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ABSTRACT 

African elephants (Loxodonta Africana) are water dependent-species that can drink up to 50 gallons of water 

per day. Also, elephants need water for thermoregulation since they are susceptible to high temperature and 

sunburn. In particular, the movements of elephants are constrained by the limited surface water resources 

in the dry season. Despite the importance of surface water availability to elephants, lack of detailed surface 

water information in dry and wet season hampers further understanding of relationships between surface 

water and elephant movements. Remote sensing data had been widely and successfully used in the mapping 

of surface water. This study first mapped the surface water in the dry season and wet season over the 

Amboseli ecosystem used the Sentinel-1 radar image, Sentinel-2 optical image, and the combination of both 

based on random forest method. Then kappa coefficients of using Sentinel-1, Sentinel-2 or the combination 

of both were compared to identify the surface water maps that have the highest kappa coefficient for further 

analysis. Next, the Sentinel surface water maps were compared with existing surface water products (ILRI 

and JRC), after which, the distance of elephants to the nearest surface water during dry and wet season were 

quantified and compared. Finally, speeds of elephant movements have been calculated, classified into three 

categories regarding the distances of elephants to the nearest surface water and difference in the speeds was 

tested. These three categories are close to water (< 3km); Medium to water (3km - 6km); far from water (> 

6km). Results are as follows, 1) the kappa coefficient of mapping surface water in the Amboseli ecosystem 

using the combination of Sentinel-1 radar and Sentinel-2 optical data is significantly higher than the one 

used Sentinel-1 data; 2) There is not a significant difference between the kappa coefficients of using Sentinel-

2 optical data and the combination of Sentinel-1 and Sentinel-2 data. 3) A significant difference was observed 

in surface water distribution pattern among the three surface water products (Sentinel, ILRI and JRC). 4) 

The mean distance of elephants to the nearest surface water extracted from the Sentinel water products 

during the dry season and wet season are 6.7 km and 4.2 km, respectively; 5) The distance of elephant to 

the nearest surface water is longer in the dry season compared with that in the wet season; 6) A significant 

difference exists in the speeds of the elephant movement between close and far distance classes during the 

dry and wet season. The study mapped the surface water in the Amboseli ecosystem and suggested that 

elephant in the Amboseli ecosystem moved faster when they are closer to surface water. Findings of the 

relationship between the elephant movements and surface water availability are essential for understanding 

the movements of elephants as well as developing conservation strategies for wildlife and surface water 

resources. 

 

 

Keywords: Surface water, elephant movement, Sentinel-1, Sentinel-2, DEM, Amboseli ecosystem, random 

forest 
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1. INTRODUCTION 

1.1. Background 

Water is of great importance to all living things (Al-weshah, 2016). For example, water is an integral part of 

animal organisms, which accounts for 65% to 70% of animals body weights (Ganguly & Delhi, 2016). Water 

is vital for regulating the processes of digestion, transportation of nutrients, excretion and body temperature 

of wild animals (Smathers, 2018). Animals will die in a few days without drinking water (Popkin & 

Rosenberg, 2011). In addition, water provides habitats for countless animal species, including fish, 

amphibians, reptiles, insects, birds, and mammals, in the form of rivers, lakes, swamps or ocean (Klapproth 

& Johnson, 2009). Some animals, mainly aquatic species are entirely dependent on water, they live in water 

for their whole life. While other animals frequently visit water to drink and use water for water-related 

activities, like mudding, bathing, and swimming. Furthermore, the presence of water can affect the 

distribution of wild animals. Previous studies have shown that for some species, e.g., large herbivore, the 

distribution of which is influenced by the location of water, especially during the dry season (Bergstrom & 

Skarpe, 1999; Redfern, Grant, Biggs, & Getz, 2015; Western, 1975). Due to the importance of water to 

animals, and the fact that water is unevenly distributed in space and time (Yano, Hanasaki, Itsubo, & Oki, 

2015), animals have to move in heterogeneous landscapes to search for water to increase their chances for 

survival (de Beer & van Aarde, 2008). 

 

Elephants, as the largest terrestrial herbivores, can drink up to 50 gallons (about 200 liters) water within one 

day (Dirzo et al., 2015). Also, elephants are observed to be sensitive to high temperature and sunburn (Fuller, 

Mitchell, Maloney, & Hetem, 2016). Thus, elephants need a large amount of water for activities related to 

water, like mud bathing, swimming for regulating body temperature (Dunkin, Wilson, Way, Johnson, & 

Williams, 2013; Purdon & van Aarde, 2017). African elephants (Loxodonta Africana) are typical water-

dependent species (Gara et al., 2017; Makindi, Mutinda, Olekaikai, Olelebo, & Abdillahi, 2014; Western, 

1975). However, the surface water (including rivers, lakes, and marshes) in the semi-arid landscape is highly 

seasonal, which makes the distributions and movements of elephants constrained by the surface water 

availability in the dry season. Western (1975) studied the influence of water availability on the structure and 

seasonal dynamic changes of large mammals in the Amboseli ecosystem of Kenya and found that water-

dependent species, including elephants, are concentrated near permanent water bodies during dry seasons, 

and they disperse as water availability increases during the wet season. Chamaillé-Jammes, Valeix, and  Fritz 

(2007) investigated how elephant density and surface water availability influenced each other and concluded 

that surface water drives the distribution and abundance of elephants within Hwange National Park, 

Zimbabwe. de Beer et al. (2008) examined the relationship between elephants home range and water 

distribution and concluded that the home range size of elephants decreases with increasing water point 

density. Chamaillé-Jammes et al. (2013) studied the movement speed of elephants and found that elephants 

increase their speed when they are close to water points. Redfern et al. (2015) investigated the elephant 

movement pattern and pointed out that surface water constrains the pattern of elephant movement. In a 

word, surface water availability and its spatial distribution are important for the distribution and movements 

of elephants in a semi-arid landscape, especially in dry season. In the semi-arid landscape, surface water 

becomes scarce due to little precipitation in dry seasons (Chamaillé-Jammes et al., 2013), elephants even 

take the risk of being expelled by pastoralists, battle for water with livestock around the artificial water 

points. Droughts are becoming more and more frequent in arid and semi-arid landscapes across Africa over 

the last few decades (Easterling et al., 2000). Once this extreme weather event happens, surface water 
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becomes increasingly scarce, natural mortality of elephants, especially juvenile elephants will increase 

because elephants will perish of thirst if they travel too far to search for water. For example, Ngene et al., 

(2013) have studied the elephant population in the Tsavo-Makomazi ecosystem, Kenya and observed that 

in climatically normal years, e.g., 2005, 2006, 2007 and 2008, number of dead elephants caused by natural 

factors is less than 30. However, this number increased to about 400 in 2009, when a severe drought 

occurred. Despite the importance of surface water availability to elephants, the lack of detailed surface water 

information across space and time hampers further understanding of relationships between surface water 

and elephant movements. 

 

Satellite images have been extensively and increasingly adopted to map surface water due to its low-cost, 

large spatial coverage, efficiency advantages over in situ measurements (Clement, Kilsby, & Moore, 2017 ). 

According to the source of energy, two types of satellite sensors, active and passive sensors, can be used to 

acquire satellite images. The active sensor uses its own source of energy to illuminate objects, while passive 

sensor takes advantage of the energy emitted by the sun and then reflected by objects. Optical satellite 

images are acquired from the passive sensor, while the Synthetic Aperture Radar (SAR) imagery is obtained 

from the active sensor. 

 

The capability of optical satellite images for surface water mapping and monitoring has been well 

demonstrated since the 1970s. Optical satellite images at different spatial resolution, coarse, medium or high 

spatial resolution, acquired from various sensors can and have been used for water detection (Huang, Chen, 

Zhang, & Wu, 2018). Extensive research has been conducted to detect surface water using coarse and 

medium resolution imagery acquired from  NOAA/AVHRR (Dietz et al., 2017), MODIS ( Li, Sun, 

Goldberg, & Stefanidis, 2013), Landsat series (MSS, TM, ETM+, OLI) (Du et al., 2016; Kaplan & Avdan, 

2017) and Sentinel-2 MSI. Similarly, the high spatial resolution satellite images are also applicable in 

monitoring surface water extent. For example, the Worldview, RapidEye, Qucikbird, GF-1, GF-2, and ZY-

3 images also have been utilized to detect surface water in previous studies and results showed that high 

spatial resolution satellite images have advantages for detecting small water bodies (Nath & Deb, 2010). All 

kinds of satellite imagery can successfully detect surface water as the water has its low spectral reflectance 

in infrared bands (Huang et al., 2018). But there is a trade-off among the spatial, spectral and temporal 

resolution when selecting suitable images for surface water mapping. No matter what kind of optical satellite 

images have been selected, a fact that will never change is that clouds can affect optical images very easily, 

especially in frequently cloudy and rainy areas, which limits its potential for spatial-temporal monitoring of 

surface water dynamics.  

 

SAR sensor has considerable advantages compared with the optical sensor for quantifying spatial-temporal 

variations of surface water (Huang et al. 2018). SAR  not only has the capability of penetrating clouds but 

also being sensitive to open water and below-canopy water (Kim et al., 2014; Martinis et al., 2015a). Since 

smooth water appears dark in radar images due to specular reflection, the potential of detecting and 

monitoring surface water using SAR data has been well examined and demonstrated in literature by using 

X-band (COSMOSkyMed, TerraSAR-X, TanDEM-X, SIR-C), C-band (ERS-1, ERS-2, Sentinel-1, 

RADARSAT-1/2, SIR-C) and L-band (SEASET, SIR-A, SIR-B, JERS-1, ALOS-1, ALOS-2). For instance, 

Katherrine et al. (2018) compared single-polarization and dual-polarisation in surface water monitoring 

using TerraSAR-X and the study observed that the dual-polarisation has advantages over single-polarization 

for surface water mapping. Aldenhoff, Heuzé, and Eriksson (2018) compared C-band (Sentinel-1) and L-

band (ALOS-2) for mapping water using a Neural Network algorithm, and results showed that classification 

accuracies derived from C-band and L-band are 95%, 88%, respectively. Despite the potential of detecting 

surface water using SAR imagery, the technical challenges still exists. Water-alike objects, like shadows, 

sands, and pavements usually cause inaccurate estimation of surface water (Martinis et al., 2015b). Also, 
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unexpected changes in the backscatter of surface water can be resulted from wind-induced Bragg scattering 

and volume scattering due to inundated vegetation (Bragg et al., 2007).  

 

1.2. Problem statement 

Elephants are water-dependent animals, and the elephant is hypothesized to stay close to the surface water. 

However, the distances of the elephant to the surface water has not reached an agreement in previous 

studies. Also, only a few studies explored whether elephants stay closer to the surface water in the dry season 

compared with wet season. De Beer et al. (2006) used the artificial and natural water points, and 17-years 

GPS collared data of six elephants to study the interaction between elephants, plants, and water, they 

concluded that elephants preferred to stay in the area within 4 km from water sources. Similarly, elephants 

in Chobe National Park, Botswana were observed to aggregate within 3.5 km from surface water in the dry 

season and 5 km from surface water in the wet season (Park, Stokke, & Toit, 2002). Also, elephants in 

Etosha National park and Tembe Elephant Park of southern Africa were observed to stay closer to water 

during the dry season compared with wet season (Harris, Russell, Van Aarde, & Pimm, 2008). Western 

(1975) studied the effect of water availability on the elephants distribution and found that elephants 

concentratde in the area within 2 km, 6 km to 8 km from water. However, Viljoen (1989) pointed out that 

elephants in South West Africa regularly travel 20 km to 40 km without drinking water. Studies also has 

been carried out to analyze the relationship between elephant occurrence and water sources, and the result 

shows that elephant occurrence can reach peak values even if the distance between elephant and water 

resources ranges from 20 km to 60 km during the dry season (Ndaimani, Murwira, Masocha, & Zengeya, 

2017).  

 

Previous researches either use the permanent water maps or artificial water points, instead of using dynamic 

water maps in dry and wet seasons to study the relationship between surface water availability and elephant 

movements. For a further understanding of the relationships between elephant movements and surface 

water in dry and wet seasons, surface water maps in different seasons extracted from satellite images with 

acceptable spatial resolution are needed. 

 

The advantages of mapping surface water using either optical satellite images or SAR imagery have been 

well demonstrated in (Irwin, Braun, Fotopoulos, Roth, & Wessel, 2018; Kaplan & Avdan, 2017; Nath & 

Deb, 2010). Despite the advantages of mapping surface water using either optical satellite images or SAR 

imagery, the disadvantages of mapping surface water using either Sentinel-1 or Sentinel-2 imagery cannot 

be ignored. For optical images, the cloud contamination issue of optical satellite images is unavoidable even 

adopting well-defined algorithms (Ogunbadewa, 2012). For SAR imagery, the water-like objects will 

introduce errors in the surface water map due to the occurrence of specular reflection. To remedy these 

limitations, a few studies have been conducted to combine optical and SAR imagery to map surface water 

(Markert, Chishtie, Anderson, Saah, & Griffin, 2018). Whether combining optical and SAR could 

significantly increase the classification accuracies in surface water mapping remains unknown. On one hand, 

the optical and SAR imagery contain complementary information (Amarsaikhana et al., 2010). On the other 

hand, errors resulted from each dataset can cause error propagation in the final maps (Liu, Gopal, & 

Woodcock, 2004; Markert et al., 2018). Only a few studies have been carried out to map surface water using 

combined Sentinel-1 SAR and Sentinel-2 optical data, not to mention the comparison of the accuracies of 

maps produced by individually using of Sentinel-1, Sentinel-2 or the combined Sentinel-1 and Sentinel-2 

data.  
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1.3. Research objectives 

The main objective of the study is to examine the spatiotemporal relationships between elephant movements 

and the surface water availability derived from satellite remote sensing in the Amboseli ecosystem, Kenya. 

Specific research objectives are as follows: 

 

➢ To map the surface water in the Amboseli ecosystem during the dry and wet seasons using Sentinel-

1 radar data, Sentinel-2 optical data and the combination of Sentinel-1 and Sentinel-2 data, 

respectively. 

➢ To compare the surface water maps derived from Sentinel images with the other two existing 

surface water products produced by the Joint Research Center (JRC) and the International 

Livestock Research Institute (ILRI), respectively. 

➢ To quantify and compare the distance of elephants to the nearest surface water in the Amboseli 

ecosystem between the dry season and wet season. 

➢ To examine the relationship between the movement speeds of elephants and the distance to surface 

water in the Amboseli ecosystem during the dry and wet seasons, respectively. 

1.4. Research questions 

➢ Does the combined Sentinel-1 radar data and Sentinel-2 optical data significantly improves the 

surface water mapping accuracy? 

➢ Is there a statistically significant difference in surface water distribution pattern (e.g., number of 

water bodies or rivers, mean distance to surface water) among three surface water products (i.e., 

Sentinel, JRC, and ILRI)? 

➢ Is there a statistically significant difference between the distance of elephant to the nearest surface 

water during the dry and wet seasons? 

➢ What is the relationship between the movement speed of elephants and the distance to surface 

water in the Amboseli ecosystem during the dry season and wet season, respectively? 

1.5. Research hypotheses 

Hypothesis 1 

H0: There is no statistically significant difference in surface water mapping accuracies between the use of 

the Sentinel-1 (or Sentinel-2) data and the combination of Sentinel-1 and Sentinel-2 data. 

H1: The surface water mapping accuracy derived from the combined Sentinel-1 and Sentinel-2 data is 

significantly higher than the acucraccies derived from either Sentinel-1 or Sentinel-2 alone. 

 

Hypothesis 2 

H0: There is not any statistically significant difference in surface water distribution pattern among the three 

surface water products. 

H1: A statistically significant difference exist in surface water distribution pattern among the three surface 

water products. 

 

Hypothesis 3 

H0: There is no statistically significant difference in the distance of elephants to the nearest surface water 

between the dry and wet seasons in the Amboseli ecosystem. 

H1: The distance of elephants to the nearest surface water in the dry season is significantly larger than that 

of the wet season in the Amboseli ecosystem. 
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Hypothesis 4 

H0: There is no significant difference in the movement speeds of elephant whether the elephants are closer 

or further away from the surface water during the dry and wet seasons, respectively.  

H1: The movement speeds of elephant are higher when they are close to surface water compared with 

further away from surface water during the dry season and wet season, respectively. 

1.6. Outline of the thesis 

The thesis consists of six chapters. More specifically, 

 

Chapter 1 introduction describes the background, problem statement, research objectives, research 

questions, research hypothesis and outline of the thesis.  

 

Chapter 2 study area and data consist of study area and data. The study area mainly illustrates the geographic 

location, the climate characteristics and area of the Amboseli ecosystem. The data part describes the sources 

and characteristics of Sentinel-1 radar data, Sentinel-2 optical data, ancillary data and elephant GPS tracking 

data.  

 

Chapter 3 methodology reviews the methods used and illustrates the reasons for adopting a particular 

method and details about the procedure of data processing. This part mainly explains the surface water 

mapping using random forest algorithm and the method to analyze the relationship between the dynamic 

distribution of surface water and the elephant movements. 

 

Chapter 4 results present the findings of the random forest image classification and the relationship between 

the elephant movements and surface water availability. 

 

Chapter 5 discussion demonstrates the significance, limitations and potential improvements in the future 

work of this study. In addition, this part examines the interpretation of results from different perspectives. 

 

Chapter 6 conclusions and recommendations. The conclusions answered the research questions, proposed 

in the introduction section, based on the results. The recommendation summarizes the limitations of this 

study and proposes suggestions for future research. 
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2. STUDY AREA AND DATA 

This chapter consists of five sections. Section 2.1 mainly illustrates the geographic location, the climate 

type and characteristics of the study area, the Amboseli ecosystem. The following four sections mainly 

describe the sources and the characteristics of different data used in this study. Section 2.2 elaborates the 

acquisition and specifications of Sentinel-1 radar imagery. Section 2.3 describes the source and explains 

the source, wavelengths intervals and spatial resolution of multispectral bands in Sentinel-2 imagery. 

Section 2.4 demonstrates the source, acquisition and detailed information about the ID, sex, name and 

number of total and used GPS fixes in this study. Section 2.5 illustrates the ancillary data, and this section 

describes the sources and characteristics of Planet Scope image, DEM, surface water products provided by 

International Livestock Research Institute (ILRI) and Joint Research Center (JRC) of Europe 

Commission. 

2.1. Study area 

The Amboseli ecosystem locates in Kajiado County, Kenya (Gara et al., 2017) (Figure 1). This ecosystem 

mainly consists of the Amboseli National Park and surrounding rangelands (Mose et al., 2013; Shadrack et 

al., 2017) and the area of the study area is approximately 11000 km2. A series of swamps, the area where 

water is partially or completely submerged by vegetation, refilled by mountain forest catchment in this 

ecosystem supports a large number of mammals (Mose et al., 2013). The climate type of this ecosystem is 

Savanna climate, also known as tropical wet and dry climate (Köppen, 1884), the typical characteristics of 

which are high temperature all year round and with the distinct dry and wet season. In this ecosystem, the 

average temperature of each month ranges from 20 °C to 30 °C (Gara et al., 2017), the annual precipitation 

of this ecosystem in spatially and temporally heterogeneous, ranges from 200 mm to 1000 mm (BurnSilver, 

Worden, & Boone, 2008). The dry period falls in June, July, August, and September, other months have 

relatively higher average rainfalls (Figure 2). Surface water is limited across the ecosystem and permanent 

water mainly consists of rivers and a series of swamps (BurnSilver et al., 2008). The estimated population of 

elephants in the Amboseli ecosystem is approximately 1500 (Okello et al., 2016). Historically, elephants 

concentrate on the swamps in the dry season and disperse in the ecosystem during the wet season (Western, 

1975).  

 

 

Figure 1 Study area and the four collared elephants in 2015 in the Amboseli ecosystem. 
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2.2. Sentinel-1 radar data 

Sentinel-1 is designed for the Copernicus program (earth observation program) and developed by the 

European Space Agency. Sentinel-1 is a radar mission that consists of Sentinel-1A and Sentinel-1B satellites, 

launched in France Guiana spaceport on April 3, 2014 and April 25, 2016, respectively (Martín Serrano et 

al., 2015). Sentinel-1 is equipped with a 5.405 GHz C-band SAR sensor that can provide day and night, all-

weather imagery services with short revisit time (Aschbacher & Milagro-Pérez, 2012). Sentinel-1 imagery 

can be acquired through various modes with different spatial resolutions and swath widths (Huang et al., 

2018). IW mode (Interferometric Wide Swath) data is acquired at the primary operational mode over land 

and the most widely used data with a swath width of 250 km at 5 m * 20 m (range and azimuth) spatial 

resolution (Huang et al., 2018; Zeng et al., 2017). IW mode can produce data at different levels, namely 

Level-0, Level-1, and Level-2. Level-0 is raw data. Level-1 is designed for most users and consists of Single 

Look Complex (SLC) and Ground Range Detection (GRD) products. The SLC products include phase 

information, while the GRD products do not. Also, GRD products are multi-looked with reduced speckle 

as well as reduced spatial resolution (20 * 22 m) with squared pixels (Tapete & Cigna, 2017). Level-2 products 

are designed for ocean monitoring, contain information about wind speed and direction. Sentinel-1 is a dual 

polarization system that can transmit and receive in Horizontal and Vertical direction. Figure 3 and Figure 

4 show the Sentinel-1 imagery with VV polarizations and VH polarizations used in this study. 

Figure 2 Monthly average rainfall in the Amboseli ecosystem (2010-2017), Source: World Weather. 

 
Figure 3 Sentinel-1 images with VV polarizations used in this study. (A) is the image acquired on July 6, 2016, 

 (B) is the image mosaicked from December 9, 2016 and December 14, 2016. 
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2.3. Sentinel-2 optical data 

Sentinel-2 is a multi-spectral high-resolution mission consists of Sentinel-2A and Sentinel-2B satellites, 

launched on June 23, 2015 and March 7, 2017, respectively (Li & Roy, 2017). A Sentinel-2 image consists 

of 13 spectral bands (wavelength ranges from 443 nm to 2190 nm), the spatial resolution ranges from 10 m 

to 60 m. Band 2 (490 nm), Band 3 (560 nm), Band 4 (665 nm) and Band 8 (842 nm) are at 10 m spatial 

resolution. 60 m resolution bands consist of 4 vegetation red edge bands (705 nm, 740 nm,783 nm, 865 nm) 

and 2 short wave infrared (SWIR) bands (1610 nm, 2190 nm) designed for snow, ice or cloud detection 

(Aschbacher & Milagro-Pérez, 2012). The remained three bands (443 nm, 945 nm,1375 nm) designed for 

cloud masking and atmospheric correction are at 60 m resolution (Aschbacher & Milagro-Pérez, 2012). 

Figure 5 shows the used Sentinel-2 images in this study. 

Figure 5 True color composite (R, G, B =Band4, 3, 2) of Sentinel-2 images used in this study. (A) is the image 
acquired on July 23, 2016. (B) is the image acquired on December 20, 2016. 

 
Figure 4 Sentinel-1 images with VH polarizations used in this study. (A) is the image acquired on July 6, 2016,  

(B) is the image mosaicked from December 9, 2016 and December 14, 2016. 
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2.4. Elephant GPS tracking data 

Sponsored by the International Fund for Animal welfare (IFAW), Kenya Wildlife Services (KWS) initiated 

the collaring operation for elephants in the Amboseli ecosystem on 18 February, 2013. Each elephant was 

injected 18 mg Etorphine hydrochloride with Dan-Inject gun and revived by injecting 54mg diprenorphine 

at the ear vein. The GPS collar captured one fix (a point with geographic coordinates) every four hours 

using GMT +3 time (three hours ahead of Greenwich Mean Time). The detailed information of four 

collared elephants, such as the ID, name, sex, group size, tracking period, number of the total and used GPS 

fixes of the collared elephants are described in Table 1. Each collared elephant represents one family group. 

Figure 6 shows the GPS fixes of the four collared elephants in 2015. 

 
Table 1 Basic information about the four collared elephants in the Amboseli ecosystem. 

ID Name of 

elephants 

Sex Age Group 

size 

Tracking period Number of 

GPS fixes 

Used GPS 

fixes 

1 KM Male 26 5 02/19/2013-04/06/2016 6254 678 

2 KUF Female 26 10 03/14/2013-04/06/2016 6031 670 

3 

4 

MAM 

ELM 

Male 

Male 

25 

20 

3 

Unknown 

12/04/2013-04/06/2016 

04/23/2014-12/17/2015 

4171 

3258 

616 

600 

    
 

    
Figure 6 GPS fixes of four collared elephants in 2015 displayed in UTM Zone 37S coordinate system. KM, KUF, MAM 
and ELM are names of elephants.  

 



THE SPATIALTEMPORAL RELATIONSHIP BETWEEN ELEPHANT MOVEMENTS AND THE SURFACE WATER AVAILABILITY IN THE AMBOSELI ECOSYSTEM 

 

 

10 

2.5. Ancillary data 

Ancillary data include Planet Scope Imagery, Digital Elevation Model (DEM) with 30 m spatial resolution, 

marshes map of Kenya in 2010, and surface water maps in the Amboseli ecosystem provided by the 

International Livestock Research Institute (ILRI) and Joint Research Centre (JRC) of European 

Commission acquired in 2012 and 2015, respectively. Detailed information about these datasets is described 

as follows, 

 

Planet Scope ortho Scene Product consists of four bands, blue (455 nm-515 nm), green (500 nm-590 nm), 

red (590 nm-670 nm), and near-infrared bands (780 nm-860 nm), with a high spatial resolution of 3.125 m 

(Michael et al., 2018). All the Planet Scope ortho tile images acquired for the periods from July 17, 2016 to 

July 23, 2016, and from December 15, 2016 to December 20, 2016 over the Amboseli ecosystem were 

downloaded from the Planet Home (https://www.planet.com/) and used for assisting the visual 

interpretation of training and test dataset. Figure 7 shows the Planet Scope image (a small part of the 

Amboseli ecosystem) acquired on July 24, 2016. 

Digital Elevation Model (DEM) with 30 m spatial resolution of Kenya and Tanzania in 2015 were 

downloaded from the Regional Centre for Mapping of Resources for Development Geoportal (RCMRD) 

(http://opendata.rcmrd.org/datasets). The source of DEM is Shuttle Radar Topography Mission (SRTM), 

a project conducted by National Aeronautics and Space Administration (NASA) and the National Imagery 

and Mapping Agency (NIMA) of the U.S. Department of Defense (Farr & Kobrick, 2000). The vertical 

accuracy of the DEM data is 15 m. Surface water is closely linked with the terrain as water usually flows 

from higher places to the surrounding lower places (Huang et al., 2018). Therefore, integrating DEM data 

into the image classification may provide supplemental information for mapping the surface water.  

 

Marshes map of Kenya in 2010 was downloaded from World Resources Institute 

(https://www.wri.org/resources/data-sets). The marshes map of Kenya is vector data in the form of 

polygon feature class with a geographic coordinate system of GCS WGS 1984. Surface water maps (include 

rivers, marshes) were provided by International Livestock Research Institute (ILRI)  and JRC surface water 

 
Figure 7 True color composite of Planet scope image (a subset of the study area) acquired on July 24, 2016 
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products were derived by (Pekel, Cottam, Gorelick, & Belward, 2016) using Landsat satellite images. Figure 

8 shows the surface water maps provided by the ILRI. The rivers and marshes maps of Kenya provided by 

ILRI are vector data in the form of line and polygon feature class, respectively. Figure 9 shows the surface 

water maps provided by JRC. The surface water product downloaded from the JRC is in TIFF format with 

a spatial reference of GCS WGS 1984. The surface water product provided by JRC is extracted from Landsat 

satellite images with a spatial resolution of 30 m. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 8 Surface water map in the Amboseli ecosystem provided by ILRI. 

 

 
   Figure 9 Surface water maps in dry season (left) and wet season (right) over the Amboseli ecosystem provided by JRC. 
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3. METHODOLOGY 

This chapter mainly explains the surface water mapping using random forest algorithm and the method to 

analyze the relationship between the dynamic distribution of surface water and the elephant movements. 

This chapter consists of five sections. Section 3.1 describes the preprocessing procedures, indices calculation 

of Sentinel-1, Sentinel-2 and the processing of ancillary data. Section 3.2 mainly illustrates the processes of 

mapping the surface water using the random forest algorithm. This section elaborates the details of training 

and test data selection, input variables, parameter tuning, accuracy assessment and statistical tests of random 

forest methods. Section 3.3 describes the way to compare surface water products. Section 3.4 illustrates the 

steps to quantify and compare the distance of elephants to the nearest surface water. Section 3.5 

demonstrates the method to analyze the movement speeds of elephants.  

3.1. Data processing 

3.1.1. Sentinel-1 radar data processing 

 

Sentinel-1 IW mode Level-1 GRD products were selected for this study since dual-polarization was 

observed to perform better than single-polarization (Irwin et al., 2018). GRD products acquired on July 6, 

2016, December 9, 2016 and December 14, 2016 over the Amboseli Ecosystem were downloaded from the 

European Space Agency Open Access Hub (https://scihub.copernicus.eu/). Images acquired in July is a 

representative of the dry season, while image obtained in December represents wet season because the 

precipitation is extremely low in July and relatively high in December respectively. Satellite images acquired 

on these dates are selected for this study to make the acquiring dates of images from different sensors, 

Sentinel-1 and Sentinel-2 as close as possible. After downloading and subseting the radar imagery with the 

boundary of the study area, several procedures were conducted in SNAP 6.0 software to process the data, 

these procedures include, 

1) Calibration. Calibration aims to transform the simple digital numbers into absolute normalized 

cross section (NRCS), also known as sigma naught (σ0). Thus the pixel values can be linked with 

the backscatter. The type of calibration selected in this study is Sigma0. 

2) Linear to/from dB. dB is the ratio of two values on a logarithmic scale. Converting the images in 

dB formats can get the radar backscatter and makes the histogram easier to work with and more 

comfortable to visualize because the difference between high and low backscatter is relatively larger 

in logarithm scale compared with a linear scale. The conversion of dB was performed from 

 

 

 

where σ0
dB expresses the backscatter in dB, σ0   expresses the sigma naught (Omar, Misman, & 

Kassim, 2017). 

 

3) Convert band. Right click the virtual bands can convert  “on the fly” bands into actual bands that 

could be saved or stored in the file. 

4) Speckle filter. The speckle can decrease the quality of images and thus makes it more difficult for 

image interpretation. Refined Lee filter was adopted to reduce the speckle filter since it has been 

suggested that this filter can reduce the noise and maintain the boundary of open water as well 

(Morandeira, Grimson, & Kandus, 2016). 

5) Terrain correction. Ranger doppler terrain correction in software SNAP 6.0 was used to 

compensate the geometric distortions caused by foreshortening and layover effects that resulted 

                𝜎𝑑𝐵
0 = 10 ∙ log10 𝜎0                                                     （3.1） 
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from relief displacement. A Shuttle Radar Topography Mission (SRTM) 3Sec digital elevation 

model will be automatically downloaded from the Internet to remedy these distortions, and the 

bilinear interpolation was selected as DEM Resampling Method. UTM Zone 37 S was specified as 

the map projection. 

6) Mosaicking. Mosaicking was carried out to combine two or more images into a larger one as the 

study area covered more than one image. Several parameters needed to specify while mosaic images 

in SNAP 6.0. Default projection, UTM/WGS84 was selected as the coordinate reference system. 

Also, the mosaic boundary was manually adjusted according to the boundary of the Amboseli 

ecosystem. Pixel size X and Pixel size Y both were set as 10 m. 

7) Feature extraction. This step consists of indices calculation and grey-level co-occurring matrix 

(GLCM) because the indices and radar-derived texture have been observed to provide valuable 

information for land cover image classification in (Abdikan, Sanli, Ustuner, & Calò, 2016; Clerici, 

Valbuena Calderón, & Posada, 2017; Vreugdenhil et al., 2018). Band math tool in SNAP 6.0 was 

used to calculate the polarized ratio and average of VV and VH according to the formulas described 

in Table 2. GLCM was calculated from the texture analysis tool, and 5*5 was selected as the window 

size, other parameters remained as default values. 

 
Table 2 Formulas of indices in Sentinel-1 radar data. 

Indices Formula Reference 

Polarized ratio (VH to VV) VH/VV (Vreugdenhil et al., 2018) 

Average of VV and VH (VV+VH)/2 (Abdikan et al., 2016) 

 

All the processed bands were exported as GeoTIFF format for further analysis in ArcMap 10.6.1 and 

RStudio.  

 

3.1.2. Sentinel-2 optical data processing 

Sentinel-2 level-1C satellite images obtained on 23 July 2016 and 20 December 2016 over the Amboseli 

Ecosystem were downloaded from the European Space Agency Open Access Hub 

(https://scihub.copernicus.eu/). Four images on each date are needed to cover the whole study area. After 

downloading the images, cloud masks were generated from the Fmask 4.0 software developed by ( Qiu, He, 

Zhu, Liao, & Quan, 2017; Frantz et al., 2018). The generated cloud masks are demonstrated in Figure 10 

and Figure 11. Parameters include cloud probability threshold, potential false positive cloud and result 

dilations were specified as default values in Fmask 4.0. The atmospheric correction had been conducted on 

Level-1C satellite images in Sen2Cor, after which, all the image bands with JPEG2000 format were exported 

as TIFF format in ArcMap 10.6.1. Then they were subset based on the boundary. Next, pixel-based 

mosaicking was implemented in ENVI 5.5. After pre-processing of Sentinel-2 satellite images, indices were 

calculated according to the formulas in Table 3 in the band math tool of ENVI 5.5 software. Then, all the 

image bands were exported as TIFF format file for further analysis in RStudio.  

 
Table 3 Formulas of water and vegetation indices in Sentinel-2 satellite images (Green = Band 3, Red = band 4, near 
infrared (NIR)= Band 8). 

Indices Abbreviations Formulas Reference 

Normalized Difference 

Water Index 

NDWI  (Green - NIR) / (Green + NIR) (McFeeters, 1996) 

Normalized Difference 

Vegetation Index 

NDVI (NIR -Red) / (NIR +Red)                (Rouse, Hass, Schell,  

               & Deering, 1972) 
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3.1.3. Ancillary data processing 

Ancillary data include Planet Scope Imagery, DEM, marshes map of Kenya in 2010, and surface water maps 

provided by ILRI and JRC acquired in 2012 and 2015, respectively. The description and processing of these 

datasets are as follows, 

 

Planet Scope ortho tile images were displayed in software ArcMap 10.6.1 for assisting the selection and 

interpretation of training and test points. DEM in 2015 was subsetted, resampled to 10 m and re-project 

into UTM Zone 37 S coordinate system in ENVI 5.5. Slope and aspect were generated from DEM in 

ArcMap 10.6.1. 

 

Marshes map of Kenya in 2010 was projected to the UTM Zone 37 S coordinate system then subset 

according to the boundary of the study area, after which boundaries of the marshes were adjusted manually 

based on the Sentinel-2 images in ArcMap 10.6.1. The marshes map was integrated into the surface water 

maps derived from Sentinel images. Surface water maps (include rivers and marshes) provided by ILRI was 

re-projected to UTM Zone 37 S coordinate system, subsetted to the boundary of the study area. JRC surface 

water products with TIFF format were converted into polygon feature class using the same software. 

 
Figure 10 True color composite (R, G, B =Band4, 3, 2) of Sentinel-2 image acquired on July 23, 2016 
(A), and the corresponding cloud and shadow mask generated from Fmask 4.0 software (B). 

 

 
Figure 11 True color composite (R, G, B =Band4, 3, 2) of Sentinel-2 image acquired on December 
20, 2016 (A) and the corresponding cloud and shadow mask generated from Fmask 4.0 software (B). 
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3.2. Mapping surface water using random forest  

Random forest is a machine learning method that consists of a large number of decision trees (Breiman, 

2001). Random forest trains the classifier to predict the class (label) of each object (pixel or polygon). The 

class of an object is labeled as the class that have received the most votes from all trees in the forest. Trees 

are established from a bootstrap sample of training dataset, and the splitting at the node of each tree is based 

upon a random selection of a subset of variables (Balzter, Cole, Thiel, & Schmullius, 2015). Random forest 

consists of a certain number of trees (Ntree), and every tree contains several nodes. Each tree represents a 

classifier and votes for the labels of the class. The final label of a particular class type is determined by the 

class that had received the most votes from the trees. 

 

Random forest is a robust machine learning algorithm that has been widely and being increasingly used in 

image classification and regression (Horning, 2010). Random forest algorithm has many advantages over 

other machining learning algorithms, like support vector machines (SVM) and neural network. First of all, 

the random forest is not very sensitive to parameters, and it is not difficult to decide which parameter to 

choose (Breiman, 2001). Also, the random forest can yield information about the relative importance of 

each input variable (variable importance), which makes this approach more efficient and accurate (Horning, 

2010). Moreover, a random forest is not sensitive to missing data and it can predict missing data effectively 

as well as maintain accuracy even if a large part of the data are missing (Breiman, 2001; Kulkarni, 2013). 

Finally, the random forest is not computationally intensive classifier (Gislason, Benediktsson, & Sveinsson, 

2006). Thus, the random forest algorithm is selected for surface water mapping in this study. 

 

 Random forest classification was implemented in RStudio through running packages, “sp”, “rgdal”, 

“raster”, “randomForest”, “ggplot2”, using different datasets and their derived variables as the inputs of 

models. Six models were established to derive the surface water maps. 

 

3.2.1. Training and test datasets collection 

Ideally, a stratified random sampling strategy is suggested to reduce bias for selecting training and test points. 

However, random sampling is not feasible since the High-Resolution Image (Planet Scope) cannot cover 

the whole study area. Therefore, purposive sampling was adopted in this study. 160 points were selected 

and interpreted as training and test datasets for the classification of Sentinel images acquired in July and 

December, respectively. Among the 160 points, 80 points were labelled as water, and the rest are assigned 

as Non-water. True color composite image was generated through assigning Band 4, Band 3 and Band 2 to 

the R, G, B colors for display. In true (natural) color composite, objects on the satellite images closely 

correspond with what human being observed in the real world. Hence, water usually appears blue and black 

on satellite images with true color composite. Sometimes, the water looks brown or green depends on the 

proportion of suspended sediments or phytoplankton. NDWI calculated from Sentinel-2 images were 

classified with a relatively strict threshold value, 0.3 (NDWI > 0.3 represents water), proposed by (McFeeters, 

2013), for assisting in finding the location of water since the proportion of water is relatively smaller 

compared with Non-water class and it increases the difficulty in locating the surface water. Non-water covers 

different land covers, including forest, grassland, cropland, built-up and bare land, to make the training and 

test points as representative as possible. Training and test datasets were converted to KML format file and 

the labels of all the points were double-checked in Google Earth Pro. Selected training and test points for 

random forest image classification are shown in Figure 12. 
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3.2.2. Input variables of random forest 

Random forest algorithm measures the importance of input variables in the prediction of the response 

variable (Janitza, Tutz, & Boulesteix, 2014). Therefore, the variable importance can be used to select suitable 

variables or features with higher predictability. Mean Decrease Gini (MDG) is a coefficient that measures 

the variable importance through calculating the average decrease in node impurity (increase in node purity) 

of splits at nodes using a given variable (Han, Guo, & Yu, 2017). Gini coefficient is a value that varies from 

0 (perfect equity) to 1 (perfect inequity) that it was widely been used to measures the distribution of income 

or wealth. If the Gini coefficient is small, the distribution is homogeneous. The more the Gini coefficient 

decrease, the larger the contribution of the variable in the homogeneity of the nodes. Hence, the higher the 

MDG value, the greater the importance of the variable. The importance score of MDG is described as, 

 

 

 

where n expresses the number of tree nodes based on feature 𝑥𝑗, 𝑗 is the ranking in descending order of 

the features, 𝐺𝑖𝑛𝑖(𝑗)𝑘 is the kth Gini index of feature 𝑥𝑗. Eq.(3.2) is adapted from (Wang, Yang, & Luo, 

2016). 

The input variables of each model can found in Table 4. Sentinel-1 radar data consists of five variables, VH, 

VV, VH or VV, Average and VH correlation. Sentinel-2 optical data consists of six variables, including 

Band2, Band3, Band4, Band8, NDWI and NDVI. DEM data include elevation, slope and aspect.  

 
Table 4 Input variables of random forest models using different datasets. 

Model 

Input variables 

Sentinel-1 
(July) 

Sentinel-2 
(July) 

Sentinel-1 
(December) 

Sentinel-2 
(December) DEM 

Number of 
variables 

A √    √ 8 

B  √   √ 9 

C √ √   √ 14 
D   √  √ 8 

E    √ √ 9 

F   √ √ √ 14 

 𝑉𝐼(𝑥𝑗) =
1

n
[1 − ∑ 𝐺𝑖𝑛𝑖𝑛

𝑘=1 (𝑗)𝑘]                                                              (3.2)                                             

 
Figure 12 Distribution of training and test points in the Amboseli ecosystem during the dry season (A) and 
wet season (B). 
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Variable importance can be used for feature selection for the random forest models since it measures the 

importance of each input variable. The variable importance of each variable in each random forest model 

can be referred to in Figure 13. In Figure.13(A), the most important variable is the average of VV and VH. 

While for model D, the most important variable is VH. For random forest model using Sentinel-2 optical 

data, NDWI is the most important variable in model B and model E. Similarly, for classification models 

using the combination of Sentinel-1 radar and Sentinel-2 optical data, NDWI still contributes the most. Due 

to the advantage of measuring the variable importance of random forest, variables with low variable 

importance, such as slope and aspect could be moved out of the models. However, the accuracy and kappa 

coefficients of classification using Sentinel-1 radar data and Sentinel-2 optical are compared in this study 

and the importance of these two variables varies, thus these two variables were not deleted. 

                          (A)                                         (D) 

 
                                        (B)                                                                                   (E) 

 
                                        (C)                                                                                   (F) 

 
               Figure 13 Variable importance of random forest classification results using different datasets. 

 

 

(A)-(C) represent the variable importance of image classification in July 2016 (dry season) using Sentinel-1 data (A), 
Sentinel-2 data (B), and the combination of both (C). (D)-(F) represent the variable importance of image classification 
using different data in December 2016 (wet season) using Sentinel-1 data (D), Sentinel-2 data (E), and the combination 
of both (F). 



THE SPATIALTEMPORAL RELATIONSHIP BETWEEN ELEPHANT MOVEMENTS AND THE SURFACE WATER AVAILABILITY IN THE AMBOSELI ECOSYSTEM 

 

 

18 

3.2.3. Parameter tuning of random forest  

Parameter tuning is a critical part for improving the performance of random forest models through 

searching for the “optimal” values for parameters. Two important parameters, “mtry” and “ntree”, were 

tuned in this study. “mtry” is the number of randomly selected variables when splitting at tree node. The 

“mtry” in defaulted as the square root of the number of input variables in RStudio. A grid search was 

adopted for the selection of “mtry”. Usually, points in the grids represent the combination of two 

parameters. The grid search here is a linear search for trying all the possible values of “mtry” in this study. 

Grid search with repeated 10-fold cross-validation with ten repeats was implemented for the parameter 

estimation of “mtry”. Figure 14 shows the effect of “mtry” on accuracy. The values of “mtry” parameter 

range from 1 to the number of input variables.  Parameter “mtry” can be determined when the cross-

validation accuracy reaches the maximum. Table 5 demonstrates the selected values of “mtry” of different 

random forest models. “ntree” represents the number of trees established in the forest. Those unselected 

samples were considered out of bag (OOB) observations (Janitza & Hornung, 2018). The OOB error is 

defined as, 

 

                                                        𝑒 =
1

𝑁
∑

1

|𝑐−𝑖|

𝑁
𝑖=1 ∑ 𝐿 (𝑌𝑖 , 𝑓𝑏(𝑥𝑖))𝑏∈𝑐−𝑖                                                 (3.3)     

                                              

Where 𝑁 expresses the sample size , 𝑐−𝑖 is the indices that not belong to the set of bootstrap sampling b, 

|𝑐−𝑖|  is the number of samples that not belongs to the set b, 𝐿  is the loss function, 𝑌𝑖  is the true 

outcome, 𝑓𝑏(𝑥𝑖) is the bias, adapted from (Goldstein, Polley, & Briggs, 2011). 

 

The OOB observations can be used to evaluate the performance of the random forest model, resulted in 

the so-called OOB error rate. Lower OOB error rate means higher OOB accuracy and higher classification 

accuracy in random forest models based on the training sets. Previous research has claimed that OOB error 

can be used as an unbiased estimator for assessing the accuracy of random forest models (Goldstein et al., 

2011). However, using the OOB error to estimate the final prediction error of the random forest model can 

be biased in image classification (Janitza & Hornung, 2018). Thus, the kappa coefficient instead of OOB 

error rate was selected to assess the overall accuracy of image classification using random forest algorithm. 

OOB error stabilized at a certain number of trees. 500 trees (default value) were first constructed in each 

random forest model. Figure 15 illustrates the number of trees and the corresponding OOB error rate. OOB 

error rate fluctuates when the number of trees is relatively small. While the number of trees is sufficiently 

large enough, the OOB error converges. Thus, the number of trees can be selected after the stabilization of 

OOB error. In Figure 15(A), the OOB error stabilizes when the number of trees grows at about 100. Hence, 

values that are larger than 100 can be decided as the number of trees of that model. Parameter “ntree” 

picked in each random forest model can be referred to Table 5. 

 
Table 5 Tuned parameters for random forest models used to map surface water in the Amboseli ecosystem. 

 

Models 

Tuned parameters 

Mtry (number of randomly 
selected variables) 

ntree 

（number of trees） 

    A 2 150 
    B 2 50 
    C 5 250 
    D 1 250 
    E 3 350 
    F 4 200 
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Figure 14 Tuning of “mtry” parameter of six different random forest models using different imagery. 
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Figure 15 Effects of number of trees on the OOB error rate based on the training data of six random forest 

models. Black line represents the overall OOB error rate of all the classes in random forest classification. While green and 

red lines represent the OOB error rate of water and Non-water class in the random forest models. The horizontal axis 

represents the parameter “ntree”, number of trees while the y axis represents the OOB error rate. 
 

 

  

 



THE SPATIALTEMPORAL RELATIONSHIP BETWEEN ELEPHANT MOVEMENTS AND THE SURFACE WATER AVAILABILITY IN THE AMBOSELI ECOSYSTEM 

 

 

21 

3.2.4. Accuracy assessment  

The accuracy of surface water maps was assessed by the confusion matrix and the kappa coefficients. The 

confusion matrix is a simple matrix of the predicted class against true class in reality (reference data collected 

from fieldwork) at specific locations (Foody, 2002). This matrix describes the classification accuracy and 

errors committed or omitted in classification maps, which helps identify which class was wrongly classified 

to other classes. Confusion matrix can evaluate the performance of a classification algorithm through the 

producer’s accuracy, user’s accuracy and overall accuracy. Producer’s accuracy describes the accuracy from 

the perspective of the producer (map maker). The map users focus on thinking how good the ground truth 

can be represented by maps. Thus, correctly classified reference points (or pixels) in each class divide by 

total reference points in that particular class is the producer’s accuracy. On the contrary, user’s accuracy 

demonstrates the accuracy from the perspective of map user. The users always think how reliable the maps 

are and they focus on understanding how good the map can represent the reality. Therefore, correctly 

classified reference points in one class divide the row total (total reference points labeled as that class in 

maps). Overall accuracy illustrates the portions of the correctly classified reference points. Correctly 

classified points for all the classes (elements in the diagonal of the matrix) divide the total reference points 

is the overall accuracy. Although confusion matrix has been widely used for accuracy assessment in image 

classification, one major problem, namely chance agreement, is inevitable. Chance agreement problem refers 

that for some features that assigned to the correct class purely by chance (Foody, 2002). Cohen’s kappa 

coefficient was proposed to remedy limitations caused by chance agreement in overall accuracy. Cohen’s 

kappa coefficient measures the proportion of agreement after excluding chance agreement (Cohen, 1960). 

Cohen’s kappa coefficient describes how good a classifier can predict the true class label compared with the 

randomly assigned class label. The value of the kappa coefficient varies from -1 to 1. The classification 

performance can be evaluated as poor (kappa < 0), slight (kappa: 0.01-0.20), fair (kappa: 0.21-0.40), 

moderate (kappa: 0.41-0.60), substantial (kappa: 0.61-0.80) and almost perfect (kappa: 0.81-0.99) (Viera & 

Garrett, 2005). Test datasets (reference points) for accuracy assessment was interpreted from Planet Scope 

satellite images. 40 reference points of each class, water and Non-water, were interpreted for the accuracy 

assessment of the classified thematic maps. 

3.2.5. Accuracy comparison 

Each random forest model was iterated for five hundred times. Five hundred kappa coefficients were 

generated from each model. Kappa coefficients were claimed to be normal distribution when the sample 

size is large based on the central limit theorem (Vanbelle, 2017). Two-sample t-test (α = 0.05) was adopted 

to test if any significant difference is existing in the mean kappa coefficients of different random forest 

models because two-sample t-test is considered one of the most widely used statistical tests that compare if 

the average difference between two groups is statistically significant.  

3.3. Comparing surface water products 

3.3.1. Comparing the number and area of surface water 

After mapping the surface water in the Amboseli ecosystem using Sentinel data during the dry and wet 

season of 2016. Two maps with highest kappa coefficients in dry and wet season are selected for further 

analysis. The TIFF format (Sentinel and JRC water products) files were converted into polygon feature class 

in ArcMap 10.6.1. The number and area of water bodies can be inquired in the attribute table of the feature 

class. For calculating the number of water bodies, water bodies that locate within 10 m from each other 

were considered as the same water body. Rivers and lakes (or small water bodies) were derived from the 

satellite images while marshes was integrated into the Sentinel surface water maps from external maps layer. 
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3.3.2. Comparing the mean distances to surface water 

Numerous methods can be used to compare raster datasets. Similarity and dissimilarity measures have been 

widely used to compare the maps in previous studies (Lavigne, Ricci, Franck, & Senoussi, 2010; Ray & 

Burgman, 2006). Similarity measures including but not limited to Pearson correlation coefficient, Cosine 

similarity and Euclidean distance (Jyoti et al., 2015). Histogram comparison between paired pixels also has 

been investigated before (Wells et al., 2003). In addition, the statistical test was investigated to compare the 

mean difference between different pixel values (Lavigne et al., 2010). This study combines the distance based 

and statistical test approach to compare the different surface water products. A pixel-by-pixel comparison 

of the surface water maps is impractical in this study since the study area covers a large area of approximately 

11000 km2 and consists of a huge number of pixels. Euclidean distance was calculated for the three surface 

water products, which include Sentinel, JRC and ILRI. 3000 random points were generated using the “Create 

random points” tool in ArcMap 10.6.1. After the creation of these random points, the tool “Extract Multi 

Values to points” was adopted to extract the distance to the surface water. Then, one -way ANOVA was 

conducted in RStudio to test the difference in the mean distances of random points to surface water during 

the dry and wet season. The assumption was made about the normal distribution of the distances extracted 

from different surface water products since the 3000 points are randomly created. Even if the distances are 

not normally distributed, the previous study has observed that the ANOVA is still valid even if the data is 

not normally distributed (Blanca, Alarcón, Arnau, Bono, & Bendayan, 2017).  After conducting ANOVA (p 

< 0.05), not all mean distances are equal. Tukey’s Honestly Significant Difference test, a post hoc test was 

implemented to identify the distances groups means that have a difference. The significance level for the 

test is 0.05.  

 

3.4. Quantifying and comparing the distance of elephants to the nearest surface water 

The distance of elephant to the nearest surface water based on different surface water products (i.e. Sentinel, 

JRC and ILRI) were extracted to the GPS fixes. The distance of elephants to the nearest surface water in 

the Amboseli ecosystem during different seasons using different surface water products were implemented 

with the Shapiro Wilk test (α=0.05). Results showed that the distances of elephants are not normally 

distributed (p <0.05). Thus Mann-Whitney U test (α=0.05) was adopted to test the difference in the distance 

to the nearest surface water between the dry and wet season. The difference in the distances of elephants to 

the nearest surface water extracted from the three surface water products was tested separately. 

3.5. Analyzing the relationship between elephant movement and the surface water availability 

3.5.1. Calculating the movement speeds of elephants 

GPS fixes were re-projected to UTM Zone 37S projected coordinate system and fixes with missing values 

were deleted before any further analysis. GPS fixed obtained in 2015 were chosen for this study. GPS fixes 

obtained in July and August were classified as dry season, whereas those acquired in November and 

December were categorized as wet season. A total of 2564 GPS fixes was used in this study (as shown in 

Table 5). The percentages of missing GPS fixes of elephant KM, KUF, MAM, and ELM are 8.1%, 9.2%, 

16.5% and 6.5%.  

 

The movement speed of elephants was calculated using “PrepData” function in the package “moveHMM” 

in Rstudio. Two procedures were conducted to calculate the movement speed of the elephants. First of all, 

the step length, the Euclidean distance between two successive GPS fixes was calculated. Then the step 

length was divided by time intervals between two successive fixes. The unit of the calculated speed is in 

kilometers per hour (km/h). The calculated speeds were checked for potential outliers using a threshold 
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7km/h because the maximum movement speed of the African elephant is about 7km/h. Table 6 

demonstrates the basic statistics of calculated speed during the dry season and wet season.  

 
Table 6 Descriptive statistics of elephant movement speed (Unit: km/h) during the dry and wet seasons. 

Season Minimum Maximum Mean First Quartile Median Third Quartile 

Dry 0.002 2.21  0.34  0.11  0.23 0.46 
Wet 0.002 1.49  0.27   0.10   0.20  0.35 

 

3.5.2. Analyzing the relationship between the speed of the elephant and the surface water availability 

After the calculation of the movement speed of each elephant. A scatter plot of two variables, distance to 

the nearest surface water and speed of elephant movement, was not display any particular pattern. Therefore, 

the distance to water was classified into three categories: 1) close to water (< 3 km); Medium to water (3 

km- 6 km); far from water (> 6 km), followed previous research conducted by Kummu et al (2011). Shapiro 

Wilk test (α=0.05 ) was adopted to test the normality of the movement speed in each category. The null 

hypothesis of the Shapiro Wilk test is that the data was drawn from a normal distribution and the null 

hypothesis was rejected since all the p values in the test of each class are lower than 0.05. Then, a 

nonparametric test, Mann-Whitney U test (α=0.05 ) was conducted to test the difference in the movement 

speeds of elephant among the three distance categories. Analysis of the relationship between the speeds of 

elephants and the surface water availability were implemented based on the Sentinel and ILRI surface water 

product. The JRC surface water product was not analyzed since the distance of elephants to the nearest 

surface water is too long. 
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4. RESULTS 

The results mainly present the surface water maps in the Amboseli ecosystem and the relationship between 

the elephant movements and surface water availability. This chapter consists of four sections. Section 4.1 

shows the surface water maps and confusion matrix. Section 4.2 illustrates the comparison of different 

surface water products. In section 4.3, the distance of elephants to the nearest surface water is demonstrated. 

The following section 4.4 illustrates the relationship between the speed of the elephant and the surface water 

availability. 

4.1. Surface water maps 

4.1.1. Surface water maps derived from Sentinel-1 radar data and DEM 

Figure 16 shows the classification result in the Amboseli ecosystem during the dry season using Sentinel-1 

data and DEM. The confusion matrix of the image classification was shown in Table 7. Among the 40 

reference points for each class collected for accuracy assessment, 30 points of water class were correctly 

classified, and 31 points of Non-water class were correctly classified. The overall accuracy is 76.25% and the 

kappa coefficient is 0.53. The producer’s accuracy of water and Non-water are 75% and 77.50%, 

respectively. The user’s accuracy of water and Non-water are 76.92% and 75.61%, respectively. The 

producer’s accuracy is the complement of the omission error, producers’ accuracy plus the omission error 

equals to 100%; while the users’ accuracy is the complement of the commission error, user’s accuracy plus 

commission error equals to 100%. Therefore, the omission errors of water and Non-water are 25.00% and 

22.50%, the commission errors of water and Non-water are 23.08% and 24.39%. 

          Table 7 The confusion matrix of classification using Sentinel-1 radar data and DEM during the dry season. 

  Reference User's  

Prediction 1 2 accuracy 
1-Water 30 9 76.92% 
2-Non-water 10 31 75.61% 
Producer's accuracy 75.00% 77.50%  
 Overall accuracy 76.25% 

  Kappa  0.53 

 
Figure 16 Surface water map of the Amboseli ecosystem during the dry season of 2016 based on Sentinel-1 radar 
imagery and DEM data. 
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Figure 17 shows the classification result in the Amboseli ecosystem during the wet season using Sentinel-1 

radar data and DEM. The confusion matrix of the image classification was shown in Table 8. Among the 

40 reference points for each class collected for accuracy assessment, 30 points of water class were correctly 

classified, and 33 points of Non-water class were correctly classified. The overall accuracy is 78.75% and the 

kappa coefficient is 0.57. The producer’s accuracy of water and Non-water is 75.00% and 82.50%, 

respectively. The user’s accuracy of water and Non-water are 81.08% and 76.74%, respectively. The 

omission errors of water and Non-water are 25.00% and 17.50%, the commission errors of water and Non-

water class are 18.92% and 23.26%. 

 

Table 8 The confusion matrix of classification using Sentinel-1 radar and DEM data during the wet season. 

  Reference User's  

Prediction 1 2 accuracy 
1-Water 30 7 81.08% 
2-Non-water 10 33 76.74% 
Producer's accuracy 75.00% 82.50%  
 Overall accuracy 78.75% 

  kappa  0.57 

 

 

 

 

 

 

 

 

 

 

 

 

     
 

 
Figure 17 Surface water map of the Amboseli ecosystem during the wet season of 2016 based on Sentinel-1radar 
imagery and DEM data. 
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4.1.2. Surface water maps derived from Sentinel-2 optical data and DEM 

Figure 18 shows the classification result in the Amboseli ecosystem during the dry season using Sentinel-2 

optical data and DEM. The confusion matrix of the image classification was shown in Table 9. Among the 

40 reference points for each class collected for accuracy assessment, 36 points of water class were correctly 

classified, and 40 points of Non-water class were correctly classified. The overall accuracy is 95.00% and the 

kappa coefficient is 0.90. The producer’s accuracy of water and Non-water are 90.00% and 100.00%, 

respectively. The user’s accuracy of water and Non-water are 100.00% and 90.91%, respectively. Therefore, 

the omission errors of water and Non-water are 10.00% and 0%, the commission errors of water and Non-

water class are 0% and 9.09%. 

 

 

 
      Table 9 The confusion matrix of classification using Sentinel-2 optical data and DEM during the dry season. 

  Reference User's  

Prediction 1 2 accuracy 
1-Water 36 0 100.00% 
2-Non-water 4 40 90.91% 
Producer's accuracy 90.00% 100.00%  
 Overall accuracy 95.00% 

  Kappa  0.90 

    
 

 

 

 

 

 

 

 

 

 

 

 
Figure 18 Surface water map of the Amboseli ecosystem during the dry season of 2016 based on Sentinel-2 optical 
imagery and DEM data. 
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Figure 19 shows the classification result in the Amboseli ecosystem during the wet season using Sentinel-2 

optical data and DEM. The confusion matrix of the image classification is shown in Table 10. Among the 

40 reference points for each class collected for accuracy assessment, 33 points of water class were correctly 

classified, and 40 points of Non-water class were correctly classified. The overall accuracy is 91.25% and the 

kappa coefficient is 0.83. The producer’s accuracy of water and Non-water are 82.50% and 100.00%, 

respectively. The user’s accuracy of water and Non-water are 100.00% and 85.11%, respectively. Therefore, 

the omission errors of water and Non-water are 17.50% and 0%, the commission errors of water and Non-

water class are 0% and 14.89%. 

 

 
Table 10 The confusion matrix of classification using Sentinel-2 optical and DEM data during the wet season. 

  Reference User's  

Prediction 1 2 accuracy 
1-Water 33 0 100.00% 
2-Non-water 7 40 85.11% 
Producer's accuracy 82.50% 100.00%  
 Overall accuracy 91.25% 

  Kappa  0.83 

 

     
 

 

 

 

 

 

 

 

 

 
Figure 19 Surface water map of the Amboseli ecosystem during the wet season of 2016 based on Sentinel-2 optical 
imagery and DEM data. 
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4.1.3. Surface water maps derived from the combination of Sentinel-1, Sentinel-2 data and DEM  

Figure 20 shows the classification result in the Amboseli ecosystem during the dry season using Sentinel-1, 

Sentinel-2 data and DEM. The confusion matrix of the image classification is shown in Table 11. Among 

the 40 reference points for each class collected for accuracy assessment, 36 points of water class were 

correctly classified, and 40 points of Non-water class were correctly classified. The overall accuracy is 

95.00% and the kappa coefficient is 0.90. The producer’s accuracy of water and Non-water are 90.00% and 

100.00%, respectively. The user’s accuracy of water and Non-water are 100.00% and 90.91%, respectively. 

The omission errors of water and Non-water are 10.00% and 0%, the commission errors of water and Non-

water class are 0% and 9.09%. 

 

     Table 11 The confusion matrix of classification using Sentinel-2 optical and DEM data during the wet season. 

  Reference User's  

Prediction 1 2 accuracy 

1-Water 36 0 100.00% 
2-Non-water 4 40 90.91% 

Producer's accuracy 90.00% 100.00%  

 Overall accuracy 95.00% 

  Kappa  0.90 

  

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 20 Surface water map of the Amboseli ecosystem during the dry season of 2015 based on Sentinel-1 radar imagery, 
Sentinel-2 optical imagery and DEM data. 
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Figure 21 shows the classification result in the Amboseli ecosystem during the wet season using Sentinel-2 

optical data and DEM. Table 12 shows the confusion matrix of the image classification. Among the 40 

reference points for each class collected for accuracy assessment, 34 points of water class were correctly 

classified, and 40 points of Non-water class were correctly classified. The overall accuracy is 92.50% and the 

kappa coefficient is 0.85. The producer’s accuracy of water and Non-water classes are 85.00% and 100.00%, 

respectively. The user’s accuracy of water and Non-water  are 100.00% and 86.96%, respectively. The 

omission errors of water and Non-water are 15.00% and 0%, the commission errors of water and Non-

water class are 0% and 13.04%. 

 

 

     Table 12 The confusion matrix of classification using Sentinel-1, Sentinel-2 and DEM during the wet season. 

  Reference User's  

Prediction 1 2 accuracy 
1-Water 34 0 100.00% 
2-Non-water 6 40 86.96% 
Producer's accuracy 85.00% 100.00%  
 Overall accuracy 92.50% 
  Kappa  0.85 

     
    

 

 

 

 

 

 

 

 

 

 

 
Figure 21 Surface water map of the Amboseli ecosystem during the wet season of 2016 based on Sentinel-1 radar 
imagery, Sentinel-2 optical imagery and DEM data. 
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4.1.4. Accuracy comparison 

During the dry season, three random forest models, include model A, B and C, using Sentinel-1 radar, 

Sentinel-2 optical and the combination of both data was built to map the surface water in the Amboseli 

ecosystem. Five hundred kappa coefficients for each model were generated. Two-sample t-test (α =0.05) 

was conducted and results showed that there was a significant difference between the means of kappa 

coefficients in image classification over the Amboseli ecosystem using Sentinel-1 and the combination of 

Sentinel-1, Sentinel-2 data in the dry season of 2016 (p<0.05). However, evidence was not enough to reject 

the null hypothesis that there was no significant difference between the means of kappa coefficients in image 

classification over the Amboseli ecosystem using Sentinel-2 and the combination of Sentinel-1, Sentinel-2 

data in the dry season of 2016 (p=0.34). Thus, surface water map that has the highest kappa coefficient, the 

map derived from Sentinel-2 optical data was selected for further analysis. Figure 24 shows the error bar of 

the kappa coefficients. 

 

During the wet season, three random forest models, include model D, E and F, using Sentinel-1 radar, 

Sentinel-2 optical and the combination of both data was built to map the surface water in the Amboseli 

ecosystem. Five hundred kappa coefficients for each model were generated. Two-sample t-test (α =0.05) 

was conducted and results showed that there was a significant difference between the means of kappa 

coefficients in image classification over the Amboseli ecosystem using Sentinel-1 and the combination of 

Sentinel-1, Sentinel-2 data in the wet season of 2016. However, evidence was not enough to reject the null 

hypothesis that there was no significant difference between the means of kappa coefficients in image 

classification over the Amboseli ecosystem using Sentinel-2 and the combination of Sentinel-1, Sentinel-2 

data in the wet season of 2016. Thus, surface water map that has the highest kappa coefficient, the map 

derived from the combination of Sentinel-1 radar and Sentinel-2 optical data was selected for further 

analysis.  

 

 

 

 

 
Figure 22 Comparison of kappa coefficients during the dry season (A) and wet season (B). 
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4.2. Comparison of the surface water  

4.2.1. Comparison of the number and area of surface water 

As Table 13 shows, the number of rivers captured by Sentinel and JRC (derived from Landsat satellite 

images) is smaller than that in ILRI surface water product. Sentinel has captured 111 lakes/small water 

bodies in the dry season. The area of lakes or small water bodies is significantly larger than those in Sentinel 

and ILRI surface water products. The area of marshes in ILRI water products is substantially larger than 

Sentinel surface water products. 

 
Table 13 Comparison of the number and area of surface water 

Surface water Rivers   Lakes/small water bodies   Marshes 

 Number  Number Area (km2)  Number  Area (km2) 

Sentinel(dry) 1   111 0.73   3 29.9 

Sentinel(wet) 1  668 2.35  3 29.9 

ILRI 22  1 196.5  6 879.8 

JRC (dry) 0  5 0.49  0 0 

JRC (wet) 1   245 3.43   0 0 

 

 

4.2.2. Comparison of the mean distances to surface water  

Euclidean distance to the surface water was generated based on different surface water products. Figure 23 

shows the distance to surface water in dry and wet seasons calculated from Sentinel water products. Figure 

24 shows the distance to surface water in dry and wet seasons calculated from ILRI water products. Figure 

25 shows the distance to surface water in dry and wet seasons calculated from JRC water products. 

 

 

 

 

 

 
Figure 23 Euclidean distance to surface water in dry and wet season calculated from Sentinel water product. 
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Figure 25 Euclidean distance to surface water in dry and wet season calculated from JRC water product. 

Figure 24 Euclidean distance to surface water in dry and wet season calculated from ILRI water product. 
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Figure 26 shows, during dry and wet seasons, the median of the distance extracted from Sentinel product is 

larger than the median of the distance derived from ILRI and smaller than the one extracted from the JRC 

product. The one-way ANOVA test observed that there was a significant difference between the means of 

the distances (to surface water) derived from the three surface water products during the dry season (p < 

0.05). A similar result can be observed during the wet season (p < 0.05). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 26 Distances of 3000 random points to the surface water during the dry season (A)and wet season (B). 
The vertical axis is the distance (km). 
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4.3. The distance of elephants to the nearest surface water 

The mean distances of elephants to the nearest surface water extracted from the Sentinel water products 

during the dry season and wet season are 6.7 km and 4.2 km, respectively. The mean distances of elephants 

to the nearest surface water extracted from the ILRI water products during the dry season and wet season 

are 2.2 km and 2.6 km, respectively. The mean distances of elephants to the nearest surface water extracted 

from the JRC water products during the dry season and wet season are 29.0 km and 13.2 km, respectively.  

 

The distance of elephants to the nearest surface water in the Amboseli ecosystem during different seasons 

using different surface water products were tested with Shapiro Wilk (with 0.05 significance level). Results 

also show that the distance of elephants is not a normal distribution (p <0.05). Mann-Whitney U test results 

demonstrate that the distance of elephants to the nearest surface water during the dry season is significantly 

different from the distance during the wet season using surface water derived from Sentinel satellite images, 

Landsat satellite images. However, there is not any significant difference between the distance of elephants 

to the nearest surface water during the dry season and wet season using the surface water derived from ILRI 

(P>0.05). As Figure 22 shows, the distance of elephants to the nearest surface water in the dry season 

derived from JRC is larger than the distance derived from the other three distances. Moreover, a significant 

difference was observed in the distance to the nearest surface water using Sentinel derived surface water, 

Landsat derived surface water maps (Figure 27). 

 

 

 

 

 

 

Figure 27 Distance of elephants to the nearest surface water in the Amboseli ecosystem during the dry and 

wet seasons using Sentinel (A), JRC (B), and ILRI (C) surface water product. The pairs with no significant difference 

(C) based on the Mann-Whitney U test with p >0.05 are annotated. 
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4.4. The relationship between speeds of elephant and the surface water availability 

As Figure 28 shows, during the dry season, the Mann-Whitney U test of the speeds in different distance to 

water categories showed that significant difference did not exist in the speeds of elephant movement 

between the close (<3 km) and medium distance (3 -6 km) to the nearest surface water classes (p=0.74). 

Similarly, the Mann-Whitney U test of the speeds between the medium (3- 6 km) and far (> 6km) distance 

to the nearest surface water classes also showed that there was no significant difference in the speeds of 

these two distance classes (p=0.19). However, a significant difference did exist in the speeds of the elephant 

movement between close (< 3 km) and far distance (>6 km) categories (p<0.05). 

 

As Figure 28 demonstrates, during the wet season, the Mann-Whitney U test of the speeds in different 

distance to water classes showed that significant difference did not exist in the speeds of elephant movement 

between the close and medium distance to the nearest surface water classes (p=0.86). However, the Mann- 

Whitney U test of the speeds between the close and far, medium and far distance to the nearest surface 

water classes demonstrated that there was no significant difference in the speeds of these distance classes 

(p<0.05).  

 

 

 

 

 

 

 

 

 

 

Figure 28 Comparison of speed of elephant movement among three distance to water categories 

based on surface water derived from Sentinel satellite images. (A) represent the difference in speeds 

of elephant movement during the dry and (B) represent the one in wet season. The pairs with no 

significant difference based on the Mann-Whitney U test (p >0.05) are annotated. 
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Figure 29(A), (B) demonstrate the speed difference between different distances to the nearest surface water 

classes based on ILRI surface water maps during the dry season. As Figure 29 (A) shows, Mann- Whitney 

U tests of the speeds in different distance to water classes based on ILRI showed that significant difference 

did not exist in the speeds of elephant movement between the close and medium distance to the nearest 

surface water classes (p=0.36). Similarly, the Mann-Whitney U test of the speeds between the medium and 

far distance to the nearest surface water classes also showed that there was no significant difference in the 

speeds between the medium and far distance classes (p=0.72). However, a significant difference did exist in 

the speeds of the elephant movement between close and far distance classes (p<0.05).  

 

As Figure 29 (B) demonstrate, during the wet season, the Mann-Whitney U test of the speeds in different 

distance to water classes showed that there was not any significant difference in the speeds between the 

close and medium, medium and far, close and far distance to the nearest surface water classes(p<0.05). 

 

 

 

 

 

 

 

 

 

 

Figure 29 Speeds of elephant movement among three distance to water categories based on surface water produced 

by ILRI during the dry season(A) and wet season (B). The pairs with no significant difference are annotated based on 

Mann-Whitney U test with p >0.05. 
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5. DISCUSSION 

5.1. Remote sensing of mapping surface water in the Amboseli ecosystem 

The surface water maps over the Amboseli ecosystem have relatively high kappa coefficients despite the 

fact that the optical images can be easily affected by the cloud, which can be attributed to many factors. First 

of all, Sentinel-2 images used in this study are with low cloud coverage. Secondly, the cloud and cloud 

shadow in the  Sentinel-2 satellite images are detected using an effective software, Fmask.4.0 since the 

software had been tested with 67 reference images and the average accuracy is approximately 88% (Qiu et 

al., 2017). Thirdly, the indices, NDVI and NDWI significantly contribute to high coefficients in mapping 

the surface water since the variable importance of these two variables are high. The effectiveness of NDWI 

in delineating surface water has been demonstrated in (McFeeters, 1996). The vegetation NDVI also has been 

observed to perform well in extracting surface water (Rokni, Ahmad, Selamat, & Hazini, 2014; Zhou et al., 2017). 

Fourthly, the contribution of DEM in the accuracy of the surface water maps cannot be ignored since the DEM is 

closely linked with the flow of surface water (Huang et al., 2018). 

 

The kappa coefficients of mapping surface water in the Amboseli ecosystem using Sentinel-1 radar data are 

relatively small due to many reasons even though Sentinel-1 radar data had been widely and successfully 

used for water mapping in previous studies.  Xing et al. (2018) used Sentinel-1 radar images to map the 

surface water in Dongting Lake and the kappa coefficients had been observed to be higher than 0.85. 

Similarly, an automated algorithm was developed to monitor the surface water and the kappa coefficients 

ranged from 0.879 to 0.910 (Twele, Cao, Plank, & Martinis, 2016). The relatively low kappa coefficients in 

mapping surface water can be resulted from many reasons. First of all, the water-alike smooth objects, such 

as pavements and sand surfaces can be wrongly classified as water due to their similarities in the radar 

backscatter, thus largely increase the commission error in the image classification. Classification accuracies 

have been observed to be significantly improved by applying the Sand Exclusion Layer (SEL) to map water 

in arid regions (Martinis, Plank, & Ćwik, 2018). Future study can test the ability to reduce the commission 

error by applying the extra sand or road masks. Furthermore, the point-based training data may yield lower 

accuracy compared with polygon-based training data. The influence of point or polygon based training data 

on the performance of random forest classification has been examined and results showed that polygon 

based training data in image classification can yield high accuracy (Corcoran, Knight, Pelletier, Rampi, & 

Wang, 2015). Future work can consider using polygon based instead of point-based training data in the 

image classification. In addition, the speckle on the radar image affects classification accuracy. The applied 

Refined Lee speckle filter reduced the resolution of the radar image. A Markov random field (MRF) based 

filter can be adapted to reduce the speckle without compromising the spatial resolution (Lankoande, Hayat, 

& Santhanam, 2009). Finally, omission error also can be increased by inundated vegetation and Bragg 

scattering. 

 

Sentinel surface water maps have been observed to capture a larger number of lakes/small water bodies, 

especially during the dry season compared with JRC and ILRI surface water products. The difference in the 

capability of capturing lakes/small water bodies using Sentinel-2 and JRC surface water can be explained by 

that the selected bands (10 m spatial resolution) of Sentinel-2 satellite images have finer spatial resolution 

compared with the Landsat satellite images (30 m spatial resolution). Therefore, many lakes/small water 

bodies can be detected by Sentinel-2 images instead of Landsat images. The advantage of extracting surface 

water using Sentinel-2 over Landsat satellite images also have been demonstrated in (Kwang, Jnr, & Amoah, 

2017). The difference in the capability of capturing lakes/small water bodies using Sentinel-2 and ILRI 

surface water can be explained by the different mapping scale. The Sentinel maps surface water at a local 
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scale, while the ILRI maps the surface water at a country scale, thus surface water boundaries may be 

generalized in the ILRI surface water maps.  

5.2. The relationship between the surface water availability and elephant movement in the Amboseli 
ecosystem 

The difference was observed between the distance to the nearest surface water in the dry season and wet 

seasons using different surface water maps. The distance of elephants to the nearest surface water during 

the dry season is significantly higher than that of the wet season using surface water derived from Sentinel 

or Landsat satellite images (JRC). Compared with the vector layer of surface water maps provided by the 

ILRI, the satellite-derived surface water maps have an obvious advantage over the temporal resolution. 

Satellite images derived surface water maps have provided surface maps during the dry and wet season. 

While for the vector-based layer of the surface water map, only one surface water map is available and the 

season information was missing. Hence, the estimation of the difference between the distance to the nearest 

surface water in the different season can be biased since not all the surface water are permanent water bodies, 

especially in a semi-arid landscape. The distance of elephants to the nearest surface water in the dry and wet 

season showed no significant difference in using the surface water provided by ILRI. This result is not 

reliable since the surface water maps made by ILRI is on a country scale and the surface water boundary is 

generalized, the distance of elephants to the nearest surface water is relatively short, which resulted in no 

difference in distance of elephants to the nearest surface water. The distance of the elephant to the nearest 

surface water is significantly larger compared with the distance in the dry season derived from other surface 

water maps 

 

The distance of elephants to the nearest surface water during the dry season has been observed to be larger 

than that of the wet season in this study. However, the previous study claimed that the distance of elephant 

to the surface water is shorter compared with those in the wet season (Harris et al., 2008; Park et al., 2002). 

Elephants are observed to stay close to water during the dry season due to the scare water (Ashiagbor & 

Danquah, 2017). This study contradicts with previous studies can be explained in two aspects. On one hand, 

the adoption of different surface water can explain the part of the difference. Harris et al. (2018) have 

pointed out that the small and numerous water bodies were not taken into consideration during the wet 

season and admitted that their research is conservative during the wet season. Park et al. (2002) only 

considered the perennial water resources while analyzing the distance of elephants to the nearest surface 

water in their study. On the other hand, even though the elephants prefer to stay closer to water during the 

dry season does not mean that the elephants are further away from water during the wet season. The 

distribution and abundance of the surface water during the dry and wet season are different. During the wet 

season, even if the water does not constrain the movement of the surface water, there are many rain-filled 

small water bodies (Chamaillé-Jammes et al., 2013), which still can make shorten the elephant's distances to 

the surface water during the wet season.  

 

During the dry season, a significant difference was observed in the speeds of the elephant movement 

between close and far distance to the nearest surface water classes (p<0.05). The elephant speeds are 

relatively larger when they are close to the nearest surface water. As demonstrated before, elephants are 

water-dependent species. During the dry season, limited surface water resources constrain the elephant 

movement. This result confirms with previous research. For example,  Chamaillé-Jammes et al. (2013) have 

studied the constraints of surface water on the elephant movement and observed that elephant adjusted 

speed in response to the constraints, elephants tended to increase the movements speeds when they are 

arriving or leaving the surface water. Similarly, elephants were observed to adopt high-speed strategy when 

they are approaching or leaving water resources, this allows the elephants use water for thermoregulation 

(Thaker, Gupte, Prins, Slotow, & Vanak, 2019). 
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Time difference between the Sentinel-2 surface water map (2016) and the elephant GPS tracking data (2015) 

is an issue needed but difficult to address in this study since either elephant GPS tracking data in 2016 or 

Sentinel-2 satellite images in Sentinel-2 is unfortunately unavailable. Surface water, as well as elephant 

movement, is dynamic. Two scenarios can be generated in this study. Scenario one is that the surface water 

distribution in 2015 over the Amboseli ecosystem is similar to that in 2016 based on the assumption that 

the monthly average rainfall and temperature of these two years are similar. Scenario 2 is that the surface 

water in 2015 and 2016 are completely different, and this study provided a framework for mapping surface 

water and analyzing the relationship between the elephant movements and the surface water availability. 

 

Water is widely considered as one of the most important resources around the world. Also, elephants play 

an essential role in wildlife tourism and local communities can benefit from the prosperity of tourism. 

Furthermore, the sustainable management of the surface water resources can reduce the human-elephant 

conflicts to some extent since elephants and livestock compete for limited water resources during the dry 

seasons in semi-arid landscapes. The derived surface water maps and the findings of the relationship 

between the elephants and the surface water can assist in developing conservation and management 

strategies of surface water resources and wildlife resources. Knowing the distribution of the surface water 

resources is the prerequisites for protecting the resources. Also, the surface water maps and the distances 

of elephants to the nearest surface water maps can provide information for the allocation of the artificial 

water points. 
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6. CONCLUSIONS AND RECOMMENDATIONS 

6.1. Conclusions 

This study mainly aims to quantify the spatiotemporal relationship between elephant movements and surface 

water availability in the Amboseli ecosystem. And to quantify the relationship, surface water maps during 

the dry and wet seasons are derived from the Sentinel-1 radar imagery, Sentinel-2 optical imagery and the 

combination of both. Statistical tests were implemented to test the difference between the kappa coefficients 

of the surface water maps during the dry and wet seasons using different datasets. Also, the derived Sentinel 

surface water maps was compared with ILRI and JRC surface water products. Conclusions drawn from the 

study demonstrate as follows, 

 

First of all, the combination of Sentinel-1 radar data and Sentinel-2 optical data does not always improve 

the kappa coefficient of surface water mapping compared with the coefficients using either Sentinel-1 or 

Sentinel-2 data alone. Results of the tests evidence this conclusion. On one hand, the surface water maps 

during the dry and wet seasons derived from the combination of the Sentinel-1 and Sentinel-2 data yield 

higher kappa coefficients compared with the ones derived from the Sentinel-1 radar imagery. On the other 

hands, there is no significant difference between the kappa coefficients of the surface water maps during 

the dry and wet season derived from the Sentinel-2 optical imagery and the combination of Sentinel-1, 

Sentinel-2 imagery.  

 

Secondly, the difference between the three surface water products (Sentinel, ILRI and JRC) highlights the 

advantages of Sentinel surface water products. The difference in water distribution patterns has been 

detected. The water distribution pattern refers to the number of water bodies or rivers, mean distance to 

surface water). Sentinel-2 surface water maps capture a large number of small water bodies, especially during 

the dry season. 

 

Thirdly, elephants are closer to the water during the dry season compared with the wet seasons. The Mann-

Whitney U test shows that there is a significant difference between the distances of elephants to the nearest 

surface water during different seasons based on the surface water products derived from the Sentinel satellite 

images, Landsat images. During the dry season, surface water is more scarce, while surface water is more 

abundant during the wet season due to the different rainfalls of these two seasons. Thus the distances 

between the elephants and the surface water are shorter during the dry season compared with the ones in 

the wet seasons. No significant difference was observed between the distances of the elephants to the nearest 

surface water is caused by the relatively abundant surface water in the maps provided by ILRI. 

 

Finally, the movement speeds of the elephant in the Amboseli ecosystem are higher close to surface water 

compared with further away from surface water during the dry and wet season, respectively. The Mann-

Whitney tests results can support this conclusion.  Previous research has proved that elephants change 

speeds in response to surface water constraints. 
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6.2. Limitations and suggestions for future research 

Omission errors in mapping surface water using Sentinel-2 optical data and DEM may mainly be caused by 

mixed pixels at the water and non-water boundary. In particular, part of the rivers was not detected due to 

the impurity in pixels caused by vegetation grows along the riverside and narrow width of rivers. A possible 

approach for addressing the issue of incomplete rivers may be integrating the decomposition of mixed pixels 

or considering the texture information during the image classification (Yang, Zhao, Qin, Zhao, & Liang, 

2017). Commission errors also can be found in mapping surface water using optical satellite images. Built-

up area and terrain shadows can be misclassified as surface water, thus led to an overestimation of the 

surface water. Future study can either replace the NDWI with modified NDWI, which has been claimed to 

reduce the built-up noise that could be mixed with surface water (Xu, 2006) or to adopt an approach to 

calibrate the spectra to a normal level as explained in (Kao, Ren, & Lee, 2014). The commission error of 

mapping surface water using Sentinel-2 satellite imagery and DEM was not detected may be caused by the 

relatively small size of reference points and purposive selection of sampling strategies for accuracy 

assessment. 

 

Bias in the accuracy assessment of image classification can be caused by the temporal difference among 

different satellite images and position errors (reference data). Reference data is the benchmark of assessing 

accuracy and image classification. Reference data should represent the real ground truth. However, reference 

data always contains errors and is just another classification (Foody, 2002). The acquisition time difference 

between satellite images and the finer resolution image for collecting test dataset (reference data) was 

unavoidable although we tried to make the time as close as possible. The time difference in different satellite 

images can cause errors in the images interpretation and affect the reliability of the reference points. 

Furthermore, perfectly in co-registration between the classified and referenced data is the assumption for 

assessing the accuracy of the maps (Verbyla & Hammond, 1995). However, this is always not the case in 

reality due to the inherent positional errors of the classified and referenced data and this imperfectly match 

often cause conservative estimation of the classification errors.   

 

Modified Normalized Difference Water Index (MNDWI) and Pan-sharpening can be adopted for further 

improving the classification accuracy of the surface water maps. Compared with NDWI, MNDWI had been 

claimed and observed to increase the water maps since it can better differentiate between the pixels of water 

and the built-up areas. The MNDWI substitutes the near-infrared band (NIR) with the mid-infrared band 

(MIR) However, the spatial resolution of MIR bands in Sentinel-2 satellite images is 20 m. Pan-sharpening 

can be used to increase the spatial resolution of a multispectral band in Sentinel-2 satellite images. 

 

A finer temporal resolution of elephants GPS tracking data is recommended for further understanding and 

further analysis with elephant movement speeds. Whether finer resolution of elephants GPS tracking data 

with a higher frequency can yield similar or different results needed to be tested. The four-hour temporal 

resolution of GPS tracking data may not provide enough details about the movement speeds of the elephant 

since the elephant can go back to the original location after four hours. Attention also should be paid to the 

quality of the GPS tracking data. Also, future analysis of the relationship between the elephant movements 

and the surface water could add more samples of the elephants to make the samples as representative as 

possible. 

 

Further analysis of the elephant movements also can investigate other movement parameters, include the 

turning angle and the net squared displacement. The analysis of the different combinations of movement of 

the speeds and the turning angles can reveal the information about the elephant behavior states. Net squared 

displacement describes the distances between can provide information about the movement patterns. 
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APPENDICES 

Appendix1：True color composite of Sentinel-2 image acquired on July 23, 2016 (A) and December 20, 

2016. 
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