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ABSTRACT 

Conventional method of estimating Aboveground biomass (AGB) are based on field measurements and 

destructive sampling technique, however, this methods are time-consuming, labour intensive and 

unsustainable. Remote sensing technology offers a non-destructive method for the estimation of 

aboveground biomass through allometric equations that require forest parameters such as tree height, 

Diameter at Breast Height (DBH) and/or crown projection area (CPA). The use of Unmanned Aerial 

Vehicle (UAV) derived data surpassed the limitations of other remote sensing methods that has been done 

to retrieve these forest parameters. In this study, we evaluated the retrieval of forest biophysical parameters 

from UAV data across three study sites in a tropical forest ecosystem. Canopy Height Model was generated 

exclusively from UAV data for the estimation of forest tree height and in comparison to forest tree height 

estimated from airborne LiDAR data. Comparison of the retrieved forest height was based on regression 

and the root mean square error method. Furthermore, Object Based Image analysis (OBIA) was used to 

extract individual tree crown projection area from the orthophoto. The resultant CPA was used to establish 

relationship with DBH. Afterwards, to assess the effect of predicted DBH, AGB was estimated and 

compared between using ground truth and predicted DBH in combination with forest tree height derived 

from UAV CHM. The results of the tree height comparison revealed overestimation by the airborne LiDAR 

due to errors in the DTM.  The validation of the tree segmentation was equally good and a positive 

significant relationship was found between CPA and field sampled DBH.  There was no significant 

difference between using predicted and field measured DBH for the estimation of AGB. In conclusion, the 

use of 3D photogrammetry of images acquired using UAV offers a reliable data source for extraction of 

forest biophysical parameters to assess AGB in tropical rainforests.  
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1. INTRODUCTION 

1.1. Background 

Climate change is instigated by an increase in the amount of greenhouses gases, precisely the release of 

carbon dioxide (CO2) to the atmosphere (Grace, Mitchard, & Gloor, 2014). Fossil fuels and land use change 

are the leading anthropogenic causes of carbon dioxide emission into the atmosphere (Houghton et al., 

2012; Malhi, 2010). 

 

Forests cover 31 percent of the total land area of the globe. Tropical rainforests play a significant role in 

climate change mitigation because of their unique storage and sequestration of carbon (Gibbs, Brown, Niles, 

& Foley, 2007). On the other hand, in the tropics, forest degradation and deforestation is the main threat to 

the terrestrial carbon sinks and the balance of atmospheric greenhouse gases (Goetz et al., 2015; Malhi, 

2010). 

 

Tree biomass including undergrowth vegetation, dead wood and soil organic carbon constitutes the biomass 

within the forest ecosystems. Approximately 50% of dry forest biomass contains carbon (Zaki, Latif, 

Suratman, & Zainal, 2016). Estimating forest biomass is used to determine carbon sequestration rates and 

understanding the consequences of human actions on the terrestrial carbon cycle (Cao et al., 2016). Also, 

estimation of forest biomass gives an indication of the amount of carbon stock that has been sequestered 

in the forests or emitted to the atmosphere. 

 

The role of tropical rainforests to combat climate change has been given attention by the United Nations 

Framework Convention on Climate Change (UNFCCC), by the introduction of Reducing Emissions from 

Deforestation and Forest Degradation (REDD+) programme. The REDD+ programme provide incentives 

to developing countries to reduce emissions from forested land. Within the REDD+ framework, 

Monitoring Reporting and Verification (MRV) is a mechanism used to ensure accurate estimation of carbon. 

Whereby, incentives are paid after quantified, reported and verifiable reduced emission levels. 

 

Above ground biomass is the total quantity of aboveground oven-dry mass of a tree expressed in tons per 

unit area (Dubayah et al., 2010). Conventional method of estimating AGB is based on field measurements 

and destructive sampling technique. However, this methods are time-consuming, labour intensive and 

unsustainable (Kankare et al., 2013). Also, using these methods, it would not be possible to sample large 

area and access remote areas. Furthermore, monitoring and evaluation of carbon fluxes would not be 

possible with the traditional method.  
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On the other hand, remote sensing technology is a non-destructive method for the estimation of biomass. 

It allows repetitive coverage, and can access remote areas. In this regard, the use of remote sensing based 

approaches for estimation of biomass has gained recognition in the scientific domain. A non-destructive 

method for the estimation of biomass requires allometric equations of forest tree parameters such as tree 

Diameter at Breast Height (DBH), crown projected area (CPA), and height (Chave et al., 2014; (Kenzo et 

al., 2009). Studies have used remotely sensed data for the retrieval of forest parameters and subsequently 

mapping of biomass (Tsui, Coops, Wulder, Marshall, & Mccardle, 2012; Zarco-Tejada, Diaz-Varela, 

Angileri, & Loudjani, 2014).  

 

Many studies have used radar technology for the estimation of tree parameters and biomass (Carreiras, Melo, 

& Vasconcelos, 2013; Morel et al., 2011; Suzuki, Kim, & Ishii, 2013). RADAR is an active remote sensing 

technique that uses radio waves to determine the range of objects. Despite its potential, radar technology is 

expensive and not readily available. Moreover, studies have found its sensitivity to biomass saturation levels 

(Rodríguez-Veiga, Wheeler, Louis, Tansey, & Balzter, 2017). Also, radar system characteristics, topography, 

and characteristics of the material being imaged influences the intensity return back to the sensor. These 

limitations affect its ability to provide information on the object being studied. 

 

Terrestrial Laser Scanner TLS is also an active sensor that works by sending and receiving emitted laser 

pulses from the target. Occlusion effect has been emphasised as one of the limitations of the TLS in a 

heterogeneous forest stand (Moskal & Zheng, 2011). Also, plot-based scans, portability issues and laborious 

of the TLS system has also been recognised (Gatziolis, Lienard, Vogs, & Strigul, 2015). The reasons 

aformentioned, limit the use of TLS for accurate retrieval of forest parameters.  

 

A lot of research has also been conducted using high resolution multispectral bands satellite imagery such 

as IKONOS, World-view and Quick bird (Kim, Im, Do, Kim, & Joo, 2016; Mbaabu, Hussin, Weir, & Gilani, 

2014). Multispectral images have the major shortcoming of cloud cover obscuring the observations of the 

land surface (Rodríguez-Veiga et al., 2017). Most importantly, these images do not provide information on 

the vertical structure of forests (García, et al., 2010).  

 

Light Detection and Ranging (LiDAR) is an active sensor that provides 3-dimensional models used to derive 

forest tree height (Hunter, Keller, Victoria, & Morton, 2013; Næsset & Økland, 2002; Nie, Wang, Zeng, Xi, 

& Li, 2017; van Leeuwen & Nieuwenhuis, 2010). However, LiDAR is an expensive technology. 

 

The Unmanned Aerial Vehicle (UAV), is an inexpensive and portable platform.  It enables to capture 

imagery of high spatial and temporal resolutions, hence allows the identification of small objects in details. 

The images are free of occlusions, clouds, and fewer shadows that surpasses the limitations of other satellite 
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borne data (Tomaštík, Mokroš, Saloš, Chudỳ, & Tunák, 2017). In actuality, it is a cost-effective technology 

that provides a new dimension in aerial photography, ecosystem mapping and monitoring.  

Structure From Motion (SFM), defines the method of generating three-dimensional structure from two-

dimensional images. This is achieved by stereo vision; whereby images are captured from different position 

with a percentage of overlap. Afterwards, depth information is calculated by parallax (positional difference 

between images taken from different position) (Lim, Ye Seul La, Phu Hien Park, Jong Soo Lee & Pyeon, 

Mu Wook Kim, 2015). Therefore, applying the Structure from motion photogrammetric technique on 

images captured by UAV, reconstruction of the imagery can be used to generate point cloud data that is 

comparable to ALS derived point cloud (Puliti, Olerka, Gobakken, & Næsset, 2015; Tomaštík et al., 2017; 

Wallace, Lucieer, Malenovsk, Turner, & Petr, 2016). Research has shown the use of imagery taken by UAV 

to generate 3-D point cloud through photogrammetric image matching and processing (Harvey, Rowland, 

& Luketina, 2016; Lisein, Pierrot-Deseilligny, Bonnet, & Lejeune, 2013). From the photogrammetric 

processing, ortho-mosaic images, Digital Terrain (DTM) and Digital Surface Model (DSM) are obtained 

(Bendig et al., 2015; Zarco-Tejada et al., 2014). The DSM is subtracted from the DTM to derive the Canopy 

Height Model (CHM) for the extraction of tree height.  

1.2. Unmanned Aerial Vehicle 

UAV is an acronym for Unmanned Aerial Vehicle (UAV), also known as Unmanned Aerial Systems (UAS), 

drone or Remotely Piloted Aircraft (RPA). In the past, UAV was originally developed for military 

applications, and since the 1950’s, UAV has been used for aerial surveillance (Tang & Shao, 2015). Recently, 

the use of UAVs for civil applications has gained tremendous recognition (Shahbazi, Théau, & Ménard, 

2017). 

According to Anderson & Gaston, (2013), UAV is generally categorised into two types; fixed wing platforms 

and rotor based copter systems. These systems differ in terms of their flying altitude, size, and range of data 

coverage. These distinctive characteristics often define the applications that can be supported by each class 

of the UAV category. 

The fixed wing platforms can travel at a faster speed and cover a large area. On the other hand, the rotor 

based systems fly at slower speed, cover a smaller area and are also smaller in sizes as compared to the fixed 

wing systems.  

1.3. Airborne Laser Scanner 

LiDAR sensor operates in the near infrared and blue region of the electromagnetic spectrum. It possesses 

three technologies that enable it operations; Laser ranging for accurate distance measurement; Differential 

Global Positioning System (DGPS) for satellite positioning and Inertial Measurement Unit (IMU) to record 

orientation. Airborne LiDAR operating principle is shown in Figure 1. 
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                             Figure 1: Airborne Lidar operational system 
                          Source: (Gallay, 2013) 

 
Lidar systems capture information about their target by ranging followed by accurate measurement of the time 

between the emission of the laser pulse from the sensor to the target and the received reflections from the 

target back to the sensor.  Based on this, LiDAR provides elevation data points also referred to as 3-dimensional 

point cloud data. 

The use of LiDAR technique for forest inventory purposes began in the 1980s. Nevertheless, LiDAR remote 

sensing had already been used for the creation of Digital Elevation Models (DEMs) and the retrieval of 

atmospheric particle concentrations (Ritchie, 1996). In the forestry domain, LiDAR data is used to derive 

information on forest tree height. (Hunter, Keller, Victoria, & Morton, 2013; Næsset & Økland, 2002).  

1.4. Overview of previous related research 

Tree height is the vertical distance between the base to the highest point of the tip. Forest tree height can be 

obtained from the surface differentiation of the DSM and DTM (Figure 2). The DTM and DSM are input for 

the creation of a forest Canopy Height Model. The retrieval of tree height using remote sensing techniques is 

dependent on the accuracy of the modelled terrain. 
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http://www.charim.net/sites/default/files/handbook/datamanagement/3/3.2/DSMDTM_1.JPG 

Assessment of this 3D model has been done conducted by research.  Andersen et al., (2003), modelled tree 

height by comparing DTM sourced from Airborne LiDAR, Interferometric Synthetic Aperture Radar (InSAR) 

and aerial photos oriented within an analytical stereo plotter. Validation of the 3D models was done by elevation 

data collected at regular intervals within the study area. The results of the study proved that DTM produced 

from LiDAR is more accurate, while InSAR and aerial photos underestimated tree height. Reuben, (2017), 

estimated forest tree height by comparing the accuracy of ALS and UAV derived DTM to the reference 

elevation points collected using a Differential Global Positioning System (DGPS). The accuracy of the LiDAR 

sourced DTM was 1.25m while UAV obtained DTM had an accuracy of 3.84m. In the same view, Okojie, 

(2017), retrieved tree height by comparing the DTM derived from airborne LiDAR and UAV data in a 

temperate forest. Also, the accuracy of the 3D models was done using elevation points collected using a DGPS. 

The image matching UAV derived terrain model had an error of 0.53m, while LiDAR DTM had an error of  

2.45m. Additionally, Gbenga Ajayi, Anthony Salubi, Fredrick Angbas, & Godfrey Odigure, (2017) appraised 

the vertical and horizontal error in a DTM utilising stereo images captured using UAV in an urban environment. 

The horizontal and vertical accuracies were 0.0467m and 0.1151m respectively when compared to elevation 

data acquired using Hi-target DGPS. 

The crown projection area (Figure 3) of a tree is the area of the vertical projection of the outermost perimeter 

of the crown on the horizontal plane (Gschwantner et al., 2009).  

Figure 2: Illustration of  DSM and DTM 

http://www.charim.net/sites/default/files/handbook/datamanagement/3/3.2/DSMDTM_1.JPG
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Research has been done to establish the relationship between the tree CPA and Diameter at Breast Height 

(DBH). Baral, (2011), used Object Based Image Analysis (OBIA) to delineate tree crowns on Geo-Eye and 

Worldview-2 data to obtain CPA in the subtropical rainforest in Chitwan, Nepal. Modelling of the relationship 

between the CPA and DBH found a nonlinear relationship existing between the variables.  

Also,  Karna et al., (2015), extracted CPA from Worldview-2 optical data to model the relationship between 

DBH. Their study found a linear relationship existing between CPA and DBH of tree species.  

1.5. Problem statement 

The use of cost-effective approaches for estimation of forest biomass is the requirement for an effectual 

Monitoring, Reporting and Verification (MRV) within the REDD+ programme (Gizachew & Duguma, 

2016). Forest biomass estimation using remote sensing method employs tree biophysical parameters such as 

Diameter at Breast Height (DBH), tree height and crown projected area (CPA).  

Tree height is one of the essential forest parameters used in the allometric modelling of biomass (Andersen, 

Reutebuch, & Mcgaughey, 2006). The addition of this variable significantly improves the accuracy of biomass 

estimation, compared to the sole use of DBH (Hunter et al., 2013). 

Tree height can be measured in the field based on visual interpretation. However, this method is often biased 

because of difficulty in visibility caused by intermingling tree crowns (Chave, 2005; Khatry Chhetri & Fowler, 

1996). Therefore high uncertainties arise in field based measurement of tree height (Calders et al., 2015; Molto, 

Rossi, & Blanc, 2013). Hence, remote sensing techniques became an alternative, effortless method to derive 

forest tree height (Edson & Wing, 2011;  Tao et al., 2014). The use of this method is dependent on the 

Figure 3: Crown projection area 
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accuracy of the modelled tree height (Reutebuch, et al., 2003). Ensuring accuracy is paramount because errors 

in the modelled tree height can influence the biomass values.  

However, many of the research has been done in temperature region and open forests. The accuracy of 

modelling tree height comparing LiDAR and UAV derived data is not well established in the tropical 

rainforest. There is need to investigate the performance of these datasets in a tropical rainforest with complex 

and dense canopy density. In this regards, an investigation on the performance of this two technology for the 

estimation of forest canopy height needs to be assessed.  

Another forest parameter of interest is the tree Diameter at Breast Height. Although this parameter cannot 

be extracted using remote sensing methods, it found to be correlated with the crown projection area (CPA) 

(Shimano, 1997). The crown projection area can be retrieved from the delineation of tree crowns on an 

orthophoto through the implementation of image segmentation. The orthophoto obtained from 

photogrammetry processing of UAV acquired images can be employed to extract this parameter. The use of 

the orthophoto is required because of it high spatial resolution and to overcome the cloud contamination 

which is characteristic of optical images in the tropical climate (Tomaštík, et al., 2017).  

1.6. Research objectives 

1.6.1. General objective  

The overall aim of this study is to assess the performance of UAV derived data to extract forest parameters 

and estimation of aboveground biomass in Berkelah Tropical Rainforest, Malaysia.  

1.6.2. Specific objectives 

The specific objectives are divided into three sub-groups.  

• Canopy Height Modelling. 

i. To assess the accuracy of DTM from airborne LiDAR and UAV sourced stand-alone datasets as 

compared to GNSS points.  

ii. To compare the tree height estimated from the Canopy Height Models generated  from airborne 

LiDAR and UAV datasets. 

• Modelling the relationship between crown projection area and Diameter at Breast Height 

i. To model the relationship between crown projection area and field measured Diameter at Breast 

Height (DBH). 

• Allometric modelling of the forest aboveground biomass. 

i. To estimate aboveground forest biomass of forest trees from field measured and predicted 

Diameter at Breast Height in combination with the most accurate tree height within the study area.  

1.7. Research questions 

• Canopy Height Modelling 

i. What is the segmentation accuracy of tree crown delineated from the orthophoto? 
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ii. What is the accuracy of the DTM from airborne LiDAR and UAV sourced stand-alone 

datasets as compared to the GNSS points?  

 

iii. What is the difference in the tree height estimated from the Canopy Height Models generated  

from airborne LiDAR and UAV datasets? 

 

• Modelling the relationship between crown projection area and Diameter at Breast Height 

i. What is the relationship between crown projection area and field measured Diameter at Breast 

Height?  

• Allometric modelling of forest aboveground biomass. 

i. What is the difference in the aboveground forest biomass estimated from field measured and 

predicted Diameter at Breast Height in combination with tree height within the study area? 

1.8. Research hypothesis  

• Canopy Height Modelling 

i. Ho: DTM generated from UAV stand-alone dataset possess a higher RMSE than DTM 

generated from airborne LiDAR dataset. 

Ha: DTM generated from UAV stand-alone dataset possess a higher RMSE than DTM 

generated from airborne LiDAR dataset. 

ii. Ho: There is no significant difference in tree height modelled using Canopy Height Models 

generated from airborne LiDAR and UAV stand-alone datasets. 

Ha: There is a significant difference in tree height modelled using Canopy Height Models 

generated from airborne LiDAR and UAV stand-alone datasets 

• Modelling the relationship between crown projection area and Diameter at Breast Height  

i. Ho: There is no significant relationship between crown projection area and field measured 

Diameter at Breast Height. 

Ha: There is a significant relationship between crown projection area and field measured 

Diameter at Breast Height. 

• Allometric modelling of forest aboveground biomass 

i. Ho: There is no significant difference between aboveground biomass estimated from field 

measured and predicted  Diameter at Breast Height in combination with the tree height within 

the study area. 

Ha: There is a significant difference between aboveground biomass estimated from field 

measured and predicted  Diameter at Breast Height in combination with tree height within the 

study area.  
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2. DESCRIPTION OF STUDY AREA AND DATA USED 

2.1. Geographical location 

This study was carried out in the Berkelah Tropical Rainforest Reserve, located in Maran District, in the 

state of Pahang, Peninsular Malaysia (Figure 4). It lies between latitude 2°35′ and 3°60′N and longitude 

100°45′ and 102°00′E (Rajpar & Zakaria, 2014).  

 

2.1.1. Climate  

The climate is classified as tropical. On the average, the annual temperature is 26.7 °C, with minimum and 

maximum temperature of 25.6°C and  42.2°C respectively. The average precipitation is 2866mm annually.  

 

2.1.2       Vegetation   

Figure 4: Image of study area 
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The vegetation in the Berkelah Forest Reserve is characterized as Hill Dipterocarp Lowland Tropical 

Rainforest, comprised of different aged post-harvest trees. Abundant tree species are present within the 

forest, with the dominant species belonging to the family Dipterocarpaceae (Bing, Rajpar, & Zakaria, 2013). 

2.2. Materials 

2.2.1. Field equipment 

Different field instruments were used to measure forest tree parameters during the fieldwork. Table 1 shows 

the  enumerated field instruments and the use  

 

Table 1: List of field instrument and uses 

 Instrument                   Use   

 iPAQ                  Navigation and recording coordinates of trees 

 Measuring tape                  Outlining of plots 

 Diameter tape                   Measurement of tree DBH 

 Spherical densitometer                  Measurement of canopy density 

 Field data sheets 

 First aid kit 

                 Recording of field data 

                 For emergency treatment 

2.2.2. Processing software 

Different software were used for the execution of thesis work. The processing software and their use are listed in Table 

2 below.  

Table 2: List of software and their use 

Software  Use  

ArcGIS 10.5.1  Data processing and visualisation 

Pix4D  Photogrammetry processing 

eCognition  Tree crown delineation 

LaStools  ALS data processing 

MS Office 2016 (Excel)  Statistical analysis 

R Studio  Statistical analysis 

MS Office 2016 (Word)  Reports and thesis writing 

Mendeley Desktop  Citation and references 

2.3.  Data  

2.3.1. Biometric data 

Forest tree parameters were the biometric data used for this study.  The data were collected during field 

work using the instruments listed in Table 1.  
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2.3.2. UAV derived data 

The stereo images were acquired using Phantom 4 DJI UAV. The acquired stereo images were used to 

generate photogrammetric products namely; DTM, DSM and ortho-mosaic. The images were obtained on 

the 29th, 30th of September and 10th of October 2017. 

2.3.3. Airborne laser scanner data 

The Airborne LiDAR data used was provided by the MARA University of Technology (UiTM), Selangor, 

Malaysia. It was acquired on the 14th November, 2014 by the Airborne Research and Survey Facility 

Airborne Research and Survey Facility’s (ARSF) work of the Natural Environment Research Council 

(NERC) Gloucester, UK. The data was recorded in discrete return LiDAR systems and supplied as ASCII 

and LAS 1.2 point cloud format, with an average point density of 5point per m2. The point cloud data 

contains X Y Z coordinates, intensity, classification, return number, number of returns for given pulse and 

scan angle rank. The data was captured in 22 subsets (flight lines), however, due to data quality, only 20 

flight lines were processed and used for further analyses.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



UNMANNED AERIAL VEHICLE (UAV) DATASETS FOR RETRIEVAL OF FOREST PARAMETERS AND ESTIMATION OF ABOVEGROUND BIOMASS IN BERKELAH 

TROPICAL RAINFOREST, MALAYSIA 

12 

3. METHODOLOGY 

3.1. Research methods 

The research method in this study is comprised of five parts; 

1. The first part was biometric data acquisition and processing; which involved field observation and 

tree parameters collection using field instruments listed in Table I of the previous chapter. After 

completion of the field work, the biometric data was analyses. 

2. The second part was the stereo imagery acquisition; The UAV platform was used to acquire the 

stereo images. The images were processed using Pix4D to derive the DSM, DTM and orthophotos 

3. The third part was the Object Based Image analysis; The orthophoto was delineated using 

eCognition software to derive tree crown projection area (CPA). The CPA was used to model 

relationship between field measured DBH. 

4. The fourth part was DTM generation and accuracy assessment; The DTM created from the UAV 

and LiDAR data were evaluated in relation to the GNSS points.  

5. The fifth stage was the generation and estimation of tree height and comparison; Tree height was 

extracted from the CHM of UAV and LiDAR and comparison between the height variables was 

done. Finally, aboveground biomass was estimated and compared between field DBH and predicted 

DBH in combination with the retrieved forest tree height. The workflow is summarised in the 

flowchart shown in Figure 5. 

 

The research methodology is summarised in the flowchart shown in Figure 5 below. 

Figure 6: Flowchart of the research methods 

Figure 5: Flowchart of the methodology 
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The study was conducted in three study sites or blocks within the Berkelah forest. The same process was 

applied for the data processing and data analyses of all sites. Hence the flowchart above summarises the 

methodological steps for the three study sites. 

3.2. Biometric data 

 
Tree biophysical parameters were the biometric data employed during the course of this study. The field 

data and method of collection are discussed in the following subsections. 

3.2.1. Sampling design  

Purposive sampling design was used for data collection in the field. This sampling design was used due to 

accessibility of the forest. Purposive sampling is a non-probability sampling method based on the judgement 

of the researcher. Also, the sampling design was used to by taking into consideration the areas flown by the 

UAV during data acquisition of the stereo images. The flight areas were selected based on the availability of 

open spaces for placing ground control points and to incorporate the different variations in forest structure 

present in the study location. Hence, the plots were selected to include the areas covered by the UAV flight. 

Each plots were sampled with a distance of over 50 metres apart. Figure 6 shows the study area map with 

sample plots and three study sites (area covered by the UAV) within the forest. 

 

Figure 6: Study area map showing UAV flight blocks and sample plots 
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3.2.2. Plot size 

Mauya et al., (2015), emphasized the advantages of circular plots over other plot types, because of the ease 

of outlining and less prone to errors in the plot area as compared to rectangular and square plots. For these 

reasons, the circular plot was used for in this study. The plot size of 500m2 which is equivalent to radius of 

12.62metres was used for forest inventory parameters acquisition. In a study done by Ruiz, et al., (2014), 

revealed that increasing plot size beyond 500m2 does not significantly improve the result of AGB estimation. 

Instead, it would require more trees to be sampled at each plot thereby increasing cost and time. 

 

3.2.3. Biometric data collection 

Field data was collected between September and October, 2017. Fieldwork was conducted to acquire forest 

biophysical parameters. After delineation of plot size and an indication of tree numbers with tags, Diameter 

at Breast Height was measured using diameter tape. According to Brown, (2002), trees with Diameter at 

Breast Height less than 10cm contribute less to the total biomass and carbon of a forest. Live trees (living 

trees) with DBH of above 10cm measured at 1.30cm above the ground were only measured. For consistency, 

a DBH stick was used to measure the DBH at 1.30m. In addition, the coordinate of trees and the centre of 

the plots of all sample plots were recorded in the iPAQ. Figure 7 shows data collection in the field. All the 

measured tree parameters were recorded on the data collection sheets and transferred to Microsoft Excel 

for further analyses. The datasheet is shown in Appendix 1. 

3.3. Data acquisition using UAV  

3.3.1. Mission planning   

The PiX4D capture software was used to define the parameter for the flight. The spatial quality of the ortho-

mosaicked images depends on flight height and percentage of overlap. Dandois, Olano, & Ellis, (2015), 

assessed the relationship between optimal flight altitude, overlap, weather conditions for UAV data 

Figure 7: Sample plot before and after clearing the undergrowth and placing tree tags for biometric data collection 
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acquisition and quality of the point cloud in a forest ecosystem. The study clinched that higher point density, 

proper alignment and image matching in the photogrammetry processing is highly correlated with an 

increase in forward and side overlap and flight height. To ensure high quality of the photogrammetry 

outputs, an overlap of 90m, and height of 110m above the ground were used for image acquisition. The 

speed of the UAV also has an effect on the images, to avoid blurred images moderate speed was adopted. 

Image acquisition parameters of the data are shown in Table 3. 

 

 
Table 3: UAV data acquisition parameters 

Parameter Value 

Altitude 110m 

Angle  Nadir (90) 

Front overlap 90% 

Side overlap 70% 

Speed  Moderate  

 

3.3.2. Allocation of Ground Control Points 

Ground control points were allocated to aid spatial georeferencing of the photogrammetry outputs. The 

GCPs were well distributed at the edges of the flight areas using a black and white spray paint, this was done 

to ensure visibility for the UAV during data capturing and to be discernible on the images during 

georeferencing.  The distribution of the GCPs at the edges of the flight area helps to avoid distorted images 

during photogrammetric processing. The minimum number of ground control points for georeferencing an 

image is three. Francisco Agüera-Vega, Fernando Carvajal-Ramírez, & Patricio Martínez-Carricondo (2017), 

analysed the influence of varying the number of GCPs for georeferencing on the accuracy of the Digital 

Surface Models, Digital Terrain Models, and ortho-mosaic. Their study revealed that increasing the number 

of GCPs increases the accuracy of the DSMs, DTMs and ortho-mosaic. In light of the above, minimum of 

6 GCPs were used for placing ground control points. Afterwards, the control points obtained in X, Y and 

Z, were recorded with a Differential Global Positioning System.  

3.3.3. Image acquisition 

After the placement of GCP’s, the images were captured based on the defined parameters (overlap, height, 

speed). The resultant images were stored in a memory card. 

3.3.4. Photogrammetry processing  

The acquired images were processed using PiX4D software to derive DSM, DTM and rthophotos. The 

photogrammetric workflow in PiX4D are divided into three stages:  

• Initial processing 
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This stage involves the computation of key points, image matching and camera calibration (Pix4D, 2017). It 

commences with the creation of a new project and loading the images into the software. The UAV collects 

collect hundreds of images of the area and to create one scene, the software first compute the keypoints. The 

keypoints in adjacent images based on same location are used to match the images together. Then, the camera 

calibration and generation of sparse point were done. Afterwards, the GCPs were loaded into the software, 

and control points were marked on the images and the process of re-optimization of the images was carried 

out by the software.  

• Point cloud densification 

This stage increases the density of the 3D points computed from the former stage. Densification of the sparse 

point cloud increases the accuracy of the Digital Surface Model and orthophotos that will be generated 

subsequently. The point cloud classification option was chosen, which according to (Pix4D, 2017), it improves 

the accuracy of  DTM. 

• DSM and orthomosaic generation 

This stage computes the generation of the DSM and orthomosaic from the densified point cloud done at 

the second stage. The computation of the point cloud can result in noise and erroneous points. To correct 

for this, the noise filtering option was chosen.  Also, the generation of the DSM is dependent on the point 

cloud, this surface can contain areas with inaccurate small bumps. The surface smoothing utilising the sharp 

option was chosen to smoothens the resultant DSM. After that, the DSM was generated by interpolation 

using a Delaunay triangulation method. The triangulation algorithm was chosen as recommended by (Pix4D, 

2017), because of its suitability for forest ecosystems. Finally, the orthomosaic was generated from the 

mosaicking of the geometrically corrected images. The merge tiles option was checked to create a continuous 

and complete scene of the DSM and Orthomosaic. The photogrammetry outputs are shown in Table 4. 

 
Table 4: Photogrammetry processing outputs 

Processing outputs Site 1 Site 3 Site 3 

Area 72.1ha 46.69 ha 74.64 ha 

Georeferencing (RMSE) 0.27m 0.30m 0.04m 

Ground sampling distance 4.85 cm 5.16 cm 4.86 cm 

Number of 3D Densified Points 70081738 33708414 71368890 

Average point cloud/m3 27.39 13.83 26.3 

Mean reprojection error 0.183 0.208 0.164 

 

 

The reprojection error measures the geometric error of the distance between a projected point (3D point) 

computed from the photogrammetry and the measured 3D point.  
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3.4. Object Based Image analysis 

Image segmentation is one of the processes in the object based image analysis (OBIA). It is the process of 

partitioning  an image into a number of homogeneous segments or units based on a given criteria (Fan, 

Zeng, Body, & Hacid, 2005). Image segmentation was done to delineate the orthophotos to obtain objects 

of interest; crown projection area using multiresolution algorithm.  Multiresolution is a bottom up region 

based segmentation process, that is starting with one pixel object, and iteratively, smaller objects were 

merged into larger ones (Drǎguţ, Tiede, & Levick, 2010). Scale, shape and compactness are criteria used to 

segment objects into homogenous units within the multiresolution algorithm. This algorithm was used to 

because it has been proven to delineate homogeneous objects at different resolutions.  

• The scale parameter determines the size of objects that are segmented in the multiresolution 

algorithm. It also determines the maximum allowable heterogeneity in the segmented objects. Higher scale 

parameter leads to larger and less homogeneous objects by increasing the threshold of heterogeneity per 

object (Drǎguţ et al., 2010). 

• The shape criterion determines the influence of spectral value on the heterogeneity of the 

segmented objects. It is characterised by two parameters: smoothness and compactness. The smoothness 

enhances the smoothness of the borders of the image objects, and the compactness determines the 

compactness of the segmented objects.  

The orthophotos were captured in the RGB band of the electromagnetic spectrum. Therefore all image 

layers had the same influence in the segmentation process. Selection of optimum criteria (scale, shape and 

compactness) for segmentation is dependent on trial and error approach. Therefore the scale, shape and 

compactness values were adjusted iteratively until image objects of interest was achieved.  

3.4.1. Removal of shadows and non-vegetated areas 

The next step was to distinguish between vegetated and non-vegetated objects. Classification and removal 

of unwanted objects are possible using the image object information such as (brightness, standard deviation, 

maximum difference and mean etc.) within the eCognition software. These image object information are 

dependent on threshold values. The first step was to remove shadows, utilizing the brightness image object 

information. The maximum difference was used to classify road features, while standard deviation was used 

to classify the waterbody present within the objects of interest; tree crowns. After successful classification 

of unwanted features, the merge region algorithm was used to merge all unwanted(non-vegetated) objects 

to create a large continuous objects.  

3.4.2. Watershed transformation 

Watershed transformation is an algorithm to separate clusters of tree into individual trees. The algorithm 

considers the image as a topographic surface and uses the local minima, catchment basins and watershed 

lines (dams) to operate. To implement the process, the image which is considered as a topographic within 

this algorithm, gets flooded from it minima, and dams are built to prevent water coming from two different 
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catchments basins to merge into one catchment basin. (Drǎguţ et al., 2010). The watershed mechanism is 

illustrated in Figure 8. Using this algorithm, clusters of tree were separated into individual trees.   

The algorithm is dependent on threshold value (length factor). The size of the largest tree crown observed 

during fieldwork was 10m. Therefore, 33 pixels were used as the length factor (threshold value) were I pixel 

of image resolution is 0.3m. Based on the given threshold, cluster of trees were separated to form one new 

segment, at iterations.  

 
                                            Figure 8: Illustration of watershed transformation algorithm 
                                            Source: (Derivaux et al., 2010) 

3.4.3. Morphology 

Morphology reshapes and polishes the resultants tree segments, and make the crowns to be round as trees 

would appear in real life. To achieve this, a circular mask width of 10 was used. The value 10 is dependent 

on the largest tree crown observed in the field. Within the morphology interphase, the close image objects 

option was chosen, the close image objects adds pixels from outside the segment based on the threshold of 

the circular mask width.  

3.4.4. Removal of undesired objects 

This was done in two steps. The first was done to remove asymmetrical and elongated shaped objects using 

the image object information of geometry (roundness). Subsequently, all trees with pixels ≤ 22 was used to 

remove tree crowns less than 2m2. The remaining segments were exported as .shp format to ArcMap for 

validation of segmentation. 

3.4.5. Accuracy assessment of segmentation 

The validation of image segmentation was done by comparison of polygons obtained from the OBIA and 

manually segmented polygons. Different approaches for the validation of image segmentation, have been 

used by researchers. Möller et al., (2009), used the relative area of intersection between segmented objects 

and reference objects. Gougeon, (1995), used 1:1 spatial correspondence between segmented objects and 

reference objects to mention but a few. However, Clinton, et al., (2010), assessed different approaches 

employed by researcher for the accuracy of segmentation. The study modified the method introduced by 

(Möller et al., 2009) that uses used the relative area of intersection between segmented objects and reference 
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objects. The validation of segmentation was done using an area based measure adopted after (Clinton et al., 

2010).  

To achieve this, the reference objects were manually delineated on the orthophoto based on visual image 

interpretation. To ensure consistency in the manual digitization of tree crowns, the digitization was done  at 

a scale of 1: 250. Afterwards, spatial join of the reference and automatic segmentation was done in ArcGIS. 

The validity of the segmentation was calculated by oversegmentation, under segmentation and D value.  

• Oversegmentation model is described in equation 1.  

Equation 1: Oversegmentation equation 

 

Source: (Clinton et al., 2010) 
 

• Undersegmentation model is described in equation 2 

 

Equation 2: Undersegmentation equation 

 
Source: (Clinton et al., 2010) 

Where; 

xi Reference object manually segment tree crown (On screen digitized objects) 

yj Corresponding segmented object by eCognition 

Oversegmentation and undersegmentation values ranges between 0 and 1.    

• The total error detected in the segmentation shown in equation 3.  

 
 

 

 

Source: (Clinton et al., 2010) 

From the total error detected in the segmented, we inferred the accuracy of the tree crown segmented 
 

3.5. Airborne LiDAR Processing  

The LiDAR data was processed to generate the DSM and DSM. The DTM is a 3-dimensional representation 

of the bare earth surface, while the DSM is a 3-dimensional representation of the objects on the earth surface 

including the bare earth. The point cloud was classified into four returns, where the last return represents 

the DTM and first return represents the DSM. DTM was produced from the interpolations of the last return 

using a cell size of 1m. Also, the DSM was generated through interpolation of the first return of the point 

data using a cell size of 1m. 

Equation 3: Measure of goodness 
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3.6. Digital Terrain Model accuracy and comparison to the GNSS points 

The Pix4D enables the generation of a DTM from the photogrammetry output. So the UAV derived DTM 

and the ALS derived DTM were assessed for their accuracies. To evaluate their accuracies, the GCPs were 

overlaid on the DTM, and the extract raster to point feature in ArcGIS was used to retrieve the elevation 

of the DTM and this was compared to the height values measured with DGPS in the field.  The root mean 

square error (RMSE) was used to compute the deviation of the dependent variable (DTM) along the line of 

fit (GNSS Z-values). The equation of the RMSE is shown in equation 4 below. 

Equation 4:RMSE formula 

 

Source: Chai & Draxler, (2014) 

Where;  

RMSE; Root Mean Square Error 

yi; Measured variable of the dependent variable; elevation (z) values measured in the field 

Ŷi; Predicted variable of independent variable; elevation (z) values retrieved from DTM 

n; Number of observations counted/number of points 

3.7. Generation of Canopy Height Models 

The extraction of tree height requires the Canopy Height Model. The CHM represents the tree height values 

as a continuous surface and the DTM and DSM serve as the input data. The CHM was created in ArcGIS  

software. For ease of comparison of the height variables, the DTM and DSM from both data were generated 

using a grid size of 1m, so the resultant CHM also have same resolution. Surface differentiation of DTM 

and DSM using raster calculator in ArcGIS was used to obtain the CHMs from the UAV sourced and ALS 

data. Afterwards, tree height were extracted from each CHM.  

3.8. Estimation of tree height from the Canopy Height Models 

One of the ways to retrieve tree height from the CHM is image segmentation (Barnes et al., 2017). 

Estimation of the tree height from the CHMs. To accomplish this, the shapefiles of the segmented tree, the 

coordinate of trees recorded in the field, the centroid of the plot and circular plot were overlaid on each of 

the CHMs,  and the highest pixel value of the CHM within the segmented individual tree crown was retrieved 

as tree height. This was done on a plot basis starting first with one study site, and then the same process was 

applied to the other study sites.  

3.9. Statistical and data analyses 

The histogram was used to graphically determine the distribution of the field measured DBH.Correlation 

was used to quantify the strength of relationship between the CPA and DBH. 
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Regression is used to model the relationship between dependent and independent variable. The changes in 

independent variable results in change of the dependent variable, hence there is a cause and effect 

relationship. Regression analyses was established between CPA and DBH, using CPA as the predictor and 

field DBH as the response variable. The relationship between the variables were analysed using simple and 

nonlinear regressions. Also regression was used to ascertain the relationship between estimated tree height 

from the LiDAR and UAV CHMs. The estimated tree height from the UAV CHM was taken to be the 

independent variable because it was found to have least errors in the DTM.  

Finally, t-test was used to compare the modelled tree height from CHMs of LiDAR and UAV. T-test was 

also used to compare the aboveground biomass modelled using predicted and observed DBH with the 

retrieved tree height from UAV CHM. 

3.10. Estimation of Above Ground Biomass 

Allometric equations are used to describe the relationships between one or more parts of a tree to another. 

The above ground biomass was calculated using allometric equation. There exist many allometric equations 

in published literature. However, this study used the equation proposed by (Chave et. al., 2014), which is 

applicable in tropical rainforest. The formula is shown in equation 5 below.  

Equation 5: Allometric equation for estimating aboveground biomass 

AGB = 0.0673 * (p D2 H)0.976   

Where:      

AGB  is aboveground biomass estimated in Kilogram 

D is diameter at breast height in centimetre 

P is wood density in grams per cubic meter (gcm3) 

H is tree height in metre 

0.0673 and 0.976 are constants 

3.11. Estimation of carbon stock 

The carbon stock of each tree was calculated from the AGB value.  A conversion factor of 0.47 was applied 

to estimate carbon stock from the AGB values using equation 6. This is based on the idea that biomass 

contains 50% of carbon.  

Equation 6: Carbon equation 

                       C = B * CF  

 Where: C is the carbon stock in tons  

 B is the dry biomass 

 CF is the carbon fraction (0.47) 
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4. RESULTS 

4.1. Biometric data 

Tree Diameter at Breast Height (DBH) was recorded for 769 trees collected from 32 plots in the study area. 

The results of the descriptive statistics analysed are presented in Table 5.   

 

Table 5: Descriptive statistics of DBH collected from the field 

Descriptive statistics 

Mean DBH (cm) 21.71 

Standard deviation (cm) 12.97 

Minimum (cm) 10 

Maximum (cm) 90 

Count 769 

From the results of the descriptive statistics presented above, average tree DBH was 21.71cm, and the 

standard deviation was 12.97cm. This indicates that the tree DBH was 12.97cm dispersed from the mean. 

The minimum and maximum tree DBH were 10cm and 90cm respectively. 

Graphical analysis was conducted to determine the occurrence of the tree DBH sampled in the field. The 

results are presented in the histogram.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Field meaured Diameter at breast Height (cm) 

471

153

85

23 16 13 3 4 1
0

50

100

150

200

250

300

350

400

450

500

10 20 30 40 50 60 70 80 90

F
re

q
u

e
n

c
y
 o

f 
o

c
c
u

re
n

c
e

Field measured Diameter at Breast Height (cm)

Figure 9: Distribution of field measured DBH 



UNMANNED AERIAL VEHICLE (UAV) DATASETS FOR RETRIEVAL OF FOREST PARAMETERS AND ESTIMATION OF ABOVEGROUND BIOMASS IN BERKELAH 

TROPICAL RAINFOREST, MALAYSIA 

 

23 

 

It can be seen from the histogram, that the positive skewness exhibited by the DBH. It may be attributed 

to the fact that only DBH equal or greater than 10cm were measured in the field. Also, maybe reflecting the 

age of the trees. Trees that possessed DBH between 10cm and 20cm were predominantly found in the study 

area, and the frequency of occurrence decreased with increase in age of the trees. 

4.2. Tree crown delineation accuracy assessment 

Object based image analysis was used to delineate tree crowns from the orthomosaic images. The delineation 

of the tree crowns served as the basis for extracting crown projection area (CPA) from the orthophoto. The 

CPA was required to model the relationship between field DBH. The accuracy was assessed by spatial join 

of the manually digitized (reference) polygons and automatic delineated tree crowns from the eCognition 

software. The validity of the segmentation was calculated by oversegmentation, under segmentation and D 

value as described in equations 1, 2 and 3 in the methodology section. The results of the analyses are 

presented in Table 6. Figure 10 shows an example of the segmented tree crowns. 

Table 6: Segmentation error and accuracy for tree crown delineation 

Study site Segmentation error 
type 

 Fractional error Accuracy(%) 

1 Over segmentation 0.11 0.37 63 

 Under segmentation 0.71 

2 Over segmentation 0.09 0.42 56 

 Under segmentation 0.81 

3 Over segmentation 0.13 0.51 49 
 Under segmentation 0.87 

 

From the accuracy of the delineated tree crowns, site 1 had higher accuracy of 63% and error of 37%. Site 

2 had accuracy of 56% and error detected was 42%, while site 3 possessed an accuracy of 49% and error of 

51%. The accuracy of the segmentation was relatively fair.  

The results of segmentation accuracy assessment answered research question 1 relating to Object Based 

Image Analyses. 

 

 

 

 

 

 

 

 

 

 
Figure 10: Snapshot of the segmented tree crowns 
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4.3. Accuracy assessment  of the DTM in relation to the GNSS points 

Validation of the DTM generated from LiDAR and UAV sourced data for the three sites were evaluated 

and compared to the GNSS points to ascertain their deviations from the line of fit. The was required to 

select the best CHM for the estimation of aboveground biomass and reduce the influence of errors in the  

modelled tree height on the estimated AGB values. The errors were computed using the root mean square 

error RMSE approach. The results are presented in the Table 7.  

 

Table 7: DTM accuracy in relation to the GNSS points 

 LiDAR sourced DTM RMSE (m) UAV sourced DTM RMSE (m) 

Site 1 2.90 0.20 

Site 2 3.02 0.12 

Site 3 26.10 3.70 

 

From the results computed for the accuracies of the DTM, it can be seen that the ALS derived terrain  model 

possessed higher RMSE values for all study sites. The UAV sourced terrain model had lower values for all 

sites, however errors in both terrain model increased in site 3. Based on the errors of the terrain models, the 

UAV derived terrain models were more accurate since they had lower RMSE values. 

The DTM accuracy assessment answered research question 2 pertaining to Canopy Height Modelling 

 

Afterwards, the canopy height models were generated from the subtraction of the DTM from the DSM for 

the 3 sites. The results are presented below  

4.4. Canopy Height Modelling 

A total of 6 Canopy Height Models were created for the three study sites. Two Canopy Height Models were 

created for each site, one derived from LiDAR and another from the UAV. For the ease of comparison, the 

created CHM are presented sequentially. 

4.4.1. Canopy Height Model using LiDAR and UAV data for site 1  

The CHMs were generated from the subtraction of the DTM from the DSM. The area is characterised by  
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relatively undulating terrain and the forest canopy is relatively open as well. The created CHMs created are 

presented in Figure 11 

   

4.4.2. Canopy Height Model using LiDAR and UAV data for site 2 

Similarly, the CHM was produced from the subtraction of the DTM from the DSM of the LiDAR and 

UAV. The area is characterised by flat terrain and open forest canopy. The UAV imagery captured extended 

out of the LiDAR data boundary. However, tree parameters were obtained in the area common to both 

data. So, only the CHM created using the UAV data is shown in Figure 12, and the image  of overlap 

between both data are presented in appendix 2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11: Canopy Height Models created using LiDAR and UAV data. 

Figure 12: Canopy Height Model created using UAV data. 
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4.4.3. Canopy Height Model using LiDAR and UAV data for site 3 

Same process described for the creation of CHM was also used to derived the CHM for site 3. The area is 

characterised by very undulating terrain and dense forest canopy The created CHMs are presented in Figure 

13. 

After creation of the CHMs which served as input data for the tree height extraction and comparison. 

However, tree height was only extracted and compared for site 1 and 2. This was based on the errors 

obtained in the DTM accuracy in site 3. The RMSE values obtained in the terrain models were higher than 

the values obtained in sites 1 and 2. Also, because of vast differences in the RMSE values of the terrain 

models of both data, comparison of tree height of the tree height won't be reasonable. Thus, only the CHMs 

created for site 1 and 2 were used for further analyses. The results of the estimated forest tree height are 

presented in the following section. 

4.5. Estimation of tree height and comparison using the LiDAR and UAV derived CHMs 

Tree height was estimated using two methods; Airborne LiDAR and UAV derived CHMs. The tree height 

were compared using linear regression, Pearson’s correlation, RMSE and t-test. 

4.5.1. Tree height estimation and comparison for site 1 

In total, 286 corresponding trees were retrieved from LiDAR and UAV CHMs. The results of the descriptive 

statistics for the modelled trees are presented in Table 8.  

 

Table 8: Descriptive statistics of tree height estimated using LiDAR and UAV CHMs 

 LiDAR estimated tree height (m) UAV estimated tree height (m) 

Mean 23.76 20.40 

Standard deviation 6.93 5.44 

Minimum 7.62 6.06 

 Figure 13: Canopy Height Models created using LiDAR and UAV data 
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Maximum 39 32..74 

Count 286 286 

 

From the results of the descriptive statistics, it can be seen that the trees modelled from the LiDAR CHM 

were over 3m higher on average than the height of trees modelled from the UAV CHM. Also, the estimated 

trees from the LiDAR data had a higher standard deviation with a value of 6.93m, compared to the standard 

deviation of 5.44m recorded from the UAV CHM. This implies that LiDAR estimated trees are more 

dispersed from the mean than the trees estimated from the UAV CHM. The minimum tree height estimated 

from the LiDAR CHM is almost 2m higher, with a value of 7.62m than the minimum tree height estimated 

from the UAV CHM which had a value of 6.06m. Furthermore, the maximum tree height estimated from 

the LiDAR CHM is 7m higher than the maximum value obtained from the UAV CHM. 

 

Line of best fit was conducted with a regression equation using the UAV data as the independent variable 

and LiDAR as the dependent variable presented with a scatter plot in Figure 14. The R2 of 0.71, RMSE of 

±3.38m and correlation coefficient of 0.84 was established. The regression summary statistics are presented 

in Table 9.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Table 9: Regression statistics for estimated trees froms LiDAR and UAV CHMs 

Regression statistics  

Multiple R 0.84 

R Square 0.71 

Adjusted R Square 0.71 

Standard Error (m) 3.72 

y = 1.0747x + 1.8343
R² = 0.7121
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Figure 14: Scatter plot of the relationship between LiDAR and UAV estimated tree height 
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RMSE (m) 3.38 

Observations 286 

 

Afterwards, an f-test was conducted to determine if the estimated trees from both data had an equal variance 

or not. The results are presented in Table 10. 

Table 10: F-Test Two-Sample for Variances between estimated tree height from LiDAR and UAV CHMs 

 ALS estimated tree height UAV  estimated tree height 

Mean 23.76 20.40 
Variance 48.05 29.62 
Observations 286 286 
df 582 506 
F 1.21  
P(F<=f) one-tail 2.4636E-05  
F critical one tail 1.15  

The results of the f-test show that at α =0.05, there is an unequal variance between the estimated trees from 

both CHMs, p value is less than 0.05. 

Based on the results of the f-test, a test assuming unequal variances was conducted to determine if there is 

a significant difference between tree height estimated from both CHMs. The results are presented in Table 

11. 

Table 11: t-Test Two-Sample Assuming Unequal Variances between estimated tree height from LiDAR and UAV 
CHMs 

  ALS estimated tree height UAV estimated tree height 

Mean 23.76 20.40 

Variance 48.05 29.62 

Observations 286 286 

Df 540  

Hypothesized Mean 

Difference 

 

0  

t Stat 6.44  

P(T<=t) two-tail 2.5827E-10  

t Critical two-tail 1.96  

 
The results of the t-test show, at α =0.05, that there is a significant difference between tree height extracted 

from the CHMs, p <0.05.   

Similarly, tree height estimation and comparison were conducted for site 2, and the results are presented 

below.   
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4.5.2. Tree height estimation and comparison for site 2 

In total, 262 corresponding trees were retrieved from both data. The results of the descriptive statistics 

conducted for the variables are shown in Table 12.  

Table 12: Descriptive statistics of the estimated tree height from LiDAR and ALS CHMs 

 LiDAR estimated tree height UAV estimated tree height 

Mean 19.93 19.05 

Standard deviation 6.19 5.47 

Minimum 5.03 6.06 

Maximum 34.58 32.61 

Count 262 262 

From the results of summary statistics presented above, it can be seen, that on the average, the estimated 

trees from the LiDAR CHM were 0.88m higher than the average trees estimated from the UAV CHM. Also, 

trees estimated from the LiDAR CHM had a higher standard deviation value of 6.19m, than the standard 

deviation of trees recorded from the UAV CHM with a value of 5.47m. This implies that the trees retrieved 

from the LiDAR CHM were more spread from the mean than the trees estimated using UAV CHM 

Subsequently, line of best fit was conducted with a regression equation and presented with a scatter plot in 

Figure 15.  Coefficient of determination was (R2) of 0.80, RMSE of ±0.88m and a correlation coefficient of 

0.89 was established. The regression summary statistics are presented in Table 13. 
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Figure 15: Scatter plot for the relationship between LiDAR and UAV estimated tree height 
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Table 13: Regression statistics between estimated tree height from LiDAR and UAV CHMs 

Regression statistics  

Multiple R 0.89 

R Square 0.80 

Adjusted R Square 0.80 

Standard Error (m) 2.73 

RMSE (m) 0.88 

Observations 262 

 

Then, f-test was used to determine if the estimated tree height exhibited equal variance or not. The results 

are presented in Table 14. 

 
Table 14: F-Test Two-Sample for Variances between estimated tree height from LiDAR and UAV CHMs 

 ALS estimated tree height UAV estimated tree height 

Mean 19.93 19.05 

Variance 38.32 30.02 

Observations 262 262 
Df 261 261 
F 1.27  
P(F<=f) one-tail 0.02  
F Critical one-tail 1.22  

 

The results of the f-test show at α =0.05, there is an unequal variance between the estimated tree height 

from both data, p value <0.05.  

Then, a t-test assuming unequal variance was conducted. The results are shown in Table 15. 

 

Table 15: t-Test Two-Sample Assuming Unequal Variances between estimated tree height from ALS and UAV 
CHMs 

  LiDAR estimated tree height UAV estimated tree height 

Mean 19.93 19.05 

Variance 38.32 30.02 

Observations 262 262 

Df 522  

Hypothesized Mean  
Difference 
 

0  

t Stat 1.73  

P(T<=t) two-tail 0.08  

t Critical two-tail 1.96  
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The results of the t-test show that at α =0.05, there is no significant difference between tree height estimated 

from both CHM,  p value >0.05. 

The results of tree height estimation and comparison presented above answered research question 3 about 

the canopy height modelling. 

4.6. Modelling the relationship between crown projection area and Diameter at Breast Height (DBH) 

To model the relationship between CPA and DBH, tree crowns were manually segmented on the 

orthophoto using visual image interpretation.  The use of predicted DBH from CPA to model AGB is 

biased due to errors in the segmented CPA. Therefore to reduce the error introduced into the AGB values, 

the manually digitised tree crowns were used. CPA of trees that had one to one match with the DBH were 

used for model development and validation. The results are presented below.  

4.6.1. Model development for site 1 

Simple linear, logarithmic, power and quadratic models were developed to ascertain how accurately DBH 

can be predicted from CPA. The modelling of the relationship between CPA and DBH was done with 74 

trees. The randomly divided 60% (44 trees) of the dataset were used to develop the models. The models 

were compared using the RMSE and coefficient of determination. The results of the developed models are 

shown in Table 16 and Figure 16. 

 

Table 16: Models developed for prediction of DBH 

Model Equation R2 RMSE 

Linear DBH(cm)=0.7922*CPA+13.535 0.74 6.83 

Logarithmic DBH(cm)=18.404*ln(CPA)-21.466 0.65 9.12 

Power DBH(cm)=5.681*(CPA^0.544) 0.59 7.51 

Quadratic DBH(cm)=0.0023*CPA^2+0.6383*CPA+15.181 0.74 6.60 

 



UNMANNED AERIAL VEHICLE (UAV) DATASETS FOR RETRIEVAL OF FOREST PARAMETERS AND ESTIMATION OF ABOVEGROUND BIOMASS IN BERKELAH 

TROPICAL RAINFOREST, MALAYSIA 

32 

 

From the results of the model developed and compared, The linear and quadratic models had the highest 

predictive power and least errors compared to power and logarithmic. However, quadratic model was 

selected for the DBH prediction based on it lowest RMSE values.  

 
A one way analysis of variance (ANOVA) was employed to test the significance of the quadratic model, and 

the results in Table 17 which show that regression was statistically significant at 95% confidence level. 

 

Table 17: ANOVA test results for the quadratic model 

ANOVA test for significance  

 df SS MS F Significance F 

Regression 1 4280.944 4280.944 99.42981 1.03E-10 

Residual 28 1205.538 43.05493   

Total 29 5486.482    

 

y = 0.7922x + 13.535
R² = 0.743

0.0

20.0

40.0

60.0

80.0

0 .0 20 .0 40 .0 60 .0 80 .0

D
B

H
 (

c
m

)

CPA (m2)

Linear  model

y = 5.861x0.544

R² = 0.5903

0.0

20.0

40.0

60.0

80.0

0 .0 20 .0 40 .0 60 .0 80 .0

D
B

H
 (

c
m

)

CPA (m2)

Power  model

y = 18.404ln(x) - 21.466
R² = 0.6542

0.0

20.0

40.0

60.0

80.0

0 .0 20 .0 40 .0 60 .0 80 .0

D
B

H
 (

c
m

)

CPA (m2)

Logar i thmic model

y = 0.0023x2 + 0.6383x + 15.181
R² = 0.7446

0.0

20.0

40.0

60.0

80.0

0 .0 20 .0 40 .0 60 .0 80 .0

D
B

H
 (

c
m

)

CPA (m2)

Quadrat ic  model

Figure 16: Models developed for prediction of DBH 
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4.6.2. Model validation 

The predicted DBH values from the quadratic model were plotted against the observed DBH. The model 

was validated using randomly selected 40% (30 trees) of the dataset. The results show a coefficient of 

determination R2 of 0.78 (Figure 17). This means that 78% of DBH measured in the field was explained by 

the quadratic model. The test of goodness of fit was done using RMSE which resulted in 6.33cm.  

 

 

 

 

 

 

 

 

 

 

 

 

4.6.3.    Model development for site 2 

Similarly, simple linear, logarithmic, power and quadratic models were developed and compared for the 

relationship between CPA and DBH.  The modelling of the relationship between CPA and DBH was done 

with 30trees. The randomly divided 60% dataset were used to develop the models for DBH prediction. The 

models were compared using the coefficient of determination (R2) and RMSE. The results are presented in 

Table 18 and Figure 18. 

 

Table 18: Models developed for prediction of DBH 

Model Equation R2 RMSE 

Linear DBH(cm)=3.4024*CPA+7.2668 0.82 10.65 

Logarithmic DBH(cm)=21.008*ln(CPA)-5.0272 0.57 13.53 

Power DBH(cm)=10.248*(CPA^0.5434) 0.52 11.03 

Quadratic DBH(cm)=-0.0993*CPA^2+1.1284*CPA+14.832 0.86 9.49 

R² = 0.7803
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Figure 17: Scatter plot for model validation 
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From the results presented in Figure 18 and Table 18,  it can be seen that the linear and quadratic models 

had the highest predictive power. However, quadratic model was selected for the prediction of DBH based 

on the lowest RMSE values. The data point of a tree measured in the field with a very large DBH and CPA 

was far from other points and somehow influences the models as seen on the scatter plots. But could not 

be removed because of limited sample size.  

A one way analysis of variance (ANOVA) was employed to test the significance of the quadratic model, and 

the results in Table 23 which show that regression was statistically significant at 95% confidence level. 

 

Table 19: ANOVA test for the  quadratic model 

ANOVA test for significance 

 df SS MS F Significance F 

Regression 1 2047.591 2047.591 50.28069 3.33E-05 

Residual 10 407.232 40.7232   

y = 21.008ln(x) - 5.0272
R² = 0.5714
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Figure 18: Models developed for prediction of DBH 
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Total 11 2454.823       

 

4.6.4. Model validation 

The predicted DBH values from the quadratic model were plotted against the observed DBH. The model 

was validated using randomly selected 40% of the evaluation dataset. The results show a coefficient of 

determination R2 of 0.83 shown in the scatter plot in Figure 19. This means that 83% of DBH measured in 

the field was explained by the quadratic model. The test of goodness of fit was done using RMSE which 

resulted in 5.82cm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
The results presented above answered research question 1 relating to the modelling the relationship 

between CPA and DBH.  

4.7. Aboveground biomass and carbon estimation 

The tree height estimated from the UAV CHM was used to model AGB. It was found to be more accurate 

in the modelling of forest tree height, because of less errors in the DTM. This was required to reduce the 

errors from the modelled tree height for the estimation of AGB  

The estimation of AGB was done using two methods; field measured DBH and estimated tree height, and 

predicted DBH from the quadratic model and estimated tree height. Allometric equation used for the 

estimation of AGB was adopted after (Chave et al., 2014), which is applicable to tropical rainforest. 

Afterwards, carbon stock was obtained from the estimated AGB using a conversion factor of 0.47.  The 

AGB estimated using field measured DBH was compared to AGB estimated using predicted DBH. The 

results are presented in the following subsections. 
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Figure 19: Scatter plot of model validation 
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4.7.1. Aboveground biomass and carbon estimation for site 1 

The AGB was estimated with 74 trees that were used for model development and validation. The trees had 

one to one match between the CPA, DBH and estimated tree height. A total of  52396.8kg and 24628.5kg 

of AGB and carbon was estimated in the study area using the first method (field DBH and estimated tree 

height). Total of 708kg/tree of AGB was obtained. 

Also, 52991.6kg and 24906.1kg of AGB and carbon was estimated using the second method (predicted 

DBH and estimated tree height).  

4.7.2. Aboveground biomass carbon estimation for study site 2 

Similarly, AGB was estimated with 30 trees the estimated AGB and carbon stock using method one was 

17207.4kg and 8087.5kg. Therefore 573kg/tree of AGB was obtained. 

While the estimated AGB and carbon using the second method was 9548.3kg and 4487.7kg respectively.  

The modelling of AGB answered objective 1 relating to the allometric modelling of AGB.  

To determine if there is a significant difference in the AGB estimated using both methods, f-test and t-test 

were conducted. The results are presented in Tables 20, 21, 22 and 23. 

 

Table 20: F-test Two-Sample for Variances between AGB estimated using field DBH and predicted DBH  

 AGB estimated using field DBH 
(kg) 

AGB estimated using 
predicted DBH (kg) 

Mean 708.06 716.10 
Variance 539875.1 

 
511589.1 

Observations 74 74 
df 73 73 
F 1.05  
P(F<=f) one-tail 0.40  
F critical one tail 1.47  

 
The results of the f-test presented in Table 20 show, that they had equal variance, p >0.05. Thus, t-test 

assuming equal variances was used for determining significant difference. 

A T-test assuming equal variance was used to establish if there is a significant difference between estimated 

AGB using field measured and predicted DBH or not. The results are presented below. 

 

 

Table 21: T-test Two-Sample assuming equal Variances between AGB estimated using field DBH and predicted 
DBH  

 AGB estimated using field 
DBH (kg) 

AGB estimated using predicted 
DBH(kg) 

Mean 708.06 716.10 

Variance 539875.1 511589.1 

Observations 74 74 

Df 146 146 
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Hypothesized Mean  
Difference 
 

0  

t Stat -0.06  

P(T<=t) two-tail 0.94  

t Critical two-tail 1.97  

 

 

The results of the t-test show that there is no significant difference between the estimated AGB using the 

two methods, p value > 0.05. Afterwards, t-test was used to determine the difference between AGB 

estimated using field and predicted DBH in combination with the UAV estimated tree height for site 2, and 

the results are shown below.  

 

Table 22: F-test Two-Sample for Variances between AGB estimated using field DBH and predicted DBH 

 AGB estimated using field 
DBH (kg) 

AGB estimated using 
predicted DBH (kg) 

Mean 573.57 318.27 
Variance 1488531 68314.56 
Observations 30 30 
df 29 29 
F 21.78  
P(F<=f) one-tail 4.61E-13  
F critical one tail 1.86  

 

The results of the f-test show that they had unequal variance, p <0.05. Thus, t-test assuming unequal 

variances was used for determining significant difference. The results are shown below 

 
Table 23: T-test Two-Sample assuming unequal Variances between AGB estimated using field DBH and predicted 
DBH  

 AGB estimated using field 
DBH (kg) 

AGB estimated using predicted 
DBH(kg) 

Mean 537.57 318.27 

Variance 1488531 68314.56 

Observations 30 30 

Df 32  

Hypothesized Mean  
Difference 
 

0  

t Stat 1.12  

P(T<=t) two-tail 0.27  

t Critical two-tail 2.03  
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The results of the t-test revealed  that there is no significant difference between the estimated AGB using 

the two methods namely, field measured and predicted DBH and in combination with the tree height 

retrieved from UAV CHM, p value > 0.05. 

Comparison of both methods for the estimation of AGB answered research question 1 relating to allometric 

modelling of AGB within the study area. 
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5. DISCUSSION 

5.1. Segmentation accuracy 

Previous studies have shown that the accuracy of the tree crown segmentation depends on a lot of factors; 

noise, spatial and spectral  as well as the optimal parameters setting employed during the image segmentation 

process (Möller et al., 2009).  

In multiresolution segmentation,  the size and homogeneity of resultant image objects is determined by the 

scale parameter (Drǎguţ, et al., 2010). Of which getting an optimum scale parameter is reliant on trial and 

error approach.  

Also, the validation of segmentation is based on one to one match between the polygons of the automatic 

and manual segments as well as their position in space (Clinton et al., 2010). Positional error of the GPS in 

matching the trees observed in the field to the image also occurred see Figure 20. This result in the 

differences in the area, shape and boundaries of the polygons derived from manual and automatic segments 

as mentioned by (Zhan, Molenaar, Tempfli, & Shi, 2007). 

Furthermore, using multiresolution, the scale factor changes as a result of different sizes of object, and shape 

and compactness vary because of the different properties of objects belonging to different classes (Mesner 

& Oštir, 2014). This occurred as the forest had different species composition and of different ages. 

Therefore the size of the object had an influence on the segmentation output. The influence of positional 

error, trees composition on segmentation accuracy is shown in Figure 20.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The red dots represent the GPS points taken at the tree base. 

Figure 20: Effects of positional error of the GPS and forest 
structure on segmentation output 
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5.2. Accuracy assessment of Digital Terrain Model  

Previous studies demonstrated that LiDAR data are more accurate for the generation of elevation models 

for  the vertical characterization of forest structure (Huang et al., 2009; Wallace et al., 2016). However, the 

results of this study showed that the DTM generated using UAV sourced data was better than the one based 

on airborne LiDAR data.  

It was found that differences exist in the point density of both datasets. The LiDAR data had 5point/m2, 

compared to the point density of UAV datasets which have 27.39point/m2, 13.83/m2 and 26.3m2 for the 

three study sites/blocks. This higher point density of the UAV data could have caused its better this superior 

than the LiDAR data. This is in agreement with the study done by Okojie, (2017), who found UAV sourced 

DTM to be more accurate than the DTM derived from ALS data. Same results was also found by  (Thiel & 

Schmullius, 2017). 

The derivation of elevation model is based on interpolation that enables the prediction of unknown values 

based on known values (Debella-Gilo, 2016). Also, the study done by Simpson, et al., (2017) found that the 

creation of an accurate and well-detailed surface model is dependent on the number of points and the 

relative distance between the point. The LiDAR data had sparse point cloud for interpolation, this could 

have affected its ability to perform and produce accurate surface models, compared to the UAV that had 

higher number of points (Thiel & Schmullius, 2017).   

 

In addition to the point density, previous studies found that the forest structure and terrain also affect the 

accuracy of DTM generation in a forest ecosystem (Estornell, et al., 2011; H. Hyyppä et al., 2005; J. Hyyppä 

et al., 2008). This study was conducted across three sites, each site had distinct forest structure and 

topograpgy. Though the LiDAR and UAV data performed well in sites 1 and 2, this could be due to relatively 

open forest canopies and less undulating terrain. Thus, the point was able to penetrate to the forest floor in 

combination with the relatively flat terrain. Nevertheless, the UAV showed better performance than th 

LiDAR, because of its higher point density with more chance of hitting a tree top and the forest floor. 

However, site 3 is a complex forest stand, with higher forest canopy density and undulating terrain and here 

the results is less accurate. This is in agreement with the study done by (Salleh, Ismail, & Rahman, 2015), 

where the study found a statistically significant relationship between the accuracy of modelling forest floor 

with forest canopy cover and the terrain.  

In addition, Balenović et al., (2016), found that the accuracy of a DTM generated using UAV 

photogrammetry varies  across different land cover classes. They assessed the quality of a DTM across three 

land cover classes; forests, shrubs and grassland. They observed that the DTM accuracy is dependent on 

the complexity of the landcover type as the least accurate DTM was found in the forest landcover class.  

Furthermore, Debella-Gilo & Iii, (2016) found the relation between the DTM accuracy with varying 

topographic and ground cover characteristics. The study was conducted across four study sites.  

• Site 1 was a bare area with gradual slope 

• Site 2 was steep area covered partly dense vegetation 
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• Site 3 was built up area with flat terrain 

• Site 4 was a complex topograpgy with steep and undulating terrain. 

 

Therefore, in a closed forest canopy, there was a reduction in the number of point to reach the forest floor, 

and in combination with the increase in the slope angle caused by the undulating terrain. Based on this 

findings, the forest structure and terrain could have affected the accuracy of the DTM obtained in site 3.        

3D photogrammetry using stereo images obtained from UAV platform, has the potential to produce better 

accuracy in the interpolation of DTM when the optimum flight height, percentage of front and side of 

overlap are used in capturing the stereo imagery. 

5.3. Comparison between tree height estimated using LiDAR and UAV CHM 

In site 1, the mean tree height difference between the extracted tree height from the UAV and ALS CHM 

was 3.36m, and the root mean square error of the LiDAR estimated tree height was found to be 3.38m. This 

means that there was an overestimation of tree height from the LiDAR data. The overestimation was caused 

by the error in the DTM that propagated into the estimated tree height. The t-test conducted revealed that 

there is a significant difference between the tree height derived from ALS and 3D photogrammetry from 

UAV data (p <0.05). This significant difference was caused by the overestimation of tree height from the 

errors in DTM. Not all trees have been hit by the laser pulse due to the sparsity of points  

The root mean square error of 0.88m and mean difference of 0.88m was found between tree height extracted 

using airborne LiDAR and UAV for site 2. The t-test revealed there was no significant difference between 

the extracted tree height based on UAV and ALS CHM (p >0.05). This could be true since the mean tree 

height difference between both data was 0.88m and the RMSE deviation from the line of fit was also 0.88m. 

However, it is relevant to be aware of the error found in the LiDAR data as this could influence the AGB 

values from the errors in the modelled tree height. Nevertheless, there was a positive correlation between 

the the comparison of tree height modelled using LiDAR and UAV 3D point cloud for both sites/blocks. 

This  correspond with the results of previous studies. The study conducted by Wallace, et al., (2016) found 

a positive correlation between the estimated tree height from aerial photo 3D UAV point cloud and LiDAR. 

Also, Vastaranta et al., (2013) found positive correlation when tree height measurements by LiDAR system 

was compared with the tree height measured by 3D photogrammetry of UAV images. 

5.4. Relationship between Crown projection area and field measured Diameter at Breast Height 

The relationship between Diameter at Breast Height and crown projection area was found to be positive 

and significant. Four models were compared and the quadratic model was chosen because of its high 

predictive power and least error. This contradicts the results of the Kumar, (2011), who found a linear 

relationship existing between CPA and DBH in a tropical forest. Which implies that when a tree grows, the 

CPA does same. The results obtained in this study is similar to the findings of  Baral, (2011), who stated 

that a nonlinear relationship exist between CPA and DBH in a tropical rainforest. Also, Hemery, Savill, & 
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Pryor, (2005), found that linear relationship cannot not be found between DBH and CPA, where the trees 

possessed DBH larger than 40cm in a dense forest ecosystem. This is true, since the trees sampled had DBH 

larger than 40cm.  

Similarly, Shimano, (1997), obtained nonlinear relationship between CPA and DBH. This is because in a 

dense forest with canopy closure, there is competition between the trees for sunlight. Thus, the rate of 

growth of the CPA is slow down because of the competition of neighbouring crowns. However, the DBH 

continues to increase, though at a slower rate and the CPA will start stabilizing and becomes constant when 

the DBH has grown sufficiently (Shimano, 1997).  

The model was developed with few sample size and this reduces it statistical power. Despite that, it was able 

to establish positive relationship between CPA and field measured DBH using orthophoto as input data. 

Upscaling segmentation accuracy can help increase the statistical power by using the automatic segmented 

tree crowns to develop the model and apply it to the entire study area.  

 

5.5. Estimation of aboveground biomass 

The estimated aboveground biomass was calculated using the allometric equation developed by (Chave et 

al., 2014) which is applicable to the tropical rainforest, and the model incorporates tree height, Diameter at 

Breast Height, and wood density. The method used in this study is comparable to the method used by Mtui, 

(2017). The study used UAV data to model tree height, and subsequently estimate AGB and carbon stock, 

in the tropical rainforest of Malaysia. Although both methods were similar, the method used in this study 

was found to be better than the method he employed in his study. This is because his method did not 

evaluate the accuracy of the CHM used in the estimation of AGB. Therefore, uncertainty in the error of the 

CHM that was introduced into the AGB values from the modelled tree height was unknown in his method.  

The comparison of the difference in estimated AGB using t-test revealed that there was no significant 

difference using the field measured and predicted DBH (p value > 0.05). However, using predicted DBH 

to model AGB/carbon had errors introduced into the AGB values from the model used. The difference in 

the amount of AGB values obtained resulted from the errors in the models. Also the sample same size used 

for the estimation of AGB also affected the statistical power.  

 

5.6. Sources of errors  

According to Petrokofsky et al., (2012) errors in aboveground biomass estimation can be introduced in 

many ways such as the use of wrong allometric equation, inaccurate measurement of variables, instruments 

and calibration errors.  

Tree height and Diameter at Breast Height are the two most common variables used for estimation of AGB. 

It is relevant to enumerate the likely sources of error in this study.  
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The first potential source of was the GPS. The trees position and centre of sample plots were recorded 

using an iPAQ. The iPAQ had an accuracy between 2-4 metres. Some data points were clustered on one a 

tree crown, while some were far away from the plots (Figure 21). This may have caused mismatch and shift 

in the position of the trees during matching of trees from remotely sensed data and the trees measured in 

the field.  

 

 

 

 

 

 

 

 

 

 

The red dots indicate the GPS points taken at the tree base. 

Another source of error was the Canopy Height Model used for the estimation of tree height.  

The DTM used for the tree height estimation had an RMSE of 0.20m and 0.12m for site 1 and 2. The tree 

height was overestimated by 0.20m and 0.12m and these errors has influenced the estimated AGB values. 

Therefore, the errors in the estimated tree height may have led to an under or over-estimation of biomass 

and carbon values.  

A third potential source of error was the allometric equation used for the estimation of biomass. The non-

site species-specific allometric equation developed by (Chave et al., 2014) was used for the estimation of 

AGB. The equation does not incorporate species, age, topography, soil and climatic conditions (Basuki, et 

al., 2009).   

Furthermore, the LiDAR data was acquired in November 2014, while the UAV datasets were acquired in 

September and October  2017. The height of the trees may have slightly increased because of the continuos 

growing season in between the two periods.  

 

 

 

Figure 21: Positional shift and mismatch caused by errors in the 
GPS 
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6. CONCLUSION AND RECOMMENDATIONS 

6.1. CONCLUSION 

This study evaluated the performance of imagery captured with Unmanned Aerial Vehicle (UAV), to retrieve 

forest parameters and assessment of aboveground biomass in a tropical rainforest. According to the research 

questions and objectives, the following conclusions were made. 

6.1.1. What is the accuracy of the tree crown segmentation? 

 
The accuracy of tree segmentation was 63%, 53% and 49% respectively for the three sites.  

6.1.2. What is the accuracy of UAV and airborne LiDAR data derived Digital Terrain Model?  

The DTM generated by 3D photogrammetry using images acquired by the UAV was more accurate than 

the  DTM based on the airborne LiDAR system. 

6.1.3. Is there a significant difference between tree height estimated using airborne LiDAR and UAV? 

 
There was a significant difference between estimated tree height using LiDAR and UAV 3D 

photogrammetry, α=0.05, p value less than 0.05. The null hypothesis was rejected and alternate hypothesis 

accepted in site 1. 

In site 2, there was no significant difference between estimated tree height using LiDAR and UAV CHM  

α=0.05, p value greater than 0.05. The null hypothesis was accepted.  

6.1.4. Is there a significant relationship between crown projection area and Diameter at Breast Height (DBH)? 

There was a significant relationship between tree crown projection area and Diameter at Breast Height 

(DBH) α=0.05, p value less than 0.05. The null hypothesis was rejected and the alternate hypothesis was 

accepted. 

6.1.5. Is there a significant difference between AGB estimated using field measured DBH and predicted DBH? 

 
There was no significant difference between AGB estimated using field measured and predicted DBH at 

α=0.05, p value greater than 0.05. The null hypothesis was accepted. This statement hold true for the two 

sites. 

6.2. Recommendation  

• The modelling of forest tree height using UAV stand-alone datasets is recommended. This study 

has proven that DTM created exclusively using UAV data to perform better than the one based on 

airborne LiDAR.  This is primarily due to its robust high point cloud for accurate interpolation of 

the surface models.  
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• It was discovered that increase in forest coverage limits the number of point to penetrate to the 

forest floor. Subsequent use of LiDAR data with higher point density and optimisation of the 

highest point density generation option in the photogrammetry processing software is required 

against the medium that was employed in this study is recommended. The choice of any of the data 

is a function of cost, availability, and the computational time for the photogrammetry processing. 

Also, information on the terrain is highly recommended since it also affected the accuracy of 

modelling forest tree height.  

•  Subsequently, Differential GPS should be used to record location of trees for better matching of 

tree parameters measured in the field and on the images.  
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APPENDICES 

Appendix 1: Data collection sheet 

DATA COLLECTION SHEET, BERKELAH FOREST RESERVE, MALAYSIA. 
Author: Plot radius: Slope: (%) Date:  
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Latitude:                            
 

Longitude:                            Plot No:     
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Appendix 2: Screenshot of the Airborne Lidar CHM and the area of overlap with the UAV CHM.  


