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ABSTRACT 

UN-REDD+ program introduces the MRV mechanism for AGB/carbon stock estimation to reduce the 

emissions from deforestation and forest degradation in the tropics.  The MRV mechanism requires a low 

cost and robust technique to estimate AGB/carbon stock with reasonable accuracy in the tropical forests. 

Among the different RS techniques, L-band SAR estimates AGB with high accuracy in the inland tropical 

forests. However, the accuracy of AGB estimation in the tropical mangrove forests is relatively low. 

Therefore, this study was carried out to estimate AGB/carbon stock using backscatter coefficients of 

ALOS-2 PALSAR-2 in part of the planted mangrove forest at Mahakam Delta, East Kalimantan, Indonesia. 

The forest parameters (DBH and tree height) were collected from a total of 71 sampling plots in October 

2018. The parameters were used to calculate the field-based AGB using an allometric equation for the 

mangrove forests.  PALSAR-2 data with level 1.1 fine beam dual (FBD) polarization was obtained from 

JAXA. Linear regression models were applied to estimate AGB in the study area (105 ha) using HV and HH 

backscatter coefficients of PALSAR-2. The accuracy of the AGB estimation was assessed in terms of R2, 

RMSE, and p-value. The results of the linear regression models in our study revealed that HV backscatter 

coefficients estimate AGB with higher accuracy at R2 of 0.89, RMSE of 23.16 tons ha−1 and p-value < 0.01. 

The accuracy of the model validation was also higher at R2 of 0.89, RMSE of 22.69 tons ha−1 and p-value < 

0.01. This implied that HV backscatter coefficients of PALSAR-2 predicted AGB in the mangrove forest 

with 89% accuracy in our study. Therefore, the equation derived from the simple linear regression model 

was used to map the AGB and carbon stock in the study area. The estimated AGB in the study area of the 

mangrove forest ranged from 1 to 350 tons ha−1 with an average of 181 tons ha−1, and the total AGB 

accounted for 13, 719 tons.  

 

The findings of our study showed a promising accuracy in estimating AGB using HV polarized ALOS-2 

PALSAR-2 backscatter coefficients in the mangrove forest. Therefore, our study concluded that L-band 

ALOS-2 PALSAR-2 data has a great potential to estimate AGB with high accuracy in the mangrove forest 

as in the inland forest in the tropics. Thus, the findings of our study can contribute to the MRV mechanism 

of UN-REDD+ program for monitoring the carbon emission reduction in the mangrove forests in the 

tropics. 
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1. INTRODUCTION 

Forests have an inevitable role in the carbon cycle of the globe and thus, in the global climate (Pan et al., 

2011; Wright, 2005). Forests sequester and store carbon in their biomass and exchange it with the 

atmosphere through deforestation, forest degradation, and regrowth. Carbon storage in the aboveground 

biomass (AGB) may range from 47 to 50% by region and the types of forests (Thapa et al., 2015).  

 

The mangrove forests are one of the key contributors to the global carbon budget for their role in carbon 

sequestration and storage. Mangrove ecosystem covers 15.6 million ha in the tropical and sub-tropical areas 

and is situated in the transition zone between the land and the sea. This location of the mangroves produces 

cumulative benefits of carbon storage, which can be more significant than other ecosystems (Barbier et al., 

2011). In fact, mangroves sequester four times more carbon per unit area compared to the terrestrial forests 

in the tropics (Donato et al., 2011). Therefore, mangrove forests are of utmost importance when it comes 

to global climate regulation.  

 

However, mangroves are one of the most threatened ecosystems and feature a rapid decline worldwide. 

One-third of the global mangrove forest has been lost over the last 50 years as a result of deforestation and 

degradation (Alongi, 2002). The amount of carbon released through the loss of mangroves amounts to 24 

million tons of CO2 per year- equivalent to the annual emissions of Myanmar (Hamilton & Friess, 2018). In 

terms of global contribution to emissions, carbon emissions from deforestation and forest degradation have 

been estimated at 20% of global anthropogenic CO2 emissions each year from the tropical forests (Gibbs 

and Herold, 2007; FFPRI, 2012; Ho Tong Minh et al., 2016). However, mangrove deforestation alone 

accounts for around 10% emissions, despite accounting for just 0.7% of the tropical forest area ( van der 

Werf et al., 2009; Giri et al., 2011).  

 

This dire situation initiated the need to reduce carbon emission from deforestation and forest degradation 

in the tropical forests including mangrove forests and eventually led the United Nation Framework 

Convention on Climate Change (UNFCCC) to initiate UN-REDD program (Combes et al., 2009; 

UNFCCC, 2010). United Nations Reducing Carbon Emissions from Deforestation and Forest Degradation 

(UN-REDD+) program was initiated in 2008 as a key driver to reduce carbon emissions from forests (FAO, 

2018a). The UN-REED+ initiative aims at reducing carbon emission through performance-based credits 

by comparison of performance against a business as usual reference emission level. The countries need to 

prove an increase in forest biomass to claim the credits under the UN-REDD+ program (Solberg et al., 

2014).  

 

To this end, UN-REDD+ proposes the need of an accurate Measuring, Reporting, and Verification (MRV) 

system for AGB estimation (Gibbs et al., 2007) and subsequent monitoring of forest carbon pool (Lucas et 

al., 2015). However, estimates of AGB should be measurable, transparent, verifiable, and consistent over 

the time for the MRV system. To achieve this goal, a universal, low cost and robust way to measure and 

monitor carbon stocks over the vast regions in the tropics is needed (Grassi et al., 2008).  Therefore, UN-

REDD+ recommends the use of different RS techniques such as very high-resolution satellite images, L-

band SAR images (backscatter) and Lidar to assess AGB and above ground forest carbon stock (AFCS) 

accurately (FFPRI, 2012). 

 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/tropical-forest
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/carbon-budget
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However, it is very challenging to assess AFCS/AGB accurately as it varies from region to region (Shimada 

et al., 2014) and types of the forests (Thapa et al., 2015).  Several methods have been developed for 

AGB/AFCS estimation including destructive measurement, non-destructive measurement, and forest 

growth models over the last few decades (Lucas et al., 2015).  Among them, the destructive method provides 

higher accuracies. However, its applications are impractical over the large forest areas as this method is time-

consuming, expensive and labor intensive. Also, this method is not applicable particularly in the tropics 

including the mangrove forests due to inaccessibility.  

 

Alternatively, ground-based carbon inventories have gained a degree of consensus as for the best method 

for estimating AGB in the tropics. However, measuring tree parameters over large forest areas for carbon 

inventories is not realistic, especially in the tropics due to inaccessibility, cost and time consideration (Brown, 

1997; Chave et al., 2009; Phillips et al., 2006). Eventually, RS techniques appear to be more suitable to predict 

forest AGB at larger scales with reasonable efforts (Villard et al., 2016). With RS techniques, models are 

used for scaling up ground-based measurements and monitoring changes over large and regional scales 

(Reuben, 2009). Therefore, UN-REDD+ also recommends the use of different RS techniques to assess 

AGB for MRV (FAO, 2018b; FFPRI, 2012).  

 

Over time, both passive (e.g., optical) and active (e.g., Radar and Lidar) RS have been used to map 

AGB/AFCS (Cutler, et al., 2012; Kelsey & Neff, 2014; Kurvonen, et al., 1999; Lucas et al., 2015; Singh, et 

al., 2014). However, estimation of AGB with reasonable accuracy is a main challenge due to the saturation 

of the optical sensors at a low level of the spectral bands (Lucas et al., 2015). Optical RS systems are further 

limited in the tropics by cloud cover. On the contrary, active RS such as Radar can penetrate clouds and 

provide data day and night (Asner, 2001). Therefore, active RS (Radar/Lidar) emerged as potential tools for 

measuring AGB with high accuracy in the tropics (Hyde et al., 2007; Joshi et al., 2015; Kaasalainen et al., 

2015).  

 

RS data acquired from Lidar proved to measure AGB with higher accuracy using tree height and DBH 

(Duncanson et al., 2010). However, acquisition of Lidar data is restricted to sophisticated technical 

equipment, for instance, airborne or terrestrial laser scanner over the small area coverage (Rahman et al., 

2017; Liang et al., 2016). Moreover, it is costly (Kaasalainen et al., 2015). Furthermore, airborne Lidar cannot 

penetrate through the clouds rendering its application in the tropics.  

 

On the contrary, Radar signals can penetrate forest canopy, and they are not affected by cloud cover, rain 

or atmospheric contaminants. Therefore, it is becoming increasingly useful for measuring AGB/AFCS in 

the tropics on a large scale. The longer wavelength L and P- bands of Radar are important bands for AGB 

estimation because their backscatters are related to volume scattering from tree canopy, branches and trunks 

enabling more biomass estimation (Mermoz et al., 2014; Villard et al., 2016). However, spaceborne P-band 

SAR is not currently available, and data is only available from airborne P-band SAR, limiting its application 

on a large scale in the tropical forests.   

 

L-band SAR has been widely used to estimate AGB of the terrestrial forest in the tropics, and the findings 

of these studies depict AGB estimation with higher accuracy (Nga, 2010; Odipo et al., 2016). Few studies 

also attempted to estimate AGB of the mangrove forest using L-band SAR (Hamdan et al., 2014; Pham & 

Yoshino, 2017; Pham et al., 2017; Pham et al., 2018). However, the accuracy of AGB estimation varies 

mostly from lower to a moderate level.  This study, therefore, aims to model AGB/carbon stock using L-

band ALOS-2 PALSAR-2 data in the mangrove forest at Mahakam Delta, East Kalimantan, Indonesia.   

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/spectral-band
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/forest-canopy
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 Problem Statement and Justification 

Mangrove is a unique and complex ecosystem, flooded during high tide and the ground is a layer of dense 

mud, with soil containing high levels of organic materials during low tide (FAO, 2007). Mangrove forest has 

zonations where the types of plants change with different water and salinity level moving away from the sea 

towards the inland. All these unique attributes in the mangrove forests lead to uncertainty in estimating 

AGB with high accuracy and low cost.  As a result, this has partly resulted in difficulties to assess AGB for 

MRV mechanism of UN-REDD+ program following a unique methodology in diverse forests regions in 

the tropics including mangroves.  

 

Most of the studies on AGB/carbon stock estimation in mangrove forests have been done using optical 

images (Du et al., 2012; Dube & Mutanga, 2015; Gibbs et al., 2007; Lu et al., 2004; Powell et al., 2010). 

However, mangrove forests are situated in tropical and sub-tropical regions, thus affected by cloud 

condition for most of the year, making it difficult to obtain clear passive optical images from the satellite 

(Asner, 2001). In contrast, L-band SAR is an active sensor which can be used in all weather conditions, 

making it more reliable for accurate estimation of AGB/carbon stock (Omar et al., 2015).  

 

L-band SAR backscatter is depicted to estimate higher AGB with reasonable accuracy in the terrestrial 

forests in the tropics (Odipo et al., 2016). On the contrary, the use of L-band SAR for AGB estimation are 

surprisingly lacking for the mangroves, although mangroves have high carbon assimilation and flux rates 

(Bouillon et al., 2008; Chmura, et al., 2003; Komiyama, et al., 2008; Kristensen, et al., 2008). Until today, a 

few studies have been conducted to estimate AGB in the mangrove forest using L-band SAR backscatter 

data (Hamdan et al., 2014; Pham & Yoshino, 2017; Pham et al., 2017; Pham et al., 2018).  Again, the accuracy 

of AGB estimation in these studies is lower than that of inland forests in the tropics.  In this context, we 

studied the relationship between PALSAR-2 backscatter coefficients and AGB in the mangroves of 

Mahakam Delta, in East Kalimantan, Indonesia to examine if backscatter coefficients of PALSAR-2 can 

estimate AGB with higher accuracy in the mangrove forest. 

 

The findings of our study may prove a way forward towards a system using L-band SAR for modeling and 

estimating AGB in the mangroves with reasonable accuracy.  Therefore, it may promote the implementation 

of REDD+ and Payment for Ecosystem Services strategies (PES), thus providing practical implications for 

developing regional and national Blue Carbon trading markets and guiding mangrove management and 

conservation.  

 Research Objectives 

This study aims to model AGB/carbon stock of mangrove forest using the cross (HV) and/or like (HH) 

polarized ALOS-2 PALSAR-2 data in part of East Kalimantan, Indonesia 

 

Specific Objectives are: 

1. To assess the relationship between mangrove forest parameters viz. DBH, BA, and tree height with 

the HV and/or HH polarized ALOS-2 PALSAR-2 backscatter coefficients.  

2. To assess the relationship between field-measured AGB/carbon stock of mangrove forest and HV 

and/or HH polarized ALOS-2 PALSAR-2 backscatter coefficients. 

3. To assess the AGB/carbon saturation point in the mangroves in relation to ALOS-2 PALSAR-2 

backscatter coefficients. 

4. To estimate and map AGB/carbon stock in the mangroves using ALOS-2 PALSAR-2 backscatter 

coefficients. 
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 Research Questions 

Objective 1: To assess the relationship between mangrove forest parameters viz. DBH, BA, and tree height 

with the HV and/or HH polarized ALOS-2 PALSAR-2 backscatter coefficients. 

RQ 1: What is the relationship between mangrove forest parameters (DBH, BA and tree height) and ALOS-

2 PALSAR-2 backscatter coefficients? 

 

Objective 2: To assess the relationship between field-measured AGB/carbon stock of mangrove forest and 

HV and/or HH polarized ALOS-2 PALSAR-2 backscatter coefficients. 

RQ 2: What is the relationship between HV and/or HH backscatter of ALOS-2 PALSAR-2 and 

AGB/carbon stock in the mangrove? 

 

Objective 3: To assess the AGB/carbon saturation point in the mangroves in relation to ALOS-2 PALSAR-

2 backscatter coefficients. 

RQ 3: What is the saturation point of AGB/carbon stock estimation in the mangrove forest in relation to 

the ALOS-2 PALSAR-2 backscatter coefficients? 

 

Objective 4: To estimate and map AGB/carbon stock in the mangroves using ALOS-2 PALSAR-2 

backscatter coefficients. 

RQ 4: what is the AGB/carbon stock in the study area and how to map it?   

 Research Hypothesis 

Objective 1:  

H0 = There is no significant relationship between the mangrove forest parameters and HV and/or HH 

ALOS-2 PALSAR-2 backscatter coefficients. 

H1 = There is a significant relationship between the mangrove forest parameters and HV and/or HH ALOS-

2 PALSAR-2 backscatter coefficients. 

 

Objective 2:  

H0 = There is no significant relationship between HV and/or HH backscatter of ALOS-2 PALSAR-2 and 

AGB in the mangrove.  

H1 = There is a significant relationship between HV and/or HH backscatter of ALOS-2 PALSAR-2 and 

AGB in the mangrove. 

 

Objective 3:  

H0 = There is no significant effect of ALOS-2 PALSAR-2 backscatter saturation in AGB estimation in the 

mangrove forest.  

H1 = There is a significant effect of ALOS-2 PALSAR-2 backscatter saturation in AGB estimation in the 

mangrove forest. 

 Assumptions 

The relationship is linear between HV and/or HH backscatter of ALOS-2 PALSAR-2 and field-measured 

AGB in the mangrove forest in the study area at Mahakam Delta. 
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2. LITERATURE REVIEW 

 Radar 

Radar (Radio Detection and Ranging) is a technique to detect remote objects by transmitting the 

electromagnetic wave to the targets and observing the returned reflection (Appendix 1A) and basically, it is 

a radio echo (Emery & Camps, 2017). Radar uses the microwave part of the electromagnetic spectrum, from 

a frequency of 0.3 GHz to 300 GHz, or 1 m to 1 mm wavelength (Lee & Pottier, 2009). In contrast to 

optical RS that uses the naturally emitted microwave energy to detect objects, radar has its own source of 

energy as in Appendix 1B (Emery & Camps, 2017).  

 

Radar, being an active RS system, is independent of solar illumination and thus, capable of day and night 

imaging (Lee & Pottier, 2009). Moreover, it operates in the microwave region of the electromagnetic wave 

avoiding the effects of clouds, fog, rain and smokes (Lee & Pottier, 2009). Also, some features are better 

seen in radar images such as ice and ocean waves, soil moisture, vegetation mass, human-made objects like 

building and geological structures (Emery & Camps, 2017). 

 

 Synthetic Aperture Radar (SAR) 

The imaging SAR is a radar system between P-band and Ka-band in the microwave region as illustrated in 

Appendix 2 (Lee & Pottier, 2009). A SAR system comprises of a microwave transmitter, an antenna for 

both transmission and reception, and a receiver and is placed on an airplane, UAV, space-shuttle, or satellite 

platform (Lee & Pottier, 2009). It is a side-looking system that illuminates perpendicular to the flight line 

direction (Lee & Pottier, 2009). SAR imaging geometry is shown in Appendix 3. 

 

SAR has been widely used to monitor land surfaces because of its own source of energy, penetration to the 

ground surface, day-night and all-weather imaging capability (Moreira et al., 2013). It transmits 

electromagnetic pulses as it moves and successively, records the backscattered signal (Ager, 2011). The 

received backscatter detects the objects and determines its position, and the range from the SAR antenna to 

the objects is determined using the travel time of the electromagnetic pulse (Ager, 2011).  

 

There are both airborne and space-borne polarimetric SAR systems (NASA, 1987). Japanese L-band SAR 

was first launched on JERS-1/SAR in 1992 and later inherited on the ALOS/PALSAR in 2006 (JAXA, 

2009), then on the ALOS-2/PALSAR-2 in 2014 (JAXA, 2016). ALOS PALSAR is a type of spaceborne 

polarimetric SAR system 2006 (JAXA, 2009). A brief description of ALOS PALSAR is given in the following 

sections.  

2.1.1.1. ALOS PALSAR 

Advanced Land Observing Satellite (ALOS) was launched on 24 January 2006 to contribute to the fields of 

mapping, land coverage observation, disaster monitoring, and resource surveying (JAXA, 2009). Land 

observation technologies of ALOS was enhanced through the development and operation of its 

predecessors, the Japanese Earth Resource Satellite-1 (JERS-1) and the Advanced Earth Observing Satellite 

(ADEOS) enabling it to perform better (JAXA, 2009).  

 

ALOS has three sensors: Panchromatic Remote-sensing Instrument for Stereo Mapping (PRISM), 

Advanced Visible and Near Infrared Radiometer type 2 (AVNIR-2), and Phased Array type L-band 

Synthetic Aperture Radar (PALSAR) (ESA, 2015). PRISM is comprised of three sets of optical systems to 

measure precise land elevation while AVNIR-2 observes the land cover of the earth surface(ESA, 2015). 

http://global.jaxa.jp/projects/sat/jers1/index.html
http://global.jaxa.jp/projects/sat/adeos/index.html
http://global.jaxa.jp/projects/sat/adeos/index.html
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PALSAR is an active microwave sensor with L-band frequency to acquire cloud-free, all weather and day-

and-night land observation (JAXA, 2009). However, ALOS lost communication because of power 

generation anomaly on 22 April 2011. As a result, JAXA stopped its operation on 12 May 2011 (JAXA, 

2016). Technologies of the ALOS operation was succeeded to the second Advanced Land Observing 

Satellite named ALOS-2 (JAXA, 2016). 

2.1.1.2. ALOS-2 PALSAR-2 

ALOS-2 carries the L-band Synthetic Aperture Radar (SAR) called PALSAR-2 which was launched on 24 

May 2014 (JAXA, 2016). ALOS-2 carries the  PALSAR-2 antenna under its body, and there are two paddles 

of a solar array at both sides of the antenna (Kankaku et al., 2013). The overview of the ALOS-2 is shown 

in Appendix 4A. ALOS-2 has several unique features such as it has a right and left looking function 

(Kankaku et al., 2014) which is illustrated in Appendix 4B.  

 

PALSAR-2 has improved observation frequency as the observation range of ALOS-2 expands from 870 km 

to 2,320 km which is about three times more than ALOS (JAXA, 2016). Eventually, its orbit has a short 

repeat cycle of 14 days, and orbit control is very accurate (JAXA, 2016). Moreover, the antenna of PALSAR-

2 has two-dimension beam steering and dual channel functions (JAXA, 2016). PALSAR-2 has three 

observation modes Appendix 5. Among them, spotlight observation mode is an improved feature of 

PALSAR-2 which provides observation with higher resolution (JAXA, 2016). Apart from spotlight mode, 

there are three Stripmap and three ScanSAR observation modes (JAXA, 2016).  

 Polarimetric Backscattering  

The polarimetric radar can measure the scattered signals by the target as depicted in Figure 1. The target is 

illuminated by an incident wave from the Radar (A), and the target scatters the wave in all directions (C) 

(Natural Resources Canada, 2015a). The radar system receives only a small part of the scattered wave that 

is returned towards the receiving antenna (B) (Natural Resources Canada, 2015a). The energy received by 

the radar system is referred to as backscatter (Natural Resources Canada, 2015a). 

 

 

Figure 1: Illustration of radar backscatter (adapted from Natural Resources Canada, 2015a). 

 

There are different types of backscattering such as surface scattering, volume scattering and double-bounce 

scattering (Evans et al., 1988). The mechanisms of radar backscatter are illustrated in Appendix 6. Volume 

scattering corresponds to multiple scattering from the targets which can occur in dry soil, sand, ice or 

vegetation canopy such as forest (Evans et al., 1988).   

 Factors affecting Backscattering of SAR 

Three factors affect the radar return from the objects. These are the system parameters, topography (slope 

and aspect) and characteristics of surface materials which includes geometric properties (e.g., surface 

roughness) and dielectric constant (moisture content) of the objects (Moreira et al., 2013). A brief 

description of these factors is given in the following sub-sections.  



ESTIMATING ABOVEGROUND CARBON USING ALOS-2 PALSAR-2IN THE MANGROVE FOREST IN EAST KALIMANTAN, INDONESIA 

7 

 System Parameters 

2.3.1.1. Radar Wavelength and Penetration 

Radar system operates in a wide range of frequency bands. The band choice influences the imaging of radar 

and, thus, the information extraction from the objects. The typical wavelength of radar is X, C, L, and P-

bands. L-band corresponds to the longer wavelength of 24 cm, whereas C-band and X-band to the shorter 

wavelengths of 5.6 cm and 3.1 cm respectively (DLR, 2013).  
 

The radar bands can penetrate deeper with the longer wavelength. For instance, when it comes to the forest, 

the long wavelength L-band can penetrate through the forest canopy and eventually, reach down to the 

ground underneath the canopy. Therefore, L-band undergoes multiple scattering between the canopy, tree 

stems and ground surface enabling the Radar system to receive backscatters from all areas of the forest. As 

a result, L-band Radar corresponds to volume scattering from the forest vegetation (DLR, 2013). On the 

contrary, short wavelength radar such as X-band penetrate only the top layer of the forest canopy, and thus, 

backscatters are only reflected from the canopy top (DLR, 2013). The backscattering characteristics of the 

L band, X band and C are illustrated in Figure 2.  

 

 

Figure 2: Radar penetration in X-band (3 cm), C-band (5 cm) and L-band (24 cm) wavelengths for forest vegetation 

(adapted from DLR, 2013). 

2.3.1.2. Radar Polarization 

The polarization refers to the orientation of the electric vector of an electromagnetic wave in relation to the 

horizontal direction. When the electric field oscillates parallel to the horizontal direction, the wave is referred 

to as horizontal (H) polarized. On the other hand, when the electric vector oscillates perpendicular to the 

horizontal direction, the wave is denoted as vertical (V) polarized (CRISP, 2001).  
 

Radar antennas are configured to emit and receive either horizontal or vertical polarized electromagnetic 

waves. The electric field vector can be instructed to vibrate in a horizontal or vertical direction when it is 

sent from the transmitter depending on the antenna design (Natural Resources Canada, 2015b). Two letters 

usually denote the polarisation of SAR imagery; the first letter indicates the transmitted polarisation and the 

second letter indicates the received polarisation. Thus, a radar system using H and V linear polarizations can 

have the following polarization channels (Natural Resources Canada, 2014): 
 

• horizontal transmit and horizontal receive (HH) 

• vertical transmit and vertical receive (VV) 

• horizontal transmit and vertical receive (HV) 

• vertical transmit and horizontal receive (VH) 

 

HH and VV polarizations are denoted as like-polarizations because the transmitted and received 

polarizations are the same. On the other hand, HV and VH are denoted as cross-polarizations due to the 

transmitted and received polarizations are orthogonal to each other (Natural Resources Canada, 2014). A 

Radar system can offer polarization at a different level of complexity such as (Natural Resources Canada, 

2014): 
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• single polarized - HH or VV or HV or VH 

• dual polarized - HH and HV, VV and VH, or HH and VV 

• four polarizations - HH, VV, HV, and VH 

2.3.1.3. Incidence Angle 

The angle between the radar illumination and the normal to the ground surface is referred to as the incidence 

angle. The Radar backscatter from the different types of surfaces varies depending on the incidence angle 

(Mouginis-Mark, 2001; Emery & Camps, 2017).  In general, backscatter from the surfaces decreases with 

increasing incidence angle. However, the decrease is slow for rough surfaces Appendix 7.  

 Characteristics of Surface Materials 

2.3.2.1. Surface Roughness 

Surface roughness is the terrain property that most strongly influences the strength of the radar backscatter 

and thus, in turn, the brightness of features on the radar imagery (Humboldt State University, 2016). The 

surface roughness of a scattering surface is relative to radar wavelength and incident angle (Emery & Camps, 

2017). A surface is considered smooth if its height variations are considerably smaller than the radar 

wavelength (Lillesand & Kiefer, 1994). Horizontal smooth surfaces reflect nearly all incident energy away 

from the radar and are called specular. Calm water bodies or paved highways are specular surfaces and 

appear dark on the radar imagery (Humboldt State University, 2016).  
 

A rough surface is defined as having a height variation of about half the radar wavelength (Lillesand & 

Kiefer, 1994). Microwaves incident upon a rough surface is scattered in many directions which are known 

as diffuse or distributed reflectance (Emery & Camps, 2017). For example, vegetation surfaces cause diffuse 

reflectance and result in a brighter tone on the radar imagery (Humboldt State University, 2016).  
 

When the side of a building or bridge is combined with refection from the ground, it works as a corner 

reflector. Buildings are characterized by a relatively simple geometric shape and called discrete scatterers 

(Humboldt State University, 2016). The diffuse, specular and corner reflectance are shown in Appendix 8. 

 Dielectric Constant 

The dielectric constant can be defined as a measure of the reflectivity and conductivity of a given object. 

(Humboldt State University, 2016). The dielectric constant of most of the dry materials ranges from 1 to 8 

in the microwave region. On the contrary, the dielectric constant of water is around 80 (Humboldt State 

University, 2016). The moisture content significantly increases the dielectric constant of an object. This, in 

turn, increases the Radar backscatter, thereby,  affects how a target appears on the image (Humboldt State 

University, 2016).  
 

The dielectric constant of the dry soils is low, and thus, it has low Radar backscatter. On the other hand, 

wet soil has strong backscatter due to high dielectric constant (Humboldt State University, 2016). A flooded 

surface acts as a specular reflector, resulting in low backscatter, thus appear dark in the Radar image 

(Humboldt State University, 2016). The backscattering of different soils is illustrated in Figure 3.   

 

 

 

https://earth.esa.int/handbooks/asar/CNTR5-3.html#eph.asar.gloss.prodt:ROUGHNESS
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Dry Soil: less backscatter Wet Soil: higher backscatter Flooded Soil: Specular reflectance 

Figure 3:  Soil backscatter as a function of dielectric constant (adapted from Humboldt State University, 2016). 

 Topography 

The surface topography plays a vital role in Radar imaging. When it comes to spaceborne Radar, incidence 

angle changes only a few degrees over the flat surface resulting in a brighter image. However, when the 

ground surface has a higher slope, the changes in the local incident angle is substantial which results in dark 

image (ESA, 2002). The effects of local incidence angle on Radar backscattering is shown in Appendix 9.  

 Forest and L-band SAR Backscattering 

 Forest in General 

In forestry, the penetration properties of the Radar signals has great significance to model forest AGB 

(Kumar et al., 2017).  The X, C, S, L, and P-bands, as well as the polarisation channels of the Radar system, 

determines the penetration and backscattering of the Radar system (Hertz, 2008; Lee & Pottier, 2009). In 

case of relatively short wavelength (i.e., 3 cm for X-band or 6 cm for C-band), the Radar energy is scattered 

by the foliage and small branches of the canopy (DLR, 2013). Therefore, the SAR energy is reflected mainly 

from the surface of the canopy at comparatively short wavelength. 
 

On the contrary, the Radar microwave energy with relatively long wavelengths such as L and P-band 

together with cross polarisation (VH/HV) have depicted their penetration capacities passing through the 

forest canopy down to the ground surface. This, in turn, results in three main types of radar backscattering 

namely surface scattering from canopy top and ground surface or single bounce, double bounce (e.g., ground 

-tree trunk/canopy-ground) and volume scattering (Neumann et al., 2012; Sai et al., 2015). The different 

types of backscattering at relatively long wavelength are presented in Figure 4. Also, there are some other 

types of scattering from the forest such as diffuse scattering from the ground. The volume scattering from 

forest canopy has key importance for forest AGB estimation.  

 

 

Figure 4: Scattering mechanisms from forest vegetation (adapted and modified from  Carver, 1988) 

 

L-band SAR energy is not depolarized when it is scattered from the surface of the canopy, and therefore, 

there is a strong reflection of like-polarized backscatter. On the other hand, if the SAR energy interacts with 

the multiple scatterers within the canopy, it is often depolarized, and there is a strong reflection of cross-

polarized energy (Jensen, 2007). A SAR image of L or P-band with cross polarization can, therefore, provide 

information related to forest biomass. 

1= double bounce-tree trunk and ground 

scattering 
2= direct canopy backscatter 
3=multiple scattering within the tree canopy 
4=diffuse scattering from the ground 
5=shadowing by parts of the canopy 
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 Mangrove Forest 

Mangrove forest consists of one or two layers of canopy. The tree height of the mangroves can reach up to 

40 m. Mangroves are flooded during high tide, and the ground is a layer of dense mud during low tide (FAO, 

2007). Zonation can be found in the mangrove forest from the sea to the inland (Kushan, 2016). The coastal 

zone is completely inundated up to several meters during high tide and has muddy ground during low tide. 

Even some areas of the forest can have water surface over the muddy ground during low tide. It is also 

intersected by numerous water channels including rivers. The schematic diagram of the mangrove forest is 

given in Figure 5. 
 

 

 

 

 

 

 

 

 

 

Owing to the structural difference, the scattering of L-band SAR for the mangrove is different than that of 

the terrestrial forest. Also, zonation in the mangrove forest affects the backscattering of SAR. The scattering 

from mangrove forest include the volume scattering from the canopy, scattering from canopy to trunk, 

scattering from tree stems to forest surface, diffuse scattering from the rugged forest floor, specular 

scattering from inundated water surface and volume to surface scattering at the trunk to surface level 

(Richards et al.,1987; Manavalan, 2018). The scattering mechanism in a flooded forest is illustrated in Figure 

6. 

  

Figure 6: Radar backscattering from the flooded forest (adapted and 

modified from Carver et al.,1988). 

 

The intensity of such scattering is heterogeneous and varies from one SAR image to another due to the 

varying nature of vegetation structures and the ground surface. In addition to these vegetation-related 

scattering natures, the sensor-related factors such as frequency, incidence angle, and polarization of the SAR 

signals are equally essential to extract information of the mangrove forest. 

 Application of L-band SAR for Forest Biomass Estimation 

L-band SAR is an only spaceborne system capable of obtaining data at L-band wavelength. Moreover, L-

band SAR has the ability of the system to acquire backscatter data in dual and quad polarisation. Therefore; 

it shows better potential in retrieving the biomass of forests including the sub-tropical and tropical forest.  

 

Figure 5: Zonation of mangroves (adapted from Kushan, 2016). 
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Several studies have been conducted to estimate AGB and carbon stock using ALOS PALSAR in tropical 

dry inland forests (Ghasemi et al., 2011; Morel et al., 2011; Hamdan et al., 2011; Carreiras, et al., 2012; Goh 

et al., 2013; Mermoz, 2014; Thapa et al., 2015). These studies show a strong and positive correlation between 

forest AGB and cross (HV/VH) polarized backscatter of L-band SAR. The like-polarised backscatter 

(HH/VV) from the relatively short wavelength X-band and C-band have a weak relationship with 

AGB/carbon stock (Dobson et al., 1992; Le Toan et al., 1992b) 

There is also a saturation problem in AGB estimation using L-band SAR (Mermoz et al., 2014). However, 

the sensitivity of the L-band SAR to AGB rather depends on the study area due to the influence of forest 

structure on the relative contribution of the backscattering (Imhoff, 1995; Lucas et al., 2010). Also, the 

individual contribution to the total forest backscatter is also dependent on dielectric properties of the 

vegetation and ground surface. The moisture content and the size, geometry, and orientation of leaves, 

trunks, branches, and aerial or stilt roots also result in a specific backscatter signal (Kuenzer et al., 2011) 

 Application of L-band SAR for Biomass Estimation in the Mangrove 

Only a few studies have explored the relationships between L-band SAR backscatter and aboveground 

biomass (AGB) of mangrove forest. For instance, HV polarization of ALOS PALSAR is the best predictor 

of AGB in the mangroves according to a study in Matang mangroves in Malaysia (Hamdan et al., 2014). A 

combination of HH and HV backscatter from ALOS-2 PALSAR-2 has also been used to estimate AGB of 

the two mangrove species (Sonneratia caseolaris and Kandelia obovata )of Hai Phong city, Vietnam (Pham & 

Yoshino, 2017). Moreover, machine learning techniques called multi-layer perceptron neural networks 

(MLPNN) shows the potential for estimation of the AGB of Sonneratia caseolaris in a coastal area of Hai 

Phong city, Vietnam (Pham et al., 2017).  
 

Furthermore, AGB in the mangrove forest in Vietnam is mapped by solving the allometric equations with 

HV polarimetric measurements of ALOS PALSAR, tree height, DBH and AGB (Takeuchi et al., 2011). In 

addition, Sentinel-1 C-band SAR data has been used to model AGB estimates of mangrove forest using 

combinations of polarizations (VV, VH), its derivatives, grey level co-occurrence matrix (GLCM), and its 

principal component (Argamosa et al., 2018). 
 

Again, a study demonstrates the potential use of integration of SAR data with optical data for estimating 

AGB of the mangrove forest. For example, ALOS-2 PALSAR-2data and Sentinel-2A data were integrated 

to estimate AGB using SVR model in the mangrove forest of North Vietnam. Four variables of ALOS-2 

PALSAR-2 data (HH, HV, HV/HH, HH-HV,) and 5 variables from Sentinel 2A (NIR and 4PC1: 

combination of bands generated from Blue, Green, Red, and NIR multispectral bands) were used for the 

SVR model to estimate AGB (Pham et al., 2018). 
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3. MATERIALS AND METHODOLOGY 

 Study Area 

When it comes to the distribution of mangroves, Indonesia alone accounts for more than 30% of the entire 
world’s mangrove carbon stock (Hamilton & Friess, 2018). However, most of Indonesia’s mangrove forests 
are destroyed or severely degraded, and nearly half of the mangroves have been lost mostly to aquaculture 
and coastal development during the past 50 years (Kusmana, 2014). Of the 31,894 km2 of existing mangrove 
wetland in Indonesia, 31% are in good condition, 27% are moderately degraded, and the remaining 42% of 
mangrove forests are heavily degraded (Saputro, 2009).  
 
Despite sheltering almost one-third of the global mangrove forest, information on AGB estimation of 
mangrove forests is limited in Indonesia. East Kalimantan province has a second-largest area of mangroves 
in Indonesia. Mangroves in East Kalimantan covers over 11% of Indonesia’s total mangrove forest (Hartini 
et al., 2010). Most of East Kalimantan’s mangroves originated from the Mahakam Delta. In Mahakam Delta, 
mangrove covers nearly 1,500 km2. However, most of the mangrove area has been lost mainly due to 
conversion to fish and shrimp ponds. The total area deforested was estimated to be 85,000 ha in 2001 
representing about 75% of the mangrove forest in Mahakam Delta (Zwieten et al., 2006).  
 
In an effort to restore the mangroves in Mahakam Delta, plantation took place since 2002 by both 
government and private companies at some sites of the Mahakam Delta. However, no studies have been 
conducted so far to quantify the AGB of the regrowth mangrove in the Mahakam Delta using L-band SAR.  
Thus, estimating AGB in the mangroves forests of Mahakam Delta using L-band SAR may help to elucidate 
the spatial distribution patterns of AGB in that region.  
 

The study site was an area of young and reforested mangrove forest in the sea-front areas in north 

distributary zones of the Mahakam Delta in East Kalimantan, Indonesia. The study was conducted on a 

mangrove forest since L-band SAR has been less exploited to estimate its AGB/carbon stock though 

mangrove forest has high potential to sequester more carbon than any other forest ecosystem. The young 

mangrove forest was chosen as L-band SAR saturates at higher AGB estimates. Also, Mulawarman 

University, Samarinda, Indonesia provided us with the logistic support and two undergrad students in 

executing the fieldwork. A brief description of the study area is given in the following subsections.  

 Geographic Location 

The study site covered an area of 105 ha in the mangrove forest located between W longitude 117.560366° 

to E longitude 117.573216° and N latitude -0.533392° to S latitude -0.543048° at Mahakam Delta, in the 

East Kalimantan province, Indonesia (Figure 7).  East Kalimantan is one of the provinces in the Indonesian 

part of Borneo Island. It has the second largest area of mangroves representing about 11% of total mangrove 

forest in Indonesia (Hartini et al., 2010; Susilo et al., 2017). Most of the mangroves of East Kalimantan 

originated from the Mahakam Delta (Sidik, 2008; Susilo et al., 2017). Mahakam Delta comprises of 46 small 

islands forming an exceptional fan-shaped lobate and extends to the coastal area of the Makassar Strait of 

East Kalimantan (Dutrieux, 1991; Zain et al., 2014). It is approximately 20 km from the capital city of East 

Kalimantan, Samarinda, Indonesia. 
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Figure 7: Location map of the study area. 

 Geomorphology 

Mahakam Delta was divided into pro-delta, delta front and deltaic plain based on the geomorphology 

(Dutrieux, 1991). Pro-delta is part of the delta that borders with the Makassar Strait. Avicennia species 

predominates along with Rhizophora and Bruguiera species in the pro-delta or sea-front formation. Front delta 

is the deltaic fringe inundated at high tide and a major area for sediment deposition. The deltaic plain consists 

of many small islands separated by tributary channels where freshwater from the river and salt water from 

the sea are mixed (Dutrieux, 1991).  

 Vegetation and Topography 

Mahakam delta has very flat topography with around 0.1% slope. Several vegetation zones can be identified 

in the mangrove forest of the Mahakam Delta (Sidik, 2008). For instance, the pedada zone is located close 

to the delta front and is characterized by Sonneratia alba and Avicennia spp. The bakau (Rhizophora) zone is 

found mostly along the bank of distributaries of the lower delta area. The transition zone is a mixed zone 

where Avicennia sp., Sonneratia caseolaris, Rhizophora sp., Bruguiera sp., Xylocarpus granatum, and Nypa fruticans 

grow together. The nibung zone is in the uppermost area of the delta and is characterized by species of 

Oncosperma sp., Heritiera littolaris, Gruguiera sexangula, and Excoecaria agallocha (Sidik, 2008). 

 Climate 

The location of the Mahakam Delta in equator symbolizes high annual temperature which is constant at 26-

28°C with a minimum yearly variation and limited diurnal temperature (Zain et al., 2014). Mahakam Delta 

has a tropical climate with a relatively dry (May to September) and a wet (October to April) season, 

dominated by the Monsoons (Sassi et al., 2011). Dry and wet seasons are represented by July and January 

respectively. April and October depict transitional months. The amount of annual rainfall is more than 

2,500 mm in the Mahakam Delta (Bosma et al., 2012). 

 Tidal Current 

Tidal current occurs due to a combination of diurnal and semi-diurnal component and can reach up to 2.5 

m height. This tidal current is combined with high current from the Mahakam River at 1,500 m3/sec (Zain 

et al., 2014). 
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 Study Materials  

Study materials such as software, field equipment, and data are of paramount importance to conduct any 

research study. The following subsections highlight the materials used in this study. 

 Field Equipment  

Several field equipment was used to collect primary data in the field sample plots. The list of all field 

equipment and their purpose are explained in Table 1. 

 
Table 1:  A list of field study equipment with their purpose. 

Field Equipment Purpose 

Diameter Tape Measuring tree diameter at breast height (DBH).  

Leica DISTO D510 laser instrument Measuring tree height. 

Field data sheet and pencil Record keeping of the field data.  

Measuring Tape Defining the perimeter of the field sample plots.  

Garmin GPS Measuring coordinates of the field sample plots.  

 Data and Purpose of Use 

ALOS-2 PALSAR-2 backscatter coefficients were used to estimate and map AGB in the study area. DBH 

and height of the trees were measured in the field while the Basal Area (BA) was calculated from field-

measured tree DBH.  Moreover, wood density was collected from the World Agroforestry Centre (World 

Agroforestry Indonesia, 2018; World Agroforestry, 2019). These data and their purpose in the study are 

described in Table 2.  

 
Table 2:  A list of data used in this research. 

Data Purpose 

ALOS-2 PALSAR-2  
 

To extract HV and HH backscatter coefficients for the field plots and derive 
their relationship with field-measured AGB, BA, tree DBH and tree height. 

DBH To be used in the allometric equation for calculating field-measured AGB.  

Tree Height To be used in the allometric equation for calculating field-measured AGB.  

BA To derive the relationship between BA and backscatter coefficients. 

Wood Density To be used in the allometric equation for calculating field-measured AGB.  

 Software 

Few software was used for processing and analyzing data in this research. One of them was the Sentinel 

Application Platform (SNAP) which is an open source software developed for the European Space Agency 

(ESA). SNAP is a typical platform for all Sentinel Toolboxes (ESA, 2009a). The Sentinel-1 Toolbox 

(S1TBX) supports an extensive collection of data for processing, display, and analysis from ESA SAR 

missions as well as third-party SAR data, for example, ALOS PALSAR (ESA, 2009b). 

 

ArcGIS-ArcMap 10.6.1 was used for performing all GIS-based analysis including retrieval of the PALSAR-

2 backscatter coefficients. Statistical analysis was conducted using both Microsoft Excel and R programming 

Language in RStudio. Finally, Microsoft Office was used for writing the report and presentation. Table 3 

lists all the software and its application in this study. 
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Table 3: A list of software used in this research.  

Software Purpose 

SNAP ❖ Sub-setting the ALOS-2 PALSAR-2 image for the study area 

❖ Pre-processing of ALOS-2 PALSAR-2 data  

• Calibration of PALSAR-2 data, i.e., conversion of DN values to backscatter coefficients 

• Geometric correction and georeferencing of PALSAR-2 image 

• Speckle filtering of PALSAR-2 image 

ArcGIS ❖ Extraction of backscatter coefficients from PALSAR-2 subset in the field plots 

❖ Producing AGB/carbon stock map 

R studio ❖ Statistical analysis 

• Correlation analysis  

• Regression analysis 

• Model development and validation 

• Accuracy check (R2, RMSE and p-value) 

MSOffice ❖ Statistical analysis 

❖ Report writing  

❖ Presentation  

 Study Design 

This study was designed to estimate AGB using HV and HH polarization backscatter data from ALOS-2 

PALSAR-2 in the mangroves of Mahakam Delta in East Kalimantan, Indonesia. Linear regression was used 

to model AGB in the mangrove forest using the backscatter coefficients of PALSAR-2.  The main steps of 

the study are shown in the flowchart in Figure 8 and briefly described below.   

 

Step 1: This step involved the collection of trees DBH, tree height, wood density, and PALSAR-2 data.  

 

Step 2: The biometric data was processed, and field-measured AGB/carbon stock was calculated using the 

allometric equation by Chave et al. (2005) in this step. BA was also calculated in this step. 

 

Step: 3: This step involved the calibration of PALSAR-2 data in retrieving the backscatter coefficients, 

geometric correction and georeferencing, and speckle filtering of the PALSAR-2 image.  

 

Step 4: This step included regression analysis between PALSAR-2 backscatter coefficients and forest 

parameters (BA, DBH and tree height). It also included regression analysis between forest parameters. 

 

Step 5:  This step depicted the model development and validation between HV polarization backscatter 

coefficients of PALSAR-2 and field measured AGB.  

 

Step 6: This step dealt with the saturation point determination of AGB estimation in relation to HV 

backscatter coefficients of PALSAR-2. 

 

Step 7: This step involved in AGB/carbon stock mapping using the equation derived from the best model 

in terms of R2, and RMSE resulted from step 5. 
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Figure 8: Methodological flowchart of the study. 

 Sampling Design 

Purposive sampling was used for determining the sample plots in the study area. In total, 71 sample plots 
were selected. The main reasons for using purposive sampling are as followed. 
 
Accessibility: Sample plots were selected in the study area where it was accessible by the boat through 
rivers and small water channels. It was very challenging and in some places, impossible to walk through the 
excessive muddy ground. Therefore, some areas of the mangrove forest were excluded due to the excessive 
muddy surface. 
 
Time and Cost: Several plots were also chosen in the mangrove forest close to the school (where our team 
and we were staying during the period of data collection) and accessible by walking to reduce the boat hiring 
cost. Time was a crucial factor as we had to collect data during peak hours of low tide.  
 
Administrative Permission: Access was restricted in some parts of the mangrove forest in the study area 
particularly close to an oil company property. Therefore, we selected the sample plots in areas where we had 
full access from the authority. 

 Field Plot Establishment  

Although the shape of the plots varies in different studies, circular plots have been used in most of the forest 

inventories compared to rectangular or square plots (Laar et al., 2007). This is because establishing a circular 

plot requires to define only one point at its center. Then, the radius of the plot is measured from the center 

to determine its perimeter. Moreover, the number of trees on the plot borderline is comparatively less in a 

circular plot. However, four corner points are required to establish a square or rectangular plot which 

requires more time and labor. Furthermore, more trees fall on the borderline of the square or rectangular 



ESTIMATING ABOVEGROUND CARBON USING ALOS-2 PALSAR-2IN THE MANGROVE FOREST IN EAST KALIMANTAN, INDONESIA 

17 

plot. All these induce more systematic error in square or rectangular plot sampling (Kershaw et al., 2016; 

Laar et al., 2007).  

 

The size of the plot also affects AGB estimation (Luo et al., 2017) and the optimum plot size varies in 

different regions and types of vegetation (Estornell, 2011). However, AGB estimation was depicted to be 

the most accurate with the plot size of 500 m2 since the plot size > 500 – 600 m2 does not significantly 

improve the result of AGB estimation (Gobakken et al., 2008). Moreover, the plot size of 500 m2 was 

demonstrated as a cost-effective plot size as it tends to sample a reasonable number of trees in each plot 

(Ruiz et al., 2014). Therefore, a circular plot of 500 m2 (0.05 ha) with a radius of 12.62 m was established in 

our study area.  An example of a circular plot with 500 m2 is shown in Figure 9. 

 

 

Figure 9: A circular plot of 500 m2 (adapted 
from Asmare, 2013 and Sumareke, 2016) 

 Data Collection 

 Biometric Data Collection from the Plot 

The field data were collected from 30 September to 24 October 2018. The circular plots of 500 m2 were 

established using a measuring tape. Then, each tree >= 10 cm in diameter was tagged in the plot. This is 

because trees < 10 cm in diameter have no significant contribution to AGB estimates (Brown, 2002). 

Therefore, tree height and DBH were measured only for the trees with diameter >= 10 cm.  

 

Several tree species were present in the study area. Among them, Avicennia Alba and Rhizophora spp. were the 

dominant tree species. There were three species of Rhizophora viz. Rhizophora Stylosa, Rhizophora Mucronata, 

and Rhizophora apiculata. Few species of Xylocarpus granatum and Bruguiera gymnorhza were also found in the 

study area. Rhizophora spp. has some unique features such as prop roots extending on the ground. Therefore, 

DBH and tree height measurements were adjusted for Rhizophora spp. taking the prop roots into 

consideration.  

 

For Rhizophora spp., DBH was measured for the main stem which grows over the prop roots. According to 

Clough et al. (1997)and Chave et al. (2005), the tree diameter should be measured above the buttress for the 

trees with prop roots. Therefore, in case of Rhizophora spp. the tree DBH is measured at 1.3 m height from 

the stem base/buttress over the prop roots (Clough et al., 1997). The main stem height over the prop-roots 

of the Rhizophora spp. varies from trees to trees. Measuring DBH at 1.3 height from the buttress represented 

the tree stem above the uppermost prop-root.  Some field photos of DBH measurement of Rhizophora spp. 

are shown in Figure 10.  
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Figure 10: DBH measurement of Rhizophora Species, the measurement was taken at 1.3 m height 
from the stem base/junction over the prop roots. 

 

However, as far as tree height of Rhizophora spp. was concerned, the measurements were taken from the 

ground, i.e., from the prop roots on the ground to the top of the trees. The reason behind this was that 

these prop roots cover a large area on the ground as can be seen in Figure 10 as well as in Appendix 10, 

thus, contribute to the backscattering of the L-band SAR. 

 

In the case of Avicennia alba tree species, DBH was measured at 1.3 m height from the ground. The height 

of 1.3 m was used to minimize the variation in DBH measurement and to be consistent with the point of 

measurement. Similarly, the tree height was measured from the ground to the top of the trees.  The tree 

height and DBH measurement of Avicennia alba tree species are shown in Appendix 11. The measurements 

for other tree species were similar to Avicennia alba. The unit of DBH measurement was “centimeter” (cm) 

and tree height was “meter” (m). 

 
There were many multi-stem trees of Avicennia alba and Rhizophora spp. in the study area ( 
 
 
Appendix 12). In this case, each stem of the multi-stem trees was considered as an individual tree (Clough 
et al., 1997). Accordingly, DBH and tree height were measured separately for each stem of the multi-stem 
trees.   

 

The coordinates were recorded at the center of each plot using a Garmin GPS. Additional four 

measurements of coordinates were also recorded at four corners of a plot. All data were recorded in the 

field data sheet. A datasheet of a plot is shown in Appendix 13. 

 Wood Density Data Collection from the World Agroforestry Centre 

Apart from collecting biometric data from the field, the wood density of the trees was collected from the 

World Agroforestry and World Agroforestry Indonesia database (World Agroforestry Indonesia, 2018; 

World Agroforestry, 2019).  

 Acquisition of ALOS-2 PALSAR-2 Data 

The ALOS-2 is an Advanced Land Observation Satellite 2 which carries the Phase Array L-band Synthetic 
Aperture Radar 2 (PALSAR-2) Sensor on board. ALOS-2 is a Japanese satellite launched by the Japan 
Aerospace Exploration Agency (JAXA). One dual-polarized (HV and HH) ALOS-2 PALSAR-2 image was 
acquired from JAXA through the Remote Sensing Technology Center of Japan (RESTEC). RESTEC is 
responsible for the distribution of RS images from JAXA. The image was acquired by ITC, Faculty of 
Geoinformation Science and Earth Observation, University of Twente, the Netherlands on 6 December 
2018. The specifications of the acquired ALOS-2 PALSAR-2 are given in Table 4.  

 

The mangrove forest in the study area is inundated up to 2.5 m during high tide (Zain et al., 2014). The time 

of scene observation of the PALSAR-2 image was chosen during peak hours of low tide to minimize the 
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effects of inundation on the backscattering. The ground surface of the study area mangrove forest during 

peak hours of low tide is shown in Appendix 14.  
 
Table 4: A detail specification of the ALOS-2 PALSAR-2data used in this study. 

Specifications of ALOS-2 PALSAR-2 Description 

Scene Observation Date and Time 30 July 2018 and 16:26:06 (UTC), Local East 
Kalimantan Time 1:26 am 

Product type FDR 1.1 

Product format CEOS 

Observation mode Stripmap 

Observation swath wide 70 km 

Process level 1.1 

Calibration factor -83.0 

Off-nadir angle 36.6° 

Incidence angle at scene centre 40.562° 

Pixel spacing  4.29 m 

Range spacing 4.29 m 

Azimuth spacing 3.42 m 

Wavelength 0.2424525 m (24 cm) 

Polarization HV and HH 

Range looks x Azimuth looks 1.0 x 1.0 

Antenna Pointing Right Looking 

PASS Ascending 

Sample type Complex 

 Data Processing   

 Field Data Processing 

The data on forest parameters were transferred to the Excel sheet. Then DBH, tree height, and wood density 

were used in the allometric equation for AGB calculation of each tree in the plot. The allometric equation 

proposed by Chave et al. (2005) for AGB calculation of the mangrove forests was used in our study. In 

addition, the basal area (BA) of each tree was also calculated in the plot.  

 

The unit of AGB calculation was kg/500 m2 in the plot. In the final datasheet, the AGB was converted to 

ton ha-1. The BA area was calculated in m2/500m2. It was converted to m2/ha. Then, average and sum of 

each parameter viz. DBH, tree height, AGB and BA were calculated for every individual plot. The summary 

of the forest parameters per plot is presented in Appendix 15. 

 

The coordinates of the plots from Garmin GPS were converted to shapefile in ArcGIS. The center 

coordinates were exported to a new layer and named as plot center.  The buffer was created using 12.62 m 

radius around the plot center to create the plot area of 500 m2. The additional four coordinate points were 

used to cross-check the position of the plot. 

 ALOS-2 PALSAR-2 Data Pre-processing 

The ALOS-2 PALSAR-2 image was obtained at level 1.1 which is a complex image. Pre-processing of 

PALSAR-2 image was performed before extracting backscatter coefficients. As part of it, the radiometric 

calibration was conducted followed by geometric correction and geo-referencing. Filtering was also applied 
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to remove speckle noise from the image. The pre-processing of PALSAR-2 was performed using software 

SNAP. A small subset covering the study area was made to reduce the processing time. The study area 

subset of PALSAR-2 is given in Appendix 16.  

3.7.2.1. Radiometric calibration for retrieval of PALSAR-2 backscatter coefficients 

PALSAR-2 backscatter coefficients were retrieved by applying radiometric calibration where the DN values 

of the image were converted to radar backscatter coefficients known as Normalized Radar Cross Section 

(NRCS) and expressed in decibels (dB).  The conversion of DN to NRCS of ALOS-2 PALSAR-2 image for 

level 1.1 product was done using equation 1 proposed by Shimada et al. (2009).  

 

Equation 1:  Retrieval of PALSAR-2 backscatter coefficients/ NRCS. 

 

 𝝈𝟎𝟏. 𝟏 𝒑𝒓𝒐𝒅𝒖𝒄𝒕 = 𝟏𝟎. 𝒍𝒐𝒈𝟏𝟎(𝑰𝟐 +  𝑸𝟐) + 𝑪𝑭 − 𝑨 

Where: 

 𝝈𝟎𝟏. 𝟏 𝒑𝒓𝒐𝒅𝒖𝒄𝒕 = Normalized Radar Cross Section of level 1.1 product in (dB)  

I = Real part of Single Look Complex (SLC) product (level 1.1) 

Q = Imaginary part of SLC product (level 1.1) 

CF = Calibration Factor = -83.0 dB  

A= Constant, 32.0 

 

Equation 1 was calculated using band math in SNAP. The backscatter coefficients were retrieved for cross 

(HV) and like (HH) polarization of PALSAR-2 data. A snapshot of the retrieved HV and HH polarized 

images with backscatter coefficients (dB) are depicted in Figure 11.  It can be observed from the legend of 

the image that most of the HV polarization backscatter ranged from -11 dB to -27 dB. The corresponding 

range for HH polarization backscatter was observed from -4 dB to -20 dB. The ratio and sum of HV and 

HH polarization backscatter were also derived to explore their response in estimating AGB in the study 

area.  

 

  

(a) Retrieved HV NRCS in dB. (b) Retrieved HH NRCS in dB. 

Figure 11: Retrieval of HV backscatter/NRCS in dB using equation 1 in SNAP. 

3.7.2.2. Geometric correction and geo-referencing 

The single look complex SAR images are geometrically distorted due to the sensors image acquisition not 

being at Nadir location, tilting of the satellite sensor and image scene topographical variation (Schreier, 1993; 

Small et al., 2009). Thus, the geometric correction was performed to compensate for these distortions so 

that the SAR images can represent the real world.  

 

Range-Doppler Terrain Correction was used for the geometric correction of PALSAR-2 image in our study. 

Range-Doppler determines the location of a pixel in the SAR image by intersecting the centroid of the radar 

beam and the earth surface (Curlander, 1982). Range-Doppler was used because it is a standard and precise 
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technique for geometric correction (Jiang et al., 2016). Shuttle Radar Topography Mission (SRTM) DEM 

(30 m) was used for the Range-Doppler Terrain Correction of the PALSAR-2 image. In our study, SRTM-

1 was used because it was higher resolution DEM provided in SNAP software. After geometric correction, 

the pixel spacing of the PALSAR-2 image is 7 m.  

 

Then, PALSAR-2 image was re-projected to Universal Transverse Mercator (UTM) coordinate system to 

have a true projection. The coordinate system: Zone 50S (WGS_1984_UTM_Zone_50S) was used for the 

study area in East Kalimantan, Indonesia. The geometric corrected HV and HH backscatter images along 

with their legends are shown in Figure 12.  

 

   

(a) HV backscatter image after geometric correction and 
geo-referencing. 

(b) HH backscatter image after geometric correction and 
geo-referencing. 

Figure 12: Geometric correction and geo-referencing of the PALSAR-2 data, Range Doppler Terrain Correction 
and coordinate system, WGS_1984_UTM_Zone_50S were used. 

3.7.2.3. Filtering of the PALSAR-2 data 

L-band SAR data have a characteristic of salt and pepper like appearance. The salt and pepper appearance 

or speckle noise can influence the relationship between forest parameters and SAR backscatter coefficients 

(Joshi et al., 2015). Speckle filtering smoothens the speckle noise on the image. In our study, a Lee speckle 

filter with a kernel size of 3 by 3 pixels was applied on the PALSAR-2 image after it was geometrically 

corrected. The speckle filtered images are shown in Appendix 17. 

 PALSAR-2 Data Processing 

3.7.3.1. Extraction of the PALSAR-2 backscatter coefficients from the plots 

After pre-processing, the backscatter coefficients were extracted for each plot in the study area for further 

analysis. The plot had 12.62 m radius, so the diameter of the whole plot was about approximately 25 m 

(12.62+12.62= 25.24 m). On the other hand, the PALSAR-2 image had a pixel size of 7 * 7 m. Therefore, 

the plot approximately fitted with 3 by 3 pixels window with a diameter of 21 m (3*7m=21m). A similar 

approach was followed in previous studies (Hamdan et al., 2014; Masolele, 2018; Sumareke, 2016). 

 

The 3 by 3 pixels window was chosen so that the window can approximately cover the plot area (diameter 

of 25.24m) and avoid smoothing out the average backscatter within a plot. The window of 4 by 4 pixels or 

5 by 5 pixels reduces the error of excluding backscatter from the trees within the plot, but it tends to 

smoothen out the average backscatter within the plot (Sumareke, 2016).  
 

Our study area presents mangrove forest with many intersecting water channels including the Mahakam 

River. Thereby, the PALSAR-2 signals had specular reflectance from the water channels, i.e., no energy back 

to the sensor. Also, the muddy ground surface was covered by water in some parts of the study area even 



ESTIMATING ABOVEGROUND CARBON USING ALOS-2 PALSAR-2IN THE MANGROVE FOREST IN EAST KALIMANTAN, INDONESIA 

22 

during peak hours of low tide. This also caused specular reflectance in some areas. As a result, the window 

of 5 by 5 pixels or 4 by 4 pixels showed the possibility to include the nearby dark water pixels and thereby, 

smoothen out the average backscatter within the plot. Some pictures of the water channels/river/muddy 

ground covered by water near the sample plots are shown in Appendix 18. 

 

The plot centers were overlaid on the PALSAR-2 image in ArcGIS. Around the plot center, a polygon was 

created with the 3 by 3 pixels for each plot. Thus, 71 polygons were created for 71 plots, and later these 

were combined into one shapefile. The establishment of the 3 by 3 pixels window to cover the plot area is 

illustrated in Figure 13. 

 

  

Figure 13: Establishment of the 3 by 3 pixels for extraction of backscatter values from the plot. 

 

The average backscatter coefficient for 3 by 3 pixels window was extracted using zonal statistics under spatial 

analyst tool in ArcGIS. The polygons of 3 by 3 pixels window were linked to the Plot_ID following the 

Plot_ID of the coordinates of the plot center. This is to note that all the field-measured data had the same 

Plot_ID and accordingly, the window of 3 by 3 pixels window was also linked to the same plot. As a result, 

the extracted backscatter coefficients from the 3 by 3 pixels window were associated with the field-measured 

data. This was important to be able to analyze the relationship between the field-measured data and 

backscatter coefficients.  

 

However, not all the plot centers perfectly fitted inside the center of 3 by 3 pixels window. Some plot center 

points fell between the edge of two pixels. Some of the plot centers were also found at the intersection of 

four pixels. It created a problem to identify the center of the pixel, thus placement of the 3 by 3 pixels 

window for the plot. This has been illustrated in Figure 14. 

 

  

  

(a)Plot center at the intersection of 
four pixels. 

(b)  Plot center at the edge of two 
pixels. 

Figure 14: Location of plot center between two or more pixels. 
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A visual interpretation technique was adopted to address this issue. The plot centers and plot area buffers 

were overlaid on the drone images collected during the period of our data collection for other studies. The 

example of drone images with overlying plot 3 and plot 4 are presented in Figure 15.  

 

Plot 03 Plot 04 

Figure 15: The plot center is shown on top of the drone image, the yellow dots 
are the plot center, and the purple circle is the perimeter of the plot. 

 

Drone images provided information on the canopy density of the plot and major species types as well as 

the position of the plot. The ground photos of the plot taken during data collection were also used to 

support the visual analysis with the drone images. Based on this analysis, plot center at the intersection of 

four pixels/at the edge of two pixels was shifted to the most suitable pixel among the shared pixels, and 

then the window of the 3 by 3 pixels was established.  The shifting of the plot center of plot 3 and plot 4 

and subsequent establishment of their 3 by 3 pixels window is illustrated in Figure 16. The ground photos 

of these plots (plot 3 and plot 4) are given in Appendix 19. 

 

The dimension of 3 by 3 pixels covered 9 pixels of the PALSAR-2 image. An average value of the extracted 

backscatter coefficients within the 9 pixels was used for AGB model development and validation. 

NRCS/backscatter coefficients were the predictor or estimator for the field-measured AGB. 

 

  

(a)The original position of the plot center at 
the intersection of the four pixels (red point). 

(b)Shifted position of the plot center (yellow point) and 
the establishment of 3 by 3 pixels window. 

  

(c) The original position of the plot center at 
the edge of two pixels (red point). 

(d) Shifted position of the plot center (yellow point) and 
the establishment of 3 by 3 pixels window.  

Figure 16: The shifting of the plot center for establishment 3 by 3 pixels window. The red points mark the 
original position, and the yellow points represent the final position of the plot center after shifting. 
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 Analysis 

 Plot AGB Calculation 

AGB was calculated using tree DBH, tree height and wood density data in an allometric equation proposed 

by Chave et al. (2005) for the mangrove forests. AGB was calculated for each tree in each plot. The 

allometric equation used for AGB calculation is given in equation 2.  

 

Equation 2:  Allometric equation for calculation of AGB. 

                                 Mangroves, AGB = 0.0509 𝜌 D^2 H  

              Where: AGB = aboveground biomass estimated in kilogram 

D = diameter at breast height in centimeter 

𝜌 = wood density in gcm-3 

H = tree height in meter 

 

The total AGB was calculated for individual plots using equation 2 in kilogram per 500 m2 plot. Then, it 

was converted to tons per hectare using equation 3. 

 

 

Equation 3: AGB calculation in tons per ha. 

AGB (tons/ha-1) = (Total AGB (kg/plot) * 20)/1000 

 Plot Carbon Calculation 

Carbon was calculated from the AGB using the conversion factor of 0.5 and is expressed in tons ha-1. The 

conversion factor may vary from plant to plant, species to species and site to site (Abdul Rashid et al., 2009). 

Therefore, the global default conversion factor of 50% was used to convert AGB to carbon stock followed 

by the Intergovernmental Panel on Climate Change (IPCC, 2007). The equation to calculate carbon using 

the conversion factor of 0.5 is given in equation 4.  

 

Equation 4: Calculation of carbon stock using conversion factor. 

C= AGB * CF 

Where:   C is the carbon stock in tons ha-1 

  AGB is the aboveground biomass in tons ha-1 

  CF is the carbon fraction (0.5) 

 BA calculation 

The cross-section of the tree stem at 1.3 m breast height is defined as the basal area (BA) of the tree. The 

tree BA in a plot was calculated following the formula by Larsen (2018) which is given in equation 5.  

 

Equation 5: Calculation of BA. 

 

BA = 0.00007854 * (DBH)2 

Where:  0.00007854 is the constant of π  

BA is the basal area per tree in square meter (m²)  

DBH is the diameter at breast height in centimeter 

 

The total BA was calculated in the plot in m² per 500 m² plot. It was converted to m² per hectare dividing 

it by 0.05.  BA per hectare was calculated as it is considered as a measure of stocking density of a forest 

stand and was correlated to the backscatter coefficients of PALSAR-2.  
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 Correlation Analysis 

Correlation analysis is essential to be performed to test the strength and direction of correlation between 

the variables. The correlation coefficient values range between -1 and +1. The value -1 indicates that there 

is a very strong negative correlation between two variables, and +1 indicates that there is a very strong 

positive correlation between the variables. A value of 0 indicates that there is no correlation between the 

variables (Stein et al., 1999). 

 

In our study, correlation analysis was performed to test if a correlation exists between forest parameters (i.e., 

AGB, BA, DBH and tree height) and backscatter coefficients of PALSAR-2 before applying the regression 

analysis. The Pearson product-moment correlation was used because it measures the strength and direction 

of the association between two variables measured on an interval/ratio scale. The measurement scale of our 

data is a ratio. Therefore, Pearson product-moment correlation analysis was performed between AGB and 

the PALSAR-2 backscatter coefficients. Moreover, the correlation was performed for BA, DBH and tree 

height with PALSAR-2 backscatter coefficients. The correlation between AGB and the other forest 

parameters (BA, DBH, tree height) was also performed.  

 Regression Analysis 

Regression models are the most commonly used models to analyze the relationship between one dependent 

variable and one or more independent variables (Quinn & Keough, 2002). Linear regression was the most 

commonly used method for estimating the AGB of mangrove forest in previous studies (Hamdan et al., 

2014; Hirata et al., 2014; Pham & Yoshino, 2017). However, the performance of these models was relatively 

low at R2 ranging from 0.43 to 0.65 in the three studies mentioned above. Machine learning approach (SVR) 

was also used by Pham et al. (2018) to estimate AGB in the mangrove forest, but, it also resulted in a low 

performance with R2 of 0.596.  

 

We used linear regression to analyze the relationship between field-measured AGB and backscatter 

coefficients of PALSAR-2 because a linear correlation was observed between our data from correlation 

analysis. We analyzed the relationship between the field measured AGB and HV, HH polarized PALSAR-

2 backscatter coefficients separately using simple linear regression technique. We also investigated if there 

is a significant improvement on AGB estimation if multiple regression analysis is performed with both HV 

and HH backscatter coefficients. The accuracy of the linear regression analyses was compared based on the 

value of R2, RMSE, and p-value. Furthermore, the relationship between PALSAR-2 backscatter coefficients 

and other forest parameters such as BA, DBH and tree height was analyzed using linear regression analysis. 

The relationship of AGB with BA, DBH and tree height was also explored using linear regression technique.  

The backscatter coefficients from the highest performing regression analysis were used to develop a 

regression model which, in turn, used to estimate and map AGB/carbon stock in the study area. The 

requirements of performing linear regression analysis between the variables (Quinn & Keough, 2002; Moore 

et al., 2017) were also verified for the best performing regression in our study. It was done to confirm if our 

data for estimating AGB/carbon stock fulfills the criteria for the linear regression analysis. Based on the 

accuracy of the regression analysis, the simple linear regression between HV backscatter coefficients and 

field-measured AGB yielded the highest performance. Thus, the requirements of the linear regression 

between HV backscatter and field-measured AGB were tested in our study. These are listed below:   

 

Distribution of the regression data: If the data is normally distributed, most of the observations are found 

around the mean with very few outliers. In this case, it is very tricky to fit any linear trend in the data and 

perform a linear regression. Therefore, linear regression needs a uniform distribution of the data, not the 

normal distribution (Quinn & Keough, 2002; Moore et al., 2017). We used Normal Q-Q plot, and then 
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performed Shapiro-Wilk test for the testing the distribution of field-measured AGB and HV backscatter 

according to  Altman & Bland (1995) and Field (2009).   

 

A quantile-quantile (Q-Q) plot is a scatterplot created by plotting two sets of quantiles against one another 

to assess whether a dataset follows a theoretical distribution such as a normal distribution. If both quantiles 

follow the normal distribution, it forms almost a straight line (Altman & Bland, 1995; Field, 2009). 

Shapiro-Wilk is a statistical technique that is a commonly used method for normality test. It is based on the 

correlation between sample data and the corresponding theoretical normal scores. It calculates a W statistic 

to test the normality of the data.  If the p-value is <0.05,  it implies that data deviates from a normal 

distribution (Shapiro & Wilk, 1965). 

Distribution of the errors/residuals: The residuals of a linear regression follow a normal distribution 

where residuals cluster more along the regression line. Shapiro-Wilk statistical technique (Shapiro & Wilk, 

1965) was used to test the normality of the residuals. 

The constant variance of the residuals: The variance of the residuals of the regression are constant over 

the independent variables. The scatterplot of the regression with the line of best fit was visually analyzed to 

check if the residuals are constant.  

Sum and mean of the residuals is zero:  The residuals of the linear regression sum up to zero and have a 

mean of zero.  

 Regression Model Development 

Using the 60:40 ratio, the 71 plots were split randomly into two datasets: model development dataset and 

validation dataset. 60% of the data was used for model development and 40% for model validation. The 

model and validation plots on the PALSAR-2 image are shown in Appendix 20.  
 

The regression analysis depicted the best prediction accuracy of AGB using HV polarized PALSAR-2 

backscatter coefficients whereas the prediction was very poor using HH backscatter coefficients. The multi-

linear regression analysis showed no improvement of AGB prediction accuracy; rather it was almost the 

same as a simple linear regression with HV backscatter. Therefore, the linear regression model was 

developed between the HV backscatter of PALSAR-2 data and field measured AGB. The prediction 

equation derived from the model was used to estimate AGB and carbon stock of the whole study area. The 

relationship between HV backscatter and field measured AGB using linear regression function can be 

expressed as in equation 6.  
 

Equation 6: Linear regression function between HV backscatter coefficients and field-measured AGB. 

𝑨𝑮𝑩 = 𝜷𝟎  +  𝜷𝟏𝑯𝑽 

Where, 

AGB = the predicted AGB 

𝛽0  = the intercept 

𝛽1 = the model coefficient for HV 

 Model Validation 

A validity check was performed to measure the prediction accuracy of the regression model. The predicted 

AGB derived from the model equation was correlated with the field-measured AGB from the 40 plots. The 

coefficient of determination, R2, and RMSE were used to test the accuracy of the model validation. RMSE 

was calculated using equation 7 according to Deng et al., (2014) 
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Equation 7: Equation for RMSE calculation. 

𝑅𝑀𝑆𝐸 = √∑ (�̂� − 𝑌)
2𝑛

𝑖=1

𝑛
 

Where, 

RMSE = the Root Mean Square Error 

Y = the biomass calculated using the allometric equation 

       �̂� = the biomass predicted from ALOS-2 PALSAR-2backscatter using the model 

       𝑛  = the number of the validation plots 

 Determination of Saturation Point 

In previous studies, the saturation point of AGB was determined using the logarithmic function between 

SAR backscatter and AGB. The saturation point of AGB was defined as a point where the slope of the 

logarithmic regression curve started to decrease by 0.02 dB against the minimum-maximum of the AGB 

(Suzuki et al., 2013). The saturation level was also defined using 0.01 dB on the slope of the SAR backscatter 

against the AGB (Watanabe et al., 2006).  

 

In our study, the AGB saturation point was calculated along the slope of the logarithmic curve derived from 

logarithmic regression between HV backscatter and AGB where the slope started to decrease by 0.01 dB 

using slope equation 6.  
 
Equation 8: Determination of AGB saturation point using slope between changes in HV backscatter coefficients and 
changes in AGB. 

Slope = ∆Y/∆X  (Suzuki et al., 2013; Watanabe et al., 2006). 
 
Where:       ∆Y is the change in HV backscatter values with respect to the minimum HV value 

                    ∆X is the change in AGB with respect to the minimum AGB value. 

 

First, we determined the points where the slope of the logarithmic curve started to decrease by 0.01 dB and 

0.02 dB against the AGB. Then, we visually analyzed both points on the regression curve against the range 

of AGB. The visual analysis depicted that AGB had a clear pattern of leveling off on the slope of the 

logarithmic regression curve at 0.01 dB whereas the slope at 0.02 dB, AGB continued to increase.  Therefore, 

we defined the saturation level of AGB when the slope of the logarithmic regression curve decreased to 

0.01 dB.  

 AGB/Carbon Stock Mapping 

An AGB/carbon stock map was produced for the study area based on the AGB estimation using the 

equation derived from the simple linear regression model between the HV backscatter of the PALSAR-2 

image and field-measured AGB. Raster calculator tool in the Spatial Analyst toolbox in ArcGIS software 

was used for mapping the AGB/carbon stock. The model equation was applied on the HV backscatter 

image where every pixel value from HV backscatter image was converted to AGB following the equation.  

A similar approach was followed in previous studies for AGB mapping in the mangrove forest (Hamdan et 

al., 2015).  A carbon stock map for the study area was also created from the AGB map using a conversion 

factor of 0.5 (IPCC, 2007). A separate group was formed for the negative AGB values because they represent 

specular reflection from the river and water channels.  
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4. RESULTS 

 Descriptive Analysis of the Study Data 

 Description of the Tree Species  

Tree species were identified in the sampling plots during fieldwork.  The number of individual tree species 

measured in the field plots totaled at 2407. Among them, Avicennia alba was the most dominating tree species 

accounting for 60% of all individual trees. It was followed by Rhizophora spp. at 38%. The Rhizophora spp. 

composed of Rhizophora apiculata, Rhizophora stylosa, and Rhizophora murconata. Few Xylocarpus granatum and 

Bruguiera gymnorhiza were also found in some plots. The percentage distribution of the tree species is 

presented in Figure 17. 

 

 

Figure 17: Distribution of tree species in the field plots. 

 Descriptive Statistics of the Study Parameters 

The forest parameters used in this study were tree DBH, tree height, AGB, and BA.  These parameters were 

measured from 71 plots in the mangrove forest of the study area. The mean DBH in all the plots was 

accounted for 16.81 cm while the mean tree height stood at 14.15 m. The mean AGB and mean BA was 

calculated at 136.30 tons haˉ¹ and 18.02 m2 haˉ¹ respectively for all plots.  

 

The mean HV and HH backscatter coefficients of PALSAR-2 were extracted from the plots to study their 

relationship with AGB and other forest parameters.  The mean HV backscatter coefficients accounted for 

-20.09 dB whereas the mean HH backscatter coefficients were -13.82 dB. The descriptive statistics of all the 

study parameters from the plots are listed in Table 5. 
 
Table 5: The descriptive statistics of all the study parameters. 

Parameters Min 
 

Max 
 

Sum Mean 
 

Std. Error 
of Mean 

Std. 
Deviation 

AGB (tons haˉ¹) 28.30 346.20 9677.60 136.30 8.41 70.87 

BA (m2/ha) 4.28 40.92 1279.39 18.02 0.93 7.82 

Mean DBH (cm) 11.90 22.93 - 16.81 0.33 2.81 

Mean Height (m) 10.54 18.25 - 14.15 0.22 1.82 

Wood Density (g/cm-3) 0.70 0.91 55.72 0.79 0.01 0.05 

Mean HV (dB) -23.01 -14.54  -20.09 0.25 2.09 

Mean HH (dB) -25.86 -9.11  -13.82 0.31 2.63 

Avicennia 
alba
60%

Rhizophora 
spp.
38%

Xylocarpus 
granatum

2%

Bruguiera 
gymnorhiza

0.004%

Avicennia alba Rhizophora spp.

Xylocarpus granatum Bruguiera gymnorhiza
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 Distribution of AGB and HV Backscatter using Density Curve over the Histogram  

The distribution of AGB and HV backscatter coefficients is shown in Figure 18 and 19 using their histogram 

and density curve. The density curve visualizes the AGB and HV backscatter distribution where data points 

can take any value in the continuum and denotes what percentage of the data points falls into a category. 

The area under the curve equals 100% or 1.0.  
 

  
Figure 18: Density curve over the histogram of AGB, 
the line represents the density curve, and the bar chart 
represents a histogram of AGB distribution. 

Figure 19: Density curve over the histogram of HV 
backscatter, the line represents the density curve, and the 
bar chart represents a histogram of HV distribution. 

 

From the distribution of AGB in Figure 18, it can be seen that most of the AGB values fell between 50 tons 

ha-1 and 150 tons ha-1. The density of field-measured AGB peaked at the point on the density curve where 

the AGB values stood at around 100 tons ha-1. It indicates that the AGB had the highest frequency at 

approximately 100 tons ha-1.  

  

From the distribution of HV backscatter coefficients in Figure 19, it can be observed that HV backscatter 

peaked on the density curve where the HV backscatter lies between -21dB to -22 dB. It implies that most 

of the HV backscatter values ranged from -22 dB to -21 dB.  

 Normality Test of AGB and HV Backscatter using Normal Q-Q Plot and Shapiro-Wilk Test 

The Normal Q-Q plot of AGB (Figure 20) shows that the AGB values were left-skewed at higher values.  

It can also be observed from the Normal Q-Q plot in Figure 21 that HV backscatter coefficients were right 

skewed in the middle and left skewed at the higher and lower range of the values. The skewness indicates 

that data were not normally distribution.  
 

  

Figure 20: Normal Q-Q plot of AGB distribution. Figure 21: Normal Q-Q plot of HV backscatter values.  

 

Then, we performed Shapiro-Wilk (Shapiro & Wilk, 1965) test for the testing the field-measured AGB and 

HV backscatter coefficients for normality.  The results of the Shapiro-Wilk normality test showed a W 

statistic at 0.89067 with a p-value of 1.495E-05 for the field- measured AGB. The p-value was < 0.05; 
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therefore, distribution of the field- measured AGB was significantly different from the normal distribution. 

In other words, the field- measured AGB was not normally distributed.  

 

We also conducted a Shapiro-Wilk normality test for the HV backscatter coefficients. The test depicted a 

W statistic of 0.90321 and a p-value of 4.629E-05. This means that HV backscatter values were not normally 

distributed.  

 Correlation Analysis between Backscatter Coefficients and Forest Parameters 

Initially, the correlation analysis was conducted between AGB and speckle filtered HV polarization 

backscatter coefficients. However, the correlation was poor at r of 0.64 (and R2 of 0.41).  The results of the 

correlation analysis between AGB and speckle filtered HV backscatter coefficients are shown in Appendix 

21. 

 

After inspecting the speckle filtered and non-speckle filtered PALSAR-2 image, it was observed that the 

AGB pixel values from the mangrove forest and water pixel values from river and water channels were 

averaged during the filtering process. It smoothened out the true HV backscatter of the forest biomass.  

 

Therefore, we performed a correlation analysis between non-speckle filtered HV backscatter and field-

measured AGB. The results showed a very strong correlation between non-speckle filtered HV backscatter 

coeffiecients and field-measured AGB. Therefore, non-speckle filtered HV backscatter coefficients were 

used for all analysis in this study and referred to as HV backscatter coefficients. Similarly, non-speckle 

filtered HH backscatter coefficients were referred to as HH backscatter coefficients. 

 

Pearson’s product-moment correlation was used to test the correlation of forest parameters (AGB, BA, 

DBH and tree height) with HV as well as HH backscatter coefficients.  The correlation coefficient, r, was 

used to observe the strength of correlation. From the results of correlation analysis (Table 6), it can be 

observed that HV backscatter had a very strong correlation with field-measured AGB at r of 0.94. The BA 

also showed a strong correlation with HV backscatter (r=0.89). The correlation between DBH and HV 

backscatter had a reasonable correlation at r of 0.71. On the other hand, the tree height depicted a moderate 

correlation with HV backscatter at r of 0.50. The correlation of HH backscatter was weak with all the forest 

parameters.  

 
Table 6: The correlation analysis between forest parameters and backscatter coefficients of PALSAR-2. 

Pearson Product moment 
correlation 
Statistic  

Forest  
Parameters 

AGB  BA DBH Tree Height 

Backscatter 

Correlation coefficient (r) HV 0.94 0.89 0.71 0.50 

Sig (2 tailed) < 2.2e-16 < 2.2e-16 3.334e-12 8.6e-06 

t-value 23.207 15.859 8.4254 4.8083 

95% CI 0.9075497 
0.9632286 

0.8225377     
0.9274690 

0.5741995   
0.8107202 

0.3031003 
0.6574398 

Correlation coefficient (r) HH 0.34 0.32 0.28 0.22 

Sig (2 tailed) 0.003276 0.006054 0.01715 0.0623 

t-value 3.0468 2.8322 2.4425 1.8949 

95% CI 0.1207533 
0.5347018 

0.09668932 
0.51708554 

0.05223825 
0.48358034 

-0.01149487    
0.43322963 
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Moreover, the correlation analysis between AGB and other forest parameters (BA, DBH and tree height) 

was conducted. The results showed that AGB was highly correlated with BA at r of 0.95. The correlation 

between AGB and DBH was moderate whereas the correlation was quite poor between AGB and tree 

height. The results of these analyses are given in Appendix 22.  

 

The correlation analysis was also conducted between AGB and the derivatives of HV and HH backscatter 

coefficients, e.g., the sum and the ratio of HV and HH backscatter coefficients. The results of the correlation 

analysis are shown in Appendix 23. 

 The relationship between  HV Backscatter and BA, DBH & Tree Height  

The correlation analysis showed that HV backscatter coefficients are more strongly related to BA, DBH and 

tree height than HH backscatter coefficients (see Table 6).  Therefore, regression analysis was conducted 

only between HV backscatter coefficients and forest parameters viz. BA, DBH and tree height. The 

summary statistics of the regression analysis between HV backscatter and BA, DBH & tree height are shown 

in Table 7.  

 

Table 7: Summary statistics of the regression between HV backscatter and BA, DBH & tree height. 

Regression Statistics  BA DBH Tree Height 

R2  HV 
Backscatter 

0.784724037 0.507096787 0.250978601 

RMSE 3.60m2 ha-1 1.96cm 1.57m 

Standard Error 3.652834511 1.988882955 1.587867871 

F-stat 251.5188309 70.98691452 23.12019859 

Significance F 1.04777E-24 3.3336E-12 8.59979E-06 

Coefficients: Intercept 84.59710894 36.06663242 22.92362348 

P-value: Intercept 1.74369E-30 1.83897E-24 2.18081E-19 

Coefficients: HV  3.314654909 0.958785475 0.436850877 

P-value: HV 1.04777E-24 8.425373257 8.59979E-06 

 

From the summary statistics of the regression analysis in Table 7, it can be observed that HV backscatter 

had a strong relationship with BA at R2 of 0.78. This means that HV backscatter coefficients explained 78% 

variation in BA. The RMSE of the regression stood at 3.60 m2 ha-1. The scatterplot of the regression between 

HV backscatter and BA is given in Figure 22. 

 

 

Figure 22: A linear regression between HV backscatter coefficients and 
BA; the black dots are field-measured BA, and orange dot points along 
the regression line are the predicted BA by the regression. 
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The results of the linear regression between DBH and HV backscatter depicted a reasonable accuracy at R2 

of 0.51. This means that HV backscatter explained 51% variation in DBH. The scatterplot of the regression 

analysis between HV and DBH has been shown in Figure 23. On the contrary, the performance of the 

regression analysis between tree height and HV backscatter was poor at R2 of 0.25 implying that HV 

backscatter explained only 25% variation in tree height. The scatterplot of the regression analysis between 

HV and tree height has been shown in Figure 24.  

 

  

Figure 23: A liner regression between HV backscatter 
and DBH, the black dots are field-measured DBH, and 
orange dots along the regression line are the predicted 
DBH by the regression. 

Figure 24: A linear regression between HV backscatter 
and tree height, the black dot points are field-measured 
tree height and orange dot points along the regression 
line are predicted tree height by the regression. 

 Relationship of BA, DBH and Tree Height with AGB 

The relationship of AGB with other forest parameters such as BA, DBH and tree height was explored using 

linear regression analysis. Out of them, the BA depicted a higher accuracy to predict AGB with R2 of 0.89. 

The results of the regression between BA and AGB are shown in Figure 25 and Table 8. The accuracy to 

predict AGB using DBH was moderate at R2 of 0.55. However, the relationship between tree height and 

AGB was weak with R2 of 0.30. The scatterplot and summary statistic of the relationship of AGB with DBH 

and tree height are presented in Appendix 24 and Appendix 25 respectively.  
 

 

Figure 25: The scatterplot of the linear regression using BA to predict AGB, the black dots represents field-
measured AGB, and orange dots along the regression line (solid line) represents predicted AGB by the 
regression.  
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Table 8: Summary statistics of regression between BA and AGB. 

Regression Statistics 

Multiple R 0.945809285 

R Square 0.894555204 

Adjusted R Square 0.893027019 

Standard Error 23.18065336 

Observations 71 

ANOVA 

 df SS MS F Significance F 

Regression 1 314544.7431 314544.7431 585.3708424 1.9897E-35 

Residual 69 37076.64561 537.34269   

Total 70 351621.3887    

 Coefficients Std Error t Stat P-value  

Intercept -18.23153298 6.954500778 -2.621544459 0.010760372  

BA 8.575993504 0.354461361 24.19443825 1.9897E-35  

 The Regression between AGB and Backscatter Coefficients 

The linear regression was conducted between the field-measured AGB and backscatter coefficients of 

PALSAR-2. The results of the regression showed that HV backscatter had a higher performance to predict 

AGB at R2 of 0.89. However, HH backscatter showed a poor relationship at R2 0f 0.12. The multi-linear 

regression with HV and HH backscatter had the same performance to predict AGB as the simple linear 

regression. The sum of HV and HH backscatter had a moderate relationship with AGB at R2 of 0.55. On 

the contrary, the ratio of HV and HH showed no relationship with AGB.   

 

Since the HV backscatter showed a higher accuracy to predict AGB, the relationship between HV 

backscatter and AGB was modeled to estimate AGB in the mangrove forest of the study area using linear 

regression. Therefore, the requirements of linear regression between HV backscatter and AGB were tested 

to confirm that the data fit for the model. The results depicted that HV backscatter coefficients and field-

measured AGB perfectly fitted for the linear regression analysis.  The results of the test are discussed below: 

 

• The HV backscatter coefficients and AGB were not normally distributed which is a requirement of 

performing a linear regression between the variables. The results of the distribution of HV 

backscatter and AGB were shown in section 4.1.4.  

 

• The residuals of the regression between HV backscatter and AGB were normally distributed. We 

performed a Shapiro-Wilk normality test (Shapiro & Wilk, 1965) for testing the normality of the 

residuals.  The results of the Shapiro-Wilk normality test depicted a W statistic at 0.99249 with a p-

value of 0.9508. The p-value of 0.95 was > 0.05, indicating that residuals were normally distributed. 

The residuals of the regression between HV backscatter and AGB are shown in Appendix 26. 

 

• The variance of the residuals of the regression between field-measured AGB and HV backscatter 

coefficients were constant over the field-measured AGB values. It means that the residuals of the 

regression had a constant variation along the line of best fit. This can be observed in the scatterplot 

of the regression with the line of best fit in Figure 37. 

 

• The mean and sum of the residuals of the linear regression between the field-measured AGB and 

HV backscatter coefficients were zero.  
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The results of all the linear regression between backscatter coefficients (HV, HH) and AGB are presented 

in the following subsections.  

 The Relationship between HV Backscatter and Field-measured AGB 

The linear regression analysis showed a strong relationship between HV backscatter and field measured 

AGB with R2 of 0.89 and RMSE of 23.72 tons ha-1 at a p-value of 2.58755E-34. This result depicts that HV 

backscatter can significantly explain 89% variation in AGB using linear regression. The scatterplot of linear 

regression between HV backscatter and field-measured AGB is presented in Figure 26 and summary 

statistics of the regression analysis are given in Table 9. 
 

 
Figure 26: A linear regression using HV backscatter coefficients to predict AGB, 
the black dots represent field measured AGB and orange dots on the regression 
line (solid line) represents predicted AGB by the regression. 

 
Table 9: Summary statistics of regression analysis between HV backscatter and AGB. 

Regression Statistics 

Multiple R 0.941504298 

R Square 0.886430344 

Adjusted R Square 0.884784407 

Standard Error 24.05715422 

Observations 71 

ANOVA 

 df SS MS F Significance F 

Regression 1 311687.8686 311687.8686 538.5566521 2.58755E-34 

Residual 69 39933.52018 578.7466692   

Total 70 351621.3887       

 Coefficients Std Error t Stat P-value  

Intercept 777.916116 27.79457815 27.98805263 2.15299E-39  

HV 31.94353828 1.376471813 23.20682339 2.58755E-34  

-22 -20 -18 -16

5
0

1
0

0
2

0
0

3
0

0

Relationship between HV Backscatter and AGB

HV Backscatter (dB)

A
G

B
 (

to
n

s
/h

a
)

R² =  0.89
AGB = 777.92 + 31.94 HV 

RMSE = 23.72



ESTIMATING ABOVEGROUND CARBON USING ALOS-2 PALSAR-2IN THE MANGROVE FOREST IN EAST KALIMANTAN, INDONESIA 

35 

 The Regression between HH Backscatter and Field-measured AGB  

The linear regression between HH backscatter and field-measured AGB showed a very weak relationship at 

R2 of 0.12 and RMSE of 66.07 tons ha-1 with the p-value at 0.01. The scatterplot of the regression analysis 

and the corresponding table of summary statistics are shown in Figure 27 and Table 10.  

 

 

Figure 27: A linear regression between HH backscatter coefficients and AGB, the black dots 
represent field-measured AGB, the purple dots on the regression line represent predicted AGB by 
the regression. 

 
Table 10: Summary statistics of the relationship between HH backscatter and AGB. 

Regression Statistics 

Multiple R 0.344355751 

R Square 0.118580883 

Adjusted R Square 0.105806693 

Standard Error 67.01998555 

Observations 71 

ANOVA 

 df SS MS F Significance F 

Regression 1 41695.57475 41695.57475 9.282849403 0.003275817 

Residual 69 309925.814 4491.678464   

Total 70 351621.3887       

 Coefficients Std Error t Stat P-value  

Intercept 264.5201521 42.82753998 6.176403133 3.98654E-
08 

 

HH 9.272951288 3.043528171 3.046776888 0.003275817  

 The Relationship between the Derivatives of HV and HH Backscatter and Field-measured AGB  

The linear regression analysis was performed between the sum of HV and HH backscatter coefficients and 

field-measured AGB. The results showed that the sum of HV and HH backscatter coefficients had a 

relationship with field- measured AGB at a coefficient of determination, R2 of 0.55 and the significance of 

the relationship was at p-value < 1.33921E-13. This implies that the sum of HV and HH backscatter can 
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explain 55% variation in AGB. The RMSE of the regression was 47.18 tons ha-1. The scatterplot and 

summary statistics of the regression analysis are shown in Appendix 27.  

 

The relationship of AGB with the ratio of HV/HH and HH/HV polarized backscatter was analyzed 

separately using the linear regression model. The R2 of the relationship between AGB and HV/HH was 

0.05 with an RMSE of 68.47 tons ha-1. Similarly, the R2 of the regression between HH/HV accounted for 

0.04 and RMSE was 68.91 tons ha-1. These results depicted that there is no relationship between the ratio 

of the HV and HH backscatter and AGB. The result of the regression analysis of AGB with the ratio of 

HV and HH backscatter and the corresponding summary statistics are presented in Appendix 28 and 

Appendix 29 respectively.  

 The Relationship between AGB and HV, HH Backscatter using Multiple Linear Regression 

The multi-linear regression analysis was performed to predict AGB using HV and HH backscatter 

coefficients. The R2 and RMSE of the multi-linear regression analysis accounted for 0.89, and 23.63 tons 

ha-1 respectively. Therefore, the accuracy to predict AGB using both HV and HH backscatter was the same 

as to predict AGB using HV backscatter only (R2=0.89 and RMSE=23.72 tons ha-1). The results of the 

multi-linear regression analysis between AGB and HV & HH backscatter are depicted in Table 11. 
 
Table 11: Summary statistics of multi-linear regression between AGB and HV, HH backscatter. 

Regression Statistics 

Multiple R 0.941943744 

R Square 0.887258017 

Adjusted R Square 0.883942076 

Standard Error 24.14493388 

Observations 71 

ANOVA 

 df SS MS F Significance F 

Regression 2 311978.8962 155989.4481 267.57355 5.90083E-33 

Residual 68 39642.49258 582.9778321   

Total 70 351621.3887       

 Coefficients Std Error t Stat P-value  

Intercept 782.2762684 28.5704158 27.38063995 1.90326E-38  

HV 31.5941808 1.467315468 21.53196192 4.44234E-32  

HH 0.822838276 1.164590979 0.706547012 0.482262058  

 Model Development, Validation and Accuracy Assessment 

Simple linear regression analysis was applied to model and validate the relationship between HV backscatter 

and field-measured AGB. This is because a simple linear regression analysis depicted the highest accuracy 

to estimate AGB using HV backscatter coefficients. The multi-linear regression using HV and HH 

backscatter was also performed to test if it improves the estimation of AGB. However, the result showed 

the same accuracy at R2 of 0.89 as the simple linear regression with HV only. Therefore, simple linear 

regression was used for model development and validation. The number of plots used for model 

development was 42 which is 60% of the dataset.  
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 Model Development 

A linear regression model to estimate AGB using HV backscatter depicted a very high accuracy with R2 of 

0.89. This implied that HV backscatter can explain 89% of the variation in AGB. The RMSE of the model 

accounted for 23.16 tons ha-1. The RMSE was calculated based on the validation data. The graphical 

presentation of the model is shown in Figure 28, and the summary statistics of the regression result is shown 

in Table 12. 

 

 

Figure 28: The regression model between HV Backscatter and field-measured AGB, the 

black dots represent field-measured AGB while the purple dots represent the predicted AGB 

along the regression line by the regression model. 
 
Table 12:  Summary statistics of the regression model between AGB and HV backscatter. 

Regression Statistics 

Multiple R 0.941616574 

R Square 0.886641773 

Adjusted R Square 0.883807818 

Standard Error 23.7296241 

Observations 42 

ANOVA 

 df SS MS F Significance F 

Regression 1 176171.9874 176171.9874 312.8636706 1.62956E-20 

Residual 40 22523.8024 563.0950599   

Total 41 198695.7898       

 Coefficients Std Error t Stat P-value  

Intercept 777.9287067 36.26222587 21.45286694 1.49033E-23  

HV  31.84232664 1.800226809 17.6879527 1.62956E-20  

 Model Validation and Accuracy Assessment 

The equation derived from the model was used to estimate AGB of the study area. The average estimated 

AGB from the 29 validation plots was used to validate the model. In other words, estimated AGB from the 

29 plots (40% of the dataset) was used to measure the predictive accuracy of AGB by the regression model 

using HV backscatter. The validation dataset was independent of the data used for model development. The 

dataset used for model development and validation is shown in Appendix 15. 
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The regression results of the model validation between the observed (field-measured) AGB and estimated 

AGB depicted a strong coefficient of determination at R2 of 0.89. Thus, we concluded that estimated AGB 

using HV backscatter can explain 89% of the observed AGB. The RMSE of the model validation was 

calculated at 22.69 tons ha-1 which is approximately similar to the model RMSE. The scatterplot of the 

relationship between the observed and estimated AGB is presented in Figure 29, and the results of the 

regression statistics of the model validation are shown in Table 13. 
 

 
Figure 29: The regression model validation between observed AGB and estimated 
AGB, the black points represent field measured AGB while the orange line 
represents the AGB predicted by the regression model validation. 

 

Table 13: Summary statistics of the model validation. 

Regression Statistics 

Multiple R 0.942364 

R Square 0.88805 

Adjusted R Square 0.883904 

Standard Error 23.51173 

Observations 29 

ANOVA 

 df SS MS F Significance F 

Regression 1 118398.5092 118398.5092 214.179154 2.33332E-14 

Residual 27 14925.63443 552.801275   

Total 28 133324.1436       

 Coefficients Std Error t Stat P-value  

Intercept 20.29957414 9.046459778 2.243924655 0.033237973  

Observed AGB 0.883541913 0.060372416 14.6348609 2.33332E-14  

 Estimation of AGB Saturation Point in relation to HV Backscatter 

Figure 30 represents a logarithmic regression between AGB and HV backscatter coefficients. The 

logarithmic curve has been denoted in the graph by a black dotted line. The slope of the logarithmic 

regression curve was calculated from the changes in HV backscatter over the changes in AGB following 

equation 8. The point at which the slope converged to 0.01dB was found at 216 tons ha-1. Thus, we 
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concluded that the PALSAR-2 HV backscatter saturates at AGB of 216 tons ha-1 as it can be seen at the 

intersection of the vertical red line in Figure 30.  

 

 

Figure 30: AGB saturation point with respect to HV backscatter coefficients. The red vertical 

line intersecting at the slope of 0.01dB depicts the AGB saturation point at 216.9 tons ha-1. The 

yellow line represents the consecutive decrease in slope over the curve before it reached to 

0.01dB. 

 AGB and Carbon Stock Map of the Study Area 

AGB of the study area was mapped using the equation, AGB = 777.93 + 31.84 HV derived from simple 

linear regression model developed from the relationship between HV backscatter and AGB as illustrated in 

section 4.6.1 (Figure 28 and Table 12). Out of 105 ha of the study area, 75 ha was mangrove forest, and 20 

ha was water bodies. Therefore, a separate group was created representing water bodies.  

 

The map of estimated AGB of the study area is shown in Figure 31.  It can be observed from the AGB map 

that most of the AGB ranged between 100 tons ha-1 and 200 tons ha-1 followed by 200-300 tons ha-1. The 

amount of AGB higher than 300 tons ha-1 was mostly found in some areas along the river and scattered in 

some places over the study area. The average AGB of study area accounted for 181 tons ha-1. The total 

AGB was estimated at 13,719 tons in the study area.  
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Figure 31: AGB map of the study area at Mahakam mangrove forest, East Kalimantan, Indonesia 

 

It can also be seen from the frequency distribution of the estimated AGB in Figure 32 that AGB ranging 

from 100-200 tons ha-1 had the highest frequency followed by AGB at 200-300 tons ha-1.  The total number 

of pixels for the range from 100-200 tons ha-1 accounted for 5082, and the total AGB for this range summed 

to 3773.57 tons. It was followed by 4300 pixels for the AGB ranging from 200-300 tons ha-1 with total AGB 

at 5193.97 tons. The total AGB with the pixel numbers for the different range of AGB are shown in Table 

14. The negative values represented water with a total of 5750 pixels covering an area of 20 ha. 
 

 Table 14: The total AGB for different AGB 
ranges with corresponding pixel numbers. 

AGB 
Range 

Pixel 
Number 

Total 
AGB 

1-25 767 48.80 

25-100 3040 968.27 

100-200 5082 3773.57 

200-300 4300 5193.97 

>300 2271 3734.09 

Total 15460 13,719 

Figure 32: The frequency distribution of the estimated 
AGB using its histogram. The values more than zero (75 
ha) represents ABG values, and the rest is water (20 ha).  
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The carbon stock map of the study area followed the same pattern as the AGB map. This is because the 

carbon stock map of the study area was produced by converting the AGB estimates using the conversion 

factor of 0.5 as 50% of forest biomass represents the carbon stock (IPCC, 2007). The average estimated 

carbon stock stood at 91 tons ha-1 in the study area. The total estimated carbon stock was estimated at 6860 

tons. The carbon stock map of the study area is depicted in Figure 33. 

 

 

Figure 33: Carbon stock map of the study area at Mahakam Delta mangrove forest, East Kalimantan, Indonesia. 
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5. DISCUSSION 

Mangroves are one of the highest carbon-rich forests in the tropical region, thus play a crucial role in global 

climate regulation. However, deforestation and degradation of the mangroves contribute to higher carbon 

emissions accounting for 10% of the CO2 emissions each year out of 20% emissions in the tropics. To 

reduce the emissions from deforestation and forest degradation in the tropics, UNFCC launched UN-

REDD+ program in 2008. UN-REED+ proposed an accurate MRV system of AGB estimation. The MRV 

system requires a low cost and robust way to measure and monitor the AGB/carbon stock in the tropics. 

To this end, UN-REDD+ recommends the use of RS techniques. Among different RS techniques, the L-

band SAR estimate AGB with higher accuracy in the inland tropical forests. However, the accuracy of AGB 

estimation is relatively much lower in the mangrove forest. In this context, we aimed to estimate the 

AGB/carbon stock using ALOS-2 PALSAR-2 in the mangrove forest at Mahakam Delta in East 

Kalimantan, Indonesia. The accuracy of the AGB/carbon stock estimation is measured in terms of R2, 

RMSE, and p-value.  

In our study, a linear regression model is applied to estimate AGB using ALOS-2 PALSAR-2 data. From 

71 sample plots, the forest parameters viz. DBH, tree height and wood density are used to calculate field-

measured AGB by the allometric equation of Chave et al. (2005). The average HV and HH backscatter 

coefficients of PALSAR-2 are extracted from the plots using 9 pixels window to cover the approximate plot 

area. Out of 71 plots, 42 plots are used for model development and the remaining 29 plots for model 

validation.  The regression analysis shows that HV backscatter can predict AGB at higher accuracy whereas 

the relationship between HH and AGB is very weak. Therefore, cross-polarized backscatter coefficients 

(HV) are used to estimate and map AGB/carbon stock using a linear regression model in the study area. 

The data and methods, and the most important findings of AGB estimation and their explanations are 

described in the following subsections.  

 Data and Method of AGB Estimation 

The use of the allometric model is a crucial step when it comes to estimating AGB. A general allometric 

equation for the mixed mangrove forest proposed by Chave et al. (2005) is used in our study to calculate 

field-measured AGB. This is because AGB is estimated per ha basis in the mangrove forest. One ha of 

mangrove forest houses several tree species in our study area. Therefore, mixed-species common tree 

biomass allometry is most appropriate in our case.  

 

We follow the guidelines by Chave et al. (2005) to maintain the quality of the data for calculating field-based 

AGB in our study.  According to Chave et al. (2005), data for calculating AGB in a study should be within 

the range used in their allometric model. For example, the tree diameter used by Chave et al. (2005) ranges 

from 5-156 cm. The tree diameter in our study ranges from 11.90 cm to 22.93 cm with a mean DBH of 

16.81 cm which is within the range of the allometry model by Chave et al. (2005). The wood density data 

used by Chave et al. (2005) in their allometric model is available through the World Agroforestry Center 

database (World Agroforestry Indonesia, 2018; World Agroforestry, 2019). In our study, the wood density 

data is used from this database.  Chave et al. (2005) also stress to measure the diameter in ‘cm’, and tree 

height in ‘m’ which we have followed in our study.  

 

Chave et al. (2005) also mention the necessity to measure the tree parameters correctly. For instance, they 

recommended to measure the tree diameter above the stem base/buttress of the tree species. The tree 

diameter of Rhizophora spp. is measured above the buttress/stem base at 1.3 m height. Moreover, the total 
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tree height is suggested to measure by Chave et al. (2005). Therefore, tree height is measured from the 

buttress/stem base to the top of the tree for the Rhizophora spp. in our study. 

 

We assumed a linear relationship between the field-measured AGB and HV backscatter coefficients. The 

reason for assuming a linear relationship is that HV backscatter of L-band SAR increases as the forest 

biomass increases. Another reason is the homogeneity of the planted young mangrove forest in the study 

area. Linear regression is sensitive to outliers, and therefore, relative homogeneousness of the mangrove 

forest in our study area leads us to assume that a linear model is a right choice to estimate AGB in our study.  

Our assumption is proved as linear regression analysis shows a linear relationship between field-measured 

AGB and HV backscatter coefficients at a higher accuracy.  Our data also complies with the requirements 

of a linear relationship. Therefore, a linear model to estimate AGB is most appropriate in our study.  

 

However, HV tends to saturate at AGB of 216 tons ha-1. This raises a limitation of estimating AGB using 

HV backscatter coefficients with the higher range > 216 tons ha-1 forest biomass. This means that the 

relationship is non-linear between forest biomass and HV backscatter in the dense forest where the mean 

of AGB is more than 216 tons ha-1.  

 

Although the HV signals show saturation, the linear model depicts a higher accuracy in our study. The field-

measured AGB in our study ranges from 28.3 tons ha-1 to 346.2 tons ha-1. Thus, we can infer that the linear 

model estimates AGB beyond the saturation level in our study. This can be supported by the accuracy of 

the model and model estimation; both have higher accuracy at R2 of 0.89. Further research can be done on 

exploring this issue. 

 The relationship between AGB and Backscatter Coefficients  

We hypothesize a significant relationship between the field-measured AGB and the backscatter coefficients 

of the PALSAR-2 in our study. To prove our hypothesis, we perform a linear regression analysis between 

HV backscatter coefficients and field-measured AGB to estimate the AGB in the study area. The 

relationship between AGB and HH backscatter coefficients were also explored using simple linear 

regression. Furthermore, a multi-linear regression is performed using both HV and HH backscatter 

coefficients to test if it can improve the accuracy of the AGB estimation. The results indicate that HV 

backscatter coefficients yield higher accuracy for predicting AGB in the mangrove forest (R2 =0.89, RMSE= 

23.16). This implies that there is a significant relationship between field-measured AGB and HV backscatter 

coefficients at higher accuracy.  

Our findings are consistent with the fact that volume scattering increases as the canopy size increases in the 

forests (Figure 34). Therefore, L-band HV polarized backscatter is used to model AGB  in the forests 

(Carver, 1988; Hussin, 1990; Henderson & Lewis, 1998) .  

  

Figure 34: Volume scattering of radar signals from vegetation canopy (adapted from  Carver, 1988) 

 

The relationship between HV polarized backscatter of L-band SAR and AGB is significantly positive in the 

temperate (Rosenqvist et al., 2003), inland tropical forests (Nga, 2010a; Odipo et al., 2016; Sumareke, 2016; 
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Masolele, 2018) and mangrove forests (Hamdan, et al., 2014; Pham & Yoshino, 2017; Pham, et al., 2017; 

Pham, et al., 2018). However, the accuracy of AGB estimation using L-band SAR is comparatively much 

lower in the mangrove forests in earlier studies (Hamdan, et al., 2014; Pham & Yoshino, 2017; Pham, et al., 

2017; Pham, et al., 2018) than in the tropical inland forests ( Nga, 2010; Odipo et al., 2016; Sumareke, 2016; 

Masolele, 2018). On the contrary, our study depicts a higher accuracy (R2 = 0.89) to estimate AGB in the 

tropical mangrove forest using L-band PALSAR-2 as it is observed in the terrestrial tropical forests in earlier 

studies (Nga, 2010a; Odipo et al., 2016; Sumareke, 2016; Masolele, 2018). 

Our study shows HV backscatter coefficients are the best predictor for estimating AGB in the mangrove 

forest. This is consistent with a previous study in Malaysia (Hamdan et al., 2014) where HV polarized 

backscatter coefficients are used for estimating AGB in the Matang mangrove forest using a simple linear 

regression model. However,  Hamdan et al. (2014) reports much lower predictive accuracy of HV 

backscatter to estimate AGB where R2 is 0.41 with an RMSE of 33.90 tons ha−1. On the other hand, the 

accuracy to estimate AGB is much higher at R2 of 0.89 with a RMSE of 23.16 tons ha−1. 

The RMSE of AGB estimation in our study is comparatively lower than RMSE found by  Hamdan et al. 

(2014). The reason for relatively lower RMSE is due to the improved accuracy of AGB estimation in our 

study. It can also be because AGB is estimated in a small and quite homogenous area of the mangrove forest 

in our study, whereas AGB is estimated for the entire Matang mangrove forest in Malaysia by  Hamdan et 

al. (2014). However, the range of the field measured AGB in our study ranging from 28 - 346 tons ha−1 is 

comparable to the field-measured AGB (9.53 - 340.82 tons ha−1) in the study by Hamdan et al. (2014). Also, 

some species in our study area are similar to those reported by Hamdan et al. (2014) where 85% of the 

species were Rhizophora murconata and Rhizophora apiculata.  In our study, Rhizophora spp. consists of 38% of 

the tree species.  

Like our study, Hussin et al. (1990) obtain a similar accuracy to model AGB in a swampy forest in Northern 

Florida. However, the authors develop the models using the tree height and DBH estimated from the radar 

backscatter coefficients instead of the direct backscatter coefficients. Hussin et al. (1990) obtain R2 at 0.82 

for estimating AGB using the tree height derived from the radar backscatter. 

Pham and Yoshino (2017) have reported that multi-polarization backscatter coefficients are better predictor 

compared to single polarization of HV for estimating AGB in the mangrove forest in Vietnam.  The authors 

use a multi-linear regression model to estimate AGB in the mangrove forest.  However, a multi-linear 

regression model using the multi-polarization of HV and HH backscatter yields almost the same result (R2 

= 0.89 and RMSE = 23.63) as the simple linear regression using HV polarization in our study. Given this 

outcome of our study, we can conclude that the predictive accuracy of HV and HH multi-polarizations to 

estimate AGB in the mangrove forest is comparable to that of single HV polarization, but not a better 

predictor. 

The results of the study by Pham and Yoshino (2017) depict the accuracy of AGB estimation at R2 = 0.51 

and RMSE = 35.5 Mg ha−1 for Sonneratia caseolaris species, R2 = 0.64, RMSE = 41.3 Mg ha−1 for Kandelia 

obovata species and   R2 of 0.34 for the mixed mangrove forest. These findings show much weaker R2 and 

higher RMSE, i.e., much lower accuracy where we have higher accuracy (R2 =0.89 and RMSE = 23.16) for 

AGB estimation of the mixed mangrove forest comprising mainly Avicennia Alba and Rhizophora spp.  

Pham et al. (2017) used multi-polarization HV and HH backscatter from ALOS-2 PALSAR-2 for estimating 

AGB of a single mangrove species, Sonneratia caseolaris using a multi-layer perceptron neural networks 

(MLPNN) model. The result shows the performance of the model at R2 of 0.776. However, the MLPNN 

model does not perform well for mixed mangrove stands (Pham et al., 2018) restricting its application to 

the single species mangrove forest only. There are several tree species in one hectare of the mangrove forest 

in the tropics (De Oliveira & Mori, 1999). Therefore, species-wise regression models are not useful in the 
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tropical forests as in the temperate zones (Ter-Mikaelian and Korzukhin, 1997; Shepashenko et al., 1998). 

The mangrove forest in our study represents mixed mangrove species at Mahakam Delta. Thus, the higher 

accuracy of our model has significant implications for estimating AGB in the mixed mangrove forests.  

L-band SAR data have also been integrated with optical data to estimate AGB in the mangrove forest in an 

earlier study (Pham et al., 2018). Pham et al. (2018) integrated PALSAR-2 data with Sentinel-2A data to 

estimate AGB in the mangrove forest of Vietnam comprising mainly Kendelia obovata and Sonneratia caseolaris 

species. The authors used nine variables (HH, HV, HV/HH, HH-HV, NIR, and 4 PC1) resulted from the 

data integration to predict AGB using machine learning algorithm, support vector regression (SVR). 

However, the accuracy of the model is moderate at R2 of 0.596.  Pham et al. (2018) also used four other 

machine learning techniques (radial basis function neural networks, multi-layer perceptron neural networks, 

Gaussian process, and random forest). Nevertheless, the performance of these models is lower than that of 

SVR. On the contrary, the accuracy of the linear model in our study to estimate AGB using HV backscatter 

is much higher than the four models of Pham et al. (2018).   

It is evident from the review of the findings that the accuracy of the model in our study to estimate AGB 

outperforms the accuracy of AGB estimation in the mangrove forests in previous studies. Some factors can 

explain the higher performance of the AGB estimation in the mangrove forest in our study.  

First and foremost, the pre-processing of PALSAR-2 data has a significant influence on achieving higher 

accuracy of AGB estimation in our research. The PALSAR-2 image is not filtered to remove speckle from 

the data. This is because filtering greatly affects the accuracy of the AGB estimation in our study. The effect 

of speckle filtering on the accuracy of AGB estimation is depicted in Figure 35. 

 

Figure 35: The linear regression between speckle filtered HV backscatter and AGB, the black dots are field-
measured AGB, and magenta dots along the regression line of best fit are the predicted AGB by the regression. 

 

The reason why speckle filtering affects the accuracy of AGB estimation can be explained by the 

characteristics of the study site in our research. The study area is intersected by the Mahakam River and 

several water channels Appendix 18. Smooth water bodies cause specular reflectance with no return of 

Radar signals. Thus, the water pixels appear dark on the image. In many places, the muddy ground floor of 

mangrove forest has water surface even during peak hours of low tide Appendix 14. The specular reflectance 

from the flooded soil is depicted in Figure 3 in section 2.3.3.  
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As the specular reflectance causes no return of Radar energy, the water pixels appear dark on the image and 

have lower pixel values. On the other hand, backscattering from the forest biomass results in a brighter pixel 

with higher values. During the speckle filtering, the water pixels and forest biomass backscatter pixels are 

averaged as it takes the average of the pixels from the filtering window.  It implies that filtered image has 

the average values of water pixels and forest biomass backscatter pixels. This degrades the true backscatter 

coefficients observed in the biomass of mangrove forest in our study. This eventually results in the lower 

performance of AGB estimation as shown in Figure 35. Therefore, to preserve the true forest biomass 

backscatter coefficients, only geometrically corrected PALSAR-2 image is used in our study. Eventually, this 

results in higher accuracy (R2 =0.89) in estimating AGB in the mangrove forest in our study area.  

However, the previous studies used speckle filtering on their L-band SAR to remove the speckle from the 

data (Pham & Yoshino, 2017; Pham et al., 2017, 2018).  The authors used Forst filter with a 5 × 5 moving 

window. The use of filtering might also have affected the accuracy of AGB estimation in their study.  

 

Moreover, the enhanced backscattering in the mangrove areas has an important contribution to the AGB 

estimation in our study. The enhanced backscattering is mainly observed in the forest areas with the muddy 

ground floor having high water content and higher vegetation in our study (Appendix 11 and Appendix 14), 

which is related to the time of image acquisition. The image scene acquisition time of PALSAR-2 in our 

study is 16:26:06 (UTC) on 30 July 2018. This is equivalent to 1:26 (am) local East Kalimantan time which represents 

the peak hours of the first low tide started at 12. 28 am at Mahakam Delta, East Kalimantan on 30 July 2018 

(Tides4Fishing, 2019). Our study area is inundated 2.5 m during the high tide. The inundation of the forest 

affects the backscattering of the L-band SAR. Therefore, PALSAR-2 image acquisition during the low tide 

condition contributes to the enhanced backscattering as observed by other studies.  According to  Ormsby 

et al. (1985), Imhoff et al. (1986), Imhoff et al. (1987), Hussin (1990), Wang & Imhoff (1993), and Henderson 

& Lewis (1998), L-band cross-polarized backscatter of the flooded forest is enhanced because of the wet 

stems and the wet condition of forest ground (Figure 36 ).  

 

 

Figure 36: An example Radar backscattering in wet and dry conditions for the 

forest (adapted from ITC course materials, Anonymous, 2018). 

 

As L-band has a longer wavelength and can penetrate down to the ground surface in the forests, backscatter 

from L-band radar is enhanced from the flooded forest vegetation because of the high dielectric constant 

of the ground floor and wet stems. The scattering characteristics from the flooded forest are illustrated in 

Figure 37 and 38.  
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Figure 37: Radar signal from the flooded forest (after 
Richards et al., 1987). 

Figure 38: Relative radar returns in response to 
wavelength and different vegetation conditions (after 
Henderson and Lewis, 1998). 

 

Hussin (1990) has observed a similar phenomenon of the enhanced L-band backscatter in a Cypress swamp 

forest in Northern Florida where the author models the biomass with higher accuracy. The radar returns 

from the Cypress swamp forest in Northern Florida is shown in Figure 39 which follows the same pattern 

as in Figure 37. 

 

 
Figure 39: Radar return from Cypress swamp forest in Northern 
Florida (adapted from Hussin, 1990). 

 

The growth of the trees can also contribute to the AGB estimation in our study. The age of the mangrove 

trees in our study area is approximately 16 years which is approximately similar to the studies in Vietnam 

(Pham & Yoshino, 2017; Pham et al., 2017, 2018) and Malaysia (Hamdan et al., 2014). However, the average 

height of the trees in our study area is comparatively higher ranging from 10.5 m to 18.3 m while the height 

of the trees ranged from 2.84 m to 7.61 m in the studies in Vietnam (Pham & Yoshino, 2017; Pham et al., 

2017, 2018). The tree diameter in our study differs from the study by Hamdan et al. (2014) where the tree 

diameter in the sample plots ranges from 5.0 to 48.8 cm. The majority of the plots have higher AGB in our 

study (>115 tons ha-1) than that of Hamdan et al. (2014) with (<100 tons ha-1). The range of AGB is higher 

in our study compared to the studies in Vietnam (Pham & Yoshino, 2017; Pham et al., 2017, 2018) where 

the AGB of the mangrove forest ranges from 36.22 to 230.14 Mg ha−1 with a mean of 87.67 Mg ha−1. As 

there is an increase in volume scattering with the growth of the trees (Le Toan et al., 1992), it can influence 

the AGB estimation using HV backscatter coefficients in our study. This is because the HV polarization of 

L-band is related to the volume scattering from the forests.   

 

It should be mentioned here that our mangrove forest at Mahakam is about 16 years old with natural style 

plantations. On the other hand, the mangrove in Malaysia is a planted and sustainably managed mangrove 

forest (Hamdan et al., 2014). Also, it is a planted mangrove with community-based forest management in 

Vietnam (Pham & Yoshino, 2017; Pham et al., 2017, 2018). Therefore, the differences mentioned in the 

L 
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range of biomass and forest parameters are because of the differences in the characteristics of the mangrove 

forests.  

   

Moreover, the diameter of the trees could play a role in AGB estimation in our study. It has been reported 

that tress <10 cm in diameter does not contribute significantly to biomass estimation (Brown, 2002). 

Therefore, we included trees >= 10 cm diameter in our study. However, the studies conducted in Malaysia 

and Vietnam include trees from 5 cm in diameter for AGB estimation (Hamdan et al., 2014; Pham & 

Yoshino, 2017; Pham et al., 2017, 2018).  

 

The distribution of sample plots in the study area might be another reason. We have a small study area 

covering nearly 105 ha. The number of sample plots in this small study area was 71 which shows a 

homogenous distribution of the plots over the study area. Thus, it covers all the variations in the study area. 

In other studies, the area is larger, but the sample plots are less and scattered over the study areas. This 

might not cover all the variations in their study area.  In the study in Malaysia (Hamdan et al., 2014), 320 

sample plots are scattered over 41,000 ha of mangrove forest.  While in the study in Vietnam, the number 

of sample plots is 25 covering the mangrove forest of about 125 km along the Hai Phong coast (Pham & 

Yoshino, 2017; Pham et al., 2017, 2018).  

 The relationship between BA, DBH, Tree Height and Backscatter Coefficients 

The HV and HH polarizations are analyzed to assess their relationship with different biophysical parameters 

of the mangrove forest viz. BA, DBH and tree height.  The results show that the BA has a strong positive 

relationship with L-band HV polarization whereas the relationship is weak with HH polarization.  However,  

no significant relationship is observed between BA and L-band HV or HH polarization in a study conducted 

on a degraded black mangrove in the Mexican Pacific (Kovacs et al., 2013). Again, Pereira et al., (2016)  

reported an opposite result on a mangrove forest in São Paulo, Brazil where BA has a weak negative 

correlation with L-band HV backscatter and a strong positive correlation with HH backscatter.  

The strong relationship of L-band HV backscatter with BA in our study is consistent with the findings of 

the studies on the dry inland forest. For instance, Hussin et al. (1991) observed a strong positive correlation 

between L-band HV polarized backscatter and BA at R2 0f 0.83 in the Slash Pine forest in Northern Florida. 

Moreover, the relationship between HV polarization of L-band SAR and BA in the Landes forest of 

Southern France is observed at R² of 0.91 (Le Toan et al., 1992). Furthermore, L-band HV polarizations of 

SAR is depicted to predict BA in Ayer Hitam tropical rainforest reserve in Malaysia at R2 of 0.67 (Sumareke, 

2016).  

In our study, the relationship between DBH and L-band HV polarization is positive and moderately strong 

while it shows a weak positive relationship with L-band HH. Pham et al. (2017) also reported a positive 

relationship DBH with L-band HV and HH, but the accuracy is comparatively poor.  On the contrary, 

Pereira et al., (2016) demonstrate a moderate negative correlation of DBH with L-band HH and a weak 

negative correlation with L-band HV. However, no significant relationship is observed between L-band HV 

or L-band HH with DBH in a study (Kovacs et al., 2013) 

The relationship of tree height with HV and HH polarizations is weak and positive in our study.  However, 

the relationship is comparatively strong in HV polarization than that of HH polarization. This is consistent 

with the results observed by Pham et al. (2017).  However, Pereira et al., (2016) show a moderate negative 

relationship of tree height with L-band HH and a weak negative relationship with L-band HV backscatter. 

The positive relationship of the L-band HV polarization with the forest parameters in our study relates to 

the fact that AGB is a function of forest parameters such as height, DBH, BA and wood density (Hussin, 

1990). Our study depicts a strong positive relationship of L-band HV with BA than other forest parameters, 
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e.g., DBH and tree height. This is consistent with the findings that BA is the best predictor of AGB reported 

by some previous studies (Hussin et al., 1991; Le Toan et al., 1992) 

In our research, HV polarization has a stronger correlation with all forest parameters compared to HH 

polarization.  These results are consistent with the findings reported by a study in the mangrove forest in 

Vietnam (Pham et al., 2017). The comparatively strong relationship of HV backscatter with the forest 

parameters corresponds to the fact that the volume scattering strengthens the L-band cross polarization 

because it can pass the through canopy down to the ground surface (Mougin et al., 1999; Proisy, 2000). 

 Determination of AGB Saturation 

The AGB saturation point about HV backscatter is assessed in our study. The results show that HV 

backscatter saturates at AGB of 216 tons ha-1 in the mangrove forest in our study area.  The AGB saturation 

level estimated in our study is higher compared to other studies in the mangrove forests using L-band SAR. 

Lucas et al. (2007) depict that L-band SAR saturates at AGB over 100 Mg ha-1 in mangrove forests. Similarly, 

the saturation level of AGB has been shown at 100-150 tons ha-1 at Matang mangrove forest in Malaysia 

using HV backscatter of PALSAR (Hamdan et al., 2014). AGB saturation has also been reported over 100 

tons ha-1 using the backscatter of PALSAR-2 in the mangrove of Hai Phong city in Vietnam (Pham et al., 

2018).  

Our study area is affected by the tidal phenomenon; the forest floor is inundated during high tide and usually 

muddy with high water content during low tide. The muddy surface with high content has a high dielectric 

constant. We used ALOS-2 PALSAR-2 image that was captured during peak hours of low tide; thus, the 

backscatter of PALSAR-2 is greatly enhanced by the high dielectric constant of the muddy ground surface.  

Therefore, we can conclude that inundation of mangroves does not induce saturation at a low level of AGB 

as observed by Lucas et al. (2007).   The ground picture of the study area during peak hours of low tide is 

presented in Appendix 14. 

The extensive prop root systems and tidal inundation level of mangroves affect saturation level of AGB in 

the mangroves (Lucas et al., 2007). It also depends on the dielectric constant and distribution of the 

backscattering and forward-scattering functions of the individual scatterers (Chen et al., 2009). The 

saturation level at increased AGB level in our study can be caused by increased dielectric constant, among 

others. The dielectric constant of dry soil is 4, and that of water is about 81. This means that the dielectric 

constant of the ground increases with the increase of water content (Richards, 2009). Therefore, the muddy 

surface during low tide leads to high dielectric constant, which greatly enhance the backscatter of the 

forested area (Ling & Dai, 2012; Wang et al., 1995).  

 AGB and Carbon Stock Map 

Since the HV backscatter coefficients are the best predictor for estimating AGB in our study, a linear 

regression model is developed between HV backscatter coefficients and AGB. The model predicts AGB at 

a higher accuracy with a coefficient of determination, R2, of 0.89. This indicates a satisfactory correlation 

between model estimation and field measured AGB. The model validation also results in identical accuracy 

at R2 of 0.89. This means that the predictive performance of the model stays unaltered when it is applied to 

the dataset that was not used in the model AGB estimation.  

The estimated AGB ranges between 1 - 350 tons ha-1 with an average of 181 tons ha-1 in our study. The 

results reveal that the mean of the estimated AGB is consistent with the mean of field measured AGB.  This 

implies that the estimated AGB by the model reflects the field-measured AGB. The range of the estimated 

AGB in our study is comparable to the study on Matang mangrove forest (Hamdan et al., 2014) where the 

estimated AGB ranges between 2.98 and 378.32 ± 33.90 Mg ha−1. However, the average estimated AGB  is 
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higher in our study compared to the study by Hamdan et al. (2014). On the other hand, our results differ 

from the study reported by Pham et al. (2018) where the distribution of AGB ranged from 36.22 and 230.14 

tons ha−1 with an average of 87.67 tons ha−1.  

It is evident from the AGB map in our study that areas close to the river and water bodies have relatively 

higher AGB values. This is mainly because mangrove trees on both sides of the river are bigger and dense 

resulting in higher backscattering and thus, higher AGB estimates. Another reason is the double bounce 

scattering along the river, i.e., scattering from water to tree. The acquired PALSAR-2 was right looking. 

Therefore, the forest on the right side of the river presents higher pixel values as a result of double bouncing 

between water and trees. Some areas with higher AGB values were also scattered in the study area. This is 

because of the high dielectric constant of the muddy surface and double-bounce scattering from the ground 

surface to the tree canopy. The areas with open canopy and ground floor having water surface have lower 

AGB in the study areas. These low AGB can be attributed to the specular reflectance from the ground with 

water surface particularly from the areas with an open canopy.  

Backscatter outliers with highly extreme values are masked out from the study area. The highest field 

measured AGB of 346 tons ha-1 (round off to 350 tons ha-1) is used a cut-off value to mask out these outliers. 

It is done to eliminate the effect of outliers from over-estimation of AGB/carbon stock. These outliers are 

present in the study area because of the backscattering from the corner reflectors, and double-bounce 

scattering.  

 

A separate group was created for negative AGB values. The reason behind having negative AGB values is 

that the study area is intersected by the Mahakam River and several water channels. Smooth water bodies 

cause specular reflectance with no return of radar signals appearing dark on the image. Therefore, a separate 

water layer is created for the negative values to differentiate between water and forest biomass in the 

AGB/carbon stock map.  

 Limitations and Uncertainties of the Study 

 Uncertainties associated with the Field Data Measurement 

A Leica DISTO D510, laser height measurement instrument, is used for measuring tree height in our study. 

However, a laser from this instrument cannot reach at the top branches of the trees as tree canopy act as a 

barrier for the laser to reach the canopy top. Sometimes, the branches of the other trees in front of a tree 

pose a limitation to measure the tree height correctly. These shortcomings lead to underestimation of tree 

height using a Leica DISTO D510. From the measurement of tree height using Terrestrial Laser Scanning 

(TLS) for other studies in our study area, it is observed that the underestimation of tree height using a Leica 

DISTO D510 is approximately 2 m on average.   

In the case of Rhizophora spp., tree height is measured from the prop roots on the ground to the top of the 

trees as prop roots contribute to the backscattering of PALSAR-2. However, the amount of backscattering 

from prop roots is unknown.  

The errors associated with the measurement of plot coordinates by Garmin GPS introduced difficulties in 

identification of the plot center. The uncertainties of GPS location measurement are around 5 m. This error 

level is observed in the location of the plot center by cross-checking through additional coordinates taken 

at four corners of the plot. This shifting in a plot position has caused difficulties in the identification of the 

exact plot position, thereby extraction of average backscatter values from the plot. We have addressed this 

issue with the visual analysis of the plot position using the drone images. Although this has helped to fix the 

shifting problem of the plot, it is not free from error.  
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 Uncertainties associated with the Wood Density Data 

The wood density data is collected from the World Agroforestry and World Agroforestry Indonesia database 

(World Agroforestry Indonesia, 2018; World Agroforestry, 2019). Most of the wood density data in this 

database are compiled from different mangrove forests of Indonesia including East Kalimantan. However, 

some of the data are also acquired from Australia and Latin America. Therefore, it may not be truly 

representative of the wood density of the tree species in our study area. Also, the growth and age of 

mangrove forest included in the database vary from the mangrove forest in our study. Therefore, the use of 

wood density data from this database might have introduced some errors to the field-measured AGB.  

 Uncertainties associated with AGB Calculation using Field Data and Allometry 

The use of allometric equation for AGB calculation might have introduced some error to the field measured 

AGB. There are many multi-stemmed trees in the study area. Each stem is treated as an individual tree as 

allometric relationships are very similar to a single tree for each stem of a multi-stemmed tree (Clough et al., 

1997). In case of Rhizophora spp., the DBH measurements are taken at 1.3 m height from the stem junction 

over the prop roots for both single and multi-stemmed trees.  

The allometric equation developed by Chave et al. (2005) uses data from 27 sites across the tropics. For 

developing the allometric equation, trees with diameter >= 5 cm are used by Chave et al. (2005).  However, 

tress >=10 cm is measured in our study since trees <=10 cm in diameter has no significant contribution to 

AGB estimation (Brown, 2002).  

Considering all these aspects, it seems clear that there might be some uncertainties in calculating field AGB 

due to differences in measurements of forest parameters between our study and the study on the allometric 

model by Chave et al. (2005). 

 Uncertainties associated with the Conversion of the Plot AGB 

The conversion of the plot AGB into the AGB estimates of the study area involves some steps. These steps 

deal with various techniques that introduce some uncertainties in the estimation. The sources of these errors 

in AGB estimation in the tropical forests are shown by Chave et al. (2004) as in Figure 40. These include 

uncertainties with a single tree AGB measurement, error due to using an allometry equation, sampling 

uncertainty, uncertainties with a single plot and uncertainties in the estimation of AGB over the study area 

using all the sample plots.   

 

Figure 40: The sources of errors in AGB estimation in the tropical forests 
from the sampling plots (adapted from Chave et al., 2004). 
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 Uncertainties associated with PALSAR-2 data processing 

After retrieving the backscatter of HV and HH polarizations, geometric correction is performed on the 

PALSAR-2 image using SRTM-1 of 30 m resolution. On the other hand, the PALSAR-2 image has 4.29 m 

pixel spacing. The use of lower resolution SRTM for geometric correction cause lower resolution of 

PALSAR-2 image (7 m resolution), thus affecting the backscatter values which is visible in the backscatter 

image before and after geometric correction (Figure 41 and 42).   

  

Figure 41: HV backscatter image before 
geometric correction. 

Figure 42: HV backscatter image after 
geometric correction. 

 

It can be seen from the legend of Figure 41 and 42 that most of the values range between -11.57 dB and -

27.44 dB before geometric correction. On the contrary, most of the backscatter values range from -13.03 

dB to -25.94 dB after the geometric correction.  This degradation in the backscatter values is attributed to 

the geometric correction of the PALSAR-2 image using low-resolution SRTM compared to the resolution 

of PALSAR-2 image. Therefore, it is evident that there are some uncertainties in AGB estimation caused by 

geometric correction.  

The reason behind the lower resolution of PALSAR-2 image is that during the geometric correction, 

PALSAR-2 is resampled to the spatial representation of the SRTM-1 digital elevation model (DEM). This 

involves the rotation and scaling of the PALSAR-2 image to transform it correctly into the Universal 

Transverse Mercator map projection (Logan, 1997). An example of this process is given in Figure 43. The 

resampling of PALSAR-2 image on the comparatively low-resolution SRTM DEM lowers the backscatter 

values as illustrated in the previous Figure 41 and 42. 

 

Figure 43: Geocoding of L-band SAR image using DEM 
(adapted from Logan, 1997). 

 The Relevance of the Study 

 Relevance in terms of Generalization 

The model in our study can be replicable to estimate AGB with higher accuracy in other mangrove forest 

areas. However, some aspects need to take into consideration before replicating the model.  For instance, 

our study is conducted on the mangrove forest in the sea-front areas. Therefore, it is highly affected by tides 

and intersected by the river and several water channels. Therefore, data acquisition and processing should 
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be done considering the characteristics of the study. For example, PALSAR-2 data is acquired during peak 

hours of low tide in our study area. Moreover, we avoid speckle filtering of PALSAR-2 data as it mixes the 

water and forest biomass pixels, thus affects the accuracy of AGB estimation.     

 

Biometric data collection should also be done carefully. The dominant tree species are Avicennia alba and 

Rhizophora spp. in our study area. In the case of Rhizophora spp., the measurements should be taken above the 

buttress and tree height from the ground to the top of the canopy. Importantly, our study area is 

homogeneous as it represents the planted mangrove forest of about 16 years old. Thus, our model can be 

replicated for AGB estimation of a mangrove forest having similar characteristics.  

 

There are limitations inherent to the methods used in our study to generalize the findings beyond the study 

conditions. For instance, the relationship may not be linear between the HV backscatter and AGB in all 

cases. If the variation is higher in forest biomass distribution, our model findings cannot be generalized. 

Also, AGB saturation is another disadvantage. AGB saturation varies from forest to forest depending on 

the forest structure and backscattering mechanism, among others. The use of allometry to calculate field-

based AGB poses another limitation for generalization of the findings in a broader context. This is because 

the allometry equation is applied for a given range of conditions. For example, the diameter of the tree 

should be 5-126 cm.   

 Relevance to the MRV system of UN-REDD+ 

Measuring AGB accurately over the tropics using RS is a requisite for the MRV system of UN-REDD+. 

Many studies show higher accuracy to estimate AGB using L-band SAR data in the inland forest/rainforest 

in the tropics and subtropics. However, the research is limited for AGB estimation in the mangrove forest 

due to the complex nature of the forest. A few studies have been conducted so far on the estimation of 

AGB using L-band SAR. However, the accuracy of the estimation is comparatively low.   

Our study is the first study to obtain such higher accuracy of the AGB estimation using L-band HV polarized 

backscatter in the mangrove forest. Therefore, the findings of our study depict that L-band ALOS-2 

PALSAR-2 data has a great potential to estimate AGB with higher accuracy in the mangrove forest as in the 

inland forest in the tropical and sub-tropical region.  Thus, the findings of our study can contribute to the 

MRV system of UN-REDD+ for monitoring the mangrove forest management in the tropics and 

subtropics. However, more research is needed to confirm the findings of our research. 
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6. CONCLUSION 

 Conclusion 

This study assessed the relationship between forest parameters of the mangrove forest and the backscatter 

coefficients of HV and HH polarized L-band PALSAR-2. The AGB of the mangrove forest was modeled 

with HV and HH polarized backscatter values of PALSAR-2 using a simple linear regression. Although the 

AGB estimation showed the tendency to saturate, the simple linear model using HV backscatter showed 

the higher accuracy to estimate AGB. Therefore, the simple linear regression model was used to map the 

AGB/carbon stock in the study area.  The main findings of this research are described briefly in the 

following sections.  

 

RQ 1: What is the relationship between mangrove forest parameters (DBH, BA and tree height) and ALOS-

2 PALSAR-2 backscatter coefficients? 

 

The relationship between BA, DBH and Tree Height with PALSAR-2 backscatter coefficients were 

modeled using linear regression model. Among them, BA showed a high correlation with HV backscatter 

values at R2 of 0.78. The tree DBH and HV polarized backscatter had a moderate relationship at R2 of 0.51. 

However, the relationship between the tree height and HV backscatter coefficients was quite weak at R2 of 

0.25. On the contrary, the relationship between all these forest parameters and HH backscatter coefficients 

showed very weak relationships.  

 

RQ 2: What is the relationship between HV and/or HH backscatter of ALOS-2 PALSAR-2 and 

AGB/carbon stock in the mangrove? 

 

The relationship between cross (HV) polarized L-band PALSAR-2, and AGB showed higher accuracy with 

R2 of 0.89 and RMSE of 23 tons ha-1.   The inclusion of like polarized (HH) backscatter values in the model 

did not improve the accuracy of the model prediction; rather it was the same as the simple linear regression 

model.  

RQ 3: What is the saturation point of AGB/carbon stock estimation in the mangrove forest in relation to 

the ALOS-2 PALSAR-2 backscatter coefficients? 

The L-band HV polarized backscatter values depicted the presence of saturation to estimate AGB at 216.9 

tons ha-1. This is an indication of the limitation of AGB estimation where the mean AGB is > 216.9 tons 

ha-1 using L-band SAR.   

RQ 4: what is the AGB/carbon stock in the study area and how to map it? 

The amount of estimated AGB in the study area ranged between 1 and 350 tons/ha. The estimated AGB 

was classified into five classes, and the majority of AGB estimates were found to be ranged from 100 to 200 

tons/ha. The total amount of AGB in the study area is 13,719 tons, and the corresponding figure for carbon 

was 6860 tons.  The accuracy of the estimation was observed at R2 of 0.89 and RMSE of 22.69.   

 Recommendations 

The pre-processing and processing of PALSAR data should be done carefully. Given the context of 

mangrove forest affected by tides and intersected by water channels, speckle filtering may affect the accuracy 

of AGB estimates. In such cases, filtering can be avoided to improve the accuracy of the AGB estimates.  
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Advanced GPS instrument should be used to establish the location of the plot in the field. This will avoid 

errors associated with extraction of plot backscatter. 

 

L-band SAR data needs geometric correction using DEM data. The use of high-resolution DEM data for 

geometric correction of the L-band SAR data should be used to maintain the spatial resolution of the original 

backscatter image.   

 

The HV polarization PALSAR backscatter coefficients show a higher accuracy in estimating AGB beyond 

the saturation level in our study. Therefore, HV polarization is recommended to model AGB estimation in 

the mangrove forest to test if it results in the same accuracy in another mangrove forest. Another aspect to 

explore is that up to what level PALSAR-2 can estimate AGB with similar accuracy in the mangrove forest. 

Most importantly, can PALSAR be used to estimate AGB in the natural mangrove forest with a similar 

accuracy? 
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Appendix 1: Radar system and its comparison to optical RS system. 

   

Appendix 1A: Principle of the imaging radar 
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Anonymous, 2018). 

Appendix 1B: Imaging radar system compared to optical RS 
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Microwave region in the electromagnetic spectrum (adapted from Lee & Pottier, 2009). 
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Appendix 3A: Outlook of ALOS-2 

(adapted from Kankaku et al., 2013) 

Appendix 3B: PALSAR-2 Observation attitude (adapted from 

Kankaku et al., 2014) 
 

  

 

The SAR imaging system moves along its path having 

a velocity VSAR at a height H. The antenna illuminates 

perpendicular to the flight direction and referred to 

azimuth (y). Then, the antenna beam is focused 

towards the ground at slantwise direction with an 

angle of incidence θ₀. The radar line of sight is called 

the slant range (r). The antennal footprint is the area 

covered by the antenna beam in the ‘‘ground range’’ 

(x) and azimuth (y) directions. The radar swath is the 

area scanned by the antenna beam. 

SAR imaging geometry along with its description (adapted from Lee & Pottier, 2009). 

R₀ = Distance between the radar and the 
antenna footprint centre 
LX = Physical dimensions of the antenna 
LY = Physical dimensions of the antenna 
∆X = Range swath 
∆Y = Azimuth Swath 

θ₀ = Incident Angle 
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PALSAR -2 observation modes (adapted from JAXA, 2016). 

 
Appendix 6: Scattering mechanisms of Radar. 

   
(a)Surface scattering (b)Volume scattering (c)Double-bounce scattering 
Different types of scattering mechanisms of Radar (after, Evans et al., 1988). 

 
Appendix 7: Incidence angle in relation to surface roughness. 

 

Incidence angle in relation to surface roughness (adapted from Emery & Camps, 2017). 
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Diffuse, specular and corner reflectance (adapted from 
Lillesand & Kiefer, 1994; Humboldt State University, 
2016). 

Effects of local incidence angle (adapted from 
Anonymous, 2018: Course Materials, ITC). 

 
Appendix 10: Tree height measurement of Rhizophora spp. 

  

Tree height measurement of Rhizophora spp., 
measurement was taken from the ground to the top of 
the trees. 

Tree height measurement of Rhizophora spp., 
measurement was taken from the ground to the top of 
the trees. 

 
Appendix 11: DBH and tree height measurement of the Avicennia alba tree species. 

 

 

DBH measurement of Avicennia spp.  at 1.3 m height 
from the ground. 

Tree height measurement of Avicennia spp. 
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Appendix 12: Multi-stem trees of Rhizophora and Avicennia species. 

   

Multi-stem Rhizophora tree species in the study area. Multi-stem Avicennia alba tree   
species. 

 
Appendix 13: An example of a field datasheet. 

 

 
Appendix 14: Ground surface during peak hours of low tide in the study area. 

   

Ground condition during peak hours of low tide in the study area. 
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Appendix 15: Summary of the study parameters per plot; the plots with yellow marker denotes the validation plot and 
other plots are model plots. 

Plot_ID Mean DBH Mean Tree 

Height 

BA 

(m2/ha) 

AGB 

(ton/ha) 

Mean  

HV 

Mean 

HH 

P01 15.98 12.90 14.20 91.90 -21.55 -16.97 

P02 15.96 10.70 16.50 89.90 -21.57 -14.01 

P03 19.66 15.23 28.18 216.90 -16.77 -16.29 

P04 16.21 13.34 10.99 96.70 -19.97 -18.52 

P05 18.84 14.10 18.47 137.90 -20.14 -14.33 

P06 15.12 13.45 17.47 111.30 -21.28 -13.96 

P07 15.46 12.25 14.92 87.30 -21.43 -9.28 

P08 19.54 15.44 29.80 279.50 -16.69 -12.28 

P09 18.07 14.88 18.67 163.30 -18.21 -14.23 

P10 16.23 12.25 23.93 146.20 -19.58 -12.42 

P11 20.97 13.30 14.81 101.60 -21.09 -17.18 

P12 15.03 18.25 17.68 151.30 -19.87 -16.35 

P13 15.08 14.12 16.20 113.40 -21.65 -14.13 

P14 14.02 15.31 19.27 154.40 -18.71 -15.78 

P15 14.27 15.70 16.28 137.90 -19.92 -14.15 

P16 14.62 18.25 12.62 115.10 -21.01 -11.20 

P17 16.54 13.80 19.01 146.50 -19.55 -14.72 

P18 22.65 15.14 28.67 236.30 -16.56 -12.51 

P19 15.38 15.20 9.83 78.10 -22.20 -12.62 

P20 21.39 16.40 37.70 339.60 -15.63 -11.97 

P21 20.27 16.42 23.15 201.10 -17.33 -12.85 

P22 18.85 16.94 23.00 208.20 -18.14 -11.20 

P23 19.89 10.89 21.86 111.30 -22.07 -17.12 

P24 18.34 12.87 13.20 86.20 -21.24 -14.73 

P25 16.71 11.18 15.17 79.50 -20.03 -12.09 

P26 19.73 14.80 23.57 194.10 -17.33 -11.06 

P27 22.11 13.01 39.78 271.20 -16.04 -12.61 

P28 18.74 17.35 25.87 259.10 -16.97 -11.79 

P29 16.46 15.26 18.85 157.40 -18.34 -18.29 

P30 14.94 15.12 16.18 126.50 -21.73 -16.41 

P31 14.37 16.36 16.42 140.70 -19.61 -11.61 

P32 15.43 15.36 15.63 118.80 -20.43 -12.28 

P33 11.99 14.14 12.72 94.00 -21.61 -12.27 

P34 15.28 14.90 14.03 109.00 -21.60 -11.24 

P35 13.40 14.65 15.57 120.90 -20.46 -14.39 
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P36 17.66 16.41 26.99 246.90 -15.89 -11.36 

P37 22.93 13.57 40.92 287.10 -16.77 -10.18 

P38 12.04 11.97 4.28 28.30 -23.01 -16.32 

P39 20.61 16.26 30.20 305.90 -15.91 -9.11 

P40 19.97 14.55 26.73 206.10 -18.63 -10.83 

P41 20.06 13.55 22.57 152.90 -19.34 -12.04 

P42 18.70 12.39 17.67 111.40 -21.60 -12.09 

P43 16.75 12.58 21.02 124.10 -21.37 -14.90 

P44 15.25 13.80 16.92 119.20 -20.13 -12.56 

P45 19.07 13.84 27.47 180.00 -17.79 -12.89 

P46 18.59 14.82 13.55 101.40 -21.91 -14.37 

P47 20.13 14.00 22.75 157.00 -18.41 -13.34 

P48 18.12 14.45 18.76 140.60 -19.84 -11.43 

P49 22.48 16.50 39.88 346.20 -14.54 -13.26 

P50 17.55 18.09 16.87 145.30 -19.58 -11.00 

P51 13.35 12.55 12.22 72.40 -22.42 -13.24 

P52 15.05 14.39 15.95 110.20 -20.97 -12.75 

P53 15.01 12.93 11.88 75.70 -22.31 -11.02 

P54 14.25 14.01 17.30 112.30 -21.38 -18.48 

P55 20.04 13.58 13.85 97.00 -20.37 -11.51 

P56 13.57 13.65 15.03 116.10 -21.58 -14.75 

P57 13.72 13.09 11.16 68.10 -22.20 -13.95 

P58 14.55 12.78 10.22 61.80 -22.00 -13.16 

P59 11.90 10.54 5.99 29.70 -22.29 -14.67 

P60 14.02 12.66 13.53 84.90 -21.97 -25.86 

P61 16.16 12.36 15.28 100.60 -21.40 -16.32 

P62 14.02 12.53 12.77 86.50 -20.96 -15.64 

P63 16.36 15.03 9.62 78.20 -22.40 -18.17 

P64 13.55 10.99 11.11 63.80 -21.63 -12.73 

P65 13.20 11.14 7.07 39.20 -22.62 -13.50 

P66 18.36 14.26 12.95 99.50 -21.96 -13.29 

P67 17.42 16.96 14.41 125.80 -21.15 -14.28 

P68 18.47 15.99 12.80 107.30 -21.20 -14.60 

P69 16.08 13.31 11.80 104.80 -19.83 -16.08 

P70 13.90 12.62 8.76 59.00 -22.48 -16.16 

P71 13.01 13.23 8.95 59.20 -21.91 -13.01 
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Appendix 16: The original ALOS-2 PALSAR-2 data with DN values. 

 Raw HV polarized Image with DN values. Raw HH polarized Image with DN values. 

 
Appendix 17: HV polarized PALSAR-2 image after speckle filtering. 

 

Speckle filtered HV polarized PALSAR-2 Image (Lee Filter, 3 x 3 window was applied). 
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Appendix 18: Some pictures of the water channels and Mahakam river near the sample plots, and muddy ground 
surface covered by water in the sample plots taken during data collection in the field. 

A small water channels near a plot, the arrow indicates 

the water channel. 

Muddy ground surface covered by water in the sample 

plot. 

A small water channel near a plot indicated by the arrow.  The Mahakam river: the arrow indicates the location 

of the plot next to the river Mahakam. 

A small water channel near a plot shown by the arrow. Muddy ground surface covered by water.  

 
Appendix 19: The photos of sample plot 3 and plot 4 taken during data collection. 

  

A field photo of plot 3. A field photo of plot 4. 



ESTIMATING ABOVEGROUND CARBON USING ALOS-2 PALSAR-2IN THE MANGROVE FOREST IN EAST KALIMANTAN, INDONESIA 

72 

Appendix 20: The sampling plots (71) on the PALSAR-2 backscatter image; 42 plots for model development and 29 
plots for model validation. 

 

 
Appendix 21: The results of the correlation analysis between the field-measured AGB and speckle filtered HV 
polarization backscatter coefficients. 

Correlation Statistics Parameters HV 

Correlation AGB 0.6408688  

Sig (2-tailed) 1.746e-09 

T value 6.9347 

95% CI 0.4792161  
0.7604694 

 

 
Appendix 22: The results of correlation analysis between AGB and other forest parameters. 

                    
Correlation Statistics 

Parameters BA DBH Tree Height 

Correlation AGB 0.95 0.74 0.55 

Sig (2-tailed) < 2.2e-16 1.386e-13 6.238e-07 

T value 24.194 9.1832 5.4906 

95% CI 0.9142432  
0.9659628 

0.6146622 
0.8311182 

0.3650844 
0.6952779 
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Appendix 23: The results of the correlation between AGB and the derivatives of HH and HV polarization backscatter 
coefficients. 

Correlation 
Statistics 

Parameters Sum of HV 
and HH 

HV/HH HH/HV 

Correlation AGB 0.74  -0.2308184 0.2030453 

Sig (2-tailed) 1.339e-13 0.05279 0.08946 

T value 9.1915 -1.9705 1.7225 

95% CI 0.6150790  
0.8313253 

-0.440405922 
0.002626792 

-0.03176312 
0.41661352 

 
Appendix 24: Regression analysis between AGB and DBH. 

Appendix 24A: The graphical representation of the relationship between AGB and DBH. 

 

A simple linear regression using DBH to predict AGB, the black dots represents field measured AGB and 

purple dots along the regression line (solid line) represents predicted AGB by the regression. 

 

Appendix 24B: Summary statistics of regression between AGB and DBH. 

Regression Statistics 

Multiple R 0.741615985 

R Square 0.549994269 

Adjusted R Square 0.543472447 

Standard Error 47.88749495 

Observations 71 

ANOVA 

 df SS MS F Significance F 

Regression 1 193389.7488 193389.7488 84.33138073 1.38648E-13 

Residual 69 158231.6399 2293.212173   

Total 70 351621.3887    

 Coefficients Standard Error t Stat P-value  

Intercept -177.8164784 34.6748813 -5.128106333 2.5568E-06  

DBH 18.688041 2.0350223 9.183211896 1.38648E-13  
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Appendix 25: The regression analysis between AGB and tree height. 

Appendix 25A: The graphical representation of the relationship between AGB and tree height. 

 

A simple linear regression using tree height to predict AGB, the black dots represent field measured AGB and 

purple dots along the regression line (solid line) represents predicted AGB by the regression. 

 

Appendix 25B: Summary statistics of the regression between AGB and tree height. 

Regression Statistics 

Multiple R 0.551420604 

R Square 0.304064683 

Adjusted R Square 0.293978664 

Standard Error 59.55216234 

Observations 71 

ANOVA 

 df SS MS F Significance F 

Regression 1 106915.646 106915.646 30.14714528 6.23793E-07 

Residual 69 244705.7427 3546.460039   

Total 70 351621.3887    

 Coefficients Standard Error t Stat P-value  

Intercept -167.2653479 55.73843466 -3.000897834 0.00374429  

Tree Height 21.45501577 3.907560774 5.490641609 6.23793E-07  

 
Appendix 26: Residuals of the regression analysis between HV backscatter and AGB. 

4.449794 -7.33394 7.451926 22.66228 43.11613 23.30384 -32.2932 -24.5409 

0.719365 -0.35033 61.13759 -30.3192 -13.4452 -32.6327 27.89623 -17.456 

-22.2814 10.36103 -23.215 44.36403 33.84988 -5.34371 -1.38559 22.08114 

-39.4527 26.75574 8.241246 -12.573 21.475 34.31819 -14.4715 23.64795 

3.561936 -23.6268 40.29858 -7.92185 -8.47211 -9.27613 -36.2383 6.703549 

12.69941 -3.42162 -12.9142 4.701728 21.4184 9.241921 18.10665 -37.6068 

-10.1929 5.881357 -60.0112 18.26757 29.36152 1.087471 7.921943 0.378067 

34.57169 -5.92865 -31.5725 -3.04049 -16.6161 7.398839 -20.8484 -20.212 

-32.0071 -12.3988 6.077635 -24.1005 -29.5556 20.83003 18.71675  
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Appendix 27: The regression analysis between the sum backscatter coefficients (HV+HH) and AGB. 

Appendix 27A: The scatterplot of the regression between (HV+HH) backscatter coefficients and AGB. 

 

A linear regression analysis between HV + HH backscatter and AGB, the black dots represent field measured 
AGB and purple dots along the regression line represent the predicted AGB by the linear regression. 

 
Table 27B: Summary statistics of the relationship between AGB and the sum of HV and HH backscatter. 

Regression Statistics 

Multiple R 0.741917392 

R Square 0.550441416 

Adjusted R Square 0.543926074 

Standard Error 47.86369742 

Observations 71 

ANOVA 

 df SS MS F Significance F 

Regression 1 193546.9751 193546.9751 84.48388944 1.33921E-13 

Residual 69 158074.4136 2290.933531   

Total 70 351621.3887       

 Coefficients Standard Error t Stat P-value  

Intercept 596.7874231 50.41974636 11.83638289 2.83804E-18  

HH+HV 13.57849411 1.477286259 9.191511815 1.33921E-13  
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Appendix 28: The regression analysis between the ratio of HV/HH backscatter coefficients and AGB. 

Appendix 28A: The scatterplot of the regression between the ratio of HV/HH backscatter and AGB. 

 

A linear regression analysis between HV/HH backscatter and AGB, the black dots represent field measured AGB 

and purple dots along the regression line represent the predicted AGB by the regression. 

 

Appendix 28B: Summary statistics of the regression between AGB and the ratio of HV/HH backscatter coefficients. 

Regression Statistics 

Multiple R 0.230818396 

R Square 0.053277132 

Adjusted R Square 0.039556511 

Standard Error 69.45836095 

Observations 71 

ANOVA 

 df SS MS F Significance F 

Regression 1 18733.37919 18733.37919 3.882997064 0.052791009 

Residual 69 332888.0095 4824.463906   

Total 70 351621.3887       

 

Coefficients 

Standard 
Error t Stat P-value 

 

Intercept 233.1416114 49.82931731 4.678804045 1.39255E-05  

HV/HH -65.02370529 32.99804287 -1.970532178 0.052791009  
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Appendix 29: The regression analysis between the ratio of HH/HV backscatter coefficients and AGB. 

Appendix 29A: The scatterplot of the regression between the ratio of HH/HV and AGB. 

 

A linear regression analysis between HH/HV backscatter and AGB, the black dots represent field measured 
AGB and purple dots along the regression line represent the predicted AGB by the linear regression. 

 

Appendix 29B: Summary statistics of the regression between AGB and the ratio of HH/HV. 

Regression Statistics 

Multiple R 0.203045275 

R Square 0.041227384 

Adjusted R Square 0.027332129 

Standard Error 69.89899118 

Observations 71 

ANOVA 

 df SS MS F Significance F 

Regression 1 14496.42996 14496.42996 2.967011612 0.089458409 

Residual 69 337124.9588 4885.868968   

Total 70 351621.3887       

 Coefficients Standard Error t Stat P-value  

Intercept 56.95088013 46.80958072 1.21665008 0.227882736  

HH/HV 114.7389694 66.61182337 1.722501557 0.089458409  
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