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ABSTRACT 

About half of the terrestrial above-ground biomass carbon stored in vegetation is found in the tropical 

rain forests which have been influenced by anthropogenic activities.  When forests are deforested the 

carbon stored in their biomass is released to the environment as a form of CO2, and it affects the 

concentration of GHG. As a result, REDD+ has been initiated under UNFCCC; it intends to monitor 

carbon emission and sustainable forest monitoring through its MRV mechanism.  

 

Remote sensing method is suggested by UNFCCC to be used for its REDD+ MRV mechanism for 

accurate assessment of AGB. However, estimation of AGB in a multi-layered tropical forest using one 

single remote sensing method, either aerial imagery or ground-based, is challenging and it can lead to 

underestimation. Because, both the aerial and ground-based remote sensing are associated with limitations 

to extract both the upper and lower canopy tree parameters (DBH, height) due to occlusion. However, by 

integrating the aerial and ground-based remote sensing methods, the accuracy of AGB estimation can be 

improved. In tropical forest tree height measurement using Airborne laser scanner is more accurate. 

However, it is costly, and it is not always available, compared with another remote sensing such as UAV. 

Hence, UAV technology can be used to acquire the upper canopy tree parameters at a reasonable cost and 

accuracy. In other cases TLS which is a ground-based remote sensing method it can provide the height of 

lower canopy trees, and DBH of all canopy trees accurately. However, there are a limited number of 

studies on the integration of UAV and TLS derived data to estimate AGB in the tropical forests. 

Therefore, this study aims to test the potential of integrating UAV and TLS data to improve the accuracy 

of plot based AGB estimation of the multi-layered tropical rain forests. 

 

Further, two methods of height threshold definitions were used to integrate the upper and lower canopy 

tree parameters which were derived from the UAV 3D image-based modeling and TLS point clouds. The 

lower canopies tree height measured using Leica DISTO D510 was compared with the corresponding 

reference TLS derived height, and the result showed R2 of 0.80 and RMSE of 1m (8.37%). Hence, the 

Leica DISTO D510 was underestimated by 0.48m on average, and statistically, it has a significant 

difference (P<0.05). While the TLS derived DBH of the upper and lower canopy trees have no significant 

difference with the field measured reference DBH with R2 of 0.99 and RMSE of 1.59m (5.54%). The 

UAV-CHM derived tree height was compared with the reference Leica DISTO D510 height of the upper 

canopy trees. Thus, the result showed R2 of 0.76 and RMSE of 2.53m (13.06%). Therefore, statistically, it 

has a significant difference (P>0.05). The remote sensing method AGB (UAV and TLS) was also 

calculated based on the two techniques i.e. 1) the UAV derived height threshold and 2) the TLS derived 

height thresholds to integrate the upper and lower canopy tree parameters. So, the AGB integrated using 

the UAV derived threshold was compared with the AGB integrated using the TLS derived threshold. 

Hence, the result showed there is no significant difference with R2 of 0.99 and RMSE of 0.24Mg (1.55%).  

 

Furthermore, the accuracy of the remote sensing method estimated AGB was assessed using the reference 

field-based estimated AGB in a plot based. Thus, the result reveals that R2 of 0.95 and the RMSE was 

1.07Mg (6.81%). Also, the t-test showed there is no significant difference (P>0.05) between the remote 

sensing method and field-based estimated AGB. Thus, the overall result indicates that the integration of 

the UAV and TLS remote sensing can be used to extract the upper and lower canopy tree parameters and 

to estimate the subsequent AGB of the tropical forests in a reasonable accuracy and coast.  

 

Keywords: UAV, TLS, AGB, CHM, Upper canopy, Lower canopy, Tropical rain forest, Threshold. 
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1. INTRODUCTION  

1.1. Background  

Forests have a vital role in global climate change mitigation through their nature of carbon sequestration 

(Pan et al., 2011). According to Gibbs et al. (2007), forests have the highest carbon-storing capacity in the 

terrestrial ecosystem. From the total carbon stock in the terrestrial ecosystem, about 80% of the carbon is 

storing in the aboveground forest biomass (The World Bank, 2015). Thus, tropical rain forests are one of 

the largest terrestrial forest ecosystems which are storing a large amount of carbon stock. According to  

Hunter et al. (2013) about half of the Above Ground Biomass Carbon (AGBC) stored in the vegetation 

was found in tropical rain forests.  

 

Even though forest plays a crucial role in climate control, deforestation and forest degradation have been 

a serious problem in many developing countries as a result of human-induced activities (Mohren et al., 

2012). When forests are cut down (removed) the carbon stored in their biomass is released to the 

environment in the form of CO2, and it influences the concentration of Green House Gases (GHG) 

(Gibbs et al., 2007). According to FFPRI. (2012), developing countries account for about 20% of the 

anthropogenic carbon dioxide emission from deforestation and forest degradation. Nowadays, the 

increment of carbon dioxide emission to the environment as a result of deforestation and forest 

degradation has been the major concern of the world (UNFCCC, 2011). As a result, many countries 

signed an agreement regarding the climate change conventions focusing on the causes, mitigation 

mechanisms and consequently reducing the emission of carbon to the atmosphere. 

 

Reducing Emission from Deforestation, and forest Degradation,(REDD+) is initiated under the 

UNFCCC which is focusing on Monitoring, Reporting, and Verification (MRV) mechanism of 

AGB/carbon stock, and for sustainable protection of the forest ecosystem (UNFCCC, 2011). Besides, the 

international agreement on climate change offers financial support to developing countries as 

compensation for countries practicing afforestation and forest conservation (Gibbs et al., 2007). The 

UNFCCC needs an annual report from each participating country regarding the amount of sequestered 

carbon on forests through the MRV mechanism (United Nations, 2018). Thus, to minimize uncertainties 

and doubts on the amount of carbon sequestered the UNFCCC requires an accurate and transparent way 

of estimating aboveground biomass/carbon stock for its management purpose (Peltoniemi et al., 2006). 

However, estimation of AGB in tropical rain forests many challenges due to the complexity of the vertical 

canopy structure of the forests (Hunter et al., 2013). Tropical rain forests are found in countries near to 

the equator such as Indonesia. 

 

Indonesia has broad coverage of coastal and tropical rainforests including the East Kalimantan forests. 

However, it is one of the countries which has a significant effect on the increment of national Green 

House Gases (GHG) resulting from deforestation and forest degradation (The World Bank., 2015). 

Accordingly, in the national and international agreement for climate change, Indonesia is one of the 

countries which was committed or agreed to reduce carbon emission from deforestation and forest 

degradation through the Ministry of Forestry and Environment (Indrarto et al., 2012). Thus, the REDD+ 

program is being implemented under the Ministry of Forest and Environment to improve the governance 

and management of the forests. REDD+ program provides financial support for developing countries to 

reduce carbon emission from deforestation (Gibbs et al., 2007). However, to get the incentive, developing 
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countries have to measure and report the amount of forest biomass conserved to UNFCCC through 

REDD+ Measuring, Reporting, and Verification system (MRV) (United Nations, 2018). Therefore, an 

accurate, efficient and reliable estimation of biomass using cost-effective method was demanded by 

developing countries and REDD+ program (Peltoniemi et al., 2006; FFPRI, 2012). For this reason, 

different methods and approaches have been developed to estimate forest biomass.     

 

There are different techniques and methods used to estimate the above-ground forest biomass/carbon 

stock. The destructive method is the most accurate technique which contains cutting, drying and weighing 

of the biomass. However, it is time-consuming, unsustainable, labor intensive and it covers a small area 

(Chave et al., 2014). The other method is the non-destructive method which uses tree parameters as an 

input to estimate AGB using the allometric equation (Basuki et al., 2009). Forest parameters can be 

measured manually at field level and remotely by using remote sensing. Thus, the estimation of AGB by 

using remote sensing technology is recommended by UNFCCC for the MRV of carbon stock (FFPRI, 

2012).  

 

Remote sensing technology has a decisive role in monitoring and mapping of AGB/carbon stock through 

a non-destructive method by using different techniques. Many studies are carried out using various remote 

sensing techniques to estimate and map forest AGB/carbon stock for the last few decades (Brovkina et 

al., 2017). The Light Detection and Ranging (LiDAR), very high-resolution optical sensors, and Synthetic 

Aperture Radar (SAR) are among the commonly used remote sensing techniques (FFPRI, 2012). These 

remote sensing techniques can be used for large scale forest monitoring and estimation including tropical 

rain forests. While this is true, in dense tropical forests using low to medium resolution optical remote 

sensing techniques, has some drawbacks in assessing forest parameters (Hyde et al., 2006). Generally, 

tropical rainforests are composed of broad-leaved trees, and it has dense canopies (Smith, 2015). Hence, 

the complexity in vertical structure and the density of the forest makes it difficult to measure forest 

parameters using optical remote sensing (Larjavaara & Muller-Landau, 2013). While this is true, by 

integrating Aerial-based and ground-based remote sensing method such as UAV and TLS, the upper and 

lower canopy tree parameters can be extracted accurately to improve the AGB estimation (Aicardi et al., 

2017).  

1.2. Research Problem 

  

Estimation of carbon stock in the multi-layered tropical rain forest (Figure 1) remains with uncertainties 

due to the density of the forest and other problems (Hunter et al., 2013). In tropical forest data acquisition 

by aerial imagery can cover a vast and inaccessible area. However, it is not always effective because the 

lower canopy tree cannot be retrieved or assessed due to foliage and occlusion (Aicardi et al., 2017). 

Nowadays, various type of research has been done to improve the uncertainties in forest biomass 

estimation by integrating different remote sensing techniques, for instance; combining TLS and ALS for 

tree height measurement of the lower and upper canopy respectively (Fritz et al., 2011). Thus, air-borne 

Lidar has a better accuracy measuring tree height of the upper tropical forests. Although, this can pose a 

financial constraint and not always available (Aicardi et al., 2017). Comparatively, using UAV and TLS 

have the potential to assess the upper and lower canopy tree parameters for the tropical rain forest with a 

reasonable cost and accuracy. 
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Figure 1: Illustration of tropical rainforest canopy strata. Source; (Layers of a Rainforest, n.d.) 

Unmanned Aerial Vehicle (UAV) is a lightweight and cost-effective technology which has the potential to 

acquire high spatial and temporal resolution images. Besides, the structure from motion (SfM) of UAV 

allows constructing 3D objects from 2D overlapping images using image-based modeling (Micheletti et al., 

2015). The important forest parameter, Canopy Projection Area (CPA) is the area clutch by the outer edge 

of the tree crown on the flat terrain (Gschwantner et al., 2009). Previous studies show that the CPA has a 

relationship with DBH (Hirata et al., 2009; Song et al., 2010). From UAV image-based modeling, the 

derivatives of tree parameters such as Canopy Projection Area (CPA), height, and DBH can be extracted 

accurately and enables to estimate AGB (Næsset et al., 2004). Furthermore, the quality and accuracy of 

UAV derived CHM (height) depends on the number and distribution (configuration) of ground control 

points (GCP) used for mosaicking the UAV images (Nex & Remondino, 2014). However, in the closed 

canopy and multi-layered structure of tropical forests, UAV has a limitation to assess the lower-canopy 

trees, unlike the upper canopy the point cloud of the UAV can be blocked by the upper tree crowns 

(canopies), and it cannot penetrate the closed upper tree crowns to detect the lower canopy trees (Aicardi 

et al., 2017). 

  

Terrestrial Laser Scanner (TLS) technology is a ground-based active remote sensor which can retrieve the 

vertical and horizontal tree parameters accurately through its dense point clouds  (Jung et al., 2011). TLS 

data acquisition can generate a high level of 3D point clouds which enables extraction of tree parameters 

accurately (Calders et al., 2015). Thus, TLS data can substitute for the conventional measurement of tree 

parameters (Kaasalainen et al., 2014). Ramirez et al. (2014) mentioned that TLS could retrieve tree 

parameters such as; height, DBH, tree number, position, and tree volume accurately. However, in dense 

and multi-layered canopy forests, it cannot assess the actual peak of the upper canopy trees due to 

occlusion. Therefore, assessment of tropical rain forest AGB using UAV or TLS a stand-alone can lead to 

underestimation. Thus, plot-based integration of UAV and TLS derived tree parameters can complement 

each other to overcome the limitations encountered on each to estimate AGB in a reasonable cost and 

accuracy (Aicardi et al., 2017). However, there are a limited number of studies on the integration of UAV, 

and TLS remote sensing method to estimate plot based AGB in tropical rain forests.   

 

Therefore, this study aims to integrate UAV and TLS derived forest parameters of the KRUS tropical 

forest to improve a plot based AGB estimation, by using the UAV derived height threshold, and TLS 
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derived height thresholds to integrate the upper and lower tree canopies, at East Kalimantan, Indonesia. 

The conceptual diagram of the study is showing in Figure 2. 

 
Figure 2: Conceptual diagram of the study. 

1.3. Objectives 

1.3.1. General objectives  

The main objective of this research is to test the potential of integrating Terrestrial Laser Scanner (TLS), 

and Unmanned Aerial Vehicle (UAV) data to improve the accuracy of plot based AGB/carbon stock 

estimation in KRUS tropical rainforest, East Kalimantan, Indonesia. 

1.3.2. Specific objectives  

1. To assess the accuracy of field measured height as compared to TLS derived height of the lower 

canopies. 

2. To assess the accuracy of TLS derived DBH as compared to field measured DBH of lower and 

upper canopies.  

3. To assess upper canopy tree height using CHM derived from UAV point cloud and assess its 

accuracy.  

4. To compare the remote sensing method estimated AGB (UAV+TLS) integrated by using the 

UAV derived, and TLS derived height thresholds for integrating the upper and lower canopy 

trees.    

5. To estimate AGB/carbon stock using the integration of UAV and TLS and compare its accuracy 

with field measured AGB/carbon stock on a plot base. 
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1.4. Research questions 

1. What is the accuracy of field-measured tree height as compared to TLS derived tree height of the 

lower canopies? 

2. How accurate is the TLS derived DBH, as compared to field measured DBH of the lower and 

upper canopy trees? 

3. How accurate is the upper canopies tree height derived from UAV-CHM as compared to field 

measured heights?  

4. What is the amount of AGB estimated from the integration of UAV and TLS integrated using the 

UAV derived height and the TLS derived height as a threshold to combine the upper and lower 

canopy trees? 

5. What is the estimated AGB using the integration of UAV and TLS data as compared to field 

measured AGB on a plot base? 

1.5. Hypothesis 

1. Ho: There is no significant difference between the field measured tree height as compared to 

TLS, derived height of the lower canopy.   

Ha: There is a significant difference between the field, measured tree height as compared to TLS, 

derived height of the lower canopy. 

2. Ho: There is no significant difference between the TLS derived DBH of lower and upper 

canopies as compared to field measured DBH. 

Ha: There is a significant difference between the TLS derived DBH of lower and upper canopies 

as compared to field measured DBH. 

3. Ho: There is no significant difference between the height derived from UAV-CHM and field 

measured height.  

Ha: There is a significant difference between the height derived from UAV-CHM and field 

measured height. 

4. Ho: There is no significant difference, between the remote sensing method AGB, integrated using 

the UAV, derived height, and the TLS derived height as a threshold to integrate the upper and 

lower canopies. 

Ha: There is a significant difference between the remote sensing method AGB integrated using 

the UAV derived height, and the TLS derived height as a threshold to integrate the upper and 

lower canopies. 

5. Ho: Plot-based estimated AGB using integrating TLS and UAV has no significant difference as 

compared to the field estimated AGB of the tropical rain forests. 

Ha:  Plot-based estimated AGB using integrating TLS and UAV has a significant difference as 

compared to the field estimated AGB of the tropical rain forests. 
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2. LITERATURE REVIEW 

2.1. Tropical rain forest 

Tropical rainforests are composed of broad-leaved, evergreen trees found in the hot and moist region of 

the tropics (Smith, 2015). It has complex and dense vertical canopy structure namely the emergent canopy, 

continuous canopy and understory canopy (Figure 3) from top to lower respectively (Mohd Zaki & Abd 

Latif, 2017). The tropical rainforests have many advantages to a human being such as environmental 

goods and services. Among this, climate regulation is a typical role as a result of sequestering a large 

amount of carbon in its biomass (Stas, 2011). Tree biomass is defined as the total mass (volume) of the 

above and below-ground dry weight of the tree per unit area. Thus, the stem, leaf, and branches are 

considered as aboveground biomass (Gschwantner et al., 2009). On the other hand, below ground 

biomass refers to the total life root biomass found below the surface (Ravindranath et al., 2008).  

 

In the tropical forest carbon is stored in different parts such as; soil organic matter, dead woods, 

understory vegetations and in the stand forests (Vashum, 2012). In this study, forest biomass is considered 

as the aboveground live biomass of the tropical forest trees in which its carbon content is half of its 

biomass (Basuki et al., 2009) (Figure 3). Truly, 80% of the terrestrial carbon is stored in the forest 

ecosystem and out of this 50 % is found in tropical forest (The World Bank, 2015). Thus, tropical forests 

have an important role in carbon sequestering, and it needs an accurate and cost-effective estimation of 

AGB/carbon stock to support the global aim of REDD+ (Gibbs et al., 2007; FAO, 2010). According to 

Gibbs et al. (2007), there is no methodology yet which measures carbon stock directly across the terrestrial 

forest ecosystem. However, there are techniques and models which were developed from a destructive 

sampling method by using different equations and relations such as allometric equation using measured 

tree DBH and height. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A. Source (“Layers of a Rainforest,” n.d.)                          B.  Source (Gschwantner et al., 2009) 
 

Figure 3: Structure of tropical rainforest (A) and parts of AGB and BGB/ Carbon stock (B).
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2.1.1. Allometric Equation 

The allometric equation is an approach which is developed by the relationship of forest parameters (i.e., 

DBH and height) with the total tree body mass destructively to estimate AGB (Beets et al., 2012). Based 

on the accuracy of input tree parameters the developed allometric equation is the most reliable non-

destructive method of forest biomass estimation (Wang, 2006).  Depending on such criteria there are 

different allometric equations which are developed by various researchers using destructive data. Based on 

the study area and forest type selection of site-specific and a species-specific allometric equation is 

essential for precise AGB estimation (Basuki et al., 2009). In the same way, consideration of climatic 

condition and forest structure have a role in the accurate estimation of forest biomass (Yuen et al., 2016). 

The tropical rainforest has a diverse, mixed type of species, for this reason, the generic allometric equation 

developed by Chave et al. (2014) was appropriate (Hunter et al., 2013).  

 Allometric equation  

AGB est = 0.0673 x (ρD2H)0.976 

Where; AGB est is Above Ground Biomass estimated (KG), ρ is wood density (g/cm3), D is diameter at breast 

height (cm), and H, is tree height (m).   Source (Chave et al., 2014). 

2.1.2. Application of UAV in forestry 

Unmanned Arial Vehicle (UAV) or Unmanned aircraft was developed in 1961 by Lawrence and Elmer 

Sperry in America (Nonami., 2007). Initially UAV is designed for the military purpose, but later on, due to 

the applicability and availability, its demand increases by civilians application (Zhang et al., 2016). There 

are two types of UAV categories namely; fixed wings and multi-rotors (copters) (Figure 4). These 

technologies have some differences in terms of flight time, area coverage and payloads. For the 

photogrammetric application, the fixed-wing aircraft which needs a larger area to take-off is preferable for 

a wider coverage data acquisition whereas the multi-rotors needs a small space to take-off, and it is 

preferable for small areas data acquisition (Turner et al., 2012). Photogrammetry is a science which uses a 

sequence of 2D images using structure from motion (SfM)technique to construct 3D objects and enables 

to perform measurements on the object without having any physical measurement (Ordonez et al., 2010). 

Nowadays, UAV photogrammetry uses for surveillance, topographic applications, video, forest 

monitoring and for 3D Image-Based Modelling (IBM). The UAV image-based modeling uses for biomass 

estimation by generating 3D dense point clouds and extracting forest parameters (Kachamba et al., 2016). 

A recent study by Mtui (2017) shows that image-based modeling of UAV derived point cloud can be used 

to extract tree height and crown dimension in the tropical rain forests. In forest monitoring, application of 

UAV is a promising technology due to the availability in low cost and spatial resolution, and the data do 

not need of atmospheric correction since the UAV fly law altitude (Getzin et al., 2012). 

 

 

 

 

 

 

 

 

 

 

 

A. Image acquisition using structure from motion (SfM) source: (Westobyet al., 2012). 
 

Figure 4: Illustration of structure from motion image acquiring (a) and types of UAV - b, c.                                                                                                     
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2.1.3. Application of TLS in forestry 

Terrestrial Laser scanner also called terrestrial LiDAR is a ground-based technology which enables to 

acquire 3D point cloud data from the surrounding object by emitting laser beams. LiDAR is one of the 

active remote sensors which sends a pulse in the non-visible wavelength range and records the coordinate 

of the object by measuring the distance between the sensor, and the targets object using the point cloud 

travel time and the speed (Dassot et al., 2011). The instrument is fixed on a tripod (Figure 5) and the 

complete horizontal rotation with the vertical angular view of the mirror allows to acquire a hemispherical 

scanning (Dassot et al., 2011). Forest parameters like DBH, height, number, and position of tree and tree 

crown can be retrieved from the scanned point cloud which can be used for estimation of AGB (Bienert 

et al., 2006). RIEGL VZ-400 TLS was used in this research. It has an attached Digital Single Lens Reflex 

camera (DSLR) which can enable to acquire the colored RGB imagery of all scanned objects with the 

corresponding scan of the 3D point clouds. The RIEGL VZ-400 Terrestrial Laser Scanner is a ground-

based remote sensor which can acquire an accurate forest structure through its dense point cloud 

(Newnham et al., 2015). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                                                                           

 

 

 

 

Source:  ( AWK-WIKI, 2016, cited in Bazezew, 2017),    Source: (RIEGL RIEGL VZ-400 VZ-400, 2017). 

 
Figure 5: Operating system of TLS - left side and RIEGL VZ 400 TLS -right.            

There are two types of scanning techniques in terms of the scanning position namely; the single scanning 

position and multiple scanning positions (Bienert et al., 2006). In the multi-scanning method, the scanning 

process is taken from four different positions of the sampling plot to construct a 3D structure of the 

objects. While in the single scanning position method the location of the scanner is placed only in one 

position (e.g., inside of the plot) of the object and only one side of the object is detected by the TLS 

technology. The multi-scan method provides a complete 3D structure of the objects depending on the 

number of scanning positions, and it also needs more time for each scan (Dassot et al., 2011). As shown in 

Figure 6 in forestry application the single scan is placed at the center of the sample plot while in the 

multiple scans the scanning positions are placed inside (i.e., the center of the plot) and outside of the 

sample plots (Bienert et al., 2006). Studies show that TLS derived DBH and height are very accurate when 

it compares with field-measured tree parameters (Calders et al., 2015).         
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                                                               Source:(Bienert et al., 2006). 
Figure 6: Single and multiple scanning positions. 

2.1.4. Integration of TLS and UAV 

The emerging Unmanned Arial Vehicle (UAV), which has a high spatial resolution can be used for 

different applications including forest monitoring. Through UAV 3D image-based modeling CHM (tree 

height) and orthomosaic images of forest structure can be generated from the structure from motion 

(SfM) images (Kachamba et al., 2016). In the forestry application, the aerial acquisition of tree parameters 

in dense canopy forests has associated with a limitation to detect the lower canopy tree (Aicardi et al., 

2017). In the other case, TLS is a ground-based remote sensing technology in which basic forest 

parameters like DBH, height, crown and tree position can acquire accurately (Bienert et al., 2006). 

However, in dense and multi-layered canopies TLS cannot assess the most upper tree canopies due to 

occlusion. Based on this, previous studies show that in forests which have a multi-layered canopy structure 

integration of aerial acquisition and ground-based acquisition using remote sensing methods enables to 

extract all the upper and lower canopy tree parameters. Therefore the combination of TLS and UAV 

derived tree parameters have a significant advantage to improve the accuracy of AGB estimation (Aicardi 

et al., 2017). 

2.1.5. Handheld laser instrument (tree height measurement) 

The accuracy of biomass estimation in tropical forests depends on the accuracy of individual tree height 

measurements and the subsequent plot based biomass (Hunter et al., 2013). Likewise, the accuracy of tree 

height measurement depends on the type of materials used, the experience of the observer and forest 

structure. In tropical forests using traditional field-based height, measurement has been influencing by the 

understory vegetation and the layered canopies which limits the line of view (Larjavaara & Muller-Landau, 

2013). There are different types of handheld instruments which can be used for the tree height 

measurements. A study by Williams et al. (1994) have tested five hand-held devices for reliable tree height 

measurements, and the laser height finder like Leica DISTO D510 has produced fair result comparatively 

with the others hand-held instruments. Besides, in tropical rainforest, TLS can measure an accurate height 

of the under-canopy trees rather than Leica DISTO D510 laser instrument. 
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3. METHODS AND MATERIALS 

3.1. Study area 

Kebun Raya Unmul Samarinda (KRUS) educational forest also known as Unmul Samarinda Botanical 

Garden is one of the tropical rain forests found in Eastern Kalimantan province, Indonesia. It is located 

approximately 10 kilometers to the north side of Samarinda city and covers an area of 300 hectares 

(Trimurti, 2018). The forest is used for different educational research purposes as a conservation forest by 

the Mulawarman University of Indonesia, and in 2010 some part of the area (62 ha) is decided to be used 

as a recreational area. In the past, the KRUS tropical forest was one of the areas affected by fire in East 

Kalimantan, and later the forest develops as secondary forests (Diana et al., 2002).  The geographical 

location of the KRUS tropical rain forest is between 0025’10” N and 117 014’14” E in the East Kalimantan 

province as shown in Figure 7. 

3.1.1. Climate and topography 

The KRUS conservation forest is characterized by an average annual temperature of 29.9 0C maximum 

and 21.4 0C minimum. The rain-fall ranges are between 2000 and 2500 mm/year, and the rainfall type is 

slightly seasonal in which the intensity of the rainfall is somewhat lower from June to October. The soil 

type of the study area is Ultisols (Ohta & Effendi, 1992). The forest area has partially undulating terrain 

surface. 

3.1.2. Vegetation 

The vegetation category of the forest was a Diprocarpace type of primary natural forest. Later as a result 

of fire disaster in 1983 the vegetation type replaced by a fast-growing species and has developed as a 

secondary forest (Trimurti, 2018). The forest is dominated by the species like Homalanthus, Trema, 

Mollotus, and Macarange which are emerging by fast-growing and succession after the forest was burned 

(Diana et al., 2002).  Nowadays, the forest is categorized as conservation forest which includes secondary 

forest reserve and collection zone (natural and artificial forest) (Trimurti, 2018). In general, it has multi-

layered canopy strata and has a high level of species diversity. The existence of multi-layered canopy 

structure and density of the forest compliance with the overall objective of this study to test the potential 

of the remote sensing methods to extract accurate tree parameters of the upper and lower canopies.  
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 The location of KRUS tropical forest. 

Figure 7: Study area of KRUS tropical forest location. 
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3.2. Materials 

3.2.1. Field equipment and instruments 

To collect the data different materials and equipment were used in the field. The details of the field 

instruments used are shown in Table 1. 

 
Table 1: List of field instruments and equipment used in the research. 

S/N  Instruments /equipment Purpose /Specific function 

1 UAV Phantom 4 DJI Acquiring 2D sequence images 

2 RIEGL VZ-400 - TLS Tree acquisition (scanning) 

3 Orthomosaic image of 2017 Sample plot designing and upper tree crown identification 

4 GPS (Garmin) Positioning and navigation 

5 Tablet/Mobile Navigation and tree crown identification 

6 Measuring tap (30m) Plot layout and setting 

7 Diameter tape (5m) Tree DPH measurement 

8 Leica DISTO D510 Tree height measurement 

9 Suunto clinometer Slope measurement 

10 Tree tag Tagging tree number 

11 Datasheets  Recording data 

12 Binder  Binding the data sheets 

3.2.2. Tools and software 

The collected remote sensing data were acquired using various tools, and for processing and analyzing 

different application packages were used. Detail of the tools and software are listed in Table 2. 

 
Table 2: List of software packages and tools used for the study. 

S/N Software Purpose 

1 RiSCAN PRO TLS data processing 

2 Pix4D UAV data processing 

3 ArcGIS 10.6 Data processing, extraction 

4 CloudCompare Analyzing point clouds 

5 ERDAS IMAGINE Image processing 

6 Mendeley Desktop Citation and referencing 

7 Lucid chart Flowchart preparation  

8 Microsoft Excel Data analysis 

9 Microsoft Word Proposal and Thesis writing 

10 Microsoft power point Presentation of proposal and results 

11 SPSS Statistical analysis 

3.3. Method 

The method has four main parts as shown in the flow chart in Figure 8. 

 

1) Field biometric measurement and estimation of AGB 

Tree parameters which include DBH, height, and coordinates were collected for all sample plots. 

Besides, field derived DBH were used to assess the accuracy of TLS derived DBH. 

2) UAV data acquisition and processing (upper canopy data extraction) 

From the UAV 3D image-based modeling, the ortho-mosaic image and CHM (DSM–DTM) was 

generated. These data were used for the delineation of CPA and extraction of tree height.  
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3) TLS scanning data and tree extraction (lower canopy data measurement) 

The multi-scanned TLS data were registered and used to extract tree height for the lower canopy 

and DBH for both upper and lower canopies. Each tree derived from TLS was matched with its 

corresponding field recorded tree number. The accuracy of TLS derived DBH (upper and lower 

canopy) were assessed using the field measured DBH. 

4) Integration of upper and lower canopies and estimation of AGB from the integrating UAV and 

TLS derived tree parameters using two techniques. Then, the AGB estimated using the two 

thresholds was compared. Finally, the remote sensing method estimated AGB was validated and 

assessed its accuracy using the field based estimated AGB. 

 

Flow chart of the study. 

Figure 8: Shows flow chart of the research method. 
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3.3.1. Pre-fieldwork 

Pre-fieldwork preparation was essential for data collection. Thus, equipment’s such as GPS, Leica DISTO 

D510, Tablet, and TLS are tested at nearby forest (Park) areas in Enschede before going to the field. 

Besides, field data collection sheets (Appendix 2) and the orthomosaic image of 2017 were prepared. UAV 

flight plan and UAV components such as the battery, memory card, and cables were organized. 

3.3.2. Plot size 

The sampling plots were designed as circular in shape with a size of 500m2  and radius of 12.62m. Besides, 

at the sloping area, the radius of the plot was corrected based on the slope correction table attached in 

appendix 1 (Abegg et al., 2017). The circular plots were suitable for TLS scanning positions, and the 

number of trees stands on the edge are less as compared to the squire plots. As mentioned by Maniatis & 

Mollicone. (2010) Circular plots are preferable than rectangular sample plots because the method 

minimizes trees found (standing) on the corner edge. In addition, wider sample plot which is more than 

500 – 600 m2 increases the time and cost of data collection whereas its result has no significant effect on 

the accuracy of the data (Ruiz et al., 2014). 

3.3.3. Sampling design 

In this study, a purposive sampling method was adopted by considering the undergrowth vegetation, 

terrain type, time availability, and accessibility to the road. Thus, the selected sample plots were 

covered/represent the genuine characteristics of all the variation of the forest structure in the study area. 

It is a non-probability sampling method in which plots were selected by the accessibility of the forest area.  

Moreover, the difficulty of holding and transporting of the TLS instrument with a very heavy weight of 28 

KG was another reason why the purposive sampling was preferred. Based on this, data were collected 

from 30 circular plots, and the center of the plots was recorded by GPS on the data collection sheet.  

3.4. Field data collection 

3.4.1.  Biometric field data measurement and collection 

The biometric field data collection was done within October 2018, and it has included measurements of 

tree height and DBH. Diameter tape and Leica DISTO D510 were used to measure DBH and height 

respectively. From each sample plot (500m2) the following data; Plot (Plot number, radius, slope, 

coordinate), and Individual tree parameters (Tree number, DBH, Height, coordinate) (Figure 9) were 

recorded. Trees with DBH < 10cm  were not considered because these trees have insignificance 

contribution to biomass (Brown, 2002). Tree DBH was measured at 1.3m sub-height of the stem from the 

base of the tree, while buttress trees were measured from the highest side of the ground base. In case of 

fork tree, if the fork height was below 1.3m, it was considered as more than one trees, and if the fork 

height was above 1.3m from the base of the tree, it was considered and measured as one tree.   
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Figure 9: Illustration of plot based biometric data collection. Source; (Asmare, 2013) modified 

3.4.2. Field level individual upper canopy tree identification 

 In multi-layered forests such as KRUS tropical forest, identification of the upper canopy from the lower 

canopy and matching of the upper canopy (CPA) with its respective DBH was a challenging task. Thus, 

during the biometric data collection, the individual upper canopy tree crowns were identified using Avanza 

Map, Locus Map, and manual inspections. The orthomosaic image of 2017 KURUS forest was prepared 

as a Map by clipped into different large-scale Maps and uploaded on the Tablet and Mobile. Both Maps 

have a navigation GPS pointer and a button which can be used to make a placemark on the visible upper 

tree crowns on the orthomosaic image. Thus, using the navigating GPS on screen, and by physical 

observation on the actual trees, a placemark was pinned on the upper tree crowns, and the tree number 

was given as the same number with its corresponding DBH it founds in the tree tag mounted in the stem.  

 

Furthermore, the Avenza Map enable to measure the radius of the plot and plotting the layout of the plot 

circle (500m2) on the Map simultaneously with the biometric data recording time. Hence, the generated 

plot circle helped as a reference to move and to identify the trees within the sample plot because the GPS 

of the Avenza Map shows whether the location (track) movement was inside the sample plot or outside 

the circle (Figure 10). 
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Figure 10: Illustration of individual upper canopy trees identification by Avenza Map (Plot 22). 

3.4.3. UAV data acquisition 

The Phantom 4 DJI multi-rotary UAV (Figure 11) was used to acquire a sequence of 2D over-lapping 

images because in tropical forests vertical flight is required to take-off and landing of the UAV inside the 

forest within the existing open area  (Aicardi et al., 2017).  

 

 

Figure 11: Phantom 4 DJI UAV-left, and GCP 60x60cm marker-right. 
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Ground control point 

UAV image acquisition was considering the number and configuration of GCP. Based on the availability 

of existing open space of the forest, evenly distributed ground control points were used to ensure the 

quality of image matching and geo-referencing (Nex & Remondino, 2014). The pre-identified open places 

were pre-marked using the GCP marked board, (Figure 11) and in each center of the marked board, the 

coordinates (X, Y, Z) were recorded as GCP using Differential GPS (DGPS). Hence, these GCPs were 

used for the spatial referencing (geo-referencing) of the 3D image-based modeling of the UAV data.  

                                                                

Flight planning 

PIX 4D capture application was used for the mission planning, and the technical parameters settings such 

as overlapping, flight height and speed were defined in the setting button (Appendix 3). The flight height 

(altitude) were defined based on the height of the trees and the terrain elevation level. The highest terrain 

elevation points and height of the tree were taken as a reference to decide the flight height in each flight 

mission to reduce the risk of collision among the emergent tree and UAV. Take-off and landing point 

were selected at places which have a little bit higher altitude and have more open space to avoid the 

connection loss between the UAV and the remote-control device.  

 

3.4.4. TLS data collection 

For the TLS data acquisition, RIEGL VZ-400 TLS (Table 3) which can emit and record a pulse up to 

600m with a wavelength of near infrared 1550 nm was used (Bienert et al., 2006). The scanning approach 

can be single or multiple scans. So, to increase the density of the 3D point clouds, multiple scans with one 

central and three outer scans were applied for each sample plot(Maas et al., 2008). The digital camera 

attached with the device was used to acquire an RGB image with each corresponding scan positions. 

 
Table 3: RIEGL YZ 400 TLS specification source:  (RIEGL RIEGL VZ-400 VZ-400, 2017). 

                                                                                                                

 

 

 

 

 

 

 

                                            
                                                                                                                                                                                                                                       

 
The setting of the scan positions 

From the center of the sample plots more than 12.62m radius were cleared from the foliage and 

undergrowth vegetations to reduce occlusion. Then, the center scan position of the plot was located 

carefully in a place where the TLS can view the trees in such a way that to minimize occlusions created by 

tree trunks. The plot center was used for the center scanning position, (Figure 12) and the other three scan 

points were located outside of the circular plot positioned around 1200 by undermining the tree trunk 

blocking effect. According to Liang et al. (2012),  trees stem near to TLS can influence the scanning 

process of the point cloud by blocking the point cloud and creating a shadow behind it.  

S/N Specification Level 

 

1 Scan angle vertically and horizontal (Degree) 100, 360 

2 Precision (mm) 3 

3 Accuracy (mm) 5 

4 Minimum range (m) 1.5 

5 Maximum range (m) 600 

6 Laser wavelength – Near-infrared (nm) 1550 

7 Weight (kg) 9.6 
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Figure 12: TLS multi-scanning position. 

The setting of the reflectors and tree tags 

After the plot preparation and locating positions of scanning, all trees found inside the circular plot which 

have >10 cm DBH (Figure 14b) were tagged on each tree stem by visible marked tree tags for tree 

identification purpose. Along with, more than ten (10) circular and twelve (12) cylindrical retro-reflectors 

(Figure 13) were used at different height and orientation. The circular retro-reflectors are mounted on the 

tree stem on the view to the central scan position in which at least one reflector was visible to the three 

outer scans. The cylindrical retro-reflectors are pointed on top of sticks and located in different height 

orientations, and positions within the circular plot in such a way that the reflectors were visible to all the 

scan positions (Figure 14a). 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 13: Circular-left and cylindrical- right retroreflectors.   Source:(UNAVOC, n.d.). 

The cylindrical and circular retroreflectors were used for georeferencing the outer position scan, with the 

center position scanned point clouds (Bienert et al., 2006). Therefore, for the registration purpose, there 

must be a minimum one circular and four cylindrical retro-reflectors visible in the tie point. Therefore, to 

reduce the error of registration twelve (12) cylindrical and greater than ten (10) circular retro-reflectors 

were used in each plot.  
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a.  Circular and cylindrical retro-reflectors (Plot 6). 

b. Marked tree tags (Plot-6). 
 

Figure 14: Illustration of circular and cylindrical retro-reflectors (a) and mounted tree tags (b). 

Setup of the TLS and data acquisition 

Setup of the TLS starts from fixing of the optical head with the tripod and mounting the camera with the 

TLS head properly. Then, the tripod legs were leveled manually to adjust the position setup. According to 

(UNAVOC, 2013) the leveling of the TLS stand by the triploid could be close to one degree, and the 

point should be at the center with the decimal number < 0.4. Along with, the different functions and set-

ups were defined including plot number, date, the density of point clouds (Panorama 40). After each plot 

was scanned, the data was transferred to a hard disk device. 
 

 



INTEGRATING TERRESTRIAL LASER SCANNER AND UNMANNED ARIAL VEHICLE DATA TO ESTIMATE ABOVE GROUND BIOMASS/CARBON IN KEBUN RAYA UNMUL 

SAMARINDA TROPICAL RAIN FOREST, EAST KALIMANTAN, INDONESIA.   

 

20 

3.5. Data processing 

The field data and remote sensing method data were processed using different applications. 

3.5.1. Biometric data processing 

The collected field data were transferred to an Excel file from the data recording sheet for further analysis. 

The data collection includes tree height, DBH, center plot location and individual tree coordinates (X, Y). 

From 30 circular sample plots, 699 individual trees were recorded. Descriptive statistics of the forest 

parameters were carried out in Microsoft Excel, and the subsequent individual tree Above Ground 

Biomass (AGB) was calculated using the allometric equation developed by Chave et al. (2014) which is 

more appropriate for tropical rain forests (Chave et al., 2014). 

3.5.2. TLS data processing 

Registration of scan positions 

The three outer scanned locations were registered to the central scan position based on the tie points of 

the cylindrical and circular retroreflectors in RiSCAN PRO v2.1 software automatically. Registration is the 

process of transforming the multi-scanned positions of the TLS point clouds from the local system into a 

common reference system (Bienert et al., 2006).  As pointed by Holopainen et al. (2014) the artificial 

circular and cylindrical retro-reflectors are used to transfer the local system of the three outer scan 

positions into the common reference system with the center scan position. To reduce registration error 

more than seven (>7) Tie points were used to be selected automatically by the RiSCAN Pro for 

registration of multi-scans. 

 

Extraction of plots and individual trees 

After the registration was conducted, the four scanned point clouds were displayed in one view as a single 

scanned point cloud. The point cloud of each scan was applied the “color from image” which enables to 

view the point cloud as a true color resulting from the image captured by the RGB camera mounted on 

the top of the device. Then based on the radius of the plot (500m2) filtering were applied using the range 

tool and manual selection to exclude the point clouds found outside the boundary of the sample plot. 

 

Individual tree extraction was done from the extracted plot by identifying the individual tree and saved it 

as a new point cloud. Individual trees were identified by the tree tag mounted on their stem by displayed 

in different color schemes. The extracted individual tree was cleaned, all the undergrowth trees and other 

branches which comes from other tree using the selecting tool on the RiSCAN PRO software (Figure 15). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 15: Manual identification and extraction of individual trees in RiSCAN Pro (Plot-15). 



INTEGRATING TERRESTRIAL LASER SCANNER AND UNMANNED ARIAL VEHICLE DATA TO ESTIMATE ABOVE GROUND BIOMASS/CARBON IN KEBUN RAYA UNMUL 

SAMARINDA TROPICAL RAIN FOREST, EAST KALIMANTAN, INDONESIA.   

 

21 

Tree height and DBH measurements 

The tree parameters DBH and height of the extracted individual trees were measured manually using the 

distance measurement tool (point to point) in the RiSCAN PRO software. Tree height was measured from 

the base of the ground to the highest top canopy of the tree vertically (Figure 16), and the measured 

height was recorded in an Excel sheet. Tree DBH was measured horizontally at 1.3m sub height of the 

stem from the base of the tree. (Figure 16).   
 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 16: Illustration of tree height and DBH measurements (Plot 6). 

3.5.3. UAV image processing 

The 2D images acquired by UAV were processed using Pix4D Photogrammetric software to generate the 

Digital Terrain Model (DTM) Digital Surface Model (DSM) and orthomosaic images. The overlapping 

images processing on the Pix4D consists of the following three steps. 

 

Initial processing 

This stage includes uploading of the 2D-images to the Pix4D software. The camera position and image 

alignments of the flight missions were identified by the software automatically. The GCP which are 

collected by DGPS were imported for georeferencing of the images based on the Tie points. Based on the 

imported GCP, the images were sorted to the nearest GCP coordinate, and this was followed by manual 

placement of pointers in each image which have GCP marker with its corresponding GCPs coordinate. 

After marker placements were completed checkpoints were selected to assess the accuracy of image 

georeferencing. Then the key points (tie points) of the adjacent images found at the same location were 

matched, and the images calibration and optimization were carried out. As pointed at Pix4D (2018) the 

initial processing involves camera calibration and image matchings. Thus, the quality report of all the initial 

processing was produced as an output. 

  

Point cloud and mesh processing 

This stage has two sections namely; point cloud densification and point cloud classification. To increase 

the density of 3D point cloud and the 3D image modeling the full-size image scale and optimal point 

density was used in the point cloud densification setting parameters. This step increases significantly the 

density of point cloud generated from the initial processing (Pix4D, 2018). 
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Orthomosaic image, Digital Surface Model and Digital Terrain Model processing 

Pix4D software allows generating DSM, DTM and orthomosaic images automatically from the output of 

the second process (Pix4D, 2018). So, all the essential parameters needed to produce the DSM, DTM and 

orthomosaic images were selected and processed. 

 

Canopy Height Model (CHM) generating 

The generated DSM and DTM were imported to ArcGIS to produce the CHM. In the arc toolbox, DTM 

was subtracted from DSM using the Raster calculator function. Then the resulted CHM (DSM-DTM) was 

used to extract individual tree heights. 

3.5.4. Manual tree crown delineation (digitization) 

The orthomosaic image generated from the Pix4D processing were used further for segmentation of CPA 

of individual trees. Image delineation is the process of image classification based on criteria in which the 

image was subdivided into non-overlapping objects (Fan et al., 2004). In this study, a manual digitizing 

method was applied because this study was conducted in a plot based and the number of the sample plots 

and trees was manageable. The delineation was performed only on trees which were found inside the 

sample plot. Evidently, the UAV resulted orthomosaic image has a high spatial resolution, and individual 

tree crowns are visible on the orthomosaic image. Previous studies show that manual delineation of tree 

crowns was used as a reference to validate for the automated segmentation from such algorithms (Benz et 

al., 2004). Therefore, the manual delineation can be used to delineate tree crowns in a plot based.  

 

The coordinates of trees and individual tree number was matched with its corresponding tree crowns. 

Then, each tree crown was digitized based on the shape and color of their crown by looking and manual 

interpretation of the image (Figure 17). Thus, the segmented tree crowns were used further for maximum 

tree height extraction from CHM and to predict DBH.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 17: Shows manually delineated tree crowns (Plot 11). 
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3.5.5. Tree matching and individual tree height extraction 

For extraction of the tree heights, first tree location matching with the corresponding field recorded data 

were conducted. On the 2018 orthomosaic UAV image those trees recognized by Avenza and Lucas Map 

were matched by manual inspection on each segmented crown. Afterward, few tree crowns which were 

not identified at field level were matched by looking their position on the point cloud of TLS, tree 

information (height, DBH) and using the GPS coordinate recorded in the field. After tree matching was 

conducted, the local maximum height of each crown was extracted from the CHM using zonal statistics in 

ArcGIS software.  

3.5.6. Modeling of DBH from the crown projection area 

A model was developed using a relationship between the calculated crown area (CPA) from the digitized 

crowns, and field measured DBH for only selected trees. Then the developed model was validated using a 

linear regression model.   

3.5.7. Integration of upper and lower canopy trees using height threshold 

In this study, forest parameters were acquired using Aerial-based UAV, and the ground-based TLS remote 

sensing techniques and the extracted tree parameters were integrated. Thus, to reduce error during the 

integration of UAV and TLS derived tree parameters in which trees were not counted twice or missing, 

the height threshold was defined to separate the individual tree as upper canopies or lower canopies. The 

thresholds are 1) UAV derived minimum height and 2) the TLS derived height (fully detected).  

 

UAV derived minimum height 

The visible crowns on the orthomosac image were digitized, and all the tree heights were extracted from 

the CHM for all the sample plots. Thus, the minimum tree height extracted from the CHM was 

determined in each sample plot. Afterward, the minimum height found in each plot was considered as a 

threshold for each plot, and individual trees height greater than or equal to the defined threshold was 

considered as part of the upper trees and the rest trees derived from TLS their height is less than the 

defined threshold was considered as part of lower canopies. The tree height extracted from the CHM is 

the estimation of the vertical distance of the tree from the top of the tree crown to the base of the tree.  

 

TLS derived height  

The extracted trees from the TLS point cloud were displayed, and their shape was observed manually on 

RiSCAN PRO screen. Then if the top of the canopy has a conical shape, it considered as fully detected 

(Figure 18A). However, if the top of the canopy has a flat shape, it was identified as a not fully detected 

tree. Besides, the trees which were found side by side was observed; if the point cloud of the TLS 

precedes the shorter tree and detects the tallest tree, then the shorter tree was considered as fully detected 

trees (Figure 18B). Thus, for trees which are fully detected by the point cloud of the TLS, their height was 

determined, and the measured height was considered as a threshold to separate the upper and lower 

canopies (Figure 18C).  
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Figure 18: Identification of fully detected and not fully detected trees on TLS point cloud. 

3.5.8. Above ground biomass/ Carbon estimation 

Above ground biomass estimation were calculated based on the collected forest parameters namely; DBH, 

wood density, and height. The allometric equation which is a non-destructive method was applied to 

estimate the AGB. The allometric equation was a widely used method which is developed by the 

relationship of tree parameters such as height, DBH, species with the corresponding dry biomass. The 

study area has a diverse mixed species; thus the generic allometric equation developed by Chave et al. 

(2014) is more appropriate for tropical rain forests (Chave et al., 2014). In this study, the recommended 

average wood density 0.57g/cm3 was used for all species in the allometric equation calculation.  Therefore, 

field-based AGB and remote sensing based AGB was estimated for all individual trees found within the 

sample plot. 

 
Equation 1: Allometric equation (AGB). 

Where;      

  ρ= wood density (g/cm3,).       D = DBH (cm).     H= height in (m). 
 

Carbon stock was calculated from the output estimated AGB. According to IPCC, (2006) carbon was  

0.47 of the above-ground biomass. Thus, the conversion factor from AGB to carbon is 0.47. 

 
Equation 2: Above-ground biomass carbon. 

Where;   

         C = carbon in (Mg).        

         CF = conversion factor (0.47). 

AGB = 0.0673 * (ρD2H)0.976 ------------------------------------------------------------------ Equation 1 

C = AGB x CF ---------------------------------------------------------------------------------- Equation 2. 
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3.5.9. Data analysis 

Different statistical analysis was conducted to assess the relationship between the tree parameters. In 

forestry studies, regression analysis is mostly used to assess the quantitative relationship between two or 

more forest variances. Thus, to determine the relationship between the tree parameters (i.e., DBH, and 

height) which are measured using field-based and remote sensing method, the scatter plot and regression 

analysis was used. Also, the field based AGB was compared with the remote sensing method estimated 

AGB. Afterward, to assess the correlation and accuracy, the Pearson correlation (r) and the coefficient of 

determination (R2) were used. To determine whether the two variables, have an equal variance or not F-

test was used. The output of F-test was used to determine the type of t-test which includes the t-test equal 

variance or t-test unequal variance. 

 

Furthermore, to calculate the error between the two variables the Root Mean Square Error (RMSE), Bias 

and The RMSE (%) were used (Equation 3, 4, 5) 

  

Equation 3: Root Mean Square Error. 

 

----------------------------------------------------------------------- Equation 3. 

 

Equation 4: Root Mean Square Error percent.               

 

------------------------------------------------------------ Equation 4. 

 

Equation 5: Bias equation. 

----------------------------------------------------------------------- Equation 5. 

 

Where; 

                n:                        Number of samples 

                RMSE:                Root Mean Square Error 

                RMSE (%):         Root Mean Square Error present 

                y:                        Variables  

                 :                      Estimated Variable 
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4. RESULTS 

4.1. Field level upper tree crown identification  

To reduce error in the tree matching process, the upper canopy tree crowns which are visible on the 

orthomosaic image of 2017 were identified using Avenza and Lucas Maps as described in see section 3.4.2. 

Of the 699-field recorded trees, 388 (55.5%) upper canopy trees were recognized from the 2017 

orthomosaic images in the field. The minimum, average, and maximum identified trees crowns per plot 

were 6, 13, and 19 respectively.  

On the orthomosaic image of 2018 generated from UAV images, 436 upper tree crowns which were 

found inside the sample plot was digitized manually. Hence, the proportion of field level identified tree 

crown was 88.99 % of the manually digitized crowns. The minimum, average and maximum number of 

tree crown digitized from the orthomosaic images was 7, 15, and 24 respectively and the detail is listed in 

Table 4.      

  
Table 4: Proportion of upper canopy tree identified at field level and manually digitized tree crowns result. 

Plot No. 1 2 3 4 5 6 7 8 9 10 

Field identified crowns 15 10 6 14 15 17 11 13 10 13 

Delineation result  18 12 7 14 17 20 11 16 10 15 

Plot No. 11 12 13 14 15 16 17 18 19 20 

Field identified crowns 14 14 12 13 10 13 11 14 17 19 

Delineation result  16 16 12 13 11 15 12 17 22 24 

Plot No. 21 22 23 24 25 26 27 28 29 30 

Field identified crowns 11 13 14 15 14 11 12 11 14 12 

Delineation result  12 13 14 16 14 14 15 12 14 14 

 

4.2. Field biometric data 

Biometric data of 699 individual trees were collected from the 30 circular sample plots. The average tree 

height and DBH were 16.46m and 28.39cm respectively. Further, the field recorded data were matched 

with the corresponding tree parameters extracted from TLS as well as UAV for comparison and accuracy 

assessment. The details and descriptive statistics are described in Appendix 5. 

4.3. TLS data and Individual tree extraction  

From the total 699 fields recorded 619 (88.6%) trees were extracted from TLS point cloud, and 80 

(11.4%) individual tree was missed as shown in Table 5. These 80 trees were not visible the tree tag 

mounted in their stem.  

 
Table 5: Number of missed trees per plot. 

Plot No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

No. tree 27 22 18 20 27 29 17 24 17 24 25 33 23 26 29 

Missed tree 7 7 1 2 3 1 0 4 4 3 1 6 1 3 2 

Plot No. 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 

No. tree 37 21 26 31 27 19 17 21 20 17 23 21 19 20 19 

Missed tree 5 2 3 4 3 0 6 1 0 3 2 1 3 1 1 
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The result shows that the number of extracted/missed trees were varying from sample plot to sample plot 

which depends on the density of the undergrowth vegetation. Of the 80 missed trees 41 trees are lower 

canopies, and 39 trees are upper canopies because the 39 trees were identified their crowns in the field 

using the Avenza Maps. The descriptive statistics are shown in Table 6. 

 
Table 6. Descriptive statistics of tree extracted from TLS point cloud per plots. 

  
No of 

trees/plot Missed tree/ Plot 
Extracted 
Trees/ Plot 

Minimum 17.0 0.0 11.0 

Mean 23.3 2.7 20.6 

Maximum 37.0 7.0 32.0 

Sum 699 80 619 

 

4.4. UAV-CHM and orthomosaic image generating 

From the UAV image based-modeling the Digital Surface Model (DSM), Digital Terrain Model (DTM) 

and orthomosaic images were generated using the Pix4D software. The generated orthomosaic image was 

used to digitize tree crown delineation and for tree matching process between the field recorded and the 

UAV derived upper canopy trees. The orthomosaic image has an average ground sampling distance of 4.9 

cm, and a total of 147ha was covered. Detail of the Pix4D processing results is listed in table 7.  

 
Table 7. Results of Pix4D UAV-Image processing. 

 

 

The CHM was generated by subtracting DTM from DSM using the raster calculator on ArcGIS, and the 

maximum height of the CHM was found 50m as shown in Figure 19. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Summary Quantity in unit 

Average ground sampling distance 4.9cm 

Area coverage 147.8 ha 

Geo-referencing RMSE (GCP) 0.2cm 

Camera model name FC220_4.7_4000x3000 (RGB) 
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Figure 19: Part of the CHM generated by subtracting DTM from DSM. 

4.4.1. Tree crown delineation and individual tree height extraction 

From the entire 30 sample plots, 436 upper canopy trees crowns were digitized manually (Figure 20). The 

digitized tree crowns were matched with the corresponding field recorded biometric data as mentioned in 

(section 3.5.5). Then, the extraction of value to point from the local maxima CHM was conducted. This 

step enables us to attribute the highest value of the segmented crown to the corresponding tree number as 

shown in Figure 20. By doing this 436-tree height was extracted of the 699 trees recorded in the field. The 

minimum, average and maximum number of trees extracted per plot were 7, 14.5 and 24 respectively 

(table 8). 

 
Table 8: Proportion of tree height extracted from UAV-CHM per plot. 

Plot. No 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Total tree 27 22 18 20 27 29 17 24 17 24 25 33 23 26 29 

Extracted tree   18    12 7 14 17   20 11 16 10 15 16 16 12 13     11 

Plot. No 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 

Total Tree 37 21 26 31 27 19 17 21 20 17 23 21 19 20 19 

Extracted tree   15    12 17 22 24   12 13 14 16 14 14 15 12 14     14   
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Figure 20: Tree crown delineation -right and tree height extraction-left. 

4.4.2. Modeling of DBH from the crown projection area  

The modeling of DBH is carried out only for 39 upper tree crowns which were missed from the TLS 

point cloud tree extraction. Because their DBH is needed for the AGB estimation. While for the other 

trees the TLS derived DBH was used. Previous studies show that tree Crown Projection Area (CPA) has a 

relationship with the diameter at breast height (Song et al., 2010). Thus, of the 39 upper canopy data set 24 

(60%) of the tree was used randomly for the model development, and 15 (40 %) of the trees were used for 

validation of the model. As a result, the DBH of the missing trees (39) were predicted, and the result of 

the model is illustrated in Figure 21. 

 

Figure 21: Developed model and model validation of CPA. 
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The linear regression result shows a coefficient of determination (R2) of 0.77, 0.89 for the model 

development and model validation respectively. Thus, the observed DBH and the manually delineated 

crowns have a relationship. Then, the DBH of 39 upper canopy trees were predicted based on the 

developed DBH and used as an input to calculate the subsequent AGB. 

4.5. Lower canopy tree height measurement and accuracy assessment 

Of the 699 field recorded trees, 222 (33.7 %) trees extracted from TLS were categorized as a lower canopy 

and used to validate for the corresponding tree height measured by hand-held Leica DISTO D510. The 

descriptive statistics of the lower canopy tree heights are shown in Table 9, and its further details are in 

Appendix 16.    

 
Table 9: Descriptive statistics of TLS and field measured lower canopy heights. 

Descriptive statistics Field measure Height (m)  TLS derived Height (m) 

Minimum  6.70   6.08 

Mean  11.50   11.98 

Maximum  15.90   16.50 

Standard Deviation  1.93   1.95 

Count  222.0   222.0 

 

The accuracy of field measured lower canopy tree height was assessed using the linear regression 

considering the TLS derived height as a reference. Thus, the linear regression result shows a coefficient of 

determination (R2) of 0.8 as shown in Figure 22, and the RMSE was 1.0 m (8.37 %). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Figure 22: The relationship between field measured and TLS derived lower canopy height. 

The result shows field measurement height using Leica DISTO D510 was underestimated for the lower 

canopy tree height by the mean of 0.47m as shown in Table 10. The details of the linear regression are 

listed in Appendix 6. 
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Table 10: Relationship between field measured and TLS derived lower canopy tree heights. 

Field                          
against                       
TLS 

Regression  
 RMSE 

Observation R2  r Bias (m) (m) (%)  

Lower canopy height (m)  222 0.803  0.896 0.48 1.0 8.37  

 

F-test for variance 

F-test was conducted for the lower canopy tree height derived from TLS and field measured using Leica 

DISTO D510. The details of the F-test are shown in Table 11. 
 
Table 11. F-test for the lower canopy tree height measured using Leica DISTO, and TLS derived height. 

  TLS derived height (m)                             Field measured height (m) 

Mean 11.97513511 11.49729731 

Variance 3.797890542 3.742979037 

Observations 222 222 

df 221 221 

F 1.014670535  
P(F<=f) one-tail 0.456945661  
F Critical one-tail 1.248279823   

  The F-test result shows, F-statistics < F-critical (P > 0.05): then it has equal variance. Hence, t-test equal 

variance was selected for the statistical analysis.                                                                                     

 

The t-test assuming equal variance  

A t-test was applied between the lower canopy tree height derived from TLS and field measurement to 

assess the accuracy of field measured height whether it has a significant difference or not. The result 

shows that t-statistics was greater than t-critical (P < 0.05) (Table 12). Therefore, the field measured tree 

height has a significant difference as compared to the TLS derived tree height of the lower canopies. 
 
Table 12. A t-test for field measured, and TLS derived lower canopy heights. 

  TLS derived height (m) Field measured height (m) 

Mean 11.97513511 11.49729731 

Variance 3.797890542 3.742979037 

Observations 222 222 

df 442  
t Stat 2.592664254  
P(T<=t) one-tail 0.004919616  
t Critical one-tail 1.648308349  
P(T<=t) two-tail 0.009839231  
t Critical two-tail 1.965345591   

The t-statistics reveals that t-statistics was > t- critical (P<0.05): hence, the measurement of lower canopy 

tree height have a significant difference. 

4.6.  DBH measurement of TLS and accuracy assessment 

From the total 699 trees recorded at field level, 619 (88.6%) tree were extracted from the TLS point cloud, 

and individual tree DBH was measured using RiSCAN PRO.  Afterward, the field measured DBH was 
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used as a reference to validate and to assess the accuracy of TLS derived DBH, and the descriptive 

statistics of the DBH are shown in Table 13.  

 
Table 13: Descriptive statistics of TLS and field measured DBH. 

Descriptive statistics Field measured DBH (cm) TLS derived DBH (cm) 

Minimum 10.00 8.50 

Mean 28.83 28.23 

Maximum 101.50 99.90 

Standard Deviation 16.69 16.36 

Count 619.00 619.00 

 

The Accuracy of DBH measured from the point cloud of TLS was assessed using the field measured 

DBH. Thus, the coefficient of determination (R2) shows 0.99 (Figure 23) in which the TLS based DBH 

measurement explains 94.46 % of the field based measured DBH. Also, the TLS measurement has a high 

correlation with the field measured DBH. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 23: The relationship between field and TLS measured DBH of the upper and lower canopy trees. 

The TLS measurement indicates a small underestimation of the tree DBH measurement with the 0.59cm 

on average, and the RMSE was 1.59 cm (5.54%) (Table 14). Appendix 7 shows the linear regression 

between field and TLS measured DBH.  

 
Table 14: Relationship between field and TLS measured DBH of the lower and upper canopy trees. 

TLS                
against               
Field 

Regression  
 RMSE 

Observation R2  r Bias (cm) (cm) (%)  

DBH (cm) 619 0.99  0.996 0.59 1.59 5.54  

 

F-test for variance 

F-test was conducted to determine which type of t-test to be used to find if there is a significant difference 

between the field measured and TLS derived DBH measurements (Table 15). 
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Table 15: F-test for TLS and field measured DBH for a variance. 

  Field DBH (cm)  TLS DBH (cm) 

Mean 28.83  28.23 

Variance 278.51  267.57 

Observations 619.00  619.00 

df 618.00  618.00 

F 1.04   
P(F<=f) one-tail 0.31   
F Critical one-tail 1.14    

The F statistics result shows, F-statistics < F-critical (P > 0.05). Thus, it has equal variance; then t-test 

equal variance was applied. 

 

The t-test for the field measured, and TLS derived DBH 

The t-test assuming equal variance was conducted between the field measured DBH, and TLS derived 

DBH of the lower canopy trees (Table 16). The result shows t-statistics was less than t-critical (P > 0.05) 

thus, there is no significant difference among the TLS derived, and field measured DBH.  

 
Table 16: The t-test assuming equal variance for the field measured and TLS derived DBH of the lower and upper 
canopy trees. 

  Field measured DBH (cm) TLS DBH (cm) 

Mean 28.8276252 28.23418414 

Variance 278.5126514 267.5747654 

Observations 619 619 

df 1236 
 

t Stat 0.631817761 
 

P(T<=t) one-tail 0.263811403 
 

t Critical one-tail 1.64608738 
 

P(T<=t) two-tail 0.527622805 
 

t Critical two-tail 1.961885147 
 

The t-test result reveals t-stat was < t-Critical (p > 0.05) thus, there is no significant difference between 

the measured DBH.  

4.7. The accuracy of upper canopy tree height assessment 

In this study, the accuracy assessment of upper canopy tree height was conducted for trees extracted from 

UAV-CHM. Based on the defined height threshold tree heights which have more than the threshold 

height were considered as upper-canopies. Of the 699-field recorded trees, 436 trees were categorized as 

upper canopy trees and validated using the field based height measured by Leica DISTO D510. The 

descriptive statistics are listed in Table 17, and its detail is described in Appendix 15. 

 
Table 17: Descriptive statistics of field measured and extracted from UAV-CHM of the upper canopy tree heights. 

Descriptive statics 
Field measured height 
(m) 

 Tree height extracted from UAV-CHM (m) 

Minimum  10.10   10.23 

Mean  19.39   20.59 

Maximum  34.00   36.12 

Standard Deviation  4.06   4.65 

Count  436.00   436.00 
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The linear regression between the field measured and UAV derived upper canopy height shows a 

coefficient of determination (R2) of 0.768 (Figure 24) and a correlation (r) of 0.87.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 24: The relationship between field measured and UAV-CHM derived upper canopy trees. 

The RMSE was found 2.53m as shown in Table 18. Thus, the UAV derived upper canopy height was 

overestimated as compared with the field measured height. The Leica DISTO D510 pulse measurement is 

influenced by the dense undergrowth vegetations and foliage to detect the most top of the upper canopy 

trees depending on the openness of the forest. The details of the regression result are attached in 

Appendix 8. 

 
Table 18: Relationship between field measured and UAV-CHM derived upper canopy tree heights. 

UAV-CHM                
against               

Field measured 

Regression  
 RMSE 

Observation R2  r Bias (m) (m) (%)  

Upper canopy 
height (m) 

436 0.768  0.876 1.2 2.53 13.06  

 

F-test for the field measured, and UAV-CHM derived upper canopy tree height 

F test was conducted to find for variance (Table 19). 

 
Table 19. F-test for equal or un equal variance. 

  UAV-CHM derived height (m) Field measured height (m) 

Mean 20.59408904 19.39827979 

Variance 21.63850319 16.51991718 

Observations 436 436 

df 435 435 

F 1.309843322  
P(F<=f) one-tail 0.002486194  
F Critical one-tail 1.171051336   
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Thus, F-statistics > F-Critical (P > 0.05) then, it has unequal variance. Thus, the t-test unequal variance 

was applied to find out whether it has a significant difference or not. 

 

The t-test for un-equal variance of the upper canopy tree height 

The result shows t-statistics was greater than t-Critical at (P < 0.05) so, there is a significant difference 

between field-measured tree heights, and UAV-CHM derived upper canopy tree heights. The details are 

shown in Table 20. 

 
Table 20. The t-test between field measured and UAV-CHM derived upper canopy tree height. 

  UAV-CHM derived height (m) Field measured height (m) 

Mean 20.59409 19.39828 

Variance 21.63850 16.51992 

Observations 436.00000 436.00000 

df 855.00000  
t Stat 4.04213  
t Critical one-tail 1.64664  
P(T<=t) two-tail 0.00006  
t Critical two-tail 1.96274   

The result of the t-test shows, t-statistics > t-Critical (P<0.05) then, there is a significant difference among 

the upper canopy tree height measurements. 

4.8. Above ground biomass estimation  

4.8.1. Remote sensing based AGB estimation (using UAV and TLS) 

The upper and lower canopy tree parameters derived from the remote sensing method was integrated 

using two methods, i.e., the UAV defined height threshold, and the TLS derived height thresholds as 

mentioned in section 3.5.7. Afterward, AGB was estimated using the same allometric equation developed 

by (Chave et al., 2014). The AGB of upper canopy trees was calculated using the input parameters derived 

from UAV (height) and TLS (DBH) including the average wood density (0.57). Besides, for 39 individual 

upper canopy trees in which their DBH were not found from the TLS point point cloud, the predicted 

DBH from CPA was used. while, for the lower canopy tree, TLS derived height and DBH with the 

average wood density were used. The details are shown in Table 21.  

 
Table 21. The input tree parameters used for upper and lower canopies AGB estimation. 

Canopy strata 

UAV derived tree parameter   TLS derived tree parameter 

Height (m)  DBH (cm)  Height (m)  DBH (cm) 

Upper Canopy X  X (39 trees)  -  X 

Lower Canopy -  -  X  X 

 

4.8.2. The relationship between AGB integrated using UAV, and TLS derived height thresholds  

 The upper and lower canopies tree parameters extracted using UAV and TLS were integrated using the 

TLS derived (fully detected) height, and UAV derived minimum height thresholds. Thus, the AGB is also 

calculated in two ways based on the method integration.  

 

TLS derived height threshold 

The minimum, average and maximum defined height thresholds were 12, 16.2 and 19 respectively and the 

details of the thresholds in each plot are shown in Table 22. 
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Table 22: TLS derived defined height thresholds to integrate the upper and lower canopy trees per plot. 

Plot. No 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Threshold  17 14 18 19 15 19 16 16 18 18 16 14 17 16 16 

Plot. No 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 

Threshold 16 18 15 12 14 17 17 17 18 15 19 17 15 16 12 

 

Based on the threshold, of  the 658 total trees extracted using the remote sensing method 274 (41.6%) 

were an upper canopy, and 376 (57%) were lower canopy trees. Thus, sum of the integrated number of 

trees was 650 because eight (8) trees are miss-categorized as part of the upper canopies.  

 

UAV derived height thresholds 

The minimum, average and maximum height threshold recorded from the UAV-CHM extracted height 

were 10.2, 14.4 and 18.1 respectively and the detail of the thresholds are shown in Table 23. 
 
Table 23: Determined UAV minimum height threshold. 

Plot. No 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Threshold  12.1 17.2 18.1 16.8 11.5 10.5 11.6 14.6 17.2 15.2 14.5 16.1 17.2 14.5 16 

Plot. No 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 

Threshold 15.9 13.7 12.9 15.8 10.2 14.2 14.2 13.8 16.1 11.3 16.2 13.6 15.3 12.3 13 

 

Of the total (658) UAV, and TLS extracted trees, 436 (66.3 %) are an upper canopies, and 222 (33.7 %) 

trees are lower canopies. Thus, the result shows there is no missing or double counting of individual trees 

to integrate the tree parameters. Besides, comparing with the result of TLS derived height threshold the 

number of the lower canopies were decreased while the number of upper canopies was increased because 

the defined average height threshold of TLS was slightly higher than the height threshold of UAV. 

Besides, there is no missing or double counting of trees. The details of the descriptive statistics of the tree 

parameters are shown in Appendix 15. 

 

Based on the above-mentioned integration method of upper and lower canopies, AGB was estimated, and 

the descriptive statistics are shown in Table 24.  

 
Table 24: Descriptive statistics of TLS derived threshold upper and lower canopies. 

  
Upper and lower canopy trees    

using TLS threshold   
Upper and lower canopy trees             

using UAV threshold 

descriptive 
statistics 

Number of 
trees 

AGB   
(Kg)  

AGB 
(Mg/plot)  

Number 
of trees 

AGB    
(Kg)  

AGB 
(Mg/plot) 

Minimum 13.00 7632.32 7.63  13.00 7572.16 7.57 

mean 21.67 15529.23 15.53  21.93 15596.40 15.59 

Maximum 32.00 25960.53 25.96  32.00 25960.53 25.96 

STDV 4.54 4756.20 4.75  4.69 4727.18 4.73 

sum  650.00 465877.00 465.87  658.00 467892.04 467.89 

Count 30 30 30  30 30.00 30.00 

 

The estimated AGB using TLS derived height threshold was compared with the AGB estimated using the 

UAV derived height threshold on a scatter plot. The result shows R2 of 0.99 (Figure 25) and details of the 

regression are listed in appendix 9.  
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Figure 25: AGB estimated by using TLS and UAV derived thresholds to integrate the upper and lower canopies. 

The AGB estimated using TLS derived height threshold has a slight variation as compared with the AGB 

estimated using UAV derived height threshold. Besides, the total output number of integrated upper and 

lower canopies trees are not equal (Table 24) because eight threes which are not detected by UAV were 

categorized as part of upper canopies. The details of the miss-categorized trees are in Table 25. 

 
Table 25: Lower canopy trees miss-categorized as part of upper canopies and their AGB.  

Plot No No of tree 
AGB based on TLS 

data (Kg) 
AGB based on 

UAV data 
Remark  

2 2 162.01 - Tree crowns are not 
detected by UAV imaging 
but categorized as part of 

an upper canopy  

12 2 677.61 - 

19 3 184.99 - 

30 1 69.29 - 

Sum 8 1093.90 (1.093Mg) -  

 

The RMSE was 0.27Mg which was 1.78 % of the plot based estimated AGB. The detail of the RMSE 

shown in Table 26.  

 

Table 26: The relationship of AGB estimated using TLS and UAV derived height threshold to integrate 

the upper and lower canopy trees. 

TLS threshold                 
against             

UAV threshold 

Regression    RMSE 

Observation 
(Plot) 

R2  r Bias (Mg) (Mg) (%)  

Estimated AGB 
(Mg) 

30 0.99  0.998 0.06 0.27 1.78  

 

The t-test assuming equal variance 

The t-test was conducted to find out if there is a significant difference between the two estimated AGBs 

(Table 27). 
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Table 27: The t-test assuming equal variance. 

  UAV derived threshold TLS derived threshold 

Mean 15.58872504 15.52923332 

Variance 22.17200411 22.62146464 

Observations 30 30 

df 58  
t Stat 0.048686644  
P(T<=t) two-tail 0.961336289  
t Critical two-tail 2.001717484   

The result shows, t-statistics < t- critical (P > 0.05); Hence, there is no significant difference between the 

AGB estimated using TLS derived, and UAV derived height threshold which is used to integrate the 

upper and lower canopy trees of the tropical forests.  

 

Furthermore, the plot based estimated AGB using TLS derived threshold was compared with the field 

based AGB to establish a relation. The regression result shows that (R2) of 0.94. The RMSE was 1.11Mg 

which was 7.22 % of the total plot based estimated AGB (Table 28). Detail of the scatter plot in 

(Appendix 11), and the regression results are indicated in Appendix 13. 

 
Table 28: Relationship between field-based and remote sensing method (TLS threshold) estimated AGB.  

RS method                 
against             

Field based 

Regression     RMSE 

Observation 
(Plot) 

R2  r Bias (Mg) 
 

(Mg) (%)  

Estimated 
AGB (Mg) 

30 0.94  0.97 0.08 
 

1.11 7.22  

 

A t-test assuming equal variance 

 The estimated AGB has an equal variance. Thus, t-test assuming equal variance was conducted to find 

out if there is a significance difference (appendix 12). Thus, the result shows t-statistics < t-critical so, 

there is no significant difference between the field-based and remote sensing method (TLS derived 

threshold) estimated AGB. 

4.8.3. The relationship between field-based and remote sensing method estimated AGB. 

 

Of the total 699 field recorded tree 658 trees were detected using the remote sensing method. So, 41 lower 

canopy trees are missed because their stem is not detected by the point cloud of TLS as well as UAV. 

Thus, these trees are not included to compare the field-based and remote sensing method of AGB 

estimations.  

 

The result of field-based and remote sensing method estimated AGB using the same allometric equation 

(Equation 1) were compared in a plot based. The average plot based estimated AGB using field-based and 

remote sensing method was 15.44 and 15.59 Mg/plot respectively. The detail of the statistical analysis are 

shown in Table 29.   

 

 

 



INTEGRATING TERRESTRIAL LASER SCANNER AND UNMANNED ARIAL VEHICLE DATA TO ESTIMATE ABOVE GROUND BIOMASS/CARBON IN KEBUN RAYA UNMUL 

SAMARINDA TROPICAL RAIN FOREST, EAST KALIMANTAN, INDONESIA.   

 

39 

Table 29. Descriptive statistics of plot based estimated AGB using field-based and remote sensing method. 

  Field AGB (Mg)   Remote sense method AGB (Mg) 

descriptive 
statistics 

Lower 
canopy 

Upper 
canopy Sum   

Lower 
canopy 

Upper 
canopy Sum 

Minimum 0.13021 7.60564 8.20894  0.16632 6.88691 7.57216 

mean 0.86710 14.60247 15.44066  0.87756 14.74809 15.59640 

Maximum 3.09175 24.30564 24.72876  2.88950 25.53039 25.96053 

Standard Deviation 0.65150 4.45665 4.38346  0.61959 4.78718 4.72718 

sum  25.14581 438.07411 463.21992  25.44924 442.44280 467.89204 

Count  30  30  30   30 30 30 

 

The plot based estimated AGB using field-based and remote sensing method was presented using a bar 

graph in Figure 26.  

 

 

 

Figure 26: Plot-based estimated AGB using remote sensing method and field-based. 

The relationship between the field-based and remote sensing method AGB was assessed using the linear 

regression analysis to determine the accuracy and to validate the remote sensing method AGB (Figure 27). 

The output result shows a coefficient of determination (R2) of 0.95 and the Pearson correlation was 0.97.  
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Figure 27: Relationship between field-based and remote sense method estimated AGB. 

The remote sensing method was overestimated by the mean of 0.15Mg comparing with the field based 

estimated AGB. The RMSE was 1.07 (Table 30) which is (6.95%), and small variation in AGB was created 

due to the difference in height measurement of the lower and upper canopy trees. Detail of the regression 

analysis is shown in Appendix 9.  

 
Table 30: Relationship between field-based and remote sensing method estimated AGB per plot. 

Remote sensing                         
against             

Field based 

Regression    RMSE 

Observation R2  r Bias (Mg) (Mg) (%)  

Estimated AGB 30 0.95  0.97 0.15 1.07 6.95  

 

F-test for equal or unequal variance 

F-test was conducted for the remote sensing method, and field-based estimated AGB (Table 31). 

 
Table 31: F-test equal variance or un equal variance. 

  
Remote sensing method 

estimated AGB (Mg/plot) Field-based estimated AGB (Mg/plot) 

Mean 15.59640143 15.44066398 

Variance 22.34621735 19.21471937 

Observations 30 30 

df 29 29 

F-statistics 1.162973912  
P(F<=f) one-tail 0.343529655  
F Critical one-tail 1.860811435  

The result shows F-statistics is less than F-critical; thus, it has equal variance so, t-test equal variance was 

applied to test the significant difference. 

 

The t-test assuming equal variance  

A t-test was conducted to find out if there is a significant difference or not between the remote sensing 

method, and field-based estimated AGB (Table 32). 
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Table 32: The t-test for a significant difference between field-based and remote sensing method estimated AGB. 

  
Remote sensing method estimated 

AGB (Mg/plot) 
Field-based estimated AGB 

(Mg/plot) 

Mean 15.59640143 15.44066398 

Variance 22.34621735 19.21471937 

Observations 30 30 

df 58  
t Stat 0.132315593  
P(T<=t) one-tail 0.447596319  
t Critical one-tail 1.671552762  
P(T<=t) two-tail 0.895192637  
t Critical two-tail 2.001717484  

Thus, t-statistics < t-critical (P > 0.05) then there is no significant difference between the estimated AGB. 

4.9.  Above ground carbon estimation 

Carbon was calculated based on the IPCC (2006), which is 0.47 of the estimated AGB from the field 

based and remote sensing method. The overall estimated carbon using the field-based and remote sensing 

method are described in Table 33 and Figure 28. The summery is indicated in Appendix 17. 

 
Table 33: Descriptive statistics of carbon stock. 

 descriptive Field-based  Remote sense method  

statistics AGB (Kg) AGBC (Kg) AGBC (Mg) AGB (Kg) AGBC (Kg) AGBC (Mg) 

Minimum 8208.94 3858.20 3.86 7572.16 3558.91 3.56 

Mean 15440.66 7257.11 7.26 15596.40 7330.31 7.33 

Maximum 24728.76 11622.52 11.62 25960.53 12201.45 12.20 

STDV 4383.46 2060.23 2.06 4727.18 2221.77 2.22 

sum  463219.92 217713.36 217.71 467892.04 219909.26 219.91 

Count 30 30 30 30 30 30 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 28: Remote sensing method and field-based estimated above-ground biomass carbon (Mg). 
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5. DISCUSSION 

5.1. Field level upper crown tree identification 

In this study, the upper canopy trees were identified using Avanza Map and Lucas Map in the field for the 

30 sample plots. Maps like PDF, GeoPDF or GeoTIFF can be upload to the Avenza application (Avenza 

Maps). As it was explained in Section 1.2 and Figure 1, tropical rain forests have a multi-layered canopy 

structure. Thus, the identification of trees whether it is an upper canopy or lower canopy, and the process 

of tree matching using only hand-held GPS was difficult. So, the field based identified upper tree crowns 

was 89 % of the manually delineated tree crowns (polygons). Hence, the result of field-based identified 

upper canopy tree shows a little variation as compared to the manually delineated result. This difference is 

happened because the screen size of the Tablet and Mobile was slightly small. Thus, for some tree crowns 

especially for trees which have a narrow crown, identifying their crown using small screen Mobile inside 

the heterogeneous forest have created challenges. Another reason is the time difference between the two-

image acquisitions could have a variation in tree crowns because few trees crowns were not visible in the 

2017 orthomosaic image and their crowns become visible in 2018 orthomosaic image due to the nature of 

tree growth increment. Further, the field based identified tree crowns were used for the process of tree 

matching and the tree crowns which were not identified at field level was matched based on the position 

of the trees on the TLS point clouds, GPS coordinate, and tree parameter information (i.e., DBH, height).  

 

There are no similar studies found that used Avenza Maps for upper canopy tree identification in the field. 

However, there are similar studies that used integration of two remote sensing methods for the upper and 

lower canopies in Ayer Hitam tropical forests, Malaysia. For instance, Wassihun, (2018) has used ALS for 

the upper canopy, and TLS for the lower canopy, Mtui (2017) has integrated UAV and TLS data for the 

upper canopy and lower canopy respectively, while Lawas (2016) did a complimentary use of ALS and 

TLS. In all mentioned studies they have used hand-held GPS coordinate, information of tree DBH & 

height, and position of the tree from the point cloud of TLS for the tree matching process. Thus, 

comparing with these studies, this research has additional input to reduce the error happened in the tree 

matching process by using the Avanza Map and Lucas Map data.  

 

The possible errors observed and experienced in the field was a little shifting of the Avenza Map 

coordinate (navigation pointer) from the center of the sample plots during the data collection, but it is 

possible to correct the position by physically observing the actual setup of the plot location and the actual 

trees within the plot. Another challenging problem was examined for identifying of tree crowns which are 

grown up together because their crowns were interconnected and almost the crown of the trees was 

similar; consequently this could be a source of errors in making a placemark in the tree crown.  

5.2. Descriptive analysis of the tree parameter data 

Forest tree parameters recorded in the field and extracted from the remote sensing methods (TLS and 

UAV) are tested whether their distribution was normal or skewed. Skewness is the measure of a variable 

distribution for the level of symmetry. Therefore, the distribution can negatively skewed, normal, and a 

positively skewed distribution.  
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Figure 29: Distribution of field measured, and TLS derived DBH (cm) on a histogram. 

The field measured, and TLS derived DBH (Figure 29) are positively skewed because the measurement 

was conducted for only trees which have > 10 cm DBH. The upper and lower canopy tree heights were 

also not normally distributed as a result of the defined height threshold. Thus, the upper canopies were 

slightly skewed to the right while the lower canopies are skewed to the left (Appendix 4). 

5.3. Tree extraction from TLS point cloud  

In this study, 619 (89%) of the field-recorded trees were extracted from the TLS registered point cloud 

which were used to measure the tree parameter, i.e., height and DBH. Eighty (80) trees were missing 

because the tree tags mounted on the stem were not visible (readable). The reason is due to the blocking 

of the TLS point cloud by the existing foliage’s, and other tree stems by creating a shadow behind on 

other standing trees. The other reason could be the far distance between the tree and the scanner position, 

because as the distance from the scanner increases the density of the point cloud also decreases as a result 

of the occlusions. Thus, mostly trees which are near to the scanner have more visible tree tags in the point 

cloud. The study by Antonarakis, (2011), reveals that trees which are far from the scanning position have 

less probability of detection. Moreover, the occlusions of foliage play a significant role for the trees 

missing.   

   

Other similar works were conducted in Ayer Hitam tropical rain forest in Malaysia, such as a study by 

Mtui (2017) extracted 92%, and Bazezew (2017) obtained 93% of the total trees. Hence, compared with 

these results, this study achieves a little bit lower number of tree extraction. The reason can be due to the 

difference in the density of the undergrowth trees. Studies show that the extraction of a tree from the 

point cloud of TLS depends on the density of the forest and undergrowth trees. As pointed by 

Antonarakis, (2011) in riparian forests which have less undergrowth tree, all trees (100%) were detected. 

But in this study, the KRUS conservational forest has a high density of undergrowth tree (DBH < 10 cm). 

For this reason, the point cloud of TLS did not detect the tree tag of some of the missed trees. However, 

another similar study was conducted in Air Hitam tropical forest by Wassihun (2018) achieved 82%,  

Ghebremichael (2015) obtains 80%, and Madhibha (2016) achieves 80%. Hence, compared with these 

studies, this study obtains a higher result of tree extraction. Therefore, the result of this study has a 

comparable tree extraction with the studies carried out in the Air Hitam tropical forest tropical forests. 
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5.4. Accuracy assessment of lower canopy tree height 

The TLS derived lower canopy tree heights were used as a reference and to validate the tree height 

measured by Leica DISTO. Studies show that TLS height measurement for the lower canopy has higher 

accuracy than field height measurements. For instance, the TLS tree height measurements were compared 

with field height measurements by using a reference height (destructive method), and the TLS height had a 

high correlation with the reference height (Calders et al., 2015).  

 

Of the total field recorded trees, 222 were categorized as lower canopies, and a comparison was 

conducted. The result has obtained a coefficient of determination (R2) of 0.8 and the RMSE was found 1.0 

m (8%) (see Table 10).  The result showed that the Leica DISTO D510 measurements were 

underestimated comparing with the TLS height in which the average height was 11.49m and 11.98m 

respectively. In addition, the t-test result shows that there is a significant difference between the height 

measurements of the lower canopy of Leica DISTO D510 and TLS at (P<0.05).  

 

The obtained result of this study contradicts with the study performed by Mtui (2017) at Berklah tropical 

rain forest in Malaysia, where in his result the field measurement was overestimated by 0.17m. The reason 

could be the Leica DISTO D510 laser beam whether it blocked by near-by foliage which is not the actual 

peak of the tree or it was received by another crown or branches of the upper canopy trees that can lead 

to under and overestimation respectively. In this study, the Leica DISTO measurements were mostly 

affected by occlusions due to the difficulty to detect the exact peak of the actual tree and the subsequent 

height measurements. Thus, the probability of the error observed in the field was that tree heights are 

underestimated. 

 

However, comparing with other similar studies in Ayer Hitam tropical rain forest this study has similar 

results in which the field measurement was underestimated comparing with the TLS height. For instance, 

A study by  Sadadi (2016) achieved R2 of 0.62 with RMSE of 3.07m. While; Bazezew (2017) obtained R2 

of 0.68 with RMSE 1.45m for the lower canopies. Even though the result was similar, their RMSE have 

some differences with this study. The reason could be due to the difference in the forest density and 

experience of the observer. Leica DISTO D510 laser beam needs open space to detect the exact peak of 

the tree. The observer has to try viewing the tree from different directions until the top of the tree will be 

online of view of the instrument. This was also stated by Hunter. (2013) who reveals that tree height 

measurement depends on the density of the forest and the experience of the spectator (observer). Also,  

the obtained RMSE of this study and the result achieved by Sadadi (2016) has a large difference. This is 

because this study was compared only for the lower canopy trees heights which means it has low 

occlusion comparing to the upper canopies while Sadadi (2016) was comparing all trees. Other studies 

show that in open forests the field height measurement can be performed with low RMSE (0.28m) and 

high R2 of 0.94 (Birdal et al., 2017).  Therefore, the result of this study is within the range of Hunter et al. 

(2013) findings which reveals that the field-level measurement of tree height has errors ranging from 3-20 

% in tropical forests.    

 

In rare cases, TLS derived height could have hardly contributed errors. In some trees growing together, 

their branches are interconnected hence identifying, and separation of the actual peak of the tree from the 

point cloud of the TLS was challenging which was observed and recognized during the extraction of tree 

height. Thus, this was also stated by Jung et al. (2011) in trees which have interconnected crowns it can 

create errors in tree extraction and the subsequent tree height measurements.  
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5.5. Comparison of TLS derived DBH and field measured DBH 

In this study, field measured DBH using diameter tap were used as a reference to assess the accuracy of 

TLS derived DBH. In KRUS tropical rainforest some of the tree stems have a very big trunk and covered 

by vegetation (Figure 30). Thus, measuring DBH without removing the shrubs, lianas or other climbers 

stacked on the stem is incorrect. These climbers on the stem were observed as a source of error in the 

DBH measurement in the field. Thus, the vegetations stacked on the stem were removed during the field 

data collection to reduce the possibility of errors.  

 

 

       

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 The accuracy assessment result between the DBH measured in the field and derived from TLS shows R2 

of 0.99 and the RMSE was 1.59cm. In addition, the statistical t-test result shows there is no significant 

difference at (p<0.05) between the two measurements.  

 

Comparing with other similar studies carried in Ayer Hitam tropical forests the obtained accuracy was  

comparable with the study carried by Wassihun (2018) who achieved R2 of 0.99 with RMSE 1.37,  while 

Bazezew (2017) has achieved R2 of 0.98 with RMSE of 1.3 cm, whereas Mtui (2017) has achieved R2 of 

0.98 with RMSE of 1.4 cm, and finally  Ghebremichael (2015) has achieves R2 of 0.98 and RMSE of 1.7 

cm. The reasons could be due to the adoption of the multi-scan position to scan all direction of the stem 

and the clearing of the forest ground in the plot before the TLS scanning starts. In other cases the 

achieved RMSE of this study was higher than the study conducted in southern Sweden, spruce dominated 

forest with RMSE of 0.38 cm (Lindberg et al., 2012). The reason for the RMSE difference could be due to 

the difference in the density of the forest and undergrowth trees because the KRUS secondary tropical 

forest has a dense multi-structured or multi-canopy tree. Also, this is mentioned by Stas (2011) in 

Moluccas, Indonesia, that the secondary forests have many stems which have < 10 cm DBH. However, 

this study has higher accuracy compared with the study by Reddy et al. (2018) in central Indian forest 

which achieves R2 of 0.97 with RMSE 3.5 cm using only one scan position. The reason could be due to 

the number of the scan positions because in this study multiple scan positions (4) was applied. This was 

also stated by Maas et al. (2008) which obtains higher accuracy from multiple scans than single scan 

positions.  Therefore, the obtained RMSE result of this study was acceptable. Because, having with 1-2 cm 

Figure 30: Effect of vegetation stacked on tree stem for DBH measurement. 
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range of RMSE errors from DBH measurement using TLS was considered as a good measurement based 

on the developed national allometric models (Liang et al., 2016). 

 

In this study, the TLS DBH measurements show limited errors when it compared with the field measured 

DBH. The error is a result of mainly from the effect of the undergrowth trees density and tree trunks 

growing together (Figure 31) which blocks the point cloud of TLS partially. Also, in some trees, the stem 

shape was not a perfect circle, and this could become a source of uncertainties because in this study TLS-

DBH was measured using the horizontal line (point to point) in the RiSCAN Pro software. As pointed by 

Saarinen et al. (2014) for trees stem which has not a perfect circular shape TLS-DBH measurement 

horizontally from a different position of the stem and averaging the result has a possibility to increase the 

accuracy. Another reason is same of the tree tags were pinned at 1.3m of the stem from the base of the 

tree (Figure 31) so, tree DBH which has less than the diameter (width) of the tree tag has an effect to get 

full shape of the stem DBH on the point cloud.   

 

  

 

   

 

 

 

 

 

 

 

 

 

   

Irregular stem shape       Tree grow together         tree tag pined at 1.3 m  

Figure 31: Illustration of stem condition and its effect in TLS- DBH measurements. 

5.6. The accuracy of the upper canopy tree height measurements 

The Leica DISTO D510 laser instrument was used as a reference to validate and to assess the accuracy of 

UAV-CHM derived upper canopies tree height measurement. In the tropical forest Air-borne LiDAR tree 

height measurement has higher accuracy, but it is expensive and not always available (Aicardi et al., 2017). 

Hence, the Leica DISTO D510 laser instrument can measure tree parameters better comparing with other 

hand-held instruments. A study by Williams et al. (1994) was tested five hand-held instruments to measure 

tree height unbiasedly and to determine which instrument can be more effective and accurate for tree 

height measurement comparatively. As a result, the laser height (Leica DISTO D510) was found the only 

one which has an unbiased result for tree height measurement in his work.  

 

 In this study, the obtained result shows a coefficient of determination R2 of 0.76 and the RMSE was 2.53 

meter (13%). The result shows the UAV-CHM estimated height is overestimated by 1.19m of average 

height and it has a significant difference between the upper canopy tree height measurements (see Table 

18). Other similar studies in Ayer Hitam tropical forests were made a comparison of tree heights derived 

from different remote sensing technologies. For instance, studies by Berhe (2018), and Begashaw (2018) 

were compared between Air-borne LiDAR measured and UAV derived tree height resulted in R2 of 0.83 

with RMSE 3.9 m and R2 of 0.88 with RMSE 2.1m respectively. Compared with these results this study 
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obtains low accuracy. The reason for obtaining a low coefficient of determination can be due to the use of 

different reference height. Because, in their study they used ALS height measurement as a reference which 

has very high accuracy, while in this study Leica DISTO D510 was used as a reference which has less 

accuracy compared to ALS. Therefore, when the researchers use very accurate height reference, of course, 

their height assessment will much higher than using an instrument such as Leica DISTO D510 which 

already have a certain range of error. In other cases, a study by Bazezew (2017) was compared between the 

field measured height and Airborne LiDAR height, and he obtained  R2 of 0.61 and RMSE of 3.24 m is 

achieved. Hence, the result obtained from this study is higher accuracy comparatively. 

 

A study by Birdal et al. (2017) in an open forest, obtains a coefficient of determination R2 of 0.94 with 

RMSE of 28 cm among field measured and UAV derived tree heights. Thus, the result achieved in this 

study is lower comparing with (Birdal et al., 2017). The reason for obtained low accuracy could be due to 

the difference in the density of the forest. Indeed, the Leica DISTO have a limitation to detect the exact 

peak of the trees due to occlusions of foliage’s and having limited free distance from the tree to the 

observer.  

 

Therefore, the error obtained between the field measured and UAV-CHM derived height (RMSE 2.53) 

could be contributed from both the UAV-CHM derived height and the Leica DISTO height 

measurements. Because same part of the study area has an undulating landscape with open and closed 

canopies, thus, the DTM of the UAV could be more accurate at the forest which has flat terrain and less 

accurate at the undulating terrain forests depending on the openness of the forest. For instance, in plot 7, 

20, 29 we have observed that the UAV derived height was slightly lower than the field measured height 

while in most of the other plots the UAV derived height was higher than the field measured heights. This 

has happened in some sample plots with a closed canopy which are found in the depression (valley) area. 

In this case, the interpolation of the DTM could be based on the flat terrain, and this can be influencing 

the CHM value.  This was as a result of reducing the distance of ground interpolation of the DTM in the 

forests which have an open area and increases the interpolation distance in forests which have no open 

space (Lisein et al., 2013).  

In this study, one of the most observed and experienced error in the field was the height measurement by 

Leica DISTO D510 which was mainly affected by the occlusion of foliages. Because the laser pulse sends 

by the Leica DISTO D510 could not see or detect the actual exact peak of the trees due to the blocking 

effect of the branches and the lower canopy trees (Figure 32). Hence, most of the laser pulses that hit the 

lowest branch which is not the actual peak of the trees, therefore this leads to underestimation. The 

previous study reveals that tree height measurement using Leica DISTO D510 needs open space to view 

the actual peak of the tree Williams et al. (1994).  

5.7. Comparison of remote sensing method AGB integrated by separate height thresholds  

In this study, to integrate the tree parameters derived from TLS (i.e., height and DBH) and UAV (height) 

without missing or double counting of trees, a separate height threshold was applied for every plot. 

Further, the effect of defining a threshold on the estimation of AGB was analyzed. Of the total 658 

extracted trees, 650 trees in which  274 (41%) upper and 376 (57%) were lower canopies using the TLS 

height thresholds. In other cases, 658 which is 436 (66%) upper and 222 (33%) were lower canopies using 

the UAV derived height thresholds (section 4.8.2). The integration result showed in the UAV derived 

thresholds there is no missing and double counting of individual trees. However, in the TLS defined 

height threshold eight (8) threes were miss-categorized (missed) which means these trees were categorized 

as upper canopies based on the TLS derived height threshold, but their canopies were not detected by 

UAV (Figure 32).  
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The comparison result of the estimated AGB integrated using the two techniques of height threshold 

shows  R2 of 0.99, and the RMSE was 0.27 Mg which is 1.78% of the plot based AGB. Hence, integrating 

using the TLS derived height threshold is slightly underestimated by 0.059 (Mg). The reason for the small 

variation is created as a result of the missing trees. Another reason could be in some tree heights the TLS 

point cloud do not detect the actual top of the trees in the canopy layer in which trees recognized as part 

of the fully detected. Also, a t-test was conducted to find out if there is a significant difference among the 

estimated AGB integrated using the TLS and UAV defined thresholds. Hence, integrating the tree 

parameters using these two threshold techniques do not shows a significant difference in the estimated 

AGB at (P > 0.05). Further, the AGB estimated using TLS derived threshold was compared with field-

based AGB. The regression analysis result shows a coefficient of determination (R2) of 0.94 and the 

RMSE was 1.11 Mg. Comparatively the AGB obtained from UAV derived height threshold results shows 

lower RMSE than the AGB estimated by using TLS derived threshold.  

 

Unfortunately, there are no more studies found for a comparison of AGB estimated by using two separate 

defined height thresholds. However, there are studies which used one of the height thresholds to integrate 

the upper and lower canopies tree parameters. For instance, the study conducted by (Bazezew, 2017) in 

Ayer Hitam tropical forest was using ALS derived minimum height to integrate the lower and upper 

canopies. Similarly, the study by Mtui (2017) was using TLS derived fully detected tree height as a 

threshold to integrate the lower and upper canopies. In both studies, the height threshold was defined by 

categorizing all the sample plots to single and multiple canopies, and a generalized height threshold was 

determined. However, in this study, the threshold was defined for each sample plots (30) based on the 

height of the sample plot trees. Thus, determining the height threshold based on each sample plot for 

every plot could have advantageous for an accurate tree height measurement. Because in KRUS tropical 

forest of East Kalimantan, Indonesia, the tree height ranges of the plots have variation from one plot to 

another as a result of the sample plots are taken from different part of the forest. 

 

In defining UAV minimum height, very short tree heights have occurred in rare cases. These trees are 

skipped as out layers during the digitization of crowns. Hence, this has occurred as a result of having a 

small open canopy space which made it possible for UAV to view the lower canopy trees. Also, this is 

stated by (Nurul-shida et al., 2014) work in which a big gab can be created by falling of big trees in the 

tropical forests. In applying the TLS defined thresholds, rare trees can be miss-categorized among the 

upper and lower canopies as mentioned above. In this study, in four plots are experienced, and this 

happened if the tree height is greater than the TLS derived height threshold and, also its crown is not 

visible to the UAV imaging (Figure 32). As mentioned in section 4.8.1 AGB of upper canopies trees are 

calculated using the input parameter DBH from TLS and height from UAV. Thus, these trees (8 trees) are 

categorized to upper canopy based on the threshold, but height cannot extract from UAV-CHM because 

their crown is not detected by UAV. The TLS derived height threshold was defined manually by observing 

the actual shape of the tree extracted from the point cloud of TLS. Thus, it is more subjective, and 

sometimes it is challenging to identify whether it is fully detected or not especially in trees which have 

interconnected crowns and growing together. As a result, this could be a source of errors that was 

observed and experienced in this study.  
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Figure 32: Illustration of tropical rain forest tree parameter acquisitions and its effects. 

5.8. The accuracy of AGB estimated by remote sensing method  

The field-based AGB was used to validate and assess the accuracy of remote sensing method AGB. Thus, 

the total estimated AGB is the summation of the lower and upper canopies integrated using the UAV 

derived height threshold. So, the result showed that a coefficient of determination R2 of 0.95 and the 

RMSE was 1.07Mg which is 6%. A t-test was conducted to check if there is a significant difference 

between the field-based and remote sensing method estimated AGB. The result of t-test indicates that 

there is no significant difference between the estimated AGB at higher than 95 % of confidence level (P > 

0.05).  

 

The obtained result of this study is slightly lower than with the studies conducted in Ayer Hitam tropical 

forest Malaysia. For instance, the study by Lawas (2016), was a combination of TLS and ALS and has 

found R2 of 0.98. Also, a study by Mtui (2017) was integrated TLS for the lower canopy trees and CHM 

(From  UAV and ALS) for the upper canopy trees, and he achieved R2 of 0.98. The reason could be due to 
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the type of remote sensing data used because in this study the integration of remote sensing was among 

UAV and TLS while in the studies mentioned above, the integration was between ALS and TLS to extract 

the upper and lower canopy tree parameters. Thus, the combination of ALS and TLS shows a slightly 

higher accuracy than the integration of UAV and TLS, because of the height measurement of ALS is more 

accurate compared with other remote sensing measurements in a dense forest. Moreover, CHM of UAV 

from which the height of the trees were derived is an inferential or an estimation method. While the ALS 

CHM is considering as a measured tree height, which is very accurate compared to the UAV SfM method. 

However, with the same study in tropical forest Malaysia, by  Bazezew (2017) he has achieved R2 of 0.96 

using integration of ALS and TLS. Thus, his results were closer with the result of this study.  

 

The obtained result has a high correlation with (r) of 0.97 because of the integration of the remote sensing 

technique to extract the tree parameter of the lower and upper canopies. The DBH of the upper canopy 

can be modeled from the Canopy Projection Area (CPA), but the TLS measurements of the DBH is more 

accurate.  Besides, the remote sense method AGB shows a small difference with an average of 0.15 Mg 

overestimation. The reason could be from the error encountered in Leica DISTO D510 height 

measurement because the result of lower canopy accuracy assessment is an indicator that the Leica 

DISTO D510 was underestimated for the lower canopy trees when it compared with TLS height (see 

Table 10). Moreover, the mean of the plot based estimated AGB using field-based and remote sensing 

method was 15.44 and 15.59Mg plot-1 which is equivalent to 308ton ha-1 and 311ton ha-1 respectively (see 

Table 29). Moreover, the plot based estimated AGB of this study was comparable with the studies 

conducted in the Indonesians tropical forests. For instance, it has an agreement with the study by (Toma 

et al., 2005) in Bukit Soeharto Educational Forest (BSEF), East Kalimantan, Indonesia which founds 280, 

315 Mgha-1  for the heavily and moderately disturbed secondary forests. Previously, the secondary forest 

of East Kalimantan was affected by illegal logging and fires. Thus the amount of AGB depends on the 

intensity of disturbance that has been occurred. Also, a study by  Stas (2011) in the Moluccas, Indonesia 

which found 349.9 ton ha-1 in primary forests using a destructive method and field-based.             

5.9. Limitation of the study    

 

In this study area, there was no ALS data available. Thus, to validate the UAV-CHM derived tree height, 

the field measured tree height using Leica DISTO D510 was used. Hence, in the field, the Leica DISTO 

D510 height measurement has faced errors to view the exact actual peak of the tree in the multi-layered 

forests, especially for the emergent trees. 

 

The first images acquired by UAV were facing a problem to generate good quality of orthomosaic images 

so, the images are collected again. As a result, data processing takes more time and effort. 

 

 

The TLS weight was heavy (30kg) and to move from one sample plot to another sample plot by carrying 

the material it takes more time and efforts. Thus, the number of sample plots was only 30 plots. 
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6. CONCLUSIONS AND RECOMMENDATIONS 

6.1. Conclusions 

This study investigates the potential of integrating UAV, and TLS data to  improve the accuracy of AGB 

estimation in the multi-strata tropical rain forests. From the SfM of UAV data, CHM was generated using 

image-based modeling process, and the tree heights are extracted from the CHM. TLS was used to extract 

the tree height of the lower canopies and DBH of the upper and lower canopies. Afterward, the tree 

parameters derived by the remote sensing were integrated using UAV derived, and TLS derived height 

thresholds for every plot. Then the accuracy of field measured lower canopy was compared with the TLS 

derived lower canopy tree height. Hence, the t-test result shows that there is a significant difference. While 

the TLS derived DBH of the upper and lower canopy trees, DBH were compared against field measured 

DBH. Hence, the t-test result reveals that there is no significant difference. Also, the UAV-CHM derived 

upper canopy height was compared against the field measured height. Thus, the t-test result indicates there 

is a significant difference.  

 

The AGB was estimated using the same allometric equation for the field based and remote sensing 

method. The remote sensing method AGB was compared with the field-based AGB. Thus, the result 

shows it has a high correlation and statistically no significant difference. Therefore, the overall result 

shows that integration of UAV and TLS derived data can be used to extract the upper and lower canopy 

of the tropical forests and to estimate the subsequent AGB in a reasonable coast and accuracy. Based on 

the results the following answers are concluded to address the research questions. 

 

1. What is the accuracy of field measured height as compared to TLS derived height of the lower 

canopies? 

The accuracy of field measured tree height using Leica DISTO D510 was compared with TLS derived 

lower canopy tree heights. The result shows R2 of 0.80 and the RMSE was 1m (8%). The statistical 

analysis reveals that there is a significant difference between the height measurement of the lower canopies 

(P<0.05). Hence, the null hypothesis (Ho) which states there is no significant difference was rejected. 

 

2. How accurate is the TLS derived DBH, as compared to field measured DBH of the lower and 

upper canopy trees? 

The accuracy of TLS derived tree DBH of the lower, and upper canopies were assessed with the 

corresponding field measured DBH. Hence, the result reveals that R2 of 0.99 and the RMSE was 1.59cm 

(5%). It has a high correlation with (r) of 0.99, and the t-statistics reveals that there is no significant 

difference between the TLS derived and field measured DBH. Thus, the null hypothesis (Ho) which states 

there is no significant difference was accepted.  

 

3. How accurate is the upper canopy tree height derived from UAV-CHM as compared to the 

field measured height? 

The accuracy of upper canopy tree height derived from UAV-CHM was assessed using the field measured 

height using Leica DISTO D510. Hence, the result was found R2 of 0.76 and the RMSE was 2.53 m which 

is (13%). Thus, the statistical analysis reveals that there is a significant difference between the upper 

canopy tree height measurements. Therefore, the null hypothesis (Ho) which states there is no significant 

difference was rejected. 
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4. What is the amount of AGB estimated from the integration of UAV and TLS integrated using 

the UAV derived height and the TLS derived height as a threshold to integrate the upper and 

lower canopies? 

The tree parameters extracted using the two-remote sensing (UAV and TLS) was integrated using UAV 

derived, and TLS derived height threshold as upper and lower canopies, and the subsequent AGB was 

estimated based on the integration method. Thus, the AGB integrating using TLS threshold was 

compared with the AGB estimated using UAV derived height threshold in a plot based. Accordingly, the 

mean of AGB estimated using TLS threshold, and UAV derived threshold was 15.53 and 15.59 Mg plot-1 

respectively. Hence, the result reveals R2 of 0.99 and the RMSE was 0.27 Mg. So, the obtained result 

shows that there is no significant difference between the estimated AGB using the two threshold 

techniques to integrate the upper and lower canopies. Hence, the null hypothesis (Ho) which states there 

is no significant difference was accepted.   

 

5. How much is the AGB estimated using the integration of UAV and TLS data as compared to 

field-based AGB on a plot based? 

The accuracy of the remote sensing method estimated AGB was compared and validated using the field 

based estimated AGB on plot based. The remote sense method and the field based estimated AGB has a 

mean of 15.59 and 15.44 Mg plot-1 which is equivalent to 311 and, 308ton ha-1 respectively. And 

summation of the 30 plots was 468 Mg and 463 Mg respectively. The t-test analysis reveals that there is no 

significant difference between the remote sensing based and field-based estimated AGB. Hence the null 

hypothesis (Ho) which states there is no significant difference was accepted.   

6.2. Recommendation 

 

Tree height measurement using the Leica DISTO D510 for the emergent tree crowns was challenging in 

the field. So, selecting another more accurate technique of tree height measurement such as ALS tree 

height measurement is preferable to use as a reference height. 
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LIST OF APPENDIX 

Appendix 1: Slope correction table. 

Slop 
(percent) 

Radius 
(meter) 

Slop 
(present) 

Radius 
(meter) 

Slop 
(percent) 

Radius 
(meter) 

Slop 
(percent) 

Radius 
(meter) 

0 12.62 27 12.84 54 13.45 81 14.31 

1 12.62 28 12.86 55 13.48 82 14.35 

2 12.62 29 12.87 56 13.51 83 14.38 

3 12.62 30 12.89 57 13.53 84 14.42 

4 12.62 31 12.91 58 13.56 85 14.45 

5 12.62 32 12.93 59 13.59 86 14.49 

6 12.63 33 12.95 60 13.62 87 14.52 

7 12.63 34 12.97 61 13.65 88 14.56 

8 12.64 35 12.99 62 13.68 89 14.6 

9 12.64 36 13.01 63 13.72 90 14.63 

10 12.65 37 13.03 64 13.75 91 14.67 

11 12.65 38 13.05 65 13.78 92 14.71 

12 12.66 39 13.07 66 13.81 93 14.74 

13 12.67 40 13.09 67 13.84 94 14.78 

14 12.68 41 13.12 68 13.87 95 14.82 

15 12.69 42 13.14 69 13.91 96 14.85 

16 12.7 43 13.16 70 13.94 97 14.89 

17 12.71 44 13.19 71 13.97 98 14.93 

18 12.72 45 13.21 72 14 99 14.97 

19 12.73 46 13.24 73 14.04 100 15 

20 12.74 47 13.26 74 14.07 101 15.04 

21 12.75 48 13.29 75 14.1 102 15.08 

22 12.77 49 13.31 76 14.14 103 15.12 

23 12.78 50 13.34 77 14.17 104 15.15 

24 12.79 51 13.37 78 14.21 105 15.19 

25 12.81 52 13.39 79 14.24   

26 12.82 53 13.42 80 14.28   
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   Appendix 2: Field data collection sheet. 

                          Data collection sheet (KRUS educational Forest Indonesia 2018) 

Recorder:  Plot centre Plot Date: -- 

Forest type:    Plot No:  Radius: Slop: Photo No: 

- 

S/N Tree No. Lat. Long. DBH (cm) Height (m)  species Remark 

1        

2        

3        

.        

.        

.        

.        

.        

.        

.        

.        

.        

40        

 

Appendix 3: Illustration of the UAV flight plan. 
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Appendix 4: Distribution of tree parameters. 
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Appendix 5: Summary of field recorded biometric data. 

Plot 
No 

Latitude Longitude 
No. of 
trees 

Mean 
DBH (cm) 

Mean Tree 
Height 

Average 
ABG/tree 
(kg)/plot  

Total AGB 
/plot (ton/ha) 

1 117.21778 -0.45046 27 27.84 16.13 626.89 338.52 

2 117.21738 -0.45094 22 29.70 16.90 925.27 407.12 

3 117.21687 -0.45070 18 30.03 17.18 781.01 281.16 

4 117.21700 -0.45015 20 39.70 18.44 1153.98 461.59 

5 117.21826 -0.45061 27 23.25 15.28 368.89 199.20 

6 117.21839 -0.45108 29 24.61 14.24 504.79 292.78 

7 117.21751 -0.45273 17 34.17 15.34 1052.33 357.79 

8 117.21764 -0.45357 24 29.40 18.24 1039.52 498.97 

9 117.21436 -0.44894 17 35.51 18.91 1147.32 390.09 

10 117.21152 -0.44517 24 28.05 19.61 778.77 373.81 

11 117.21269 -0.44692 25 27.17 17.90 713.02 356.51 

12 117.21337 -0.44701 33 22.72 15.25 416.25 274.72 

13 117.21363 -0.44802 23 23.99 16.50 447.40 205.81 

14 117.21310 -0.44811 26 25.73 16.12 554.90 288.55 

15 117.21258 -0.44819 29 25.80 15.28 582.13 337.63 

16 117.21074 -0.44855 37 21.78 15.07 280.43 207.52 

17 117.21117 -0.44863 21 32.12 17.06 909.71 382.08 

18 117.21143 -0.44810 26 22.48 14.68 315.73 164.18 

19 117.20992 -0.44867 31 26.52 16.25 516.43 320.18 

20 117.20975 -0.44815 27 25.30 15.28 451.62 243.87 

21 117.21044 -0.44798 19 25.90 15.86 444.12 168.77 

22 117.21413 -0.44345 17 36.47 18.23 959.59 326.26 

23 117.21405 -0.44309 21 30.30 15.50 710.77 298.52 

24 117.21313 -0.44437 20 38.39 19.59 1116.44 446.58 

25 117.21317 -0.44415 17 29.35 16.32 618.89 210.42 

26 117.20744 -0.45115 23 30.32 17.63 624.39 287.22 

27 117.20853 -0.45143 21 32.96 16.88 837.58 351.78 

28 117.20961 -0.45252 19 32.55 17.02 891.87 338.91 

29 117.21058 -0.45282 20 33.86 16.79 931.87 372.75 

30 117.21220 -0.45215 19 28.27 14.38 485.77 184.59 

 

Descriptive 
statistics 

No. of 
trees 

Mean DBH 
(cm) 

Mean Tree 
Height 

Average ABG/tree 
(kg)/plot 

Total AGB 
plot (Mg) 

Total AGB 
plot (ton/ha) 

Mean 23.3 28.39 16.46 706.3 15.61 312.4 

STDV 5.1 16.32 5.12 261.1 4.390009 87.8 

Variance 26.1 22.8 26.2 68194.2 19.27218 7708.9 

Minimum 17.0 10 6.69 280.4 8.21 164.2 

Maximum 37.0 101.5 34 1154.0 24.95 499.0 

Sum 699.0   21187.7 468.39 9367.9 

Count 699 699 699 30.0 30 30.0 
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Appendix 6: Relationship between field measured, and TLS derived height of the lower canopy trees. 

Regression Statistics 

Multiple R 0.89652 

R Square 0.803748 

Adjusted R Square 0.802856 

Standard Error 0.859015 

Observations 222 

 

ANOVA      

  df SS MS F Significance F 

Regression 1 664.8587 664.8587 901.0055 9.7E-80 

Residual 220 162.3396 0.737907   

Total 221 827.1984       

 

  Coefficients Standard 

Error 

t Stat P-value Lower 

95% 

Upper 

95% 

Lower 

95.0% 

Upper 

95.0% 

Intercept 0.8392 0.3597 2.3331 0.0205 0.1303 1.5482 0.1303 1.5482 

TLS derived 

tree height (m) 

0.8900 0.0297 30.0168 0.0000 0.8316 0.9485 0.8316 0.9485 

 

 

Appendix 7: Relationship between field measured and TLS derived DBH of the lower and upper canopies. 

Regression Statistics 

Multiple R 0.996166796 

R Square 0.992348285 

Adjusted R Square 0.992335883 

Standard Error 1.432035003 

Observations 619 

ANOVA      

  df SS MS F Significance F 

Regression 1 164095.9 164095.9 80018.51 0 

Residual 617 1265.297 2.050724   

Total 618 165361.2       

 

  Coefficients Standard 

Error 

t Stat P-value Lower 

95% 

Upper 

95% 

Lower 

95.0% 

Upper 

95.0% 

Intercept 0.086605479 0.114953 0.753397 0.451499 -0.13914 0.312353 -0.13914 0.312353 

Field DBH 

(cm) 

0.976409901 0.003452 282.8754 0 0.969631 0.983188 0.969631 0.983188 
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Appendix 8: Relationship between field measured and UAV derived upper canopy tree heights. 

Regression Statistics 

Multiple R 0.876554038 

R Square 0.768346982 

Adjusted R Square 0.767813219 

Standard Error 2.24146702 

Observations 436 

ANOVA      
  df SS MS F Significance F 

Regression 1 7232.257 7232.257 1439.492 6.5E-140 

Residual 434 2180.492 5.024174   
Total 435 9412.749       

 

  Coefficient

s 

Standar

d Error 

t Stat P-value Lower 

95% 

Upper 

95% 

Lower 

95.0% 

Upper 

95.0% 

Intercept 1.133696826 0.52403 2.16342

1 

0.03105

4 

0.10374

5 

2.16364

8 

0.10374

5 

2.16364

8 

Field measured 

height (m) 

1.003201955 0.026441 37.9406

3 

6.5E-

140 

0.95123

3 

1.05517

1 

0.95123

3 

1.05517

1 

 

 

Appendix 9: Relationship between the AGB estimated using UAV derived, and TLS derived height 
threshold to integrate the upper and lower canopy trees. 

Regression Statistics 

Multiple R 0.99834861 

R Square 0.996699946 

Adjusted R Square 0.996582087 

Standard Error 0.278061496 

Observations 30 

ANOVA      
  df SS MS F Significance F 

Regression 1 653.8576 653.8576 8456.71 2.72E-36 

Residual 28 2.164909 0.077318   
Total 29 656.0225       

 

  Coefficients Standard 

Error 

t Stat P-value Lower 

95% 

Upper 

95% 

Lower 

95.0% 

Upper 

95.0% 

Intercept -0.190699991 0.178322 -1.06942 0.294015 -0.55598 0.174575 -0.55598 0.174575 

X Variable 1 1.00841687 0.010966 91.96037 2.72E-36 0.985954 1.030879 0.985954 1.030879 
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Appendix 10: Descriptive statistics of field-based and remote sensing estimated AGB. 

   RS method (TLS height threshold)   Field-based 

descriptive statistics No. of trees   AGB (Mg/plot)   No. of trees   AGB (Mg/plot) 

Minimum 13.00  7.63  13.00  8.21 

mean 21.67  15.53  21.93  15.4407 

Maximum 32.00  25.96  32.00  24.73 

Standard Deviation 4.54353146  4.7562  4.69727  4.38 

sum  650.00  465.87  658.00  463.22 

Count 30   30   30   30 

 

 

Appendix 11: Scatter plot between field-based and remote sensing method estimated AGB. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix 12: The t-test for field-based and remote sensing method estimated AGB. 

  
Remote sense method (TLS 

height threshold) Field-based estimated AGB  
Mean 15.52741816 15.44066398  
Variance 22.63288514 19.21471937  
Observations 30 30  
df 58   

t Stat 0.073454044   

P(T<=t) one-tail 0.470848776   

t Critical one-tail 1.671552762   

P(T<=t) two-tail 0.941697552   

t Critical two-tail 2.001717484    
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Appendix 13: Relationship between field-based and remote sensing method estimated AGB. 

Regression Statistics 

Multiple R 0.97265 

R Square 0.94604 

Adjusted R Square 0.94411 

Standard Error 1.12439 

Observations 30 

ANOVA      

  df SS MS F 
Significance 

F 

Regression 1 620.6233 620.6233 490.899499 2.72116E-19 

Residual 28 35.3992 1.264257   
Total 29 656.0225       

 

  Coefficien

ts 

Standar

d Error 

t Stat P-value Lower 

95% 

Upper 

95% 

Lower 

95.0% 

Upper 

95.0% 

Interce

pt 

-0.7661 0.76358

7 

-

1.00333 

0.32429552

2 

-

2.33026403 

0.7980092

9 

-

2.33026 

0.79800

9 

X 

Variable 

1 

1.05535 0.04763

2 

22.1562

5 

2.72116E-

19 

0.95778324

5 

1.152924 0.95778

3 

1.15292

4 

 

Appendix 14: Relationship between field-based and remote sensing method estimated AGB. 

Regression Statistics 

Multiple R 0.974706365 

R Square 0.950052497 

Adjusted R Square 0.948268658 

Standard Error 1.075174318 

Observations 30 

ANOVA      

  df SS MS F Significance F 

Regression 1 615.6723 615.6723 532.5886 9.21E-20 

Residual 28 32.36799 1.156   
Total 29 648.0403       

 

  Coefficients Standard 

Error 

t Stat P-value Lower 

95% 

Upper 

95% 

Lower 

95.0% 

Upper 

95.0% 

Intercept -0.633831778 0.730163 -0.86807 0.392736 -2.1295 0.861838 -2.1295 0.861838 

Field based 

AGB (Mg) 

1.051135704 0.045547 23.07788 9.21E-20 0.957836 1.144435 0.957836 1.144435 
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Appendix 15: Summary of field-based and remote sensing method upper canopies tree parameters. 

 

 
 

 

 

 

 

 

 

 

 

 

 

Mean Min Max Mean Min Max Mean Min Max Mean Min Max

1 18 32.43 10.50 73.00 13.20 12.30 27.00 31.73 9.50 73.00 22.02 12.10 31.97

2 12 43.77 15.50 89.10 20.55 15.60 26.80 43.26 14.90 88.50 23.30 17.20 26.33

3 7 45.47 23.10 64.80 23.27 18.60 27.50 44.24 21.40 63.20 25.59 18.12 30.85

4 14 47.68 19.00 65.70 20.69 16.70 24.50 46.03 20.10 64.50 22.63 16.80 25.00

5 17 29.27 15.20 49.20 18.01 11.20 23.50 28.32 14.60 47.68 19.65 11.54 27.30

6 20 29.65 17.40 101.50 16.31 10.10 25.60 28.84 17.00 99.90 17.03 10.50 29.20

7 11 45.45 24.30 86.10 18.70 12.30 24.20 44.79 23.40 85.40 17.13 11.64 24.43

8 16 36.87 11.00 92.30 21.92 15.50 34.00 36.78 10.00 90.60 23.52 14.56 36.12

9 10 48.19 29.50 79.40 23.25 18.20 29.90 47.08 28.90 80.20 26.32 17.20 31.13

10 15 35.43 16.00 83.50 23.48 15.20 30.80 34.64 16.00 81.60 24.08 15.20 32.21

11 16 35.91 15.30 80.00 21.78 14.50 30.50 35.11 14.30 79.60 22.56 14.50 30.35

12 16 30.89 20.50 78.90 19.79 16.40 28.20 28.61 18.70 77.80 22.15 16.10 28.66

13 12 30.50 17.60 66.10 19.76 15.80 27.70 30.74 18.30 67.20 21.18 17.20 27.60

14 13 36.99 16.10 59.90 20.49 16.50 26.40 36.31 14.50 58.10 22.52 14.50 27.24

15 11 39.09 13.70 84.10 19.41 12.20 26.50 38.96 15.20 84.20 21.51 16.00 27.60

16 15 29.35 21.30 35.00 18.53 15.40 22.20 28.95 20.90 34.20 19.27 15.97 22.29

17 12 43.51 24.60 77.50 21.13 14.20 27.00 43.69 25.30 76.00 23.06 13.77 31.21

18 17 27.26 11.90 43.20 17.09 12.00 21.30 26.99 11.20 42.30 17.15 12.91 21.33

19 22 31.37 10.70 59.70 18.49 12.00 24.20 30.27 9.80 56.80 19.04 15.86 28.65

20 24 26.75 14.10 73.50 15.97 11.40 26.50 24.55 11.72 72.30 15.56 10.23 25.24

21 12 32.15 26.50 49.70 18.28 13.20 26.00 31.19 24.50 48.60 17.30 14.20 23.16

22 13 41.62 23.20 59.50 19.95 14.50 26.30 40.33 24.10 58.90 19.88 15.19 25.78

23 14 38.51 15.00 68.50 17.99 14.10 23.20 36.66 14.50 67.50 20.56 13.86 28.64

24 16 43.78 29.00 76.20 21.27 17.20 26.20 42.71 28.60 74.90 22.02 16.12 25.96

25 14 33.13 11.00 55.10 17.84 11.50 23.10 31.81 9.50 49.54 19.59 11.30 27.32

26 14 37.55 26.30 54.50 20.45 18.60 24.60 36.53 25.60 53.20 22.18 16.21 28.60

27 15 39.96 15.50 68.30 19.52 12.60 25.30 38.45 13.40 66.30 23.14 13.62 29.60

28 12 39.53 10.40 70.40 20.68 14.50 30.40 38.07 13.00 68.70 22.54 15.32 27.01

29 14 39.56 18.20 91.30 19.41 14.10 24.80 38.98 17.50 89.60 18.09 12.29 21.06

30 14 33.43 13.80 60.90 15.81 12.00 20.10 31.68 14.30 58.00 16.67 13.31 18.82

Field based RS method

DBH (cm) Height (m) DBH (cm) Height (m)Plot 

No.

Tree 

No.
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Appendix 16. Summary of field-based and remote sensing method lower canopies tree parameters. 

 

 
 

 

 

 

 

 

 

 

 

 

 

Mean Min Max Mean Min Max Mean Min Max Mean Min Max

1 5 19.26 10.00 44.60 9.02 7.30 11.40 17.38 8.50 43.20 9.37 7.10 11.50

2 8 12.51 10.00 16.50 12.54 9.30 14.30 12.69 8.50 16.50 12.76 9.58 15.00

3 10 19.63 11.90 29.90 13.55 10.30 15.90 19.05 10.20 31.20 13.36 10.30 16.50

4 6 21.10 14.60 43.60 13.20 12.30 14.10 19.93 12.60 44.10 14.05 13.20 15.20

5 9 13.10 10.00 18.30 10.52 9.10 12.30 14.06 9.80 17.50 10.41 9.00 11.00

6 9 13.43 10.50 16.80 9.64 8.70 10.90 13.52 10.20 17.50 10.39 9.80 10.90

7 6 13.48 10.80 19.90 9.17 6.70 10.60 14.13 10.50 21.20 9.45 6.08 10.90

8 6 13.80 10.00 17.20 10.68 8.30 12.40 13.70 10.50 15.60 11.61 8.90 12.50

9 4 17.47 11.00 13.80 12.23 10.30 14.20 17.70 9.60 32.10 12.73 11.12 14.50

10 7 16.20 10.50 24.60 12.27 10.30 13.90 15.56 10.20 22.30 12.48 10.30 13.50

11 8 11.81 10.00 15.00 11.13 9.80 12.60 11.85 9.80 14.50 11.92 10.50 12.49

12 12 15.34 10.00 32.50 11.19 7.80 13.50 16.03 9.70 33.20 11.73 8.30 14.60

13 11 16.88 10.00 33.80 12.95 9.80 14.50 17.04 10.20 33.00 13.54 9.40 15.60

14 10 14.48 10.00 21.90 11.72 7.40 13.90 14.41 10.20 19.90 11.83 9.00 12.30

15 17 17.81 10.00 52.40 12.79 9.50 15.90 16.99 9.10 50.40 13.50 11.10 15.74

16 17 15.86 10.40 31.60 12.59 9.40 14.50 15.65 10.20 30.90 13.29 9.20 15.00

17 8 17.00 11.80 27.00 11.51 8.50 12.90 17.27 10.90 25.10 11.93 9.90 12.90

18 9 13.44 10.00 19.80 10.12 8.50 11.80 14.59 11.40 21.20 10.81 8.90 12.40

19 8 14.15 10.40 23.20 10.49 9.00 11.40 14.15 10.90 22.30 11.09 9.00 12.20

20 3 13.63 11.30 15.50 9.73 9.60 9.80 13.20 11.80 14.60 9.70 9.60 9.80

21 7 15.19 12.20 18.50 11.70 10.20 13.20 15.13 10.80 17.90 12.93 11.44 13.90

22 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

23 7 13.89 10.80 15.70 10.53 8.30 12.10 13.44 10.20 16.50 10.42 9.80 10.90

24 4 16.82 13.00 19.90 12.85 10.20 14.90 17.20 14.50 21.30 12.22 10.42 14.00

25 3 11.73 10.00 14.50 9.20 8.60 10.00 13.03 9.10 16.50 9.81 9.03 10.61

26 8 20.20 14.60 25.40 13.69 10.90 15.60 19.06 12.50 26.00 14.09 12.00 14.90

27 5 15.32 13.00 18.50 10.36 8.90 11.90 16.36 13.80 19.00 10.62 10.35 10.80

28 6 20.98 11.30 52.00 10.33 7.80 13.20 21.08 12.00 51.20 10.93 7.72 14.50

29 5 21.16 14.30 33.80 9.92 9.40 10.30 20.40 15.30 32.10 10.70 9.38 11.70

30 4 12.62 11.40 14.70 9.68 7.10 10.60 12.68 10.50 15.20 10.97 8.05 12.50

Field based Remote sensing method

DBH (cm) Height (m) DBH (cm) Height (m)No. of 

trees

Plot 

No.
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Appendix 17: Summary of remote sensing method estimated AGB/carbon of the lower and upper 
canopies. 

Plot No. Latitude Longitude 
No. of 
trees AGB (kg) AGB (Mg) 

AGB 
(ton/ha) 

AGBC 
(Mg) 

1 117.21778 -0.45046 23 18683.04 18.683036 373.66 8.78 

2 117.21738 -0.45094 20 21192.64 21.192642 423.85 9.96 

3 117.21687 -0.45070 17 14313.44 14.313445 286.27 6.73 

4 117.21700 -0.45015 20 23336.42 23.336425 466.73 10.97 

5 117.21826 -0.45061 26 10317.25 10.317247 206.34 4.85 

6 117.21839 -0.45108 29 15321.38 15.321383 306.43 7.20 

7 117.21751 -0.45273 17 16434.48 16.434482 328.69 7.72 

8 117.21764 -0.45357 22 25960.53 25.960529 519.21 12.20 

9 117.21436 -0.44894 14 20609.21 20.609212 412.18 9.69 

10 117.21152 -0.44517 22 18342.62 18.342621 366.85 8.62 

11 117.21269 -0.44692 24 17857.48 17.857478 357.15 8.39 

12 117.21337 -0.44701 28 13141.81 13.141805 262.84 6.18 

13 117.21363 -0.44802 23 10813.12 10.813123 216.26 5.08 

14 117.21310 -0.44811 23 14956.45 14.956450 299.13 7.03 

15 117.21258 -0.44819 28 17076.63 17.076635 341.53 8.03 

16 117.21074 -0.44855 32 9543.16 9.543155 190.86 4.49 

17 117.21117 -0.44863 20 20639.08 20.639080 412.78 9.70 

18 117.21143 -0.44810 26 8211.49 8.211486 164.23 3.86 

19 117.20992 -0.44867 30 14947.68 14.947679 298.95 7.03 

20 117.20975 -0.44815 27 10218.39 10.218390 204.37 4.80 

21 117.21044 -0.44798 19 7572.16 7.572157 151.44 3.56 

22 117.21413 -0.44345 13 14539.96 14.539962 290.80 6.83 

23 117.21405 -0.44309 21 15656.57 15.656575 313.13 7.36 

24 117.21313 -0.44437 20 21707.87 21.707874 434.16 10.20 

25 117.21317 -0.44415 17 10885.64 10.885636 217.71 5.12 

26 117.20744 -0.45115 22 14753.48 14.753479 295.07 6.93 

27 117.20853 -0.45143 20 19627.81 19.627808 392.56 9.23 

28 117.20961 -0.45252 18 16441.52 16.441525 328.83 7.73 

29 117.21058 -0.45282 19 16339.95 16.339948 326.80 7.68 

30 117.21220 -0.45215 18 8450.78 8.450776 169.02 3.97 

 

 

 

Descriptive statistics 
No. of 

trees AGB (kg) AGB (Mg) 
AGB 

(ton/ha) 

Minimum 13.00 7572.1568 7.5722 151.4431 

Mean 21.93 15596.4014 15.5964 311.9280 

Maximum 32.00 25960.5295 25.9605 519.2106 

STDV 4.70 4727.1786 4.7272 94.5436 

SUM 658.00 467892.0430 467.8920 9357.8409 

Count 30.00 30.0000 30.0000 30.0000 
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Appendix 18: Orthomosaic image of 2017 and 2018 KRUS tropical rain forest. 

 

 

 

 

 

 

 


