during 

reconstruction (Raumonen 2017). According to Akerblom, (2012) unwanted points can be caused 

by ground (undergrowth and a small part of the ground) and other trees (other trees can grow near 

to the targeted tree). To ensure good reconstruction of the individual tree in QSM, unwanted points  

should be filtered out before reconstruction (Figure 17 right). Filtering of points involves three main 

steps (Akerblom, 2012). The first step is during pre-processing of points cloud whereby points  which 

are far away from the tree are discarded. The second step is initial filtering which does not involve 

the structure of the tree, but it removes a group of isolated points (noise) which have empty cover 

set. The third step is to remove noise that is not clear sampled of any surface but is generated by 

scanning process itself.  
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Filtering of noise in the points cloud is based on the cover set (Raumonen et al., 2013). Unwanted 

points are covered with small balls and reject balls which contain a small number points. (Raumonen 

et al., 2013). The size of the ball and the number of the points is depending on the density of points 

of an individual tree (Raumonen et al., 2013). The following diameters command were used in 

filtering based on local points cloud. 

 

Pass=filtering(P0, r1, n1, d2, r2, n2 Scaling All points) 

P0 Unfiltered point cloud 

r1 Radius of the balls used in the first filtering, defines the volume 

n1 Minimum number of points in the accepted balls of the first filtering, defines the 

point density together with r1 

d2 Minimum distance between the centres of the balls in the second filtering 

r2 Radius of the balls used in the second filtering 

n2 Minimum number of balls in the components passing the second filtering 

Optional 

input 

default value false: 

scaling If true, the first filtering threshold "n1" is scaled along the height with average point 

density 

All points If true, does the first filtering process for every point   

The radii and distances (r1, r2 and d2) are in the same units (meter). Filtering of cover sets is randomly 

generated which lead to different results for each run despite the same input parameters (Raumonen 

et al., 2013). 

r1= smallest size of the branches to be modelled (Akerblom, 2012) (0.015m-0.02m used in this 

research) 

d2=recommended value range from 1cm-3cm (0.01-0.03m) (Raumonen et al., 2013)  

r2= r2> d2 it advised that r2 should be greater by half a centimetre or centimetre than d2 (Raumonen 

et al., 2013) 

Scaling and Comp= 1if true or 0 if false 

                                             

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 17: Extracted tree (525 174 points) left and filtered tree (401 664 point) right. 

 Optimization of input parameters in QSM 

To get a reasonable structure of tree after filtering input parameters should be optimized. In QSM 

the tree is reconstructed using the following commands/code: 
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qsm_tree(P,PatchDiam1,BallRad1,nmin1,PatchDiam2Min,PatchDiam2Max,BallRad2,nmin2,lcyl,O

nlyTree,Tria,string,FilRad); where 

P (Filtered) point cloud, (m_points x 3)-matrix, the rows give the coordinates 

of the points. 

PatchDiam1 Cover set size of the first uniform-size cover. 

BallRad1 Ball size used for the first cover generation. 

nmin1 Minimum number of points in BallRad1-balls. 

PatchDiam2Min Minimum patch size of the cover sets in the second cover. 

PatchDiam2Max      Maximum cover set size in the base of the stem in the second cover. 

BallRad2 Maximum ball size used for the second cover generation. 

nmin2 Minimum number of points in BallRad2-balls. 

lcyl Cylinder length/radius ratio. Can have multiple values in which case makes 

as many models with the same segmentation. 

OnlyTree Logical value, true if only points from the tree to be modelled, in which case 

defines the base of the trunk as the lowest part of the point cloud. 

Tria   Logical value, if true, then make triangulation for the stem up to first branch. 

string Name string for saving output files. 

FilRad Optional input, relative radius for outlier point filtering. Can have multiple 

values in which case makes as many models with the same segmentation. 

When PatchDiam2Min and lcyl change in the input parameters the structure of the whole QSM 

result also change. To get a reasonable structure of the tree, there is need to choose the accurate 

input parameters. PatchDiam2Min, PatchDiam2Max and lcyl are three input parameters which 

optimisation method depend on (Raumonen et al., 2013). The following list elaborates on how the 

input parameters work and how it was set to obtain the reasonable structure of the tree. 

o PatchDiam1: It is large and uniform in size which ranges from 5 to 15 cm (Raumonen et al., 

2015). It removes points that do not belong to the tree, makes initial segmentation for 

branch connection and controls average size of the cover set (Raumonen et al., 2013). The 

smaller the cover set, the more detailed can be captured, and smaller branches can be 

separated (Akerblom, 2012). However, smaller cover sets increase modelling time and use 

more computer memory (Raumonen et al., 2015). The value of  PatchDiam1 used in this 

study ranges from 0.1m-0.13 m. PatchDiam1 is usually smaller than BallRad1 and BallRad2, 

and it's usually not very important because it has a little effect on the final result (Akerblom, 

2012). 

o BallRad1 and BallRad2: To ensure that cover set next to each other are neighbours, BallRad1 

and BallRad2 should be greater than PatchDiam1 and PatchDiam2Max. Meanwhile, 

BallRad1 should be greater than BallRad2 (Raumonen et al., 2013). In this research value, 

0.15m and 0.14 m were used for BallRad1 and BallRad2 respectively.  

o PatchDiam2Max: This is small and variable size parameter which can be specified by the 

user. It controls the points at the base of the tree during reconstruction (Akerblom, 2012). 

In this study values, 0.08m to 0.12m were used depending on the tree to be modelled. 

o PatchDiam2Min: It is also a small and variable parameter which can be controlled by the 

user. It controls the points from the tips of branches and stems for detail structure of the 

tree. The cover sets near the tips of the branches should be small to see more detailed part 

of the branches (Akerblom, 2012). For every branch, the value of PatchDiam2Min varies 

from the base to the tip and decrease quadratically at the base and faster at the tip of the 

branch (Raumonen et al., 2013). In this study, the value used for PatchDiam2Min ranges 

from 0.03m to 0.05m, and it depends on the tree to be modelled. 
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o Lcyl (length/radii): It controls the average relative length of the cylinder. When Lycl is 

shorter, branches can be reconstructed accurately but when the tree face different direction 

can lead to noise hence inaccurate fitting of cylinders to each other (Raumonen et al., 2013). 

The bigger the cylinder, the longer fitted cylinder on average. Lcyl have variable values 

depend on the structure of the tree. In this study, Lcyl ranges from 1.5-8 and it depends on 

the tree to be modelled.  

o FilRad: Relative radius of outlier points cloud can be defined by the user before the least 

squares fitting method (Raumonen, 2017). For example, if FilRad=3.5, this means that 

points farther than 3.5 times estimated radius from the axis are filtered from the region 

(Akerblom, 2012). Depending on the noise of the points cloud and registration, FilRad can 

be large or small. When the data are not noisy, and registration is accurate FilRad range from 

3-3.5 but when data have more noise and registration is not accurate, FilRad is low, it ranges 

from 1.5- 2.5 (Raumonen et al., 2013). In this study FilRad values ranges from 1.5-3.5 

depending on the tree to be modelled. 

o Nmin: Minimum points in a single cover set. When Nmin is small, cover set will also be 

small and more detailed can be captured hence smaller branches can be seen separately. 

Smaller value of Nmin can cause a branch to be segmented into multiple branches hence 

cause overestimation of branch volume and size (Raumonen et al., 2013). A large value of 

Nmin can combine smaller branches into one big branch, during segmentation cylinders can 

be too large thus cause over/underestimation of cylinders volume (Raumonen, 2017).  

User interaction is required during reconstruction of the tree in QSM. Careful selection and 

optimisation of three input parameters (PatchDiam2Min, PatchDiam2Max and lcyl) have an 

influence on the structure of the tree to be obtained in QSM.  

 Main steps in reconstructing tree in QSM 

The main steps of reconstruction of the individual tree from QSM are shown in Figure 18. 

 

                                                                                                                                              

 

 

 

 

 

 

 

 

    Figure 18: Main steps of reconstructing tree using QSM (Raumonen et al., 2013). 

 Cover sets, their characteristics and neighbours 

Reconstruction of the tree from QSM use a cover set approach whereby points cloud are partitioned 

into small sets that correspond to small patches on the surface of the tree (Raumonen, 2017). Cover 

set is randomly generated depending on the input parameters (PatchDiam, BalllRad and nmin) and 

it differs from each run. The generation of cover set produces Voronoi partition of the points cloud 

so that the cell size (maximum diameter) is controlled and varied with PatchDiam and 
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PatchDiam2Max (Akerblom, 2012). Cover set is generated randomly by Voronoi partition process 

by selecting random seed point (example point Q) and define the ball radius (BallRad) (Raumonen, 

2017). When PatchDiam is defined it prevents points from one cover set to be the centre of other 

cover sets (Raumonen et al., 2013). Another cover set is selected randomly by selecting a point 

(example point R) as a centre and define PatchDiam, BallRad and nmin. The centre of point (point 

R) will not be centres of other cover sets (e.g. point Q). Cover set generation continues until all 

points are included in some balls. Due to the intersection of the ball (BallRad), points may belong to 

multiple balls, but those points which are far away from the centre of the ball are assigned to the 

nearest ball (Akerblom, 2012).   

 

When one BallRad of cover set intersects with another BallRad of cover sets, they form neighbour 

relation (Raumonen, 2017). To ensure there is neighbour relation between one cover set and another, 

BallRad should be little bigger than PatchDiam which controls average cover set (Raumonen et al., 

2013). When the cover set is smaller in size, more detail of the tree can be captured but form more 

disconnected structure (Figure 19 left), and smaller branches can be seen separately (Raumonen et 

al., 2013). Small sets can segment a branch into multiple smaller branches if the branches are not 

fully covered with points cloud (Raumonen, 2017). On the other hand, when cover sets are big, 

smaller branches may not be separable (Figure 19 right). Thus, at the beginning of each branch, cover 

set may be less accurate during reconstruction, and the cylinder may be too large (Raumonen et al., 

2013).  

 

 

 

 

        

 

 

 

 

Figure 19: Minimum cover set 2 cm (left) and maximum cover set 10 cm (right) (Raumonen et al., 2013). 

 Tree components and their bases 

Tree components are defined after generation of first cover sets and neighbour relation is 

determined. Before determining tree components, points from the ground, understories and non-

tree point are removed followed by segmentation of the base of the stem by identifying neighbour 

relation (Raumonen et al., 2013).  

Tree component is first identified by defining all cover sets that are parallel to approximation trunk 

direction and redefine the trunk by including neighbour cover sets (Raumonen et al., 2013). By 

defining the connected component of the trunk, outliers and ground points are removed and the 

trunk base is defined at the lowest part (Raumonen, 2017). After defining the base of the trunk, tree 

components is also defined from the base of the trunk. Tree components are identified by 

determining the connectivity with other components for segmentation process until the whole tree 

is reconstructed (Akerblom, 2012). 
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 Segmentation 

After defining tree components, the tree is segmented into stem and branches. Tree components are 

partitioned into segments that correspond to the whole part of the real branch or trunk (Raumonen, 

2017). The process of segmentation starts at the base of the trunk and step by step proceeds along 

the stem. In each step in possible segmentation bifurcation is determined and define child and parent 

relations for each branch (Raumonen et al., 2013). In this way, stem is segmented, and branches are 

separated from it. After segmentation of the stem, the base of the branches is defined, and 

segmentation process continues while possible bifurcation is determined at branch level (Akerblom, 

2012). The same process continues from the base of the branch found until all branches are defined. 

In this process, the stem is first determined, then the 1st order branches follow by 2nd order branches 

until the whole tree is segmented (Raumonen et al., 2013). Segmentation process stops when every 

cover set belongs to a segment. The process is relatively independent of the size of the tree, and it is 

based on the local topology of the tree (Raumonen et al., 2015).  

 Cylinder Reconstruction  

A cylinder is fitted to the segment using the least square fitting method after segmentation 

(Akerblom, 2012). The average length of the cylinder is controlled by input parameter lcyl 

(length/radii). The bigger lcyl, the longer the fitted cylinder while the shorter lcyl, the shorter the 

cylinder which can be better to model the diameter of the branches (Raumonen et al., 2013). If the 

user defines the appropriate size of cylinders, the first cylinder is accepted and fitted to each region 

followed by the second cylinder until the whole tree is constructed by cylinders (Akerblom, 2012). 

Fitting cylinder radii of the branches differ from one branch to another particularly for thinner 

branches, to control this variation the radius of the child branch is always smaller than the radius of 

the parent branch (Akerblom, 2012).  

 Completing Cylinder model 

Cylinder fitted to the segment should connect to each other continuously in the sense that there are 

no gaps between individual cylinders (Raumonen et al., 2013). The points cloud of the individual tree 

can have multiple connections to different tree components which can create gaps between the 

components (Akerblom, 2012). If there is a gap between cylinders, it can lead to errors in the tree 

statistics. To reduce the error, the model identifies the gaps between fitted cylinder by fitting the gaps 

using the previously fitted cylinder (Raumonen et al., 2013).  

 Tree characteristics 

From the cylinders tree characteristics such as total volume, volume of the trunk, volume of the 

branches, height and DBH of the tree, the total number of the branches and branch order can be 

estimated depending on the quality of data. Above ground biomass is estimated by multiplying the 

volume of the tree with specific wood density. Appendix 2 shows the QSM output. 

3.13. Relationship between tree density and basal area 

Tree density was computed by counting number of trees per hectare or plot. It is also reflects the 

degree of crowding of trees within an area (Ginrich, 1967). Basal area is cross-sectional area of a 

single tree at breast height (Slik et al., 2010). It is measured at 1.3m height and expressed in m2/plot 

or m2/hectare. Basal area of the plot was calculated by using the formula πD2/4 whereby π = 3.14 

and D= diameter at breast height (m). In the even-aged forest, DBH and height are uniform to all 

trees. Therefore tree density or forest stand density can be measured by taking the number of tree 



THE EFFECT OF TREE DENSITY ON THE ASSESSMENT OF ABOVE GROUND BIOMASS USING TERRESTRIAL LASER SCANNER AND QUANTITATIVE 

STRUCTURE MODELLING IN BERKELAH TROPICAL FOREST, MALAYSIA 

 

24 

per unit area since all trees have similar DBH and height (Figure 20).In even-aged forest  tree density 

is directly related with and biomass  However, in uneven-aged forest or natural forest, like Berkelah, 

trees are growing randomly, DBH and height are different, thus the number of trees cannot be used 

as a measure of density because all the trees have different DBH and Height. Biomass in uneven-age 

forest is not related to tree density due to the above reason. Therefore the only way to assess trees 

density or forest stand density is to use basal area per unit area e.g., ha (Elledge & Barlow, 2012; 

Fastie, 2010; Ginrich, 1967; Moss, 2005; Nix, 2017; Sagar et al., 2003). In forest 

management/silviculture tree density and basal area have been associated with growth rate and 

timber production (Slik et al., 2010). In this study, basal area was used as a measure of tree density.       

 

 

 

 

 

 

 

 

 

                     Figure 20: Stems with the same diameter in even-age forest (Source: Wiant, 2009). 
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4. RESULTS 

4.1. Analysis of biometric field data  

DBH, canopy density and tree coordinate are mainly forest biometric data which were recorded in 

the field. DBH is the main important parameter of the tree that provides information about the tree 

structure and biomass (Rahman et al., 2017). Trees which are within the plot boundary and have 

DBH greater or equal to 10 cm were measured at 1.3 m height from the ground. Forked trees below 

1.3m were measured as two separate trees while trees which have buttress, DBH was measured above 

the buttress.  

 Diameter at breast height (DBH) 

Mainly DBH of all trees in 32 plots were measured from the field and entered in excel sheet for 

analysis. Trees which were observed in the field and detected by TLS were used in this research. 

During the fieldwork, a total of 1033 trees which have DBH greater or equal to 10 cm were recorded. 

TLS was also used to scan all the plots and 855 trees were detected out of 1033 trees recorded in the 

field. The DBH measured from the field was used to validate DBH measured from TLS where they 

have a very high coefficient determination of 0.989 and RMSE of 1.37cm. Appendix 4 shows 

summary of the Field and TLS measured DBH. 

It is clear that DBH measured in the field and DBH estimated from TLS is high correlated (Figure 

26). To have good visualisation average DBH from the field and TLS was calculated and distribution 

of DBH was evaluated by further plotting multiple bar graph. Figure 21 shows mean DBH from 

Field and TLS at the plot level.   

                     Figure 21: Distribution of mean DBH from the field and TLS. 
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4.2. Extraction of individual tree 

Throughout the fieldwork a total of 1033 trees were measured in the field from 32 plots. Out of 1033 

trees, 855 were manually extracted successfully using RiSCAN PRO software from the TLS points 

cloud data. From 1033 trees, 178 trees were recorded missing and this differs from plot to plot. 

Individual tree identification and extraction percentage from all the plots was 82.77%. Figure 22 

shows number of trees measured in the field and extracted from TLS. Appendix 5 shows a total 

number of tree extracted, missed and their percentage per plot. Figure 23 shows example trees 

extracted from RiSCAN PRO software. 

                Figure 22: Number of trees measured in field and extracted from TLS. 

                   

                                     Figure 23: Example of trees extracted in true colour.  
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4.3. Descriptive Statistic  

DBH measured from the field, height and DBH from the TLS were analysed using SPSS. The 

following section describes descriptive in details. 

4.4. DBH and height  

Descriptive statistics were carried out in both DBH from the field and height and DBH from TLS. 

A mean DBH of 22.4cm (Figure 24 b) was recorded from the field while mean DBH and height 

from TLS were 21.7 cm (Figure. 24 a)  and 12.9m (Figure 25) respectively. 

  

 

 

                                                        

 

 

 

 

 

 

 

           Figure 24: Distribution of DBH (a) TLS_DBH and (b)  Field DBH.                                                                                                                                    

 

                           

 

 

 

 

 

 

 

 

 
                   Figure 25: Height distribution from TLS. 

4.5. Relationship between DBH measured from the field and DBH from TLS 

During fieldwork DBH of individual trees within a plot were measured and recorded while TLS was 
used to scan the plot after measuring the DBH. A total of 855 trees were used to assess the 
relationship between DBH measured from the field against DBH derived from TLS. Field 
measurement DBH was used as an explanatory variable while TLS DBH was used as dependent 

Mean = 21.662 
Std. Dev = 13.5052 
N=855 

 

Mean = 22.447 
Std. Dev = 13.7209 
N=855 
 

Mean = 12.9179 
Std. Dev = 5.9298 
N=855 
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variable. The comparison of field measured DBH against TLS derived DBH is shown in Figure 26. 
The linear regression shows an RMSE of 1.37cm (R2) of  0.989.  

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

                    Figure 26: Comparison of Field measured DBH with TLS-derived DBH. 

t-test assuming equal variance  

To test if there is a significant difference between DBH measured from the field and DBH derived 

from TLS, a t-test of equal variance was used at 95% confidence interval (α=0.05) to test the null 

hypothesis. According to t-test as shown in Table 5 there is no significant difference between DBH 

measured from the field and DBH derived from the TLS. Hence, the null hypothesis was accepted 

since t statistic is less than t critical at 95% confidence interval. 

 

        Table 5: t-test of DBH from Field and TLS. 
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4.6. Quantitative Structure Modelling Above ground Biomass 

Out of 855 trees in 32 plots which were measured in the field and detected by TLS, only 121 trees which 

have enough points were selected and used in quantitative structure modelling. In 121 trees, 112 trees 

(92.56%) show good result whereby trunk volume is greater than branch volume. Finally, 112 trees were 

used in estimation of above ground biomass. The  remaining nine (9) trees (7.44%) which branch volume is 

greater than trunk volume were not used in the analysis. For the tree to be reconstructed in QSM it must 

have enough points and the whole tree structure must be scanned. Different input parameters were used to 

reconstruct a tree in QSM. Points cloud of the individual tree in RiSCAN PRO was converted to Ascii 

format and run 5-8 times in MATLAB software until the good structure of the tree was obtained. Each run 

gave different result despite the same input parameters. Example of QSM output is given in Appendix 2. 

QSM also gives other output as shown in Figure 27(right) and 28. Biomass per tree was obtained by 

multiplying total volume derived from QSM and specific wood density. In this study specific wood density 

of 0.57g/cm3 adapted from Chave et al., (2005) was used to estimate above ground biomass. 

 

 

       

 

 

 

 
 

 

 

 

Figure 27: Modelled tree from TLS (left) and modelled tree from QSM (right). 

 

             

 

 

 

 

 

 

 

 

 

 

 

 

 

      Figure 28: Segmented point cloud (left) and filtered point cloud  (right) from different trees.  
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4.7. Above ground biomass and carbon estimation  

 Above ground biomass from the field   

Based on tree DBH measured from the field and height from ALS, above ground biomass was calculated 

using allometric equation (AGB = 0.0673*( ρD2H)0.976) from Chave et al. (2005). Above ground biomass 

was calculated for each tree in a plot and used as ground truth/reference to assess the accuracy of ground 

biomass estimated from TLS and QSM.  

 Above ground biomass estimated from TLS 

The individual trees which were extracted manually, their DBH and height were measured and used in the 

allometric equation  (AGB = 0.0673*( ρD2H)0.976) from Chave et al. (2005) to estimate biomass. Out of 1033 

trees measured from the fieldwork, 855 trees were detected in field and TLS points cloud. Appendix 5 shows 

numbers of trees lost per plot. To assess the accuracy of estimating above ground biomass from TLS, above 

ground biomass from field was compared against a above ground biomass derived from TLS (Figure 29) 

with 657 trees which were detected from both ALS and TLS.   

 

 

 

 

 

 

 

 

 

 

 

 

 

                    Figure 29: Comparison of AGB estimated from the field and AGB derived from TLS.  

 Above ground biomass estimated from QSM 

Quantitative structure model is comprehensive tree model that depends on point cloud from TLS. Points 

cloud from TLS are covered, segmented into branches and stem and cylinders are fitted to each tree 

component until the whole tree is reconstructed. One of the outputs in QSM is the tree volume whereby 

above ground biomass is calculated by multiplying the volume and specific wood density (0.57g/cm3) from 

Chave et al. (2005). To assess the accuracy of estimating AGB from QSM, scatter plot was plotted (Figure 

30) with a coefficient of determination (R2) of 0.96 and RMSE is 45.079 Kg/tree using the data set of 112 

trees. 
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                      Figure 30: Relationship between ABG from field and  AGB from QSM. 

4.8. Relationship between AGB from TLS and QSM in different tree densities 

Tree density was computed by counting number of trees per plot and compared with AGB estimated from 

the field. Figure 31 showed a relationship between number of trees as the measure of tree density and 

biomass. Tree density was found to have the poorest significant relationship with field biomass.  Example 

if we compare tree density and basal area in figure 33, plot 3 and 29 have 33 and 34 trees respectively but 

there is big difference in their basal area. Due to this poor relationship basal area was used as the measure 

of trees density or forest stand density. Basal area of each tree was calculated and sum up per plot. Sum of 

the basal area of each tree in plot is called stand basal area(m2/hectare). Stand basal area was compared with 

field biomass. Stand basal area shows a reasonable relationship (Figure 32) with field biomass. Based on 

stand basal area as a measure of trees density, basal area was classified into three main parts which are low 

(green), medium (orange) and high (blue) basal area as shown in Figure 33. Table 6 shows a descriptive 

statistic of the basal area for all 32 plots. Plots are classified according to the following: 

• Low basal area range from 1-20m2/ha,  

• medium basal area range from 21-40m2/ha  

• and the high basal area is from 41m2/ha and above  

This is supported by Moss, (2005) and Schultz et al., (2005) who consider these classes. Individual tree 

reconstructed from QSM which fall into the above categories was classified according to low, medium and 

high stand basal area of trees density or forest stand density.   
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                    Figure 31:  Scatter plot biomass and number of trees as a measure of tree density.   

           

 

 

 

 

 

 

 

 

 

 

 

                     Figure 32: Scatter plot of biomass and stand basal area as the measure of tree density 

                           Figure 33: Classification of tree density based on stand basal area with number of tree in plot 3 & 29. 
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     Table 6: Descriptive statistic of basal area. 

 

 

 

 

 

 

 

 

 

 

 

 

 Relationship  between AGB from TLS and QSM in different  tree densities 

Out of 855 trees, 112 trees (13.09%) were used in QSM for reconstruction of the individual tree. Total of, 

33 trees (24.09), 37 trees (11.86%) and 43 trees (10.59%) were categorised  low, medium and high tree 

densities respectively. In both categories corresponding height and DBH derived from TLS was used to 

estimate AGB using allometric equation from Chave et al. (2005). The volume of an individual tree from 

QSM was multiplied by specific wood density (0.57g/cm3) to obtain the biomass. AGB derived from TLS 

was compared with AGB derived from QSM in both classes. Figure 34, 35 and 36 shows the relationship 

between AGB derived from TLS and that derived from QSM in low, medium and high tree densities 

respectively. The result showed coefficient of determination (R2) are 0.896, 0.908 and 0.881 with a RMSE 

(Kg/tree) of 41.05, 57.54 and 71.7 in low, medium and high tree densities respectively. 

 

 

 

 

                                                                                     

 

 

 

 

 

     

                       Figure 34: Scatter plot TLS_AGB and QSM_AGB in low tree density. 
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                    Figure 35: Scatter plot TLS_AGB and QSM_AGB in medium trees density. 

 

 
     

 

 

 

 

 

 

 

 

 

 

 

 

 

             Figure 36: Scatter plot TLS_AGB and QSM_AGB in high trees density 

 

Testing the relationship between TLS and QSM Biomass in different tree density  

Furthermore, significance level between biomass derived from TLS and that estimated from QSM from 

different tree densities was tested. The t-test (assuming equal variance) was used to test if there is a significant 

difference between AGB derived from TLS and QSM. From Table 7, 8 and 9 there is no significant 

difference between AGB derived from TLS (α=0.05) compared to that AGB derived from QSM at low, 

medium and high tree densities respectively.   
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      Table 7: t-test TLS and QSM above ground biomass at low trees density.  

        t-test: Two-Sample Assuming Equal Variances. 

 

 
 

 

 

 

 

 

 

 

 

 

             Table 8: t-test TLS and QSM above ground biomass at medium trees density.  

                t-test: Two-Sample Assuming Equal Variances. 

 

 

 

 

 

 

 

 

 

 

 

 

           Table 9: t-test TLS and QSM above ground biomass at high trees density. 

            t-test: Two-Sample Assuming Equal Variances. 
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4.9. Relationship between ABG from field and QSM in different trees densities 

Height from ALS and DBH measured from the field were used as an input parameters in allometric equation 

developed by Chave et al. (2005) to estimate biomass from the field. Due to occlusion and intermingling of 

branches in the tropical forest, it is difficult to measure height directly from the field so tree height from 

ALS was used to estimate AGB from the field. Only trees which were detected from both TLS and ALS 

were used. Based on the classification (low, medium and high) of tree densities, biomass estimated from the 

field was assessed according to the tree density and compared with biomass from QSM.  

 

A total of 7 plots with 129 trees which were measured from the field (DBH) and detected by both ALS and 

TLS was classified in low tree density. Out of 129 trees, 33 trees (25.58%) from the field were used to 

calculate biomass and reconstruction of an individual tree from QSM. In medium tree densities out of 213 

trees, 37 trees (17.37%) were selected while in high tree density, 43 trees (7.33%) were selected out of 315 

trees. The regression analysis was carried out to see the relationship between AGB estimated from field 

compared with AGB derived from QSM in different tree densities. Figure 37, 38 and 39 show scatter plot 

of the relationship between AGB derived from field and that derived from QSM in low, medium and high 

tree densities respectively. The result showed that the coefficient of determination (R2) is 0.911, 0.953 and 

0.926 in low medium and high respectively. Similarly, RMSE of 31.91Kg/tree, 31.26Kg/tree and 

60.97Kg/tree were obtained in low, medium and high tree densities respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                  Figure 37: Scatter plot Field_AGB and QSM_AGB in low tree density. 
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              Figure 38: Scatter plot Field_AGB and QSM_AGB in medium tree density.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

              Figure 39: Scatter plot Field_AGB and QSM_AGB in high tree density. 

 

The relationship between Above ground biomass from Field and QSM in different trees densities 

A t-test (assuming equal variance) was used to test if there is a significant difference between AGB derived 

from field and that derived from QSM. From Table 10, 11 and 12 there is no significant difference between 

AGB derived from the field at 95% confidence interval (α=0.05) compared to that AGB derived from QSM 

in low, medium and high tree densities respectively. 
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           Table 10: t-test field and above ground biomass at low tree density. 

           t-test: Two-Sample Assuming Equal Variances.    

 
 
 
 
 
 
 
 
                 . 

 
 

 

 

        

         Table 11: t-test field and QSM above ground biomass at medium tree density.  

          t-test: Two-Sample Assuming Equal Variances. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

       Table 12: t-test field and QSM above ground biomass at high trees density.  

      t-test: Two-Sample Assuming Equal Variances 
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4.10. Relationship between AGB from Field and TLS biomass in different tree densities 

Based on figure 32 plots, 162, 378 and 493 trees were classified in low, medium and high tree densities 

respectively. Out of 162 trees, 129 trees (79.6%) were measured in the field, detected in both TLS and ALS 

and categorised in low tree density. In medium tree density, only 213 trees were detected in both TLS and 

ALS while in high tree density,  315 trees were also detected by ALS and TLS out of 493 trees.  Height from 

ALS and DBH from the field were used to calculate above ground biomass from the field while biomass 

from TLS was estimated from height and DBH derived from TLS. ABG estimated from TLS was compared 

with ABG derived from the field in different tree densities. Figure 40, 41 and 42 show the relationship 

between AGB estimated from the field and that derived from TLS in low, medium, and high tree densities 

respectively. The result showed the coefficient of determination (R2) of 0.976,  0.932 and 0.907 in low, 

medium and high tree density with RMSE of 0.112Mg/tree,  0.177Mg/tree  and 0.186Mg/tree respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

                     Figure 40: Relationship between AGB from Field and TLS biomass in low trees density. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                      Figure 41: Relationship between AGB from Field and TLS biomass in medium trees density 
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                        Figure 42: Relationship between AGB from Field and TLS biomass in high trees density 
Testing relationship between AGB estimated from field and TLS in low trees density  

To test if there is a significant difference between AGB derived from field and that derived from TLS in 

different tree densities, a t-test (assuming equal variance) was used. The results from Table 13, 14, 15 show 

that there is no significant difference between AGB derived from TLS and that estimated from the field at 

95% confidence interval (α=0.05). 

 
         Table 13: t-test Field_biomass and TLS_biomass at low trees density.  

           t-Test: Two-Sample Assuming Equal Variances. 

 

 

 

 

 

 

 

 

 

 

 

 

 
       

 

 

 

 

 

 



THE EFFECT OF TREE DENSITY ON THE ASSESSMENT OF ABOVE GROUND BIOMASS USING TERRESTRIAL LASER SCANNER AND 

QUANTITATIVE STRUCTURE MODELLING IN BERKELAH TROPICAL FOREST, MALAYSIA 

 

41 

         Table 14: t-test Field_AGB and TLS_AGB in medium trees density. 

       t-Test: Paired Two Assuming equal variance. 

 

 

 

 

 

 

 

 

 

 

 
 

               Table 15: t-test Field_AGB and TLS_AGB from in high trees density.  

                t-Test: Two-Sample Assuming Equal Variances. 
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4.11. Effect of trees density on estimating above ground biomass using QSM  

The different between biomass derived from QSM at low, medium, and high tree densities were assessed in 

statistical analysis. One way Analysis of Variance (ANOVA) was done to assess the variance of the means 

between QSM biomass derived from three different trees densities. The result of ANOVA (Table 16) shows 

that there is no significant different between biomass derived from QSM in different tree densities. 

 

Table 16: Single factor ANOVA for low, medium and high biomass derived from QSM.  

 

 
 

 

 

ANOVA. 

Source of variation SS       df    MS    F P-value F-critical 

Between Groups 32966.7       4  8241.67  0.492 0.7416 2.45577 

Within Groups 1809141.44     108  16751.31    

       

Total       112     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Groups count Sum Average Variance 

Low_QSM_Biomass 33 4390.69 133.05 11226.3 

Medium_QSM_Biomass 37 3725.83 100.69 16634.33 

High_QSM_Biomass 42 5996.31 139.45 20263.4 
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5. DISCUSSION  

5.1. DBH Measurement and accuracy assessment 

Tree diameter at breast height is a fundamental measurement of forest inventory and important predictor 

of height and above ground biomass of the individual tree (Yao et al., 2011). Trees with large DBH are taller 

and have large biomass. Trees which are not perfectly circular, a tape measure can lead to some error, 

especially trees with large DBH where it’s difficult to wrap the diameter tape at the back of the tree (Olagoke 

et al., 2016). However, except on extremely irregular trees, this method seems to average out the trees shape 

to an acceptable estimate (Yao et al., 2011). Trees with large DBH (Figure 43 left) and large buttress (Figure 

43 right) present challenges during data collection. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
                    Figure 43: Tree with large DBH and buttress. 

The manually extracted of DBH from the point cloud was validated using DBH measured from the field.  

Field measured DBH was compared with TLS derived DBH as shown in Figure 26. The DBH derived from 

TLS was highly correlated with DBH measured from the field with R2 of 0.989 with RMSE of 1.37cm. The 

result indicated that 98.9% of DBH derived from TLS is explained by DBH measured in the field.   

Rahman et al., (2017) got a similar result on their study on estimating above ground biomass of individual 

using TLS in a tropical forest. They got R2 of 0.969 with RMSE of 0.062 cm with four scanned positions. 

On their study underestimation of DBH measurement was caused by two things. Firstly, cylinders were 

mostly fitted to the inner side of the point clouds. Secondly, occlusion of tree stems and uneven distributions 

of point clouds within the area of the tree trunk for DBH measurements that caused improper fitting of the 

cylinder which results in a small error in DBH estimation. 

Watt & Donoghue, (2005) have used TLS to measure forest structure in a conifer forest (Kielder Forest 

District) and one of their objectives was to compare DBH measured from the field and that derived from 

TLS. They have used automatic method for extraction of individual tree and measure DBH at 1.3 m height 

above the ground. When they compared DBH measured from the field with the laser DBH, the relationship 

was linear and positive (R2 = 0.92) and RMSE of 4 cm. They got R2 which is slightly lower compared to this 

study because trees are partially obstructed by other stems in the sample plots. 

Calders et al., (2015) use TLS to estimate above ground biomass in native Eucalypt open forest in Victoria, 

Australia. They use semi-automatic approach to extract individual tree from registered point clouds, they 

got linear regression of R2 0.98 with RMSE of 0.02 m which is the same as in this study. Comparison 
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between field measured DBH, and TLS derived DBH showed high accuracy because their circular fitting 

method works well.  Points cloud at stem area of the trees were partially occluded. In circular fitting method 

when there is occlusion of point cloud (Figure 44) at 1.3m height above the ground can lead to 

underestimation of TLS derived DBH. Their regression coefficient is the same with this study result despite 

the method used to extract trees from the plot. In this study, intensive clearing and slashing of the 

undergrowth within the plot to both positions were done before scanning. This reduce occlusion at 1.3m 

and contributes high value of R2. 

                      Figure 44: Example of TLS derived DBH through circular fitting method (source: Calders et al., 2015). 

 Distribution of field DBH and TLS DBH 

Diameter at Breast Height (DBH) was measured and recorded for all trees in 32 plots during the field work. 

Both DBH measured from the field and DBH from the TLS were analysed after field work and showed 

that are not normally distributed (skewed). Skewness of the data can either be positive or negative. 

According to Knox et al., (1989) positive skew indicates that the tail on the right side is longer or fatter than 

the left side like in this study. In this study both DBH from the field and from TLS are positively skewed as 

shown in Figure 24 because only trees with DBH greater or equal to 10cm were measured. Trees which 

their DBH are below 10 cm were not measured because they insignificant contribute to biomass (Brown, 

2002). This result was also obtained by  Mulat, (2017) and  Sadadi, (2016) when they look at the distribution 

of DBH measured from the field and that estimated from TLS. 

5.2. Point cloud acquisition and registration  

RIEGL VZ 400  terrestrial laser scanner was used to scan and generate points cloud for all 32 plots in this 

study. To have detailed points cloud that represents the sample plot, multiple scans (4-scans) were 

conducted, one in the centre (inside the plot) and three scans outside the plot. Points cloud in all four (4) 

positions were merged into a common data set by registration using tie point/retro-reflector that are placed 

in such a way that they were visible from all scans locations. In this study, the error of multiple registrations 

varies from 0.0049 m 0.0158 m with an average of 0.00869 m for all 32 sample plots. Madhibha, (2016) and  

Seidel et al., (2012) got average registration error of 0.0127m to 0.0224m and 0.002m to 0.0075m 

respectively. They got a slightly different error from the one obtained in this study because 6-8 retro 

reflectors were detected during registration hence reduce the registration error. According to Pazhouhan et 

al., (2017) and Wilkes et al., (2017) minimum of four (4) common targets/retro-reflectors are required 

between the scans to archive satisfactory registration. A higher number of common target/reflectors explain 

the higher accuracy of registration and less than four common target reflectors can lead to a large error 

during registration (Wilkes et al., 2017). In this study plots number 4, 9, 11 and 19 have slightly higher 

No Partial occlusion  Occlusion 
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registration error compared to the rest of the plots. According to Fan et al., (2015) this could be due to 

misalignments between point clouds acquired from different scanner locations.  

5.3. Extraction of individual tree 

Total of 1033 trees were measured in the field and 855 (82.77%) were manually extracted using TLS points 

cloud data (e.g. Figure 14 & 16). 178 trees (17.23%) were recorded missing from TLS due to occlusion, 

(figure 44) presence of undergrowth and high stem density. Prasad et al., (2016), Mulat, (2017) and  

Madhibha, (2016) did their studies in tropical forest and got detection percentage of 90%, 91% and  80.02 

respectively. The detection rate of Prasad et al., (2016) and Mulat, (2017) are slightly higher than 82.77%  

which was recorded in this study. This is due to occlusion to some of the plots. Three plots (2, 10, 13 and 

18) show more occlusion compared to other plots. Othmani et al., (2011) also faced this challenge. 

Occlusion increases when trees are far away from the centre. Points cloud around the scanner show higher 

density than the point cloud data far away from the scanner (Krooks et al., 2014a). The trees which are far 

away from the scanner were partially scanned or not scanned because of the shadowing effects (Figure 45) 

of the laser light (Wang et al., 2017). This is one of the reasons that causes low detection of an individual 

tree during manual extraction. Pazhouhan et al., (2017) also observed this challenge. 

 

TLS points cloud comprised undergrowth and non-related vegetation which was filter out until the points 

cloud for the individual tree of interest was obtained. Depending on the structure of the tree, manual 

extraction is a time-consuming process, and it is a very challenging process especially in the tropical forest 

such as Berkelah forest where there is a lot of intermingling of tree branches. Olagoke et al.,( 2016) and 

Prasad et al., (2016) also reported this challenge when they took several hours to extract an individual tree 

from points cloud in Mangrove and tropical forest respectively. Occlusion caused by lower branches, 

surrounding trees and understories (Figure 46) are the major problems to overcome when using TLS in the 

forest environment (Dassot et al., 2011). It is also lower points density thus lower detection rate per plot 

which leads to the poor description ( partially scanned) of the top parts of tree/crown (Van der Zande et 

al., 2006). This can introduce error especially in measuring the height and reconstructing of the individual 

tree in QSM when the whole crown is not fully scanned (Krooks et al., 2014a). Tree height can be measured 

by finding the difference between the highest point of the points cloud and lowest point (ground point 

cloud). If the whole crown is not scanned it lead to underestimation of tree height (Prasad et al., 2016). In 

the tropical forest, it is very challenging to separate all point clouds data belong to an individual tree due to 

overlapping of crown branches. This can also be a source of error in measuring tree height and 

reconstruction of the tree in QSM.   

   

    

 

 

 

 

 

 

 

     Figure 45: The trees in black colour is in the shadow effects of the laser light (source: www.3dforest.eu). 
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                     Figure 46: Dense undergrowth which causes occlusion.  

5.4. Estimation of above ground biomass using allometric equation 

The allometric equation used to calculate biomass in this study was adopted from Chave et al., (2014). 

AGB=0.0673*( ρD2H)0.976 whereby D= is diameter at breast height, H= height from the tree and ρ= specific 

wood density ( g/cm-3). According to Nelson et al., (1999) it is possible to estimate above ground biomass 

using only DBH as an input variable in the equation with an average error of 10-15%. Tilon, (2017) had 

used only DBH to estimate above ground biomass when she investigated the effect of foliage on estimating 

above ground biomass using TLS_QSM. In the tropical forest where canopies are closed, trees are unevenly 

distributed and their branches are intermingling, it is difficult to get the exact or accurate height of the tree 

(Figure 47). This leads to an error in the estimation of above ground biomass. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

            Figure 47: Error in field height measurement  (source: Lawas 2016). 
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Using height from field underestimates above ground biomass by 20% ( Chave et al., 2014 ). Similar result 

was also reported by Madhibha, (2016) when she used Leica DISTO D510 to measure a tree height in the 

tropical forest.  She also reported that there is a bias in estimating height using Leica DISTO D510. 

To avoid this potential error source, height from airborne LiDAR and DBH from the field were used to 

estimate above ground biomass. Several studies (Ghebremichael, 2015; Mohd Zaki et al., 2018; Sadadi, 2016) 

use ALS in the tropical forest to estimate height and use DBH measured from the field to calculate above 

ground biomass. Airborne LiDAR gives useful information of forest canopy which can be used in forest 

inventories ( Mohd Zaki et al., 2018). It measures the vertical and horizontal structure of the forest from 

the top hence tree height can extracted accurately (Mauya et al., 2015). Several studies (Hansen et al., 2015; 

Mauya et al., 2015; Sibona et al., 2017) use height derived Airborne LiDAR to estimate above ground 

biomass and used as a reference to compare with AGB derived from TLS. Therefore, above ground biomass 

estimated from this research is considered reliable and used as a reference to compare ABG derived from 

QSM and TLS. 

5.5. Classification of tree density based on basal area 

 In this study, number of trees as an indicator of trees density shows a weak relationship with above ground 

biomass compared to basal area. The same result was also obtained by (Slik et al., (2010) when they are 

investigating on environmental correlation of tree biomass, basal area, wood specific gravity and stem 

density gradients in Borneo’s tropical forests. They found that AGB was only correlated with basal area, but 

not with stem density or number of trees and wood specific gravity. Based on the weak relationship between 

number of trees and biomass, basal area was used to classify tree density into three main classes (low, 

medium and high) for all 32 plots. According to Naidu & Kumar, (2016) different basal area in uneven-aged 

forest is due to difference in altitude, species composition, age of the trees, extent to disturbance, climate 

and soil properties. This lead to different classes from one forest to another. Means et al., (2000) classify 

basal area (m2/ha) into four classes which are 6m2/ha, 26-49m2/ha, 47-70m2/ha and 71-132m2/ha when 

their done study on predicting forest stand characteristic with ALS. Their classification is a bit different 

from this study. Andreassen & Tomter, (2003) classify basal area in five different classes. Moss, (2005)  and 

Schultz et al., (2005) use all most the same basal area classification as a measure of forest stand density used 

in this study (e.g. 1-20, 21-40, 40-70m2/ha). 

5.6. Effect of trees density on estimation of AGB using QSM 

Watt & Donoghue, (2005) investigated the issue of how accurate ground based laser scanner can measure 

tree diameter in densely stocked plantation. They classified their site into high trees density (2800 stem/ha) 

as site one with Sitka spruce and lodgepole pine and site two as low trees density (600 stem/ha) with Sitka 

spruce only. Their classification differs from this study.  

In low tree densities numbers of trees detected during scanning is high compared to numbers of trees 

detected at high trees density. In high trees density number of trees is high hence fewer trees were detected 

during scanning due to a high level of occlusion and intermingling of tree branches at canopy level. Watt & 

Donoghue, (2005) also obtained this kind of result whereby in high trees density, low level of information 

was captured by TLS for an individual tree. On low trees density level of information was substantially 

improved with individual trees resolved up to a distance of 30m from the scanner (Watt & Donoghue, 

2005). Dassot et al., (2011) discussed this challenge too. 

 
For an individual tree to be reconstructed in QSM, it must be sufficiently covered with enough points from 

the base to the top. To model real tree in QSM, points cloud is locally uniform and intensive enough for 

the reconstruction (Kaasalainen et al., 2014; Krooks et al., 2014b; Raumonen et al., 2013). The parts of the 
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tree that are insufficiently visible such as branches and have no enough points are not reconstructed at all 

hence cause errors in estimate tree volume (Raumonen, 2017). To avoid this error only trees with sufficient 

points in different trees densities (low, medium and high) were selected and reconstructed in QSM. This is 

the condition of QSM otherwise it will not have an accurate result. Such result may lead to be bias on 

estimating above ground biomass using QSM because only good extracted trees were selected and effect of 

trees density may be masked. However, if we consider that there is no bias in the results of QSM, thus no 

significant difference between the R2 of the AGB of field and QSM in low, medium and high tree densities. 

The same results in the case of  R2 of the AGB of QSM and TLS in three mentioned densities. Table 17 

shows the summary of the R2 of the AGB of field, QSM and TLS.  

 
Table 17: Summary of the R2 of AGB in the field and QSM and TLS in the upper part and the QSM and TLS in the 
lower part. 

        

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.7.   Estimation of above ground biomass using QSM 

 AGB derived from QSM compared to the AGB estimated from TLS in different tree 

densities 

 Height and DBH derived from TLS were used in the allometric equation to estimate above ground biomass.  

A total of 112 trees from different tree densities (low, medium and high) were used to estimate biomass 

from both QSM and TLS. Table 22 shows that there is a high level of agreement (average R2 = 0.895) 

between ABG derived from TLS and AGB estimated from QSM. This result was expected because 

construction of tree in QSM depends on points cloud from TLS. No significant differences were found 

between above ground biomass from QSM and AGB from TLS in different tree densities. Low registration 

error of points cloud, accurately extracted tree with dense points and reasonable parameters chosen to 

reconstruct individual tree in QSM are among of the factors which contribute for higher coefficient of 

determination. Several studies (Calders et al., 2015; Tilon, 2017; Madhibha, 2016) were compared AGB 

estimated from TLS and compared with AGB derived from QSM and found that no significant difference 

between the methods. Their results are similar like in this study. 

 Calders et al., (2015) have used the destructive method to validate above ground biomass derived from 

QSM, TLS and field biomass using only DBH from the field, they determined errors in both methods. 
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Calders et al., (2015) and Krooks et al., (2014b) have discussed the possible sources of errors that causes 

overestimation of above ground biomass using QSM. These are:  

❖ Occlusion of data caused by shadowing 

Occlusion effect is a common situation in a forest environment, especially in the tropical forest like Berkelah 

forest where there are dense canopies and intermingling branches. During scanning, there is a possibility 

that other vegetation occludes individual tree, especially in dense plots where trees are close to each other 

and present of a lot of undergrowth. This can cause problems because only part of the tree can be detected 

hence minimise points per tree when a tree is scanned in different direction. For proper reconstruction of 

an individual tree in QSM, all parts of the tree should be scanned/detected. Several studies (Calders et al., 

2015; Dassot et al., 2011; Hilker et al., 2012) reported that occlusion is the main challenge in the forest when 

using TLS. To minimise the effect of occlusion in this study pre-scan preparation such as clearing of 

undergrowth and multiple scans were conducted to detect all part of the tree. To avoid laser shadow effect, 

TLS was placed 2-3 m from the trees in all scans positions.   

❖ Movement of trees during scanning 

 Weather condition may affect the amount of points cloud captured by TLS. Wilkes et al., (2017) reported 

that wet weather condition (mist, fog or rain) could not only affect the transmission of laser scanner but 

also the scattering properties of leaf surface. Wind can cause movement of tree and branches which can 

result in ghosting/increase the noise of points cloud and induce waves-shaped axes during scanning (Dassot 

et al., 2011). Figure 48 shows the effect of strong wind during scanning. Wind condition which causes an 

error due to the movement of the branches was also reported by Calders et al., (2015); Krooks et al., (2014a); 

Wilkes et al.,( 2017). Seidel et al., (2012) recommend scanning in wind speed of less than 5m/s. In this study, 

scanning was not done in a raining or windy condition. 

 
 

 

 

 

 

 

 

 

 

           Figure 48: Intensity image show moving branches during scan (Krooks et al., 2014a). 

 

❖ Non-wooden material:   

The presence of non-wooden material such as needles, leaves and flowers can cause inaccuracy size 

measurement and make cylinder too large, especially the branches parts (Krooks et al., 2014a). Depending 

on parameters set by the user non-wooden materials should be removed during filtration process in QSM. 

If non-wooden materials are not filtered out they can be used in the reconstruction of an individual tree 

(Raumonen, 2017). This can result in too thick branches, formation of non-existing branches, and gaps 

between the cylinder in the canopy (Krooks et al., 2014a). This can lead to a large error in estimating the 

volume of the tree in QSM. Madhibha, (2016) reported this challenge whereby 71% of the trees she 

reconstructed had bigger proportional of AGB in the canopy level compared to stem which is abnormal. 

Her result was contradicting with the result obtained by Calders et al., (2015) where they got 80% of the 

above ground biomass is located at the stem while 60% is found at canopy level for all measured trees. In 
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this study, the same error was obtained, but only 7% of all trees reconstructed from QSM show stem volume 

is less than canopy volume. The individual trees with canopy volume greater than stem volume were not 

used in the analysis. Figure 49 shows bad reconstruction of an individual tree from QSM in this study. 

 

 

 

 

 

 

 

 

 

 

 

                                          Figure 49: Bad or inaccurate reconstruction and cylinder gaps  

❖ Registration error: 

To have comprehensive coverage of the plot structure, registration is one of the pre-processing steps that 

was done in this study to merge all scan positions (4 scans) before extraction of individual tree manually in 

RiSCAN PRO software. When scans from different directions are registered into a common coordinate 

system can lead to small error (Raumonen et al., 2013). According to Burt et al., (2013) 1cm registration 

error can lead to 8.8% total volumetric overestimation across the data set. The error associated with 

registration process can increase or duplicate branch radius which is potential in biomass estimation in QSM 

where volume is proportional to the square of the radius (Burt et al., 2013). To minimise registration error 

in this study, 18 reflectors are distributed to sampled plot in such a way that all reflectors are seen from the 

central position (1 scan) and at least six reflectors are seen from outer scans (2, 3 and 4) during the scanning. 

Clearing of undergrowth to make sure that reflectors are seen in all positions during scanning was also done 

in the field before scanning to reduce registration error during data processing. In this study, registration 

error ranges from 0.0049 m to  0.0158 m. 

❖ Error in modelling process 

Construction of individual tree from QSM involve many input parameters that depend on each other.  From 

the first step of filtering points whereby unnecessary points are remove. Depending on the input parameters 

set, under or over removal of points cause problem in tree reconstruction. Cover sets, cylinder length and 

radius, segmentation and cylinder fitting are among important input parameters in which their command 

code should be set accurately for reconstruction of a tree. Example in Figure 19 shows the effect of an 

increase or decrease cover sets. Kaasalainen et al., (2014) also reported on the effect of the large patch which 

leads to large segment, makes the volume of the trunk to be too large hence affect biomass estimation. In 

this study, optimum  input parameters was selected to make sure that the tree is well reconstructed. Input 

parameters used in reconstruction of the individual tree in this study are in Appendix 3. 

❖ Region with low point density 

The tree and its details must be sufficiently covered with measured points so that it can be reconstructed 

accurately in QSM (Raumonen, 2017). Low points cloud in branches can cause a problem in reconstruction 

especially cylinder fitting hence can lead to under or overestimation of cylinder volume (Krooks et al., 

2014a). According to Kaasalainen et al., (2014) branches with less points left unconstructed hence lead to 
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error in the estimation of AGB from QSM. In this study trees with enough points were selected and used 

in the reconstruction of the individual tree in QSM.  

 

❖ Non-circular branches and stem:  

The basic assumption of QSM is trees are locally approximately cylindrical and it is covered with small sets, 

segmented and fitted with cylinders from stem to branches. In most cases, this assumption is not true, 

especially in the tropical rainforest like Berkelah where trees have different shapes from conical to cylindrical 

but in most cases cylindrical. For trees which have large buttress and conical shapes can lead to an error in 

the estimation of above ground biomass. 

 AGB derived  from QSM compared to the AGB estimated from the field  in different trees 

densities  

Using specific wood density and volume from QSM, AGB was estimated in different tree densities. Total 

of 112 trees were selected for the reconstruction of the tree using QSM. Biomass from different tree 

densities was estimated by multiplying the volume of an individual tree with specific wood density 

(0.57g/cm3). Biomass from QSM was compared with biomass from the field in different tree densities. The 

result obtained in section 4.9 showed that in different tree densities there is no significant different between 

AGB derived from QSM compared to AGB estimated from the field. 

 Madhibha, (2016) did a study on the assessment of above ground biomass using TLS and QSM in tropical 

forest and one of her objectives was to compare AGB from QSM and AGB estimated from the field. Using 

height and DBH from the field, and specific wood density to estimate field biomass using allometric 

equation from Chave et al., (2014). She found that there is no significant difference between AGB derived 

from QSM with AGB estimated from the field. On her study she got coefficient of determination of 0.81 

which is slightly different with the average of 0.93 in this study. She used Leica DISTO D510 to measure 

tree height may be the reason of slightly different in coefficient of determination. Using Leica DISTO D510 

to measure tree height in tropical forest is very challenging to see the top of the tree due to occlusion and 

intermingling of branches (Madhibha, 2016). This can lead to error propagation in the estimation of ABG. 

To avoid this potential source of error, in this study height from ALS and DBH from the field were used.   

Tilon, (2017) obtained similar result when she investigated the effect of foliage on the estimating above 

ground biomass using QSM and field in the temperate forest. She found that there is no significant 

difference between AGB estimated both in the field by QSM from leaf off and leaf on conditions despite 

the fact that she used only DBH to estimate AGB using allometric equation. 

 

Calders et al., (2015) have used destructive method to validate above ground biomass derived from QSM 

and field biomass using only DBH. They found similar result with this study when they compare above 

ground biomass estimated from QSM and biomass derived from the field using only DBH in the allometric 

equation. Using the destructive method to validate biomass derived both QSM and AGB estimated from 

field they determined that there is an error in both methods. Allometric equation underestimated above 

ground biomass from 29.85% to 36.57% and the error increases exponentially with the increase in DBH 

while QSM does not depend on DBH. QSM overestimate above ground biomass by 9.68%. 

 AGB estimated from field compared to the AGB derived from TLS in different trees 

densities 

In dense forest like Berkelah, ALS  provide detail information of trees height compared to TLS. Height 

from ALS and DBH measured from the field were used to estimated AGB and compared it with biomass 

from TLS in different tree densities. The result presented in section 4.10 shows that in all tree densities, no 

significant deferent between above ground biomass estimated from the field compared with AGB derived 

from TLS. Similar result was obtained by Ghebremichael, (2015) and Bazezew, (2017) when they use height 
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derived from ALS and DBH from the field to estimate AGB and compared it with AGB derived from TLS 

in tropical forest. Ghebremichael, (2015) and Bazezew, (2017) also got a high value of  R2 = 0.968 and 0.966 

respectively which is similar to the average trees densities of  R2= 0.952 in this study.  
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6. CONCLUSION AND RECOMMENDATIONS  

6.1. Conclusion 

This study aims to demonstrate the effect of tree density in estimating above ground biomass using 

Quantitative Structure Modelling in Berkelah tropical forest. Based on basal area, tree density was classified 

into three categories (low, medium and high). Total of 112 trees which show an even distribution of stem 

volume and canopy volume were selected and used in the reconstruction of the individual tree in QSM. 

Above ground biomass for each class was estimated without relying on information from allometric 

equation. Instead above ground biomass was estimated by multiplying volume of the individual tree from 

QSM with specific wood density. In low tree density a total of 33 trees were used to estimate biomass from 

QSM and compared with biomass derived from field and TLS. In medium and high trees densities AGB 

estimated from QSM were compared with biomass from field and TLS from both medium and high trees 

densities with 37 and 42 trees respectively. The results show high level of agreement in both methods in 

different tree densities. Tree density has an influence on the level of information captured by the ground 

based scanner. When the scanner is obstructed due to high canopy density and intermingling of branches, 

it is impossible to capture total height of the tree but it also reduces number of points cloud captured by the 

scanner per tree. This effect can be seen more in high trees density where there is high number of trees and 

dense canopy per plot/hectare. To ensure reasonable results for an individual tree to be reconstructed in 

QSM, tree parts must be sufficiently covered with points cloud. Thus, the resolution and number of scans 

around the tree need to be high enough to sufficiently catch the detail of the tree (Raumonen, 2017). To 

avoid error in reconstruction of trees in QSM, in this study, only well scanned trees were selected in both 

low, medium and high tree densities. Hence the effect of trees density was not visible due to the basic 

principle of QSM.   

 

Terrestrial laser scanner was not only used in generating points cloud for reconstruction of the individual 

tree in QSM but also derived DBH and height. Height and DBH from TLS were also used to estimate 

biomass in different trees density and compared the results obtained from field biomass using allometric 

equation from Chave et al., (2014). Both biomass estimated using height and DBH from TLS reflect a high 

level of agreement with biomass calculated from the field. The DBH from TLS and DBH from the field 

also showed high correlation. This is because several activities were done within the plot before scanning. 

These activities are: intensive cleaning of the plots, multiple scans to ensure better distribution of points 

cloud and distribute reflectors equally to reduce registration error. 

 

The analysis of this study shows that points cloud generated from TLS can efficiently be used in quantitative 

structure modelling to estimate AGB but due to the fundamental principle of QSM the effect of tree density 

cannot be assessed in QSM. The following are answers to research  questions in this study: 

 

What is the relationship between DBH derived from TLS and the one measured in the field from 

different trees densities? 

The DBH individual tree was measured in the field and compared with DBH derived from TLS. Scatter 

plot was constructed between DBH derived from TLS and DBH measured from the field. Coefficient of 

determination of 0.989 was obtained from regression statistic. A t-test was used to test the level of 

significant; it shows that there is no significant difference between DBH measured from the field and DBH 

derived from QSM. Hence null hypothesis was accepted at (95%) confidence interval.  
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How accurate is AGB/carbon stock derived from TLS-QSM compared to AGB derived from TLS 

in different trees densities?   

A total of 112 trees were used in reconstruction in QSM and estimate above ground biomass and compared 

with above ground biomass estimated from TLS using allometric equation. Both methods show high 

correlation and, a t-test was used to see if there is a significant difference of the estimate of ABG by both 

methods and it proves that there is no significant difference hence null hypothesis is accepted at 95% 

confidence interval. 

 

How accurate is AGB/carbon stock derived from TLS-QSM compared to AGB/carbon stock 

derived from field measurements approach in different trees densities?  

Using height from ALS and DBH from the field a total of 112 trees were used to estimate allometric 

equation from Chave et al., (2014) and compared with biomass derived from QSM  in different trees density. 

Both methods show high correlation and a, t-test was used to see if there significant different between the 

estimate of ABG in both methods and it proves that there is no significant difference between the two 

methods on estimating AGB hence null hypothesis is accepted at 95% confidence interval. 

 

How accurate is AGB/carbon stock derived from the field compared to AGB/carbon stock derived 

from TLS approach in different trees densities? 

Height from ALS and DBH measured from the field was used in allometric equation to estimate above 

ground biomass from different trees density and was compared with AGB derived from TLS using DBH 

and height from TLS. The t-test was conducted to test whether there was a significant difference between 

above ground biomass derived from the field and AGB from TLS in different trees density. The result 

revealed that there is no significant different in above round biomass estimated by both methods in different 

trees density hence null hypothesis was accepted at 95% confidence interval. 

What is the effect of different trees densities on the accuracy of estimating AGB/carbon stock using 

TLS-QSM? 

Above ground biomass derived from QSM in low, medium and high tree densities was tested using ANOVA 

test to check if there is a significant difference between them. The result shows that there is no significant 

difference in biomass estimation in different trees densities at 95% confidence interval. 

 

6.2. Recommendations  

 

❖ Tree density have no effect on QSM because only tree with enough points are selected for 

reconstruction in QSM. 

 

❖ Nmin have effect on crown volume, further investigation on the effect of increasing or decreasing 

nmin value on the crown of the tree in QSM reconstruction.  
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Appendix 2: QSM output. 

 

tree_9.txt 

    All points: 525174, First filtering: 1419, Points left: 523755 

    All points: 523755, Second filtering: 116091, Points left: 407664 

    All points: 525174, All filtered points: 117510, Points left: 407664 

--------------- 

pine, Tree = 1, Model = 1 

PatchDiam1 = 0.1        0.15, BallRad1 = 0.12        0.17, nmin1 = 3 

PatchDiam2Min = 0.02        0.03, PatchDiam2Max = 0.06        0.08, BallRad2 = 0.07        0.09, nmin2 = 1 

lcyl = 3  5, FilRad = 3, Tria = 1, OnlyTree = 1 

Progress: 

  PatchDiam1 = 0.1 

Cover sets       1.4 sec.   Total: 1.4 sec 

Tree sets        1.4 sec.   Total: 2.8 sec 

Initial segments 1.1 sec.   Total: 3.9 sec 

Final segments   0.8 sec.   Total: 4.6 sec 

  PatchDiam2Max = 0.06 

  PatchDiam2Min = 0.02 

Cover sets       3.4 sec.   Total: 8 sec 

Tree sets        3.9 sec.   Total: 11.9 sec 

Initial segments 1.7 sec.   Total: 13.6 sec 

Final segments   1.2 sec.   Total: 14.8 sec 

  lcyl = 3, FilRad = 3 

Tree attributes: 

  Total Volume = 342.3 L   

  Trunk Volume = 206.9 L   

  Branch Volume = 135.4 L   

  Tree Height = 12.5 m   

  Trunk Length = 11.13 m   

  Branch Length = 267.8 m   

  Number Branches = 444     

  Max Branch Order = 10     

  Total Area = 23.55 m^2 

  DBH qsm = 0.2035 m   

  DBH cyl = 0.2061 m   

  DBH tri = 0.2035 m   

  Tria Trunk Volume = 135.4 L   

  Mix Trunk Volume = 135.4 L   

  Mix Total Volume = 342.3 L   

  Tria Trunk Length =8.34 m   

  ----- 

Branch & data    7.2 sec.   Total: 27.2 sec 

    Average cylinder-point distance:   10.6         30.3         34.3         42.7 mm 

Distances        0.9 sec.   Total: 28 sec 
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Appendix 3: input parameter used in QSM. 
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    Appendix 4: Summary table of field and TLS measured DBH. 
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Appendix 5: Number of trees measured in field and extracted from TLS. 
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Appendix 6: Field photo. 

 

 


