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ABSTRACT 

Climate change is expected to increase the intensity and frequency of extreme weather events. This may 

result in heavier precipitation events and longer dry periods. Yet the impact of more extreme precipitation 

distribution on vegetation productivity remains largely unknown, while their consequences on livelihoods 

that depend on agriculture and livestock keeping can be large. To better understand how more extreme 

precipitation distribution affects vegetation, this study investigated if and where seasonal extreme 

precipitation indices can improve the explanation of seasonal vegetation productivity as compared to 

seasonal rainfall. For this purpose, this study extracted a proxy measure for seasonal above-ground net 

primary productivity (ANPP) from satellite-derived time series from the 250m resolution Enhanced 

Moderate Resolution Imaging Spectroradiometer (eMODIS) product. This was achieved by temporally 

accumulating NDVI between location-specific start- and end-of-season, which were derived from an 

existing phenological analysis. ANPP time series were compared against in situ daily precipitation records of 

2001 to 2016 from 19 rainfall stations across Kenya. For most stations, two main rainfall seasons per year 

were identified. The long-term daily rainfall was then averaged per each station to estimate the start- and 

end-of-season. Regression analysis showed that seasonal rainfall can explain less than 50% of the ANPP 

variability. In this study, extreme precipitation indices were calculated per season from daily rainfall records 

as a way to summarize intra-seasonal rainfall distribution differences between years. It has been observed 

that the indices can explain an important part of the variability but differs per season and location. Across 

all the stations, the regression analysis showed that R95pTOT index (precipitation due to wet days-daily 

rainfall >95th percentile) explain much of variability with an average of R2 0.63 during the long rains and R2 

0.55 for short rains. The results indicate that extreme precipitation indices can improve in explaining the 

variability that was not explained by total seasonal rainfall. The study results reveal that more extreme 

distributions of precipitation have a significant effect on vegetation production and thus need to be 

considered for predicting climate change impacts on seasonal vegetation productivity.  
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1. INTRODUCTION 

1.1. Background and problem statement 

 

Climatic changes induced by global warming cause variations in the intensity or frequency of temperature 

and rainfall extremes, with rainfall increasing during the cold periods and decreasing in the warm periods 

(Allan and Soden 2008; IPCC 2014). This so-called hydrological cycle amplification (Easterling et al., 2000) 

results in the increased occurrence of droughts and intense precipitation (Huntington, 2006). This in turn 

can cause consequences to primary productivity (Kang et al., 2009) because there is less water available 

during the growing season. 

 

Extreme weather changes over East Africa such as droughts and floods were observed to occur more 

frequently within the last 30 years to 60 years due to the continued warming of the Indian Ocean (IPCC 

2014). “During the last 30 years, the Horn of Africa experienced a persistent decrease in rainfall during  the 

long rains season” (Tierney et al., 2015). Based on current climate models, a further increase in extreme 

weather is expected for East Africa. A reduction of average annual rainfall and rising temperatures are 

expected, which will expose agriculture to increased drought stress (Kimani et al., 2014). This in turn may 

have severe consequences for local food security which largely depends on agriculture and livestock 

production (Tierney et al., 2015). “Global circulation models predict that by 2100, Kenya’s average 

temperature will increase by 4°C, resulting in higher variability of rainfall and the exceeding magnitude of 

future hazards” (Muchemi et al., 2012).  

 

Kenya’s crop and livestock production are affected by droughts, leading to high malnutrition rates among 

the vulnerable populations (Kabubo-Mariara & Kabara, 2015). Moreover, these hazards have slowed down 

the country’s economic development (Kimani et al., 2014). Between 1997 to 1998, the reduced rainfall due 

to an El Niño event resulted in the loss of crops and livestock for a large part of the country (Cumiskey & 

Jackson, 2016). In 2009, drought caused Kenyan pastoralists to lost more than 50% of livestock (Kimani et 

al., 2014). From 2016 to the beginning of 2017 the country also experienced drought conditions which 

caused by the low rainfall and high temperatures. This condition lead over 3 million people in need of food 

aid (Uhe et al., 2017). On the other hand, from April to May 2013, intense rainstorms in areas located from 

a distance downstream of Kenya resulted in flash floods, causing displacement for 140,000 people, and 96 

people were killed (Hoscilo et al., 2015). 

 

A better understanding of how more extreme weather impacts above-ground net primary production 

(ANPP) is needed to anticipate impacts on livelihoods better. Previous studies that sought to increase that 

understanding have been predominantly carried out in the United States. For semi-arid grassland sites, rain-

shelter experiments show that fewer but larger rain events resulted in higher ANPP as compared to plots 

that receive the same rainfall more frequently. The soil moisture showed that heavy rains caused overall 

higher soil water content because more water infiltrated into the ground (Heisler-White et al., 2008). Fay et 

al. (2008) also used the rain-shelter experiment to examine how the variation in the interval between rainfall 

events, the quantity of total rainfall and individual event size affected soil water content, leaf photosynthesis, 

soil respiration and ANPP. The result shows significant differences in ANPP and soil respiration differ in 

the interval between rainfall events and rainfall total quantity which sharing the same individual event size. 

This study suggests that the ecosystem response to extreme rainfall patterns is likely depend on the specific 

ways that these three elements are combined during each season. Even if the impact of more extreme rainfall 
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varies between different ecosystems, but understanding these impacts is important for predicting how more 

extreme rainfall will change the ecosystem.  

 

Research in other parts of the globe has shown that more extreme patterns of rainfall can cause both 

increases and decreases in vegetation productivity. Based on a review of existing literature, Zeppel et al. 

(2014) found that redistribution of rainfall might occur across and within seasons which may lead to soil 

water content that affect plants. This study combined manipulative and observational studies to focus on 

manipulative experiments and modeling response of plants to the altered precipitation seasonality and 

extreme distribution of precipitation. They examined impacts of precipitation redistributed on plants 

processes which included leaf water potential, stomatal conductance, soil fluxes and ANPP. Also, they 

assessed the response of plants to changes in seasonality precipitation. The results showed that extreme 

precipitation to ANPP led to increases in water-limited sites and increased soil water content. Also, extreme 

precipitation at mesic sites caused a decrease in ANPP and soil water content. They also found that seasonal 

changes in precipitation are frequently causing water stress, decrease biomass and changes in phenology 

though the impacts are depending on changes in precipitation per season and per location.  

 

Apart from field experiments, also satellite data have been used to investigate the impacts of extreme 

precipitation patterns on ANPP. Zhang et al. (2013) used satellite measurements of greenness and long-

term rain gauge data from the 11 United State Department of Agriculture (USDA) experimental stations 

across United States. An assessment was done to study the impacts that occur on vegetation productivity 

which is caused by interannual variability of precipitation by using a seasonal integral of a remotely sensed 

vegetation index as a proxy for ANPP. More extreme seasonal distribution of precipitation resulted in ANPP 

increases in xeric grassland sites, but in ANPP decreases in mesic grasslands.   

 

While research in other parts of the globe have shown that more patterns of rainfall can cause both increases 

and decreases in vegetation productivity, for East Africa; such studies are lacking. Nonetheless, given 

expected increases in extreme rainfall events and increases in dry-spells here and the strong dependence of 

livelihoods on vegetation productivity, it is important to understand how such changes may impact 

vegetation productivity. 

1.2. Research objectives 

The main objective is to evaluate if within-season rainfall distribution, as captured by extreme precipitation 

indices, can improve the prediction of seasonal vegetation productivity as compared to total seasonal rainfall. 

 

Specific objectives 

 

➢ To extract multi-year indicators of seasonal above-ground net primary productivity (ANPP) and 

total seasonal rainfall using season definitions derived from NDVI and station-rainfall time series.  

➢ To evaluate to what extent total seasonal rainfall can explain the interannual variability of the ANPP 

proxy.   

➢ To extract time series of extreme seasonal indices from daily rainfall station data and assess if and 

to what extent these can explain rain use efficiency (ANPP divided by seasonal rainfall)  
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2. STUDY AREA AND DATA 

2.1. Study area and rainfall data 

 

The seasonality in Kenya is characterized by bimodal and unimodal rainfall regimes (Herrmann & Mohr, 

2011).  A large part of the country experiences two rainfall seasons known as long rains (March to June) and 

short rains (October to December). Some other parts of the country such as central highlands have a more 

unimodal rainfall regime (Owiti, 2012) with a single rainfall season per year.  

 

The topography of the study area (Figure 1a) defines the country as follows; the central region is higher and 

crossed with the Great Rift Valley while on Eastern region the topography rises gradually from a narrow 

coastal plain in series of plateaus. The study area contains several land use and land cover categories as 

shown in (Figure 1b). In Kenya most part of the country such as Northern and Northern Easter areas are 

covered with grassland with shrubs and trees while on Western part cropland is dominant. The economic 

activities practices for the rural livelihood in Kenya is livestock keeping including camels, goats, sheep and 

cattle (Vrieling et al., 2014). In the wetter areas of the country crop cultivation is increasing and played the 

role of economic change strategy (Rufino et al., 2013). 

 

The study area was defined based on the availability of multi-year data from rainfall stations in Kenya. Data 

were searched for rainfall stations within Kenya which have a multi-year availability of daily rainfall data. 

The daily rainfall series analysed were compiled from Joint Research Centre (JRC) of European Commission 

(Alterra et al., 2013), Kenya Meteorological Department (KMD), ACRE Africa, International Livestock 

Research Institute (ILRI) and Centre for Training and Integrated Research in Arid and Semi-Arid Lands 

Development the dataset is available through free download from CETRAD website (http://wlrc-ken.org/). 

Figure 1c shows the geographical locations of the retained stations together with their sources. 

 

Criteria used to select rainfall stations were 1) the availability of daily rainfall data for at least 10 years or 

more with less than 5% of the daily observations lacking, 2) a relatively homogeneous natural land cover 

(e.g. savannah, forest) in the vicinity of the station. If more than 5% of the observations for a given season, 

the particular year was excluded from analysis. The stations with less than ten years of data meeting the 

threshold were discarded. Based on the criteria, a total of 299 long rains and 294 short rains seasons of daily 

precipitation from 22 stations were used for further analysis (Table 1). 

 

Based on these daily rainfall data from 2001-2016, the study area was classified into three climatic zones 

based on the average annual rainfall of these rainfall stations. Stations having average annual rainfall between 

150-550 mm were classified as arid, 550-900mm, semi-arid and 950-1400mm semi-humid (Dr.Kirubi & 

Dr.Kahuthia-Gathu, 2012) Table 1.  

 

 

 

 

 

  

http://wlrc-ken.org/
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Table 1. Characteristics of the rainfall stations used in the study area with their sources and availability of 
data 

 

 

 

 

 

Station name 

        

 

 

        Coordinates 

 

 

 

 

 

Available data     

range 

 

 

 

 

 

Source 

 

Total 

number 

of seasons 

2001-

2016 

 

 

Average 

annual 

rainfall 

(mm) 

 

 

 

 

 

Climate 

Latitude Longitude LR SR 

 

Kapiti Farm 

 

-1.634003 

 

37.147621 

 

2001-2016 

 

ILRI 

 

16 

 

16 

 

513 

 

Arid 

Elgon Downs 

Farm 

1.06275 34.85658   16 13 1,162 Semi-humid 

Homabay 

Water Supply 

-0.52472 34.45662   10 11 825 Semi-arid 

Kalalu LRP 0.08134 37.16475   15 16 699 Semi-arid 

Muriranjas 

Vocational 

-0.74498 36.97361 2001-2016 Acre 

Africa 

10 11 1072 Semi-humid 

Tenri Koatec -0.47247 37.55396   12 11 971 Semi-humid 

Timau Marania 0.08781 37.45881   16 16 1,052 Semi-humid 

Archers Post 0.63707 37.66758   16 16 359 Arid 

Kalalu (NRM) 0.08134 37.16475 2001-2016  15 16 771 Semi-arid 

Munyaka 

(NRM) 

-0.18355 37.05923  

 

CETRAD 13 16 658 Semi-arid 

Naro Moru 

Met STN 

-0.1706 37.21392   16 16 1505 Semi-humid 

Nakuru 

Lamu 

-0.27 

-2.27 

36.07 

40.9 

  14 

11 

13 

11 

944 

588 

Semi-humid 

Semi-arid 

Voi -3.4 38.57   14 13 479 Arid 

Mombasa -4.03 39.62  KMD  

and JRC 

14 14 862 Semi-arid 

Lodwar 3.1167 35.64   14 13 227 Arid 

Marsabit 2.32 37.98   13 11 533 Arid 

Wajir 1.75 40.07 2001-2015  14 13 321 Arid 

Narok -1.13 35.83   13 11 582 Semi-arid 

Mandera 3.95 41.87   11 11 192 Arid 

Garissa -0.48 39.63   12 13 258 Arid 

JKIA -1.32 36.82   14 13 645 Semi-arid 
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(a) (b) 

 

  

  

(c)  (d) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. Maps of the study area (Kenya) showing; (a) Elevation (source: https://earthexplorer.usgs.gov/) (b) Land 

use/land cover for the year 2016 (source: http://2016africalandcover20m.esrin.esa.int/) (c) The distribution of stations 
with daily time series selected in this study and the corresponding source for each station; and (d) The mean NDVI 
(2001-2016) from 10-day eMODIS composites Remote sensing data 
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2.1.1. NDVI Time series 

To estimate the interannual variability in ANPP, in this study time series of NDVI from the Enhanced 

Moderate Resolution Imaging Spectroradiometer (eMODIS) version 5 product was used. This product is 

made by the United States Geological Survey (USGS); based on MODIS data acquired by the Terra satellite. 

Although version 6 of eMODIS based on the Aqua satellite is also available, was observed with noise 

problem in those data and consequently, it was decided to use version 5. The eMODIS product consists of 

10-day (dekad) maximum value NDVI composites at 250m resolution (Jenkerson et al., 2008). Temporal 

smoothing is applied to minimize atmospheric effects that degrade the NDVI signal. This is achieved with 

the Swets algorithm which applies a weighted least-squares regression to a moving temporal window for 

each pixel time series assigning largest weights to local peaks in the NDVI profile (Swets at al., 1999). The 

smoothed eMODIS product is available and can be freely downloaded from the year 2001 onwards. For the 

East Africa window, a set of images from the year 2001 to 2016 was downloaded and used in this study. 

2.1.2. Ancillary data 

Google Earth imagery was used for selecting homogeneous areas with similar characteristics and stable 

natural vegetation using visual interpretation. 

2.2. Software 

The following software was used: 

• ArcGIS version 10.5 was used for interact and create maps, i.e. analyse geographical data, view and 

editing. 

• Microsoft Excel – Calculating and analysing large time series, statistical analysis and plots 

• IDL – Extracting and calculating extreme rainfall indices 
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3. METHODS 

3.1. Extracting seasonal ANPP and rainfall 

3.1.1. Defining rainfall seasonality regimes 

This study examines rainfall and vegetation productivity within a season. This requires a definition of the 

season, i.e. when does it start and when does it end. This seasonality is not the same throughout the study 

area, because in some regions rains may start or end earlier than in other parts. Moreover, for a single 

location these definitions can be different for NDVI and rainfall; vegetation usually greens-up after the rains 

have raised soil moisture content, and also remains green after the last rains of the season have taken place. 

 

Before defining the start and end of the season of rainfall, a preliminary analysis was performed to evaluate 

for each station if the average rainfall distribution within the year shows a clear seasonal pattern. This was 

done by calculating the seasonality index (SI) as follows (Walsh & Lawler, 1981): 

 

           𝑺𝑰 =
𝟏

𝑹
∑ |𝑿𝒏 −

𝑹

𝟏𝟐
|𝒏=𝟏𝟐

𝒏=𝟏                                                                                                                              (1)                                                                                                                

 

where Xn is the monthly average rainfall for each month n and R stands for average annual rainfall. The 

index has a minimum value of 0 if all the months have an equal amount of rainfall, and a maximum value 

of 1.83 if all the rainfall occurs in a single month. The 0.60 value has been set as the threshold between clear 

and limited seasonality. The SI was calculated for the multi-year average (2001-2016) for each station time 

series and classified according to Table 2. 

 
Table 2. Seasonality index classes 

SI class limits Rainfall regime 

<0.60 Precipitation spread throughout the year 

0.60 – 0.80 Seasonal 

>0.80 Markedly seasonal with a long dry season 

 

3.1.2. Seasonal temporal integration periods for ANPP 

Different approaches exist to perform phenological analysis from NDVI time series (de Beurs & Henebry, 

2010) which allows obtaining a spatial-temporal representation of vegetation seasonality. This study used 

the outcome of an approach that was first published by Meroni et al. (2014) and is well capable of dealing 

with the bimodal seasonality that is common to East Africa. The phenological analysis was applied using 

the NDVI time series from the eMODIS data to estimate the start-of-season (SOS) and end-of-season 

(EOS) and as such to identify the key period when biomass develops. 

 

First, the NDVI time series was only evaluated if at least 60% of the 10-day composites had valid NDVI 

values for land and if the dynamic range (defined as the difference between the 95th and 5th percentile of the 

full-time series value) was greater or equal than 0.10 NDVI units. If the pixel did not meet this condition, it 

was masked out. Then the Lomb normalized periodogram (algorithm used for detecting and characterizing 

periodic components in unevenly sampled time series (Lomb, 1976; Scargle, 1982; VanderPlas, 2017) was 

applied to evaluate per-pixel if the overall behavior is bimodal or unimodal. Using a ‘median year’ and the 

estimated uni- or bi-modality, breakpoints between seasons were set at the NDVI minima. A parametric 
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double hyperbolic tangent model was then fitted to the data of each season and pixel. The SOS was 

estimated for each season per year as the moment when the fitted NDVI model exceeded 20% of the local 

growing amplitude (i.e. between minimum NDVI before green-up and maximum NDVI of that season), 

and EOS as the moment when it falls below 80% of the decay amplitude (i.e. between maximum NDVI of 

the season and the following minimum NDVI after decay).  Finally, the multi-annual average and standard 

deviation of SOS and EOS were calculated per pixel (Vrieling et al., 2016). 

 

Subsequently, to account for the interannual variability in SOS and EOS, half a standard deviation was 

subtracted from the per-pixel SOS estimates, and half a standard deviation was added to the EOS estimate. 

The resulting dates were translated into a number from 1 to 36, reflecting the 10-day period (dekad) that the 

obtained SOS and EOS dates represent, i.e. 1 being 1-10 January (Vrieling et al., 2016). These NDVI derived 

SOS and EOS dekads are referred to here as SOSΝ and EOSN. 

 

To obtain a proxy measure of ANPP, per season and year, the dekad NDVI values were accumulated 

between the site-specific SOSΝ and EOSN dates. The step can be expressed as:  
 

𝑪𝒖𝒎𝑵𝑫𝑽𝑰𝒔 = ∑ 𝑵𝑫𝑽𝑰𝒕
𝒕=𝑬𝑶𝑺𝑵
𝒕=𝑺𝑶𝑺𝑵

                                                                                                   (2)                                       

 

where 𝑪𝒖𝒎𝑵𝑫𝑽𝑰𝒔 is the cumulative NDVI value for each season per pixel, s represents a long rain or 

short rain season in a specific year, and 𝑵𝑫𝑽𝑰𝒕 is the pixel value of one dekad (t) within that season (as 

defined by SOSN and EOSN). The cumNDVI, values were then used as a proxy for the above-net primary 

productivity (ANPP). Figure 2 shows a temporal graph of Archers Post pixel as an example of cumulative 

NDVI between SOS and EOS for long and short rains. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Temporal graph of Archers Post showing the start of the season (SOS) and end of the season 
(EOS) derived separately for the long rains and short rains. The cumNDVI is the cumulative value of 
NDVI between SOS and EOS is the green area under the curve. The red dots correspond to the start and 
end dates for long and short rains season 

3.1.3. Seasonal temporal integration periods for rainfall 

In this study, the approach to extract the start and end of the rainfall season is based on Liebmann et al. 

(2012) who adapted the approach originally published by Liebmann & Marengo (2001). Dunning et al. 

(2016) applied the same approach to assess precipitation seasonality across the African continent. The 

Liebmann’s rule defines the SOS as the moment when daily precipitation consistently exceeds its local 

annual daily average and ends when daily precipitation drops below that value. In this study, the rule was 

applied to the precipitation climatology of the study area using daily data (2001-2016) per each station.  
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First, the long-term daily average (e.g. the average of all 1 January observations) for each day of the year and 

the long-term annual mean daily average (i.e. the average of all observations in the 2001-2016 window) are 

calculated. From 1 January the long-term daily average minus the long-term annual mean average is summed: 

this process is called anomalous accumulation. This can be expressed as: 

 

𝑨(𝒅) = ∑ 𝑹𝒊 − 𝑹

𝒅

𝒊=𝟏𝑱𝒂𝒏

 

                                                                                                                                                                            (3)                                                                                                                                                          

 where A(d) is anomalous accumulation, 𝑹𝒊 is the long-term daily average while 𝑹 is the long-term annual 

mean daily average and 𝒊 ranges from 1 January to the day (d) for which the calculation applies.  

 

The first day past the minimum value of anomalous accumulation marks the SOS, while the EOS is defined 

as the day when the anomalous accumulation reaches its maximum value as shown in Figure 3a. The same 

rule was applied to individual years to retrieve the annual SOS and EOS dates. Accounting for the 

interannual variability while reducing the chance of overlap between seasons, half of the standard deviation 

was subtracted from the average SOS dates and added to the EOS dates Figure 3b. This is the same as done 

for NDVI-based on SOS and EOS (Section 3.1.2). 

 

For each station data, the total seasonal precipitation was then calculated per season using the SOS and EOS 

dates. The step can be expressed as: 

 

  𝑪𝒖𝒎𝑷 = ∑ 𝑷𝒕
𝒕=𝑬𝑶𝑺𝑹
𝒕=𝑺𝑶𝑺𝑹

                                                                                                                      (4) 

                                                                                                                        

where 𝑪𝒖𝒎𝑷 is the cumulative precipitation for each season, the 𝑺𝑶𝑺𝑹 and 𝑬𝑶𝑺𝑹 are the start and end 

of season dates as derived from the station rainfall data (R for rainfall), and 𝑷𝒕 is the rainfall during one 
day (t) belonging to the season.  

(a)                                          (b) 

Figure 3. Kapiti Farm station: a) Climatological cumulative daily mean rainfall anomaly (blue line) and 
daily mean rainfall (grey bars) for each day of the year averaged over 2001 – 2016. The descending lines 

between the seasons are the dry periods. b) CumP is the cumulative value of rainfall between SOS and 
EOS under the blue curve. The red dots correspond to the start and end dates for long and short rains 
season.  
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3.2. Evaluation of interannual variability of ANPP and total seasonal rainfall 

To assess to what extent the interannual variability in total seasonal rainfall can explain ANPP variability a 

linear regression model was used separately for long and short rains for all selected rainfall stations and 

corresponding pixels. Each station combination was analyzed separately by examining their 10-16 year 

variability in rainfall and ANPP.  

 

In addition, to evaluate the response of ANPP to total seasonal rainfall between stations, the stations were 

split into three groups with the similar climatic condition and labeled as arid areas, semi-arid areas and semi-

humid areas into a regression analysis for both the long and short rains. All stations were combined in one 

analysis to determine how much of interannual variability is explained in long and short rains.  

 

Further analysis was done using a one-way ANOVA to test whether there was a significant difference 

between both the long and short rains seasons for the three climatic groups, i.e. arid, semi-arid and semi-

humid areas. Among the groups, the mean values of each group were compared per season using a Games-

Howel post hoc test.  

3.3. Extreme indices 

An extreme index provides information about the within-season distribution of weather variables such as 

precipitation (IPCC, 2012). A core set of 27 descriptive extreme indices has been defined by the Expert 

Team on Climate Change Detection and Indices (ETCCDI), in order to uniformly monitor changes in 

extreme climate and weather (WMO, 2009).  

 

While usually extreme indices are calculated in relation to a 30-year reference to climatological period, in 

this study, the long-term rainfall data from the stations have been used as the statistical basis to assess 

extreme indices. This study used the extreme indices as proposed by Zhang et al. (2013), who used similar 

indices and found them have explanatory power for ANPP variability. The set of extreme precipitation 

indices considered for this study include R95p%, R95pTOT, CDD and SDII as defined in Table 3. CDD is 

an indicator of the length of a dry spell, SDII express the intensity of extreme precipitation, R95pTOT 

shows seasonal precipitation due to wet days (daily rainfall exceeding the 95th percentile) and R95% 

represents the fraction of total precipitation due to days with rainfall amount above >95th within a season. 

 
Table 3. The extreme indices definitions  

Index Abbreviation Definition Units 

1. R95pTOT Precipitation due to wet days (daily rainfall >95th percentile) mm 

2. R95p% Precipitation fraction of total precipitation due days with rainfall 

amount >95th percentile 

% 

3. SDII Simple daily intensity index:  mm/d 

4. CDD Maximum number of consecutive dry days (<1 mm) days 

 

Source: ECA&D (2017), full definition and other precipitation indices are available from 

http://eca.knmi.nl/indicesextremes/indicesdictionary.php 

 

The extreme indices were calculated per season using daily precipitation observations from each station. An 

extreme index was only calculated for a season if no more than 5% of the rainfall data for a specific season 

within the period SOSR and EOSR was missing. Any missing observations were simply discarded, i.e. they 

were not counted as a dry or wet day, nor incorporated in the calculation of the 95th percentile. For the 

http://eca.knmi.nl/indicesextremes/indicesdictionary.php
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dataset with more daily precipitation observations were missing for a specific season, the extreme index was 

set to a missing value for that season for that year. 

3.3.1. Response of rain use efficiency to extreme indices 

To account for the seasonal rainfall amount on ANPP, the ANPP was normalized by dividing it by total 

seasonal rainfall. This normalized ANPP can be defined as the rain use efficiency (RUE).  

 

This study used simple linear regression and a Pearson correlation coefficient analysis to assess the 

relationship between RUE and the extreme indices. The analysis was done separately for each station with 

each one of the extreme indexes; R95p%, R95pTOT, CDD and SDII to assess to what extent each of these 

indices individually can explain the variability in RUE. The analysis was further done by combining stations 

with same climatic characteristics into three groups arid, semi-arid and semi-humid areas and for each group, 

one regression analysis was attempted to assess if a grouping of similar locations can improve the 

explanatory power of these extreme indices on RUE.  

 

Further analysis was done using a natural logarithm transformation regression model on stations grouped 

as a climatic zone (i.e. arid, semi-arid and semi-humid areas) to improve the non-linear relationship result 

observed from simple linear regression. This method of natural logs transformation was first done by adding 

a constant value of 1 to each value of a variable to reduce an error caused by observations with zero values. 

Therefore, transformation was done as; 

 

 LN(1+x)                                                                                                                                               5 

where LN returns the natural logarithm of a number x which both RUE and extreme index and 1 is the 

constant value. 
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4. RESULTS 

4.1. Temporal integration of seasonal ANPP and rainfall 

4.1.1. Spatial variability of rainfall seasonality regimes 

The seasonality index (SI) was classified into three classes. For the 22 retrieved stations (Table 1), three 

stations with SI below 0.60 were discarded because their more uniform rainfall distribution does not allow 

to clearly separate wet and dry seasons. Table 4 shows the SI of each retained station. 

  

Figure 4 shows the temporal graphs for two stations that represent a different precipitation distribution 

regime (SI). The temporal behavior of NDVI and rainfall clearly indicate a bimodal seasonal cycle. Figure 4 

shows the correspondence between rainfall and NDVI, where NDVI mostly reach a maximum after the 

peak of the rainy season. Figure 4a Kapiti Farm station is consistently very dry throughout the dry months 

and has short rainfall seasons while Figure 4b Munyaka (NRM) station has longer rainy seasons with a 

shorter dry period. 

 

 

 (a) (b) 

         
Figure 4. Temporal graphs representing a year average of the two precipitation regimes in the study area 
(a)Kapiti Farm station with SI 1.00, (>0.80) markedly seasonal with the long dry season (b) Munyaka 
(NRM) station with SI 0.68, (0.60-0.80) Clear seasonality 

4.1.2. Derived start and end of season dates for ANPP and rainfall 

For the analysed stations the SOSR dates for the long rains are from early March to late May for most stations 

except for Narok which start early February. Few stations the EOSR dates are observed early June except 

for Lamu which is mid-July. The SOSR dates for the short rains are from early mid-August to early 

September for other stations and EOSR dates are late December for most stations except for few which 

ends late November and January (Table 4). For some stations, a correspondence between SOSR/EOSR and 

SOSN/EOSN dates were observed for the long rains. In short rains, some stations have been observed with 

the large gap between SOSR/EOSR and SOSN/EOSN dates. 
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Table 4. The table indicates the start and end dates for the long and short rains season of precipitation and 
cumulative NDVI, classification of the seasonality index (SI) as assessed at each rainfall station 

 

Station name 

              PLR PSR cumNDVILR cumNDVISR 

SI SOSR EOSR SOSR EOSR SOSN EOSN SOSN EOSN 

Kapiti Farm 1.00 01 MAR 31 MAY 01 OCT 31 JAN 21 MAR 10 AUG 21 OCT 20 FEB 

Elgon Downs 

Farm 

 

0.61 

 

21 MAR 

 

30 JUN 

 

21 AUG 

 

30 NOV 

 

11 APR 

 

10 OCT 

 

21 OCT 

 

20 FEB 

Kalalu LRP 0.75 21 MAR 20 JUN 21 AUG 10 DEC 11 APR 30 SEP 01 NOV 28 FEB 

Muriranjas 

Vocational 

 

0.67 

 

21 MAR 

 

10 JUN 

 

11 OCT 

 

31 DEC 

 

10 APR 

 

31 AUG 

 

21 OCT 

 

28 FEB 

Tenri Koatec 0.81 11 MAR 10 JUN 01 OCT 20 DEC 01 APR 10 AUG 31 OCT 28 FEB 

Timau 

Marania 

0.81 11 MAR 20 MAY 11 OCT 31 DEC 01 APR 31 JUL 31 OCT 28 FEB 

Archers Post 1.04 11 MAR 31 MAY 01 OCT 31 DEC 21 MAR 10 JUL 31 OCT 20 FEB 

Kalalu (NRM) 0.74 20 MAR 30 JUN 21 AUG 10 DEC 11 APR 30 SEP 01 NOV 28 FEB 

Munyaka 

(NRM) 

0.68 01 MAR 31 MAY 21 SEP 31 DEC 21 MAR 20 AUG 11 OCT 28 FEB 

Lamu 0.60 01 MAR 20 JUL 11 AUG 30 NOV 21 MAR 10 AUG 01 NOV 20 FEB 

Voi 0.85 21 MAR 20 MAY 21 OCT 31 DEC 01 APR 10 AUG 21 OCT 28 FEB 

Mombasa 0.63 01 MAR 20 JUN 11 AUG 10 DEC 21 MAR 30 SEP 21 OCT 10 FEB 

Lodwar 0.97 21 MAR 31 MAY 21 AUG 20 DEC 01 APR 31 JUL 11 OCT 31 JAN 

Marsabit 0.90 01 MAR 20 MAY 01 SEP 10 DEC 01 APR 10 AUG 21 OCT 20 FEB 

Wajir 1.03 11 MAR 10 MAY 21 SEP 30 NOV 01 APR 10 AUG 21 OCT 28 FEB 

Narok 0.67 11 FEB 20 MAY 01 AUG 20 DEC 01 APR 10 SEP 01 NOV 28 FEB 

Mandera 1.05 01 MAR 10 JUN 11 OCT 20 DEC 21 MAR 20 JUN 31 OCT 10 JAN 

Garissa 1.01 21 MAR 20 MAY 11 OCT 31 DEC 01 APR 10 AUG 21 OCT 28 FEB 

JKIA 0.73 01 MAR 20 JUN 21 AUG 31 DEC 01 APR 10 AUG 11 OCT 28 FEB 

 

Vegetation green-up generally responds after the first rains have raised the soil moisture availability and are 

consequently later than the first rainfall. Also, vegetation remains green for some time after the last rains of 

the season have taken place. In Figure 5a the Timau Marania station temporal graph has been used as an 

example to show the results of how NDVI showed a close correspondence to rainfall fluctuations in both 

seasons while Figure 5b Kalalu NRM station shows the large deviation between rainfall and NDVI. 

 

 (a) (b) 

Figure 5. Temporal graphs showing average rainfall and NDVI for (a) Timau Marani and (b) Kalalu NRM 
the black arrows indicating the results of phenological analysis of NDVI for SOSN and EOSN dates and 
red arrows for rainfall SOSR and EOSR dates for the long rains and short rains 
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4.2. Relationship between ANPP and seasonal rainfall 

4.2.1. Response of ANPP to seasonal rainfall per station 

Seasonal rainfall can explain part of the ANPP variability, but the extent to which this is feasible differs 

greatly between stations. For most stations, less than 50% of the variability is explained (Table 5). This 

means that other factors (e.g. the rainfall distribution within the season) could be important determinants 

of the ANPP variability. 

 

Table 5 shows how much of interannual variability in cumNDVI can be explained by total seasonal rainfall 

for each station and for both the long and the short rains. As for Figure 6, important differences can be 

observed between stations and between seasons (scatterplots for other stations are presented in Appendix 

I). Out of all 38 station-season combinations, only for 10 cases more than 50% of the cumNDVI variability 

could be explained by rainfall. Only for two stations (Archers Post and Lamu, Table 5 and Figure 6ab), this 

was the case for both long and short rains. The highest R2 (0.82) was observed for Voi (Figure 6c) during 

the short rains, while Lodwar had the lowest R2 (0.06), both for long and short rains (Figure 6d). When 

combining both seasons in a single analysis for each station, Lamu shows the highest R2 (0.75) among all 

stations (Figure 6b, Table 5) 

 

Across all 19 stations, for both the long and the short rains, total seasonal rainfall explains on average less 

than 50% of the cumNDVI variability (Table 5, Appendix I). While for some stations and seasons a total 

seasonal rainfall is a good predictor for cumNDVI, much of the cumNDVI variability is not explained by 

seasonally cumulated rainfall alone.  

 
Table 5. R2 between cumNDVI and seasonal rainfall for individual station for long and short rains 

Station name Long rains Short rains LR&SR  

Kapiti Farm 0.27 0.73 0.38 
Elgon Downs Farm 0.13 0.28 0.02 
Kalalu LRP 0.50 0.38 0.43 
Muriranja 
Vocational 0.33 0.24 0.02 
Tenri Koatec 0.19 0.17 0.18 
Timau Marania 0.34 0.10 0.31 
Archers Post 0.51 0.65 0.59 
Kalalu (NRM) 0.44 0.61 0.48 
Munyaka (NRM) 0.55 0.20 0.41 
Lamu 0.77 0.61 0.75 
Voi 0.33 0.82 0.61 
Mombasa 0.36 0.39 0.32 
Lodwar 0.06 0.06 0.10 
Marsabit 0.62 0.44 0.50 
Wajir 0.41 0.51 0.44 
Narok 0.08 0.31 0.32 
Mandera 0.13 0.49 0.56 
Garissa 0.19 0.14 0.18 
JKIA 0.13 0.46 0.24 

Average 0.37 0.40 0.36 

Legend: 

  Maximum 0.90 

  Minimum 0 
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 (a) (b) 
 

 

 (c) (d) 

 

 
Figure 6. Scatterplots representing the stations with the highest correlation between the cumNDVI and 
total seasonal rainfall and to show the spread in correlation from low to high correlation for; (a) Archers 
Post, (b) Lamu, (c) Voi and (d) Lodwar  

4.2.2. Response of ANPP to seasonal rainfall per grouped stations 

The amount of explained variability did not increase when grouping observations according to climatic 

zones. Table 6 shows how much of interannual variability in cumNDVI can be explained by total seasonal 

rainfall for a grouped location for both the long and the short rains. For the three groups (arid, semi-arid, 

and semi-humid), the variability of R2 0.31 was explained in arid areas during the short rains season (Figure 

7a). For the other groups, the amount of variability explained is even less (Figure 7, Table 6). A combined 

of all stations and seasons in a single analysis resulted in an overall R2 of 0.37 (Figure 7d) 
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Table 6. R2 between cumNDVI and seasonal rainfall combined in three groups per location for long and 
short rains 

 Location Long rains Short rains  LR&SR 

Arid  0.31 0.28 0.28 

Semi-arid  0.09 0.12 0.12 

Semi-humid  0.06 0.04 0.04 

All stations 0.37 0.37 0.37 

 

Legend: 

  Maximum 0.90 

  Minimum 0 

 

       

 

 (a) (b) 

 

     (c) (d)  

 

 
Figure 7. Scatterplots showing the relationship between cumNDVI and total seasonal rainfall for stations 
grouped; (a) arid areas, (b) semi-arid areas (c) semi-humid areas and (d) all stations 

Figure 8 representing the climatic zone groups per seasons showing that there was a statistical difference 

between the groups. A Post-hoc comparison using the Games-Howell test shows there is evidence that at 

least one group is significantly mean different from the rest during the short rains. Between the mean arid 

and semi-humid areas was significant (P=0.197). Also, between the mean semi-arid and semi-humid areas 

was significant (P=0.085). However, the mean between arid and semi-arid areas was no significant difference 

(P=0.722) as presented by box plots and whisker (Figure 8, Appendix II) 
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Figure 8. A box plot and whisker of a grouped climatic zone stations at significance difference P < 0.05  

4.3. Response of RUE to extreme precipitation indices 

Table 7 shows how much of RUE variability is explained by extreme indices for each station for both long 

and short rains. For all extreme indices, R95pTOT is explaining over 60% of the RUE variability for 15 out 

of 19 stations in long rains and 11 for short rains. This index explains more of the ANPP variability as 

compared to total seasonal rainfall. For all the stations the Pearson correlation coefficients between 

R95pTOT and RUE were negative for both seasons (Appendix III). Only six stations (Kapiti Farm, Kalalu 

NRM, Munyaka NRM, Lamu, Voi and JKIA) more than 60% of the RUE variability could be explained by 

R95pTOT for both the long and short rains. The highest R2 (0.89) was observed for Voi during the long 

rains, while lowest R2 was observed in Narok (0.07) the long rains and in Wajir (0.05) for the short rains. 

 

The Pearson correlation coefficient between the CDD and RUE was positive for all stations (Table 7). For 

Narok, no correlation (R2=0.00) was observed between CDD and RUE for either season. Only three 

stations explain above 60% of RUE variability in one of the seasons (Muriranja Vocational and Mombasa) 

and four stations explain 50% RUE variability Kapiti Farm, Lamu, Lodwar and Wajir which is for both 

seasons long and short. 
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Table 7. R² for each station representing the relationship between RUE to extreme indices per both 
seasons long and short rains in the study area  

Station name 

CDD SDII R95% R95pTOT 

LR SR LR SR LR SR LR SR 

Kapiti Farm 0.12 0.54 0.11 0.43 0.16 0.55 0.72 0.71 

Elgon Downs Farm 0.00 0.21 0.33 0.62 0.52 0.61 0.80 0.54 

Kalalu LRP 0.01 0.26 0.38 0.63 0.42 0.54 0.62 0.69 

Muriranja 

Vocational 0.01 0.60 0.06 0.13 0.03 0.24 0.19 0.67 

Tenri Koatec 0.26 0.08 0.41 0.62 0.29 0.34 0.24 0.74 

Timau Marania 0.05 0.24 0.54 0.77 0.33 0.61 0.69 0.85 

Archers Post 0.21 0.24 0.43 0.40 0.26 0.33 0.73 0.48 

Kalalu (NRM) 0.09 0.36 0.55 0.21 0.40 0.52 0.61 0.75 

Munyaka (NRM) 0.22 0.16 0.01 0.01 0.05 0.27 0.60 0.69 

Lamu 0.27 0.54 0.73 0.71 0.49 0.85 0.82 0.63 

Voi 0.29 0.48 0.10 0.67 0.57 0.70 0.89 0.68 

Mombasa 0.15 0.63 0.57 0.67 0.19 0.28 0.57 0.62 

Lodwar 0.38 0.58 0.35 0.35 0.20 0.32 0.72 0.21 

Marsabit 0.18 0.01 0.64 0.29 0.51 0.88 0.81 0.25 

Wajir 0.57 0.57 0.40 0.05 0.72 0.13 0.62 0.05 

Narok 0.00 0.00 0.00 0.72 0.05 0.72 0.07 0.55 

Mandera 0.16 0.18 0.67 0.02 0.53 0.47 0.82 0.36 

Garissa 0.48 0.14 0.52 0.32 0.38 0.39 0.75 0.38 

JKIA 0.19 0.15 0.11 0.55 0.22 0.79 0.66 0.65 

Average 0.19 0.31 0.36 0.43 0.33 0.50 0.63 0.55 

Legend:  

  Maximum 0.90(+)  

    Midpoint 0  

  Minimum 0.90(-)  

 

The amount of explained variability did not increase when grouping observations according to climatic 

zones. The highest R2 (0.50) with a negative relationship between RUE and R95pTOT was observed during 

the short rains in semi-humid areas (Figure 9c) and semi-arid R2 (0.40) (Figure 9b). The relation between 

R95pTOT index and RUE is moderate in semi-humid and semi-arid areas, where the correlation with CDD 

is weak (Table 8).  

 

Table 8. R² representing the relationship between ANPP to extreme indices per location for both seasons 
long and short rains 

  

 Location 

CDD SDII  R95p% R95pTOT 

LR SR LR SR LR SR LR SR 

Arid  0.35 0.00 0.11 0.03 0.04 0.02 0.32 0.03 

Semi-arid  0.01 0.06 0.01 0.32 0.00 0.14 0.01 0.40 

Semi-humid  0.04 0.35 0.25 0.10 0.12 0.28 0.28 0.50 

All station combined 0.00 0.05 0.00 0.02 0.00 0.00 0.02 0.02 

Legend:  

   

Maximum 0.90(+)       Midpoint 0           Minimum 0.90(-) 
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 (a) (b) (c) 

 
Figure 9. Scatterplots showing the relationship between RUE and R95pTOT for stations grouped; (a) arid 
areas, (b) semi-arid areas and (c) semi-humid areas  

 

Figure 10 is showing the natural log transformation of the result done (Section 3.3.1) on the relation between 

RUE and extreme index for the three groups arid, semi-arid and semi-humid areas to improve the non-

linear relationship observed between RUE and R95pTOT (Figure 9). The changes from this analysis are 

shown to be marginal compared to the result shown in Table 8 and Figure 9 with less improvement in some 

indices (Appendix III). 

 

 (a) (b) (c) 

 
Figure 10. Scatterplots showing log-transformed relationship between RUE and R95pTOT for stations 
grouped (a) Arid areas, (b) Semi-arid areas and (c) Semi-humid areas 
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5. DISCUSSION 

This study found that extreme indices in within-season rainfall distribution explained a large fraction of the 

interannual RUE variability for most of the analyzed rainfall stations. It was also observed that within- 

seasonal rainfall distribution, as captured by extreme indices, could explain more than 60% of the interannual 

variability in RUE for most stations compared to total seasonal rainfall which could explain less than 50% 

of the interannual variability in vegetation productivity. The amount of variability that could be explained 

differed between station. Vegetation productivity is influenced by temporal patterns of precipitation 

distribution depends much on location (Yan et al., 2015). Because precipitation distribution is predicted to 

change to more extreme patterns with longer dry intervals and heavy rainfall (Zhang et al., 2013), the results 

presented in this thesis highlight that such changes may have important impacts on vegetation production 

in future climates. 

 

This study shows that extreme precipitation patterns had lower RUE for most stations (Table 7). This 

explains that years with less frequent but more extreme distribution of precipitation had lower RUE for 

most stations related to years with less extreme precipitation. The decrease in productivity or RUE in these 

areas caused by the inability of plants to efficiently use rainfall in the season with more extreme distribution 

(Zhang et al., 2013). Huxman et al. (2004) also showed that plants respond effective to water inputs at 

moderate rainfall pattern and less effective to large heavy rainfall which leads to lower RUE. When rainfall 

pattern is more extreme cause less infiltration of water into the soil, hence runoff increases and cause water 

deficits (Arora et al., 2001).  

 

The changes in seasonal rainfall distribution often cause water stress and a decrease in biomass. The impact 

of changes in seasonal rainfall distribution on vegetation production depends on the direction of the change 

in precipitation which also differs between seasons and location. Even when total seasonal rainfall may not 

change, the changes in seasonal precipitation may likely alter the relations between water and productivity. 

The result from this study was compared well with that of Zeppel et al. (2014) who showed that the effect 

of changing within-season distribution depends on location. Their study showed that at water-limited areas 

(xeri site) extreme precipitation increased soil water content and ANPP while at water-abundant (mesic site) 

it decreased soil water content and ANPP. For this study apart from individual station results (Table 7), also 

for grouped stations more extreme distribution have been observed to decreased vegetation productivity in 

water-limited areas and increase in some areas with less water stress (Figure 10). The difference in response 

highlights the importance of large heavy rainfall and longer dry periods interval within-seasonal rainfall 

distribution. The decrease in vegetation productivity with heavy precipitation without changing in total 

seasonal rainfall has been caused by increased water deficit in these areas. It is possible that the seasonal 

rainfall distribution had both more extreme precipitation and longer dry interval.    

 

The length of dry spells within-seasonal rainfall distribution may cause an increase of more extreme water 

stress or decrease depending on the ecosystem. Knapp et al. (2008) have shown that though xeric ecosystem 

experience dry spells between rainfall, yet precipitation regime with few but heavy rainfall will increase soil 

water content. At mesic ecosystem may expose to more occurance of long dry periods which cause plant 

and soil water stress. The results of this study have shown that more extreme precipitation was attached 

with longer dry spells which caused plant and soil water limited. This means the decrease in productivity in 

most of the dry stations has been due to the several drought conditions in Kenya. The dry interval within-

seasonal rainfall distribution in this study has been observed to be longer between season and season 

compared to that of Heisler-White et al. (2009) who had only the interval of 10-30 days. The result of their 

study leads to lower drought stress. This implies that the occurrence of longer dry spells and more extreme 
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precipitation in this study caused water stress conditions in the dry areas compares to wet areas, hence lead 

to reduce vegetation productivity. 

 

In general, the response of more extreme precipitation without changing in total seasonal rainfall had shown 

a negative impact on RUE. The result of this study is supported by that of Ross et al. (2014) and Zhang et 

al. (2013), their studies found that more extreme precipitation with fewer but heavy rainfall patterns had 

strong negative impacts on vegetation productivity. Though in some areas vegetation productivity is 

increased as mean annual rainfall increase, the increase has been balanced by extreme precipitation. This 

means that mean annual rainfall is a useful climatic variable for predicting the response of vegetation to 

future climate change (Huxman et al., 2004; Knapp & Smith, 2001), where within-seasonal rainfall 

distribution can predict the response of some variability (Knapp et al., 2002). 

 

Availability and quality of historical rainfall data is a key limitation for studying the effects of more extreme 

precipitation distribution on vegetation productivity. The principal restriction to scale this study to more 

site was the sparse distribution of rain gauges (Dinku et al., 2011), and the difficulty of accessing long-term 

archives of daily data even if they exist (Omondi et al., 2014). Due to data limitations, this study was not 

able to include more sites for a large area, which could have helped to better quantify differential effects of 

more extreme precipitation distribution on other biomes. However, extreme indices are calculated from a 

historical rain gauge with a length of 30-years climatological references period (Section 3.3). This study used 

a long-term rainfall data of only 16 years to extract extreme indices from the 19 rainfall stations across 

Kenya. Satellite-derived estimate of rainfall data (e.g. CHIRPS) could be used for this study since the daily 

product exist. The satellite product is based on estimate rainfall data which normally have inaccuracies, 

particularly for daily rainfall data. Rain gauge data are more accurate based on true ground measurement 

though they might not be inconsistency in data quality over time for a single station. Also, they have a longer 

available climatology data compared to satellite rainfall data. Therefore, for this study, the satellite products 

could not be accurate for describing the interannual variability of extreme indices because of over or 

underestimation of the amount of rainfall and frequency of extreme distribution (Dinku et al., 2011). 

 

Some small error and uncertainties in the results of this study may occur because of input data used to 

estimate SOSN and EOSN dates. This is because the exact observation date for each NDVI observation was 

unknown for the eMODIS product, as used by Meroni et al. (2014) and Vrieling et al. (2016). Therefore, 

the central date for each 10-day composite was used. It can be expected this results on average in slightly 

earlier green-up dates and slightly later senescence dates (Vrieling et al., 2016). 

 

Despite obtained estimate SOSR and EOSR dates for rainfall, some error of one to two months have 

occurred which caused a gap between the SOSR /EOSR and SOSN/EOSN dates. This lag period was also 

confirmed by other studies done in Kenya by Indeje et al. (2006) and Davenport & Nicholson (1993). The 

error may occur by using the 10-day cumulative rainfall data. This is because cumulating rainfall over the 

defined period tends to disregard the erratic day to day changes in rainfall that may influence on vegetation. 

 

For further studies, it is important to examine the potential of improving the historical rain gauge data in 

East Africa and not only Kenya. This will help to validate this study by including other locations and biomes 

to understand the impacts of within-seasonal rainfall distribution on vegetation productivity. However, the 

results of this study reveal that season rainfall distribution, as captured by extreme precipitation indices, can 

also improve the prediction of seasonal vegetation productivity as compared to total seasonal rainfall. 

 

 



EFFECTS OF MORE EXTREME RAINFALL DISTRIBUTION ON VEGETATION PRODUCTIVITY IN KENYA 

 

23 

6. CONCLUSION  

This study reveals the importance of within-season rainfall distribution in explaining the interannual 

variability of vegetation productivity. This has important implications for understanding and improving 

knowledge on the response of vegetation to extreme precipitation distribution under future climate change. 

Climate change has been causing changes in seasonal rainfall distribution with increasing in higher frequency 

of extreme precipitation distribution and longer dry periods. The results from this study showed how 

extreme precipitation distribution and not only total seasonal rainfall could improve prediction of vegetation 

productivity across biomes. The response of vegetation production to extreme precipitation has been 

observed being location dependent and changes in seasonal rainfall distribution. This study showed that the 

changes in seasonal precipitation frequently result in water stress in dry areas and reduced biomass compared 

to some wet areas. More extreme precipitation had shown negative impacts on vegetation production across 

biomes. The results suggest that under future climate change in the within-seasonal distribution of 

precipitation as more extreme precipitation and longer dry periods increase even when total seasonal rainfall 

remains unchanged, will likely reduce vegetation production in dry areas of Kenya. Furthermore, this study 

highlights the importance of accounting the interannual variability of rainfall in climatic models for the 

future climate change.  
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APPENDICES 

Appendix I.  

Scatterplots showing the relationship between cumNDVI and total seasonal rainfall for all the stations.  
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Appendix II.  

ANOVA single factor summary tables showing the significant difference between climatic zone groups per 

season 

SUMMARY      
Groups Count Sum Average Variance   
Arid areas-LR 8 0.7911885 0.0988986 0.0112375   
Arid areas-SR 8 0.4516082 0.056451 0.0081175   
Semi-arid areas-LR 7 0.593525 0.0847893 0.0186783   
Semi-arid areas-SR 7 0.2054553 0.0293508 0.0012995   
Semi-humid areas-LR 4 0.4245378 0.1061345 0.0050661   
Semi-humid areas-SR 4 0.6143231 0.1535808 0.0058863   
ANOVA       
Source of Variation SS df MS F P-value F-critical 

Between Groups 0.0497568 5 0.0099514 1.1049024 0.3771945 2.5122549 

Within Groups 0.2882094 32 0.0090065    

       
Total 0.3379662 37         

 

Dependent Variable:   Long Rains   

Games-Howell   

(I) Location (J) Location 

Mean 

Difference (I-J) Std. Error Sig. 

95% Confidence Interval 

Lower Bound Upper Bound 

Arid semi-arid .01410927930 .063820228200 .973 -.15759233900 .18581089800 

semi-humid -.00723589800 .051683877300 .989 -.15233745700 .13786566100 

semi-arid Arid -.01410927930 .063820228200 .973 -.18581089800 .15759233900 

semi-humid -.02134517730 .062728550000 .939 -.19650270400 .15381235000 

semi-humid Arid .00723589800 .051683877300 .989 -.13786566100 .15233745700 

semi-arid .02134517730 .062728550000 .939 -.15381235000 .19650270400 

 

Dependent Variable: Short rains 

Games-Howell   

(I) Location (J) Location 

Mean 

Difference (I-J) Std. Error Sig. 

95% Confidence Interval 

Lower Bound Upper Bound 

Arid semi-arid 2.710026E-002 3.4645797E-002 .722 -6.882818E-002 1.230287E-001 

semi-humid -9.712976E-002 4.9862459E-002 .195 -2.434066E-001 4.914710E-002 

semi-arid Arid -2.710026E-002 3.4645797E-002  .722 -1.230287E-001 6.882818E-002 

semi-humid -1.242300E-001 4.0708889E-002 .085 -2.734114E-001 2.495132E-002 

semi-humid Arid 9.712976E-002 4.9862459E-002 .195 -4.914710E-002 2.434066E-001 

semi-arid 1.242300E-001 4.0708889E-002 .085 -2.495132E-002 2.734114E-001 
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Appendix III.  

Scatterplots showing the relationship between RUE and extreme index R95pTOT rainfall for all some 

stations.  
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Appendix IV. 

Table showing results of log-transformed regression for the relationship between RUE and R95pTOT for 

stations grouped per climatic zones 

 

Grouped station 

  

 Location 

LN(1+CDD) LN(1+SDII)  LN(1+R95p%) LN(1+R95pTOT) 

LR SR LR SR LR SR LR SR 

Arid  0.10 0.01 0.17 0.07 0.05 0.03 0.51 0.10 

Semi-arid  0.00 0.11 0.11 0.43 0.00 0.15 0.00 0.52 

Semi-humid  0.11 0.14 0.28 0.06 0.13 0.29 0.35 0.38 

All station combined 0.00 0.01 0.00 0.05 0.00 0.00 0.00 0.08 

 

 

 


