
 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Estimating Specific Leaf Area (SLA) 

in saltmarsh/ wetland ecosystem, 

using Sentinel-2 data, a case study 

of Schiermonnikoog island 

KASRA RAFIEZADEH SHAHI 

March 19, 2018 

SUPERVISORS: 

Dr.R.Darvishzadeh 

Prof.dr.A.K.Skidmore 





 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Thesis submitted to the Faculty of Geo-Information Science and Earth 

Observation of the University of Twente in partial fulfilment of the 

requirements for the degree of Master of Science in Geo-information Science 

and Earth Observation. 

Specialization: [Natural Resource Management] 

 

 

 

SUPERVISORS: 

Dr.R.Darvishzadeh 

Prof.dr.A.K.Skidmore 

 

THESIS ASSESSMENT BOARD: 

Dr.ir.C.A.J.M. de Bie (Chair) 

Dr, M, Azong Cho (External Examiner, Council for Scientific and Industrial 

Research (CSIR)) 

 

 

  

Estimating Specific Leaf Area (SLA) 

in saltmarsh/wetland ecosystem 

using Sentinel-2 data, a case study 

of Schiermonnikoog island 

 

KASRA RAFIEZADEH SHAHI 

Enschede, The Netherlands, March 19, 2018 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DISCLAIMER 

This document describes work undertaken as part of a programme of study at the Faculty of Geo-Information Science and 

Earth Observation of the University of Twente. All views and opinions expressed therein remain the sole responsibility of the 

author, and do not necessarily represent those of the Faculty.



i 

ABSTRACT 

Specific Leaf Area (SLA) is one of the proposed Essential Biodiversity Variables (EBVs) to monitor 

biodiversity changes. In addition, SLA has a strong correlation with photosynthesis capacity and nitrogen 

content and therefore, it is an appropriate indicator to monitor plant functional process (e.g. plant growth, 

plant productivity). Regarding to time and expense, traditional survey methods are not appropriate 

approaches to monitor biodiversity changes; but Remote Sensing (RS) data is a non-destructive and 

efficient manner to obtain information on biodiversity changes. Among the new satellites, Sentinel-2 

satellites which were launched recently provide high spatial, temporal, and spectral resolution imageries.  

 

Further, statistical approaches as follow have been examined to estimate SLA: 1) Univariate models 

(Vegetation Indices (VIs)), and 2) Multivariate models (Artificial Neural Network (ANN), Partial Least 

Square Regression (PLSR)). The selected multivariate models (ANN, and PLSR) to our knowledge have 

not been used to estimate SLA. Therefore, the usability of Sentinel-2 data and the performance of 

different statistical approaches have been studied in saltmarsh/ wetland ecosystem.  

 

Field data were collected in Sciermonnikoog island from 26th September to 5th October, and a number of 

plant parameters including Leaf Area (LA) and Leaf Dry Mass Content (LDMC) were measured for 50 

sample plots. The Sentinel-2 image was downloaded on 15th September 2017, and the correlation between 

the measured SLA and Sentinel-2 spectral data were examined. In this study, 9 individual bands (20 meters 

spatial resolution) of Sentinel-2 data and 11 VIs have been used to estimate SLA.  

 

The results showed that there was a weak correlation between the measured SLA and LA (R=0.17); while, 

there was a strong negative correlation between measured SLA and LMDC (R=-0.73). After that, the 

correlation analysis between VIs with the measured SLA showed the strongest correlation is between the 

Ratio Vegetation Index and the measured SLA. Therefore, RVI was used to estimate SLA through 

different regression techniques (simple linear, quadratic, logarithmic, exponential regression). The findings 

illustrated that SLA could be estimated by RVI using simple linear regression (R2=0.46, RMSE=0.64).  

 

Among the studied multivariate models (ANN, and PLSR) the performance of the ANN model (R2=0.55, 

RMSE=0.47) which used all 11 studied VIs as input, and Levenberg-Marquardt training algorithm 

obtained more accurate results to estimate SLA compared to PLSR. The reason of the higher accurate 

performance of ANN might be the non-linear relation between explanatory variables and the response 

variable. However, the non-linear relation between measured SLA and predicted SLA by the ANN model 

might be caused by the situation on the field as follow: 1) High percentage of dead materials 2) 

Background material that influenced the spectral reflectance information. Moreover, 3) The possible 

errors that happened during plant parameters measurement. 

 

Therefore, regarding results of the present study we conclude that: 1) SLA can be estimated accurately 

using Sentinel-2 data, 2) SLA could be estimated accurately through RVI (using simple linear regression) 3) 

SLA could be estimated accurately via ANN. In addition, some recommendations for further studies have 

been suggested as follow: 1) Using different multivariate approaches such as Support Vector Machine 

(SVM) and Random Forest (RF) to estimate SLA in saltmarsh/ wetland ecosystem, 2) Using accurate 

equipment to measure plant parameters, and 3) A higher number of samples is recommended as well.  

 

Keywords: Specific Leaf Area, Sentinel-2, Schiermonnikoog, saltmarsh/ wetland ecosystem, univariate 

models, multivariate models. 
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1. INTRODUCTION 

In this chapter, the importance of Specific Leaf Area (SLA) and RS data elaborated, and the relevant 

literature on this topic has been reviewed. At the end of this chapter, the research problem stated, and 

research questions and research hypothesis were formulated. 

1.1. Background 

1.1.1. Importance of SLA 

In biodiversity studies, biological diversity covers a broad concept of all spatial and temporal variation of 
an ecosystem that corresponded to each species, their structures, and their functions (Tilman, 2001). 
Functional diversity is a subset of this broad concept, that describes elements (traits) of biodiversity. 
Functional diversity is important to realize how an ecosystem operates and it directly or indirectly 
influences the ecosystem processes such as productivity, resource dynamics, and other aspects of 
ecosystem processes (Tilman, 2001). 
 
In plants, a trait is defined as a physiological, morphological, or phenological property that can be 
measured (Violle et al., 2007). Moreover, a trait can be referred as a functional trait when the trait 
influences on plant functions such as plant height, nutrient acquisition, and retention resources strategies 
(Lavorel et al., 2011). Therefore, quantifying values and ranges of functional traits will help us to 
understand the ecosystem functioning and to manage and make future scenarios (Homolová et al., 2013a; 
Lavorel et al., 2011; Tilman, 2001).  
 
As Pereira et al., (2013) reported that decreasing biodiversity loss and preventing biodiversity changes are 
main international goals that shall be met till 2020; thus, some biodiversity variables were identified as 
Essential Biodiversity Variables (EBVs) to track biodiversity changes. However, there are still ongoing 
projects to find EBVs to monitor biodiversity. One of the EBVs that suggested by Skidmore et al., 
(2015)to capture biodiversity changes from space is Specific Leaf Area (SLA). It is also known as specific 
leaf mass, or leaf specific mass (Ali et al., 2016a). SLA is the ratio of the leaf area to leaf dry mass and is 
usually expressed in the following unit (m2/kg).  
 
SLA can be a good indicator to describe the relationship between nutrient supply and water availability 
with the atmospheric CO2 uptake (Pierce et al., 1994). In addition, SLA has a straight relationship with 
photosynthetic capacity (Reich et al., 1998); furthermore, photosynthetic capacity is strongly correlated 
with leaf nitrogen content (Evans, 1989); therefore, SLA can be a good indicator to address plant growth 
and plant production (Hikosaka, 2004). Generally, different species have different SLA (Poorter and Jong, 
1999); for instance, high-SLA species have high concentrations of nitrogen and high rates of CO2 which is 
indicating the species have a high rate of photosynthesis process; in contrast, low-SLA species have high 
concentrations of cell walls and also this type of species have greater leaf and root longevity (Poorter and 
Jong, 1999). 

1.1.2. Importance of Remote Sensing in monitoring SLA 

As it is mentioned in Section 1.1.1, monitoring SLA in large-scales is important to provide valuable 
information about plant growth, photosynthesis capacity, and other aspects of plant physiological 
processes (Ali, 2016; Pierce et al., 1994). However, SLA estimation is a challenging task at regional and 
global scales yet (Pierce et al. 1994). In addition, to monitor this plant functional trait at large- scales, 
traditional surveying methods are not efficient regard to temporal and financial perspectives (Duro et al., 
2007). Thus, an alternative way to monitor SLA is needed. 
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Remote sensing is a non-destructive and cost-efficient way to collect data about different biodiversity 
variables at large-scales compared to traditional manners (De Roeck et al., 2008; Song et al., 2013). In the 
past decades, satellites data such as Landsat TM, or SPOT have been frequently used to study vegetation 
covers and their characteristics. Nonetheless, recently, the use of the new generation satellites has been 
increasing to measure and estimate biophysical and biochemical parameters (Adam et al., 2010; Ali et al., 
2017a). Remote sensing is an appropriate alternative to traditional survey for tracking and monitoring 
biodiversity variables; since, biodiversity variables contain different kinds of spectral, spatial, and temporal 
information. 
 
The data of the newly launched satellites have spatially, spectrally, and temporally improved. By this new 
generation of satellite technologies, many biodiversity variables can be monitored, and biological issues 
can be solved. Among them, Sentinel-2 is one of the newly launched high spatial resolution satellite that is 
equipped with the multispectral instrument. Sentinel-2 provides data continuity and enhancement of 
Landsat and SPOT data (Wang et al., 2017). Although, Sentinel-2 data has been using to estimate the 
number of biophysical and biochemical parameters (Clevers et al., 2017; Korhonen et al., 2017), to our 
knowledge, the Sentinel-2 data still is not explored for SLA estimation. 
 
In addition, to the importance of RS data,  it is a crucial issue to find precise and robust retrieval methods 
for biophysical parameters (Verrelst et al., 2012). There are different kinds of methods for vegetation 
parameters retrieval that will be discussed in the next Section. 

1.1.3. Analytical approaches to estimate SLA by using RS data 

A model is an abstraction of the real world which means models, help us to realize how different systems 
around us are working (Rogers, 2012). There are different models that can be used to estimate plant 
variables from RS data. Among them, two different modelling approaches are mostly used; they are 
namely statistical and physical models (Skidmore, 2002).  
 
Statistical models widely used to make a statistical relationship between the measured vegetation parameter 
in situ, and the spectral reflectance derivatives at a specific wavelength or from a combination of 
wavelengths(e.g. Vegetation Indices) (Homolová et al., 2013b). Statistical models, based on their 
processing methods and logic could be categorized as deterministic and inductive models (Skidmore, 
2002); in addition, they can be divided into the two following categories: 1) Univariate models 
(Schowengerdt, 2012) (e.g. Vegetation Indices), 2) Multivariate models (Chang, 2000; Curran et al., 2001; 
Wold et al., 2001) (e.g. neural networks, simple multiple linear regression, partial least square) . 
 
In the first category, there is a one to one relationship which means the parameter of interest only can be 
modelled by one explanatory variable. The explanatory variable can be spectral reflectance of an individual 
band or an index calculated by spectral reflectance of different bands (e.g. NDVI, or EVI) of the satellite 
imageries (Lymburner et al., 2000). In the second category, it is a one to many relationships that means the 
vegetation parameter can be modelled by several independent variables (such as a combination of several 
bands). A number of biophysical parameters have been studied using multivariate models (Hansen and 
Schjoerring, 2003; W. Li et al., 2016), however, only limited studies exist on SLA estimation using these 
models (Ali et al., 2017a; Lymburner et al., 2000). 
 
Another modelling approach is physical models also known as Radiative Transfer Models (RTMs). They 
are used to derive a number of plant functional traits, although, to retrieve vegetation parameters, RTMs 
should be inverted (Goel and Strebel, 1983).The choice of the RTMs and the inversion strategy are 
important factors for successful retrieval of plant traits (Atzberger et al. 2013). Nevertheless, utilization 
RTMs are expensive and faced with an ill-posed problem (which result when different combinations of 
model parameters produce almost identical spectral reflectance (Quan et al., 2015)). There are many 
studies that have been conducted for estimating vegetation parameters using physical models (Ali et al., 
2016c; Darvishzadeh et al., 2011, 2008; Myneni, 1997). 
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1.2. Literature review 

Remote Sensing (RS) data are the most common data type that has been used for biodiversity studies. For 
instance, Sánchez-Azofeifa et al., (2009) used RS data to differentiate leaf properties (such as SLA) and 
spectral properties of liana and tree communities from a tropical dry forest and a tropical rainforest in 
Panam, Central America. According to Sánchez-Azofeifa et al., (2009)’s results, the leaf properties and 
spectral properties of both liana and tree communities were different in a tropical dry forest; nevertheless, 
in a tropical rainforest, the indicated properties are not different. In addition, among the leaf properties, 
SLA was significantly higher for liana leaves compared to tree leaves; in other words, tree communities 
conserve resources; nonetheless, lianas had higher resources and consumptions. In another study Asner et 
al., (2008) investigated on discriminataion between native and invasive species in Hawaiian forests; they 
used spectral data acquired from Airborne Visible and Infrared Imaging Spectrometer (AVIRIS), and then 
linked them to leaf properties (e.g. SLA, leaf nutrients). They showed that, using spectral and leaf 
properties together makes the possiblility to discrimantie between native, and invasive species in Hawaiian 
forest. Moreover, as it is described by Ali et al., (2016b), among different functional traits, SLA and leaf 
dry matter content are important leaf properties to measure biodiversity. 
 

According to several studies (Darvishzadeh, 2008a; Liang, 2004; Schowengerdt, 2012), there are different 

data models that have been using to analyse and to process RS data, which the most common used data 

models in RS subjects are univariate and multivariate models. 

1.2.1. Statistical approaches 

1.2.1.1. Univariate models 

Schowengerdt, (2012), defined univariate models as a single band image that can be used through 
mathematical models to apply for image processing. Univariate approaches based on Vegetation Indices 
(VIs) have been studied in several types of research to estimate vegetation parameters (Amiri et al., 2010; 
Du Plessis, 1999; Haboudane et al., 2004; Paruelo and Tomasel, 1997). For instance, Darvishzadeh et al., 
(2009) studied the comparison between different narrow-bands VIs to estimate LAI; furthermore, it is 
illustrated to estimate vegetation parameters, mostly VIs that are calculated from near-infrared and red 
spectral regions. The reason why these ranges of spectral reflectance are appropriate to estimate vegetation 
parameters is that they are highly corelated to chlorophyll and biomass abundance. However, there are 
only a few studies that have investigated  on the  SLA estimation using multispectral imageries through 
calculating VIs (Ali et al., 2017c; Lymburner et al., 2000). 
 
Lymburner et al., (2000) investigated the correlation of individual bands and different VIs with SLA using 
multispectral Landsat TM imageries in Ku-ring-gai Chase National Park on Lambert Peninsula, Australia 
and found that there is strong correlation between SLA and the following VIs: 1) Soil and Atmospheric 
Resistant Vegetation Index(SARVI), 2) Normalized Difference Vegetation Index(NDVI), 3)Ratio 
Vegetation Index (RVI).Moreover, Ali et al., (2017a) investigated on SLA estimation based on statistical 
and physical approaches using Landsat 8 in the mixed mountain forest of Bavarian National Park, 
Germany and demonstrated that there is a strong linear relationship between SLA and Enhanced 
Vegetation Index(EVI).  

1.2.1.2. Multivariate models 

In contrast, as Schowengerdt, (2012) defined, multivariate models, can use a multi-band image or a 
combination of band images to process images. In several studies, multivariate approaches have been used 
to estimate a number of vegetation parameters such as water content and LAI from RS data 
(Darvishzadeh, 2008; Fang & Liang, 2003). The multivariate approaches such as Artificial Neural Network 
(ANN), and Partial Least Square Regression (PLSR), are used to reduce the multicollinearity, which is a 
common problem when a high number of explanatory variables exist (Mirzaie et al., 2014). Nevertheless, 
these algorithms have been rarely used to estimate SLA. Therefore, retrieval of SLA using these 
approaches needs further investigations. 
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The idea of ANN algorithm is to make a model that to process data approximately like the human brain 

but with less complexity (Kohonen, 1988). The reason of applying ANN is that the human brain is able to 

process a huge amount of data obtained from different sources; in human brain neural-elements known as 

neurons will receive inputs, and after processing, neurons will produce an output (Atkinson and Tatnall, 

1997). 

 

ANN fundamentals has been investigated by Mcculloch and Pitts, (1990), which described the complete 

structure of a neural network and its elements. Moreover, later on, this technique has been used for 

different applications such as pattern recognition (Messier, 1991), decision making (Messier, 1991), robot 

control (Husbands et al., 1998) as well. As it is mentioned above, this technique can be applied to process 

vast quantities of dataset; therefore, researchers investigated on the efficiency of utilization ANN for 

remotely sense dataset (Benediktsson et al., 1993; Chen et al., 1997; Serpico et al., 1996; Tiwari et al., 

1999).  

  

ANN is a non-parametric algorithm that has been used in many different environmental applications such 

as estimation of soil properties, and estimation of vegetation biophysical parameters (Bacour et al., 2006; 

Chang, 2000; Fang and Liang, 2003). The main parts of each ANN model are inputs, hidden layers, 

output(s); that generally depend on the objectives of studies these parameters can be different. In 

biodiversity studies which focus on estimation of biophysical parameters with ANN models through RS 

data, mostly ANN models include a number of inputs used from RS data and one output which is the 

interested biophysical parameter in the study (Atzberger, 2004; P. Liu et al., 2017; Paruelo and Tomasel, 

1997; Ushada and Murase, 2006).  

 

In hidden layers, there are some connected neurons and activation functions (Mirzaie et al., 2014). There 

are different ANN algorithms. One of the ANN algorithm is multi-layer perceptron which can model 

non-linear functions and can be accurately generalized to an independent dataset (Gardner and Dorling, 

1998). Moreover, multi-layer perceptron makes no initial priority between inputs based on the data 

distribution (Hornik et al., 1989). The structure of multi-layer perceptron as explained earlier include 

inputs, hidden layers, and outputs; however, using suitable weights and transfer functions between 

neurons helps the ANN model to accurately estimate the output (Gardner and Dorling, 1998). Therefore, 

training the multi-layer perceptron network is an essence to modify the weights and transfer functions. 

Among the different training algorithms, back-propagation algorithm is most popular training algorithm to 

train the multi-layer perceptron (Rumelhart et al., 1985); the back-propagation algorithm consists of two 

different processes forward and backward propagation. In backward propagation process, the training 

algorithm modifies the weights between neurons from output to input; this process results in decreasing 

error of the model. On the other hand, in forward propagation process, the modifying process of neuron’s 

weight start from the input to output layer (Atkinson and Tatnall, 1997).  

 

Therefore, the training algorithm to train the network play an important role as well as selecting the 

number of neurons that are important in the performance of the network (Riedmiller and Braun, 1993). 

Although the backpropagation algorithm is easy to implement, this algorithm converges slowly; even it is 

also possible that the backpropagation algorithm does not converge (Jiao et al., 2001). As it is defined in 

most artificial neural network studies, convergence means “ a set of weights along the supervised training 

of an ANN model which used to find (converge on) needed values for producing trained response” 

(Glossary of Neural Network Terms, 2018). 
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Several training algorithms have been proposed to cope the convergence problem in backpropagation 

algorithm. For instance, one of the proposed algorithm by Riedmiller and Braun, (1993), is resilience 

backpropagation that established to make the process faster and more efficient than the traditional 

backpropagation. According to Demuth et al., (2017), another training algorithm is Levenberg-Marquardt 

(trainLM) that is one of the fastest training function in general; in addition, the efficiency of this algorithm 

is for smaller networks because trainLM does not need a huge memory and computation time. 

Furthermore, trainLM has better performance in function fitting (non-linear regression) problems. One 

more training algorithm that has been used mostly in large networks is Scaled Conjugate Gradient 

(trainSCG), one of the advantages of trainSCG is that this algorithm does not need a high amount of 

memory. 

 

The Partial Least Square Regression (PLSR) was developed by Wold in the late 1960s to use it for 

economical purposes (Wold, 1975) but utilizing PLSR method in ecological applications started in the late 

1990s. However, using PLSR method in ecological applications based on the RS data have been increased 

in the last years; for instance, this method has been used to predict biophysical and biochemical 

parameters (Hansen and Schjoerring, 2003; Mirzaie et al., 2014; Siegmann and Jarmer, 2015; Wolter et al., 

2009) and crop yield (Foster et al., 2017; Ye et al., 2008).  

 

PLSR is a bilinear regression technique to decrease a large number of predictor variables to a few numbers 

of non-correlated predictor variables, then using the non-correlated variables to predict the response 

variable (Hansen and Schjoerring, 2003). As Carrascal et al., (2009) reported, in PLSR model, the 

correlation between response variable and different combination of predictor variables are analysed  in 

order to find the non-collinear predictor variables. The relation between predictor variables and the 

response variable are made by latent factors which maximize the explained variance of predictor variables 

in the response variable. PLSR model uses the relationship between predictor variables and the response 

variable to decrease the number of factors to a lower number efficient factors. These efficient factors help 

the model to make an accurate relationship between the response variable and predictor variables (Geladi 

and Kowalski, 1986; Hubert and Vanden Branden, 2003; Tobias, 2003).  

 

The main reasons for using PLSR models are as follow (Stone, 1974; Wolter et al., 2009): 1) When there is 

a strong correlation between predictor variables (Multicollinearity problem), 2) When the number of 

predictor variables are higher or the same as the number of collected data (Overfitting) which also makes 

difficulties to calculate coefficient of determination of the PLSR model.  

1.3. Research problems 

As was highlighted in Section 1.1.3, although SLA has an important role in explaining photosynthesis 
capacity, nitrogen content, and generally in biodiversity, there are only limited studies that have been 
performed to estimate SLA using remotely sensed data. While these studies have been mostly conducted 
in forest ecosystems (Ali et al., 2017c, 2016c; Lymburner et al., 2000). Furthermore, the most studies (Ali 
et al., 2016d; Asner et al., 2009; Ball et al., 2015a; Klem et al., 2012; Van Wittenberghe et al., 2014) 
estimated SLA through hyperspectral data which are expensive and are not always available. 
 
Therefore, an appropriate alternative will be using multispectral RS data to estimate SLA. As was indicated 
in Section 1.1.2, the new generation of satellites carry on the state-of-the-art technologies to capture data, 
that make a great opportunity to monitor biodiversity variables repeatedly with high spatial and temporal 
resolutions. Among the recently launched satellites, Sentinel-2 with the systematic acquisition of high-
resolution multispectral data has rarely been used for SLA estimation.  
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In addition, as was mentioned in Section 1.2, multivariate methods ANN, and PLSR; although have been 
studied to estimate and retrieve a number of vegetation parameters (Banskota, 2006; Fang et al., 2014; 
Grace, 2017; Verrelst et al., 2012), they have been rarely examined for SLA retrieval in a saltmarsh/ 
wetland ecosystem. Therefore, in this study by implementing different statistical approaches using 
Sentinel-2 data; robust and accurate empirical models to estimate SLA in saltmarsh will be identified. 

1.4. Research Objectives 

The main aim of this study is to model SLA by different statistical models in a saltmarsh/wetland ecosystem area using 
Sentinel-2 data.  
 
The specific objectives of this study are as follow: 
  

• To model SLA using Vegetation Indices (VIs) calculated from Sentinel-2 data.  
 

• To model SLA using Artificial Neural Networks (ANN) and Partial Least Square Regression 
(PLSR) from Sentinel-2 data. 

1.5. Research questions 

Following research questions will be answered in this study. 
 

1) Among the studied VIs, which index will more accurately (Highest R2 and lowest RMSE) 
model SLA in Schiermonnikoog using Sentinel-2 data?  
 

2) Among the studied multivariate models (ANN, PLSR), which model will accurately model 
SLA in Schiermonnikoog using Sentinel-2 data? 

1.6. Research hypothesis 

The research hypotheses are as indicated below: 
 

1) Among the studied VIs, the Ratio Vegetation Index (RVI), will model the SLA more 
accurately (In terms of R2 and RMSE).   
 

2) ANN will model SLA more accurately (Higher R2 and lower RMSE) compared to PLSR. 

1.7. Expected outputs 

Following the research objectives, questions and hypotheses, we anticipate obtaining the following 
outputs: 

 
1) Several vegetation indices, including RVI will be examined to model SLA, in 

Schiermonnikoog, using ground truth measurements and Sentinel-2 data. 
 

2) Multivariate models, including ANN, and PLSR calibrated for estimating SLA using ground 
truth measurements and Sentinel-2 data in Schiermonnikoog. 

 

 

 

 



Modeling Specific Leaf Area (SLA) using Sentinel-2 data in saltmarsh area, a case study of Schiermonnikoog island 

 

15 

2. STUDY AREA AND DATA 

2.1. Study area 

Schiermonnikoog is one of Dutch barrier islands which is located in the northern part of the Netherlands 

(Province of Friesland) with 53° 29' 21.7464'' N, 6° 13' 51.2796'' Geographical coordinates (Figure 2.1). 

The area of the island is about 40 𝑘𝑚2  and the island contains one village with approximately 1000 
inhabitants (Mulatu, 2006). A yearly rainfall and temperature are 10.2◦C ± 0.72◦C (mean ± SD) and 
824mm ± 149.1mm respectively (“KNMI,” 2018; Schrama, 2012). The greater part of the island is 
allocated to  natural landscapes including beach which is located in the northern part of the island, dune 
which is extended from west to east of the island, and saltmarsh which is located in the south and 
southeastern part of the island (Schmidt et al., 2004; Vrieling et al., 2017). Moreover, the island met the 
wetlands criteria and was  designated as a Ramsar Site in 2014 (the Secretariat of the Ramsar Convention, 
2015). Therefore, the island is also considered as a valuable coastal wetland site for essential ecological 
services which are needed to maintain and improve the health of the environment (Mulatu, 2006).  
 
The vegetation cover of the island contains forest, shrubs, and grass. The dune area is covered by the 
forest which consists of pinus, betula, and shrubs. The saltmarsh area is covered by herbs, sedges, rushes, 
and grasses (Schmidt and Skidmore, 2003). The marsh comprises 15 dominant species such as Spartina, 
Artmesia maritime, Festuca rubra. The variation of the saltmarsh’s vegetation is caused by different factors 
such as, tidal regime, or climate that are directly and indirectly influenced by the saltmarsh’s vegetation 

distribution (Schmidt et al., 2004). Figure 2.1 presents the vegetation types within Schiermonnikoog 
island. 
 
 

 
Figure 2.1. The map of the study area in Schiermonnikoog island, vegetation types, and visited sample plots 
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2.2. Data 

2.2.1. Field data 

A field campaign for collecting field data was conducted between 26th September and 5th October 2017. 
The test site stratified to 6 strata according to the existing vegetation types in the saltmarsh area of 
Schiermonnikoog island, which include Barckish_Marsh, Pre_pioneer_zone marsh, Pioneer_zone_marsh, 
Low_ marsh, Middle_high_marsh, High_marsh. Before visiting the test site, 100 plots randomly have 
been generated based on the vegetation cover map. To generate random plots, in ArcGIS 10.5.1, create 
random point tool from Arc Toolbox has been used. Nevertheless, because of limited time, budget, and 
inaccessibility, in 50 plots measurements were conducted. 
 
In each plot of 20 by 20 meters, the coordinate of the centre were recorded using a GPS (Garmin eTrex 
30X, ±2 m accuracy). To collect the representative samples of the plot, 5 subplots have been visited to 
collect leaf samples. To identify subplots, the strategy was to select the first subplot on the centre, the 
second in the north, the third in the south, the fourth one in the east, and the last one in the west 
directions. 
 
Among the 50 plots, 24 plots were in the Middle_high_marsh area, 9 plots were in Barckish_Marsh area, 9 
plots in the High_marsh area, and 8 plots in the Low_marsh area. Unfortunately, due to the weather and 
the site’s condition, no data for Pre_pionner_zone marsh and Pioneer_zone_marsh could be collected. 
 
In each sample plot, canopy coverage (%) by visual observation, and canopy height (cm) were measured. 
In addition, in each sample plot, for dominant species, leaf areas and their fresh weight were measured by 
digital balance. To measure the area of the leaves, the collected leaf samples were spread on a white 
surface, and beside them, a ruler was placed, then a picture in nadir direction has been taken. 
Consequently, the captured images were imported to ImageJ software to measure leaf sample areas. 
 
After measuring leaf areas, the collected samples have been kept in a fridge in plastic bags. In departure 
time, to avoid of rotting samples, the water drops on their surface have been cleaned, and then the cleaned 
samples were placed in paper sample bags to transport to the laboratory. In the laboratory, the samples 
have been dried for 72 hours in the oven with 60◦C, and after drying the samples, their dry mass has been 
measured through digital balance (Cornelissen et al., 2003). Therefore, by measuring these plant 

parameters, for further analysis, we were able to calculate the SLA values for each plot as 
𝑳𝒆𝒂𝒇 𝒂𝒓𝒆𝒂 (𝐜𝐦𝟐)

𝑳𝒆𝒂𝒇 𝒅𝒓𝒚 𝒎𝒂𝒔𝒔 (𝒈)
  

(Vile et al., 2005). 

2.2.2. Satellite data 

The Sentinel-2 mission includes two identical satellite, Sentinel-2A and Sentinel-2B (Drusch et al., 2012). 
Sentinel-2A launched on 23rd  June 2015 (Fernández-manso et al., 2016) and Sentinel-2B launched on 7th 
March 2017 (Monitoring, 2017). The Sentinel-2 mission main aims are to provide high-resolution 
multispectral imageries in a global scale with a high revisit repetition, and to provide data to obtain further 
products, for instance, estimation of biochemical and biophysical variables (Drusch et al., 2012). Sentinel-2 
platforms include MultiSpectral Instruments (MSI) with 13 spectral bands, Sentinel-2 satellites cover 
spectrum range from visible and the near infrared to the shortwave infrared (van der Werff and van der 
Meer, 2016). In Table 2.1, some Sentinel-2 characterization of its MultiSpectral Instrument (MSI) is 
summarized. 
In this study, nine high-resolution multispectral images of the Sentinel-2B satellite has been acquired 
which covers the whole area of Schiermonnikoog island, and it is captured on 15th September 2017. The 
images have been downloaded from the Copernicus website (https://scihub.copernicus.eu/). Then, the 
nine images were stacked to one image by using layer staking function in ENVI software. As it is 
mentioned in Section 2.2.1, the field campaign was conducted on 26th September 2017 till 5th October 
2017; however, due to cloud coverage the most suitable (cloud-free) image belonged to 15th September 
2017. 
 
 

https://scihub.copernicus.eu/


Modeling Specific Leaf Area (SLA) using Sentinel-2 data in saltmarsh area, a case study of Schiermonnikoog island 

 

17 

 
 
 

Table 2.1. Sentinel-2 spectral bands and their characteristics 
(https://www.itc.nl/Pub/sensordb/getsat.aspx?name=Sentinel-2B) 

Band Spectral resolution (nm) Bandwidth (nm) Spatial resolution (m) 

B1 (VIS) 443 20 60 

B2 (VIS) 490 65 10 

B3 (VIS) 560 35 10 

B4 (VIS) 665 30 10 

B5 (VIS) 705 15 20 

B6 (VIS) 740 15 20 

B7 (VIS) 775 20 20 

B8 (NIR) 842 115 10 

B8A (NIR) 865 20 20 

B9 (NIR) 940 20 60 

B10 (SWIR) 1375 20 60 

B11 (SWIR) 1610 90 20 

B12 (SWIR) 2190 180 20 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://www.itc.nl/Pub/sensordb/getsat.aspx?name=Sentinel-2B
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3. METHODS 

In this Chapter the processing steps on the downloaded Sentinel-2 image have been described and the 

settings for each statistical approach elaborated. At the end of this chapter, the calibration and validation 

set that have been used to evaluate statistical approaches have been explained. 

3.1. The overall workflow of the methodology 

In the following flowchart, the applied steps to achieve the research objectives of the present study have 

been shown (Figure 3.1). 

 

 
Figure 3.1. The general workflow of this study. 
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3.2. Image pre-processing 

The downloaded Sentinel-2B image have been pre-processed to calculate reflectance values of objects in 

the ground; for this purpose, the downloaded image should be atmospherically and radiometrically 

corrected. These processes are not only for obtaining reflectance values but also to eliminate the effect of 

cloud and atmospheric components that influence on the features’ spectra (Bowker et al., 1985). The 

Sentinel-2 imageries are radiometrically corrected; therefore, only the atmospheric correction was needed 

in this study. 

 

The acquired Sentinel-2B image has been atmospherically corrected by using Sen2cor 2.4.0 stand-alone 

software that developed to implement atmospheric, terrain, and cirrus correction of Top-Of-Atmosphere 

Level 1C input data (The European Space Agency (ESA), 2017). After that, the outputs of the process 

were three files of images which consist of spectral reflectance of Sentinel-2 bands with 10, 20, 60 meters 

resolutions. For this study, only bands with 20 meters resolution have been used. In several studies, it has 

been discussed that Red-edge and Near Infrared (NIR) regions provide appropriate information to 

estimate plant biophysical parameters (Asner, 1998; Darvishzadeh, 2008b; Filella and Penuelas, 1994; 

Foley et al., 1998; Horler et al., 1983; Lu et al., 2018). Therefore, Sentinel-2 images with 20 meters 

resolution which generally lay on Red-edge and NIR regions have been selected. 

 

Subsequently, the pre-processed image has been converted from .jp2 format to .tiff format and their 

coordinate systems attached to .tiff files through ArcGIS 10.5.1. After that, the shapefile of the 

Schiermonnikoog boundary have been used to extract the same extent of the boundary of the raster file. 

Regarding the main objective which is modelling SLA in saltmarsh/ wetland ecosystem, the land-cover 

shapefile has been used to extract saltmarsh areas from other land-cover types (e.g. agricultural areas, dry 

dunes, humid dunes, mosaic (dry dunes dominant)). 

3.3. Statistical approaches to estimate SLA 

3.3.1. Vegetation Indices (VIs) 

Vegetation Indices (VIs) have been implemented for different kind of applications (Ball et al., 2015b; 

Baret and Guyot, 1991; Darvishzadeh et al., 2009; Vrieling et al., 2017). In this study, several VIs have 

been calculated based on spectral bands of the downloaded Sentinel-2B image. The best VIs that 

accurately modelled Specific Leaf Area (SLA), and Leaf Dry Matter Content (LDMC) have been chosen 

according to previous studies (Ali et al., 2017a; Dorigo et al., 2009; Lymburner et al., 2000). The reason of 

choosing the VIs that accurately model LDMC is due to the strong correlation between SLA and LDMC 

in previous studies (Lobell et al., 2001; Nagler et al., 2003; Vile et al., 2005; Peter J Wilson et al., 1999).  

 

However, some of the studied VIs have been conducted on hyperspectral imageries (Ali et al., 2016d; 

Dorigo et al., 2009). Therefore, in this study, those wavelengths of the spectrum were adjusted to Sentinel-

2’s wavelength (e.g. NMDI, CAI, SWIRVI). The pre-processed Sentinel-2 image has been utilized to 

compute VIs. After that, the correlation between measured SLA in the field and generated VIs have been 

evaluated. In this analysis, the Pearson method used to calculate the correlation coefficient (R). In this 

study, 9 spectral bands of Sentinel-2 which located in the visible and Near-infrared (NIR) regions as well 

as 11 VIs were utilized to estimate SLA. The selected vegetation indices are shown in Table 3.1.  

 

The relation between spectral bands of Sentinel-2, and selected VIs with SLA have been examined and 

two statistical methods (univariate and multivariate) have been applied to estimate SLA in this study. 
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Based on the regression analysis in previous studies, the relationship between RS data (VIs and spectral 

bands) and measured SLA have been mostly modelled by linear and exponential regression methods (Ali 

et al., 2017b; Asner et al., 2011; Lymburner et al., 2000).  

 

In this study, linear, quadratic, logarithmic, and exponential regression methods performed to estimate 

SLA via studied VIs. A linear regression model makes linear relationship between the dependent variable 

and the independent variable. While, a quadratic regression model makes 2nd degree polynomial (non-

linear) relationship between the independent variable and the dependent variable. Logarithmic and 

exponential regression models make power predictive relationship between the independent variable and 

the dependent variable. Although VIs have been using to estimate SLA, multivariate models to our 

knowledge have not been utilized to estimate SLA. In this study, two most common types of multivariate 

models of RS applications (Corbane et al., 2013; Sunar Erbek et al., 2004; Yang et al., 2018; Yi et al., 2014) 

were assessed to model SLA. 

3.3.2. Artificial Neural Network (ANN) 

Among the different types of the neural networks, one of the most commonly used neural network is the 

multi-layer perceptron in RS applications (Atkinson and Tatnall, 1997). As indicated in Section 0, an ANN 

architecture usually includes of three layers (Inputs, hidden layers, output) (Hornik et al., 1989), the 

structure of an ANN is shown in Figure 3.2. The inputs in this study, included of individual spectral bands 

and studied VIs which obtained from the Sentinel-2 image, hidden layers that help the network to learn 

difficult tasks by continuously retrieving more meaningful pattern from inputs, and finally the output 

which is produced as response of the network (Haykin, 1999); moreover, to train the networks two 

different algorithm have been used (Levenberg-Marquardt, and Scaled Conjugate Gradient). 

 

One of the problems in Multi-layer perceptron can be “Overfitting”. “Overfitting” means the ANN 

model, based on training set obtained small error; while, applying the same model on test set, acquired a 

large error (Piotrowski and Napiorkowski, 2013). Therefore, to overcome the overfitting problem 

different techniques can be applied (e.g. model selection, early stopping, weight decay) which early 

stopping have been applied in this study (Lawrence et al., 1997). In early stopping technique, the training 

process will be stopped as soon as performance on test set starts to have higher error (Nowlan and 

Hinton, 1992). The calibrating and validating of ANN models have been repeated for 1000 times; and 

then, the average of repetitions has been taken. These iterations have been applied to reduce the effect of 

random initial optimization routine (Mirzaie et al., 2014).   

 

In this study two sets of inputs as follow have been used to make neural networks: 1) The all individual 

spectral bands of the Sentinel-2 image. 2) The all studied VIs that selected to estimate SLA in this study. 

In the beginning, all values of inputs have been normalized, then they entered into models for further 

process. 

 

Neural networks often have one or more hidden layers, and tan-sigmoid used as the transfer function for 

hidden layers; moreover, for the output layer, linear transfer function which is most used transfer function 

for function fitting (or non-linear regression) problems (Demuth et al., 2017). The linear transfer function 

helps networks to learn the non-linear relationships between input and output variables (“Multilayer 

Neural Network Architecture - MATLAB,” 2018). Figure 3.2 shows a basic schema of an artificial neural 

network. 
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Figure 3.2. The schema of a basic artificial neural network 
(http://andrewjamesturner.co.uk/ArtificialNeuralNetworks.php) 

 

3.3.3. Partial Least Squares Regression (PLSR)  

PLSR model is one of the popular multivariate models that converts the inputs (spectral information) to 

components (Helland, 1988). The main reason of the popularity of PLSR model is that this method can 

address and reduce the multicollinearity problem among independent variables (Abdi, 2003). The basics 

about PLSR fundamentals can be found in Williams and Norris, (1987). PLSR model have been used for 

RS studies (Carrascal et al., 2009; Cho et al., 2007; Kooistra et al., 2004); moreover, PLSR have been used 

to estimate biochemical and biophysical parameters through RS data (Asner and Martin, 2008; 

Darvishzadeh, 2008b; Li et al., 2014; Mirzaie et al., 2014; Ullah et al., 2014). In this study, PLSR model 

have been developed for two different sets of explanatory variables: 1) The all individual spectral bands of 

Sentinel-2 image, and 2) The chosen VIs in this study to estimate SLA; and then, a different number of 

components were validated to find the optimal number of components. 

 

The calculated RMSE for each PLSR models have been evaluated to find the optimal number of 

components, the criterion to select the optimal number for components is that by adding an extra 

component to a PLSR model, the RMSE decreases by >2% (Geladi and Kowalski, 1986); in addition, 

visual inspection of the validation plot between the measured SLA and the predicted SLA has been used. 

For this aim, SelectNcomp function in R software used to find the optimal number of components for a 

PLSR model. Then, to evaluate PLSR models the same calibration and validation sets have been used. 

 

 

 

 

 

 

http://andrewjamesturner.co.uk/ArtificialNeuralNetworks.php
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Table 3.1. Table of studied vegetation indices in this study 

Vegetation 

indices 

Description Formula Reference 

NMDI 

A Normalized 

Multi-Band 

Drought Index 

𝑁𝐼𝑅 −  (𝑆𝑊𝐼𝑅1610𝑛𝑚 − 𝑆𝑊𝐼𝑅2190𝑛𝑚)

𝑁𝐼𝑅 +  (𝑆𝑊𝐼𝑅1610𝑛𝑚 − 𝑆𝑊𝐼𝑅2190𝑛𝑚)
 

(Wang and Qu, 

2007) 

SLAVI 
Specific Leaf Area 

Vegetation Index 

𝑁𝐼𝑅

(𝑅𝑒𝑑 + 𝑆𝑊𝐼𝑅1610𝑛𝑚)
 

(Lymburner et al., 

2000) 

VARI 

Visible 

Atmospherically 

Resistant Index 

(𝐺𝑟𝑒𝑒𝑛 − 𝑅𝑒𝑑)

(𝐺𝑟𝑒𝑒𝑛 + 𝑅𝑒𝑑 − 𝐵𝑙𝑢𝑒)
 

(Gitelson et al., 

2002) 

SAVI 
Soil-Adjusted 

Vegetation Index 
[

(𝑁𝐼𝑅 − 𝑅𝑒𝑑)

(𝑁𝐼𝑅 + 𝑅𝑒𝑑 + 𝐿)
](1 + 𝐿 ∗) (Huete, 1988) 

RVI 
Ratio Vegetation 

Index 

𝑁𝐼𝑅

𝑅𝑒𝑑
 

(Jordan and Society, 

1969) 

NDVI 

Normalized 

Difference 

Vegetation Index 

(𝑁𝐼𝑅 − 𝑅𝑒𝑑)

(𝑁𝐼𝑅 + 𝑅𝑒𝑑)
 

(Rouse, J. W. et al., 

1974) 

GNDVI 

Green Normalized 

Difference 

Vegetation Index 

(𝑁𝐼𝑅 − 𝐺𝑟𝑒𝑒𝑛)

(𝑁𝐼𝑅 + 𝐺𝑟𝑒𝑒𝑛)
 

(Gitelson et al., 

1996) 

SARVI2 

Soil and 

Atmosphere 

Resistant 

Vegetation Index 

2.5 ∗ (𝑁𝐼𝑅 − 𝑅𝑒𝑑)

(1 + 𝑁𝐼𝑅 + (6 ∗ 𝑅𝑒𝑑) − (7.5 ∗ 𝐵𝑙𝑢𝑒))
 (Huete et al., 1997) 

NDMI 

Normalized 

Difference Moisture 

Index 

(𝑁𝐼𝑅 − 𝑆𝑊𝐼𝑅1610𝑛𝑚)

(𝑁𝐼𝑅 + 𝑆𝑊𝐼𝑅1610𝑛𝑚)
 (Ali et al., 2017a) 

CAI 
Cellulose 

Absorption Index 

(0.5*(𝑆𝑊𝐼𝑅1610𝑛𝑚 + 𝑆𝑊𝐼𝑅2190𝑛𝑚)) −

𝑆𝑊𝐼𝑅1610𝑛𝑚 
(Nagler et al., 2003) 

SWIRVI 

Shortwave Infrared 

Green Vegetation 

Index 

37.27*(𝑆𝑊𝐼𝑅2190𝑛𝑚 − 𝑆𝑊𝐼𝑅1610𝑛𝑚) +

26.27 ∗ ((𝑆𝑊𝐼𝑅2190𝑛𝑚 − 𝑆𝑊𝐼𝑅1610𝑛𝑚) +

0.57 

(Lobell et al., 2001) 

∗ Which L can vary between 0-1 and its value depends on vegetation density 
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3.4. Calibration and validation 

After performing different statistical methods (univariate and multivariate) to model SLA, evaluating the 

model performances were needed. For this aim, the entire collected dataset were splited into two sets 

which were calibration and validation sets. Therefore, 60% of the dataset randomly assigned to calibration 

set (30 plots) and 40% of the dataset randomly allocated to validation set (20 plots).  

 

Subsequently, 60% of the dataset used to calibrate the all performed models; after that, the fitted models 

have been evaluated through 40% of the dataset. For each model, R2 and RMSE have been. The R2 and 

RMSE for different models have been investigated, and their results were reported in Section 4.4.  

 

The following formulas have been used to calculate R2 and RMSE: 

1) R2 = 1 − 
∑(𝑦𝑖−𝑦𝑖

′)2

∑(𝑦𝑖−𝑦̅)2
 

 

2) 𝑅𝑀𝑆𝐸 = (√∑(𝑦𝑖−𝑦𝑖
′)

2

𝑛
𝑦̅⁄ )  

Which in these formulas, 𝑦𝑖  and 𝑦𝑖
′ are the actual and predicted values of SLA for sample with number i; 

in addition, 𝑛 is the number of samples in the measured dataset. Moreover, 𝑦̅ is the average of measured 

dataset.  
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4. RESULTS 

In this chapter, the results of the performed analysis are presented. These include the statistics of the 

measured plant parameters and a summary of their respective correlations. Further, the performance of 

different statistical models (VIs, ANN, PLSR) to model SLA have been presented and examined. 

4.1. The descriptive statistics of measured plant parameters 

Summary statistics of the measured plant parameters (Specific Leaf Area (SLA), Leaf Area (LA), and Leaf 

Dry Matter Content (LDMC), canopy height, canopy coverage) in Schiermonnikoog island are presented 

in Table 4.1. As it is shown in Table 4.1, the range of SLA values varied between 69.78 (cm2/g) to 340.56 

(cm2/g) with a mean of 131.82 (cm2/g). The maximum and the minimum LA value recorded in the field 

were 172.11 (cm2), and 60.71 (cm2) respectively. Further, the LDMC value ranged between 0.34 (g) and 

1.28 (g). As shown in Table 4.1, the maximum recorded canopy height was 100 (cm). According to the 

results demonstrated in Table 4.1, canopy height (CV=0.37) had the highest variability compared to the 

other measured plant parameters. 

 

 

Table 4.1. The descriptive statistics of measured variables in Schiermonnikoog island (n=50) 

Parameters 
Canopy height 

(cm) 

Canopy coverage 

(%) 

SLA 

(cm2/g) 

Leaf Area 

(LA) (cm2) 

Leaf Dry Matter 

Content (LDMC) 

(g) 

Mean 52.24 67.8 131.82 116.18 0.94 

Maximum 100 90 340.56 172.11 1.28 

Minimum 2.00 30.00 69.78 60.71 0.34 

Standard 

Deviation 
19.44 13.29 42.16 23.23 0.20 

Range 98 60 270.78 111.4 0.94 

Coefficient of 

Variation 

(CV) 

0.37 0.20 0.32 0.20 0.22 

4.2. The correlation between measured plant parameters 

The Pearson’s correlation coefficients between the measured plant parameters (SLA, LA, LDMC, canopy 

coverage, canopy height) have been presented in Table 4.2. As indicated in Table 4.2, there is a weak 

correlation between the measured SLA and the measured LA (r = 0.17). In contrast, there is a strong 

negative correlation between the measured SLA and the measured LDMC (r = -0.73). The correlation 

between the measured LA and LDMC values was r = 0.37. The correlations of canopy height with LDMC 

and LA were found to be 0.45 and 0.65 respectively. Further, the correlations of canopy coverage with 

LDMC and LA were found to be 0.21 and 0.13 respectively. Moreover, the correlation between SLA and 
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canopy coverage was found to be (r = 0.66); lastly, SLA had a weak correlation with canopy height (r = 

0.19). 

 

Table 4.2. The correlation between measured variables in Schiermonnikoog island (n=50) 

* P ≤ 0.05 

4.3. The correlation between the measured SLA, spectral bands, and studied VIs 

 The correlations between Sentinel-2 reflectance data (Individual bands and studied Vegetation Indices 

(VIs)) and the measured SLA were investigated using Pearson’s correlation coefficient (r).  The reason for 

performing this analysis was to identify the most relevant spectral band/ index for estimating SLA.  

 

As it is mentioned  in Section 3.3.1, the VIs were chosen based on their performances in SLA and LDMC  

estimation in previous studies (e.g. Ali et al (2017); Lobell et al., (2001); Lymburner et al., (2000); Wang 

and Qu, (2007)). The calculated Pearson’s correlations coefficient (r) between the measured SLA and the 

Sentinel-2 spectral bands are presented in Figure 4.1. As it is shown in Figure 4.1, the strongest correlation 

was found between the measured SLA and bands 8A and 6 of the Sentinel-2 image (r = 0.35, r = 0.35 

respectively). The obtained correlations between the measured SLA and the spectral bands of Sentinel-2 

shows that SLA is sensitive to Near InfraRed (NIR) and Red-edge region of the spectrum. In addition, as 

can be seen in Figure 4.2, Among the studied VIs strongest correlation was found between the Ratio 

Vegetation Index and the measured SLA (r = 0.45). 

 

 

 

 

Measured plant parameters 
SLA 

(cm2/g) 

LA 

(cm2) 

LDMC 

(g) 

Canopy height 

(cm) 

Canopy coverage 

(%) 

SLA 1     

LA 0.17 1   

LDMC -0.73* 0.37 1   

Canopy height 0.19 0.65* 0.45 1  

Canopy coverage 0.66* 0.13 0.21 0.11 1 
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Figure 4.1. The Pearson’s correlation coefficient (r) between measured SLA and individual bands of Sentinel-2B 
image of 15th September 2017 in Schiermonnikoog island (n=50) 

 

 

 
 

 
Figure 4.2. The Pearson’s correlation coefficient (r) between measured SLA and studied VIs of Sentinel-2B image of 
15th September 2017 in Schiermonnikoog island (n=50) 
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4.4. The results of statistical approaches to estimate SLA 

4.4.1. The result of VIs 

Based on the results obtained from the calculated Pearson’s correlation coefficient (r) between the 

measured SLA and the spectral reflectance of Sentinel-2; RVI (with the strongest correlation with the 

measured SLA) was used to estimate SLA by using linear, quadratic, logarithmic, and exponential 

regression models. As mentioned in Section 3.4, 60% of the field dataset (30 samples) was used to 

calibrate the models, and 40% of the field dataset (20 samples) was used as an independent dataset to 

validate the same. Further, it bears emphasis that the same calibration and validation dataset were used for 

all regression models. 

 

The results of SLA estimation using RVI have been shown in Table 4.3. As can be observed in Table 4.3, 

using the validation dataset; the simple linear regression acquired the highest R2 and the lowest RMSE 

between the measured and predicted SLA (0.46 and 0.64 respectively), while the calibration dataset also 

returned the high R2 and the low RMSE of 0.61 and 0.51 respectively. The relationship between the 

measured and the predicted SLA using RVI through simple linear regression regard to validation set was 

shown in Figure 4.3. In Figure 4.3, the solid line presents the one to one relationship between the 

predicted SLA and the measured SLA. 

 

 

 

 

 

 

Table 4.3. The acquired R2 and RMSE between measured and predicted SLA using different types of regression 
models for calibration and validation set 

Bands/VIs 

Type of the 

regression 

model 

Calibration (n=30) Validation (n=20) 

R2 RMSE R2 RMSE 

RVI 

Linear 0.61 0.51 0.46 0.64 

Quadratic 0.64 0.58 0.40 0.65 

Exponential 0.71 0.56 0.38 0.67 

Logarithmic 0.57 0.55 0.42 0.66 
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Figure 4.3.The relationship between measured and predicted SLA using RVI index and linear regression 
model. The SLA values are based on the validation dataset 

 

4.4.2. The result of ANN 

As mentioned in Section 0, in this study the following two methods, Levenberg-Marquardt (LM) and 

Scaled Conjugate Gradient (SCG) were utilized to train the neural networks (Demuth et al., 2017). As 

inputs to neural networks, two sets of RS data were used. First set was all individual bands of Sentinel-2, 

and the second set was all studied VIs. Several studies have mentioned that using a higher number of 

hidden layers increases the ability of ANN models to solve complex problems (Atkinson and Tatnall, 

1997; Skidmore et al., 1997); nonetheless, there is no unique rule to identify the optimal number of hidden 

layers (Fortuna et al., 2001). Therefore, a different number of hidden layers have been tested. The optimal 

number of hidden layers acquired by testing neural networks of varying depths have been shown in Table 

4.4 (regarding their inputs and training methods). 

 

As illustrated in Table 4.4, the highest accuracy to estimate SLA (in terms of high R2 and low RMSE (0.55, 

0.47 respectively) was obtained by the neural network which used all studied VIs as input and the 

Levenberg-Marquardt method for training the  network parameters. In addition the optimal number of 

hidden layers was found to be 5. Further, as displayed in Table 4.4, the highest R2 to estimate SLA (R2 = 

0.66, RMSE = 0.56) has been acquired by the neural network that used all individual bands of Sentinel-2 

as input (regarding to calibration set).   

 

In the experiments carried out to determine the optimal depth of the neural network, it was observed that 

upon increasing the number of hidden layers the R2 increases but the associated RMSE increases as well. 

This observation indicates the possibility of the neural network over-fitting the training data (Bourquin et 

al., 1998); and therefore a careful selection of the network depth is essential to mitigate this problem.  The 

relation between the measured and the predicted SLA using the most accurate ANN model found in the 

course of the analysis is shown in Figure 4.4. The solid line in Figure 4.4 indicates the one to one 

relationship between measured and predicted values of SLA. 
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Table 4.4. The acquired R2 and RMSE between measured and predicted SLA using different types of training 

algorithms 

Input 

Optimal 

number 

of 

hidden 

layers 

Output 
Training 

algorithms 

Calibration (n=30)  Validation (n=20) 

R2 RMSE R2 RMSE 

All individual bands 

of Sentinel-2 

(9 bands) 

5      1        LM 0.62    0.55  0.49     0.50 

6      1        SCG 0.66    0.56  0.48      0.49 

All studied VIs 
5 1 LM     0.56 0.57     0.55 0.47 

4 1 SCG     0.56 0.54     0.43 0.60 

 

 

 

 

 

 

 
Figure 4.4.The relationship between measured and predicted values of SLA by the ANN model 
(training method= LM, optimal hidden layers=5 using all studied VI as inputs).  
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4.4.3. The result of PLSR 

In the present study, Partial Least Square Regression (PLSR) method has been evaluated to estimate SLA. 

One of the differences between PLSR models was inputs that were used to build the PLSR models. The 

same calibration and validation dataset were used to model SLA by PLSR models. The first PLSR model 

included all individual bands of Sentinel-2 image as inputs. As it is shown in Table 4.5, the optimal 

number of components for this model was 4. The acquired R2 and RMSE between the measured and the 

predicted SLA using the PLSR model were 0.44 and 0.48 respectively (based on the validation set).  

 

In the second PLSR model, all studied VIs were used as inputs. We obtained R2 and RMSE between the 

measured and the predicted SLA were 0.46 and 0.42 respectively. As reported by Geladi and Kowalski, 

(1986), the criterion to add an extra component is that the additional component decreases the RMSE 

based on the validation set by >2%. As it is shown in Figure 4.5, the optimal number of the components 

were identified through the visual inspection and the indicated criterion. Moreover, Figure 4.6 illustrates 

the predicted SLA values against the measured SLA values based on the PLSR model that utilized all VIs 

as inputs to estimate SLA by using 5 components (according to the validation set). 

 

 

Table 4.5. PLSR models in terms of R2 and RMSE between measured and predicted SLA 

Bands/VIs 
Optimal Number 

of components 

Calibration (n=30) Validation (n=20) 

R2 RMSE R2 RMSE 

All individual 

bands of 

Senitnel-2 (9 

bands) 

4 0.63 0.61 0.44 0.48 

All studied VIs 

of Senitnel-2(11 

VIs) 

5 0.70 0.60 0.46 0.42 
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Figure 4.5.Percentage of RMSE against the number of components. (A) the PLSR model that used all individual 
bands as input (B) the PLSR model that used all studied VIs as input 

 

 

 

 

 

 
Figure 4.6. The predicted values of SLA by the PLSR model (Optimal number of components=5) and 
measured values of SLA using all studied VI. 
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5. DISCUSSION 

In this chapter the performances of SLA estimation using Sentinel-2 data through different statistical 

models (VIs, ANN, PLSR) have been discussed. In addition, the limitations that led us to get our result 

have been described in this chapter. Moreover, the relevant studies have been reviewed, and their results 

have been compared to our results. 

5.1. The descriptive statistics and correlation of measured plant parameters 

In this section, the result of descriptive statistics and the calculated Pearson’s correlation coefficient 

between measured plan parameters have been discussed. Furthermore, the results of relevant literature 

have been described as well. 

 
The measured SLA in this study ranged between 69.78 and 340.56 (cm2/g) that was in agreement with 

earlier studies which have investigated on similar ecosystems. For instance, McCoy-Sulentic et al., (2017) 

who studied woody and herbaceous species along the Colorado River in Arizona, reported that the 

measured SLA were ranged from 50 to 400 (cm2/g). In another study, Liu et al., (2017) investigated on 

SLA changes based on four different types of species in temperate grasslands in northern China; and 

reported that the measured SLA was ranged between 50 to 350 (cm2/g). Moreover, regarding results 

presented in Table 4.1, the Coefficients of Variation (CV) were calculated for SLA, LA, and LDMC in this 

study (0.32, 0.20, and 0.22 respectively). These findings show that the variation in collected SLA is higher 

than variation in collected LA and LDMC which means the SLA data are not closely distributed around 

the averaged SLA (mean of SLA values = 131.82 (cm2/g)) (Figure 5.1). 

 

 
Figure 5.1. The distribution of SLA values in Schiremonnikoog island (n=50). 
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As it is shown in Section 4.2, in general, SLA had a strong correlation with LDMC; nevertheless, the 

correlation between SLA and LA was weak. One of the reasons of weak correlation between SLA and LA 

might be due to the errors that happened during the leaf area measurements through ImageJ software; 

errors mostly happened due to two conditions: 1) The shadows during capturing pictures resulted us in 

overestimating the leaf area measurements, 2) Overlying the leaf samples on top of each other led us to 

underestimate the leaf area measurements. Another reason for the weak correlation between SLA and LA 

in our study might be due to the exitance of different species. Ackerly et al., (2002) investigated on the 

relation between leaf size, SLA, and microhabitat of woody and herbaceous plants in Jasper Ridge 

Biological Preserve, San Mateo, California; they reported that the correlation between SLA and leaf size of 

woody and herbaceous plants is weak across several species. This result also confirms the findings of an 

earlier study by Vernescu and Ryser, (2009) who investigated the constraints on leaf structural traits in 

wetlands and reported that there was not a strong correlation between LA and SLA in wetland’s plants. 

 

The strong negative correlation between SLA and LDMC which was observed in this study is in 

agreement with previous findings by Wilson et al., (1999) who studied the  leaf dry matter content and 

SLA as predictors for plant strategies based on different types of native British flora; according to their  

findings, there was a strong negative correlation between SLA and leaf dry matter content. Further 

Vernescu and Ryser, (2009) reported a strong positive correlation between leaf size and leaf dry matter 

content. In addition, the study by Vile et al., (2005) who investigated on the influence of SLA and LDMC 

to estimate leaf thickness in laminar leaves at three Mediterranean climate sites, indicated that there is a 

strong negative correlation between SLA and LDMC.  

 

In conclusion of this section, SLA and LDMC had strong negative correlation; while, SLA and LA had a 

weak positive correlation. The main reason of weak correlation between SLA and LA is the heterogeneity 

of the ecosystem that influenced on the correlation between SLA and LA.  

5.2. The correlation between spectral bands and studied VIs with the measured SLA 

In this section, the Pearson’s correlation coefficient between the reflectance of Sentinel-2 spectral bands, 

studied VIs and measured SLA are discussed.  

 

Among the studied VIs in this study, RVI calculated from the reflectance of Sentinel-2 spectral bands 

were strongly correlated to SLA (r = 0.45). The result was in agreement with the previous study by 

Lymburner et al., (2000) who found that the RVI was one of the VIs which accurately estimates SLA. 

Furthermore, several studies (Ali et al., 2017b, 2017c; Lymburner et al., 2000) have shown the importance 

of Near Infra-Red (NIR) region of the spectrum to estimate SLA; in addition, as shown in Figure 4.1, NIR 

and Red-edge regions of spectrum are correlated to SLA stronger than other spectral regions.  

 
We further, investigated whether species heterogeneity has affected the correlation between studied VIs 

and SLA and if stratification will improve the relation. For this aim, literature about vegetation coverage in 

Schiermonnikoog island have been reviewed (Schmidt et al., 2004; Vrieling et al., 2017). Stratification of 

vegetation classes has been considered based on the dominant species in each vegetation class. The 

dominant species in Highmarsh and Barckishmrash were Festuca rubra, Elytriagia atherica; while, in 

Middlemarsh and Lowmarsh were mostly covered by Puccinellia maritima (Figure 5.2, Figure 5.3, 

Figure 5.4). Therefore, vegetation classes were grouped into following two vegetation classes: 1) HMBM: 

Highmarsh and Barckishmarsh (n=17), 2) MMLM: Middlemarsh and Lowmarsh (n=33).  
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We observed that the heterogeneity of species in HMBM plots were higher than species in MMLM plots. 

In HMBM plots, 7 out of 17 plots were contained more than one species; while, in MMLM plots, only 5 

out of 33 plots were contained more than one species. Regarding the results presented in Table 5.1, the 

correlation between SLA and LA in HMBM class is weak (r = 0.13). This finding confirmed by Ackerly et 

al., (2002)’s study  which reported in plots with the higher heterogeneity of species the relation between 

SLA and LA is weak; nonetheless, the correlation between SLA and LA in MMLM class is stronger (r = 

0.41). The reason for the stronger correlation between measured plant parameters in MMLM class 

compared to HMBM class might be the variation of species in plots as indicated earlier. 

 
Table 5.1.The Pearson’s correlation coefficient (r) between measured plant parameters according to type of 

vegetation cover in Schiermonnikoog 

* P ≤ 0.05 

 

 

 

 

 

 

 
Figure 5.2. (A) High-marsh and (B) Barckish-marsh vegetation cover classes covered by Elytriagia atherica as the 
dominant species. 

Parameters(HMBM)(n=17) SLA (cm2/g) LA (cm2) LDMC (g) 

SLA 1   

LA   0.13 1  

LDMC -0.82* 0.36 1 

Parameters(MMLM)(n=32) SLA (cm2/g) LA (cm2) LDMC (g) 

SLA 1   

LA   0.41 1  

LDMC -0.50 0.55 1 

A B 
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Figure 5.3. (C) High-marsh and (D) Barckish-marsh vegetation cover classes covered by Festuca rubra as the 
dominant species. 

 

Figure 5.4. (E) Lowmarsh and (F) Middlemarsh vegetation cover classes covered by Puccinellia maritima as the 
dominant species. 

 
Regarding to the obtained results showed in Figure 5.5, it has been reaveled that analysis based on 

vegetation cover classes would not help to improve the correlation between the measured SLA and the 

studied SLA. The reasons of acquired results (based on vegetation cover classes) might be the high 

percentage dried material and the influence of background material on derived spectral reflectance.   

 

E F 

C D 
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Figure 5.5.The Pearson’s correlation coefficient (r) between measured SLA and studied VIs in HMBM (n=17) and 
MMLM (n=33) plots. 

5.3. The result of statistical models (univariate and multivariate) to estimate SLA 

In this section, the performance of different statistical models has been discussed. In addition, the results 

of this study explored to realize the relationships between measured SLA values and predicted SLA values 

through different models. 

5.3.1. Vegetation Indices (VIs) 

Among the studied models, the linear regression model using RVI as the independent variable obtained 

the highest R2 and the lowest RMSE (0.46, 0.64 respectively) using the validation dataset. This finding is 

confirmed by previous studies that reported the linear regression using VIs will be the accurate model to 

estimate SLA. As Lymburner et al., (2000) reported that SLA could be estimated accurately through linear 

regression using RVI as the independent variable (R2 = 0.91); moreover, Ali et al., (2017b) reported, 

Enhanced Vegetation Index (EVI) as the independent variable that linearly and accurately can estimate 

SLA among the all its studied VIs (R2 = 0.77, RMSE (%) = 4.44). Nevertheless, regarding to the obtained 

results that were presented in Section 4.4.1, the SLA modelling through univariate models in this study is 

not as accurate as SLA modelling in previous studies. 

 

One reason might be the wetland ecosystem which consists of variety of species. Another reason might be 

due to the existence of dried materials in most plots which sometimes were 60% of coverage in a plot. 

Moreover, 10 plots had low canopy coverage which caused the influence of background materials on 

spectral reflectance to be more pronounced. Although, VIs have been used to reduce the errors that 

caused by atmospheric and background materials (Hatfield et al., 2008), the effect of background materials 

had an impact on spectral reflectance and calculated VIs.  

5.3.2. Artificial Neural Network (ANN) 

Although, most studies that have been used ANN models benefited from hyperspectral data; in our study, 

the performance of studied VIs and the spectral bands of Sentinel-2 to estimates SLA were investigated. 

In the following paragraphs, the results of relevant literature have been described. 
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The highest R2 and the lowest RMSE (0.55, 0.47 respectively) have been obtained by the AAN which 

consisted of 11 VIs as inputs, 5 as an optimal number of hidden layer, and Levenberg-Marquardt as 

training algorithm. The results confirm earlier results by Li et al., (2011) who studied different multivariate 

models to classify land-cover in a moist tropical region of Brazil using Landsat TM imagery. Li et al., 

(2011) used some vegetation indices and textural images that derived from Landsat TM images. They 

found that when six spectral bands of Landsat TM were used to build ANN model, the ANN model 

(overall accuracy = 52.1) obtained lower accuracy compared to the ANN model (overall accuracy = 70.7) 

which used a combination of VIs and two textural images.  

 

Also, Yuan et al., (2017) investigated the retrieval of Leaf Area Index (LAI) for soybean using a number of 

models including ANN and PLSR models. They reported that the highest accuracy were obtained by 

ANN based on stratified sampling set over single growth phase. 

5.3.3. Partial Least Square Regression (PLSR) 

The PLSR model with 5 components using VIs as inputs, acquired the highest R2 and the lowest RMSE in 

both calibration and validation sets (Calibration: R2 = 0.70, RMSE = 0.60 and Validation: R2 = 0.46, 

RMSE = 0.42). This result confirms the findings of the earlier studies which have investigated the 

estimation of vegetation parameters through PLSR model (e.g. Cho et al., 2007, Darvishzadeh et al., 

(2011), Hansen and Schjoerring, 2003, Siegmann and Jarmer, 2015, Wolter et al., 2009, ).  

 

For example, Cho et al., (2007) studied the estimation of green grass/herb biomass through univariate and 

multivariate models and reported that among the applied regression models, PLSR obtained the lowest 

standard error prediction (SEP=149 g m-2). In another study, Wolter et al., (2009) investigated the 

estimation of forest structural parameters using PLSR in conifer and hardwood covers and found that 

PLSR models in both conifer and hardwood areas performed accurately to estimate forest structural 

parameters.   

5.3.4. PLSR vs ANN 

In this section, the comparison between performed ANN and PLSR models have been explained. 

Moreover, the results of this study have been compared to findings from relevant literature. 

 

Li et al., (2016) studied on the grassland LAI prediction in the meadow steppes of northern china through 

hybrid geostatistical models (regression kriging and random forests residuals kriging) and regression 

models (random forest, partial least square regression, artificial neural network). They reported the PLSR 

as the worst performed model to predict grassland LAI compared to other studied regression models.  

 

Yuan et al., (2017) also showed to retrieve soybean leaf area index from UAV hyperspectral data using 

different regression models (random forest, support vector machine, artificial neural network, and partial 

least square regression) the PLSR model inaccurately retrieve soybean LAI comparted to the other studied 

models. Chen and Jing, (2017) studied winter wheat forecasting using Landsat-8 OLI images through two 

multivariate regression models (ANN and PLSR) and concluded that the PLSR model (R2=0.39, RMSE 

(%)= 12.84) did not perform accurately compared to ANN (R2=0.61, RMSE (%)= 10.38) model. 

 

However, in other studies, PLSR models have shown to perform more accurate compared to other 

multivariate regression models. For example, Farifteh et al., (2007) studied the prediction of soil salinity 

using soil reflectance through PLSR and ANN and observed that PLSR models had similar performance 

with ANN. Also, Mirzaie et al., (2014) investigated the estimation of Vegetation Water Content (VWC) 

through univariate and multivariate models and found that PLSR model is capable of estimating VWC 

accurately than other regression models including ANN. 
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In conclusion of Section 5.3, among the studied VIs, RVI performed accurate modelling to model SLA; 

moreover, the accurate regression model using RVI of Sentinel-2 was simple linear regression model. In 

addition, among the studied multivariate models, the highest accurate model was the ANN model that 

included 11 VIs as input, 5 as an optimal number of hidden layer, and Levenberg-Marquardt as training 

algorithm. 
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6. CONCLUSION AND RECOMMENDATIONS 

6.1. Conclusion  

From the current study, the following conclusions were derived: 

 

• In this study, the correlation between SLA and LA was weak due to species variation in each plot. 

However, a higher correlation has been identified between SLA and LDMC. 

  

• To estimate SLA, Sentinel-2 data provide accurate information, although for improving the 

acquired results to estimate SLA in this study, the number of samples shall be increased. 

 

• Both bands 8A and 6 were strongly correlated to the measured SLA compared to other selected 

bands; moreover, among the studied VIs, RVI had a strong correlation with the measured SLA 

which led us to use RVI to model SLA through different regression models. 

 

• Between different regression models using RVI, simple linear regression has performed accurately 

than other regression models to estimate SLA. 

 

• Among the studied multivariate models, ANN using all studied VIs acquired an accurate 

estimation of SLA in saltmarsh/ wetland ecosystem.  

6.2. Answers to research questions 

Q1. Among the studied vegetation indices, which index will more accurately (Highest R2 and lowest 
RMSE) model SLA in Schiermonnikoog using Sentinel-2 data?  
 
Answers: In this study, using RVI as the independent variable, obtained the strongest correlation between 
the measured SLA and the predicted SLA through the linear model in schiermonnikoog island (R2 = 0.46, 
RMSE = 0.64).  
 
Q2. Among the studied multivariate models (ANN, PLSR), which model will accurately model SLA in 
Schiermonnikoog using Sentinel-2 data? 
 
Answers: Among studied multivariate models in this study, ANN using all 11 studied VIs as input with 5 
as the number of hidden layers and Levenberg-Marquardt as training algorithm obtained the highest 
correlation between measured and predicted SLA values. The RMSE and R2 were 0.47, 0.55 respectively. 
This finding shows that there is a non-linear correlation between SLA and spectral information of 
Sentinel-2 data in saltmarsh/wetland ecosystem due to field situation.  
 

6.3. Recommendations for further exploration 

 

• Using higher number of samples in an appropriate time because using more sample data help to 

apply other training techniques and see the performance of the same statistical models. 

  

• Using the equipment with higher precision to measure plant parameters, the equipment was not 

available to transfer to field; therefore, the area of leaves has been manually calculated. 
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• Exploring other multivariate models such as Random Forest (RF) and Support Vector Machines 

(SVMs) and comparing the results with studied multivariate models (ANN, and PLSR) in this 

research. To see using other multivariate models will improve the accuracy of SLA estimation in 

wetland ecosystems. 

 

• Examining different satellite imageries such as Landsat 8 to estimate SLA in saltmarsh/ wetland 

ecosystem. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Modeling Specific Leaf Area (SLA) using Sentinel-2 data in saltmarsh area, a case study of Schiermonnikoog island 

 

41 

7. APPENDICES 

7.1. Appendix I 

The summary statistics between calculated Leaf Dry Matter Content (ratio of leaf dry mass to leaf fresh 

mass) in Schiermonnikoog island have been displayed in Table 7.1.  

 
Table 7.1. The descriptive statistics for Leaf Dry Matter Content (ratio of leaf dry mass to leaf fresh mass) in 

Schiermonnikoog island (n=50). 

Parameters Leaf Dry Matter Content (LDMC) 

Mean 0.30 

Maximum 0.41 

Minimum 0.13 

Standard Deviation 0.06 

Range 0.28 

Coefficient of variation  0.2 

 

7.2. Appendix II 

The Pearson’s correlations between LDMC (ratio of leaf dry mass to leaf fresh mass) and the different 

measured plant parameters have been shown in Table 7.2 
 

Table 7.2. The Pearson’s correlation coefficient (r) between LA, SLA, and LDMC (ratio of leaf dry mass to leaf fresh 
mass) 

 

* P ≤ 0.05 

 
 
 

 

 

Parameters SLA (cm2/g) Leaf Area (LA) (cm2) 
Leaf Dry Matter 

Content (LDMC) 

SLA 1   

LA   0.17 1 

LDMC -0.66* 0.33 1 
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7.3. Appendix III 

The correlations between the measured SLA and the predicted SLA through all 11 studied VIs using 

different regression models have been illustrated in Table 7.3. 

 
Table 7.3. The correlation between measured and predicted SLA using studied VIs through different statistical 

regression models in Schiermonikoog isalnd based on validation set (n=20) 

 LINEAR QUADRATIC LOGARITHMIC EXPONENTIAL 

BAND/VI R2 RMSE R2 RMSE R2 RMSE R2 RMSE 

SARVI2 0.31 0.74 0.19 0.96 -0.12 0.54 0.24 0.62 

NMDI 0.11 0.68 0.09 0.54 0.05 0.51 0.11 0.76 

SLAVI 0.15 0.76 0.11 0.65 0.17 0.56 0.14 0.66 

VARI 0.13 0.67 0.13 0.73 0.16 0.69 0.26 0.62 

SAVI 0.24 0.69 0.08 0.61 0.22 0.73 0.26 0.71 

RVI 0.46 0.64 0.40 0.65 0.42 0.66 0.38 0.67 

NDVI 0.24 0.65 0.08 0.58 0.22 0.71 0.26 0.76 

GNDVI 0.17 0.66 0.34 0.62 0.09 0.64 0.18 0.64 

NDMI 0.15 0.84 0.18 0.72 0.11 0.78 0.12 0.66 

CAI 0.21 0.75 0.12 0.74 0.13 0.64 0.18 0.65 

SWIRGVI 0.23 0.78 0.2 0.81 0.13 0.69 0.26 0.66 
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7.4. Appendix IV 

The map of the predicted SLA values using RVI has been displayed in Figure 7.1. 

 

 

 

 
Figure 7.1. The map of modelled SLA in Scheirmonnikoog island using Senitnel-2B image on 15th September via 
RVI. 
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7.5. Appendix V 

The map of the predicted SLA values by the neural network (5 hidden layers, all 11 studied VIs as input, 

LM as training algorithm) has been displayed in Figure 7.2. 

 

 

 
Figure 7.2. The map of modelled SLA in Scheirmonnikoog island using Senitnel-2B image on 15th September via 
ANN (5 hidden layers, all 11 studied VIs as input, LM as training algorithm). 
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