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ABSTRACT 

Mangrove forests are playing a vital role by storing and sequestering a large amount of global carbon that 

helps to reduce the GHG emission. Unfortunately, the global mangrove forests are decreasing rapidly due 

to agricultural expansion, illegal logging, mining, and palm oil production. The UNFCCC initiates REDD+ 

initiatives for reducing the GHG emission from deforestation and forest degradation. The aboveground 

biomass and carbon stock estimation is a prerequisite for an MRV system for complying such initiative.  

 

The use of UAV and TLS are considered as a popular remote sensing technique for estimating aboveground 

biomass and carbon stock appropriately. This study is aimed at a comparative assessment on the applicability 

of UAV and TLS for estimating aboveground biomass and carbon stock in the mangrove forest. The tree 

height extracted from CHM of UAV images can provide comparatively accurate tree height. The DBH and 

tree height measured from TLS 3D point clouds can also give a correct measurement of DBH and tree 

height. The aboveground biomass was estimated using a specific allometric equation developed for 

mangrove forests. A total of 30 sample plots containing 893 trees were considered for conducting statistical 

analysis. The accuracy of DBH, tree height and aboveground biomass estimated from UAV and TLS were 

assessed for identifying if any significant difference between them or not. In this study, two segmentation 

algorithm including multi-resolution and SLIC were also evaluated for determining a better algorithm for 

tree crown segmentation on UAV imagery in mangrove forests.  

 

The result shows that tree height extracted from CHM of UAV imagery compared to tree height measured 

from TLS point clouds are attained at R2=0.82 (RMSE=1.44m). The multi-resolution and SLIC 

segmentation was conducted to evaluate these two segmentation algorithms. The accuracy of multi-

resolution segmentation was found 77.99% in 25cm resolution UAV-RGB image while SLIC provides 

51.18% accuracy in 20cm UAV-RGB resampled image. A quadratic regression model is found best fitted 

for developing CPA-DBH relationship with R2=0.89 where RMSE=3.50cm. The model validation was 

found as R2=0.90 and RMSE=3.33cm. The accuracy of DBH predicted from CPA segmentation of UAV 

imagery compared to field-measured biometric DBH is attained at R2=0.87 (RMSE=3.21cm) while the 

accuracy of DBH measured from TLS point clouds is achieved at R2=0.99 (RMSE=0.30cm). On the other 

hand, the accuracy of AGB estimated form UAV compared to TLS is achieved at R2=0.93 while 

RMSE=3.78 ton/ha. Therefore, there is no significant difference found by t-test for DBH, tree height, and 

AGB estimated from field-measured biometric, TLS and UAV data. 

 

The study reveals that the measurement of UAV and TLS for estimating aboveground biomass and carbon 

stock is very close in the mangrove forest. The application of TLS is comparatively difficult in mangrove 

forests due to its challenging environment. Therefore, as a low-cost technology, UAV can be used to 

estimate aboveground biomass and carbon stock accurately especially in the mangrove forest. Consequently, 

as a remote sensing technique, UAV can be used broadly in any inaccessible area of mangrove forest for 

estimating aboveground biomass and carbon stock towards the implementation of MRV under REDD+ 

initiatives. 
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1. INTRODUCTION 

1.1. Background Information 

Forests are considered as one of the most significant carbon sinks in the tropics because they are highly 

productive ecosystems (Donato et al., 2011). They are playing a vital role by storing and sequestering 

atmospheric carbon dioxide as well as reducing the greenhouse gas (GHG) emission. Also, forests have an 

important role in biodiversity conservation and GHG reduction from the atmosphere. But, forests have 

been decreasing rapidly due to deforestation and forest degradation (IUCN, 2017).  It is estimated that 18.7 

million acres of global forest land is declining in each year (WWF, 2019). The main reasons for forests 

degradation are the agricultural expansion, illegal logging, mining, shrimp farming, and palm oil plantation.  

 

Many restoration and regeneration programmes and activities have been undertaken to reduce deforestation 

and forests degradation (Irving et al., 2011). The United Nations Framework Convention on Climate Change 

(UNFCCC) adopted the Kyoto Protocol in 1997 and the Doha Amendment in 2012 to reduce global GHG 

emission. The protocol aimed to reduce GHG emission level to at least 18 percent less than the 1990 level 

(Kaku, 2011). The UNFCCC is conducting REDD+ initiatives through some mitigation programmes to 

reduce GHG emission from forest degradation and deforestation towards sustainable forest management, 

especially in developing countries (USAID, 2013). These initiatives play a key role in protecting forest 

biomass and reducing GHG emissions from the atmosphere. The REDD+ initiative is committed to 

providing financial incentives, i.e., funds, credits to the developing countries for reducing CO2 emission 

from forest degradation and deforestation (Aikawa et al., 2012). A Measurement, Reporting, and Verification 

(MRV) system is an essential part of monitoring such initiatives. The biomass and carbon stock estimation 

is a prerequisite for MRV of the REDD+ initiative.  

 

Aboveground biomass (AGB) is considered one of the major carbon pools and acts as a significant 

parameter for monitoring the changes in carbon dioxide in the atmosphere (Lucas et al., 2015). Biomass is 

defined as plant organic materials such as leaves, roots, stalks, and seeds which are treated as the significant 

indices for both functional and structural variables of the forest ecosystem (Brown, 1997). Also, forest 

biomass has a significant role in regulating carbon emission generated from deforestation and forest 

degradation through carbon sequestration and storage (Lu, 2006). Forest biomass can be used for assessing 

forest condition, productivity, and carbon fluxes (Brandeis et al., 2006). Forest aboveground biomass is 

estimated in different ways using various methods and techniques. It can be measured either by field-based 

measurement (Salunkhe et al., 2016) or using remote sensing data (Lu, 2006). Unfortunately, sometimes the 

field-based biomass estimation is not feasible for its elongated process (Ghosh & Behera, 2018) while remote 

sensing based aboveground biomass estimation (both optical and active sensors) is considered as a most 

efficacious and cost-effective technique for sustainable forest management (Ali et al., 2015). At this point, 

Lu (2006) focused on the integration of field measured data with remote sensing data for estimating 

aboveground biomass. 

 

Remote sensing techniques are treated as a revolutionary technology for monitoring and sustainable 

management of forest. Remote sensing instruments are broadly categorized into active and passive sensors 

where active sensors have their own energy to illuminate the detected object, while passive sensors detect 

natural radiation reflected by the object (NASA, 2018). The active sensors including Radio Detection and 

Ranging (RADAR) and Light Detection and Ranging (LiDAR) can assess comparatively accurate forest 
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biophysical parameters including tree height, Diameter at Breast Height (DBH), forest volume data (Gibbs 

et al., 2007). The passive sensors like satellite images are also used to measure forest parameters, e.g., tree 

height and DBH for estimating aboveground biomass and carbon stock. The spatio-temporal information 

on biophysical and biochemical properties of forest can be accumulated from remote sensing data (Asner 

et al., 2015). The Unmanned Aerial Vehicle (UAV) imagery is a popular remote sensing technique since last 

decade. The 3D point clouds can be derived from UAV images which are used to estimate forest biophysical 

parameters (e.g., trees height and crown projection area) for assessing aboveground biomass and carbon 

stock. 

1.2. Problem Statement and Justification 

Mangrove forest is considered as a significant carbon sink of the terrestrial ecosystem as it can sequester 

and store an enormous volume of carbon compared to other forests (Donato et al., 2011; Twilley et al., 

1992). Mangrove forests can store three times higher carbon (including aboveground and belowground) as 

compared to terrestrial forests (Alongi, 2012). Besides, mangrove forests play an essential role in providing 

ecosystem services and functions including shelters for the birds and other animals, habitats for the plants, 

fish, invertebrates and amphibians and foods, woods and livelihoods for the local communities (Duarte et 

al., 2013). This forest plays a crucial function for stabilizing alluvial sediments and protecting the coastline 

from erosion and natural hazards (Boone & Bhomia, 2017). Unfortunately, global mangrove forests are 

degrading rapidly where half of the forest has been lost in the last four decades (Giri et al., 2011).  

 

Mangrove forest has salt-tolerant trees that make it unique as compared to other forests. Also, mangrove 

forest is an ecosystem with rich biodiversity including various species of flora and fauna. In mangrove, some 

tree species have an intricate root system which is also the habitation of different aquatic species of flora 

and fauna (see Figure 1). The flat and even canopy and intermingle crowns make it challenging to identify 

individual tree crowns in the mangrove. However, the advantage is that it has a single canopy, unlike the 

tropical forest which is multi-layered. The aboveground biomass estimation in mangrove forest is 

challenging due to accessibility interrupted by tides and congested roots for field data collection 

(Gunawardena et al., 2016).  

Figure 1: Typical structure of vegetation in mangrove forest 

Adapted from: https://www.civilsdaily.com 
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Nowadays, UAV is a popular technology for monitoring forest management as well as estimating 

aboveground biomass and carbon stock. The application of UAV technology especially in the forest sector 

is increasing dramatically over the last decades (Anderson & Gaston, 2013). The UAV technique can take 

imagery of a relatively large area within a short duration while the cost is lower compared to other remote 

sensing techniques (Messinger et al., 2016; Dandois & Ellis, 2013). The UAV imagery has a very high spatial 

resolution which can be used to identify the small-scale objects in details (Dandois & Ellis, 2013). The 3D 

point clouds can be generated from the multiple partially overlapping images while applying the Structure 

from Motion (SfM) technique. The SfM technique is the process incomparable with stereographic analysis 

of aerial photographs to estimate the 3D structure of the object using a set of overlapping 2D images. The 

UAV can collect multiple images for certain objects, and the specific software can calculate camera position 

as well as the position of 3D points for overlapping, viewing rays of corresponding points (Westoby et al., 

2012). Finally, it can generate 3D point clouds of the surface area. Digital Surface Model (DSM) and Digital 

Terrain Model (DTM) can be produced (see Figure 2) using 3D point clouds. Hence, Canopy Height Model 

(CHM) can also be generated by deducting DTM from DSM.  

Figure 2: Digital Surface Model, Digital Terrain Model, and Canopy Height Model 

Adapted from: Tolpekin (2012) 

Another remote sensing instrument is the Terrestrial Laser Scanning (TLS), which is considered as one of 

the most useful and comparatively accurate techniques for measuring tree attributes in the forest. It is a 

ground-based active LiDAR instrument which uses laser beams to detect and measure surrounding objects 

and can generate 3D point clouds of the objects (Bu & Zhang, 2008). TLS can provide an enormous amount 

of high-resolution 3D information on vegetation biophysical parameters (Kociuba et al., 2014). It can be 

applied for measuring crown structure, leaf area index, leaf area distribution, canopy radiation, and gap 

fraction. TLS can use simple allometric and isometric equations for assessing biomass, growth monitoring 

and disturbance of vegetation structure (Newnham et al., 2015). It can measure high-resolution 3D spatial 

data of forest structures as a ground-based active remote sensor. TLS can measure lower canopy more 

precisely compared to other techniques including manual measurement and satellite images. However, the 

use of TLS in the mangrove forest for measuring biophysical parameters of trees is a big challenge. Because 
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the weight of TLS instrument is almost 25 kilograms which is difficult to move from one scan position to 

another on the wet and muddy ground. Moreover, TLS is applicable only plot-based which is considered as 

a drawback for this technique (Griebel et al., 2015).  

 

Object-Based Image Analysis (OBIA) is an image segmentation and classification method which considers 

spatial features as objects instead of pixels (Kavzoglu & Tonbul, 2017). It is regarded as an ideal method for 

high-resolution imagery such as UAV images to delineate tree crowns and isolate species of the forest 

vegetation (Zhang et al., 2010). However, Yuheng and Hao (2017) claimed that a segmentation technique is 

challenging for identifying the image objects accurately through a segmentation process. Accurate tree crown 

segmentation is a prerequisite for accurate estimation of aboveground biomass and carbon stock (Mohan et 

al., 2017). The OBIA is considered as an effective method because of its ability to integrate spatial 

information along with higher accuracy for the processing of very high-resolution images (Zhang et al., 

2010). Several studies have been conducted on the applicability of OBIA process. Among them, Blaschke 

(2010) preferred OBIA method for spatial planning as well as sustainable forest management. Chubey et al. 

(2006) found a robust relationship between high-resolution satellite images and OBIA on species 

classification, crown closure, and land cover types. Pham and Brabyn (2017) found a good result by applying 

OBIA techniques to monitor mangrove forest biomass changes in Vietnam.  Karlson et al. (2014) stated 

that OBIA technique could provide higher accuracy for tree crown mapping in managed woodland. 

 

In mangrove forests, several studies have been conducted for estimating aboveground biomass and carbon 

stock. Among them, satellite imagery or Airborne LiDAR data were mostly used. Some studies used UAV 

images for aboveground biomass and carbon stock estimation (Husson et al., 2014; Zahawi et al., 2015; 

Wahyuni et al., 2016; Messinger et al., 2016). However, no studies were found on the applicability of UAV 

and TLS for assessing aboveground biomass and carbon stock in the mangrove forest. In other studies, for 

example in tropical forest, UAV images were used to calculate height from CHM while UAV-DBH can be 

predicted from Crown Projection Area (CPA) based on a model developed from the relationship between 

CPA and field-measured DBH. On the other hand, TLS can estimate tree height and DBH of trees 

accurately from its 3D point clouds (Newnham et al., 2015). However, the use of TLS is difficult in the 

inaccessible area while UAV images can be collected easily from that area. Despite these drawbacks, both 

UAV and TLS are treated as a comparatively accurate technique for estimating aboveground biomass in the 

forest. This study will make a comparative assessment on the applicability of UAV and TLS for aboveground 

biomass and carbon stock estimation in a mangrove forest. The accuracy of UAV derived aboveground 

biomass depends to a large extent on the accuracy of image segmentation. Therefore, the study will also 

intend to evaluate two segmentation algorithms including multi-resolution and Simple Linear Iterative 

Clustering (SLIC) for accurate segmentation of tree crown on UAV imagery. 

1.3. Research Objectives, Questions, and Hypothesis 

1.3.1. Research Objectives 

Overall Objectives 

The overall objective of the study is to make a comparative assessment on the applicability of UAV and 

TLS for estimating aboveground biomass and carbon stock of mangrove forest in Mahakam Delta, East 

Kalimantan, Indonesia.   

 

Specific Objectives 

1. To evaluate the accuracy of tree height derived from CHM of UAV imagery compared to tree 

height resultant from TLS. 
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2. To evaluate two segmentation algorithms, more specifically multi-resolution and SLIC for accurate 

segmentation of tree crowns on UAV imagery.   

3. To compare the accuracy of DBH estimated from CPA segmentation of UAV imagery and DBH 

derived from TLS with the field-measured DBH. 

4. To assess the accuracy of aboveground biomass estimated from UAV images compared to 

aboveground biomass estimated from TLS point clouds. 

 

1.3.2. Research Questions 

1. How accurate is the tree height derived from CHM of UAV imagery compared to the tree height 

resultant from TLS? 

2. Which algorithm provides higher segmentation accuracy of tree crowns on UAV imagery? 

3. How accurate is the DBH derived from CPA segmentation of UAV imagery with the field-

measured DBH? 

4. How accurate is the DBH derived from TLS with the field-measured DBH? 

5. How accurate is the estimated amount of aboveground biomass from UAV imagery compared to 

aboveground biomass estimated from TLS? 

 

1.3.3. Research Hypothesis 

1. H0: There is no significant difference between tree height estimated from CHM of UAV 

imagery and tree height resultant from TLS. 

Ha: There is a significant difference between tree height estimated from CHM of UAV imagery 

and tree height resultant from TLS. 

2. H0: There is no significant difference between DBH derived from CPA segmentation of UAV 

imagery and field-measured DBH.  

Ha: There is a significant difference between DBH derived from CPA segmentation of UAV 

imagery and field-measured DBH. 

3. H0: There is no significant difference between TLS derived DBH and field-measured DBH. 

Ha: There is a significant difference between TLS derived DBH and field-measured DBH. 

4. H0: There is no significant difference between aboveground biomass estimated from UAV 

imagery and TLS data.   

Ha: There is a significant difference between aboveground biomass estimated from UAV 

imagery and TLS data.   
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1.4. Concepts of the Study 

The conceptual diagram of the study is illustrated in Figure 3: 

Figure 3: The conceptual diagram of the study 
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2. STUDY AREA, MATERIALS, AND METHODS 

2.1. Study Area 

2.1.1. Geographic Location 

Indonesia is a Southeast Asian country located in between the Pacific, and the Indian Ocean which has 

almost 23 percent of the world’s mangrove ecosystems (Giri et al., 2011). East Kalimantan is one out of 34 

provinces in East Kalimantan. It has a total area of 129,066 square kilometers (49,832 sq. mi) and is the 

fourth largest province in Indonesia. The study is conducted in the mangrove forest of Mahakam Delta in 

East Kalimantan. The study area is situated between 0°32′18.20′′ S and 117°34′3.87′′ E. The size of the study 

area is approximately 47 hectares. In East Kalimantan, there are various mangrove swamp forests located 

far inland up to the Mahakam River (Choong et al., 1990). A simplified map of the study area is shown in 

Figure 4: 

Figure 4: Map shown the study area located in East Kalimantan province in Indonesia 

 

2.1.2. Climate 

The climate condition of East Kalimantan is broadly classified into two seasons, i.e., wet season and dry 

season. The wet season duration is started from November to April while dry season begins from May to 

October. However, the climate is also influenced by monsoon due to located on the equator line. Nowadays 

the erratic situation is seen in East Kalimantan with sometimes heavy rain or sometimes no rain. The mean 

annual temperature in this area is 26.8°C while the average yearly rainfall is 1783 mm/year (BMKG, 2019). 
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2.1.3. Vegetation 

The mangrove forest in Mahakam delta has diversified tree species. Among them, several tree species are 

considered as dominating species including avicennia, rhizophora, bruguiera, xylocarpus, and sonneratia, (FAO, 

2018). Among those, avicennia is the most common genus in Mahakam Delta which is known as ‘api api’ 

means ‘fires’ in the Malay language. It is a flowering plant with aerial roots which is included under the 

family Acanthaceae. Generally, it is available in the intertidal area of estuarine. Rhizophora and bruguiera are 

another genus included in Rhizophoraceae family which are common in the mangrove forest. Like to 

avicennia, it is also found in the intertidal zone of estuarine. It has intricate roots with up to 2.5-meter-high 

from the ground. Xylocarpus is another dominating species under the Meliaceae family. Sonneratia is also 

found in mangrove which is included as a genus under Lythraceae family. It has spread aerial roots similar 

to avicennia. Among these species, three species including avicennia, rhizophora and xylocarpus were identified 

in the field. 
 

The vegetation of the study area is mostly planted. The age of the trees is in between 12-15 years. The 

rooting system of these species has superficial anchorage for absorbing groundwater and oxygen (Priya et 

al., 2017). A diagram of the rooting and aeration system of the dominating species are illustrated in Figure 

5. These dominant species have relative occurrence with ecological factors, e.g., salinity, soils, and tidal flows. 

However, the mixed association is found in some forest areas that indicate succession or zonation of tree 

species.  

Figure 5: Rooting and aeration system of dominating species in mangrove forest  

Adapted from: Göltenboth and Schoppe (2006) 

 

2.1.4. Datasets 

The study is based on three types of dataset including field-measured data, UAV and TLS data. Both field-

measured and TLS data was collected from the same sample plots while UAV images were taken for the 

overall area. Later, these sample plots (same as biometric and TLS plot) were identified and extracted from 

the UAV images. The field-measured data and TLS data was collected between 14 to 22 October 2018, and 

UAV images were acquired on 21 December 2018. The list of datasets, source, and their characteristics are 

illustrated in Table 1: 

 
Table 1: List of the dataset, their characteristics, and sources 

SN Data type Characteristics Data source 

1.  Field-measured data Biometric data of tree species, tree 

height, and DBH 

Fieldwork (October 2018) 

2.  TLS data 3D point clouds Fieldwork (October 2018) 

3.  UAV data UAV-RGB images Fieldwork (December 2018) 
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2.2. Materials  

2.2.1. Field Equipment’s and Instruments  

There are different field equipment’s were used during the field work to measure forest attributes including 
tree height, DBH, navigation, positioning, and setting sample plots. The list of field equipment required for 
the study is illustrated in Table 2: 

 
Table 2: List of equipment’s/instrument’s used in the fieldwork and their application 

SN Equipment’s/instruments Application 

1.  RIEGL VZ-400-TLS Tree scanning within sample plots 

2.  Phantom 4 DJI Drone Acquisition of UAV-RGB Images 

3.  Differential GPS GCP Positioning  

4.  Garmin eTrex GPS Navigation and positioning  

5.  Leica Disto D510 Tree height measurement 

6.  Measuring Tape (30m) Setting plot area  

7.  Diameter Tape (5 m) DBH measurement  

8.  Data Recording Sheet Data recording 

 

2.2.2. Software and Tools 

Different type of software and tools were used for processing and analyzing of UAV imagery, TLS, and 

field-measured data. The list of required software and tools are illustrated in Table 3. 

 
Table 3: List of required software and tools 

SN Software and tools Purpose/use 

1.  Pix4D Mapper 4.2.27 Photogrammetric processing of UAV imagery 

2.  RiSCAN Pro 2.5.2 TLS data processing and extraction of tree height and DBH 

3.  eCognition Developer 9.4.0 Tree crown segmentation 

4.  Cloud Compare 2.10 View point clouds 

5.  ArcGIS 10.6 Data processing and visualization  

6.  MS Office (Word, Excel) 2016 Thesis writing and statistical analysis 

 

2.3. Research Methods 

The research method is an essential step to response the research objectives and questions of the study. It 

comprises fieldwork design, sampling method, data collection, processing, data analysis, and findings. The 

methods used in this study are categorized into 05 (five) steps: 

 

1. The first step was related to fieldwork for collecting the required data and information from the study 

area. The biometric, TLS and UAV data were collected from the fieldwork. A total of 30 sample plots 

were identified as purposively for collecting field data. 

 

2. The second step was based on TLS data processing for co-registration and point clouds generation 

and extraction of all individual trees for measuring tree height and DBH. Aboveground biomass and 

carbon stock is estimated from TLS data using an allometric equation based on mangrove forest.  
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3. The third step was involved in the preparation and analysis of field-measured biometric data for 

estimating aboveground biomass and carbon stock. Biometric data is considered as ground truth for 

comparing the accuracy of tree height, DBH and aboveground biomass/carbon stock for UAV and 

TLS data. 

 

4. The fourth step was related to processing and analyzing of UAV data for accurate CPA segmentation 

for estimating DBH and exploring different segmentation algorithms. The CHM was generated for 

estimating tree height of the sample plots. Aboveground biomass and carbon stock were calculated 

from the processed data using the specific allometric equation for mangrove forest.  

 

5. The fifth and final step was based on assessing the accuracy of tree height, DBH and estimated 

aboveground biomass/carbon stock measured from TLS and UAV using field-measured data and 

allometric equation as the reference.  

 

The key process of the methods followed in the study is illustrated in Figure 6: 

Figure 6: Workflow diagram 

2.4. Field Work 

2.4.1. Pre-Field Work 

The pre-fieldwork activities include preliminary identification of sample plots, designing field data recording 

sheet, testing and practicing required equipment and instruments for fieldworks were carried out. 
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2.4.2. Sampling Design 

The Sampling design is an essential part of a research study. A purposive sampling method was followed in 

this study. Mangrove forest is difficult for data collection due to wet ground and complex root system. 

Carrying a TLS in mangrove forest is very difficult for its weight (almost 25 kg). Therefore, the purposive 

sampling method was applied to ensure full utilization of the limited time and minimize the risks to collect 

data from inaccessible places. 

 

2.4.3. Biometric Data Collection 

Biometric data (tree species, height, and DBH) was measured by following the purposive sampling method. 

A Circular plot with 12.62 m radius (500 m2) was used for both biometric and TLS data collections. A 

circular plot is convenient to identify in the field and can provide comparatively few errors (Newnham et 

al., 2015). Moreover, the circular plot is convenient and easy for Terrestrial Laser Scanning. The forest type 

and species distribution of the study area were almost homogeneous. So a circular plot with 12.62 m radius 

was used for minimizing the required time as well as labour.  

 

DBH of all individual trees inside the plot was measured with a diameter tape at a 1.3m height from the 

ground. But some cases, the DBH was measured above the highest prop root for the species rhizophora 

which had longer roots above than 1.3m. During the field measurement, trees that have equal or more than 

10cm DBH were considered for measurement. Because, trees with less than 10cm DBH have less 

contribution to aboveground forest biomass (Brown, 2002). Leica Disto D510 was used to estimate tree 

height in the field. The coordinates of each plot center and location of four individual trees were also 

measured using Garmin eTrex GPS. The specific coordinate system (WGS_1984_UTM_Zone_50S) was 

followed in this study. The species of trees inside the sample plots were collected from the fieldwork. The 

collected field-measured data (tree height, DBH and tree species) were recorded in data collection sheets. A 

photograph of biometric data collection is shown in Figure 7: 

Figure 7: Biometric data collection during fieldwork 

2.4.4. TLS Data Collection 

The TLS (see Figure 8a) was used to scan the same 30 sample plots which were used for biometric data 

collection at the same time. It is generally mounted on a tripod on the ground. It emits a laser beam to the 

objects around the scanning positions and receives the reflected beams with 3D points of those objects. A 
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multiple scan approach was followed with 4 (four) different scan positions for each plot. Because four scan 

position (1 center and three outers) is easy to identify in the field as well as can reduce the scan duration 

compared to more scan position in each plot. The center position of each plot was used as the first scan 

position. The three other scan positions were set outside of the perimeter of the circular plot which is 15 m 

away from the center scan position with an angle of 120 degrees (see Figure 8b). Because scanning from 

center position with three other positions can scan the objects from a 360-degree angle and can generate 

comparatively accurate 3D point clouds of those objects. A multiple scan position can minimize the 

occlusion problem and can produce a sufficiently dense 3D point cloud that can be used as an accurate 

measurement of tree height and DBH (Liu et al., 2017).  

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 8: (a) RIEGL VZ-400 TLS ; (b) Diagram of TLS multiple scan position 

 

Plot Preparation 

Plot preparation is an integral part of TLS data collection. After selecting the center plot, a 12.62m radius 

was used to identify the plot area. The center plot should be located a minimum of one meter away from 

the nearest tree. All the trees inside the plot area should be visible from the center plot. The long and 

congested roots and branches which made an obstacle to clear view of the tree crown and the tree stem 

from scan position were cleared after setting the plot area. After that, trees inside the plot were identified 

and marked with tree tags for finding them in 3D point clouds. The trees which have at least 10 cm DBH 

were considered for measurement. 

 

 

Setting the Reflectors 

The retro-reflectors were used as tie points among the multiple scan positions. It improves the accuracy of 

the scanning as well as regulate the alignment of each scan. The reflectors are required for accurate co-

registration of all scans for generating 3D point clouds. Both circular and cylindrical reflectors were used 

for scanning of each plot in the fieldwork. A total of 10-12 cylindrical reflectors were placed on the top of 

sticks for their visibility from all scan positions. Moreover, 8-10 circular reflectors were tagged (see Figure 

9a) on the tree trunk facing to the center position with a clear view. 

 

 

 

 

 

 

Center 

Position 

Plot Radius= 12.62 m 

(a) (b) 
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Figure 9: (a) Plot preparation before TLS Scanning and setting the reflectors; (b) TLS scanning 

 

TLS Setup and Scanning 

After plot preparation and setting the retro-reflectors, TLS was fitted on the tripod and leveling it manually 

by adjusting the tripod legs until getting an accurate level. After adjusting the level, TLS was started to scan 

for data collection (see Figure 9b).  

 

2.4.5. Acquisition of UAV Imagery 

A Phantom 4 DJI Drone with an RGB camera was used for UAV image acquisition in the study area. A 

UAV flight was operated for covering 0.47 ha area located in Tani Baru village in Mahakam Delta.  

 

Flight Mission Planning 

A total of two UAV flight plan fulfilling the research requirements were prepared to acquire UAV imagery 

covering 30 sample plots in the study area. The Pix4D capture android application was used to prepare these 

flight plan (see Appendix 1). The duration of the UAV flight mission was considered according to UAV 

battery capacity. The UAV flight parameters used for image acquisition is illustrated in Table 4:   

 
Table 4: UAV flight parameters used for image acquisition 

Parameter  Value 

Flight Mission : Grid  

Flight Speed : Moderate (10 m/sec) 

Angle : 900 

Flight Height : 164.58 – 172.63 meter 

Front Overlap : 85% 

Side Overlap : 75% 

Image Size : 4000x3000 

  

Allocation of GCP Markers 

A total of 8 (eight) GCP markers were allocated in the study area for identifying accurate spatial reference 

of 3D maps generated from the UAV images. Differential GPS was used to measure the accurate position 

of all GCPs in the study area. The GCP marker allocation and model of the Phantom 4 DJI drone are 

illustrated in Figure 10:  

 

(a) (b) 
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Figure 10: (a) A Phantom 4 DJI Drone; (b) A GCP marker placed in the study area 

Source: www.dji.com 

 

Data Acquisition 

After allocating the GCP markers, Phantom 4 DJI UAV was flown for capturing images according to the 

defined parameters (speed, altitude, angle, and overlap) and stored the images in the memory card installed 

in the UAV. 

 

2.5. Data Processing 

2.5.1. Biometric Data Processing 

The field-measured biometric data collected from the field was manually entered into a MS Excel sheet for 

data analysis. The biometric data that were collected from the fieldwork includes sample plot number, tree 

ID, tree species, tree height, DBH, the coordinate of 4 (four) individual trees and the plot center. The 

coordinates of all trees were not measured due to lack of time. However, measured four trees in each plot 

was well enough for identifying the location of all other trees in each plot in UAV orthophoto. A total of 

30 sample plots data were collected during the fieldwork.  

2.5.2. TLS Data Processing 

RiScan Pro software was used to process field acquired TLS data. A process flow diagram for UAV image 

processing is illustrated in Figure 11. 

Figure 11: Process flow diagram for TLS data processing 

 

Co-registration 

Multiple scan co-registration is the first step of TLS data processing to merge several scans to generate 3D 

point clouds. The 3D point clouds were generated based on the tie points (retro-reflectors) that were visible 

from all the scan position in a plot (Lu et al., 2008). RiSCAN Pro software was used for co-registering the 

outer three scans to the center scan position in each plot. The 3D point clouds (black and white) of a sample 

plot are illustrated in Figure 12. 

(a) (b) 
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Figure 12: 3D point clouds after co-registration 

 

Plot Extraction 

Generally, 3D point clouds of the registered multiple scans covered a greater area than the plot area. After 

completing the co-registration, sample plots were extracted to exclude the point cloud outside the plot area. 

For extracting plots, the point cloud inside the plot area was filtered with 12.62 m radius using the range 

tool of RiSCAN Pro software. After that, all point clouds inside the plot radius was extracted and stored for 

measuring individual tree height and DBH. 

 

Individual Tree Extraction 

RiSCAN Pro software was used for extracting individual trees from the 3D point clouds generated from 

multiple co-registration. For the identification and separation of a particular tree, the extracted plot was 

displayed in true color mode for enhancing the visualization of the tree label. The individual trees were 

identified based on their color and shape with selection tools. After that, the trees were extracted and saved 

as new point clouds. An extracted individual tree in different angles is shown in Figure 13.  

Figure 13: A tree extracted from TLS 3D point clouds seen from three different angles 

(a) (b) (c) 
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DBH Measurement 

The DBH can be measured using different methods including distance measurement tool and circle fitting. 

The circle fitting method is based on a circle center that can adjust to projected points of the stem for 

structuring a radius to measure DBH (Wu et al., 2018) while the distance measure tool calculates the distance 

between two points to measure DBH. The distance measure tool in RiSCAN Pro was used to measure DBH 

in this study. The DBH was computed at the height of 1.3m from the base (see Figure 14a and Figure 14b). 

The measured DBH of all individual trees were manually entered into MS Excel for analysis. 

 

Tree Height Measurement 

Similar to DBH measurement, the tree height was also measured with measure distance tools in RiSCAN 

Pro software. The highest point and lowest point of individual trees were identified and calculate the distance 

between two points. The resultant distance was considered as the tree height. The species rhizophora has a 

long and congested root system. Sometimes its aboveground roots are up to 2.5m high from the ground. 

The tree height of rhizophora was measured including the height of the root (see Figure 14c). 

Figure 14: (a) Measurement of 1.3m height from ground; (b) DBH measurement; (c) height measurement 

 

2.5.3. UAV Image Processing 

The photogrammetric software Pix4D Mapper Pro was used to process the UAV images for generating 

DSM, DTM, and orthophoto. A process flow diagram for UAV image processing is illustrated in Figure 15. 

Figure 15: Diagram showing the processing steps of UAV images 
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The following steps were carried out for preparing and processing of UAV dataset: 

 

Ground Control Points (GCPs) 

GCP is a mark point on the ground which has known geographic coordinate. It is a prerequisite element 

for processing the UAV dataset. Before flying UAV, 8 (eight) GCP markers were placed on the ground for 

finding those markers from the UAV images (see Figure 16). The coordinates of the location of those 

markers were measured with Differential GPS before flying UAV in the study area. Because accurate GCPs 

are essential for geometric correction of the UAV images. 

 

Image Orientation and Alignment 

Image orientation is a vital step for processing of UAV dataset. In Pix4D Mapper, images need to be 

uploaded for setting orientation and alignment of the images. The software can automatically detect the 

camera position and alignment of each image. After that, recorded GCPs were imported in the software for 

geo-referencing and spatial accuracy of the UAV images. 

Figure 16: Image orientation and location of GCPs on a google earth basemap 

 

Quality Check 

After completing the image processing, a quality report was automatically generated to show the quality and 

accuracy of image processing. The quality report (see Appendix 2) shows the calibration, camera 

optimization, matching and geo-referencing accuracy of the processed image. In this study, all the images 

were calibrated where the mean RMS error is 0.047 meter. However, camera optimization has some error 

with 15.64% relative difference between initial and optimized internal camera parameters. Nevertheless, the 

overall quality of the processing is good enough for analyzing.   

 

Generation of 3D Point Clouds 

The 3D point clouds were generated using SfM technique where multiple partially overlapped UAV images 

generated the 3D structure of the objects (Prosdocimi et al., 2015). The point clouds are a 3D imaging of 

an object comprising millions of points having georeferenced information. Pix4D Mapper can automatically 

generate dense 3D point clouds (see Figure 17a) after adjusting image orientation and image alignment. The 

3D point clouds are essential for generating DSM, DTM, and orthophoto (see Figure 17b) accurately. The 

average density of point clouds made from image processing was found 30.29 (per m3) which indicates 

sufficient point clouds were created for getting good measurement data. 
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Figure 17: (a) Generated 3D point clouds of the study area; (b) Orthophoto of the study area 

 

Generation of Digital Surface Model, Digital Terrain Model, and Orthophoto  

After generating 3D point clouds, Pix4D Mapper can generate orthophoto, DSM and DTM. The 

orthophoto is a geometrically corrected image, made from multiple raw images using a uniform scale. The 

orthophoto was used to identify the crown projection area (CPA) for estimating DBH for individual trees. 

Besides, a DSM is a surface model considering the height value of objects while DTM is a terrain which 

represents the terrain heights originated on the surface of the earth (Wilson, 2016). The DSM and DTM are 

illustrated in Figure 18. 

(a)            (b) 
Figure 18: (a) DSM of the study area; (b) DTM of the study area 

The DSM and DTM show negative values here because the edges do not have sufficient image matching. 

Therefore, the point clouds were not densely generated in that area. As a result, the lowest values of DSM 

and DTM were calculated as negative. All of the sample plots are located around the centre position of the 

area (see Figure 4). So, the negative values do not affect the height measurement of the plot area.   

 

Generation of Canopy Height Model and Extraction of Tree Height 

The Canopy Height Model (see Figure 19) was generated by subtracting the DTM from the DSM. The 

Raster Calculator tool in ArcGIS was used to calculate the Canopy Height Model using DTM and DSM. 

The Canopy Height Model was used to estimate individual tree height from the sample plots. For tree height 

estimation, field-measured trees were identified and matched with corresponding tree crown in Canopy 

Height Model.  

(b) (a) 
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Figure 19: Generated Canopy Height Model (CHM) from DSM and DTM 

Estimation of Crown Projection Area 

The Crown Projection Area (CPA) is required to estimate DBH from UAV images. The CPA was digitized 

manually in ArcGIS based on the orthophoto. All the trees inside the plots were identified using field-

collected coordinates of the trees and matching them with TLS images for higher accuracy. Moreover, 

manually digitized CPA was also used as reference data for evaluating the accuracy of multi-resolution and 

SLIC segmentation.  

 

CPA Model Development and Validation 

The manually digitized CPA were used to develop a model based on biometric DBH and CPA from UAV 

images. In the model, four different regression functions were compared, and the one with the highest 

accuracy was selected for predicting DBH for UAV data. The validation of the CPA model was conducted 

using a scatter plot for examining its consistency with biometric DBH as a reference.  

 

2.5.4. Segmentation Algorithms 

The image segmentation is the process of splitting the image into different segments based on the image 

pixels. The segmentation algorithms play a vital role for accurate segmentation of image objects. The 

segmentation process defines a homogeneous spatial object depending on its color, shape, and size. There 

are various segmentation algorithms can be used for image segmentation. Among them, multi-resolution, 

edge-detection, SLIC are widely used for their accuracy and simplicity. The segmentation algorithm is based 

on trial-and-error for adjusting different parameters to get a good result. In this study, multi-resolution and 

SLIC segmentation were used to evaluate the accuracy of the tree crown segmentation. Because multi-

resolution segmentation is recognized as a perfect image segmentation algorithm especially for geographic 

objects (Witharana & Civco, 2014) while SLIC is a superpixel based algorithm which requires less 
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computational power and easy to implement (Achanta et al., 2012). The eCognition developer software was 

used for both multi-resolution and SLIC for accurate segmentation of individual tree crown from the UAV 

images. 

 

Multi-Resolution Segmentation 

The multi-resolution segmentation is one of the most widely used segmentation algorithms in OBIA. This 

segmentation is mainly based on three user-oriented parameters including scale, shape, and compactness. It 

is followed by bottom-up region based technique to segment images into different levels (Kavzoglu & 

Tonbul, 2018). This process is started by considering an individual pixel to create an image object, and 

subsequently, a couple of image objects are merged into a bigger one (Saha, 2008). The merging process is 

based on the local homogeneity to reduce the heterogeneity of the pixels of the same objects. This step ends 

when the user-defined threshold (scale parameter) is exceeded by the lowest increase of homogeneity (Baatz 

et al., 2000). The scale parameter is used to regulate the higher limit for an acceptable change of heterogeneity 

in the process of segmentation. The scale parameter can control the average size of the image objects. 

Consequently, a higher value of scale parameter can allow greater merging of the polygons. The multi-

resolution segmentation also depends on the spatial continuity including texture and topology.  

 

Multi-resolution segmentation was performed in eCognition 9.3.0 version using different resampled images. 

A high-resolution image could have some noises which are required to resample for aligning the input cells 

with the converted cell centers of desired resolution. The orthophoto generated from UAV-RGB images 

were resampled to 20cm, 25cm, and 30cm resolution using nearest neighbor method in ArcMap because 

tree crown segmentation performs better in 20cm or higher resolution (Ke & Quackenbush, 2011). The 

UAV derived 6.2cm resolution orthophoto was filtered using low pass (3-by-3) in ArcMap before resampling 

to lower resolution. Because image filtering can reduce image noises which can increase the accuracy of 

image segmentation. So, the filtered UAV-RGB resampled images were used as input layers in eCognition 

for achieving higher accuracy in segmentation of tree crowns.  
 

The Estimation of Scale Parameter (ESP2) tool was used for defining scale in multi-resolution segmentation. 

This tool is an automated method for estimating scale parameter conforming to homogeneity in eCognition 

Developer (Csilik & Lang, 2016). It can compute local variances of image objects (mean standard deviation) 

for three (03) different level. Also, the local variances can be portrayed with the rate of change in a graph to 

illustrate the optimal scale parameter for multi-resolution segmentation (Drǎguţ et al., 2010). Figure 20 

shows the estimation of scale parameter using ESP2 tool. 

Figure 20: Estimation of scale parameter in ESP2 tool 
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In Figure 20, the blue line (downward slope) shows the rate of change of image objects while the red line 

(upward slope) indicates local variance of the image pixel. The graph shows that the local variance moves 

upward due to the higher resolution image while the rate of change moves downward gradually for the 

image scene (Drǎguţ et al., 2010). The graph also indicates that the scale parameter fitted best with value 20 

for multi-resolution segmentation in this study. 

 

The step size level (three levels) parameters were checked with different values for getting higher 

segmentation accuracy. Also, other parameters including shape, and compactness were used for adjusting 

better segmentation. The parameters including shape and compactness are required to adjust before 

performing segmentation. The scale parameter defines the highest acceptable heterogeneity in segmented 

objects while the shape determines the extent of spectral values of image layer influence the heterogeneity. 

The compactness defines the concentration of the segmented objects. After adjusting the parameters 

(scale=20, shape=0.3 and compactness=0.7), shadow masking was performed to separate trees from 

shadows, open space, and waterbodies based on the brightness value of the pixels. The watershed 

transformation was executed for splitting the cluster of tree crowns. It considers the image as a topographic 

surface which consists of local maxima, watershed lines and catchment basins (Chen et al., 2004). The 

remove objects algorithm was also performed for removing undesired objects from the image (see Appendix 

3 for ruleset). Finally, the best segmentation was exported as a shape file as ‘polygon smoothed’ for 

evaluating segmentation accuracy in ArcMap. The output of the multi-resolution segmentation is illustrated 

in Figure 21.  

Figure 21: Multi-resolution segmentation in 25cm resolution filtered UAV-RGB image 

 

SLIC Segmentation 

The Simple Linear Iterative Clustering (SLIC) is a superpixel based segmentation algorithm which needs 

less computational power. This algorithm can make superpixels by color similarity and proximity of the 

image plane. As a gradient centric algorithm, it can adopt k-mean cluster for generating identical superpixels 

based on object color (Crommelinck et al., 2017) and can segment any part of an image according to the 

image background layer (Dhanachandra et al., 2015). SLIC segmentation is based on assessing two 

parameters including ‘k-parameter’ which upholds the size of superpixels and ‘m-parameter’ that maintain 

similarity and edge of superpixels (Yuan & Hu, 2016). The difference between multi-resolution and SLIC 

segmentation is that multi-resolution segmentation is a bottom-up region based technique where it starts 

from an individual pixel to form a bigger one and can segment images into several levels. On the contrary, 

SLIC can generate the desired number of similarly shaped superpixels (Kavzoglu & Tonbul, 2018). 
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SLIC can also be conducted in other software like eCognition, R, MATLAB, GRASS GIS, and QGIS. The 

eCognition Developer was used to perform SLIC segmentation in this study. A filtered UAV-RGB image 

(low pass 3-by-3) with different resampled resolution (20cm, 25cm, and 30cm) images were used. Different 

parameters, i.e., iterations, region size, minimum element size, and ruler were used for adjusting the accuracy 

of segmentation. The iteration is the repetition of the process while the minimum element size defines the 

percentage of superpixels that would be assimilated to a greater one. The region size represents an average 

superpixel size, and the ruler is used for smoothening of the superpixels. The trial-and-error approach was 

applied for adjusting the parameters (iterations=50, minimum element size=10, region size=30, and 

ruler=50), and shadow masking was used to delineate trees from shadows based on pixel brightness value. 

Like multi-resolution segmentation, an algorithm like watershed transformation and remove objects were 

also used for removing undesired objects (see Appendix 4 for ruleset). Finally, the best segmentation was 

exported as a shape file with ‘polygon smoothed’ for estimating segmentation accuracy in ArcMap. The 

output of the SLIC segmentation is shown in Figure 22. 

Figure 22: SLIC segmentation in 20cm resolution UAV-RGB image 

 

2.5.5. Accuracy Assessment of Segmentation Algorithms 

The accuracy assessment of segmentation was conducted for evaluating multi-resolution and SLIC 

segmentation. The assessment can be carried out following the empirical statistical approach including 

discrepancy methods and goodness of fit (Zhang et al., 2008). The discrepancy method is based on the 

matching of target objects with reference objects (manually digitized tree crown) for identifying mismatches. 

The goodness of fit method assesses homogeneity of intra-segments, heterogeneity of inner segments and 

the characteristics of the shapes (Lübker & Schaab, 2009).   

 

The evaluation of segmentation accuracy depends on the variance between two different segmentation of 

the same feature. The difference is the consequences of error for segmentation. The segmentation error is 

related to underestimation or overestimation of CPA. In this study, the segmentation accuracy was 

calculated using area-based measurement. Because the study area was consists of 30 isolated sample plots 

identifying by purposive sampling. So, it was easier to compare the manually digitized polygons (reference 

polygons) with segmented polygons using area-based measurement. The following equations formulated by 

Clinton et al. (2010) were used in this study to assess the accuracy of multi-resolution and SLIC 

segmentation. 
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Equation 1: Calculation of under segmentation 

ARi))ARi)/area((area(ATi-1=onsegmentatiUnder  … … … … … … . . . 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (1) 
 

Equation 2: Calculation of over segmentation 

ATi))ARi)/area((area(ATi-1=onsegmentatiOver  … … … … … … . . . 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (2) 

 

Where,  𝑎𝑟𝑒𝑎(𝐴𝑇𝑖 ∩ 𝐴𝑅𝑖) = Correctly segmented area of the reference polygon 

 𝐴𝑇𝑖 = Area of targeted polygons (automatic segmented polygons) 

 𝐴𝑅𝑖 = Area of reference polygons (manual delineated polygons)  
 

Equation 3: Calculation of error 

)/2)onsegmentatiunder +onsegmentati(over (=Error 22 … … … … … … . . . 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (3) 

 

The accuracy assessment of both multi-resolution and SLIC segmentation was conducted in ArcGIS 10.6 

with 3 (three) resampled UAV-RGB images including 20cm, 25cm and 30cm resolution. The accuracy was 

assessed based on manually digitized CPA (reference polygons) with automatically segmented polygons 

(targeted polygons) from multi-resolution and SLIC segmentation. For doing this, all manual polygons of 

30 sample plots were merged into a shapefile. Then a spatial join between manually digitized polygons and 

segmented polygons were conducted and separated the polygons which have to join count value greater 

than 0 (>0) by using select by attribute option. This process identified only those polygons which have a 

spatial connection with manually digitized polygons.  These identified polygons were considered as targeted 

polygons. Hence, an intersection process was carried out to determine the intersection between manually 

delineated polygons and automatically segmented polygons. Then the area of manually digitized reference 

polygons (ARi), segmented polygons (ATi) and their intersected area(ATi∩ARi) were calculated. The under 

segmentation and over segmentation was also estimated for calculating the error. Finally, the percentage of 

accuracy was calculated for both multi-resolution and SLIC segmentation.  

2.6. Data Analysis 

2.6.1. Allometric Equation 

The allometric equation is a commonly used method to estimate aboveground biomass using forest 

biophysical parameters including tree height and DBH. Several researchers have developed some equations 

for simplifying biomass estimation using wood density, tree height and DBH (Nam et al., 2016). However, 

site-specific allometric equation needs to be applied for accurate estimation of aboveground biomass (Basuki 

et al., 2009). Among different allometric equations for estimating aboveground biomass, the equation 

developed by Chave et al. (2005) specified for mangrove forest is comparatively simple and renown to 

estimate aboveground biomass in a mangrove forest.  

 
Equation 4: Allometric equation for AGB estimation 

HDxHDinAGBest

22 0509.0))(977.2exp(   … … … … … … . . . 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (4) 

 

Where,  AGBest = Estimated aboveground biomass in kg;  

D = Tree DBH in cm (measured at 1.3m from ground but some cases at above prop root);  

H = Tree Height in meter (measured from the ground);  

p = Wood Specific Gravity in g/c3.  
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For estimating carbon stock, a carbon fraction (CF) of 0.47 (IPCC, 2006) was used to calculate carbon stock 

using aboveground biomass. 

 

 
Equation 5: Carbon stock calculation from AGB 

AGBxCFC  … … … … … … . . . 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (5) 

 

Where,  C = Carbon Stock,  

AGB = Aboveground Biomass, and  

CF = Carbon Fraction 

 

2.6.2. Aboveground Biomass and Carbon Stock Estimation 

Aboveground biomass and carbon stock was estimated using three different datasets including field-

measured biometric data, TLS and UAV data. The above-mentioned specified allometric equation (see 

Equation 4) developed for mangrove forest, was applied to calculate AGB in this study. Besides, specific 

wood density for specific tree species provided by ICRAF (2018) was also used to estimate aboveground 

biomass accurately. The specific wood density used for avicennia, rhizophora and xylocarpus species are 0.6987 

g/cm3, 0.9204 g/cm3 and 0.6721 g/cm3 respectively. 

 

a. Aboveground Biomass and Carbon Stock Estimation using Biometric Data 

The field-measured tree height and DBH were used to estimate aboveground biomass and carbon stock 

from field-measured. The abovementioned allometric equation was applied to calculate the AGB from 

biometric data. The carbon stock was also estimated from aboveground biomass. 

 
b. Aboveground Biomass and Carbon Stock Estimation using TLS 

The tree height and DBH measured from TLS point clouds were used to estimate aboveground biomass 

and carbon stock for TLS dataset.  

 
c. Aboveground Biomass and Carbon Stock Estimation from UAV 

The tree height extracted from UAV-CHM and DBH predicted from UAV-CPA were used for estimating 

aboveground biomass and carbon stock for UAV dataset. 

 

2.6.3. Statistical Analysis 

The regression analysis is a statistical process to determine the relationship between the dependent and 

independent variables. It helps to identify how dependent variable changes while the value of the 

independent variable is varied (Domingo et al., 2017). Besides, it is an essential step for modeling the 

relationship for two different types of data. The regression analysis is used to make a relationship between 

tree height and DBH measured in TLS and tree height and DBH estimated in CHM of UAV imagery. 

Furthermore, this analysis is also carried out to make a relationship between aboveground biomass estimated 

from TLS and UAV data. The RMSE (Root Mean Square Error) and the coefficient of determination (R2) 

were also used for signifying the relationship among the variables.  
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Equation 6: Calculation of RMSE 

 

… … … … … … . . . 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (6) 
 
 

Where RMSE  = Root Mean Square Error 

 Xobs  = Observed value of the dependent variable 

 Xmod = Modelled value of the dependent variable 

 n = Number of sample size   
 
 
Equation 7: Calculation of %RMSE  

 obsXnRMSERMSE /100**% … … … … … … . . . 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (7) 

 
Where %RMSE = Percentage of Root Mean Square Error 
  n = Number of sample size 

  Xobs = Observed value of the dependent variable  

n

XX
RMSE

n

i obs 


 1

2

mod )(
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3. RESULTS 

3.1. Descriptive Statistics 

A descriptive statistics of tree height and DBH extracted from the TLS, UAV and field-measured biometric 

data were executed to identify the nature and extent of those data. The biometric data was analyzed to 

identify the distribution of tree species, DBH and tree height. The analytical results are described below: 

 

3.1.1. Species Distribution 

A total of 3 (three) tree species were identified in the sample plots area. The dominant species were avicennia 

and rhizophora. Among 893 trees, avicennia is 467, rhizophora is 415 and rest 11 is identified as xylocarpus. Figure 

23 shows the distribution of the species identified in the field.   
 

 
Figure 23: Distribution of different tree species 

 

3.1.2. Tree Height 

The tree height of the field-measured biometric, TLS and UAV data were analyzed and summarized. It is 

estimated that field-measured biometric tree height is comparatively less than TLS and UAV estimated tree 

height. The average tree height from biometric data is 13.29m while the TLS and the UAV estimated height 

is 14.75m and 14.03m respectively. The calculated standard deviation of biometric, TLS and UAV are 2.89, 

2.81 and 2.93 respectively. The summary statistics of tree height is illustrated in Table 5. 
 

Table 5: Summary statistics of tree height measured from biometric, TLS and UAV data 

 
Biometric TLS UAV 

Mean 13.29 14.75 14.03 

Standard Error 0.10 0.09 0.10 

Median 12.60 14.49 13.71 

Mode 12.60 15.95 14.67 
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Biometric TLS UAV 

Standard Deviation 2.89 2.81 2.93 

Sample Variance 8.33 7.87 8.58 

Kurtosis -0.11 -0.05 0.55 

Skewness 0.63 0.42 0.66 

Range 15.72 15.69 16.73 

Minimum 6.87 7.23 6.66 

Maximum 22.59 22.92 23.40 

Sum 11867.15 12891.75 12526.26 

Count 893 874 893 

 

3.1.3. Diameter at Breast Height (DBH) 

The DBH of the field-measured biometric, TLS and UAV data were analyzed and summarized. In biometric 

data, all 893 trees were analyzed while 19 trees were missing in TLS data. It is observed that biometric 

measured DBH was comparatively higher than TLS and UAV estimated DBH. The average DBH of 

biometric data is 16.05cm while TLS and UAV have 16.02cm and 16.04cm respectively. The standard 

deviation of biometric, TLS and UAV are 8.84, 8.82 and 8.64 respectively. The summary statistics of tree 

height is illustrated in Table 6. 

 

Table 6: Summary statistics of DBH measured from biometric, TLS and UAV data 

 
Biometric TLS UAV 

Mean 16.05 16.02 16.04 

Standard Error 0.30 0.30 0.29 

Median 13.30 13.23 13.65 

Mode 10.00 10.00 11.48 

Standard Deviation 8.84 8.82 8.64 

Sample Variance 78.09 77.86 74.56 

Kurtosis 28.31 27.13 41.06 

Skewness 4.24 4.16 5.37 

Range 98.90 97.00 98.36 

Minimum 10.00 10.00 9.06 

Maximum 108.90 107.00 107.42 

Sum 14334.02 13997.69 14319.46 

Count 893 874 893 

3.2. The Accuracy of Tree Height Extracted from UAV-CHM Compared to Tree Height Measured from 
TLS 3D Point Clouds 

The accuracy of UAV-CHM extracted tree height compared to tree height measured from TLS point clouds 

(as reference height) was conducted using a scatter plot based on these two tree heights. A total of 874 trees 

were considered for evaluating the accuracy of tree height extracted from UAV-CHM compared to tree 

height extracted from TLS point clouds. The result (see Figure 24) shows that there is a strong correlation 

of 0.90 with R2 (coefficient of determination) 0.82 (see Table 7). The Root Mean Square Error (RMSE) is 

1.44m that is equivalent to 9.75% of total tree height measured from TLS point clouds.  
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Figure 24: The relationship between tree height extracted from UAV-CHM and TLS point clouds 
 

Table 7: Summary statistics of tree height extracted from UAV-CHM and TLS point clouds 

Pearson Correlation 0.90   

R Square 0.82 
  

Adjusted R Square 0.82 
  

Standard Error 1.25 
  

Observations 874 
  

 

F-test for Two-Sample Variance 

The F-test was checked to find out if there equal or unequal variance of two datasets (UAV-CHM and TLS 

height) for deciding which t-test need to be used for assessing the difference between two datasets. The F-

test (see Table 8) indicates an equal variance (F-Stat<F-Critical (P>0.05) between tree height extracted from 

UAV-CHM and TLS point clouds. So t-test assuming equal variance was carried out for identifying if any 

significant difference between two datasets.  
 
Table 8: F-test for two sample variance 

  UAV Height TLS Height 

Mean 14.05 14.75 

Variance 8.59 7.87 

Observations 874 874 

df 873 873 

F-Stat 1.09 
 

P(F<=f) one-tail 0.09 
 

F-Critical one-tail 1.12 
 

Decision: F-Stat<F-Critical (P>0.05): Equal variance 
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T-Test Assuming Equal Variance 
A T-test was conducted to check is there any significant difference between UAV and TLS measured tree 
height. The test shows (see Table 9) that there is no significant difference (t-Stat<t-Critical at P>0.05) 
between tree height measured in UAV-CHM and TLS point clouds.  
 
Table 9: T-test assuming equal variance for UAV and TLS measured tree height 

  UAV Height TLS Height 

Mean 14.05 14.75 

Variance 8.59 7.87 

Observations 874 874 

Pooled Variance 8.23 
 

Hypothesized Mean Difference 0 
 

df 1746 
 

t-Stat -5.07 
 

P(T<=t) one-tail 1.95E-08 
 

t Critical one-tail 1.64 
 

P(T<=t) two-tail 4.39E-07 
 

t Critical two-tail 1.96 
 

Decision: t-Stat<t-Critical (P>0.05): The null hypothesis is accepted. So there is no significant difference 
between UAV derived tree height, and TLS measured tree height. 

3.3. Accuracy Assessment of Image Segmentation 

3.3.1. The accuracy of Multi-resolution Segmentation 

The accuracy assessment of multi-resolution segmentation was conducted in ArcMap for estimating the 

level of accuracy. A total of 3 (three) resampled UAV-RGB images, i.e., 20cm, 25cm and 30cm were taken 

for assessing accuracy. The accuracy was estimated based on the manual digitized CPA of individual trees 

as the reference area. An overlaid manual digitized CPA on multi-resolution segmentation is illustrated in 

Figure 25. 

Figure 25: Overlaid of manual digitized CPA on multi-resolution segmented CPA 
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The accuracy of multi-resolution segmentation results for each resampled images (20cm, 25cm, and 30cm) are 
illustrated in Table 10: 

Table 10: Accuracy of multi-resolution segmentation 

 UAV-RGB Resampled Image Resolution 

 20cm 25cm 30cm 

Reference Area (ARi) 6768.33 6768.33 6768.33 

Segmented Area (ATi) 13780.71 9811.85 15318.68 

Intersection (ATi∩ARi) 6505.14 6758.45 6749.06 

Over Segmentation 0.53 0.31 0.56 

Under Segmentation 3.9E-02 1.5E-03 2.8E-03 

Error 0.37 0.22 0.40 

Accuracy 62.57% 77.99% 60.44% 

 

The result shows that the 25cm resolution image has the highest segmentation accuracy with 77.99% while 

the accuracy of 20cm and 30 resolution images were 62.57, and 60.44% respectively. 

 

3.3.2. The accuracy of SLIC Segmentation  

The accuracy assessment of SLIC segmentation was also experimented in ArcMap for assessing its level of 

accuracy. Like multi-resolution segmentation, a total of 3 (three) resampled UAV-RGB images (20cm, 25cm, 

and 30cm) were considered for accuracy assessment. The accuracy was assessed based on the manual 

digitized CPA of 893 trees as the reference area. An overlaid of manual digitized CPA on multi-resolution 

segmented CPA is illustrated in Figure 26. 

Figure 26: Overlaid of manual digitized CPA on SLIC segmented CPA 

The accuracy of SLIC segmentation results for each resampled images (20cm, 25cm, and 30cm) are 

illustrated in Table 11: 
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Table 11: Accuracy of SLIC segmentation 

 UAV-RGB Resampled Image Resolution 

 20cm 25cm 30cm 

Reference Area (ARi) 6768.33 6768.33 6768.33 

Segmented Area (ATi) 21730.48 24379.97 26548.52 

Intersection (ATi∩ARi) 6728.46 6746.02 6731.25 

Over Segmentation 0.69 0.72 0.75 

Under Segmentation 5.9E-03 3.3E-03 5.5E-03 

Error 0.49 0.51 0.53 

Accuracy 51.18% 48.85% 47.22% 

 

The result shows that the 20cm resolution resampled image has the highest segmentation accuracy with 

51.18% while the accuracy of 25cm and 30cm resampled images were 48.85% and 47.22% respectively. 

 

3.3.3. Comparison of Segmentation Accuracy between Multi-resolution and SLIC 

The segmentation accuracy of multi-resolution is higher in each resampled UAV-RGB images compared to 

SLIC segmentation. The highest accuracy of multi-resolution segmentation was found 77.99% in 25cm 

resolution while the highest accuracy of SLIC was also found in 20cm resolution with 51.18% accuracy. The 

accuracy of multi-resolution and SLIC segmentation in different resampled images (20cm, 25cm and 30cm) 

are illustrated in Figure 27. 

Figure 27: Accuracy of multi-resolution and SLIC segmentation 

3.4. Model Development and Validation 

Several models were developed and validated for predicting DBH of individual trees using field-measured 

biometric DBH. A total of 90 trees were selected for model development and validation. Among them, 54 

trees (60%) were selected for model development, and 36 trees (40%) were chosen for model validation.  

6
2

.5
7

%

7
7

.9
9

%

6
0

.4
4

%

5
1

.1
8

%

4
8

.8
5

%

4
7

.2
2

%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

20cm 25cm 30cm

%
  o

f 
A

cc
u

ra
cy

Resolution of Resampled Image

Accuracy of Multi-resolution and SLIC Segmentation

MRS SLIC



A COMPARATIVE ASSESSMENT ON THE APPLICABILITY OF UAV AND TLS FOR ESTIMATING ABOVEGROUND BIOMASS OF MANGROVE FOREST IN 

MAHAKAM DELTA, EAST KALIMANTAN, INDONESIA 

32 

3.4.1. CPA Model Development 

A total of 54 trees were randomly selected from 18 sample plots for model development. The trees were 

selected with biometric DBH (ranging from 10.00cm to 58.80cm) for representing field-measured DBH 

with a different range. It is found that most of the trees have DBH within 30cm while very few (42 out of 

893) have higher DBH.  A relationship between the UAV derived CPA, and field-measured biometric DBH 

was developed in a scatter plot. Four different regression functions, i.e., linear, logarithm, power and 

quadratic were developed. The results are illustrated in Figure 28. 

Figure 28: Different regression model for predicting DBH from CPA 

 
Table 12: Summary of the results of different regression functions 

Model Equation R2 RMSE 

Linear  DBH = 1.5974*CPA + 3.0857 0.87 3.76 cm 

Logarithm DBH = 17.263ln(CPA) – 18.386 0.72 5.56 cm 

Power DBH = 3.5549(CPA)0.7328 0.76 4.49 cm 

Quadratic DBH = 0.0267*CPA2 + 0.7805*CPA + 7.8335 0.89 3.50 cm 

  
It is observed that linear and quadratic functional models have the highest R2 value. However, the quadratic 
function has comparatively better RMSE with 3.50cm (see Table 12). Therefore, the quadratic functional 
model was accepted for predicting DBH from UAV data.  
 

3.4.2. Model Validation 

The quadratic functional model was selected for predicting DBH for UAV dataset. The equation (DBH = 

0.0267*CPA2 + 0.7805*CPA + 7.8335) developed by the quadratic model was used for predicting UAV 

derived DBH. A total of 36 individual trees were randomly selected from the rest 12 sample plots (not used 
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for model development). The result shows that R2 is 0.90 which means that 90% of UAV predicted DBH 

data are fitted with biometric DBH. The goodness of fit was examined by RMSE which is 3.33 cm. 

Therefore, the result is well fitted with referenced biometric DBH. A scatter plot for model validation is 

illustrated in Figure 29. 

 

Figure 29: Scatter plot for model validation of predicted DBH for UAV 

3.5. The Accuracy of UAV-CPA Estimated DBH Compared to Biometric DBH 

The accuracy of DBH predicted from UAV-CPA was evaluated with biometric DBH (referenced DBH) 

using a scatter plot based on these two measured DBH. The UAV predicted DBH and biometric DBH were 

placed in a scatter plot. A total of 893 trees were considered for conducting this assessment. The result 

(Figure 30) shows that there is a strong correlation with 0.93 where the coefficient of determination (R2) is 

0.87 (see Table 13). The Root Mean Square Error (RMSE) is found 3.21 cm which is equivalent to 19.97% 

of field-measured biometric DBH. Therefore, there is a strong correlation between biometric DBH and 

TLS measured DBH.  

Figure 30: Scatter plot for biometric DBH and UAV predicted DBH 
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Table 13: Summary statistics of comparison  of  TLS measured DBH and Biometric DBH 

Pearson Correlation 0.93   

R Square 0.87 
  

Adjusted R Square 0.87 
  

Standard Error 3.11 
  

Observations 893 
  

 

F-test for Two-Sample Variance 
The F-test was conducted to find out datasets (biometric DBH and UAV derived DBH) are an equal or 
unequal variance for deciding which t-test need to be used for assessing the difference between two datasets. 
The F-test (Table 14) indicates an equal variance (F-Stat<F-Critical (P>0.05) between biometric DBH and 
TLS measured DBH. So t-test assuming equal variance was carried out for identifying if any significant 
difference between these two DBH or not.  
 
Table 14: F-test for two sample variance 

  Biometric DBH UAV Predicted DBH 

Mean 16.05 16.03 

Variance 78.09 74.56 

Observations 893 893 

df 892 892 

F-Stat 1.04 
 

P(F<=f) one-tail 0.24 
 

F-Critical one-tail 1.12 
 

Decision: F-Stat<F-Critical (P>0.05): Equal variance 
 
T-Test Assuming Equal Variance 

The T-test assuming equal variance was conducted to check if there any significant difference between 

biometric DBH and UAV derived DBH. The test shows (see Table 15) that there is no significant difference 

(t-Stat<t-Critical at P>0.05) between biometric DBH and UAV derived DBH.  
 
Table 15: T-test assuming equal variance for UAV estimated DBH and Biometric DBH 

  Biometric DBH UAV Predicted DBH 

Mean 16.05 16.03 

Variance 78.09 74.56 

Observations 893 893 

Pooled Variance 76.33 
 

Hypothesized Mean Difference 0 
 

df 1784 
 

t-Stat 0.04 
 

P(T<=t) one-tail 0.48 
 

t Critical one-tail 1.64 
 

P(T<=t) two-tail 0.97 
 

t Critical two-tail 1.96 
 

Decision: t-Stat<t-Critical (P>0.05): The null hypothesis is accepted. So there is no significant difference 
between biometric DBH and UAV derived DBH. 
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3.6. The Accuracy of TLS Measured DBH Compared to Biometric DBH 

The accuracy of DBH derived from TLS 3D point clouds was assessed with biometric DBH (referenced 

DBH) using a scatter plot based on these two measured DBH. A total of 874 trees were considered for this 

assessment. The result (see Figure 31) shows that there is a correlation of 0.99 where the coefficient of 

determination (R2) is 0.99 (see Table 16). The RMSE is 0.30 cm which is equivalent to 1.87% of biometric 

DBH. Therefore, there is a strong correlation between biometric DBH and TLS measured DBH.   

Figure 31: Scatter plot for biometric DBH and TLS measured DBH 

Table 16: Summary statistics of comparison  of TLS measured DBH and Biometric DBH 

Pearson Correlation 0.99   

R Square 0.99 
  

Adjusted R Square 0.99 
  

Standard Error 0.34 
  

Observations 874 
  

 

F-test for Two-Sample Variance 

The F-test was conducted to find out is there an equal or unequal variance for deciding which t-test need to 

be used for assessing the difference between two datasets. The F-test (see Table 17) indicates an equal 

variance (F-Stat<F-Critical (P>0.05) between TLS measured DBH and biometric DBH. So t-test assuming 

equal variance was carried out for identifying if any significant difference between two datasets or not.  
 
Table 17: F-test for two sample variance 

  Biometric DBH TLS DBH 
Mean 16.08 16.01 

Variance 79.48 77.86 

Observations 874 874 

df 873 873 

F-Stat 1.02 
 

P(F<=f) one-tail 0.38 
 

F-Critical one-tail 1.12 
 

Decision: F-Stat<F-Critical (P>0.05): Equal variance 
 

R² = 0.99
RMSE = 0.30 cm
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T-test Assuming Equal Variance 

A t-test was conducted to check is there any significant difference between TLS measured DBH and 

biometric DBH. The test shows (see Table 18) that there is no significant difference (t-Stat<t-Critical at 

P>0.05) between biometric DBH and TLS measured DBH.  
 
Table 18: T-test assuming equal variance for TLS measured DBH and Biometric DBH 

  Biometric DBH TLS DBH 

Mean 16.08 16.01 

Variance 79.48 77.86 

Observations 874 874 

Pooled Variance 78.67 
 

Hypothesized Mean Difference 0 
 

df 1746 
 

t-Stat 0.14 
 

P(T<=t) one-tail 0.44 
 

t Critical one-tail 1.64 
 

P(T<=t) two-tail 0.88 
 

t Critical two-tail 1.96 
 

Decision: t-Stat<t-Critical (P>0.05): The null hypothesis is accepted. So there is no significant difference 
between TLS measured DBH and field measured DBH. 

3.7. AGB Estimation 

Aboveground biomass was estimated from all the datasets including field-measured biometric, TLS and 

UAV. All trees of 30 sample plots were considered for estimating aboveground biomass.  

3.7.1. AGB Estimation using Field-measured Biometric Data 

The field-measured 30 sample plots data were processed and analyzed for estimating aboveground biomass 

of the study area. It is observed that the highest AGB was estimated in plot 5 with 262.25 ton/ha whereas 

the lowest is calculated in plot 12 with 29.56 ton/ha. The average AGB derived from 30 plots is 109.98 

ton/ha. It is observed that the highest AGB estimated plots are mostly dominated by rhizophora. Figure 32 

shows the plot-wise AGB estimation from field-measured biometric data. 

Figure 32: Plot-wise distribution of field measured AGB 
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3.7.2. AGB Estimation using TLS Data 

The TLS measured 30 sample plots data were processed and analyzed for calculating the aboveground 

biomass. Similar to field-measured biometric data, the highest AGB was estimated in plot 5 with 303.10 

ton/ha whereas the lowest was calculated in plot 12 with 33.25 ton/ha. The average AGB from all 30 plots 

was calculated as 116.33 ton/ha. The plot-wise AGB estimation from TLS is illustrated in Figure 33. 

Figure 33: Plot-wise distribution of TLS measured AGB 

3.7.3. AGB Estimation from UAV Data 

The field-measured 30 sample plots were identified from UAV processed data and analyzed for assessing 

the aboveground biomass. The highest AGB was estimated in plot 5 with 315.63 ton/ha whereas the lowest 

was calculated in plot 18 with 39.76 ton/ha. The average AGB from all 30 plots was estimated as 112.38 

ton/ha. The plot-wise AGB estimation from UAV is illustrated in Figure 34. 

Figure 34: Plot-wise distribution of UAV estimated AGB 
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3.8. The Accuracy of AGB Estimated from UAV Compared to AGB Estimated from TLS 

The UAV and TLS estimated AGB were placed in a scatter plot for evaluating the accuracy of UAV 

estimated AGB compared to TLS measured AGB. The TLS scanned 30 sample plots data (reference data) 

were considered for developing this assessment. The result (Figure 35) shows that there is a strong 

correlation with 0.96 where the coefficient of determination (R2) is 0.93 (see Table 19). The Root Mean 

Square Error (RMSE) is found as 3.78 ton/ha which is equivalent to 3.25% of TLS estimated AGB.  

Figure 35: Scatter plot for UAV and TLS estimated AGB 

Table 19: Summary statistics of comparison of TLS and UAV estimated AGB 

Pearson Correlation 0.96   

R Square 0.93 
  

Adjusted R Square 0.92 
  

Standard Error 16.09 
  

Observations 30 
  

 

F-test for Two-Sample Variance 
The F-test was conducted to find out the TLS measured AGB and UAV estimated AGB have an equal or 
unequal variance for deciding which t-test need to be used for assessing the difference between two datasets. 
The F-test (see Table 20) indicates an equal variance (F-Stat<F-Critical (P>0.05) between UAV and TLS 
estimated AGB. So t-test assuming equal variance was carried out for identifying if any significant difference 
between these two AGB or not.  
 
Table 20: F-test for two sample variance 

  TLS Measured AGB UAV Estimated AGB 

Mean 116.33 112.38 

Variance 3549.62 3387.09 

Observations 30 30 

df 29 29 

F-Stat 1.05 
 

P(F<=f) one-tail 0.45 
 

F-Critical one-tail 1.86 
 

Decision: F-Stat<F-Critical (P>0.05): Equal variance 

R² = 0.93
RMSE = 3.78 ton/ha
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T-Test Assuming Equal Variance 
The T-test assuming equal variance was conducted to check if there any significant difference between UAV 
and TLS estimated AGB. The test shows (see Table 21) that there is no significant difference (t-Stat<t-
Critical at P>0.05) between biometric AGB and TLS estimated AGB.  
 

Table 21: T-test assuming equal variance for TLS measured DBH and Biometric DBH 

  TLS Measured AGB UAV Estimated AGB 
Mean 116.33 112.38 

Variance 3549.62 3387.09 

Observations 30 30 

Pooled Variance 3468.35 
 

Hypothesized Mean Difference 0 
 

df 58 
 

t-Stat 0.26 
 

P(T<=t) one-tail 0.40 
 

t Critical one-tail 1.67 
 

P(T<=t) two-tail 0.79 
 

t Critical two-tail 2.00 
 

Decision: t-Stat<t-Critical (P>0.05): The null hypothesis is accepted. So there is no significant difference 
between UAV and TLS measured AGB. 

3.9. AGB Estimation by Tree Species 

A comparative analysis was conducted to calculate average DHB, tree height and AGB by different tree 

species, i.e., avicennia, rhizophora and xylocarpus found in the study area. A total of 874 trees were considered 

for this statistical analysis. The result shows that the average DBH of avicennia was higher than rhizophora for 

biometric, TLS and UAV data. On the contrary, the average tree height of rhizophora was comparatively 

greater than avicennia. A comparative statistics of average DBH and tree height of avicennia and rhizophora are 

shown in Table 22. The species xylocarpus was excluded for this comparison due to its inadequate number 

(only 11).  

 
Table 22: A comparative statistics of average DBH and tree height of avicennia and rhizophora 

 

The AGB was also calculated according to different species for making a comparative analysis of tree 

species. The result shows that the average AGB (tree/kg) is highest in avicennia while lowest in xylocarpus. 

The difference between avicennia and rhizophora was found almost 100 kg/tree. The AGB estimation scenario 

of two species is illustrated in Figure 36. 

Tree 
Species 

No. 
of 

Trees 

DBH (cm) Tree Height (m) 

Biometric TLS UAV Biometric TLS UAV % of 
Deviation 
for UAV 
from 
Biometric 

% of 
Deviation 
for UAV 
from TLS 

Avicennia 456 18.40 18.31 17.88 13.14 14.21 13.84 5.31% -2.59% 

Rhizophora 407 13.53 13.48 14.14 13.48 15.38 14.30 6.09% -7.03% 
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Figure 36: AGB estimation by tree species 

3.10. Carbon Stock Estimation 

The carbon stock estimation was conducted to identify the amount of carbon in the study area. The carbon 

stock was estimated using the equation (see Equation 5) provided by IPCC (2006). The carbon stock was 

calculated from stand-alone biometric, UAV and TLS dataset. The plot-wise estimated carbon stock for 

field-measured biometric, TLS and UAV are illustrated in Figure 37.  

Figure 37: Plot-wise carbon stock of biometric, TLS and UAV 

The result shows that most of the plots have carbon stock below 60 tons/ha while only five plots have more 

than 80 ton/ha carbon. But two plots (plot 12 and 18) have carbon stock below 20 tons/ha. The average 

carbon stock (ton/ha) for biometric, TLS and UAV are 52.24, 55.26 and 53.38 respectively. 
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4. DISCUSSION  

4.1. Descriptive Analysis of DHB and Tree Height 

The skewness determines the extent of distribution (see Figure 38) while the value 0 indicates normal 

distribution (Hastie et al., 2009). The descriptive statistics of DBH measured from the field, TLS and UAV 

shows a positive skewness in an asymmetrical distribution. This is because trees having minimum 10cm 

DBH were only considered in this study. The minimum and maximum value for DBH varied over a 

comparatively broad range (≈ 97.00cm). The median and mode are smaller than the mean. Like DBH, the 

tree height measured from biometric, TLS and UAV also shows a positive skewness. The skewness in tree 

height is relatively minimal where the range lies between 6.66 and 23.40. Because the mean, median and 

mode are close. Also, the skewness for DBH and tree height measured from the field, TLS and UAV have 

fewer differences (see Appendix 5 & Appendix 6). Because the standard deviation of this measurement was 

close to each other.  

Figure 38: Normal distribution and skewness 

Source: https://www.fromthegenesis.com/skewness 

4.2. Tree Height Extracted from UAV-CHM and TLS Point Clouds  

The mean tree height of UAV-CHM was underestimated compared to tree height extracted from TLS point 

clouds. Only four plots were overestimated, and 26 plots were underestimated. There were some errors in 

3D point clouds generated from UAV images. This is because not enough point hit on the ground of some 

areas due to dense canopies (Ni et al., 2014). The UAV images could have some errors including systematic 

and accidental due to the processing of the images (Jiménez et al., 2017). The systematic error was occurred 

because of the inaccuracy of GPS for measuring GCP coordinates (Candón et al., 2014). The image altitude 

of UAV images was varied between 164m to 172m because of wind during UAV image acquisition in the 

field. Also, regular overlap and equal altitude were not possible due to the existence of wind (Nex & 

Remondino, 2014). As a result, the UAV-CHM has some inaccuracy which affects to the height 

measurement. But the images were taken using fixed-wing UAV while multi-rotor UAV has comparatively 

less systematic error compared to fixed-wing UAV (Jiménez et al., 2017). On the contrary, the accidental 

errors could occur due to insufficient calibration of internal parameters of the camera. In this study, 15.64% 

relative difference between initial and optimized internal camera parameters were detected (see Appendix 

2) because parameters of internal camera varied with a different altitude between two flights. Therefore, this 
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relative difference made some inaccuracies in 3D point clouds that affect tree height generated from UAV-

CHM. Also, the UAV image acquisition was conducted during high tide while most of the ground area was 

flooded. Therefore, this flooded ground has some influences on the height measurement from UAV images.  

 

The tidal flow and the hydrodynamic process are acted as an influential factor in mangrove forests 

ecosystem. The water level increases up to 1.5 meters during the high tide of Mahakam Delta. The sediment 

from the river Mahakam is deposited along the river bank. The sediments and muds are carried towards the 

intertidal zone in mangrove and accreting its mudbanks. However, most of the sediments return to the river 

during the period of low tides but some sediments accumulated with grounds. The rate of surface accretion 

in mangrove has a range from  2.9 to 20.8 mm/year (Krauss et al., 2010). As a result, surface elevation is 

changing both in short and long term basis in a mangrove forest. Figure 39 shows the sedimentation process 

where marine sediments are accreted on the surface.  

Figure 39: Mangrove sedimentation 

Source: Woodroffe et al. (2016) 

Despite some errors in UAV-CHM, the result shows that there is no significant difference between the tree 

height extracted from UAV-CHM and TLS point clouds which are consistent with some past studies. 

Among them, Wang et al. (2019) got a positive correlation with  R2= 0.96 between TLS and ALS measured 

height in a boreal forest. Similarly, Stovall et al. (2017) also found a positive correlation with a coefficient of 

determination (R2) as 0.99 between TLS and field-measured height in a mixed land-use area while Mweresa 

et al. (2017) found R2 as 0.75 between UAV and field-measured tree height in a tropical forest. The 

coefficient of determination is varied with those studies because the relationship between two tree height 

depends mostly on canopy and leaf structure which are dissimilar in mangrove compared to tropical or other 

forests (Larjavaara & Landau, 2013).  

4.3. Image Segmentation and Accuracy Assessment 

A total of three (03) different resolution (20cm, 25cm and 30cm) UAV-RGB filtered images were used to 

make an accurate assessment for both multi-resolution and SLIC segmentation. The high spatial resolution 

(6.2cm) UAV-RGB orthophoto was resampled to lower resolution. Because high-resolution image consists 

of minor cell size that makes the image comparatively sharper and lucent (Gao et al., 2017). Therefore, image 

segmentation in high-resolution images considers undesired objects which can affect segmentation accuracy 

(Clinton et al., 2010). Consequently, the high-resolution image (e.g., 5cm or 10cm) can segment objects well 

in an urban setting but not suitable for tree crown segmentation in forests (Tian et al., 2018). The UAV-

RGB image was also filtered using a 3-by-3 low pass method for removing noises and small objects from 

the image (Kejriwal & Singh, 2016). 
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4.3.1. The accuracy of Multi-resolution Segmentation 

Segmentation accuracy depends on some factors, i.e., image resolution, noise level and optimal parameters 

including scale, shape, compactness defined for the process of image segmentation (Möller et al., 2007). The 

scale parameter determines the homogeneity and size of resultant image objects (Drǎgut et al., 2010). The 

ESP2 tool was used to identify the scale parameter for three different resolution UAV-RGB images. After 

that, shape and compactness was identified with the trial and error method by visual interpretation. In this 

study, the parameter ‘shape’ was defined as comparatively lower as 0.3 because defining lower value indicates 

higher influences of color on the process of image segmentation (Saba et al., 2013). The study area has a 

significant influence on image color due to it has mostly two species where rhizophora was found dark green 

while avicennia was whitish in UAV orthophoto. From visual interpretation, avicennia had found 

comparatively higher accuracy compared to other two species due to its different brightness. Also, the 

brightness value of the pixel helps to delineate trees from shadows in segmentation. Most of the trees are in 

similar age (12-15 year), and DBH and height of the trees lie in a range with 10-20cm and 12-18m 

respectively. The compactness was defined as comparatively higher as 0.7 due to dense canopies in the study 

area.  

 

The result shows that multi-resolution segmentation has higher accuracy with 77.99% in 25cm resolution 

while 62.57% in 20cm and 60.44% in 30cm resolution respectively. Because, in a 25cm resolution image, 

the segmented polygons were fitted well with manually delineated polygons which make fewer under 

segmentation. The segmentation accuracy found in this study is consistent with some past studies. Among 

them, Pap & Kiraly (2018) obtained 74.85% with 25cm resolution UAV images. On the contrary, some 

researcher got comparatively higher segmentation accuracy in using resampled UAV images. Among them, 

Kavzoglu & Tonbul (2018) achieved 90.70% accuracy with 50cm resolution WorldView-2 images, and Sari 

& Kushardono (2015) achieved 90.47% accuracy with 16cm resolution UAV images. They got higher 

segmentation accuracy either in the tropical forest or in the boreal forest because the tree crowns are 

different in those forests compared to mangrove forests. In tropical or boreal forests, the canopies are multi-

layered and sparse while the canopy of the mangrove forest was dense, flat, and intermingled. Therefore, it 

is comparatively easier to detect canopies in tropical or boreal forest but difficult in mangrove forest (Trettin 

et al., 2016). So, the accuracy achieved in this study was found lower compared to their research.  

 

The image segmentation was also experimented with adding UAV-CHM layer in eCognition Developer for 

attaining better segmentation accuracy. Antolihao et al. (2015) were achieved higher accuracy (91.07%) for 

using CHM as an additional layer for image segmentation with a LiDAR image. But the result was not better 

compared to segmentation without UAV-CHM layer. The accuracy was found as 60.98%, 75.71% and 

57.52% for 20cm, 25cm and 30cm resolution respectively (see Appendix 7). 

4.3.2. The accuracy of SLIC Segmentation 

The SLIC segmentation is created upon k-means clustering method which can generate similar size 

superpixels based on the proximity and color similarity. Generally, the SLIC algorithm follows ‘k-parameter’ 

which can control homogeneity of superpixel and ‘m-parameter’ that can maintain both homogeneity and 

boundary of superpixels. The parameters including iteration, minimum element size, region size, and ruler 

were defined with trial and error basis for achieving higher segmentation accuracy. The parameters 

(iterations=50, minimum element size=10, region size=30, and ruler=50) were found comparatively better 

for segmentation amongst other parameters from visual interpretation. In defined parameters, minimum 

element size, region size, and ruler values were set comparatively lower. Because the CPAs are found 

comparatively lower as a planted young forest. Also, the size of the canopies is not too dense and large 

compared to other forests. So these parameters were found comparatively better with the lower values for 

segmentation of tree crowns (Kavzoglu & Tonbul, 2018; Zimudzi et al., 2018).  
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The result shows that SLIC has higher segmentation accuracy of 51.18% in 20cm resolution while 25cm 

and 30cm resolution resampled UAV-RGB images have 48.85% and 47.22% respectively. The accuracy 

result of SLIC segmentation is consistent with some past studies. Among those, Crommelinck et al. (2017) 

achieved 64% accuracy with UAV-RGB images while Achanta et al. (2012) got 67.30% accuracy with a 

20cm resolution UAV images. But those studies were conducted on a mixed land-use area where tree crowns 

were not mostly dense.  

4.4. CPA Model Development and Validation 

For the relation between CPA and DBH, the linear and quadratic model provides a higher coefficient of 

determination (R2) with 0.87 and 0.89 while RMSE was 3.76cm and 3.50cm respectively. In general, there is 

a proportional relation between CPA and DBH for a fast-growing forest. But after a certain age, the growing 

rate of CPA is mostly affected by the competition of other trees. As a result, the rate of CPA growth 

becomes slow compared to the increase of DBH (Shimano, 1997). In this study, most of the trees are young 

fast-growing having DBH less than 25cm. Therefore, there has no competition amongst the trees in this 

forest. However, it is observed that 19 old trees have higher DBH ranging from 42.2cm to 108.9cm. The 

CPA of these old trees was not extended in proportion to its DBH. At this point, Hemery et al. (2005) 

showed that trees having more than 50cm DBH is fitted well with a non-linear regression model. Therefore, 

these old trees influence the CPA model fitness. Consequently, the model was fitted best in quadratic 

compared to linear or other regression models.  

 

Another CPA model development and validation were also experimented for identifying its consistency with 

the adopted model. A total of 893 trees were considered where 600 trees from 20 plots were used for model 

development, and 393 trees from rest 10 plots were used for model validation. The experimented CPA 

model also find quadratic as the best-fitted model (see Appendix 8 & Appendix 9). In general, a model is 

developed with limited sample size for predicting it’s in a broader context. So the adopted model was 

developed for identifying CPA-DBH relationship. But this model was experimented only for checking its 

accuracy and consistency considering all sample trees.  

 

The model includes trees having biometric DBH ranging from 10.0cm to 58.8cm while most of the trees 

have DBH lies between 13.00cm to 25.00cm. That is why the trees were congested within this range while 

the higher range has only seven trees (>30cm DBH). As a comparison with some related studies, Zaki et al. 

(2016) and Oyebade and Anaba (2018) also found a quadratic model as best fit regression for modeling CPA 

with DBH and BA respectively in their studies. 

4.5. The UAV Predicted DBH and Biometric DBH 

The trees which have equal or more than 10cm DBH were considered in this study for aboveground biomass 

estimation. But after using the CPA model for predicting UAV predicted DBH, 16 trees were identified as 

less than 10cm DBH. This means that these trees were underestimated in UAV predicted DBH. It is 

observed that 523 trees are overestimated in UAV predicted DBH compared to biometric DBH. This could 

happen due to an error in the manual delineation of CPA and lack of model fitness. The DBH of the trees 

were measured at a 1.3m height from the ground. In some cases, the DBH of the species rhizophora were 

needed to estimate above the highest prop root that could be 2-2.5m height from the ground which was 

difficult to measure. Therefore, sometimes biometric DBH could not measure accurately at a 1.3m height 

from the ground. As a result, there is a deviation (average 0.61cm) in field-measured DBH compared to 

UAV predicted DBH for the species rhizophora. Moreover, 11 trees have more than 10cm deviation between 

UAV predicted DBH and biometric DBH. This case was happened with some old trees which have higher 

DBH but not having comparatively greater CPA. The mean deviation of these trees was found only 3.86cm 

between biometric and UAV predicted DBH. Because among 11 trees, 5 trees were overestimated and 6 
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were underestimated in UAV predicted DBH. Therefore, this minimal deviation does not affect in a larger 

extent to aboveground biomass estimation. Despite such deviation, these trees were considered for biomass 

estimation because these old trees have a significant influence on the estimation of total AGB per plot.  

 

The relation between UAV-CPA predicted DBH and biometric DBH was found 0.8702 as a coefficient of 

determination (R2) in this study. Iizuka et al. (2018) got 0.79 between UAV-CPA and biometric DBH in a 

cypress forest in Japan while Shimano (1997) achieved correlation coefficient (R) as 0.93 for deciduous 

forest and 0.87 for the coniferous forest. Those forests are dissimilar with a different type of climates, soils, 

tree species, and biodiversity’s compared to the mangrove forest. The species of mangrove forests are salt 

tolerant and having aerial and prop roots and located in the intertidal zone while the plants of deciduous 

and coniferous forests are dependent on rainfall. The structure and density of tree crowns are also different 

in those forests (Taureau et al., 2019). Therefore, these different ecosystems make those forests dissimilar 

compared to mangrove which also has influences to tree crown segmentation. 

4.6. The TLS 3D Point Clouds Extracted DBH and Biometric DBH 

The TLS generated 3D point clouds can provide comparatively accurate data for measuring DBH and tree 

height. The DBH measured from TLS 3D point clouds were mostly close to the biometric measurement. 

In some cases, biometric DBH were not measured at the right point (1.3m height from the ground) due to 

inaccessibility while TLS measured DBH was more accurate than biometric measurement. But in TLS 

measurement 19 trees were excluded because those trees were not identified in 3D point clouds of TLS data 

due to occlusion.  

 
The distance measurement tool was used to measure DBH from 3D point clouds of TLS data. The tree 

stem is not always in a circular shape especially for buttressed trees (Cushman et al., 2014). However, the 

circle fitting could not deliver accurate measurement of DBH due to fewer point generated because of 

occlusion. Also, Calders et al. (2015) showed that due to occlusion, circle fitting is not accurate for measuring 

DBH in 3D point clouds (see Figure 40). However, the distance measurement tool does not face such a 

problem. The distance measurement tool can estimate DBH comparatively with less error than the circle 

fitting method (Tan et al., 2018). 

Figure 40: Measurement of DBH using circle fitting 

Adapted from: Calders et al. (2015) 
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4.7. Aboveground Biomass and Carbon Stock 

The aboveground biomass and carbon stock was estimated with biometric, TLS and UAV datasets. The 

maximum aboveground biomass was estimated as 303.10 ton/ha (in plot 5) and minimum as 33.25 ton/ha 

(in plot 12) by TLS. This is because aboveground biomass is dependent on DBH, tree height, wood density 

and number of trees inside the plot area. It is observed that higher aboveground biomass was estimated in 

the plots which are dominated by rhizophora. Also, the number of trees are found comparatively more in the 

plots having higher aboveground biomass. The DBH and tree height also has significant influences on 

estimating aboveground biomass in the plots. 

 

In this study, average aboveground biomass was estimated as 112.38 ton/ha and 116.33 ton/ha from UAV 

and TLS respectively. The aboveground biomass estimation from UAV data was found consistent with 

related some past studies. Among them, Otero et al. (2018) estimated aboveground biomass from UAV as 

143 Mg/ha (equivalent to 157.63 ton/ha) in Matang mangrove forest in Malaysia while Lucas et al. (2015) 

found 81 Mg/ha (equivalent to 89.29 ton/ha) AGB in Mozambique’s mangrove forest using TLS. Apart 

from UAV and TLS, Ekhzarizal et al. (2018) estimated 133.97 Mg/ha (equivalent to 147.68 ton/ha) AGB 

using SPOT-5 image of Kuala Sepetang forest reserve in Malaysia. Also, Pham et al. (2019) got 150 Mg/Ha 

(equivalent to 165.35 ton/ha) AGB in Quang Ninh mangrove forest in Vietnam using ALOS PALSAR. 

4.8. AGB Estimation by Tree Species 

The mangrove trees are different from other forests for its aerial and long congested roots. The tree height 

and DBH need to be measured accurately for estimating AGB accurately. The average predicted DBH of 

UAV was found underestimated for avicennia while it was overestimated for rhizophora compared to TLS and 

biometric DBH. Because the avicennia has a sparse canopy which resultant less dense point clouds that may 

influence to underestimation in tree height. On the contrary, UAV-CHM derived tree height including all 

trees were found underestimated compared to height extracted from TLS point clouds. The percentage of 

deviation of tree height extracted from UAV-CHM compared to TLS measured height was found as -2.59 

and -7.03 for avicennia and rhizophora respectively. The deviation of tree height of rhizophora was higher due 

to its congested root system. Also, there are some differences in the canopy and leave density among those 

species. The species avicennia has a spread canopy with leathery leaves while the rhizophora has a dense canopy 

with elliptic leaves (see Figure 41). 

Figure 41: Physical structure of rhizophora and avicennia 

Adapted from: http://graphiqueillustration.unblog.fr/category/dessin-scientifique/ 
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The species rhizophora has long and congested aboveground roots up to 2.5-meter high from the ground. 

The DBH was measured at 1.3m from the ground or above the highest stilt root (Smith & Whelan, 2006; 

Kauffman & Donato, 2012). Because the allometric equation followed in this study was developed including 

aboveground roots for such type of tree species. But the other species, i.e., avicennia and xylocarpus have no 

congested aboveground roots like rhizophora. The measurement of DBH and tree height can be affected 

through the irregular structures as well as the quantity of leaves (Sumida et al., 2013). In this study, the 

deviation of tree height of rhizophora derived from UAV-CHM was found higher than avicennia and xylocarpus 

because the dense canopy structure of rhizophora is different from the other two species which may affect to 

height measurement (Taureau et al., 2019). 

4.9. Limitations of the Research 

There were some limitations faced in this study during data collection and processing stages. The major 

limitations are briefly highlighted below: 

Measurement of Handheld GPS Coordinates  

A handheld GPS (Garmin GPS) was used in the field to measure coordinates of the plot center and 4 (four) 

different trees in each sample plots. But the recorded coordinates of the GPS has not fitted accurately with 

the orthophoto image generated from UAV images. Because the handheld GPS did not provide an accurate 

measurement. So, it was challenging to identify the position of the plot center and the measured trees of 

each sample plot. 

UAV Images 

The quality of UAV images captured during the fieldwork was problematic for getting a good result. 

Therefore, new UAV images were re-captured after two months from the field in December 2018. So, time 

was very limited to process and analyze UAV data.  

Sampling Design 

The field study was not conducted according to a pre-identified sample plot. Because most of the pre-

designed sample plot area was located in inaccessible place. Therefore, the location of sample plots was 

chosen purposively where the accessibility was convenient and safe.   

Tree Crown Segmentation 

The manual delineation of tree crown was challenging due to the intermingled situation in some sample 

plots. It was hard to found the crown area accurately while the crowns were intermingled.   

Wet and Muddy Soil 

As a mangrove forest, the study area is located in an intertidal zone having high and low tide situation. The 

field study was conducted during low tides. The ground was wet and muddy with up to 0.5m as well as 

congested root system. Besides, it was also challenging to move with a 25 kg TLS equipment from one plot 

to another.   
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5. CONCLUSION AND RECOMMENDATIONS 

5.1. Conclusion 

The overall objective of the study is aimed to make a comparative assessment on the applicability of UAV 

and TLS for estimating aboveground biomass and carbon stock in the mangrove forest. The study reveals 

that the applicability of UAV and TLS for estimating aboveground biomass in mangrove forest has no 

significant differences. The estimation of aboveground biomass from UAV and TLS found almost similar. 

The applicability of TLS in mangrove forest is difficult for its heavy-weight to move from one plot to 

another in the wet and muddy ground. Also, the use of TLS is not possible in inaccessible areas of mangrove 

forest. On the contrary, as a remote sensing technique, UAV can be used broadly in any inaccessible area of 

the mangrove forest. As a low-cost technology, UAV has great potentialities in mangrove forests for 

estimating aboveground biomass and carbon stock towards the implementation of MRV under REDD+ 

initiatives. 

 

The following are the answers to the specified research questions under this study: 

 

Research Question 1: How accurate is the tree height derived from CHM of UAV imagery 

compared to the tree height resultant from TLS? 

 

The accuracy of tree height extracted from UAV-CHM compared to tree height measured from 3D point 

clouds of TLS is attained at R2 = 0.82 and RMSE = 1.44m (%RMSE = 9.7%). Therefore, the accuracy of 

tree height extracted from UAV-CHM is 90.3% accurate compared to tree height resultant from 3D point 

clouds of TLS data. So, the null hypothesis is not rejected. Therefore, there is no significant difference 

between tree height estimated from CHM of UAV imagery and tree height resultant from TLS. 

 

Research Question 2: Which algorithm provides higher segmentation accuracy of tree crowns on 

UAV imagery? 

 

The multi-resolution and SLIC segmentation was used to check the accuracy of tree crown segmentation. 

Three different resolution resampled images (20cm, 25cm and 30cm) were considered for checking the level 

of accuracy. It is observed that multi-resolution segmentation has higher segmentation accuracy compared 

to SLIC. The result shows that multi-resolution segmentation has an accuracy of 62.57%, 77.99% and 

60.44% for 20cm, 25cm and 30cm resolution images respectively. But, SLIC has lower accuracy of 51.18%, 

48.85% and 47.22% for 20cm, 25cm and 30cm resolution images respectively. Therefore, the multi-

resolution segmentation provides higher segmentation accuracy of tree crowns on UAV imagery. 

 

Research Question 3: How accurate is the DBH derived from CPA segmentation of UAV imagery 

with the field-measured DBH? 

 

The accuracy of DBH predicted from CPA segmentation of UAV imagery compared to field-measured 

DBH is achieved at R2 = 0.87 and RMSE = 3.21cm (%RMSE = 19.97%). The DBH extracted from CPA 

segmentation of UAV imagery is 80.03% accurate compared to field-measured DBH. Consequently, the 

null hypothesis is not rejected. Therefore, there is no significant difference between DBH derived from 

CPA segmentation of UAV imagery and field-measured DBH.  
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Research Question 4: How accurate is the DBH derived from TLS with the field-measured DBH? 

 

The accuracy of DBH measured in 3D point clouds of TLS compared to field-measured DBH is achieved 

at R2 = 0.99 and RMSE of 0.30cm (%RMSE = 1.87%). So the DBH extracted from TLS 3D point clouds 

is 98.13% accurately measured in TLS point clouds compared to field-measured DBH. So, the null 

hypothesis is accepted. Therefore, there is no significant difference observed between the TLS measured 

DBH and field-measured biometric DBH.  

 

Research Question 5: How accurate is the estimated amount of aboveground biomass from UAV 

imagery compared to aboveground biomass estimated from TLS?  

 

The accuracy of aboveground biomass estimated from UAV imagery compared to aboveground biomass 

measured from TLS is attained at R2 = 0.93 and RMSE of 3.78 ton/ha (%RMSE = 3.25%). Therefore, 

96.75% of the aboveground biomass estimated from UAV imagery was accurate compared to aboveground 

biomass estimated from 3D point clouds of TLS data. Consequently, the null hypothesis is not rejected. 

Therefore, there is no significant difference between aboveground biomass estimated from UAV imagery 

and TLS point clouds. 

 

5.2. Recommendations 

The following recommendations are presented from the limitations faced under this study: 

 

Differential GPS is essential for identifying the plot center and location of the field-measured trees from 

each sample plot. It was challenging and time-consuming to match exact trees between field-measured and 

UAV images. Differential GPS measurement can provide a more accurate measurement and can reduce the 

time for matching trees. 

 

UAV acquired images need to be checked before leaving the study area. Because sometimes the acquired 

images are not well enough for getting good results. Besides, several alternative flights should be carried out 

as a safety in case of main flight is unable to work. 

 

The GCP markers should be placed on the same day of UAV flight. Otherwise, the GCP markers could be 

floated away during high-tides in the mangrove area.  

 

The scanners built-in GPS receiver in TLS should be activated before scanning of sample plots for getting 

coordinates of each scan position from TLS. 

 

The congested roots and some branches of trees need to be cleaned before TLS scanning. It is better to 

prepare sample plots (plots that will be scanned on that day) first and then start TLS scanning. Because it 

can save time as well as reduce workload. 

 

In mangrove forest, the tide is an important factor. So, the schedule of high-tide and low-tide should be 

considered in fieldwork plan. 
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Appendix 1: Flight plan for UAV image acquisition 

 

 

Appendix 2: Quality report of UAV image processing 
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Appendix 3: Parameters used for multi-resolution segmentation 
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Length Factor: 40 Condition:  

Area <= 48 Pixel 

 

Roundness >= 

1.1 

 

 

 

 
Appendix 4: Parameters used for SLIC segmentation 

Image Iterations Minimum 

Element Size 

Region 

Size 

Ruler Shadow 

Masking 

Watershed 

Transformation 

Remove 

Objects 

Filtered 

UAV-

RGB (20, 

25, 30cm) 

50 10 30 50 Trees:  

Brightness <= 

170 

 

Shadow:  

Brightness > 

170 

Length Factor: 

40 

Condition:  

Area <= 48 

Pixel 

 

Roundness >= 

1.1 
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Appendix 5: Histogram of biometric, TLS and UAV estimated DBH 

 

 
 

Appendix 6: Histogram of biometric, TLS and UAV estimated tree height 

 

 

 

Appendix 7: Accuracy of multi-resolution segmentation including UAV-CHM layer 

Reference Area (ARi) 6768.33 6768.33 6768.33 

Segmented Area (ADi) 14941.32 10260.00 16903.00 

Intersection (ADinARi 6697.78 6735.45 6749.06 

Over Segmentation 0.55 0.34 0.60 

Under Segmentation 1.0E-02 4.9E-03 2.8E-03 

Error 0.39 0.24 0.42 

Accuracy 60.98% 75.71% 57.52% 
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Appendix 8: Alternative CPA model developed using 600 trees from 20 sample plots 

 

 

 

Appendix 9: Model validation for CPA model developed using 293 trees from 10 sample plots  
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Appendix 10: Plot-wise summary of field-measured biometric data 

Plot 

ID 

No. of 

Trees 

Field-measured Biometric Data 

Mean DBH 

(cm) 

Mean 

Height (m) 

AGB 

(kg/plot) 

AGB (Ton) AGB (Ton/Ha) 

1 25 15.70 10.48 105.03 2.63 52.52 

2 30 18.51 14.17 215.31 6.46 129.19 

3 38 15.58 10.38 97.38 3.70 74.01 

4 24 18.80 16.09 321.49 7.72 154.31 

5 44 18.42 15.41 304.94 13.11 262.25 

6 18 20.12 13.58 269.52 4.85 97.03 

7 44 13.62 13.33 122.32 5.38 107.64 

8 40 12.05 13.24 90.36 3.61 72.29 

9 41 12.43 13.35 88.20 3.62 72.32 

10 36 13.91 12.98 96.79 3.48 69.69 

11 27 14.60 12.78 111.23 3.00 60.07 

12 26 11.91 10.46 56.84 1.48 29.56 

13 40 14.05 12.66 106.34 4.25 85.08 

14 31 16.20 12.36 161.21 5.00 99.95 

15 26 15.76 11.71 155.07 4.03 80.64 

16 32 14.07 13.09 140.69 4.50 90.04 

17 21 22.51 12.04 469.56 9.86 197.22 

18 17 14.78 10.99 121.39 2.06 41.27 

19 32 15.06 12.49 147.09 4.71 94.14 

20 24 17.16 12.94 212.29 5.09 101.90 

21 22 19.35 15.40 237.72 5.23 104.60 

22 28 17.54 19.60 255.19 7.15 142.91 

23 25 21.21 18.65 396.24 9.91 198.12 

24 23 18.00 16.90 238.71 5.49 109.81 

25 21 16.72 14.31 258.86 5.44 108.72 

26 20 23.79 12.36 408.46 8.17 163.38 

27 28 22.04 12.97 419.47 11.75 234.90 

28 41 12.90 11.43 89.45 3.67 73.35 

29 36 12.86 11.33 83.55 3.01 60.15 

30 33 16.26 13.23 200.63 6.62 132.42 
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Appendix 11: Plot-wise summary of TLS measured data 

Plot 

ID 

No. 

of 

Trees 

Missing 

Trees 

TLS Data 

Mean DBH 

(cm) 

Mean 

Height (m) 

AGB 

(kg/plot) 

AGB 

(Ton) 

AGB 

(Ton/Ha) 

1 25 1 15.62 11.77 117.38 2.82 56.34 

2 30 0 18.43 15.78 233.50 7.00 140.10 

3 38 2 15.41 11.60 104.57 3.76 75.29 

4 24 1 18.85 17.36 342.86 7.89 157.71 

5 44 4 18.69 18.69 378.87 15.15 303.10 

6 18 0 20.05 15.16 295.87 5.33 106.51 

7 44 2 13.68 14.74 136.52 5.73 114.67 

8 40 0 11.98 15.08 100.78 4.03 80.62 

9 41 1 12.42 14.81 96.59 3.86 77.27 

10 36 2 13.55 14.32 100.51 3.42 68.35 

11 27 0 14.50 14.21 123.48 3.33 66.68 

12 26 0 11.84 11.66 63.93 1.66 33.25 

13 40 2 14.06 13.70 112.92 4.29 85.82 

14 31 0 16.10 14.22 187.11 5.80 116.01 

15 26 0 15.83 13.36 163.50 4.25 85.02 

16 32 0 14.11 14.75 154.93 4.96 99.15 

17 21 0 22.39 12.99 483.84 10.16 203.21 

18 17 0 14.68 11.01 120.08 2.04 40.83 

19 32 1 15.28 13.59 157.23 4.87 97.48 

20 24 0 17.15 13.69 214.04 5.14 102.74 

21 22 1 19.23 16.51 250.54 5.26 105.23 

22 28 0 17.43 19.98 255.69 7.16 143.19 

23 25 0 21.11 20.54 432.23 10.81 216.11 

24 23 0 17.88 17.43 250.59 5.76 115.27 

25 21 0 16.61 15.43 264.59 5.56 111.13 

26 20 0 23.63 14.08 476.47 9.53 190.59 

27 28 0 21.95 13.28 387.43 10.85 216.96 

28 41 1 12.88 13.14 94.77 3.79 75.81 

29 36 1 12.78 15.13 108.31 3.79 75.82 

30 33 0 16.12 14.15 196.41 6.48 129.63 
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Appendix 12: Plot-wise summary of UAV derived data 

Plot 

ID 

No. of 

Trees 

UAV Derived Data 

Mean DBH 

(cm) 

Mean 

Height (m) 

AGB 

(kg/plot) 

AGB (Ton) AGB (Ton/Ha) 

1 25 17.43 10.10 126.53 3.16 63.26 

2 30 15.79 14.81 157.01 4.71 94.21 

3 38 11.54 11.58 58.59 2.23 44.53 

4 24 19.36 15.88 327.48 7.86 157.19 

5 44 17.29 16.68 358.67 15.78 315.63 

6 18 20.45 14.50 296.89 5.34 106.88 

7 44 14.61 13.22 146.80 6.46 129.18 

8 40 12.79 13.91 107.02 4.28 85.61 

9 41 14.71 13.63 130.51 5.35 107.02 

10 36 14.87 13.42 112.49 4.05 80.99 

11 27 16.49 13.38 143.58 3.88 77.53 

12 26 13.67 11.44 81.98 2.13 42.63 

13 40 13.50 13.60 100.31 4.01 80.25 

14 31 15.96 14.73 169.63 5.26 105.17 

15 26 16.25 12.46 151.41 3.94 78.73 

16 32 15.35 13.85 155.48 4.98 99.51 

17 21 21.23 11.51 437.58 9.19 183.79 

18 17 15.65 10.32 116.95 1.99 39.76 

19 32 14.95 12.99 138.59 4.43 88.70 

20 24 18.62 13.28 254.64 6.11 122.23 

21 22 18.57 15.91 217.88 4.79 95.87 

22 28 17.65 20.05 255.67 7.16 143.18 

23 25 20.37 20.26 414.99 10.37 207.49 

24 23 15.62 17.49 187.92 4.32 86.44 

25 21 16.90 14.44 224.16 4.71 94.15 

26 20 24.02 13.43 447.94 8.96 179.18 

27 28 20.37 12.38 358.76 10.05 200.90 

28 41 13.33 12.08 89.29 3.66 73.22 

29 36 13.27 15.12 115.06 4.14 82.84 

30 33 15.07 14.46 159.53 5.26 105.29 
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Appendix 13: Field data collection sheet 

 

 

Name of Recorder ................................................... Date...................................... Plot Radius Size ................ 
 

Sample 
Plot No. 

Map 
Scale 

Sample Plot Center 
X                          Y 

Dist. to Center  
of the plot (m) 

Elevation Slope 
(%) 

Aspect 
 

        

 

Land cover Forest use type Crown cover (%) Undergrowth 
 

F D A AF M      P N      T A      R      E  H M L 

 

Tree 
No. 

Species Coordinate DBH Height Crown Tree class 

X Y (cm) (m) Diameter (m) 1 2 3 4 d 

1            

2            

3            

4            

5            

6            

7            

8            

9            

10            

11            

12            

13            

14            

15            

16            

17            

18            

19            

20            

21            

22            

23            

 
Legend/Guide for Field Work Inventory form 
 

Land cover: Forest use type: Undergrowth: Tree class: 

F = Forest 
D = Deforestation 
A= Agriculture 
AF= Agroforestry 

M = Management forest 
P = Protection forest 
N = Nature Reserve 
T = Tourism forest 
A = Arboretum 
R = Research forest 
E = Education forest 

H = High 
M = Medium 
L = Low/Nil 

1 = Dominant 
2 = Co-dominant 
3 = Dominated 
4 = Suppressed 
D = Dead/dying 

 

 


