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ABSTRACT 

Vegetation phenology refers to the time of periodic events in vegetation life cycles, such as the start of 

green-up and flowering. For semi-arid rangelands, where the cloud cover is persistent during rainy seasons 

and vegetation life cycles are relatively short (approximately three to four months), satellite-based phenology 

monitoring requires temporally dense images. Moreover, fine-resolution images can provide more spatial 

details for heterogeneous landscapes. PlanetScope (PS) is a promising constellation that provides daily global 

observations at 3m resolution with about 170 CubeSats (small satellites), and as such may have more options 

to provide more frequent optical cloud-free imagery with finer spatial resolution as compared to other 

satellites like Sentinel-2 or Landsat. The objective of this study is to evaluate the potential of PS imagery for 

retrieving vegetation phenology in semi-arid rangelands in comparison to alternative data sources, including 

RGB field camera photography, Sentinel-2 images, and MODIS images. The study area is a semi-arid 

rangeland site in Kenya, where the dominant vegetation communities are open grass, shrubs, mixed shrubs 

and grass, and trees with understory grass. Before phenology estimation, the clouds and cloud shadows in 

PS images were detected based on a monthly threshold-based decision tree. The overall accuracy of the 

cloud and cloud shadow detection was 83.63%. Four phenological metrics,  i.e., the start of season (SOS), 

end of season (EOS), maximum vegetation index value, and integral vegetation index from the start of 

season to the end of season, were then retrieved from satellite-based NDVI and camera-based greenness 

chromatic coordinate time series after fitting to a double hyperbolic tangent model. PS-derived SOS and 

EOS were on average within eight days and 15 days of camera-derived SOS and EOS. Due to higher 

temporal resolution (~daily), there was a better density of cloud-free observations in PS-based NDVI time 

series than Sentinel-2-based NDVI time series, as a consequence of which PS-based phenology retrievals 

were less impacted by the persistent clouds during rainy seasons. Moreover, due to the finer spatial 

resolution (3m), PS-derived phenology maps showed more spatial details than phenology maps derived from 

commonly used coarse-resolution sensors like MODIS. Overall, the results demonstrate the potential of 

using PS images for fine-scale phenology analysis in semi-arid rangelands. The spatially-detailed vegetation 

phenology derived from PS at the local scale can provide useful input for understanding the response of 

semi-arid rangelands to environmental factors. Further investigation of using PS images as supplementary 

and/or validation data for the phenology analysis base on other free satellite datasets, such as Sentinel-2, 

can be a way of using PS images for the analysis of vegetation phenology at the global scale.  

 

Keywords: NDVI time series, CubeSat, cloud and cloud shadow detection, Sentinel-2, MODIS, digital 

repeat photography 
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1. INTRODUCTION 

1.1. Background 

Rangelands cover about 40% of the global land area and play an essential role in the global sustainability by 

providing foods and habitats to wildlife and livestock (Reeves et al., 2014). Vegetation productivity of 

rangelands strongly relates to temperature and precipitation, both of which influence the water availability 

for plants (Ouled Belgacem & Louhaichi, 2013). In the arid or semi-arid lands (ASALs), such as in Eastern 

Africa, the rangeland dynamics are sensitive to rainfall variability (Grossiord et al., 2017; Hovenden et al., 

2004). Many climate change projections in Eastern Africa show that temperatures will continue to increase 

and rainfall will become more variable, leading to more frequent and intense extreme events, such as 

droughts and floods (IPCC, 2013). To improve the resilience of rangeland ecosystems and prevent the loss 

of livestock caused by drought-driven forage scarcity, the monitoring of rangeland dynamics in ASALs is 

very important. Vegetation phenology is an essential element of rangeland dynamics.  
 

Vegetation phenology refers to the time of different stages in plant life cycles, such as sprouting, flowering, 

and ripening (Schwartz, 2013). Most phenology studies in rangelands aim to understand how climate change 

will impact changes in vegetation phenology. Climate drivers such as elevated atmospheric CO2 

concentration (Zelikova c, 2015; Hovenden et al., 2008), temperature (Shen et al., 2011; Yu et al., 2003), 

precipitation (Prevéy & Seastedt, 2014; Shen et al., 2011), and extreme climate events (Jentsch et al., 2009) 

have been found to strongly relate to early green-up and flowering. Other studies predict phenological shifts 

and changes in rangeland productivity under projected climate change (Chang et al., 2017; Hermance et al., 

2015; Bloor et al., 2010). For the semi-arid rangelands in Eastern Africa, no spatially and temporally detailed 

phenology assessments have been performed at the landscape scale. As a result, the phenological variations 

of different vegetation communities as a response to rainfall variability are still poorly understood (Cho et 

al., 2017; Dahlin et al., 2017).  

 

The traditional method used to monitor vegetation phenology relies on human observations. However, 

observers can only visually inspect distinct phenological phases such as flowering (Sparks & Menzel, 2002). 

Vegetation indexes (VIs) are a straight-forward quantifiable measure of vegetation growth status, and can 

serve as an alternative method to retrieve threshold-based phenological metrics, such as the start of season 

(SOS) and the end of season (EOS) (Vrieling et al., 2017; Zhang et al., 2014; Keenan et al., 2014).  VI time 

series can be generated from multi-temporal optical images, as obtained by field cameras or satellite 

platforms (Adole et al., 2016).  

 

Digital repeat photography (Richardson et al., 2007) refers to the ground-based method for collecting multi-

temporal optical images. Digital cameras with at least three channels (i.e., red, green, blue) are installed at 

fixed positions in the field and take one or more pictures every day. Resulting photograph series are a 

substitute for direct field observations by humans. In addition, they can be used to calculate canopy 

greenness from RGB values followed by retrieving phenological metrics (Crimmins & Crimmins, 2008; 

Richardson et al., 2007; Abu-Asab et al., 2001). Digital repeat photography has been widely used for 

phenology assessment of forest systems (Keenan et al., 2014) and grassland systems (Inoue et al., 2015). 

However, to monitor vegetation phenology at the landscape scale with digital repeat photography, a large 

number of cameras would be required, which may not be the most cost- and time-efficient option. 
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Satellite-based remote sensing provides a cost-effective method to retrieve vegetation phenology at the 

landscape scale (Guan et al., 2014). Given the requirement of frequent observations on vegetation phenology 

monitoring, most satellite-based phenology studies used coarse-resolution images captured by sensors with 

a daily revisit time, such as the Moderate Resolution Imaging Spectroradiometer (MODIS) (250 m – 500m) 

(Gong et al., 2015) and the Advanced Very High Resolution Radiometer (AVHRR) (1km) (Jolly & Running, 

2004). However, in most cases, vegetation cover is spatially heterogeneous, resulting in multiple vegetation 

species in a single image pixel. Therefore, coarse-resolution images are not effective for extracting 

phenological metrics at species-level for heterogeneous land covers (Vrieling et al., 2018), such as semi-arid 

rangelands in East Africa that are characterized by a mixture of woodland and grassland. Fine-resolution 

images (≤30 m) may provide a better data source for this purpose. 

 

The main problem in using fine-resolution images is the long revisit time. For example, the revisit time of 

Landsat-8 is 16 days. This can lead to an insufficient number of cloud-free observations to accurately 

represent the within-season vegetation dynamics, especially in tropical areas with persistent cloud cover. To 

solve this problem,  Fisher et al. (2006) proposed to combine Landsat imagery of multiple years to create a 

single synthetic year. This method can be used to retrieve an average phenology over multiple years, which 

can subsequently be adjusted by observations of a specific year to estimate phenological metrics for that 

year (Melaas et al., 2016; Melaas et al., 2013). However, this method requires a reasonably stable phenology 

from year to year. Therefore, for semi-arid rangelands in Eastern Africa with significant annual variations in 

phenology, multi-year data integration is not a good option (Gachoki, 2018). To retrieve single year 

vegetation phenology at fine resolution, 10m resolution Sentinel-2 images with a relatively short revisit time 

of ~5 days have been used for a Dutch barrier island where vegetation has a long annual cycle (Vrieling et 

al., 2018). In the semi-arid rangelands of Eastern Africa vegetation has shorter greening cycles and significant 

cloud cover during parts of the year (Gachoki, 2018), which may require a shorter revisit time to accurately 

describe the seasonal changes of vegetation.  

 

PlanetScope (PS) images (Planet Team, 2017) could provide a potential alternative to Sentinel-2 images. PS 

images are captured by the PS constellation, which consists of approximately 170 4-kg CubeSats (small 

satellites). Due to the large number of CubeSats in the same orbit, the constellation achieves a short revisit 

time (~1 day), which possibly allow for temporally denser observations than Sentinel-2 particularly during 

months of relatively persistent cloud cover. The high spatial resolution of PS images (3m) may allow for 

assessing phenology at the species level. However, because the launch of the CubeSats in PS constellation 

started in 2013 and its data are commercially available with limited free availability for research purposes, 

none of the existing studies that use these data is related to phenology. Cooley et al. (2017) used PS images 

to generate a VI time series to determine changes in dynamic surface water on the Yukon Flats. They 

discussed an important limitation of the application of PS images, which is the lack of an applicable cloud 

and cloud shadow mask products and automated cloud and cloud shadow detection algorithms. Effective 

masking is needed however to avoid using contaminated vegetation index values that do not relate to the 

vegetation status when estimating phenology (Champion, 2016; Tseng et al., 2008).  
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1.2. Research questions 

 

The main aim of this study is to evaluate the utility of PS images for retrieving vegetation phenology for 

semi-arid rangelands in Eastern Africa. To achieve this aim, the research objectives and linked research 

questions are as follows:  

 

(1) to develop and assess a cloud and cloud shadow screening algorithm for PS images;  

Q1.1. What is the accuracy of the cloud and cloud shadow detection algorithm? 

 

(2) to assess if PS images can be used to accurately retrieve phenological metrics; 

Q2.1. What is the accuracy of PS-derived phenological metrics when compared to camera-derived ones 

at the camera locations? 

Q2.2. What is the influence of image availability of PS on the accuracy of phenological metrics? 

 

(3) to map the vegetation phenology derived from PS images and to analyse spatial and temporal patterns;  

Q3.1. Are there any spatial artefacts on PS-derived phenology maps? If yes, what causes those artefacts? 

Q3.2. Do different vegetation communities show significant differences in vegetation phenology? 

Q3.3. Do these differences vary across different seasons? 

 

(4) to compare PS-derived phenological metrics with Sentinel-2- and MODIS-derived ones. 

Q4.1. What is the difference in the temporal density of cloud-free observations between PS and the 

other two satellite images? 

Q4.2. Is the accuracy of PS-derived phenological metrics higher than Sentinel-2- and MODIS- derived 

ones when both compared to phenological metrics derived from field camera photographs? 
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2. STUDY AREA 

More than 80% of the Kenya land area is rangeland, providing important natural resources to wildlife, 

livestock, and millions of pastoralists and agro-pastoralists (Mathu, 2009). Most of these rangelands are 

located on ASALs, which are vulnerable to recurring droughts. Kapiti Farm is a semi-arid rangeland site in 

southern Kenya. It is owned by the International Livestock Research Institute (ILRI) and used as a research 

station to conduct research on sustainable livestock and rangeland management. The farm covers 

approximately 128 km2  and is located in the south of Machakos County (Figure 1). On the farm, about 2,500 

head of beef cattle, 1,200 sheep, and 250 goats are maintained by 80 ILRI staffs for research purposes. As 

one of the few rangelands without serious landscape fragmentation in Kenya, it also serves as an important 

habitat for large numbers of wildlife. The wild animals in Amboseli National Park regard Kapiti Farm as a 

transitory territory during the rain seasons. Taking advantage of location, Kapiti Farm is also a critical 

ecological corridor for the migration of mammals (International Livestock Research Institute (ILRI), 2018).  

 

Based on a field survey conducted by Gachoki (2018) in 2017, the dominant vegetation communities in 

Kapiti Farm are open grass, Acacia shrubs, mixed shrubs, and trees. In general, there are two wet seasons 

in a year. Based on in-situ records of daily precipitation from 1 January 2001 to 3 October 2018 (Figure 2), 

the “short rain” (SR) season is approximately from October to January and the “long rain” (LR) season is 

approximately from March to June. The average precipitation during the last 18 years (2001-2018) is 195.60 

mm for SR and 252.72 mm for LR. Precipitation characteristics and grazing intensity are the most important 

controls on the dynamics of vegetation life cycle and productivity in Kapiti Farm. The seasonal vegetation 

responds therefore strongly to the timing and quantity of rainfall.  
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Figure 1: Overview of the study area. The background image is a WorldView-2 scene (0.5m) acquired on 2 February 2017 provided by 
Digital Globe. 

 
Figure 2: Precipitation characteristics in Kapiti Farm based on manual in-situ daily rain gauge data. Daily and monthly precipitation are 
shown from 1 January 2017 to 3 October 2018. The average monthly precipitation was calculated based on precipitation in the past 18 
years (January 2001- October 2018). 

  



RETRIEVING VEGETATION PHENOLOGY WITH PLANETSCOPE IMAGES FOR A SEMI-ARID RANGELAND IN KENYA 

7 

3. DATA 

Four sources of optical images were used in this study, i.e., digital repeat field camera photographs, PS,  

Sentinel-2, and MODIS images. Camera photographs were used to understand vegetation dynamics at the 

vegetation community level. Moreover, the camera-derived phenological metrics were used as a form of in-

situ measurements to evaluate satellite-derived phenological metrics and to assess if important changes in 

greenness may be missed by satellites. PS, Sentinel-2, and MODIS images were used to retrieve phenological 

metrics for the entire study area and to analyse the influence of spatial and temporal resolution on the 

estimates of phenological metrics. Vegetation survey and precipitation records collected in Kapiti Farm were 

used to analyse the potential environmental driving forces of phenological variations. Due to data 

availability, the timeframe considered in this study is from 1 March 2017 to 1 October 2018, which covers 

three rain seasons and is related to three vegetation seasons: 1 March 2017 – 1 October 2017 (named 

LR2017), 1 September 2017 – 1 March 2018 (SR2017), 1 February 2018 – 1 October 2018 (LR2018). Table 

1 shows an overview of the datasets used in this study. 

 
Table 1: Overview of datasets 

 Acquisition time Resolution  Revisit time Cloud mask? 

  (m) (days) (Yes/No) 

Optical images     

PlanetScope  

(Analytic Ortho Scene) 

 

3/3/2017 – 1/10/2018 

(LR2017, SR2017 and LR2018) 

 3 1 No 

Sentinel-2 

(Sentinel-2A, Sentinel-2B) 

 

6/9/2017 - 1/10/2018  

(SR2017 and LR2018) 

10 5 Yes 

MODIS  

(MOD13Q1, MYD13Q1) 

 

6/3/2017 – 1/10/2018  

(LR2017, SR2017 and LR2018) 

250 1 Yes 

Camera photos 

 

 

5/10/2017 to 1/10/2018  

(SR2017 and LR2018) 

   

Other datasets     

Vegetation samples Collected in October 2017    

Daily Precipitation records 1/1/2001 to 31/10/2018    

3.1. PlanetScope-derived NDVI time series 

PS  is a satellite constellation consisting of 170+ CubeSats (small satellites) operated by Planet Labs 

(Houborg & McCabe, 2018). The number of CubeSats in this constellation is still increasing. The majority 

of CubeSats are in a sun-synchronous orbit with an equator crossing time between 9:30 and 11:30 (local 

solar time) (Planet Team, 2017). Other CubeSats are in the International Space Station orbit with a varying 

equator crossing time. The inconsistent acquisition time in a day may result in variations in VI time series 

that are not due to changes in the land surface (Houborg & McCabe, 2018). With all CubeSats combined, 
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the PS constellation is able to capture more than 346 million km2 of land surface every day. PS images have 

four spectral bands, i.e. blue (455 – 515 nm), green (500 – 590 nm), red (590 – 670 nm) and near-infrared 

(NIR) (780–860 nm). The spatial resolution is 3 m, which is resampled from 3.5 m – 4 m nadir sample 

distance using a Cubic Convolution resampling kernel.  

 

Planet Labs provides three types of PS products corresponding to three different pre-processing levels. The 

product used in this study is the PS Analytic Ortho Scene Product (Surface reflectance product), for which 

the 4-band image (GeoTIFF format) has been geometrically and atmospherically corrected. After the 

geometric correction, the positional accuracy of these images is less than 10 m Root Mean Square Error 

(RMSE). The atmospheric correction is based on the 6S radiative transfer model with ancillary data from 

MODIS (Planet Team, 2017). The image quality is indicated in an XML metadata file. The images with sun 

altitude greater than or equal to 10 degrees, off-nadir view angle less than 20 degrees and saturated pixels 

fewer than 20% are classified as good quality (Planet Team, 2017). Apart from 4-band image files and XML 

metadata, each PS product also contains an Unusable Data Mask (UDM). The UDM only provides a very 

rough cloud mask, and was deemed not useful for this study.  

 

A total of 460 PS Analytic Ortho Scene products between 3 March 2017 and 1 October 2017 were 

downloaded from Planet Explorer (Planet Labs Inc., 2018). Images with bad quality as indicated in the 

corresponding XML metadata file were excluded from the database. PS images acquired in the same day 

from the same orbit were merged and clipped to the study area extent. This resulted in 208 merged PS 

images. The normalized difference vegetation index (NDVI) was then calculated for each PS image. In 

satellite-based phenology studies, the NDVI and enhanced vegetation index (EVI) are the two most 

commonly-used VIs. In high biomass areas, such as dense forests, EVI has a better performance as 

compared to NDVI, because the signal saturates less quickly (Huete et al., 2002). In low biomass areas, such 

as semi-arid rangelands, the saturation effect of NDVI is not a major issue and NDVI can show a broader 

dynamic range than EVI (Huete et al., 2002). However, NDVI is sensitive to wet versus dry soil (Huete et 

al., 2002), which may impact on the change detection of vegetation greenness. Nevertheless, in this study, it 

was chosen to focus on using NDVI to assess vegetation dynamics for Kapiti Farm. The PS-derived NDVI 

time series are named in this thesis as NDVIP (the subscript P referring to PS). 

3.2. Sentinel-2-derived NDVI time series 

The Sentinel-2 mission consists of two satellites, Sentinel-2A and Sentinel-2B, which were launched on 23 

June 2015 and 7 March 2017, respectively. They are in the same orbit with similar zenith angles (5.2 vs 7.8°) 

and opposite azimuth angles (104.4 vs 288.6°).  With two satellites, Sentinel-2 can revisit the same point on 

the earth surface in five days with the same observation geometry. The revisit time is less than five days 

towards the poles where satellite orbits overlap, but this is not the case for Kapiti Farm. Sentinel-2 images 

have 13 bands, of which four bands have a 10 m resolution, i.e. blue (492 – 558 nm), green (559 – 595 mm), 

red (664 – 695 nm), and NIR (832 – 938 nm). 

 

All 62 Level-1B products (tile code 37MBU) were downloaded from the Copernicus Open Access Hub 

(European Space Agency (ESA), 2018).  There are no available Sentinel-2B images before June 2017 for 

Kapiti Farm, and because of the limited amount of Sentinel-2A images for LR 2017, Sentinel-2-based 

phenology analysis focussed only on the period 6 September 2017 to 1 October 2018, i.e. covering only 

SR2017 and LR2018. The Level-1B products were atmospherically corrected using the Sen2Cor processor 

(version 2.5.5). One of the outputs from Sen2Cor is a scene classification file; pixels classified as cloud 

shadow, cloud, and thin cirrus were masked. In addition, to filter out cloud shadows that are not included 

in the scene classification file, pixels with less than 0.01 reflectance in the blue band were also masked out. 
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The NDVI was then calculated for each Sentinel-2 image. The Sentinel-2-derived NDVI time series are 

named in this thesis as NDVIS (the subscript S referring to Sentinel-2). 

3.3. MODIS-derived NDVI time series 

MOD13Q1 and MYD13Q1 Version 6 250m resolution vegetation index products (Didan, 2015a; Didan, 

2015b) were accessed through Google Earth Engine (GEE). MOD13Q1 and MYD13Q1 were generated 

using atmospherically corrected images from MODIS/Terra and MODIS/Aqua satellite. Each product 

includes 16-day composite NDVI and EVI. There is an 8-day shift between MOD13Q1 and MYD13Q1, 

so the combination of these two products results in an average eight-day interval for the combined VI time 

series. The information of quality reliability and acquisition time of each pixel are also given along with 

NDVI and EVI layers. In this research, only the NDVI layer was used and pixels flagged as poor 

observations (code 3 and 4) were removed from the NDVI time series. The MODIS-derived NDVI time 

series are named in this thesis as NDVIM (the subscript M referring to MODIS). 

3.4. Field camera photos 

To monitor the vegetation phenology, three Bushnell Trophy Cam Essential (model 119736) trail cameras 

(with identifiers KE01, KE02, KE03) were installed in Kapiti Farm (Figure 1) in October 2017. Table A1 in 

the Appendix shows the basic information about the three camera locations. Each of these three cameras is 

set up to take one RGB photo (JPG format) every 30 minutes from 8:00 to 17:30 using Eastern Africa Time 

(EAT). Table A2 in Appendix shows the properties of cameras and photographs. Figure 3 shows sample 

photos captured by each camera. 

 

Camera photos captured between 5 October 2017 and 1 October 2018 were used in this study. The photos 

that are blurred, overexposed or underexposed, or covered by non-vegetated obstructions (e.g. animals) 

were visually identified and discarded from the database. Subsequently, VI time series were generated from 

the camera photo series. One of the commonly-used VIs in camera-based phenology studies is Greenness 

Chromatic Coordinate (GCC) (Migliavacca et al., 2011; Richardson et al., 2007). It is calculated by dividing 

the brightness of the green channel by the sum of brightness of the red, green and blue channels (Eq. 1) 

(Gillespie et al., 1987). This nonlinear transformation can mitigate the influence of scene illumination on the 

brightness levels (Sonnentag et al., 2012; Woebbecke et al., 1995; Gillespie et al., 1987).   

 

𝐺𝐶𝐶 =
𝐺𝑟𝑒𝑒𝑛

𝑅𝑒𝑑 + 𝐺𝑟𝑒𝑒𝑛 + 𝐵𝑙𝑢𝑒
                                                                                                           (1) 

To generate GCC time series for camera photos, the average GCC value within a region of interest (ROI) 

was calculated for each photograph. Figure 3 shows the ROIs in the field of view of each camera. Each ROI 

represents a dominant vegetation community or the same vegetation community in a different condition. 

For example, ROI1 in camera frame KE01 (KE01-1) represents open grass. KE02-1 and KE02-2 represent 

shrubs and grasses, KE03-1, KE03-2 and KE03-3 represent tree canopy, grass under the tree and grass. In 

the case of more than one vegetation community in the field of view, such as for camera KE02 and KE03, 

another ROI that contain most of the field of view (KE02-0 and KE03-0) was also created to represent the 

mixture of multiple vegetation communities as would be also observed from a satellite view. To further 

reduce the influence of different scene illumination on GCC, the 90th percentile of all GCC values within a 

non-overlapping three-day window (GCC90) was extracted and assigned to the centre day. This moving-

window approach for generating GCC time series was proposed by Sonnentag et al. (2012).
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Figure 3: Sample photos taken by the three cameras in Kapiti Farm. (a) the installation of field cameras in Kapiti Farm. (b) – (d) sample 
photos taken by cameras KE01, KE02, and KE03 at 12:00 on 19 November 2017. The red polygons in b-d indicate the region of 
interest (ROI) used for extracting averaged GCC. ROI1 in KE01 and ROI0 in KE02 and KE03 are at the landscape scale. ROI1 in 
KE01, ROI1 and ROI2 in KE02, ROI1, ROI2 and ROI3 in KE02 are at the vegetation community scale. 

3.5. Vegetation cover records 

Based on the field survey, the vegetation communities in Kapiti Farm can be categorized into four groups: 

- Grass: only herbaceous vegetation; 

- Acacia shrub: Acacia drepanolobium shrubs mixed with herbaceous layer; 

- Diverse shrub: multiple shrub types mixed with herbaceous layer; 

- Woodland: tall trees (>2m) and understory shrubs and herbaceous vegetation. 

A total of 24 sample points, i.e., six samples for each vegetation community, were collected by Gachoki 

(2018) in October 2017 by using the global Land-potential Knowledge System (LandPKS) (Herrick et al., 

2017). Figure 1 shows the distribution of sample points. Table A3 in Appendix shows the components of 

each vegetation community summarized from the information of all samples. These data were used to check 

if different vegetation communities had a distinct phenology.  
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3.6. Tools and platforms 

Most image processing, data analysis and data visualization were implemented in Jupyter Notebook, which 

is a popular integrated development environment (IDE) for Python. Table 2 shows all tools, platforms and 

important python packages used in this study. 

 
Table 2: The list of tools, platforms and Python packages 

Name Version Usage 

Jupyter Notebook 5.5.0 Python IDE 

PyCharm Community Edition 2018.1 Python IDE 

QGIS 3.2.3 GIS data preview 

ArcGIS 10.6.1 Shapefile editing 

MATLAB 2018b Statistical analysis 

Google Earth Engine (GEE)  Image processing 

Google Cloud Platform  Cloud computation 

Google Drive   Cloud storage 

Python 3.6.5 packages 

GDAL  2.2.2 Image processing 

rasterio  0.36.0 Image processing 

earthengine-api 0.1.146 Image processing 

pandas  0.23.0 Data manipulation 

NumPy  1.14.3 Data manipulation 

pickle 4.0.0 Data serializing and de-serializing 

netCDF4  1.4.1 Multi-dimension data serializing and de-serializing  

xarray  0.10.9 Multi-dimension data serializing and de-serializing 

matplotlib  2.2.2 Data visualization 

seaborn  0.8.1 Data visualization 

scikit-learn  0.20.0 Machine learning 

SciPy  1.1.0 Statistical analysis and curve fitting 

lmfit  0.9.11 non-linear optimization and curve fitting 

Google drive APIs 3.0.0 File uploading and downloading 
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4. METHODS 

Figure 4 provides an overview of the methods used in this thesis. The pre-processing and VI time series 

generation have been described in Chapter 3. The cloud and shadow detection for PS images were 

conducted by using Random Forest- and monthly threshold-based supervised classification. The 

observations flagged as clouds or shadows were removed from VI time series before using the double 

hyperbolic tangent function to fit curves. The mapping comparison of the phenological metrics focussed 

on four phenological metrics that were retrieved from the fitted curves, and included the start of season, 

end of season, maximum VI value, and integral VI from the start of season to the end of season.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Overview of methods 
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4.1. Cloud and cloud shadow detection for PlanetScope images 

Clouds and cloud shadows can block or contaminate the radiation reflected from the land surface to the 

sensor, which will cause abnormal values in VI time series used to retrieve phenological metrics (Champion, 

2016; Tseng et al., 2008). Therefore the detection of clouds and cloud shadows is an essential step before 

analysing VI time series. However, there are no applicable cloud and cloud shadow masks or automated 

cloud and cloud shadow detection algorithms for PS images (Cooley et al., 2017). In most PS-based studies, 

clouds and shadows were manually digitized (Cooley et al., 2017), or only cloud-free images were used (Shi 

et al., 2018; Kääb et al., 2017).  

 

In this study, clouds and cloud shadows were both classified based on thresholds of specific features (i.e., 

measurable properties of pixels in satellite images). The widely used features in existing cloud and cloud 

shadow detection algorithms, such as the cloud mask algorithm for MODIS (MOD35; Ackerman et al., 

1997), the Automated Cloud Cover Assessment (ACCA) for Landsat-7 Enhanced Thematic Mapper (ETM) 

(Irish et al., 2006) and the Function of Mask algorithm (Fmask) (Zhu & Woodcock, 2012), are spectral 

features and temperature feature when thermal bands are available. The spectral features refer to the 

reflectance in spectral bands or the combination of reflectance in multiple spectral bands. The usually used 

spectral features include NIR, short-wavelength infrared (SWIR), the ratio of NIR to SWIR, NDVI, and the 

ratio of NIR to Green. Recently, spatial features quantified by grey level co-occurrence matrices 

(GLCM) were also found to be useful for cloud detection ( Ghasemian & Akhoondzadeh, 2018; Bai et al., 

2016). Table A4 in Appendix lists all 124 potentially useful features for cloud and cloud shadow detection 

that were considered to be further investigated in the next step.  

 

To assess which of the 124 features has the potential to assist in detecting clouds or cloud shadows for PS 

images, the relative importance value of each feature was derived using a Random Forest (RF) classifier. RF 

was selected because it can easily handle data with large dimensions and is not seriously impacted by the 

collinearity (Belgiu & Drăgut, 2016). The RF-based feature importance analysis has three steps: feature 

generation, sample data extraction, and RF training. To generate sample data to feed the RF classifier, 12 

images captured in different months were manually digitized into three groups of polygons, i.e. cloud 

shadow, cloud, and clear. In other words, each pixel in these 12 images was given a label. To reduce spatial 

autocorrelation, only a limited number of pixels were randomly selected in the extent of each polygon. The 

number of samples was proportional to the area of each polygon. This resulted in a total of 2,963 shadow 

pixels, 2,949 cloud pixels and 5,979 clear pixels. These pixels that had one label and 124 features were fed 

to RF classifier to calculate the feature importance. The RF classifier was iterated for 100 times with the 

settings of 300 trees, one minimum samples leaf, and all features, as recommended by Belgiu & Drăgut, 

(2016). Each time 70% of training data were randomly selected, and the remainder 30% of data were used 

for validation. Figure A1 in the Appendix shows the relative importance rank and relative importance value 

of each feature in each run.  The feature importance is a relative value scaled from 0 to 1, and the higher 

values represent more contribution to discriminating clouds or cloud shadows. For cloud detection, the sum 

average of reflectance in Band 2 (b2_savg) and reflectance in Band 2 (b2) had relatively higher importance 

than other features. Regarding cloud shadow detection, the two most important features were the sum 

average of reflectance in Band 4 (b4_savg) and reflectance in Band 4 (b4). The GLCM-based “sum average” 

value of each pixel was calculated by dividing the sum of normalized grey tone values by the number of 

pixels within a 9x9 window (Bai et al., 2016). This texture feature that considers the reflectance value of 

surrounding pixels can identify contaminated pixels on the edge of thick clouds, which may be ignored when 

only based on spectral features.  

 



RETRIEVING VEGETATION PHENOLOGY WITH PLANETSCOPE IMAGES FOR A SEMI-ARID RANGELAND IN KENYA 

15 

The thresholds of b2, b2_savg, b4, and b4_savg were derived from cloud-free images by interpreting the 

image histograms. The values of cloud shadows are actually reduced reflectance of land surface, which can 

vary due to the change of land surface over time, so a choice was made to use monthly thresholds derived 

from cloud-free images in each month instead of one fixed scene-based threshold. To extract the monthly 

thresholds of b2, b4, b2_savg, and b4_savg, the histogram of each feature was generated for all cloud-free 

images per month (Figure 5e-f). Given the existence of noise in the cloud-free images, instead of using the 

maximum and minimum value, the 1st and 99.9th percentile in each histogram were set as the monthly 

thresholds of each feature for clear pixels. Table A5 in the Appendix lists the exact values of each threshold.  

 

The decision tree (Figure 6) for the classification of clear, clouds, and cloud shadows was generated by 

logically combining monthly thresholds of b2, b2_savg, b4 and b4_savg. Figure 5a-d shows that pixels 

labelled as cloud shadows in the sample image had lower values for b4 and b4_savg than clear pixels. In 

contrast, cloudy pixels had higher values for b2 and b2_savg. All 208 merged PS images were classified into 

three classes based on the decision tree. To further reduce the edge effect of clouds and cloud shadows, a 

buffer of three pixels was created around identified cloud and shadow pixels. A Python script 

(https://gist.github.com/YanCheng-go/6f692136ab05e1f2345892fd0abb03dc) was developed to automate the 

cloud and cloud shadow detection process for PS images. 

 

Another group of manually labelled pixels, which also includes 2,963 shadow pixels, 2,949 cloud pixels and 

5,979 clear pixels and differs from the sample data fed to RF classifier, were used as reference data to assess 

the accuracy of cloud and shadow detection at the pixel level. Despite the uncertainty of the process of 

labelling, the result can still reflect the relative accuracy of cloud and cloud shadow detection (Zhu & 

Woodcock, 2012). To evaluate if this algorithm is also effective for detecting clouds and shadows in other 

areas with different land covers as compared to Kapiti Farm, a number of PS images over an agricultural 

and a forest area in Aberdare National Park in Kenya were classified using monthly thresholds of b2, 

b2_savg, b4 and b4_savg derived from cloud-free images in the testing areas.  
  

https://gist.github.com/YanCheng-go/6f692136ab05e1f2345892fd0abb03dc
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Figure 5: Histograms of surface reflectance and sum average surface reflectance in b2 and b4. (A) - (D) was extracted from a sample PS 
image captured in 24 June 2017. (E) and (F) shows the histograms of b2, b2_savg, 4, and b4_savg  extracted from cloud-free PS images 
per month. 
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Figure 6: Decision tree using monthly thresholds of the surface reflectance in Band 2 (b2), the sum average of the surface reflectance in Band 
2 (b2_savg), the surface reflectance in Band 4 (b4) and the sum average of the surface reflectance in Band 4 (b4_savg). The monthly 
thresholds for clear class for Kapiti Farm is shown in Table A5 in Appendix. UTm  refers to the upper threshold in month m and LTm 
refers to the lower threshold in month m. 
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4.2. Double hyperbolic tangent function-based phenological metrics estimation 

Many fitting models have been used to interpolate VI time series based on limited observations and resulting 

in a smooth VI time series. The most commonly-used models are Fourier transformation (Jakubauskas et 

al., 2001), asymmetric Gaussian function (Jonsson & Eklundh, 2002), Whittaker smoother (Eilers, 2003), 

and double-logistic algorithm (DL) (Beck et al., 2006). Atkinson et al. (2012) found phenological metrics 

estimated based on the four fitted models had less than one week difference, based on a study with Level 3 

Medium Resolution Imaging Spectrometer images (spatial resolution ~4.6 km) across India.  

 

In this study, an equivalent of DL, the double hyperbolic tangent function (Meroni et al., 2014) was used to 

fit models for VI time series generated from camera photos and satellite images, i.e., GCC90, NDVIP, 

NDVIS, and NDVIM. The double hyperbolic tangent function can be written as: 

 

𝑉𝐼(𝑡) = 𝑎0 + 𝑎1
𝑡𝑎𝑛ℎ[(𝑡−𝑎2)∗𝑎3]+1

2
+ 𝑎4

𝑡𝑎𝑛ℎ[(𝑡−𝑎5)∗𝑎6]+1

2
− 𝑎4                                                     (2) 

where t refers to the day of year (DOY) and a0, a1, a2, a3, a4, a5, and a6 are the user-specified function 

parameters, which are described as follows: 

- a0: the minimum VI value in the green-up phase; 

- a1(a4): the difference between the maximum and minimum VI value in the green-up (senescence) phase; 

- a2(a5): the time of midterm in the green-up (senescence) phase; 

- a3(a6): the constant used to adjust the slope at the midterm, initial value is equal to 0.02 (-0.02). 

 

A Python script (https://gist.github.com/YanCheng-go/d4e17831f294199443d0f7682558e608) (Figure A9 in Appendix) 

was developed to execute the curve fitting for each VI series. In the script, the Levenberg-Marquardt 

algorithm (More, 1978) in lmfit Python package (Newville et al., 2014) was used to find the optimum model 

parameters that minimize the sum of squared residuals between fitted values and actual values. Lower VI 

values can be a result of remaining contamination of atmospheric effects and unclassified clouds and 

shadows, so the fitted curves were adapted to the upper envelope based on an iterative weighing method 

used by Meroni et al. (2014) and Vrieling et al. (2018). In short, if the observations (yi) in original VI time 

series are smaller than the corresponding fitted values (f(xi)), the weights of those observations in next curve 

fitting will be decreased (Eq. 3). As a consequence, the next fitted curve will be closer to observations with 

higher VI values. The initial weights of all observations were set as 1.  The iteration stops when the nth sum 

of weighted absolute residuals (SWAR) (Eq. 4) is smaller than (n+1)th SWAR or the iteration times equal to 

a customized maximum threshold. The preliminary tests indicated that for PS-based NDVI time series in 

more than 90% of the case less than five iterations were used before the fitting converged. To avoid infinite 

iterations, the maximum iteration time was set as 10. It is worth noting that, if the number of observations 

is less than the number of parameters of the user-defined function (double hyperbolic tangent function), 

the curve fitting algorithm will not work.  

                                                                                                

𝑊𝑒𝑖𝑔ℎ𝑡𝑖 = 1 −
|𝑦𝑖−𝑓(𝑥𝑖)|

𝑚𝑎𝑥(|𝑦−𝑓(𝑥)|)
 , 𝑤ℎ𝑒𝑛 𝑦𝑖 − 𝑓(𝑥𝑖)  ≤  0                                               (3) 

𝑆𝑊𝐴𝑅 =  ∑ 𝑊𝑒𝑖𝑔ℎ𝑡𝑖  ∗  |𝑦𝑖 − 𝑓(𝑥𝑖)|𝑛
𝑖=1                                                                                             (4) 

 

As introduced in Chapter 3, the timeframe of this study was from 1 March 2017 to 1 October 2018, which 

covers three vegetation seasons. To fit curves for each season separately, the timeframe was split into three 

parts: 1 March 2017 – 1 October 2017 (LR2017), 1 September 2017 – 1 March 2018 (SR2017), 1 February 

2018 – 1 October 2018 (LR2018). To make sure that dry periods were included, there were one-month 

overlapping periods between successive vegetation seasons. As shown in Figure 2, the first rainy season in 

https://gist.github.com/YanCheng-go/d4e17831f294199443d0f7682558e608
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2017 started in April and was one month later than in 2018, so the timeframe for LR2017 set in the study 

was one month later than for LR2018. For field camera series, the curve fitting was applied for both 

landscape-level ROI and species-level ROIs in the field of view of three cameras (Figure 3). For satellite 

images, the curve fitting was applied for all individual image pixels contained in Kapiti Farm. 

 

After fitting curves for satellite- and camera-derived VI time series (i.e., GCC90 and NDVI), two temporal 

metrics, the date of the start of season (SOS) and the date of the end of season (EOS), were estimated from 

the fitted curves. This estimation can be based on four types of thresholds: absolute VI, proportions of 

maximum VI, proportions of amplitude, and slopes of VI curves (Misra et al., 2018). Most phenology-

related studies extract the date (SOS or EOS) when VI values reach a specific proportion of amplitude in 

VI time series. The 50% threshold of amplitude, which indicates the time of fastest green-up or senescence 

(Vrieling et al., 2017; White et al., 1997), was used in this study. Apart from SOS and EOS, two NDVI-

related phenological metrics were retrieved from satellite-derived NDVI time series. maxNDVI relates to 

maximum biomass levels and species richness, whereas cumNDVI is often used as a proxy for seasonal 

productivity (Heumann et al., 2007; Bailey et al., 2004). This results in the following four metrics: 

- SOS50: the start of the season; the DOY when VI first reaches 50% of the difference between the 

maximum and minimum VI in green-up phase; 

- EOS50: the end of the season; the DOY when VI first reaches 50% of the difference between the  

maximum and minimum VI in the senescence phase; 

- maxNDVI: the maximum NDVI; 

- cumNDVI50: the accumulation of NDVI between SOS50 and EOS50. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 7: Illustration of four phenological metrics retrieved from a fitted curve. 
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4.3. Statistical analysis and comparison of phenology metrics 

Based on the phenological metrics estimated from PS-, Sentinel-2- and MODIS-derived NDVI time series 

and camera-derived GCC90 time series, a number of analyses were executed to 1) link satellite-derived 

phenological metrics to camera-derived ones; 2) compare PS-derived phenological metrics to Sentinel-2- 

and MODIS-derived ones; 3) investigate the impact of image availability on PS-based estimates of 

phenological metrics. Different statistical measures were used for these analyses, including: 1) Root Mean 

Squared Deviation (RMSD) for quantifying the difference across datasets, 2) Mean Signed Deviation (MSD) 

for assessing the bias, and 3) R2 or Pearson’s correlation coefficient (r) for evaluating the correlation between 

two datasets. 

 

To assess the performance of curve fitting, r, RMSD, and MSD were calculated for each fitted VI time series 

as compared to the original VI time series. The low values of r, RMSD or MSD do not necessarily mean a 

bad performance of curve fitting because of the implementation of upper envelope fitting. Nevertheless, 

the comparison of r, RMSD and MSD can indicate the relative goodness of curve fitting across data sources 

(Vrieling et al., 2017). 

 

For the comparison of satellite- with camera-derived phenological metrics, to match the field of view of 

cameras as well as mitigating geometric errors, PS images were first aggregated to 10 m resolution by taking 

the average of pixel values, only if the centre of the pixel falls in 10x10 m cells. The SOS50 and EOS50 

retrieved from the aggregated PS, Sentinel-2 and MODIS NDVI time series for the pixels corresponding to 

three camera locations were then compared against the SOS50 and EOS50 from the camera-derived GCC90 

time series. The GCC90 time series used in this analysis were extracted only for the landscape-level ROI in 

the field of view of each camera. The RMSD and MSD between satellite-derived and camera-derived 

phenological metric were used to quantify the difference.  

 

To compare PS-derived phenological metrics to metrics derived from Sentinel-2 and MODIS, PS-derived 

phenology maps were resampled to 10 m and 250 m resolution by taking the average of pixel values, only if 

the centre of the pixel falls in 10x10 m and 250x250 m cells. After that, density scatterplots were generated 

and the R2, RMSD, and MSD were calculated to evaluate the relationship between phenological metrics 

derived from different satellite images.  

  

To assess the impact of reduced image availability on the estimation of phenological metrics with PS, two 

simulation analyses were executed. The first one mimics the reduced availability by randomly removing n% 

(with n varying from 5 to 50) of observations from the original NDVI time series. The 27 NDVI time series 

used in this analysis corresponded to the 24 vegetation samples and the three camera locations. A total of 

100 iterations of randomly removing observations was done for each n and NDVI time series. The four 

phenological metrics were then retrieved from each fitted curve. For each n and location, the RMSD for 

SOS50 and EOS50 and the RMSD against the value derived from full dataset (RRMSD) for maxNDVI and 

cumNDVI50 were then calculated through comparing the 100 retrieved values against the value retrieved 

from the original NDVI time series as the base. This resulted in 27 (R)RMSD values for each phenological 

metric per season. The mean and standard deviation of those 27 (R)RMSD values were also calculated. The 

(R)RMSD were used to reflect the potential “error” of phenological metrics retrieved based on a reduced 

number of observations in the NDVI time series. This analysis can also indicate which metric is more 

sensitive to the lack of observations.  

 

The second simulation analysis examined in which period of the season reduced data availability would most 

significantly affect phenology estimation. To achieve this, all observations in every first or second half of a 
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month, i.e. 1-15March, 16-31March, were iteratively removed from the NDVI time series. Remaining 

observations were used to fit curves and retrieve phenological metrics. This process was also implemented 

for 24 vegetation samples and three camera locations (Figure 1). (R)RMSD and MSD were used to illustrate 

the deviation between phenological metrics retrieved from original NDVI time series and the modified 

NDVI time series for which ~15 days of observations were removed. 
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5. RESULTS 

5.1. Cloud and cloud shadow detection for PlanetScope images 

The monthly threshold-based cloud and shadow detection algorithm (Section 4.1) was implemented on 208 

merged PS images. Visual inspection of classification results revealed a reasonable cloud/cloud shadow 

detection for most images. Table 3 summarizes the classification accuracy based on the manually labelled 

reference data. Figure 8 shows examples of classified images and highlights incorrect classification areas. It 

suggests that the designed cloud and cloud shadow detection algorithm tended to underestimate clouds and 

cloud shadows, i.e. the omission error for clouds and cloud shadows is 33% and 26.05%, respectively. The 

underestimation of clouds was mostly caused by semi-transparent clouds, such as cirrus and thin clouds on 

the edge of thick clouds (Figure 8a, c and d). The reason for the underestimation of cloud shadows (Figure 8a) 

may be that the spectral response of cloud shadows is at times similar to clear vegetated areas. Despite the 

underestimation of clouds and cloud shadows, the implementation of upper envelope curve fitting can 

further mitigate the influence of those undetected clouds and cloud shadows that have lower NDVI values 

in time series. However, when there are only a small number of observations in NDVI time series, the 

contaminated observations can still result in biased curve fitting.  

 

Figure 9 shows the average number of valid observations per pixel per month. When comparing to Figure 2, 

it is clear that in drier months the number of valid observations was larger than during wet months. The 

statistical analysis also revealed that there was a strong correlation (r = 0.62, p = 0.004) between the average 

number of cloud-free observations per month and monthly precipitation. 

 

To test if the designed cloud and cloud shadow detection algorithm is effective in areas with other land 

cover types, an agricultural and a forest area outside the Kapiti Farm in Kenya were also classified by the 

same algorithm. Specifically, a number of images within the boundary of testing areas were classified using 

monthly thresholds of b2, b2_savg, b4, and b4_savg derived from cloud-free images in the testing areas. 

The classified images are shown in Figure 10. Overall, the designed algorithm seems to be effective for 

various land covers, including agriculture and dense forest areas that are not found in Kapiti Farm.  
 

Table 3: Confusion matrix of image classification 

               Classified 

Reference 

Cloud shadow Cloud Clear Total Omission error (%) Producer accuracy (%) 

Cloud shadow 2191 0 772 2963 26.05 73.95 

Cloud 40 1976 933 2949 33.00 67.00 

Clear 50 153 5776 5979 3.40 96.60 

Commission error (%) 3.95 7.19 22.8    

User accuracy (%) 96.05 92.81 77.20    

Overall accuracy:  83.62% 
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Figure 8: Examples of classified images. The first row shows false colour composite images (NIR, red and green bands). The second row 
shows classified images. The red circles highlight locations for which the classification did not produce accurate results. (a1) undetected haze 
area. (a2) undetected shadow area. (b1) shadow detection in clear area. (c1) cloud detection in clear areas. (d1) undetected cirrus. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 9: Average number of cloud-free observations per pixel and per month. The vertical line on the top of each bar indicates the standard 
deviation.  
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Figure 10: Examples of classified images in (a) agricultural and (b) forest areas in Aberdare National Park in Kenya. The second and 
third columns show false colour composite images (NIR, red and green bands).   
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5.2. Satellite- versus camera-derived phenological metrics 

Figure 11 compares the GCC90 time series of different vegetation types in the field of view of KE01, KE02 

and KE03. As illustrated in Table A3 in Appendix and Figure 3, the dominant vegetation communities at 

these three locations are open grass, mixed grass/shrubs (Acacia drepanolobium) and grass/trees (acacia 

species), respectively. The phenological metrics estimated from GCC90 time series were different across 

vegetation communities. The EOS50 of shrubs and trees in two seasons are both later than for grass. The 

time lag was varying along with the increase of precipitation from SR2017 (281.5 mm) to LR2018 (656.5 

mm). On average, after the grass entered senescence phase, the shrubs and trees maintained the leaf canopy 

for about one more month. The SOS50 of grass was later than that of shrubs while earlier than trees in both 

seasons. Overall, grass has shorter growing seasons and is more sensitive to precipitation variations than 

shrubs and trees. This difference was also found in a prior camera-based phenology study for semi-arid 

lands (Liu et al., 2017). It is worth noting that the trees and grass in the field of view of KE03 had a short 

secondary green-up phase after the main green-up phase in SR2017 and LR2018 (Figure 11c), which was 

respectively caused by a dry period in December 2017 followed with substantial rainfall in January 2018 and  

a light rainfall in 31 July 2018 (Figure 11d). However, the open grass in the field of view of KE01 and the 

mixed grass /shrubs in the field of view of KE02 have no apparent secondary green-up phases. Moreover, 

the speed of green-up for the grass/understory grass in the field of view of KE03 is faster than the grass in 

the field of view of KE01 and KE02.  This can be explained by that the trees in KE03 may contribute to 

reducing the evaporation in the understory vegetation (Akpo, 1997). In short, the camera-based analysis 

indicates that vegetation phenology in Kapiti Farm is spatially and temporally heterogeneous, for which the 

complex composition of vegetation and rainfall variability may be the main factors.  

 

Figure 12 compares satellite-derived NDVI time series with camera-derived GCC90 time series for the three 

camera locations. The camera-derived GCC90 time series were calculated for the entire field of view to 

simulate the landscape scale as in satellite images. Because of the larger amount of precipitation during 

LR2018 as compared to SR2017, the maximum satellite NDVI values were larger in LR2018. However, for 

KE01 the maximum GCC90 is smaller for LR2018, which may be explained by experienced problems with 

overexposure during that season. Despite these problems, a clear seasonal signal is still visible. The PS-

derived NDVI time series show noisier temporal patterns as compared to Sentinel-2 and MODIS-derived 

NDVI. Reasons for this difference could be: 1) the cloud and cloud shadow screening for PS images is not 

of the same quality as for Sentinel-2 and MODIS images, partially due to missing dedicated spectral bands 

for, e.g., cirrus detection; 2) the PS images were captured at different local solar time; 3) the quality of PS 

surface reflectance products is not as good as Sentinel-2 and MODIS. Nevertheless, the denser NDVI time 

series derived from PS images could be potentially better in capturing vegetation variations in short terms 

than other two sparse NDVI time series derived from MODIS and Sentinel-2 images. Table 4 compares 

satellite- with camera-derived SOS50 and EOS50. On average, the difference (RMSD) between satellite- and 

camera-derived SOS50 was ~6 to ~9 days. MODIS-based SOS50 retrievals were more similar to those from 

the camera series, as compared to PS and Sentinel-2. Moreover, PS- and Sentinel-2-based SOS50 retrievals 

were usually later than those from the camera series. MODIS-based SOS50 retrievals were earlier than 

camera-derived in SR2017 ones while later than camera-derived ones for LR2018. The RMSD for EOS50 is 

approximately twice as large as for SOS50. PS-based EOS50 retrievals were closer to those from the camera 

series, as compared to MODIS and Sentinel-2.  
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Table 4: Comparison of satellite-derived SOS50 and EOS50 with camera-derived ones. 

 SOS50   EOS50   

 PS Sentinel-2 MODIS PS Sentinel-2 MODIS 

RMSD 9.56 9.44 6.38 17.26 19.82 21.64 

MSD 6.33 6.17 0.67 7.00 5.00 12.50 
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Figure 11: Time series of GCC90 for each vegetation community in the field of view of KE01, KE02 and KE03. In panel a-c, the lines 
are fitted curves and the vertical lines near x-axis indicate the SOS50 and EOS50 retrieved from each fitted curve. Panel d shows the daily 
precipitation in SR2017 and LR2018. The four plots use the same x-axis.

(a) KE01 

(b) KE02 

 

(c) KE03 

 

SR2017 

 

LR2018 

 

(d) 

 



RETRIEVING VEGETATION PHENOLOGY WITH PLANETSCOPE IMAGES FOR A SEMI-ARID RANGELAND IN KENYA 

29 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 12: Time series of satellite-derived NDVI and camera-derived GCC90 at three camera locations (KE01, KE02, and KE03) in 
SR2017 and LR2018. GCC90 were extracted for the entire field of view at each camera locations. 
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5.3. PlanetScope-derived phenology maps 

The curve fitting process was implemented for PS-derived NDVI time series for each pixel within Kapiti 

Farm boundary. Figure 13 shows the maps of SOS50, EOS50, maxNDVI and cumNDVI50 for the three 

seasons considered. Various maps clearly show a spatial resemblance to differences in land surface (Figure 

1), although the spatial patterns of each metric are different across three seasons. It is worth noting that, 

there is an apparent artefact in Figure 13f, i.e. a clear north-south linear pattern can be discerned with later 

EOS50 dates west of the imaginary line. Further examination revealed that this was caused by the 17 July 

2017 image, which only covered the north-western part. As shown in Figure 14, after removing the 

observation on 17 July 2017 from the time series of the west of the imaginary line, the difference of EOS50 

decreased from ~10 to ~2 days. This suggests that, even though there are many valid observations in PS-

derived NDVI time series, a single observation can have an important influence on the curve fitting and 

phenological metrics estimation.  

 

The mean and standard deviation of each phenological metric are shown in Figure 13. The average time of 

the first start of season in 2018 (81 ± 4.66) is more than one month earlier than in 2017 (121 ± 7.49). This 

can be explained by the variation of precipitation. As shown in Figure 2, the first rains of the LR season in 

2017 were approximately one month later than in 2018. In addition, the amount of precipitation in LR2018 

was greater than in LR2017, as a consequence of which the date of the first end of season in 2018 (191 ± 

11.47) is later than in 2017 (182 ± 10.73). The relatively high maxNDVI and cumNDVI50 in LR2018 as 

compared to other two seasons is also a result of the large amount of precipitation in March and April in 

2018 (Figure 2). 

 

Table 5 summarizes the four phenological metrics for the 24 sample points that were categorized into four 

vegetation groups. The composition of each vegetation group is shown in Table A3 in the Appendix. The 

one-way ANOVA analysis indicates that the four phenological metrics are not significantly (significance 

level = 0.1) different between the vegetation communities. The reason could be that: 1) each vegetation 

group only contains a small number of samples; and 2) multiple vegetation types exist within a group, 

whereby mostly grass is the dominant signal. But the comparison of the average values of each metrics can 

still provide some information. For example, except the cumNDVI50 for LR2017, the maxNDVI and 

cumNDVI50 for the group of mixed acacia trees and grass (group D) is slightly higher than other groups.  
 
Table 5: Phenological metrics retrieved from PS-derived NDVI time series for sample points and per rain season. SOS50 and EOS50 are 
expressed as Day of the Year (DOY). Group A, B, C and D refer to four vegetation communities. A = Diverse shrubs,  B = Acacia 
trees with grass, C = Open grassland, D = acacia shrubs with understory grass. Each vegetation group contains six sample points. The 
phenological metrics are reported as the average of six observations.   

 LR2017    SR2017    LR2018    

 A B C D A B C D A B C D 

SOS50 120 119 118 118 317 320 319 320 80 80 82 80 

EOS50 188 176 183 187 362 374 357 365 189 188 193 193 

maxNDVI 0.50 0.56 0.48 0.49 0.47 0.52 0.47 0.47 0.65 0.69 0.67 0.65 

cumNDVI50 32.2 29.2 28.1 30.4 19.3 25.8 16.0 19.1 68.0 71.2 67.6 69.2 
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Figure 13: Phenology maps derived from PS images. The mean and standard deviation are reported for each map. SOS50 and EOS50 maps 
are visualized by showing the difference (in days) from the spatial mean for each season. Red colours indicate that the date is before the mean, 
and blue colours indicate that the date is after the mean. 
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Figure 14: Illustration of the linear artefact in PS-derived EOS50 map (Figure 13f). Panel a is the enlarged map that is zoomed in to the 
artefact. The EOS50 map is visualized by showing the difference (in days) from the spatial mean for each season. Red colours indicate that 
the date is before the mean, and blue colours indicate that the date is after the mean. In panel b, the green and blue lines are fitted curves for 
pixel A and B, which are highlighted in frame a. The red curve is the fitted curve after removing the observation on 17 July 2018. SOS50 
and EOS50 derived from each fitted curve are indicated as vertical lines near x-axis. Images (2) in panel b is the PlanetScope image acquired 
on 17 July 2018 and displays by false colour composite (red, NIR and blue bands).
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5.4. PlanetScope-  versus Sentinel-2- and MODIS-derived phenological metrics 

Table 6 compares the image availability and the fit statistics of PS, Sentinel-2 and MODIS. The average 

number of cloud-free observations for PS images in SR2017 and LR2018 are almost twice as many as the 

number of cloud-free observations for Sentinel-2 and MODIS images. The maximum gap (in days) between 

two sequential observations is also smaller for PS as compared to than Sentinel-2- and MODIS for LR2017 

and SR2018. However, for LR2018, this difference was negligible due to the very persistent cloud cover in 

May 2018. More valid observations and shorter temporal gaps facilitate the ability to reveal larger temporal 

NDVI variations, which may not be due to noise only but also due to real within-season variability. Both a 

stronger noise and capturing of more natural variation may cause the smaller r value for PS. For example, 

in SR2017, there was a short secondary green-up after the main growing season (Figure 12c) caused by a dry 

period in December 2017 followed by substantial rainfall in January 2018. The double hyperbolic tangent 

function-based curve fitting can only model one peak per season, as a consequence of which the PS-derived 

r value in SR2017 was lower than in LR2018. For Sentinel-2, this second peak was not apparent, resulting 

in similar r values for SR2017 and LR2018.  

 

Figure A4-A7 in Appendix compare the spatial pattern of each phenological metric derived from PS, MODIS 

and Sentinel-2. Overall, the phenology maps derived from three satellite images have similar spatial patterns. 

However, Sentinel-2 derived SOS50 map in LR2018 (Figure A4h in Appendix) shows apparent artefacts. The 

reason for these artefacts could be the lack of observations from March until the beginning of April in 2018 

as illustrated in Figure 15, while a single image in that time-frame contains clouds, but for the non-cloudy 

areas strongly influences the fitting. Although MODIS-derived phenology maps do not have apparent 

artefacts, they show fewer details than PS- and Sentinel-2-derived phenology maps due to the coarse spatial 

resolution.  

 

Figure 16 compares phenological metrics from Sentinel-2 and MODIS to phenological metrics from PS at 

the pixel level. The PS-derived phenological metrics were aggregated by taking the average of values within 

10x10m and 250x250m cells for Sentinel-2 and MODIS, respectively. The maxNDVI and cumNDVI50 

shows a stronger correlation than SOS50 and  EOS50. The negative MSD of SOS50 means that on average 

SOS50 derived from Sentinel-2 and MODIS is later than SOS50 derived from PS. The MSD for Sentinel-2-

derived SOS50 in LR2018 is an exception, which could be caused by the large area of artefacts in the Sentinel-

2 SOS50 map (Figure 15a). The MSD values for EOS50 in SR2017 are negative while positive in LR2017. 

This difference could be caused by the apparent secondary green-up in SR2017. The RMSD values reported 

in Figure 16 for SOS50 and EOS50 indicate that on average Sentinel-2-derived SOS50 and EOS50 had ~9 and 

~12 days difference from PS-derived ones. For MODIS, the difference is similar to Sentinel-2. The negative 

MSD of SOS50 means that on average SOS50 derived from Sentinel-2 and MODIS is earlier as compared to 

PS. This finding matches the analysis by Vrieling et al. (2017) and Zhang et al. (2017).  
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Table 6: Comparison of image availability and fit statistics among PS, Sentinel-2 and MODIS. r, MSD and RMSD calculated from 
fitted and original NDVI values measure the goodness of fit. nImages refers to the average number of cloud-free observations in NDVI 
time series. maxGap indicates the maximum difference (days) between two continuous cloud-free observations in NDVI time series. Mean 
and standard deviation are reported for each measurement. 
 

 LR2017  SR2017   LR2018   

 PS MODIS PS Sentinel-2 MODIS PS Sentinel-2 MODIS 

r 0.85±0.08 0.95±0.05 0.86±0.07 0.95±0.03 0.96±0.04 0.93±0.03 0.96±0.04 0.96±0.03 

RMSD 0.054±0.02 0.03±0.02 0.046±0.01 0.55±0.19 0.031±0.01 0.034±0.01 0.03±0.01 0.05±0.02 

MSD -0.003±0.0 -0.012±0.0 -0.002±0.0 0.015±0.0  -0.012±0.0 -0.004±0.0 0.007±0.0 -0.017±0.0 

nImages 29.69±2.49 18.09±1.61 39.37±2.78 20.93±2.20 17.24±1.58 41.02±3.28 22.17±2.48 20.93±2.03 

maxGap 25.64±5.78 30.67±4.77 14.00±4.97 21.48±6.25 20.50±2.87 32.32±7.86 34.14±8.45 30.37±6.11 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 15: Illustration of the artefacts in Sentinel-2-derived SOS50 map for LR2018 (Figure A4h in Appendix). Panel a is the enlarged 
Sentinel-2-derived SOS50 for LR2018. Panel b compares the NDVI time series for location A and location B. As indicated in panel a, 
location A is a pixel inside the artefact and location B is a pixel near but outside the artefact. In panel b, the vertical lines near x-axis 
indicate the SOS50 and EOS50 retrieved from each fitted curve.
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Figure 16: Density scatterplots for SOS50, EOS50, maxNDVI and cumNDVI50 per season. The x-axis is the PS-derived phenological 
metric that had been resampled to 10 or 250 m to match the spatial resolution of the data source indicated on y-axis. The y-axis is the 
phenological metric derived from Sentinel-2 or MODIS. Blue to red indicates the increase in the frequency. The black line in each plot is 
the linear regression model. RMSD, MSD and R2 are reported in each plot.   

SR2017 

S
e
n

ti
n

e
l-

2
 

M
O

D
I
S

 

SOS50 EOS50 maxNDVI cumNDVI50 

LR2018 

 

S
e
n

ti
n

e
l-

2
 

M
O

D
I
S

 

LR2017 

 

M
O

D
I
S

 



RETRIEVING VEGETATION PHENOLOGY WITH PLANETSCOPE IMAGES FOR A SEMI-ARID RANGELAND IN KENYA 

 

36 

5.5. Robustness of phenological metrics estimation 

Figure 17 illustrates the impact of reduced number of available images on the phenological metric estimates 

as compared to using the full PS dataset. Unsurprisingly, the increase in the number of observations left out 

resulted in larger (R)RMSD values for all metrics. The average (R)RMSD had almost a linear relationship 

with the percentage of missing observations. Specifically, removing 5% of the observations resulted in <4 

days difference in SOS50 and EOS50 as compared to the metrics retrieved from the full NDVI time series. 

The RMSD increased to ~9 days for SOS50 and ~11 days for EOS50 when 50% of observations were 

removed. For cumNDVI50, the value of RRMSD was from ~0.06 to ~0.23 with the increase of missing 

observation from 5% to 50%. The missing observations caused smaller RRMSD in maxNDVI (< 10%) as 

compared to cumNDVI50.  

 

Figure 18 shows the impact of missing observations in a certain period on the estimation of phenological 

metrics. The lack of observations at the beginning and the very end of the growing seasons both resulted in 

relatively great impacts on SOS50, e.g. in the second half month in March 2018 (LR2018) (RMSD = 14.21 

days) and in September 2017 (LR2017) (RMSD = 6.89 days). However, the lack of observations in most 

periods had great impacts on EOS50 and the greatest impact was caused by the omission of observations at 

the very end of the growing season, e.g., in the second half of September 2017 (LR2017) (RMSD = 19.44 

days). Overall, the impact (RMSD) of missing observations on the estimation of SOS50 and EOS50 were less 

than  20 days. The MSD values for SOS50 and EOS50 indicate that the omission of observations could cause 

either later or earlier SOS50 and EOS50 as compared to the estimates derived from full dataset. Reduced 

image availability will hide or exaggerate some spatial variabilities of SOS50 and EOS50 as indicated in Figure 

13. Nevertheless, the impacts (RRMSD) on maxNDVI were usually very small (<15%). The RRMSD values 

for cumNDVI50 were on average larger than for maxNDVI. In other words, the estimation of cumNDVI50 

was less robust to the reduced image availability than maxNDVI.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 17: The impact of reduced image availability on the estimation of phenological metrics as compared to using the full PlanetScope 
dataset. The x-axis shows the percentage of observations that are randomly selected and removed from the original NDVI time series. There 
were 27 original NDVI time series generated for 24 vegetation samples and three camera locations. Per percentage removed, the random 
selection of observations and curve fitting were repeated 100 times for each sample NDVI time series. (R)RMSD values were calculated by 
using the phenological metrics retrieved from original NDVI time series as the base. The point indicates the mean RMSD and the shade 
around each line indicates the corresponding standard deviation of (R)RMSD for 27 samples. 
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Figure 18: Impact ((R)RMSD and MSD) of removing all observations in the first or second half of a month on phenological metric 
estimates as compared to the metrics derived from the full PlanetScope dataset.  
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6. DISCUSSION 

The results showed that PS-images are effective to retrieve fine-scale patterns of vegetation phenology for 

semi-arid rangelands. As compared to camera-based in-situ measurements, PS-derived SOS50 and EOS50 

were on average within eight days and 15 days of camera-derived SOS50 and EOS50, respectively (Table 4). 

Many phenology-related studies show that the satellite-based temporal phenological metrics have ~10 to 30 

days difference from camera-based or visual ground observations (White et al., 2014). These differences can 

be partially explained by the use of different vegetation indices (Vrieling et al., 2018; Liu et al., 2017). Unlike 

RGB-based GCC, NDVI uses the reflectance of NIR band, which not only captures the change of 

chlorophyll but also other signals of green-up and senescence, such as the changes of cell structure. The 

different viewing angles can also contribute to the inconsistency between satellite- and camera-based 

phenological metrics. Specifically, the vegetation greenness observed from oblique camera view can be 

different from the satellites’ more nadir view, given that non-photosynthetic elements like stems and grass 

heads are more dominant in the oblique view (Vrieling et al., 2018). Sentinel-2- and MODIS-derived SOS50 

and EOS50 were also linked to camera-derived equivalents. As Table 4 summarized, the accuracy of PS-

derived SOS50 and EOS50 was similar to Sentinel-2- and MODIS-derived SOS50 and EOS50. Nevertheless, 

PS-derived NDVI time series show more consistent change patterns with camera-derived GCC time series 

and daily precipitation records due to the better density of observations (Figure 12).  

 

Although PS-derived phenological metrics had disagreements with camera-derived ones, phenological 

metrics could be estimated for all pixels within the boundary of Kapiti Farm by using a consistent method, 

which resulted in 3m-resolution phenology maps. These phenology maps (Figure 13) showed clear and 

detailed spatial variations corresponding to differences in land surface (Figure 1). These spatial patterns were 

different across phenological metrics and seasons. Because water availability is the main factor influencing 

vegetation growth in semi-arid areas (Scholes & Walker, 1993), the spatial differences in phenology are likely 

a result of variable plant water availability. More rainfall stations across the study area will be helpful for 

understanding possible spatial variability of rainfall characteristics.  Further study is also needed to better 

understand the effect of soil condition and water-logging caused by uneven topography on the spatial 

distribution of water availability.  PS- and Sentinel-2-derived EOS50 map for LR2018 (Figure 13e-f and Figure 

A3d in Appendix) showed slight differences between the top and bottom of the hill, which is likely caused 

by different vegetation cover and water availability. Unsurprisingly, MODIS-derived EOS50 map for LR2018 

did not show any elevation-derived spatial variabilities in the hill due to its coarse spatial resolution. 

 

Despite the current lack of data for the assessment of driving forces of the spatial and temporal variations 

of phenology, the spatial patterns of the PS-derived phenology maps are also reflected in Sentinel-2 and 

MODIS-derived phenology maps (Figure A4-A7 in Appendix). Even at the pixel level, PS-derived 

phenological metrics also have good agreement with Sentinel-2 and MODIS-derived phenological metrics 

(Figure 16). Moreover, due to the finer spatial resolution, PS images can provide more detailed insight into 

the subtle differences of phenology within a small region and can be easier linked to individual species and 

ground point measurements (i.e. field camera and flux tower data) than other coarser-resolution images. 

This could lead to a promising improvement in spatially detailed understanding of semi-arid rangeland 

ecosystem at the local scale.  
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Due to the short revisit time of the PS constellation, there was a sufficient number of PS observations over 

Kapiti Farm for the extraction of vegetation phenology in the three seasons considered (March 2017 to 

September 2018). However, the simulation analyses showed that if the number of PS observations would 

be reduced at the beginning or the end of vegetation seasons, this can result in large RMSE values for SOS50 

and EOS50 of up to 20 days (Figure 18). Likewise, for Sentinel-2, the lack of cloud-free observation at the 

beginning of the green-up phase caused the estimation of SOS50 to be one-month later, which resulted in 

apparent artefacts on SOS50 map for LR2018 (Figure 15). To mitigate the impact of sparse observations on 

the estimation of phenology,  more efforts can be made to improve the robustness of the curve fitting 

method used in this study. Recently, Jönsson et al. (2018) proposed a so-called robust curve fitting algorithm 

for Sentinel-2 and Landsat-derived NDVI time series and tested it for a forest in central Sweden. In short, 

this method defines a reference curve for each pixel based on historical data. If there are no observations in 

a specific time window, the fitted curve will be adapted to the pre-defined reference curve by constraining 

some model parameters. Gachoki (2018) has proven the potential and limitations of generating the so-called 

reference curves by combining multiple years of Landsat observations for Kapiti Farm. Future study is 

needed to test if this robust curve fitting method can really improve PS-based phenology analysis. 

 

There is also scope to further improve the proposed cloud and cloud shadow detection algorithm. First, the 

semi-transparent clouds like cirrus can be separated from other cloud types by including other features in 

the decision tree. For example, the cloud detection algorithm for Sentinel-2 uses Band 10 (1,358 nm-1,388 

nm) to detect cirrus (Coluzzi et al., 2018). Even though PS images do not have that band, further analyses 

may reveal if other integrated spectral or temporal features could be useful for discriminating these cloud 

types. Secondly, the temporal variations on the series for the various spectral bands can be used to revise 

the result of pixel-based cloud and cloud shadow detection, which is similar to Multi-Temporal Cloud 

Detection (MTCD) algorithm proposed by Hagolle et al. (2010). Despite the potential to further improve 

the cloud and shadow detection, the method developed in this thesis proved capable of accurately 

eliminating a large number of low-quality observations.  

 

PS images are currently not freely available, except for a limited free availability for research purposes. 

Following a request to Planet Labs, researchers can download 10,000 km2 images per month; for multi-

temporal acquisitions as needed in this study, this corresponds to a much smaller area. Despite the fact that 

at present image costs are prohibitive to apply PS time series for phenology assessment for large areas, pilot 

phenology analyses at the local scale can also provide useful information for understanding ecosystem 

function and structure, such as the driving forces of spatial and temporal variations of phenology. The finer-

resolution phenology products derived from PS, i.e. the maps of SOS, EOS, maxNDVI and cumNDVI, are 

also expected to be integrated into biodiversity modelling as essential biodiversity variables (Skidmore et al., 

2015; Pereira et al., 2013). For example, the cumNDVI as a proxy measurement of gross primary 

productivity is related to the species richness (Radeloff et al., 2019; Hawkins et al., 2003). Moreover, PS 

images can also be used as a supplementary or validation data in the phenology analysis based on other data 

source. Overall, satellite missions that offer frequent fine-resolution optical imagery, such as PS, are an 

important asset for detailed spatial assessment of vegetation phenology in semi-arid rangelands.
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7. CONCLUSION 

This study demonstrated the potential of using PS image time series to retrieve fine-resolution vegetation 

phenology for heterogeneous landscapes with short vegetation seasons, such as semi-arid rangelands. PS-

derived SOS50 was on average within eight days and EOS50 within 15 days of their camera-derived 

equivalents. Due to higher temporal resolution (~daily), there was a better density of cloud-free observations 

in PS-based NDVI time series than Sentinel-2-based NDVI time series, as a consequence of which PS-

based phenology retrievals were less impacted by the persistent clouds during rainy seasons. Moreover, due 

to the finer spatial resolution (3m), PS-derived phenology maps showed more spatial details than phenology 

maps derived from commonly used coarse-resolution sensors like MODIS. The fine-scale patterns that were 

found in this study demonstrate that PS time series may provide useful inputs for understanding subtle 

phenological differences and their driving forces. Overall, despite the fact that at present, image costs are 

prohibitive to apply PS time series for phenology assessment for large areas, PS can achieve spatially detailed 

phenology analysis for understanding ecosystem function and structure at the local scale, which can 

contribute to the studies of rangeland management, biodiversity, and wildlife conservation. Still, future 

efforts can be made for more accurate phenology analysis with PS, including: 1) improving cloud and 

shadow detection algorithm for PS images, specifically for semi-transparent clouds like cirrus; 2) the 

development of more robust curve fitting by taking historical vegetation change patterns and precipitation 

dynamics into consideration.  
  



RETRIEVING VEGETATION PHENOLOGY WITH PLANETSCOPE IMAGES FOR A SEMI-ARID RANGELAND IN KENYA 

 

42 

 
  



 

43 

LIST OF REFERENCES 

Abu-Asab, M. S., Peterson, P. M., Shetler, S. G., & Orli, S. S. (2001). Earlier plant flowering in spring as a 
response to global warming in the Washington, DC, area. Biodiversity & Conservation, 10(4), 597–612. 
https://doi.org/10.1023/A:1016667125469 

Ackerman, S., Strabala, K., Menzel, P., Frey, R., Moeller, C., Gumley, L., … Zhang, H. (1997). 
Discriminating clear-sky from cloud with modis algorithm theoretical basis document (mod35). Retrieved from 
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.385.7073&rep=rep1&type=pdf 

Adole, T., Dash, J., & Atkinson, P. M. (2016). A systematic review of vegetation phenology in Africa. 
Ecological Informatics, 34, 117–128. https://doi.org/10.1016/J.ECOINF.2016.05.004 

Akpo, L.-E. (1997). Phenological interactions between tree and understory herbaceous vegetation of a 
sahelian semi-arid savanna. Plant Ecology, 131(2), 241–248. 
https://doi.org/10.1023/A:1009762123397 

Bai, T., Li, D., Sun, K., Chen, Y., & Li, W. (2016). Cloud detection for high-resolution satellite imagery 
using machine learning and multi-feature fusion. Remote Sensing, 8(9), 715. 
https://doi.org/10.3390/rs8090715 

Bailey, S.-A., Horner-Devine, M. C., Luck, G., Moore, L. A., Carney, K. M., Anderson, S., … Fleishman, 
E. (2004). Primary productivity and species richness: relationships among functional guilds, residency 
groups and vagility classes at multiple spatial scales. Ecography, 27(2), 207–217. 
https://doi.org/10.1111/j.0906-7590.2004.03631.x 

Beck, P. S. A., Atzberger, C., Høgda, K. A., Johansen, B., & Skidmore, A. K. (2006). Improved monitoring 
of vegetation dynamics at very high latitudes: A new method using MODIS NDVI. Remote Sensing of 
Environment, 100(3), 321–334. https://doi.org/10.1016/J.RSE.2005.10.021 

Belgiu, M., & Drăguţ, L. (2016). Random forest in remote sensing: a review of applications and future 
directions. ISPRS Journal of Photogrammetry and Remote Sensing, 114, 24–31. 
https://doi.org/10.1016/J.ISPRSJPRS.2016.01.011 

Bloor, J. M. G., Pichon, P., Falcimagne, R., Leadley, P., & Soussana, J.-F. (2010). Effects of warming, 
summer drought, and CO2 enrichment on aboveground biomass production, flowering phenology, 
and community structure in an upland grassland ecosystem. Ecosystems, 13(6), 888–900. 
https://doi.org/10.1007/s10021-010-9363-0 

Champion, N. (2016). Automatic detection of clouds and shadows using high resolution satellite image 
time series. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 
XLI-B3, 475–479. https://doi.org/10.5194/isprsarchives-XLI-B3-475-2016 

Chang, J., Ciais, P., Viovy, N., Soussana, J.-F., Klumpp, K., & Sultan, B. (2017). Future productivity and 
phenology changes in European grasslands for different warming levels: implications for grassland 
management and carbon balance. Carbon Balance and Management, 12(1), 11. 
https://doi.org/10.1186/s13021-017-0079-8 

Cho, M. A., Ramoelo, A., & Dziba, L. (2017). Response of land surface phenology to variation in tree 
cover during green-up and senescence periods in the semi-arid savanna of Southern Africa. Remote 
Sensing, 9(7), 689. https://doi.org/10.3390/rs9070689 

Coluzzi, R., Imbrenda, V., Lanfredi, M., & Simoniello, T. (2018). A first assessment of the Sentinel-2 Level 
1-C cloud mask product to support informed surface analyses. Remote Sensing of Environment, 217, 
426–443. https://doi.org/10.1016/J.RSE.2018.08.009 

Cooley, S., Smith, L., Stepan, L., & Mascaro, J. (2017). Tracking dynamic northern surface water changes 
with high-frequency Planet CubeSat imagery. Remote Sensing, 9(12), 1306. 
https://doi.org/10.3390/rs9121306 

Crimmins, M. A., & Crimmins, T. M. (2008). Monitoring plant phenology using digital repeat 
photography. Environmental Management, 41(6), 949–958. https://doi.org/10.1007/s00267-008-9086-6 

Dahlin, K. M., Ponte, D. Del, Setlock, E., & Nagelkirk, R. (2017). Global patterns of drought deciduous 
phenology in semi-arid and savanna-type ecosystems. Ecography, 40(2), 314–323. 
https://doi.org/10.1111/ecog.02443 

Didan, K. (2015a). MOD13A1 MODIS/Terra Vegetation Indices 16-Day L3 Global 500m SIN Grid V006 
[Data set]. NASA EOSDIS LP DAAC. https://doi.org/10.5067/MODIS/MOD13A1.006 

Didan, K. (2015b). MYD13Q1 MODIS/Aqua Vegetation Indices 16-Day L3 Global 250m SIN Grid V006 
[Data set]. NASA EOSDIS LP DAAC. https://doi.org/10.5067/MODIS/MYD13Q1.006 



 

44 

Eilers, P. H. C. (2003). A perfect smoother. Analytical Chemistry, 75(14), 3631–3636. 
https://doi.org/10.1021/AC034173T 

European Space Agency (ESA). (2018). Sentinel Online - ESA. Retrieved August 15, 2018, from 
https://sentinel.esa.int/web/sentinel/home 

Fisher, J. I., Mustard, J. F., & Vadeboncoeur, M. A. (2006). Green leaf phenology at Landsat resolution: 
Scaling from the field to the satellite. Remote Sensing of Environment, 100(2), 265–279. 
https://doi.org/10.1016/J.RSE.2005.10.022 

Gachoki, S. M. (2018). Estimating vegetation phenology at 30m resolution with multi- temporal optical imagery for a 
rangeland site in Kenya (MSc thesis). University of Twente Faculty of Geo-Information and Earth 
Observation (ITC), Enschede. 

Ghasemian, N., & Akhoondzadeh, M. (2018). Introducing two Random Forest based methods for cloud 
detection in remote sensing images. Advances in Space Research, 62(2), 288–303. 
https://doi.org/10.1016/J.ASR.2018.04.030 

Gillespie, A. R., Kahle, A. B., & Walker, R. E. (1987). Color enhancement of highly correlated images. II. 
Channel ratio and “chromaticity” transformation techniques. Remote Sensing of Environment, 22(3), 
343–365. https://doi.org/10.1016/0034-4257(87)90088-5 

Gong, Z., Kawamura, K., Ishikawa, N., Goto, M., Wulan, T., Alateng, D., … Ito, Y. (2015). MODIS 
normalized difference vegetation index (NDVI) and vegetation phenology dynamics in the Inner 
Mongolia grassland. Solid Earth, 6, 1185–1194. https://doi.org/10.5194/se-6-1185-2015 

Grossiord, C., Sevanto, S., Adams, H. D., Collins, A. D., Dickman, L. T., McBranch, N., … McDowell, N. 
G. (2017). Precipitation, not air temperature, drives functional responses of trees in semi-arid 
ecosystems. Journal of Ecology, 105(1), 163–175. https://doi.org/10.1111/1365-2745.12662 

Guan, K., Wood, E. F., Medvigy, D., Kimball, J., Pan, M., Caylor, K. K., … Jones, M. O. (2014). 
Terrestrial hydrological controls on land surface phenology of African savannas and woodlands. 
Journal of Geophysical Research: Biogeosciences, 119(8), 1652–1669. 
https://doi.org/10.1002/2013JG002572 

Hagolle, O., Huc, M., Pascual, D. V., & Dedieu, G. (2010). A multi-temporal method for cloud detection, 
applied to FORMOSAT-2, VENµS, LANDSAT and SENTINEL-2 images. Remote Sensing of 
Environment, 114(8), 1747–1755. https://doi.org/10.1016/J.RSE.2010.03.002 

Hawkins, B. A., Field, R., Cornell, H. V., Currie, D. J., Guégan, J.-F., Kaufman, D. M., … Turner, J. R. G. 
(2003). Energy, water, and broad-scale geographic patterns of species richness. Ecology, 84(12), 3105–
3117. https://doi.org/10.1890/03-8006 

Hermance, J. F., Augustine, D. J., & Derner, J. D. (2015). Quantifying characteristic growth dynamics in a 
semi-arid grassland ecosystem by predicting short-term NDVI phenology from daily rainfall: a 
simple four parameter coupled-reservoir model. International Journal of Remote Sensing, 36(22), 5637–
5663. https://doi.org/10.1080/01431161.2015.1103916 

Herrick, J. E., Karl, J. W., McCord, S. E., Buenemann, M., Riginos, C., Courtright, E., … Bestelmeyer, B. 
(2017). Two New Mobile Apps for Rangeland Inventory and Monitoring by Landowners and Land 
Managers. Rangelands, 39(2), 46–55. https://doi.org/10.1016/J.RALA.2016.12.003 

Heumann, B. W., Seaquist, J. W., Eklundh, L., & Jönsson, P. (2007). AVHRR derived phenological change 
in the Sahel and Soudan, Africa, 1982–2005. Remote Sensing of Environment, 108(4), 385–392. 
https://doi.org/10.1016/J.RSE.2006.11.025 

Houborg, R., & McCabe, M. (2018). Daily retrieval of NDVI and LAI at 3 m resolution via the fusion of 
CubeSat, Landsat, and MODIS data. Remote Sensing, 10(6), 890. https://doi.org/10.3390/rs10060890 

Hovenden, M. J., Newton, P. C. D., & Wills, K. E. (2014). Seasonal not annual rainfall determines 
grassland biomass response to carbon dioxide. Nature, 511(7511), 583–586. 
https://doi.org/10.1038/nature13281 

Hovenden, M. J., Wills, K. E., Vander Schoor, J. K., Williams, A. L., & Newton, P. C. D. (2008). 
Flowering phenology in a species-rich temperate grassland is sensitive to warming but not elevated 
CO 2. New Phytologist, 178(4), 815–822. https://doi.org/10.1111/j.1469-8137.2008.02419.x 

Huete, A., Didan, K., Miura, T., Rodriguez, E. ., Gao, X., & Ferreira, L. . (2002). Overview of the 
radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of 
Environment, 83(1–2), 195–213. https://doi.org/10.1016/S0034-4257(02)00096-2 

Inoue, T., Nagai, S., Kobayashi, H., & Koizumi, H. (2015). Utilization of ground-based digital 
photography for the evaluation of seasonal changes in the aboveground green biomass and foliage 



 

45 

phenology in a grassland ecosystem. Ecological Informatics, 25, 1–9. 
https://doi.org/10.1016/J.ECOINF.2014.09.013 

International Livestock Research Institute (ILRI). (2018). ILRI’s Kapiti livestock research station. 
Retrieved January 26, 2019, from https://news.ilri.org/2018/01/05/ilris-kapiti-livestock-research-
station-and-kenyan-and-global-public-goods-imperiled-by-land-grabs-in-kenya/ 

IPCC. (2013). Climate Change 2013 The Physical Science Basis Working Group I Contribution to the Fifth Assessment 
Report of the Intergovernmental Panel on Climate Change Summary for Policymakers. (T. F. Stocker, D. Qin, 
G.-K. Plattner, M. M. B. Tignor, S. K. Allen, J. Boschung, … P. M. Midgley, Eds.). Cambridge, 
United Kingdom and New York, NY, USA: Cambridge University Press. Retrieved from 
www.climatechange2013.org. 

Irish, R. R., Barker, J. L., Goward, S. N., & Arvidson, T. (2006). Characterization of the Landsat-7 ETM+ 
Automated Cloud-Cover Assessment (ACCA) algorithm. Photogrammetric Engineering & Remote Sensing, 
72(10), 1179–1188. https://doi.org/10.14358/PERS.72.10.1179 

Jakubauskas, M. E., Legates, D. R., & Kastens, J. H. (2001). Harmonic analysis of time-series AVHRR 
NDVI data. Photogrammetric Engineering and Remote Sensing, 67(4), 461–470. Retrieved from 
https://pdfs.semanticscholar.org/7fb2/fe487764412ef43f1e3793cc0efae4f47d68.pdf 

Jentsch, A., Kreyling, J., Boettcher-Treschkow, J., & Beierkuhnlein, C. (2009). Beyond gradual warming: 
extreme weather events alter flower phenology of European grassland and heath species. Global 
Change Biology, 15(4), 837–849. https://doi.org/10.1111/j.1365-2486.2008.01690.x 

Jolly, W. M., & Running, S. W. (2004). Effects of precipitation and soil water potential on drought 
deciduous phenology in the Kalahari. Global Change Biology, 10(3), 303–308. 
https://doi.org/10.1046/j.1365-2486.2003.00701.x 

Jönsson, P., Cai, Z., Melaas, E., Friedl, M., Eklundh, L., Jönsson, P., … Eklundh, L. (2018). A Method for 
Robust Estimation of Vegetation Seasonality from Landsat and Sentinel-2 Time Series Data. Remote 
Sensing, 10(4), 635. https://doi.org/10.3390/rs10040635 

Jonsson, P., & Eklundh, L. (2002). Seasonality extraction by function fitting to time-series of satellite 
sensor data. IEEE Transactions on Geoscience and Remote Sensing, 40(8), 1824–1832. 
https://doi.org/10.1109/TGRS.2002.802519 

Kääb, A., Altena, B., & Mascaro, J. (2017). Coseismic displacements of the 14 November 2016 Mw 7.8 
Kaikoura, New Zealand, earthquake using the Planet optical cubesat constellation. Natural Hazards 
and Earth System Sciences, 17(5), 627–639. https://doi.org/10.5194/nhess-17-627-2017 

Keenan, T. F., Darby, B., Felts, E., Sonnentag, O., Friedl, M. A., Hufkens, K., … Richardson, A. D. 
(2014). Tracking forest phenology and seasonal physiology using digital repeat photography: a critical 
assessment. Ecological Applications, 24(6), 1478–1489. https://doi.org/10.1890/13-0652.1 

Liu, Y., Hill, M. J., Zhang, X., Wang, Z., Richardson, A. D., Hufkens, K., … Schaaf, C. B. (2017). Using 
data from Landsat, MODIS, VIIRS and PhenoCams to monitor the phenology of California 
oak/grass savanna and open grassland across spatial scales. Agricultural and Forest Meteorology, 237–
238, 311–325. https://doi.org/10.1016/J.AGRFORMET.2017.02.026 

Mathu, W. (2009). Terminal evaluation of UNEP/GEF project gf/3010-05-10 (4857) – dry land livestock wild life 
environment interface project (DLWEIP) (Vol. 10). Retrieved from 
https://wedocs.unep.org/rest/bitstreams/10708/retrieve 

Melaas, E. K., Friedl, M. A., & Zhu, Z. (2013). Detecting interannual variation in deciduous broadleaf 
forest phenology using Landsat TM/ETM + data. Remote Sensing of Environment, 132, 176–185. 
https://doi.org/10.1016/J.RSE.2013.01.011 

Melaas, E. K., Sulla-Menashe, D., Gray, J. M., Black, T. A., Morin, T. H., Richardson, A. D., & Friedl, M. 
A. (2016). Multisite analysis of land surface phenology in North American temperate and boreal 
deciduous forests from Landsat. Remote Sensing of Environment, 186, 452–464. 
https://doi.org/10.1016/J.RSE.2016.09.014 

Meroni, M., Verstraete, M. M., Rembold, F., Urbano, F., & Kayitakire, F. (2014). A phenology-based 
method to derive biomass production anomalies for food security monitoring in the Horn of Africa. 
International Journal of Remote Sensing, 35(7), 2472–2492. 
https://doi.org/10.1080/01431161.2014.883090 

Migliavacca, M., Galvagno, M., Cremonese, E., Rossini, M., Meroni, M., Sonnentag, O., … Richardson, A. 
D. (2011). Using digital repeat photography and eddy covariance data to model grassland phenology 
and photosynthetic CO2 uptake. Agricultural and Forest Meteorology, 151(10), 1325–1337. 



 

46 

https://doi.org/10.1016/J.AGRFORMET.2011.05.012 
Misra, G., Buras, A., Heurich, M., Asam, S., & Menzel, A. (2018). LiDAR derived topography and forest 

stand characteristics largely explain the spatial variability observed in MODIS land surface 
phenology. Remote Sensing of Environment, 218, 231–244. https://doi.org/10.1016/J.RSE.2018.09.027 

More, J. J. (1978). The Levenberg-Marquardt algorithm: implementation and theory. In Numerical analysis 
(pp. 105–116). Springer, Berlin, Heidelberg. Retrieved from 
https://link.springer.com/content/pdf/10.1007/BFb0067700.pdf 

Newville, M., Stensitzki, T., Allen, D. B., & Ingargiola, A. (2014). LMFIT: Non-Linear Least-Square 
Minimization and Curve-Fitting for Python¶. https://doi.org/10.5281/ZENODO.11813 

Ouled Belgacem, A., & Louhaichi, M. (2013). The vulnerability of native rangeland plant species to global 
climate change in the West Asia and North African regions. Climatic Change, 119(2), 451–463. 
https://doi.org/10.1007/s10584-013-0701-z 

Pereira, H. M., Ferrier, S., Walters, M., Geller, G. N., Jongman, R. H. G., Scholes, R. J., … Wegmann, M. 
(2013). Essential Biodiversity Variables. Science, 339(6117), 277–278. 
https://doi.org/10.1126/science.1229931 

Planet Labs Inc. (2018). Planet — Explorer Beta. Retrieved August 14, 2018, from 
https://www.planet.com/products/explorer/ 

Planet Team. (2017). Planet — Planet Imagery Products. Retrieved May 25, 2018, from 
https://www.planet.com/docs/spec-sheets/sat-imagery/ 

Prevéy, J. S., & Seastedt, T. R. (2014). Seasonality of precipitation interacts with exotic species to alter 
composition and phenology of a semi-arid grassland. Journal of Ecology, 102(6), 1549–1561. 
https://doi.org/10.1111/1365-2745.12320 

Radeloff, V. C., Dubinin, M., Coops, N. C., Allen, A. M., Brooks, T. M., Clayton, M. K., … Hobi, M. L. 
(2019). The Dynamic Habitat Indices (DHIs) from MODIS and global biodiversity. Remote Sensing of 
Environment, 222, 204–214. https://doi.org/10.1016/j.rse.2018.12.009 

Reeves, M. C., Moreno, A. L., Bagne, K. E., & Running, S. W. (2014). Estimating climate change effects 
on net primary production of rangelands in the United States. Climatic Change, 126(3–4), 429–442. 
https://doi.org/10.1007/s10584-014-1235-8 

Richardson, A. D., Jenkins, J. P., Braswell, B. H., Hollinger, D. Y., Ollinger, S. V., & Smith, M.-L. (2007). 
Use of digital webcam images to track spring green-up in a deciduous broadleaf forest. Oecologia, 
152(2), 323–334. https://doi.org/10.1007/s00442-006-0657-z 

Scholes, R. J., & Walker, B. H. (1993). An African savanna : synthesis of the Nylsvley study. Cambridge 
University Press. Retrieved from http://agris.fao.org/agris-search/search.do?recordID=GB9523112 

Schwartz, M. D. (2013). Introduction. In M. D. Schwartz (Ed.), Phenology: an integrative environmental science 
(2nd ed., pp. 1–5). Dordrecht: Springer Netherlands. https://doi.org/10.1007/978-94-007-6925-0_1 

Shen, M., Tang, Y., Chen, J., Zhu, X., & Zheng, Y. (2011). Influences of temperature and precipitation 
before the growing season on spring phenology in grasslands of the central and eastern Qinghai-
Tibetan Plateau. Agricultural and Forest Meteorology, 151(12), 1711–1722. 
https://doi.org/10.1016/J.AGRFORMET.2011.07.003 

Shi, Y., Huang, W., Ye, H., Ruan, C., Xing, N., Geng, Y., … Peng, D. (2018). Partial least square 
discriminant analysis based on normalized two-stage vegetation indices for mapping damage from 
rice diseases using PlanetScope datasets. Sensors, 18(6), 1901. https://doi.org/10.3390/s18061901 

Skidmore, A. K., Pettorelli, N., Coops, N. C., Geller, G. N., Hansen, M., Lucas, R., … Wegmann, M. 
(2015). Environmental science: Agree on biodiversity metrics to track from space. Nature, 523(7561), 
403–405. https://doi.org/10.1038/523403a 

Sonnentag, O., Hufkens, K., Teshera-Sterne, C., Young, A. M., Friedl, M., Braswell, B. H., … Richardson, 
A. D. (2012). Digital repeat photography for phenological research in forest ecosystems. Agricultural 
and Forest Meteorology, 152, 159–177. https://doi.org/10.1016/J.AGRFORMET.2011.09.009 

Sparks, T. H., & Menzel, A. (2002). Observed changes in seasons: an overview. International Journal of 
Climatology, 22(14), 1715–1725. https://doi.org/10.1002/joc.821 

Tseng, D.-C., Tseng, H.-T., & Chien, C.-L. (2008). Automatic cloud removal from multi-temporal SPOT 
images. Applied Mathematics and Computation, 205(2), 584–600. 
https://doi.org/10.1016/J.AMC.2008.05.050 

Vrieling, A., Meroni, M., Darvishzadeh, R., Skidmore, A. K., Wang, T., Zurita-Milla, R., … Paganini, M. 
(2018). Vegetation phenology from Sentinel-2 and field cameras for a Dutch barrier island. Remote 



 

47 

Sensing of Environment. https://doi.org/10.1016/J.RSE.2018.03.014 
Vrieling, A., Skidmore, A. K., Wang, T., Meroni, M., Ens, B. J., Oosterbeek, K., … Paganini, M. (2017). 

Spatially detailed retrievals of spring phenology from single-season high-resolution image time series. 
International Journal of Applied Earth Observation and Geoinformation, 59, 19–30. 
https://doi.org/10.1016/J.JAG.2017.02.021 

White, K., Pontius, J., & Schaberg, P. (2014). Remote sensing of spring phenology in northeastern forests: 
A comparison of methods, field metrics and sources of uncertainty. Remote Sensing of Environment, 148, 
97–107. https://doi.org/10.1016/J.RSE.2014.03.017 

White, M. A., Thornton, P. E., & Running, S. W. (1997). A continental phenology model for monitoring 
vegetation responses to interannual climatic variability. Global Biogeochemical Cycles, 11(2), 217–234. 
https://doi.org/10.1029/97GB00330 

Woebbecke, D. M., Meyer, G. E., Bargen, K. Von, & Mortensen, D. A. (1995). Color indices for weed 
identification under various soil, residue, and lighting conditions. Transactions of the ASAE, 38(1), 
259–269. https://doi.org/10.13031/2013.27838 

Yu, F., Price, K. P., Ellis, J., & Shi, P. (2003). Response of seasonal vegetation development to climatic 
variations in eastern central Asia. Remote Sensing of Environment, 87(1), 42–54. 
https://doi.org/10.1016/S0034-4257(03)00144-5 

Zelikova, T. J., Williams, D. G., Hoenigman, R., Blumenthal, D. M., Morgan, J. A., & Pendall, E. (2015). 
Seasonality of soil moisture mediates responses of ecosystem phenology to elevated CO 2 and 
warming in a semi-arid grassland. Journal of Ecology, 103(5), 1119–1130. 
https://doi.org/10.1111/1365-2745.12440 

Zhang, J., Feng, L., & Yao, F. (2014). Improved maize cultivated area estimation over a large scale 
combining MODIS–EVI time series data and crop phenological information. ISPRS Journal of 
Photogrammetry and Remote Sensing, 94, 102–113. https://doi.org/10.1016/J.ISPRSJPRS.2014.04.023 

Zhang, X., Wang, J., Gao, F., Liu, Y., Schaaf, C., Friedl, M., … Henebry, G. M. (2017). Exploration of 
scaling effects on coarse resolution land surface phenology. Remote Sensing of Environment, 190, 318–
330. https://doi.org/10.1016/J.RSE.2017.01.001 

Zhu, Z., & Woodcock, C. E. (2012). Object-based cloud and cloud shadow detection in Landsat imagery. 
Remote Sensing of Environment, 118, 83–94. https://doi.org/10.1016/J.RSE.2011.10.028 

 

  



 

48 

  



 

49 

Appendix 

Table A1: The location of field cameras installed in Kapiti Farm 

ID Latitude longitude altitude Description 

KE01   1°35'46.97"S 37° 7'57.91"E 1632 Grassland 

KE02   1°35'56.92"S 37° 7'58.01"E 1636 Mixed grass and shrub (acacia drepanolobium) 

KE03   1°37'59.04"S 37° 8'9.88"E 1723 Grass and trees (acacia species) 

 

 

Table A2: The details of field cameras and photos 

Property  Value 

Camera 

Camera maker BUSHNELL 

F-stop f/2.8 

ISO speed ISO-100 

Max aperture 2.8 

Metering mode Average 

Flash mode No flash 

Light source Daylight 

Exposure program Aperture Priority 

Image 

Dimensions  2592 x 1944 

Resolution 96 dpi 

Bit depth 24 

Resolution unit 2 

Colour representation sRGB 

Compressed bits/pixel 1.599 

 
 

Table A3: Vegetation cover in Kapiti Farm 

Vegetation community LandPKS estimates (%) 
 

Grass Shrubs Trees Litter Soil 

Acacia shrubland 32.83 18.08 0.00 22.43 26.66 

Grassland 38.00 0.00 0.00 26.79 35.20 

Woodland 20.33 1.61 24.49 19.00 34.57 

Diverse shrubland 32.21 16.79 0.00 20.52 30.49 
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Table A4: Band math formulas and textural features formulas used for the construction of feature spaces 

Name Formula 

Spectral features (RGB and NIR, 5 vegetation indices and 42 band math) 

Single band 𝑓(𝑎) = 𝑎 

Normalized Difference Vegetation Index  𝑁𝐷𝑉𝐼 = (𝑁𝐼𝑅 − 𝑅)
(𝑁𝐼𝑅 + 𝑅)

  

Enhanced Vegetation Index 𝐸𝑉𝐼 = 2.5 × (𝑁𝐼𝑅 −𝑅)
(𝑁𝐼𝑅 +6 × 𝑅 − 7.5 × 𝐵 + 1)

  

Green Leaf Index 𝐺𝐿𝐼 =
(2 ×  𝐺 −  𝑅 −  𝐵)

(2 ×  𝐺 +  𝑅 +   𝐵)
 

Soil Adjusted Vegetation Index 𝑆𝐴𝑉𝐼 =
(1+L)×(NIR−R)

(NIR+R+L)
   (𝐿 =  0.5)  

Visible Atmospherically Resistance Index 𝑉𝐴𝑅𝐼 =
(𝐺 −  𝑅)

(𝐺 +  𝑅 −  𝐵)
 

Difference 𝑓(𝑎, 𝑏) = 𝑎 − 𝑏 

Ratio 𝑓(𝑎, 𝑏) = 𝑎/𝑏 

Depth 𝑓(𝑎, 𝑏) =
𝑎 + 𝑏

𝑐
 

Index 𝑓(𝑎, 𝑏) =
𝑎 − 𝑏

𝑎 + 𝑏
 

Index_
𝐹  𝑓(𝑎, 𝑏, 𝑐, 𝑑) =

𝑎 − 𝑏

𝑐 + 𝑑
 

Index+
𝐹  𝑓(𝑎, 𝑏, 𝑐, 𝑑) =

𝑎 + 𝑏

𝑐 − 𝑑
 

Spatial (texture) features (calculate for each band separately, results in 4*18 spatial features) 

Angular second moment  

i.e. Image uniformity 
𝐴𝑆𝑀 =  ∑ ∑{𝑃̂(𝑖, 𝑗)}2

𝐿

𝑗=1

𝐿

𝑖=1

 

Contrast 

i.e. Indicate the presence of edges and noise 
𝑐𝑜𝑛𝑡 =  ∑(𝑖 − 𝑗)2

𝐿−1

𝑖=0

∑ ∑ 𝑃̂(𝑖, 𝑗)

𝐿

𝑗=1

𝐿

𝑖=1

 

Correlation 

i.e. Linear correlation of spectral information. 
𝑐𝑜𝑟 = ∑ ∑

(𝑖, 𝑗)𝑃̂(𝑖, 𝑗) − 𝜇𝑥𝜇𝑦)

𝜎𝑥𝜎𝑦

𝐿−1

𝑗=0

𝐿−1

𝑖=0

 

Variance 

i.e. Scattering of spectral information distribution 
𝑣𝑎𝑟 = ∑ ∑(𝑖 − 𝜇)2𝑃̂(𝑖, 𝑗)

𝐿−1

𝑗=0

𝐿−1

𝑖=0

 

Sum variance 𝑠𝑣𝑎𝑟 =  ∑ (𝑖 − 𝑠𝑒𝑛𝑡)2 𝑃̂𝑥+𝑦(𝑖)

2𝐿−2

𝑖=0

 

Difference variance 𝑑𝑣𝑎𝑟 =  𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑜𝑓  𝑃̂𝑥−𝑦 

Entropy 

i.e. Degree of randomness among pixels 
𝑒𝑛𝑡 =  − ∑ ∑ 𝑃̂(𝑖, 𝑗)

𝐿−1

𝑗=0

𝐿−1

𝑖=0

𝑙𝑜𝑔[𝑃̂(𝑖, 𝑗)] 

Sum entropy 𝑠𝑒𝑛𝑡 =  − ∑ 𝑃̂𝑥+𝑦(𝑖)

2𝐿−2

𝑖=0

𝑙𝑜𝑔[𝑃̂𝑥+𝑦(𝑖)] 

Difference entropy 𝑑𝑒𝑛𝑡 =  − ∑ 𝑃̂𝑥+𝑦(𝑖)

𝐿−1

𝑖=0

log[𝑃̂𝑥+𝑦(𝑖)] 
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Dissimilarity 

i.e. Local spectral information variations 
𝑑𝑖𝑠 =  ∑ ∑|𝑖 − 𝑗|𝑃̂(𝑖, 𝑗)

𝐿−1

𝑗=0

𝐿−1

𝑖=0

 

Sum Average 𝑠𝑎𝑣𝑔 =  ∑ 𝑖𝑃̂𝑥+𝑦(𝑖)

2𝐿−2

𝑖=0

 

Inverse Difference Moment 𝑖𝑑𝑚 = ∑ ∑
1

1 + (𝑖 − 𝑗)2

𝐿−1

𝑗=0

𝐿−1

𝑖=0

𝑃̂(𝑖, 𝑗) 

Information measures of correction 1 

𝑖𝑚𝑐𝑜𝑟𝑟1 =
𝐻𝑋𝑌 − 𝐻𝑋𝑌1
𝑚𝑎𝑥{𝐻𝑋, 𝐻𝑌}

 𝑤ℎ𝑒𝑟𝑒, 

𝐻𝑋𝑌 =  − ∑ ∑ 𝑃̂(𝑖, 𝑗)

𝐿−1

𝑗=0

𝐿−1

𝑖=0

𝑙𝑜𝑔[𝑃̂(𝑖, 𝑗)] 

𝐻𝑋𝑌1 =  − ∑ ∑ 𝑃̂(𝑖, 𝑗)

𝐿−1

𝑗=0

𝐿−1

𝑖=0

𝑙𝑜𝑔[𝑃̂𝑥(𝑖)𝑃̂𝑦(𝑗)] 

𝐻𝑋 and 𝐻𝑌 are entropies of 𝑃̂𝑥 𝑎𝑛𝑑  𝑃̂𝑦 

Information measures of correction 2 

𝑖𝑚𝑐𝑜𝑟𝑟2 =  (1 − 𝑒|−2.0(𝐻𝑋𝑌2−𝐻𝑋𝑌)|)
1
2 , 𝑤ℎ𝑒𝑟𝑒  

𝐻𝑋𝑌2 =  − ∑ ∑ 𝑃̂𝑥(𝑖)𝑃̂𝑦(𝑗)

𝐿−1

𝑗=0

𝐿−1

𝑖=0

𝑙𝑜𝑔[𝑃̂𝑥(𝑖)𝑃̂𝑦(𝑗)]  

Maximal correlation coefficient 

(𝑆𝑒𝑐𝑜𝑛𝑑𝑙𝑎𝑟𝑔𝑒𝑠𝑡𝑒𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒𝑜𝑓𝑄)
1
2 𝑤ℎ𝑒𝑟𝑒  

𝑄(𝑖, 𝑗)  = ∑
𝑃̂(𝑖, 𝑘)𝑃̂(𝑗, 𝑘)

𝑃̂𝑥(𝑖)𝑃̂𝑦(𝑘)

𝐿−1

𝑘=0

  

Inertia 𝑖𝑛𝑒𝑟𝑡𝑖𝑎 = ∑ ∑(𝑖 − 𝑗)2

𝐿−1

𝑗=0

𝐿−1

𝑖=0

𝑃̂(𝑖, 𝑗) 

Cluster prominence 𝑝𝑟𝑜𝑚 = ∑ ∑(𝑖 + 𝑗 − 𝜇𝑖 − 𝜇𝑗 )4

𝐿−1

𝑗=0

𝐿−1

𝑖=0

𝑃̂(𝑖, 𝑗) 

Cluster shade 𝑠ℎ𝑎𝑑𝑒(𝛿, 𝛵) = ∑ ∑(𝑖 + 𝑗 − 𝜇𝑖 − 𝜇𝑗  )3

𝐿−1

𝑗=0

𝐿−1

𝑖=0

𝑠(𝑖, 𝑗, 𝛿, 𝛵) 

Temporal feature 

Time month (when the image was acquired) 

* Where 𝑃̂ is the value in normalized gray tone matrix; (i, j) is the spatial coordinate; L is the number of gray levels 
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Table A5: Monthly thresholds of clear pixels in b2, b2_savg, b4, and b4_savg 

Date b2 b2_savg b4 b4_savg 

2017-3 661, 1474 1326, 2934 1635, 2925 3277, 5830 

2017-4 789, 2732 1585, 5461 1829, 4018 3663, 8031 

2017-5 413, 1681 833, 3337 1899, 3627 3808, 7237 

2017-6 681, 2076 1372, 4140 2095, 4250 4203, 8483 

2017-7 656, 1757 1318, 3507 1814, 3167 3635, 6318 

2017-8 698, 1640 1401, 3257 1658, 3141 3323, 6262 

2017-9 756, 1782 1518, 3541 1688, 3201 3382, 6382 

2017-10 648, 1725 1303, 3431 1618, 3164 3243, 6303 

2017-11 623, 2581 1248, 5156 1708, 4243 3418, 8467 

2017-12 719, 1733 1442, 3451 1943, 3361 3892, 6708 

2018-1 672, 1716 1349, 3407 1592, 3356 3187, 6691 

2018-2 781, 1962 1569, 3901 1668, 3411 3340, 6802 

2018-3 453, 1602 943, 2918 1765, 3265 3635, 7355 

2018-4 639, 1356 1280, 2669 2197, 4042 4398, 8055 

2018-5 417, 1688 842, 2462 2532, 5613 5080, 9532 

2018-6 528, 1591 1061, 3172 2566, 5330 5144, 10650 

2018-7 542, 1422 1091, 2812 2579, 5022 5175, 10038 

2018-8 687, 1940 1379, 3851 2172, 4014 4355, 8014 

2018-9 685, 1555 1374, 3095 1941, 3149 3890, 6287 

 

 

Table A6: SOS50 and EOS50 retrieved from camera- and satellite-derived VI time series and per season. The highlighted values are DOY 
in 2018. The rest values are the DOY in 2017. The values in the brackets are the number of days counted from 1 January 2017. 

 

  SR2017    LR2018    

  Camera PS Sentinel-2 MODIS Camera PS Sentinel-2 MODIS 

SOS50 KE01 311 330 309 306 75 79 84 83 

 KE02 308 319 306 307 80 76 86 83 

 KE03 307 310 314 298 70 75 89 78 

EOS50 KE01 350 356 359 351 169 190 194 198 

 KE02 7 (372) 355 352 351 173 179 205 202 

 KE03 358 24 (389) 343 11 (376) 186 181 185 205 
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Table A7: Impact of the lack of observations in the first or second half of a month on phenological metrics estimations as compare to real 
metrics derived from original datasets. The impact were quantified by MSD, (R)RMSD. The blueish colour means negative values and the 
reddish colour means positive values. The higher saturation of reddish and blueish colour indicates larger positive value and lower negative 
value. nImages refers to the average number of observations in NDVI time series. #Images is the average number of cloud-free observations 
per fit. 
 

Season Month #Images MSD    RMSD (days) RRMSD (%) 

   SOS50 EOS50 maxNDVI cumNDVI50 SOS50 EOS50 maxNDVI cumNDVI50 

LR2017 Mar. 29 -4.11 -0.74 -0.0008 1.19 7.13 2.13 1.66% 8.86% 

  32 -0.74 -0.63 0.0002 0.02 1.25 1.11 0.52% 1.90% 

 
Apr. 30 1.07 -1.07 0.0030 -0.92 3.76 1.55 1.22% 7.36% 

 30 -2.67 -0.59 0.0000 1.02 6.47 1.96 1.81% 11.12% 

 
May. 30 0.52 0.19 -0.0003 -0.18 4.63 5.42 3.80% 7.54% 

 30 -2.33 1.56 -0.0230 0.38 5.44 6.20 11.91% 6.93% 

 
Jun. 31 -0.81 0.44 0.0029 0.79 1.05 1.91 0.86% 3.61% 

 29 -0.59 0.70 0.0049 0.99 1.63 2.90 1.46% 6.41% 

 
Jul. 29 -1.07 -1.11 0.0021 0.06 1.26 3.28 1.02% 6.26% 

 30 -0.89 -2.78 0.0014 -0.70 1.02 3.62 0.63% 5.77% 

 
Aug. 31 -0.96 -0.81 0.0015 0.05 1.28 1.72 1.20% 2.94% 

 27 -0.81 -2.63 0.0020 -0.83 1.15 3.86 0.97% 4.49% 

 
Sep. 32 -0.81 -0.89 0.0005 -0.04 1.15 1.25 0.39% 1.88% 

 29 0.63 6.96 -0.0113 1.61 6.89 19.44 10.22% 11.46% 

 
Oct. 32 -0.85 -0.67 0.0003 0.06 1.17 1.09 0.32% 2.32% 

          
SR2017 Sep. 40 -0.04 0.04 -0.0001 0.03 0.43 0.19 0.11% 1.19% 

  37 0.15 0.11 0.0010 -0.01 1.28 1.55 0.57% 7.14% 

 
Oct. 37 0.67 0.04 0.0008 -0.23 1.33 0.88 0.56% 3.50% 

 37 0.41 0.93 0.0006 0.22 1.40 3.39 0.70% 5.99% 

 
Nov. 39 -1.63 1.04 -0.0001 1.17 3.22 1.96 1.05% 7.52% 

 35 -1.70 3.11 0.0029 2.12 6.12 7.44 4.00% 21.79% 

 
Dec. 35 -4.63 11.15 -0.0410 4.78 6.13 16.12 8.79% 52.26% 

 36 -0.48 9.30 0.0002 4.28 2.20 12.42 2.61% 24.87% 

 
Jan. 37 -0.48 4.96 -0.0030 2.35 1.69 10.66 2.90% 18.61% 
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Figure A1: Ranks and values of feature importance of 124 features used for Random Forest-based (a) cloud classification and (b) shadow 
classification in 100 runs. The feature importance are relative values scaled from 0 to 1, and the higher values represent more contribution 
to the classification.
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Figure A4: SOS50 retrieved from PS, MODIS and Sentinel-2-derived NDVI time series for Kapiti Farm and per seasons. The mean 
and standard deviation are reported beside each map. All maps are visualized by showing the difference from the mean. Red colours means 
that the date is before the mean, and blue colours mean that the date is after the mean.  
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Figure A5: EOS50 retrieved from PS, MODIS and Sentinel-2-derived NDVI time series for Kapiti Farm and per seasons. The mean 
and standard deviation are reported beside each map. All maps are visualized by showing the difference from the mean. Red colours means 
that the date is before the mean, and blue colours mean that the date is after the mean. 
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Figure A6: maxNDVI retrieved from PS, MODIS and Sentinel-2-derived NDVI time series for Kapiti Farm and per seasons. The 
mean and standard deviation are reported beside each map.  
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Figure A7: cumNDVI50 retrieved from PS, MODIS and Sentinel-2-derived NDVI time series for Kapiti Farm and per seasons. The 
mean and standard deviation are reported beside each map. Phenology maps for each season use the same legend, which is on the left side of 
the map. 

 

 

 

  

 

Mean ± Std.: 

36.45 ± 8.50 

 

Mean ± Std.: 

27.07 ± 5.04 

 

Mean ± Std.: 

17.28 ± 5.37 

Mean ± Std.: 

24.05 ± 6.23 

 

Mean ± Std.: 

20.40 ± 5.40 

Mean ± Std.: 

84.05 ± 9.30 

 

Mean ± Std.: 

72.00 ± 14.70 

Mean ± Std.: 

67.55 ± 9.31 

 

>40  

30  

<10  

15 

20 

25 

35 

>110  

100  

90 

80  

70  

60  

50  

<40 

>40  

30  

<10  

15 

20 

25 

35 

PlanetScope MODIS Sentinel-2 

(a) (d) 

(b) (e) 

(f) (c) 

(g) 

(h) 

2KM 

L
R

2
0

1
7

 
S

R
2

0
1

7
 

L
R

2
0

1
8

 

cumNDVI

50 



 

62
 

                            F
ig

ur
e 

A
8
: 
D

iff
er

en
ce

 b
et

w
ee

n 
S

en
ti
ne

l-
2
- 

an
d 

P
S

-d
er

iv
ed

 S
O

S
5
0
, 
E

O
S

5
0
, 
m

ax
N

D
V

I 
an

d 
cu

m
N

D
V

I 5
0
. 
T

he
 f
re

qu
en

cy
 d

is
tr

ib
ut

io
n 

of
 d

iff
er

en
ce

s 
fo

r 
fo

ur
 p

he
no

lo
gi

ca
l 
m

et
ri

cs
 a

re
 s

ho
w

n 
in

 p
lo

t 
i-

l.

S
O

S
5

0
 

E
O

S
5

0
 

(
a
)
 

(
b

)
 

SR2017 
m

a
x
N

D
V

I
 

c
u

m
N

D
V

I
5

0
 

(
c
)
 

(
d

)
 

(
h

)
 

(
g

)
 

(
f)

 
(
e
)
 

LR2018 

(
i)

 
(
j)

 
(
k
)
 

(
l)

 

2
K
M

 

>
4
0
 

3
0
 

2
0
 

1
0
 

0
 

-1
0
 

-2
0
 

-3
0
 

<
-4

0
 

>
4
0
 

3
0
 

2
0
 

1
0
 

0
 

-1
0
 

-2
0
 

-3
0
 

<
-4

0
 

>
0
.2

 

0
.1

5
 

0
.1

0
 

0
.0

5
 

-0
.0

5
 

-0
.1

0
 

<
-0

.1
5
 

0
.0

0
 

>
3
0
 

2
0
 

1
0
 

0
 

<
-2

0
 

-1
0
 



 

63 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A9: Screenshot of python script. All python scripts written for this study were uploaded and shared through GitHub. Cloud and 
cloud shadow detection for PS images (https://gist.github.com/YanCheng-go/6f692136ab05e1f2345892fd0abb03dc) and Curve fitting 
and phenology estimation (https://gist.github.com/YanCheng-go/d4e17831f294199443d0f7682558e608). 

https://gist.github.com/YanCheng-go/6f692136ab05e1f2345892fd0abb03dc
https://gist.github.com/YanCheng-go/d4e17831f294199443d0f7682558e608



