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ABSTRACT

The mapping of urban land use from very high resolution (VHR) imagery is a very challenging task in
remote sensing in particular in developing country like India, where land use is complex in many aspects
(e.g., shape, size, orientation, etc.). In this regard, machine learning algorithms like Support Vector
Machine with Radial Basis Function (SVM-RBF) and Convolutional Neural Networks (CNN) offer
opportunities to improve mapping result compared to classical parametric classifiers. This study mapped
the urban land use in Bengaluru city, India. The main object of this study was to evaluate the performance
of different machine learning algorithms such as SVM-RBF and CNN for urban land use mapping from
VHR imagery. For this purpose, different aggregation levels (beyond pixels) were employed within the
machine learning algorithms using object (OBIA) and block-based (BBIA) image classification
approaches. In the object-based urban land use classification, multi-resolution segmentation optimized the
with the estimate scale parameter (ESP) tool was carried to obtain segments of homogeneous land uses.
Regular grids were employed in BBIA. The size of the grid was selected based on literature review, and
local context. In addition, several image features (i.e., spectral, textural, geometric and contextual) were
extracted and aggregated from VHR imagery as well as best features, parameters, and size of training
samples were explored for OBIA and BBIA-based urban land use classification using SVM-RBF. For the
CNN-BBIA-based urban land use classification, best learning and regularization parameters, CNN
hyperparameters and size of training samples were explored. All of the above classifications were carried
out on both sampled (i.e., from the tile where training samples were taken) and unsampled domain
(i.e., from the tile where training samples not taken) to assess the domain adaptability of the classifiers. For
validation, different accuracy assessment indices (e.g., overall, user and producer accuracy, kappa, etc.)
were measured and beyond the classical accuracy measures several other accuracy assessment indices have
been used (e.g., recall, precision, Fl-score Klocation, etc.). In addition, the visual quality of the classified
map was compared with the referenced map (local land use map) while computational time was compared
between the classifiers.

It was observed that overall accuracies of SVM-RBF-OBIA outperforms the SVM-RBF-BBIA and
similarly, accuracies of CNN-BBIA outperforms the SVM-RBF-BBIA. Therefore, based on the
performance evaluation it is concluded the OBIA is more relevant and robust for urban land use mapping
from VHR imagery for the Indian context as compared to BBIA because urban land use is more related to
the geometry (e.g., shape, size, area, etc.) of the land use. Similarly, CNN is more relevant and robust for
urban land use mapping from VHR imagery for the Indian context as compared to SVM-RBF because
CNN learned more complex contextual features which is essential for classifying complex land use.
Therefore, this study provides a promising a starting guideline for the urban planner and local government
to select appropriate machine algorithm and classification approach for efficiently mapping urban land use
from VHR imagery. However, the classification accuracy in this research somehow low to implement
planning policy. In this regard, the use of CNN combined with OBIA could be promising to develop a
robust urban land use classification approach for VHR imagery. In addition, integration of some
additional aggregation levels such parcels as blocks or additional data such as height information from a
digital surface model (DSM), integrating conditional random field (CRF) with CNN might allow to
improve the accuracies of urban land use classification.

Keywords: machine learning, earth observation, urban land use, image classification, transferability.
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1. INTRODUCTION

1.1. Background and significance

More than half (54 percent) of the world’s population lives in urban areas, with a projected increase to 66
percent until 2050. In total, nearly 90 percent of this increase will concentrate in Asia and Africa
(United Nations, 2015), affecting mostly low and medium income countries where the majority of the
urban population is concentrated in highly urbanized centres. This rapid urbanization is driven by
rural-urban migration. Migrants are attracted by job opportunities and better urban facilities, but due to
the absence of appropriate planning policy, a large part of this growth is concentrated in informal
settlements.

This rapid urbanization is an increasing threat to the future sustainable development. For example, rapid
urbanization associated with unplanned urban growth leads to high consumption of natural resources,
congested and unorganized urban developments (United Nations, 2015). Unorganized urban
developments lead to a complex arrangement of urban land uses (Kuffer & Barros, 2011) atfecting most
cities in the global south (Gevaert et al., 2017; Sandborn & Engstrom, 2016). The location, orientation,
structures, and function of urban land uses such as residential, commercial and industtial areas are very
complex (Sandborn & Engstrom, 2016). In addition, some of the land uses (e.g., slum, deprived area, etc.)
are hidden in official planning documents (Kuffer et al., 2017; Nijman, 2008) and accuracy of overall land
uses is questionable (Nijman, 2008). Besides, in the rapidly growing urban area, information quickly gets
outdated (Wentz et al., 2014). In this regard, accurate, consistent and timely information on city growth is
required to support policy development towards sustainable development and prioritise policy on
equitable access for present and future needs (United Nations, 2015; Wentz et al., 2014).

Mapping of urban land use from satellite imagery is challenging because of the absence of an appropriate
classification method (Sandborn & Engstrom, 2016; Tewkesbury et al., 2015; Wieland & Pittore, 2014).
Very high resolution imagery can acquire textural, spectral and colour characteristics of land use which
could be used in general land use classification (Sandborn & Engstrom, 2016). However, the urban
landscape has heterogeneous spatial patterns and complex functional characteristics, which are very hard
to distinguish in discrete land use classes using only spectral information. In complex urban areas, each
land use has a distinct spectral response, texture, geometry, orientation, spatial arrangement and a
functional characteristic such as transportation network, residential buildings, etc. (Sandborn & Engstrom,
2016; Wieland & Pittore, 2014).

In classical urban land use mapping, spectral information is commonly used (Liao et al., 2017; Mboga,
2017; Tang et al., 2012; Wentz et al., 2008). Recent studies showed that adding additional geometrical
(shape, size, area etc.) and contextual information (object-level, street block-level, and parcel-level
attributes, etc.) is advantageous to improve classification accuracies (Cockx, Van de Voorde, & Canters,
2014; Herold, Liu, & Clark, 2003; Kuffer et al., 2017; Yanchen et al., 2014). In this regard, VHR imagery
are advantageous to extract geometric and contextual features for detailed urban land use classification
(Hu & Wang, 2013; Li et al., 2016; Ma et al., 2015; Wu et al., 2009; Yanchen et al., 2014; Yang et al., 2010;
Zhang et al, 2017). Recently, VHR are widely using for mapping detailed urban land use
(e.g., Li, et al., 2010), single urban land use (e.g. slums) (e.g., Naorem et al., 2016; Gevaert et al., 2017;
Kohli, 2015; Kuffer et al., 2017; Mboga, 2017; Pratomo, 20106), road detection (e.g., Sameen & Pradhan,
2016) and building footprint extraction (e.g., Gokon et al., 2015; Huang & Zhang, 2012).

Pixel-based image analysis (PBIA) is a very common and widely used image classification approach which
has several limitations like ‘salt and pepper effect’ (noise) and spectral confusion. In addition, traditional
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PBIA like maximum likelithood classifier (MLC) also has several limitations such as mixed pixel
classification, inability to integrate adequate contextual information and as a consequence, such classifier is
unable to solve complex problems of urban land use classification (Lu & Weng, 2007). In the
object-based image analysis (OBIA), pixels are grouped into the object-level in which different spectral,
textural, contextual and geometric features are extracted for classification. This approach is very
convenient for extracting features related to shape, size and texture observed in VHR imageries

(Herold et al., 2003; Kohli, 2015; Kuffer et al., 2017; Li et al., 2016; Ma et al., 2015).

Another important image classification approach is block-based image analysis (BBIA) in which the entire
image is split into blocks (e.g., regular grid, street block, etc.). After that, image features are extracted at
block-level. Such extracted features at block-level can be used for urban land use classification
(Herold et al., 2003; Sandborn & Engstrom, 2016). Thus, a block-based image classification approach
extracts aggregated contextual information (form, shape, pattern) and is, therefore, more relevant for
urban land use mapping (Herold et al, 2003; Sandborn & Engstrom, 2016; Silvan-Cardenas,
Almazan-Gonzalez, & Couturier, 2014). This is because, land use cannot be linked with pixels for the
reason that a land use (zone) is the aggregation of several individual land cover objects (Herold et al.,
2003).

Machine learning techniques are widely used in computer science, medical science, gaming technology for
data mining, pattern recognition and image classifications (Persello & Bruzzone, 2014; Weiss,
Khoshgoftaar, & Wang, 2016). Recently, machine learning is a widely used technique in geo-information
science and earth observation for different application including urban land use mapping (Berger et al.,
2013; Wieland & Pittore, 2014), change detection analysis (Tewkesbury et al., 2015), road networks
(Sameen & Pradhan, 2016) and building footprints extraction (Gokon et al., 2015; Huang & Zhang, 2012),
slum delineations (Gevaert et al., 2017) and urban village mapping (Liu et al., 2017) due to its smart, fast
and cutting-edge ccomputational performance (Persello & Bruzzone, 2014; Weiss, Khoshgoftaar, & Wang,
2016; Wieland & Pittore, 2014). In addition, the performance of machine learning algorithms on VHR
imagery is promising due to their high capability of data integration, automatic learning of training
samples, non-linear computation, customized algorithms and handling of wide-scale image analysis
elements which are very essential for solving complex problems in the urban land use mapping (Persello &
Bruzzone, 2014; Weiss, Khoshgoftaar, & Wang, 2016).

In this regard, supervised machine learning algorithms such as support vector machine (SVM), decision
tree (DT), random forest (RF), K-Nearest Neighbours are increasingly used for urban land use mapping
(Berger et al.,, 2013; Wieland & Pittore, 2014). The Convolution Neural Network (CNN) is an advanced
deep learning algorithm which is recently used by several researchers for urban land use classification by
taking advantages of its self-extracting capability of image features (Bergado, Persello, & Gevaert, 2016;
Lee & Kwon, 2016; Mboga, 2017). Thus, to overcome limitations of PBIA and traditional image
classifiers, OBIA and BBIA are highly encouraged to be integrated with machine learning classifiers to
improve the overall classification accuracy (Chuang & Shiu, 2016; Tewkesbury et al.,, 2015; Wieland &
Pittore, 2014). In image classification, both SVM-RBF and CNN are robust machine learning algorithms
(Mboga, 2017; Stavrakoudis et al., 2014; Tang et al., 2012) which have rarely been combined with OBIA
and BBIA for urban land use classification of Indian cities. In this regard, SVM-RBF and CNN algorithms
have been selected to test their performances on BBIA, and OBIA for classifying urban land uses in
Bengaluru city, India. This study is carried out based on an experimental research design in which the
performance of selected machine learning algorithms is evaluated using reference datasets.

1.2. Research problem

Based on the literature review, the research problem in this study has been explained below (see figure 1):
Firstly, there is insufficient knowledge about the best image features for urban land use classification.
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Secondly, to classify complex urban land use it necessities to use advanced and robust machine learning
algorithms like SVM (e.g., Silvan-Cardenas et al., 2014) and CNN (e.g., Hu et al.,, 2015) which were rarely
used for the Indian context. Thirdly, the classification of urban land use is more appropriate with OBIA
and BBIA because the concept of land use related to the larger area instead of the pixel (Herold et al.,
2003). In general, OBIA (e.g., Man, Dong, & Guo, 2015) and BBIA (e.g., Sandborn & Engstrom, 2016)
have not been much used for urban land use classification, and similarly, this also has not been previously
explored for Indian cities. Finally, land use classification in India is commonly done by visual image
interpretation with field survey in several city planning departments which is slow, time consuming, costly,
and information gets quickly outdated. This study will help to resolve the above research gap by
employing advanced image analysis techniques.

Methodological gap

A Y

Gap in developing image features Gap in applying advanced algorithms

Lack of adequate and well-

1

: Lack of BBIA and OBIA using SVM
developed image features from :

i

1

1

and CNN for urban land wuse
classification from VHR imagery for
Indian cities

VHR imagery for urban land use
classification.

Research gap

Figure 1. Shows research gaps.

1.3. Research objectives

The main objective of this study is to evaluate the performance of different machine learning algorithms

for urban land use mapping.

1.3.1. Specific objectives
The specific objectives are outlined to carry out the proposed research which as follows-

1. To select suitable image features for urban land use mapping.
2. To map urban land uses using SVM and CNN in OBIA and BBIA.
3. To evaluate the performance of SVM and CNN in OBIA and BBIA for urban land use

classification.

14. Research questions
Specific objective 1

1. What types of image features are extracted from VHR imagery using standard feature extraction
methods based on recent literatures?
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What is the standard feature selection method used for selecting best features based on recent
literatures?

What are best the image features used to map urban land use using standard feature selection
method?

Specific objective 2

1.

What types of urban land uses are relevant based on national and local land use classification
schemes and available literatures?

What are best parameters of SVM and CNN for classifying urban land uses employing OBIA and
BBIA?

What are the classification accuracies and time elapses executing a SVM in BBIA and OBIA
employing the best parameters and image features?

What are the classification accuracies and time elapses executing a CNN in BBIA employing the
best parameters?

Specific objective 3

1.

2.

1.5.

What is the best strategy to measure the accuracy of SVM and CNN for urban land use
classification?
What is the performance of SVM and CNN for urban land use classification?

Conceptual framework

This research is conceptualized in figure 2. The features extraction from the VHR imagery is a very

primary concept in image classification.

Parameter

tuning

Urban Land

Features usc

extraction and classification

selection
(except CNN)

Accuracy

measures

Evaluating

performance

Figure 2. Shows conceptual framework.
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The concept of features extraction relates to the extraction of different spectral (e.g., spectral bands,
NDVI, etc.), textural (e.g., GLCM, LBP, etc.), geometric (e.g., shape index, roundness, etc.) and contextual
features (e.g., spatial matrices). In addition, another important concept is features selection which is used
to select the best features that reduced the effects of Hughes phenomena and enhance the classification
accuracy and computational performance (Camps-valls, Mooij, & Schélkopf, 2010; Persello & Bruzzone,
2016; Damodaran, Courty, & Lefevre, 2017; Niazmardi, Safari, & Homayouni, 2017). Thus, next to the
features selection, the parameter tuning is one of the very important concept in image classification which
is used to select the best parameter to reduce the risk of overfitting of the classifiers and improve the
classification accuracy. The concept of image classification relates to the approach (e.g., OBIA and BBIA)
that is used in urban land cover/use classification. This incorporates the concept of features extraction,
features selection, parameter tuning, and algorithms (e.g., SVM, CNN) used. Finally, accuracy measures
and performance evaluation in image classification are used to validate and assesses the ability of the
classifier to map urban land use.

1.6. Thesis structure

Chapter 1- provides the background and justification for selecting the research topic, research gap
identification, research objectives, research question and conceptual framework.

Chapter 2- provides a detailed literature review about pixel-based, object-based and block-based urban
land use classification. This chapter also gives an overview of different types of machine learning
algorithms, image features, feature extraction, and selection methods, parameter tuning methods, different
types of urban land use classification scheme, urban land use pattern in Indian cities, etc.

Chapter 3- introduces the study area, the dataset used, tools and software used. In this chapter, the
physical and demographic status of the study area is discussed and similarly explained about the remote
sensing and other referenced datasets. This chapter, provides a detailed discussion about the methods of
pre-processing, block generation, image segmentation, features extraction, features selection, parameter
tuning, architectures of SVM and CNN, land use classification, accuracy measures and performance

assessment.

Chapter 4- covers results and discussion such as extracted features, selected best features, best
parameters, urban land cover and land use classification based on SVM-RBF-based OBIA and BBIA and
CNN-based BBIA, etc. This chapter also covers the measuring accuracies of SVM-RBF-based OBIA and
BBIA and CNN-based BBIA for urban land use and cover classification.

Chapter 5- provides the conclusions and recommendations. In this section, synthesizing the research
results by addressing the research objectives, research questions, limitations and drawing final
recommendations for future reseatrch.
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2. LITERATURE REVIEW

The literature review has been carried on different approaches, methods, and contexts related to urban
land use mapping using VHR imagery.

21. Pixel-based image classification approach

The PBIA is the standard and widely used approach in the field of remote sensing (Lu & Weng, 2007).
The PBIA is linked with the two concepts such as type one PBIA in which both input features and
classification output are purely pixel-based (e.g., spectral band, NDVI features with SVM.). For example,
Tang et al.(2012) were used spectral features (e.g., spectral band and others spectral features from Landsat
TM) to evaluate the performance of the MLC, classification tree, Random forest, Bagging and SVM for
urban land use classification of New Otleans and Baton Rouge, USA. The authors argued that SVM is the
most robust classifier as compared to the others classifiers. Secondly, type two PBIA in which input
features are computed from the neighbourhood (e.g., patch-based or window-based) of a single pixel and
classification output is pixel-based (e.g., CNN; GLCM, local binary pattern, morphological profile features
with SVM) which highly linked with the block-based image classification approach. For example, Liao et
al. (2017) were compared different image features using SVM for urban land use classification of the city
of Ghent Belgium; Pavia, Italy; and Houston, USA. The authors argued that SVM with morphological
features (e.g., type two PBIA) outperform the SVM with spectral bands (e.g., type one PBIA). In addition,
Mboga (2017) was also used similar PBIA approach to compare the performance of SVM (using GLCM
and CNN features from VHR IKONOS, hyperspectral imageries) with CNN for classifying urban land
use like the formal and informal settlement of Dar es Salaam, Tanzania. The author argued that CNN
outperform the SVM because of the high computational performance of complex contextual image
features. Therefore, it is concluded that type two PBIA with an advanced classifier (e.g., CNN)
outperform the type one PBIA as well as type two PBIA with a commonly used classifier (e.g., SVM,
random forest, etc.) for urban land use classification.

In addition, some of the studies employed the mixed PBIA approach in which input features computed
pixel-wise and neighbourhood-wise, but classification output is pixel-wise. For example, Wentz et al.
(2008) used both spectral (e.g., spectral band, NDVI, etc. from ASTER imagery) and contextual features
(e.g., GLCM from ASTER imagery) for classifying the urban land use of Delhi city, India using expert
decision tree classifier. However, using PBIA, several urban land use classes such as residential,
commercial, industrial, transportation etc. were classified in different studies outside India (e.g., Liao et al.,
2017; Mboga, 2017; Tang et al., 2012 ) but very limited study was carried out in India (e.g., Wentz et al,,
2008). In addition, for an Indian city (Delhi), Wentz et al. (2008) were unable to classify important urban
land uses such as residential, commercial, etc. perhaps due to the limitations of the coarse resolution
imagery (Aster) and the traditional image classifier. The above studies reveal that the integration of
textural and contextual features along with spectral features from VHR imagery in PBIA is very useful to
classify detailed urban land use. In addition, the above literatures also claimed that the SVM and CNN are
robust classifiers. CNN is a new and advanced classifier recently being applied for urban land use
classification.

2.2, Object-based image classification approach

The OBIA is a widely used image classification approach employed in several studies for urban land use
mapping (e.g., Kuffer et al., 2017; Ma et al., 2015; Man, Dong, & Guo, 2015; Yanchen et al., 2014). In
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OBIA, both input features and classification output are based on object-level instead of pixel. The
advantages of OBIA is that it included the geometric features (e.g., shape, size, etc.) along with others
spectral (e.g., NDVI, nDSM, etc.), textural (e.g., GLCM, etc.) and contextual features (e.g., spatial metrics)
at object-level. For example, Ma et al. (2015) used geometric (e.g., regularity) and contextual features (e.g.,
lacunarity) while Yanchen et al.(2014) included spectral (e.g., GLCM), contextual and geometric (e.g.,
asymmetry, border length, IHS transformation etc.) for urban land use classification. In addition, few
researchers (e.g., Kuffer et al., 2017) integrated PBIA with OBIA to improve the classification of urban
land use. This integration was used to include some important contextual features (e.g., spatial metrics
from land cover) into OBIA for urban land use classification (Kuffer et al., 2017).

Thus, Yanchen et al.(2014) were compared the performance of PBIA (using GLCM features) with OBIA
using SVM for mapping urban land use of near Western 3¢ Ring Road of Beijing, China. The authors
argued that SVM with OBIA outperform the SVM with PBIA for urban land use classification. In OBIA,
several VHR imageries such as VHR Aerial color images (e.g., Ma et al., 2015), VHR WorldView-2 (e.g.,
Kuffer et al., 2017), VHR hyperspectral (e.g., Man, Dong, & Guo, 2015) and LiDAR (e.g., Ma et al., 2015;
Man, Dong, & Guo, 2015 ) were widely used for urban land use classification. The above study shows that
OBIA was commonly used for the extraction of important urban land use such as residential, commercial,
residential, transportation, etc. of the other than Indian cities (e.g., China, USA, etc.). Therefore, it is
concluded, integration of PBIA with OBIA and is an additional advantage for improving the urban land
use classification accuracy using VHR imagery. Furthermore, it also concluded that the use of robust
classifier such as SVM provides added advantages on OBIA for urban land use classification.

2.3. Block-based image analysis approach

The BBIA is an important image classification approach widely used for several studies for correlating or
extracting urban land use from VHR imagery (e.g., Duque, Patino, & Betancourt, 2017; Sandborn &
Engstrom, 2016; Silvan-Cardenas et al.,2014). In BBIA, both input features and classification results are
based on block-level (e.g., regular grid, parcel, etc.). However, some other PBIA approach such as CNN
strongly linked with BBIA because CNN aggregated more abstract features at patch-level (CS231n, 2018;
Bergado, 2016; Mboga, 2017). In addition, in BBIA some of the studies used regular grid (e.g., Duque,
Patino, & Betancourt, 2017; Herold et al. 2003; Sandborn & Engstrom, 2016) while others used patcel
(e.g., Hu & Wang, 2013; Silvan-Cardenas et al.,2014) or road network grid (e.g., Li et al,,2016) for
correlating or classifying urban land use. This block was either downloaded from the Openstreet map (e.g.,
Li et al.,2016) or prepared by manual digitization (e.,g., Hu & Wang, 2013) or automatically generated
from the software (e.g., Duque, Patino, & Betancourt, 2017). Similar to the OBIA, the BBIA also included
spectral (e.g., NDVI, nDSM etc.), textural (e.g., GLCM, LBP etc.), contextual (e.g., spatial metrics) and
geometric features (e.g., shape, compactness etc.) (except geometric features for regular grid) for urban
land use classification as observed in above studies.

It was observed that some of the studied were integrated PBIA (e.g., Cockx, Van de Voorde, & Canters,
2014; Hu & Wang, 2013) or OBIA (e.g., ., Li et al, 2016) with BBIA for improving urban land use
classification accuracy. This integration was done to extract other contextual features such as spatial
metrics (e.g., Herold et al. 2003), coverage ratio (e.g., Li et al., 2016), etc. from land cover and such
features were used for BBIA-based urban land use classification. In BBIA, one of the very important facts
is the this also can include demographic and socio-economic information of land use such as population
density, tax information, etc. along with others features while parcel is conder as the block (Wu et al,,
2007). However, it was also observed that some of the studied compared classifiers such as SVM with
MLC (e.g., Silvan-Cardenas et al.,2014 ) and SVM with CNN (e.g., Mboga, 2017) for BBIA-based urban
land use from VHR imagery (e.g., Quick Bird images, LIDAR, etc.). Based on the performance of these
classifiers the authors concluded that SVM outperforms the MLC while CNN outperforms the SVM. In
addition, from the above studies, it was also observed that BBIA was used widely used for classifying
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important urban land use such as residential, commercial, industrial, transportation, etc. of the cities
outside India (e.g., China, Africa, USA, etc.). Therefore, from the above literatures, it is concluded that
CNN with BBIA is robust classification approach as compared to SVM with BBIA which was never used
for detailed urban land use classification for Indian cities from VHR imagery. Furthermore, it is also
concluded that integration of PBIA or OBIA with BBIA is an added advantage for urban land use
classification from VHR imagery.

24. Support vector machine with radial basis function

The Support Vector Machine with Radial Basis Function (SVM-RBF) is a robust classical machine
learning algorithm for non-parametric as well as non-linear image classification problems (Bruzzone &
Persello, 2009; Gevaert et al., 2016). The SVM is a binary classifier (0, 1) which used to solve the linear
(see figure 3(A)) and non-linear classification problem (see figure 3(B)). In the non-linear SVM, non-linear
mapping function ¢(xi) (see equation 1-4) was employed to separate the two classes (yi € +1, -1)
(see equation 4) corresponding to the n set of training samples (x;) from the hyperplane (H) based on
margin maximization (M) of primal quadratic optimization problem (see equation 3) which explained in
equation 1-4 and figure 3 (Bruzzone & Persello, 2009; Gevaert et al., 2016; Mourao-Miranda et al., 2011).
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Where, where, w=weight vector, b=bias, C=regularization parameter corresponds to the cost of the
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Figure 3. Shows SVM architecture for linear and non-linear class separation problem (Bruzzone & Persello, 2009).
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The dual problems of quadratic optimization employed by Lagrange multipliers to solve the primal
quadratic optimization problem (see equation 6). In addition, non-linear mapping function (p(xy). @(x;)) is
replaced by the kernel function of Gaussian Radial Basis Function (Krsr (i, Xj) = @(xi ). 9(xj )) (equation 5)
to developed SVM-RBF which explained in equation 5-6 (Gevaert et al., 2016).

2
|| X: — x|
202

Krpr (Xi»Xj) = exp(— (5)

n 1 n n
max Z EZZYinai a;Krpr (X, x;) (6)
i=1 i=1j=1
n
subject to: Zyi a;=00<ag;<Ci=1,...,n
i=1

Where, a;= Lagrange multipliers, 0= bandwidth in Gaussian function is determined by the median distance
of training samples. The architecture of SVM for a two class problem is solved by the common rule of
one-against-other (OAO) while a multiclass problem is solved by one-against-all (OAA) (Richards & Jia,
2006). As mentioned in the equation, the SVM-RBF classifier is controlled by two classification
parameters, i.e., cost (C) and gamma (o) (Suykens,2001). The cost parameter is used to control the slack
variables (noise) and outliers while the gamma parameter used to control the width of RBF kernel of the
variables from the decision plane (Gevaert et al., 2016; Mourdo-Miranda et al., 2011). Both the cost and
gamma parameters control the classification accuracy (Persello & Bruzzone, 2014; Suykens, 2001). The
optimum cost and gamma parameters reduce the risk of overfitting and improve classification accuracy
which could be obtained by the parameter tuning using grid search hold-out k-fold cross-validation
function (Persello & Bruzzone, 2014).

2.5. Artificial neural network

The Artificial Neural Network (ANN) is one of the very advanced computing algorithm in computer
science which derived its name from the human biological neuron(Atkinson & Tatnall, 1997; Madani,
2008). In human biological nervous systems, different neurons are connected to the others neuron
through the synapses which is a biological neural network (BNN). In a BNN, neuron (consist of cell body,
axon, and dendrite) collects input information (e.g., taste) from the biological detectors (e.g., tongue) and
passing this information to the reflector (e.g., brain) through interconnected neurons to take the final
decision (e.g., types of taste) in feedforward and feedback response process (Atkinson & Tatnall, 1997). In

this process, input information (X1, X2..Xs) is collected through dendrite and is transformed into

,,,,,,,

electrochemical signal through activation in the cell body, and this activated signal is transmitted from one
neuron to another neuron through an axon.
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Figure 4. Shows structure and function of ANN similar to biological BNN adopted from (CS231n, 2018).
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The activation of the neuron performs with the weight (w) obtained from the synapses (connectors of two
neurons) and unit bias (b) which explained in figure 4 (CS231n, 2018; Mboga, 2017). Thus, later scientist
transformed the principle of BNN into ANN to solve several complex problems using advanced
mathematical and statistical computations. Initially, the ANN was used for pattern recognition (Kim et al.,
2012; Kim, 2010; Madani, 2008) but recently it is increasingly used in remote sensing for land use/cover
classification (e.g., Bergado, 2016; Civco, 1993; Paoletti et al., 2017; Yuan, Van Der Wiele, & Khorram,
2009). The neuron in the ANN is termed as perceptron and based on the arrangement of layers in the
network is called a single layer perceptron (SLP) or multilayer perceptron (MLP) which explained below.

2.5.1. Single layer perceptron

The single layer perceptron (SLP) is a very simple form of an ANN which was initially designed by
McCulloch-Pitts (1943) to solve the linear separable problem of two classes from the hyperplane(P) in a n-
dimensional space based on the sign activation function (sgn) (Zhang & Zhang, 1999). The SLP consists
of a single neuron with input (x;) and output (y). The weighted sum of the input is calculated using input
(xi), weight factor (wi) and threshold (e.g., bias) using the equation 7. The weighted sum of the input is
activated in feedforward process using sign activation function followed by either OR, AND or NOT
Boolean logic to solve the simple linear classification problems which are explained in equation 7-8 and
figure 5 (Degeratu, Schiopu, & Degeratu, 2001). The equation 7 and 8 explained that when a weighted
sum of the input is less than the threshold (xp) of the neuron, the output will be -1 otherwise 1.

y =sgn <v=2wi.xi —xp) (7

1 v>0
sgn(v)={ 0 v=20 8
-1 v<0

Figure 5. Shows SLP scheme of McCulloch-Pitts (1943) adopted and modified from (Degeratu et al., 2001).

The limitation of SLP is that it is unable to provide a non-linear solution of a multiclass class problem
because SLP can only adopt the AND, OR and NOT Boolean logic for linear separable of two classes
(Degeratu et al., 2001). The non-linear solution for complex multiclass classification problem required
more neurons which could be solved with XOR Boolean logic (Kim & Choi, 1997). Later, multiclass
classification problems were introduced in ANN through advanced activation function with feedforward
and backpropagation algorithms which explained in MLP.

2.5.2. Multilayer perceptron

The multilayer perceptron (MLP) is an advanced ANN over SLP-ANN which is configured with input
layer(x;), hidden layers and output layer (yi) (Lin, 2011) (see figure 6). In MLP, the result is obtained
through feedforward computation of the weighted sum of learned input (x;) with weight(w;) and bias (b;)
using non-linear activation function (e.g., sigmoid, tanh) followed by XOR Boolean logic (Lin, 2011). In
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MLP, each neuron of the input, hidden or output layers are fully connected with all neurons of the
preceding or succeeding layers (Lin, 2011) (see figure 6).

Input layer Hidden layer Output layer

—— Feedforward of input <——— backpropagation of error

Figure 6. Shows ANN-MLP architecture with input layers (three neurons), one hidden layer (three neurons) and
output layer (three neuron).

In the MLP learning process, a weighted sum of each neuron is computed using the input (xi), weight (wi)
and unit bias (b;) which is explained in the equation 9 (CS231n, 2018).

n
Vi = Z w;. X; + b; C))
7

The weighted sum of the neuron (yi) is activated using most commonly used non-linear activation
functions such as sigmoid and hyperbolic tangent function (tanh) to get the output (o;) which explained in
the equation 10 and 11 ( Lin, 2011; Mboga, 2017).

o

—

= tanh(y;) (10)
1

=— 11
14+ e Vi (1)

The output of the neuron (0j) in layer (I) is fully connected with the succeeding neuron in the next

0;

layer(li+1) as an input. Thus, the network feeds the input to the neuron of the next layer to get the final
output, which is called as feedforward process in the network perceptron phase (e.g., perceptron learning
rule). The perceptron learning rule with activation function is termed as the generalization phase of MLP.
However, while employing function and architecture of MLP in deep learning (e.g., CNN), two different
advanced activation functions (e.g., RELU, SoftMax) were applied for two different types hidden layers.
Firstly, rectified liner unit (RELU) activation function was applied in the hidden layer (e.g., convolutional
layers) instead of sigmoid function because RELU is fast and robust as compared to the other activation
functions (CS231n, 2018). Thus, activation output (0;) of the weighted sum of the neuron (y;) in the
hidden layer was computed using RELU activation function which is explained in the equation 12
(CS231n, 2018).

12
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0; = Relu(y;) (12)
where, Relu = f(y;) = max(0, y;)

Secondary, SoftMax activation function was applied in the output layer of the last hidden layer (o) to get
the final output probability (e.g., between 0-1) (e.g., posterior probability) of the different class label (o5
which explained in the equation 13 (Mboga, 2017).

p(ojloi) — Z exp(oj) (13)

i=1€xp(0;)

Where, n=un-normalized sample of n number of class, i and j. In the generalization phase of MLP,
network measures the learning error (Eq(w)) from the # training samples using the equation 14 which is
called as the objective loss function (e.g., cross-entropy or negative log likelihood) (Bergado, 2016).

Enw) == ) tilogo; 0

L
Where, t;= vector encoding (0 or 1) of true label vector corresponding to the i class and oj=output

probability label vector of the i class. The error measured using objective loss function is automatically
minimized by updating the weight of the preceding neurons using delta rule (A) which is explained in
equation 15 (Bergado, 2016).

Aw(t) = —€(7)

0E (1)
" + aAw(z — 1) (15)

ow (1)

Where, w=weight, €(t)= learning rate, t=epoch, a=momentum and OE(t)/0w(t) =gradient. The delta rule
is called as the backpropagation algorithm with stochastic gradient descent (SGD). This phase of the MLP
is termed as the optimization phase. The optimization phase is controlled by some initialization parameter
of the network such as learning rate, momentum, and epoch as explained in equation 15. The learning rate
(e.g., 1/10, 1/100, 1/1000, etc.) is the fraction of learning which explained how precisely updates the
derivates of the SGD to obtain minimum loss function in each epoch. In addition, learning rate also
controls the speed of learning while momentum (0-1) is used to accelerate the learning in each epoch
(Mboga, 2017). The epoch is the number of iteration of the network. In addition, overfitting of the
network (resulted while increase depth of the network) can be managed by applying regularization
parameters such as weight decay (A) in the L2 regularization norm and dropout (e.g., randomly dropping
out percent of neuron to minimize co-adaptation between neuron) (Srivastava et al., 2014; Bergado, 2016).
The L2 regularization norm for the new loss function J(w) is explained in the equation 16 (Bergado, 2016).

Jw) = Ew) + 1 |lwl|? (16)

However, cross-validation is one of the options to select optimum initialization and regularization
parameters to minimize the loss function in network optimization process.

2.5.3. Convolutional neural networks

In this study, the selected ANN is the convolutional neural networks (CNN) because of its advanced
pattern recognition ability. The convolutional neural networks (CNN) employed function (e.g., activation,
feedforward, and backpropagation, etc.) and architecture of the MLP (e.g., hidden layers) in the networks.
The difference between MLP and CNN is observed in terms of architecture and depth of the network
which is explained in MLP (see section 2.5.3) and in this section (Bergado, 2016). In CNN, two types of
hidden layers are used. Firstly, type one hidden layer is convolutional layer which is the sparsely connected
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neuron, and secondly, type two hidden layer is the fully-connected layers which are similar to the fully-
connected neuron of the MLP. The CNN is used for the grid-based data structure to solve non-linear
multiclass classification problems (Goodfellow et al., 2016). Consequently, CNN was used for many grid-
based multiclass classification problems such as land cover/use classification from satellite imagery during
past several decades (e.g., Bergado, 2016; Hu et al., 2015; Lee & Kwon, 2016; Mboga, 2017; Paoletti et al.,
2017).

In addition, the most commonly used architecture of CNN (e.g., in MatConNet library) was developed
with input layer, convolutional layers (conv), activation layer, pooling layers, fully-connected layers (FC)
and output layer (e.g., INPUT-CONV-RELU-POOLING-FC-OUTPUT) (CS231n, 2018; Bergado, 2016)
see figure 7. The input layer is a 3-D volume (length, width, and depth) which consists of # number of 2-D
image patches. As an example, eight spectral of bands of 29 X 29 image patches (29X29X8) are used as
the input for the first convolution layer in this study. Similarly, the structure of the convolution layer is the
3-D volume (length, height, and depth) which includes #» number of 2-D convolving filters (e.g., 5X5X8)
that produced the equivalent size of output volume. The spatial size of the output volume of convolution
layer (Conveu) can be estimated as the function of input size (I), filter (F), stride and zero padding (P)
using equation 17 and the output must be an integer (CS231n, 2018 ).

Fize + 2P> 17)

C _ Isize —
ONVoytput = S

However, the depth of the output volume (e.g., number of activation maps) of the convolution layer
(Convou) is user-defined. In addition, the zero padding can be determined in relation to the filter size
using the equation 18 (CS231n, 2018).

Fsize — 1
Zero Padding = (%) (18)

The stride is the step of sliding filter over the spatial input while zero padding is the zero around the
border of the spatial input which is used for preserving the spatial characteristic of the object (CS231n,
2018). The principle of CNN is the sparse connectivity, parameter sharing and equivariant representations
(Goodfellow et al., 2016). In terms of sparse connectivity, the output unit (e.g., neuron) of the convolution
layers (s) is sparsely connected with the unit of input layer (x) by the function of convolving kernel
(moving filter) where the kernel size is less than the input size (Goodfellow et al., 2016).

Input layer Conv layer Pooling layer FC flatten layer FC output layer
.-
e 5 [ STEN Xplosepd (2[5 | S
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Figure 7. Shows an example of sparsely and full connected neurons in the CNN.
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In case of the FC layer, the output neuron is fully-connected with all preceding input neurons as
mentioned in the MLP (see figure 7). The convolving kernel (e.g., 3X3 local neighbourhood) in input layer
(e.g., x) is the receptive field of the neuron of the convolutional layer (e.g., s1) (see figure7). As an example
(see figure 7), if a convolutional layer consists of 16 neurons (e.g., 4X4) and each neuron having the
random weight 9 (3X3) +1 bias=10 parameters then this convolutional layer obtained total 160
parameters (16*10). Similarly, the parameters sharing explained the use of the same parameters of the
preceding neurons of the convolutional layer to the succeeding neuron of the next convolutional layer. In
case of the FC layer, parameter sharing is restricted and used only once (Mboga, 2017). In addition,
equivariant representations explained the change of input and output happens in the same way
(Goodfellow et al., 2016).

The convolutional layer is followed by non-linear activation (e.g., RELU mentioned in MLP) and pooling
(e.g., subsampling). The output volume of the non-linear activation layer is the same as the input volume
because the output volume is independent of the non-linear activation. The sub-sampling of the activation
layer was done using the max-polling function, which helps to downsampling the input volume and
reduces the parameters (Goodfellow et al., 2016). The max-polling function is performed by the function
of maximum aggregation algorithm using the #-size of pooling region with a specific number of the stride
(e.g., 2 X 2 pooling is used as an example in figure 7). Thus, the pooling output layer is the input for the
next convolution layer, and again the same function is used for the following pooling layer (e.g.,
equivariant transformation). The final pooling layer is the input for the fully-connected layer (1 X 1 X
depth). At the end of the fully-connected layer, the SoftMax activation was applied to obtain the output
class probability as mentioned in MLP. Thus, a wider layer (e.g., convolutional layer) is transformed into a
dense layer (e.g., FC) as observed in the CNN architecture (Lee & Kwon, 2016). The CNN network is
trained, regularized and optimized through feedforward and backpropagation algorithm with stochastic
gradient descent (SGD) as mentioned in MLP.

A supervised CNN network is more relevant to train the image patches from VHR imagery because more
complex contextual features can be extracted from the imagery with very high spectral and spatial
resolution (Bergado, 2016; Mboga, 2017; Paoletti et al., 2017). In a supervised CNN, the network trains
the training patches associated with label information to learn more invariant and complex local contextual
features which are validated with the unseen test data (e.g., validation set). As explained the function and
architectures of the supervised CNN, the network is incorporated with several hyperparameters such as
learning and regularization parameters and hyperparameters related to the network architecture which
have explained in the appendix table Al.1. The inconsistent use of hyperparameters in the networks leads
to the overfitting of the networks in the learning process. In addition, others parameters like size of
training samples and data augmentation are one of the considerations to control the overfitting of the
network (CS231n, 2018; Bergado, 2016; Mboga, 2017). The ovetfitting of the network causes a drop of
the overall classification accuracy. In this regard, K-fold cross-validation is one option to mitigate the
overfitting of the CNN networks (Bergado, 2016; Mboga, 2017). The hierarchical order of different layers
in a supervised CNN (e.g., input, convolutional layers, activation, pooling, and FC) are varied according to
the different network architecture (e.g., LeNet, AlexNet, Googl.eNet, VGG Net, etc.) (CS231n, 2018).
The simpleCNN wrapper of MatConvNet library provides an efficient and simple CNN architecture with
linear chains of a computational building block as compared to other libraries (MatConvNet, 2018).

2.6. Multi-resolution image segmentaion

Image segmentation is a primary step in OBIA for land cover or land use classification (Kohli, 2015;
Kuffer et al, 2017; Pratomo, 2016). There are several image segmentation algorithms (chessboard,
quadtree, contrast split, etc.). However, multi-resolution segmentation (MRS) is widely used for land cover
or land use classification using Ecognition software (Kohli, 2015; Kuffer et al., 2017; Pratomo, 2016). The
multi-resolution image segmentation is a bottom-up approach in which the scale parameter (scale size),
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compactness and shape are an important for aggregating homogeneous object based on their shape, size
and compactness in the imagery (Drdgut & Eisank, 2012; Drdgut et al.,, 2014; Pratomo, 2016). The
selection of an appropriate scale parameter is a challenging task and depends on the application (Pratomo,
2016). In the most studies, the selection of the scale parameter, shape and compactness is based on trial
and error using visual assessment (Pratomo, 2016) (See appendix table A2.1). In recent studies, ESP tool
(estimate scale parameter) was efficiently used for estimating scale parameters (Dragut et al., 2014) while
shape and compactness were selected based on the visual fitness of the segmentation (See appendix table
A2.1). The ESP tool is chosen for MRS because it estimates the best scale parameters (SP) which control
the internal heterogeneity (spectral) of image object that corresponds to their average size (Dragut et al.,
2014).

The ESP tool in MRS is an interactive process which is carried out in a three-level hierarchy (e.g., levell,
level2 and level 3) based on the local vatiance (LV) and rate of change of local vatiance (ROC/ROC-LV)
of multiple layers (e.g. eight spectral bands in this study) at image object level (Drdgut et al.,, 2014)
(see appendix figure A2.1). In this interactive process, the segmentation is hierarchically passing from
lower to upper level based on the condition satisfied based on the LV value see appendix figure A2.1. In
this process, the ESP tool automatical calculates the local variance, which is explained by equation 19
(Dragut et al., 2014) while the rate of change of LV is explained by equation 20 (Drdgut, Tiede, & Levick,
2010).

mean LV = LV{+LVy 4+t LV (19)

n

[L - %} x 100 (20)

ROC =

Where, n=number of image layers, L=LV at the target level, L-1=LV at next lower level. The LV value is
increased with the increase of the scale parameter (size of segmented objects) while ROC-LV is opposite
to the scale parameter which is explained in appendix figure A2.2. The ROC-LV curve explains how the
LV value changes from one object level to another with changing of scale (Drigut et al., 2010). According
to Drdgut et al. (2010), only LV cannot help to select the best scale parameters, and in this regard, both
LV and ROC-LV are required to select the best scale parameter because both explain the change of LV
with the size of the segment. The peak of ROC-LV curve illustrates the best segmented object at an
appropriate scale with lesser internal heterogeneity (Drdgug et al., 2010). The segmentation sometimes
suffers from under-segmentation (e.g., exceed the boundary of the target object to others object) ot ovet-
segmentation (e.g., multiple segmentation of the same object) (Dragug et al., 2010). Drigut et al.(2014)
statistically validated the segmentation based on Area Fit Index (AFI), index of under-segmentation and
over-segmentation and Quality Rate (QR). The under-segmentation is more problematic than over-
segmentation because multiple segments are easy to merge to get large object while it is hard to split
segments (containing several objects).

2.17. Urban land use mapping in India

From literatures on Indian cities, few researchers classified single urban land use from VHR imagery either
using OBIA (e.g., Kuffer & Barros, 2011; Sameen & Pradhan, 2016) or combining PBIA and OBIA (e.g,,
Kuffer et al.,, 2017) while few authors classified detailed urban land use from coarse resolution imagery
using traditional classifier in PBIA (e.g., Wentz et al., 2008). Furthermore, few studies in last decades
employed detailed urban land use classification using coarse resolution satellite imagery and visual
interpretation (e.g., Pathan et al.,1989; Pathan et al., 1991). In 2006, the Ministry of Urban Development,
Government of India initiated the National Urban Information System (NUIS) programme for developing
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a detailed geospatial database of urban land use at 1:10,000 scale for 152 Indian cities (including Bengaluru
city). In this programme, high-resolution satellite imageries are used for visual interpretation in a GIS
environment to classify detailed urban land use for urban development and management (NRSA, 2008).
The employed method is very slow, expensive and information get quickly outdated.

2.8. Urban land use pattern in Indian cities

The urban land use pattern in Indian cities has a complex urban form, design, and function due to
unplanned urban developments (Chadchan & Shankar, 2012; Kotharkar, Bahadure, & Sarda, 2014). The
urban form explains the spatial arrangement of different land use across the city while urban design
explains the architectural form of the city (e.g., shape, size of buildings, etc.). In addition, the function of
land use relates to use of land for a specific purpose such as residential land use for living, commercial
land use for trade and commerce, etc. (Alam, 2011). The complex urban form relates to the unorganized
form of land use which does not follow the standard urban land use planning model (e.g., sector model,
Hoyt, 1939; concentric zone model, Burges, 1925, etc.) (Alam, 2011). In unorganized urban form, shape,
size, structure, orientation, colour and function of different urban land uses ate often very similar because
some of the land use mixed with other land uses (e.g., commercial with residential or commercial with
industrial, etc.) (Alam, 2011; Chadchan & Shankar, 2012). This complexity of urban land use in Indian
cities was occurred due to the ill implementation of planning regulation by the local planning authority due
to political interferences (Chaplin, 2011). Most Indian cities, including Bengaluru, have complex urban
land use patterns, which are shown in master planning maps (appendix figure B3.2) and satellite imagery

(appendix figure B3.1).
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3. RESEARCH METHODOLOGY

In this study, urban land use classification of the Bengaluru city was cartried out from the VHR imagery
using SVM-RBF and CNN with OBIA and BBIA which explained in the appendix figure B1.1. The land
use classification catried out using SVM-RBF and OBIA, or BBIA is termed as SVM-RBF-OBIA or SVM-
RBF-BBIA. Similarly, the land use classification carried out using CNN and BBIA is termed as CNN-
BBIA. In SVM-RBF-OBIA-based urban land use classification, several sub-processes were employed, i.e.,
multi-resolution segmentation, features extraction, aggregation and normalization at object-level, feature
selection, parameter tuning, classification, validation, and accuracy assessment. Similarly, SVM-RBF-
BBIA-based urban land use classification employed block generation (regular grids), features extraction,
aggregation and normalization at block-level and others process are the same as for SVM-RBF-OBIA. In
addition, in CNN-BBIA several sub-processes were employed such generation of patch-based 3-D
training samples, parameter tuning (e.g., learning and regularization parameters, hyperparameters, depth,
etc.), classification, validation, and accuracy assessment. Finally, accuracy assessment indices (overall
accuracy, kappa, etc.) were compared to assess their performance for all urban land use classification
outputs. The above stated methods are explained below:

3.1 Study area

Bengaluru city is located in the Karnataka state, India (see appendix figure B2.1). The Bengaluru city has
8,495,492 inhabitants with an annual population growth rate of 3.25 percent. The city is known as the “IT
hub of Asia” and “Silicon Valley of India” covering an area of 786 sq. km built-up land (Bangalore
Development Authority, 2007; Census, 2011). The city attracts several national and international
investments for developing better trade, commerce, industry and living infrastructures. Timely and
accurate information of city growth is required to support competitive economic growth and sustainable
urban development (United Nations, 2015). In this regard, Bengaluru city is selected as a study area to
map the urban land use from VHR imagery using machine learning algorithms due to non-availability of a
detailed land use map. In this study, a small part of the city close to city centre (two tiles covering 850 by
850 metre each tile) is selected because most of the proposed land use classes are observed in this area.

3.2, Datasets and software used

The Wortldview3 multispectral (MS) and panchromatic (PAN) VHR satellite imagery and Bengaluru city
land use map as the secondary data used in this study (see appendix table B3.1, figure B3.1, and B3.2). The
VHR imagery of 15% February 2015 was collected from the DynaSlum project
(http://www.dynaslum.com/overview/). The Bengaluru city reference land use map is collected from the

revised master plan, 2015. This reference land use maps show details of many land uses such as urban
green, vacant land, etc. was missing from the original ground information as observed from the satellite
image, Google Earth and Openstreet map (see appendix figure B3.1 and B3.2). A fused VHR imagery
(MS+PAN) has been used for extracting image features while the land use map was used for extracting
training, validation and test data. In addition, Google Earth and Openstreet map are used for preparing a
referenced map because few land use/cover classes like vacant land, urban green, shadow, and waterbody
were not in the master plan map. Two tiles, of each 2501 by 2501 pixel were selected to measure the
transferability of the selected machine learning algorithms. Several softwares and programming languages
were used to carry out this research which explained in the appendix, table B3.2.
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3.3. Pre-processing

The pre-processing of satellite imagery and other referenced data was carried out before feature extraction
and classification. Firstly, a fusion of MS and PAN was carried out by High Pass Filter (HPF) resolution
merge using Erdas Image 2015 (see figure 8). This improves the spectral and spatial resolution of the
image. The High Pass Filter image fusion was selected in this study because it provides an excellent
detailed and a realistic representation of the scene as compared to others image fusion techniques
(e.g., Intensity-Hue-Saturation, Principle Component Analysis, Gram-Schmidt, etc) (Hexagon Geospatial,
2017; Nikolakopoulos & Oikonomidis, 2015; Nikolakopoulos & Konstantinos, 2008; Yusuf et al., 2013).

Wotldview-3: Multispectral Worldview-3: panchromatic Wortldview-3: HPF pansharpened

Figure 8. Shows HPF resolutions merge of Worldview-3 multispectral and panchromatic bands, 2015.

Secondly, master plan map was georeferenced with VHR imagery (UTM projection, Zone 43 and datum
WGS 1984) using polynomial model one in Erdas Image 2015. Thirdly, based on the proposed land use
classification scheme, the referenced land use map was prepared for validation and assessing the accuracy
of the classified land use maps. The master plan map of the Bengaluru city, google earth and Openstreet
map were used to prepare this reference map using visual interpretation. The minimum mapping unit in
the visual interpretation was 100 m?, which was decided based on the minimum scale size of the selected
block (i.e., 29%X29 pixel=97.23m?) in this study. Finally, referenced land cover maps were prepared by
aggregating this referenced land use maps for validation and accuracy assessment of the classified urban
land cover maps.

34. Multi-resolution image segmentation

Based on the literature review the multi-resolution image segmentation (MRS) was used for OBIA. In this
study, eight spectral bands of fused VHR wotldview imagery were used for segmentation using MRS with
EPS tool in eCognition software. The compactness parameter 0.80 and shape parameters 0.50 were used
for MRS segmentation followed by bottom-up segmentation approach. MRS-ESP was used to
automatically extracted the three optimal scale parameters (e.g., level 1, level 2 and level 3) with user-
defined increments of scale size 1 for MRS level 1, 5 for MRS level 2 and 50 for MRS level 3. Validation
of the different segmentation level was carried out based on the land use classification accuracies.

3.5. Block generation

In this study, regular square grids are used to aggregate different image features. Three types of block have
been selected, block 1 (29%x29 pixels=9.86x9.86 metre), block 2 (43x43 pixels=14.62x14.62 metre and
block 3 (59x59 pixels=20.06x%20.06 metre). The blocks were prepared using fishnet tool in Arc GIS 10.5.1.
Block 1 is selected based on the minimum mapping size of land use in the image. It is assumed that the
minimum size of the urban green area (e.g., vegetated area), transportation (e.g., medium size road) are
closed to 10 metre, and the other land use (e.g., single tree, narrow road, etc.) smaller than 10 metre are
excluded. Sandborn & Engstrom (2016) argued that block size 4 (9.76 metre) is more significantly
correlated with extracted features than the block size 8 (19.52 metre). Thus, block2 and block3 have been
selected with the linear incrementation of approximately 5 metre (14 pixels) for the urban land use
classification.
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3.6. Feature extraction and aggregation

In this study, image features are conceptualized and selected based on literatures review (see figure 9). The
spectral (e.g., mean bands, mean rightness, NDVI), textural (e.g., GLCM, GLDV, LBP, MPPR), geometric
(e.g., asymmetry, compactness, Elliptical fit etc.) and contextual features (spatial metrics, e.g., patch
density, aggregation index, fractal dimension etc.) were separately extracted and aggregated for OBIA and
BBIA (See figure 9). The spectral, textural and geometric features were extracted from fussed VHR
imagery while contextual features were extracted from urban land cover (e.g., built-up) using the Fragstats
software. In this study, the mean was used for aggregating image features. However, CNN has the self-
extraction capability of image features explained in section 3.10.2.

Image Features
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Figure 9. Shows feature selected for OBIA and BBIA for urban land use/cover classification using SVM-RBF.

The image features as summarised in figute 9 for OBIA and BBIA-based urban land cover/use
classification using SVM-RBF are explained below:

3.6.1. Features for OBIA

In this study, following image features were extracted and aggregated in OBIA. These object-level features
have been used for both urban land cover and urban land use classification:

e  Mean spectral band

The mean of spectral value (DN values) of all eight spectral bands of the original fussed VHR image was
extracted and aggregated, providing the mean spectral response of different urban land cover/use objects
(Aguilar et al., 2012).

e  Mean brightness

The mean brightness was extracted by averaging brightness of 8 spectral bands. The higher mean values
indicate brighter objects while lower mean values indicate darker objects (Aguilar et al., 2012). The lower

21



EVALUATING THE PERFORMANCE OF MACHINE LEARNING ALGORITHMS FOR URBAN LAND USE MAPPING USING VERY HIGH RESOLUTION SATELLITE IMAGERY

mean brightness value shows the waterbody, shadow, road networks and dark green vegetation in a dark
colour while higher brightness values show buildings, light vegetation and vacant land in grey to bright
colour. However, the variation of brightness in different land uses such as residential, commercial,
industrial is depends on the materials used on the roof, level of pollution and age of buildings, etc.

e Mean normalized difference vegetation index

The mean normalized Difference Vegetation Index (NDVlmen) is the robust indicator either used for
separating different types of vegetation or for separating vegetation from the non-vegetation areas (Nouri,
Beecham, Anderson, & Nagler, 2013). The mean NDVI was extracted from the mean Near-Infrared
(NIR1, band7) and mean Red (band5) spectral bands using equation 21 (Nouti et al., 2013).

(21)

(Mean band, + Mean bands)

(Mean band, — Mean bands)
NDVIean =

A higher mean NDVI value indicates healthy vegetation and lower NDVI unhealthy vegetation or non-
vegetation areas (e.g., built-up areas) (Nouri et al, 2013). Thus, mean NDVI is widely used for
distinguishing urban from non-urban areas (Nouri et al., 2013) as well as classifying different types of
urban land cover/use in VHR imageries (e.g.,Berger et al., 2013; Man et al., 2015; Sandborn & Engstrom,
2016; Silvan-Cardenas et al., 2014; Sun et al., 2016; Zhan, Molenaar, & Xiao, 2001).

o  Gray level co-occurrence vector

The Gray Level Co-occurrence Matrix (GLCM) is a robust and widely used algorithm for extracting
texture from the satellite imagery for characterizing different types land cover/use (e.g., Wieland & Pittore,
2014; Zhang et al., 2017).
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Cell 3 & 7 are 90 degree nearest neighbour and Cell 2 & 6 are 135 degree nearest neighbour

Figure 10. Shows different nearest neighbours and GLCM matrices (Haralick et al., 1973).

The GLCM computes the spatial dependency of grey-tone to characterize the texture of the image objects
based on the relationship of angular direction and distances of neighbouring pixel pairs in the image
(see figure 10) (Haralick et al., 1973). Haralick et al.(1973) developed 14 GLCM matrices in which eight
matrices were extracted using equation 22 to 29 (Laliberte & Rango, 2009) with the user-defined angular
direction (e.g., mean of four direction.
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N-1
GLCM,pqn = Z P; ; / N? (22)
i,j=0
GLCMsp = /al?; /ojz (23)
where,
N-1 N-1
. . 2
of = Z Pij(i—p)* and of = Z P (= u))
i,j=0 i,j=0
N-1 p.
GLCMpomongenity = 4 ﬁ (24)
N-1
GLCMcantrase = ) Puyi =) 25)
i,j=0
N-—
GLCMdlssmularlty Z l]ll (26)
i,j=0
N-1
GLCMentropy = P (—InP;)) (27)
i,j=0
N-1
GLCM gy = Z P%;; (28)
i,j=0
= p)( — 1))
GLCM orreiation = Z Pi,j - ! (29)
ij=0 9i9j

Where, Py, represents normalized gray value at location ij of the matrix; o; and o are the standard deviation
of the row, i and column, j; i and ; are mean of the row, 1 and column, j and N is the number of row and
column. In this study, the above eight GLCM matrices were applied on each of the eight spectral bands of
the fussed VHR image. The GLCM matrices were calculated in mean of four angular directions (09, 459,
900, 135% because several studies proved that this angular direction provides very optimum results
(e.g., Laliberte & Rango, 2009; Shabat & Tapamo, 2014; Yanchen et al.,, 2014; X. Zhang et al., 2017).
These measutes help to separate one urban land cover/use from another because each urban land

cover/use has distinct spatial identity such as smoothness, ordetliness, and otientation, etc.

o Gray level difference vector
The Gray Level Difference Vector (GLDV) is the sum of the diagonals of the GLCM, which is used to
calculate the absolute difference of neighbours (Aguilar et al., 2012; Laliberte & Rango, 2009; Shabat &
Tapamo, 2014). Four GLDV matrices were calculated for each of the eight spectral bands with a mean of
four directions (00, 459, 909, 135% using equation 30-33 (Laliberte & Rango, 2009).

N-1
GLDV,oqn = Z Vi / N? (30)
ij=0
GLDVeontrase = ) Peli = )? 31
ij=0
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N-1

GLDVentropy = Z P (—In Py) (32)
ij=0
N-1

GLDV sy = Z P?, (33)
ij=0

Where Vi represents the normalized GLDV and k is equal to |i-j|. Previous researches showed that the
classification accuracy improved using the GLDV matrices for urban land cover/use from VHR imagery
(e.g., Aguilar et al., 2012; Laliberte & Rango, 2009).

e  Geometric features

The geometric features (see appendix table B4.1) allow to separate one image object from others based on
their shape and size. They are widely used to improve classification accuracy for urban land use
classification (Aguilar et al., 2012; Y. Huang et al.,, 2017; Lei Ma, Cheng, Li, Liu, & Ma, 2015; Yanchen et
al., 2014), because each urban land use has a distinct shape, size and spatial arrangements (Sandborn &
Engstrom, 2016).

e  Spatial metrics

The spatial metrics are robust indicators used for quantifying spatial structures and patterns based on
density, aggregation, fragmentations, cohesion, and shape of the different spatial objects (Herold et al.,
2005; Herold et al., 2003; McGarigal et al., 2012). Spatial metrics were primarily used quantifying dynamics
of different land covers (e.g., Herold et al., 2005) but recently, they are increasingly used for urban land
use classification (e.g., Herold et al, 2003; Kohli, 2015; Kuffer & Barros, 2011; Kuffer et al, 2017)
because, each urban land use is shaped by ecither aggregation and cohesion or fragmentation of different
urban land covers. The built-up land cover (e.g., using OBIA-SVM-RBF classification) map was used for
the extraction of the following spatial metrics using equations (see table 1) (McGarigal et al., 2012) in
Fragstats 4.2.1. These spatial metrics were selected based on previous studies (e.g., Herold et al., 2003;
Kohli, 2015; Kuffer & Barros, 2011; Kuffer et al., 2017), showing an improve in classification accuracy
along with spectral, textural and geometric features.
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Table 1. Desctiption of the spatial metrics used for OBIA/BBIA-based urban land use classification
(McGarigal et al., 2012).

No. | Spatial Equations Range Descriptions
metrics

1 Patch PD>0, PD measures the number of patch
Density %(10’000)(100) constrained by cell | per 100 hectares.

size

2 Aggregation 0=<AI =100 Al measures the probability of a

Index (AI) [ ] (100) patch likely to be the same class. Al is
max = gii equal to O when patches are

maximally disaggregated and 100
when they are maximally aggregated.

3 Fractal 1SFD=2 FD measures the shape complexity of

In a;; simple shape while 2 represents the

Dimension the patch. FD equal to 1 represents

highly convoluted shape of the patch

4 Cohesion 0= Cohesion< 100 | Cohesion measures the physical
Z connectedness of the patch. Cohesion

is equal to O explains the landscape
[1 - —] .(100) becomes subdivided and
disconnected while Cohesion is equal
to 100 explains opposite.

5 Largest 0 <LPI =100 LPI measures the dominance of the

Patch Index largest patch in comparison of the
Y=1max(a;;) '

j=1 J (100) entire landscape. LPI approaches to 0

A explains the dominance of the largest

patch in comparison of the entire
landscape is increasingly small while
LPI equal to 100 explains landscape

consists of a single patch.

where, nj=number patch in class, i in the landscape; A=total area (m?) of landscape; gi=number of like
adjacencies between pixels of class, i; max-gi=maximum number of like adjacencies between pixels of
class, i; Pi=perimeter (m) of patch ij; aj=area (m? )of patch ij; Z=total number of cell in the landscape.

3.6.2. Features for BBIA

The following features have also been used for BBIA: Mean Spectral bands, Mean Brightness, Mean
Normalized Difference Vegetation Index, Gray Level Co-occurrence Matrix, Gray Level Difference
Vector and Spatial Metrics. These features (except spatial metrics) were extracted and aggregated in block-
level using chessboard segmentation in E-cognition 9.2 (Kamal, Phinn, & Johansen, 2015; Pedersen,
2010). In this process, weight was given to fishnet grid while scale size is considered same as the size of
the fishnet grid. In this study, automatically generated chessboard grid was not used due to resolve the
locational mismatch between fishnet grid and chessboard segmentation grid. In addition, spatial metrics
were extracted and aggregated in block-level using a user-defined grid (e.g., the regular grid is considered
as the user-defined grid) in Fragstats 4.2.1. Beyond these features, some more features have been used for
BBIA which as follows:
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o Rotation invariant local binary pattern

The Local Binary Pattern (LBP) is a very important texture mapping algorithm which was initially used for
computer vision, pattern recognition and signal processing (e.g., Pietikdinen et al., 2011; Wang et al., 2014)
but recently it is increasingly used for satellite image processing for urban land cover/use mapping
(e.g., Sandborn & Engstrom, 2016). Primarily, regular LBP (LBPpr) was used to extract the texture from
the image based on the monotonic transformation (e.g., linear) of gray value in a circular symmetric
neighbour set of pixels in the neighbourhood. This was calculated by thresholding and weighting using
equation 34-38 (Wang et al., 2014).

P-1
LBPpj (o) = ) 5(gp — 92" (34
P=0
(1 x =0
and,s(x) = {0 Y <0

Where, s(x)=thresholding scale function, x=(gp-gc), Xc, yc=X, y position of the central pixel, g,=pixel value
of the neighbourhood, g.=central pixel value of the neighbourhood, P=total number of neighbours,
R=radius of the neighbourhood. In addition, an optimum size or radius of the neighbourhood was
estimated by using the equation 35 and 36 to design an appropriate LBP for texture mapping.

Neighbourhood size (n) = ((R X 2) + 1) (35)
Neighbourhood radius (R) = ((n — 1)/2) (36)

Thus, the diagonal distance of neighbours from the central pixel was calculated using bilinear interpolation
method which explained in the equation 37 (Wang et al., 2014).

Location (gp) = (xc + Rsin (?)) , (yc + Rsin (?)) (37)

Similarly, the regular LBPpr patterns or bins was estimated for different P values (e.g., 256 for P=8) using
the equation 38 (Wang et al., 2014).

LBPp p pattern/bins = 2F 38
R D

Secondly, regular LBPpr was used to measure the rotated invariant LBP (LBPrpR) to resolve the issues of
rotation. In this regard, a unique identifier was assigned to each rotation invariant local binary pattern
using equation 39 (Wang et al., 2014).

LBP}Y = min{ROR(LBPp,P)| P=01,.....,P — 1} (39)

Where, ri=rotated invariance, ROR (x, P) explained the LBPpr code, x is rotated P times in clockwise
direction at 45° angular intervals around the central pixel. In this study, LBPrg 14, LBPig 2 and LBPrig 29
were used to extract the image texture for eight spectral bands based on the different radius (R=14, 21,
29). This radius was selected based on the chosen block size (e.g., 29, 43, 59) in this study. The LBPrig 14,
LBPrig5, and LBPrigp9 were extracted a combination of 36 unique rotated invariant uniform (e.g., two
patterns as 0-1 and 1-0) and non-uniform (e.g., combination 0-1 pattern) spatial transition patterns using
the Matlab code developed by Nikolay S. (2017). In this study, P=8 and different R for LBPripr were
selected because, in many studies (e.g., Mehta & Egiazarian, 2013; Ojala, Pietikainen, & Maenpaa, 2002),
P=8 and different R (R>=1) produce higher texture classification accuracy as compared to the other
combination of P and R. Finally, this feature was aggregated in fishnet grid using zonal attributes of Erdas
Imaging software.
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e  Morphological profiles for partial reconstruction

The mathematical morphological profiles (MPs) were initially developed for the pattern recognition, face
recognition and computer vision (e.g, Dias, Cousty, & Najman, 2014; Gonzalez-Castro, Debayle, & Pinoli,
2014) but recently, this is widely used for mapping urban land cover/use from VHR imagery
(e.g., Dalla Mura et al., 2010; Liao et al., 2015, Liao et al., 2017). MPs were used to extract shape geometry
of image object based on the concatenation of morphological closing ([],) and morphological opening
profiles ([]y) using structural element and partial reconstruction operator (e.g., partial geodesic) explained
in equation 40 (Dalla Mura et al., 2010).

MPs(f)=1_[' <ni=r[m, with 1=m—1+1i), VA € [1,n]; 40)

i \[li=Ily,, with A=({-n-1), VA€ [n+1, 2n+1].
The morphological opening profile (yr) was used to removing brighter connected object from the image
(/) with erosion (gf) followed by dilation (87) operator. In this regard, same size of the structural element (i)

and partial geodesic reconstruction operator by dilation (R%) was used which explained in equation 41
(Dalla Mura et al., 2010).

vi(F) = RY () (41)
Similarly, the morphological closing profile (pr) was also used to remove the darker connected object from
the image (j with dilation (87) followed by erosion (¢f) operator. In this regard, same size of the structural
element (i) and partial geodesic reconstruction operator by erosion (Ref) was also used which explained in
equation 42 (Dalla Mura et al., 2010).

0k() = RE (61(N) (42)
In this study, partial geodesic reconstruction was selected because it can preserve the actual shape and size
of the rectangular or near rectangular object as compared to geodesic reconstruction while employing disk
shape SE (Liao et al., 2017). The partial geodesic reconstruction was computed measuring partial geodesic
distance using the equation 43.

Partial geodesic distance (d) = 2(;/2 — 1)R (43)
However, in MPPR one limiting factor is the shape (e.g., square, disk, etc.) and size of the SE because an
object smaller than the SE is automatically deleted and with an increase in size of SE more objects are
deleted (Dalla Mura et al., 2010; Liao et al., 2017). In this study, disk shape SE was used because it is very
commonly used for urban land use mapping from the VHR imagery (e.g., Liao et al., 2017). The radius
(R) and size of SE were computed using the equation 44 and 45.

_ S+1
Radius of SE (R) = — (44)
Sizeof SE(S) = (2R —-1) (45)

In this study, morphological profiles with partial reconstruction (MPPRs) with disk shape SE was used to
extract morphological features from the panchromatic image using the Matlab code developed by
Liao et al., (2017). The SE size was considered same as the selected block size 29, 43 and 59 as defined in
this study. Finally, this feature was aggregated in fishnet grid using zonal attributes of Erdas Imaging
software.
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3.7. Normalization of image features

The extracted image features and fused image were normalized using max-min standardization method
using ENVI classic 5.3. The value of the normalized image features varies from 0 to 1. The normalized
image features were used for feature selection, parameter tuning and land cover/use classification using
SVM_RBF. The normalized fused image was used to train the CNN for land use classification.

3.8. Urban land cover/use classification scheme

In this study, six relevant urban land covers and seven urban land uses ate selected based on literatures
review, national (NRSA, 2008), and local land cover/use classification schemes (e.g., master plan) and
empirical experience of the study area (see figure 11). In the local land use classification scheme 9 main
land use and 15 sub-land use classes were mapped, but in this study area, only 6 main land use and 12 sub-
land use classes are observed. In this study, few land use classes were merged into main land use class
because of their homogeneous urban characteristic (appendix table B5.1). In addition, few land use classes
have been added in this study due to missing of such land use classes in the master plan map
(see appendix figure B3.2). In this study, shadow is not a land cover/use but has included to understands
the ability of the classifiers (or classification approach) to mitigate or extract the shadow in final
classification because VHR image has a big issue of shadow effect. Therefore, the proposed urban land
cover/use has explained in the appendix table B5.1.

Urban land cover classes Urban land use classes

1 1
1 1
e  Built-up : :0 Residential
. 400000 |
1

! 1
L 1
! 1
! 1
! 1
1 o
! o Hoad i Proposed urban land : | Commercial :
o g 1
! ® Vegetation _: cover/use classification » * Industrial I
1 ® Undeveloped land ! scheme ' e Transportation 1
| e Waterbody b ;
1
= Shadow :
- |
: 1

e  Urban green
e Vacant land
e  Waterbody/shadow

Figure 11. Shows proposed utban land cover/use classification scheme.

3.9. Selection of training and test samples

The selection of optimum sample sizes is a very challenging task in image classification to reduce the
effects of Hughes phenomena (Persello & Bruzzone, 2010; Persello & Bruzzone, 2016). In this study,
segment/ block was selected as the training sample unit while pixel as the test sample unit which was
labeled using referenced land cover/use maps. In previous studies several sampling techniques
(see equation 46 and 47) were employed to select the optimum size of training samples (Park & Stenstrom,
2008).

N = 4p(10(2) —p) (46)
&

N = 30nc (47)
Where, p=expected accuracy (%), e=allowable error (%), n=number image features, c=number of LULC
classes. However, in this study user-defined training samples was selected using stratified random sampling
(seeding 1002) depending on the available pure sample segments or blocks (e.g., block with single land
cover/use) (see figure 12). The number of pure segments/blocks are controlled by the scale size
(e.g., Yanchen et al.,, 2014; Zhang et al., 2017; Zhen et al.,, 2013). In addition, training samples were
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randomly split into training and validation sets using 60:40 rule (e.g., Duque, Patino, & Betancourt, 2017)
for features selection and parameter tuning (Persello & Bruzzone, 2010). However, in CNN training
samples were increased (e.g., augmented training samples) by rotating original training samples in different
angles. The test set was selected as whole tiles (6,255,001 pixels) to assess both pure and mixed segments
or blocks for pixel-based final accuracy assessment (see figure 12). The strategy for selecting training,
validation and test samples are explained in figure 12.

|~ @ Training samples
~ °
@® Validation samples
( . ° L @ Test samples
‘ Class A \ —— Referenced LULC class A
J o :/'J"‘) —— Referenced LULC class B
] egeo
J/ 'YX —  Segments/blocks
\\_/'* R —
/ Class B Class B ®
OBIA BBIA

Figure 12. Strategy for selection of training, validation and test samples for OBIA and BBIA using SVM and CNN.

3.10.  Design and implementation of selected machine lerning algorithms

Based on the literature review, SVM-RBF and CNN were implemented in this study for OBIA and BBIA-
based urban land use classification which explained below:

3.10.1.  Support vector machine with radial basis function

The Support Vector Machine with Radial Basis Function (SVM-RBF) was applied to solve multi-class
classification problems. In addition, the cost and gamma parameters of SVM-RBF were tuned using k-fold
cross-validation to mitigate the change of overfitting of the classifier and improve the classification
accuracy (Persello & Bruzzone, 2014). The parameter tuning is explained in the section 3.12.1. Therefore,
the SVM-RBF was developed in R studio programming language for classifying OBIA and BBIA-based
urban land cover/use classification.

3.10.2. Convolutional neural networks

As explained in the section 2.5.3, the CNN is configured with Input Layer-Convolutional Layer-Activation
Layer-Pooling Layer-FC layer-Output layer which was implemented in this study employing simpleCNN
wrapper of MatConvNet in Matlab programing language. As the CNN holds the function (input,
activation, feedforward, back propagation, etc.) and structure of MLP (hidden layers) then it is initialized,
regularized and optimized with feedforward and backpropagation algorithm with stochastic gradient
descent (SGD) (see section 2.5.1 and 2.5.3). Table 2 shows the commonly used initialization and
regularization parameters to train the network for urban land use classification which were initially
implemented in this study based on the literature review (e.g., Bergado, 2016; Mboga, 2017).
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Table 2. Initial learning and regularization parameters.

Hyper parameters Value
Batch size 10
Maximum number of epoch, t 1000
Momentum, a 0.90
Learning rate, € 0.01
Weight decay, A 0.01
Dropout rate, d; in (D1 & D2) (0, 0.5)

In addition, table 3 shows the initial architecture of the CNN which were implemented in this study based
on the literature review (e.g., Bergado, 2016; Mboga, 2017). The architecture of the CNN is explained

below:

¢ Input layer

In this study, 3D input layers consist of 1000 2D training patches of 29X29 size from eight spectral bands
were initially implemented to train the network using SGD (see table 3). This training patches
(e.g., training samples) were randomly split into training and validation set using 60:40 rule to train and
validate the network.

Table 3. Initial CNN configuration and hyperparameters.

Hyper parameters Value

Layers 1-Ci-A-P-D1—C,-A-P-D1—FC;-A-D2—0O-S-CP
Non-lineatity (A=RELU) used in Ciand FC; RELU

Non-lineatity (S= SoftMax) used in O SoftMax

Width of FC 128

Patch size 29

Number of filters, K 8

Size of filters 5

Pooling size 2

Note: I=input, C=convolutional layer, A =activation, P=max pooling, D=dropout, FC=fully connected
layer, O=output, S= SoftMax, CP=class probability

¢ Convolutional layers

In this study, two convolutional layers with eight neighbourhood filters of 5X5 size (e.g., receptive field)
(e.g., eight filters in each of the convolutional layers) were initially implemented to learn the features from
input layer using SGD (see table 3). In addition, commonly used stride one was implemented in this layer
(CS231n, 2018; Bergado, 2016; Mboga, 2017). Thus, zero padding (e.g., initially 2) was selected based on
the equation 18 in section 2.5.3. However, the spatial size of the output volume in convolution layers was
managed by the equation 17 in section 2.5.3.

e Activation and pooling layers

In this study, a non-linear activation function such as RELU was implemented in the output volume of
the convolutional layers to generalize the network using SGD (see table 3). The RELU activation function
is explained in equation 12 in section 2.5.2. In addition, the max-pooling function was employed in the
output volume of the activation layer for sub-sampling and parameter reduction which helps to extract
more abstract features (Goodfellow et al., 2016). In this study, commonly used max-pooling region 2X2,
stride two and zero padding one were employed in activation layer to train the network using SGD
(CS231n, 2018; Bergado, 2016; Mboga, 2017) (see table 3).
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o  Fully-connected and output layers

Initially, FC layer one with 128 neurons were implemented in this study (see table 3). In addition, seven
output layers were implemented to classify the seven urban land use classes. In FC layer, stride one and no
zero padding were commonly used (e.g., Bergado, 2016; Mboga, 2017). The posterior probability of this
output layer was computed using the SoftMax activation function using equation 13 in section 2.5.2.
Thus, cross-entropy objective loss function was implemented in this network to estimate the
misclassification error, which was minimized using backpropagation with stochastic gradient descent
(SGD) optimization function. The cross-entropy objective loss function and SGD employ equation 14
and 15 and in section 2.5.2. Finally, the posterior probability of output layers was used for land use
classification which was used for final accuracy assessment using whole tiles (6,255,001 pixels). However,
different learning and regularization parameters and CNN hyperaerated were used for parameters tuning
using K-fold cross-validation which explained in section 3.12.2. This helps to select best hyperparameters
to reduce the overfitting of the network and improve the overall classification accuracy (Bergado, 2016;
Mboga, 2017).

3.11. Feature selection

Feature selection was carried out for SVM-RBF-OBIA and SVM-RBF-BBIA-based urban land cover/use
classification because to reduce the risk of Hughes phenomena (Damodaran et al,, 2017; Persello &
Bruzzone, 2016). SFS-HSIC, a supervised feature selection method was employed because it is very
simple, fast, robust as compared to the other feature selection methods (e.g., PCA, rank, etc.) for selecting
features from the high-dimensional feature space (Persello & Bruzzone, 2016; Damodaran et al., 2017;
Huang et al.,, 2017). Firstly, Hilbert-Schmidt Independence Criterion (HSIC) was used to estimate the
class separability by summarizing the reproducing kernel Hilbert space (RKHS) for class dependency (or
similarity) measure (Persello & Bruzzone, 2016; Damodaran et al., 2017). HSIC is the square of the
Hilbert—Schmidt norm of the cross-covatiance operator (ICxy I2us) which was measured from the RKHS
using equation 48 (Persello & Bruzzone, 2016).

HSIC(H,G,P(X,Y)) = [CxylI* 5 (48)
Where, ”CXYHZHS = Exx’yy’ [k(x: x’)l()’, y’)] + Exx’ [k(x: x,)]Eyy' [k(}’, y,)]
—2Exy[Exrk(x, xD]Ey [1(y, y )
Where, Exe,yyis the expectation over both (x,y) according to the joint probability distribution, P(X,Y) and
an additional pair of variables (x’,y’) with the distribution P(X’,Y’) drawn independently from the RKSH.
Similarly, k(x,x’) is the kernel function (Gaussian radial basis function) which is used to evaluate the
similarity between input instances while 1(y,y’) is the kernel function for output instances. The Gaussian
radial basis function is explained equation 5 in section 2.4. With the given training set (X,Y), the empirical

measures of the HSIC were used to evaluate the class dependency based on the degree of alignment of the
input kernel matrix, K and output kernel matrix, L using equation 49 (Persello & Bruzzone, 2010).

__ 1
ASIC(X,Y) = — TR(KHLH) (49)

where, m=number of training samples, H=centering matrix, T=trace operator. The HSIC value is equal to
0 explained the X (e.g., image features) and Y (e.g., land cover/use class labels) variables are highly
independent while a higher value of HSIC described the strong dependence between X and Y variables
(see appendix figure B6.1). As the RBF kernel used for computing HSIC, so the variation of sigma value
affects the HSIC value. Hence, 10-fold cross-validation of sigma value (sigma= 1-! to 102) was used to
select best HSIC value corresponding to the maximum sigma value. Secondly, Sequential Feature Selection
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(SES) strategy was employed to select the best set of features sequentially which corresponds to the
maximum HSIC and Sigma value. The SFS-HSIC was developed in R studio programming language. In
this study, 200 training samples were split into training and validation sets using 60:40 rule for selecting
and validation best images features. Thus, 120 image features were used for selecting best features set for
OBIA-based urban land cover classification using SFS-HSIC. In addition, 125 images were used selecting
best features set for OBIA-based urban land use classification while 121 image features were used for
selecting best features set for BBIA-based urban land use classification. Finally, SVM-RBF with a fixed
cost equal to 100 and best gamma (e.g., Sigma) was used for final accuracy assessment of the selected best
features set using 6,255,001 test pixels.

3.12.  Parameter tuning

The parameter tuning is a very crucial step in image classification to developed best parameter of
classifiers which provided maximum classification accuracy. The parameters tuning was employed for
tilel, and same parameters wetre used for urban land cover/use classification for tilel and tile2 to assess
the domain adaptation (transferability) of the classifiers. This strategy was applied for the SVM-RBF-based
OBIA and BBIA and CNN-based BBIA which has explained below.

3.12.1.  Parameter tuning for SVM-RBF

In this study, the grid search hold-out 10-fold cross-validation was employed to obtain best cost and
gamma parameters of SVM-RBF for OBIA and BBIA-based urban land cover/use classification. The grid
search hold-out k-fold cross-validation was applied in this study, because this is a fast, robust and widely
used algorithm for parameters tuning in SVM-RBF-based image classification (Damodaran et al., 2017; Li
et al,, 2016; Liao et al.,, 2017; Sun et al., 20106). In the study, the cost range (C) is 10! to 10% (0.1-1000)
while gamma (o) range is 103 to 10! (0.001 to 10) were selected because the higher value of cost and
gamma parameters leads to overfitting in the classification problem (Duque et al., 2017). The cost and
gamma range were divided into 10 sequential folds for grid search hold-out cross-validation using SVM-
RBF. In this study, parameter tuning was carried out by splitting 200 training samples into training and
validation sets to train and validate the algorithm for selecting best parameters. The final overall accuracy
of the selected best parameters was assessed using 6,255,001 test pixels (e.g., whole tile).

3.12.2.  Parameter tuning for CNN

The hyperparameters of CNN as divided into two categories such as learning and regularization
parameters and hyperparameters related to configuration which were used for parameter tuning. As
mentioned above, parameter tuning using k-fold cross-validation is a robust approach to resolve the risk
of overfitting of the classification algorithm. In this study, 10-fold cross-validation (K) of the
hyperparameters was carried which mentioned in table 4, 5 and 6 following the guideline of the previous
researches (e.g., Bergado, 2016; Mboga, 2017). In this study, 1000 training samples were split into training
and validation sets using 60:40 rule to train and validate the network for selecting best hyperparameters.
The final overall accuracy of the selected best hyperparameters was assessed using 6,255,001 test pixels
(e.g., whole tile).

e Learning and regularization parameters

Table 4 shows the different learning and regularization parameters which were used for 6-fold cross-
validation. In this cross-validation process, initial CNN configuration was used which explained in
table 5.
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Table 4. Experiments on leaning and regularization parameters.

Hyperparameters Values

Batch size 10

Maximum number of epoch, t 1000
Momentum, a 0.90

Learning rate, € 0.01, 0.001

Weight decay, A 0.01, 0.001, 0.0001
Dropout rate, d; in (D1 & D2) (0, 0.5), (0.25, 0.5) (0.5, 0.5)

Initially, two convolutional layers and one fully-connected layer were used to train the CNN with
stochastic gradient descent (see table 5). A batch size 10 and maximum epoch 1000 were selected based on
the initial experiment on others batch size 5, 15 and epoch 500 and 1500 based on classification accuracy
on the validation set. It was observed that the network gets overfitted while using batch size 5, 15 and
epoch 500 and 1500 as compared to batch size 10 and epoch 1000. In addition, momentum is 0.90 is
commonly used to train the network (e.g., Bergado, 2016; Mboga, 2017). However, different learning rate,
weight decay, and dropout rate experimented because the network is affected by the risk of overfitting due
to inappropriate use of such learning and regularization parameters (Bergado, 2016; Mboga, 2017,
Srivastava et al., 2014).

o Hyperparameters related to CNN configuration

Table 6 shows different hyperparameters related to the CNN configuration which were tuned using the
best learning and regularization parameters and initial CNN configuration showing in table 4 and 5. This
initial CNN configuration as showing in Table 5 was selected based on the guideline of the previous
research carried by Bergado, 2016 and Mboga, 2017. A patch size 29 was selected based on the highest
accuracy obtained by the SVM-RBF-BBIA for urban land use classification. In this study, 4-fold cross-
validation (K) was carried out to select the best hyperparameters related to the CNN configuration using
the same training, validation and test samples as used for tuning the learning and regularization

parameters.
Table 5. Initial CNN configuration.
Hyperparameters Values
Layers 1-Ci-A-P-D1—Cy-A-P-D1—FC;-A-D2—O-S-CP
Non-linearity (A=RELU) used in Cizand FCy RELU
Non-linearity (5= SoftMax) used in O SoftMax
Width of FC 128
Patch size 29
Number of filters, K 8
Size of filters 5
Pooling size 2

Note: I=input, C=convolution layer, A =activation, P=max pooling, D=dropout, FC=fully connected
layer, O=output, S= SoftMax, CP=class probability

The cross-validation of these hyperparameters related to CNN configuration is essential because the
network is overfitted due to high volume of parameters sharing and complex depth of the network which
controlled by the hyperparameters mentioned in table 6 (Bergado, 2016; Mboga, 2017).
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Table 6. Experiments on hyperparameters related to CNN configuration.

Hyper-parameters K-1 K-2 K-3 K-4
Patch size 29 29 29 29

Number of filters 8,16,32,64 Best Best Best
Filter dimension 5 5,15,25 Best Best
Number of convolutional layer (Cn) 2 2 1,234 Best
Number of fully-connected layers (FCn) 1 1 1 1,2,3

The varying zero padding (e.g., 2 for filter size 5) in the convolutional layer was used which determined
with the equation 18 in section 2.5.3 while the stride one was commonly used. However, the spatial size of
the output volume in convolution layers was managed by the equation 17 in section 2.5.3. In addition,
pooling size two, zero padding one and stride two were commonly used in the max-pooling layer.
Similarly, stride one and no zero padding were commonly used in FC layer (e.g., Bergado, 2016; Mboga,
2017).

3.13. Urban land cover/use classification

The SVM-RBF and CNN were used to petform supervised OBIA and BBIA-based urban land cover/use
classification, which is explained below.

e Urban land cover classification

The SVM-RBF-based supervised OBIA was used for urban land cover classification using the best
selected image features, best cost and gamma parameters and best size of training samples. The
classification of the urban land cover is carried out to extract contextual features using spatial metrics.

e Urban land use classification

SVM-RBF and CNN were used for supervised OBIA and BBIA-based urban land use classification. The
SVM-RBF was used for supervised OBIA and BBIA-based urban land use classification using best
selected features, best cost and gamma parameters and best size of training samples. Similarly, the CNN
was to carry out supervised BBIA-based urban land use classification using best hyperparameters and best
size of training samples.

3.14.  Validation and accuracy assessments

The validation allows to test the ability of the classifiers/algorithms to solve the classification problems
with reference to ground reality. In image analysis, accuracy assessment of the classification results can be
done in many ways (e.g., pixel-based, point-based, area-based etc.) depending on the types of image
classification approaches (e.g., PBIA, OBIA, etc.). In PBIA, pixel-based accuracy assessment is most
commonly used (e.g., Persello & Bruzzone, 2010) while area-based accuracy assessment is common for
OBIA (e.g., Ma et al., 2015) and BBIA (e.g., Duque et al., 2017). The point-based and area-based accuracy
assessment approaches using samples test point and polygon (using sampling technique) are more
susceptible to the risk of biasness for OBIA and BBIA. This is happened because there is a combination
of pure and mixed objects or blocks in OBIA and BBIA occurred due to scale issue (e.g., Ma et al., 2015)
which cannot equally be assessed using sampling technique. In this regard, pixel-based accuracy
assessment approach was used to evaluate whole tiles pixel-wise (e.g., 6,255,001 test pixels) for OBIA and
BBIA-based urban land cover/use classification. The pixel-based accuracy assessment was performed to
measure the different quantitative accuracy assessment indices (e.g., overall accuracy, user accuracy,
producer accuracy and kappa) from the confusion matrix using equation 50-53 (Persello & Bruzzone,
2010; Huang et al., 2017).
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Where, n=number of land cover or use classes; N=total number of test samples, C;=number of correctly
classified by the class, i; Ci+=row total of class, i; C+=column total of class, i. The overall accuracy
explained the land cover/use correctly classified by the classifier with reference to the test samples and
classification output itself. In addition, user accuracy explained the accuracy with reference to classification
output itself while produced accuracy explained the accuracy with reference to the test samples. In
addition, kappa coefficient +1 means the classification is better than the random classification while 0 and

-1 explained the opposite (Humboldt State University, 2018).

3.15. Evaluation of performance
The performances of the selected machine learning algorithms for urban land use classification were
evaluated based on the different accuracies assessment indices (e.g., Bergado, 2016). These accuracies

assessment indices were measured from the confusion matrix which explained below.

o Performance assessment based on quantitative indices

The quantitative performance assessment was done based on the commonly used quantitative accuracy
assessment indices such as overall accuracy, kappa, recall, precision, and Fl-score. However, recall
explained to user accuracy (UA) while precision explained to producer accuracy (PA) (Radoux & Bogaert,
2017). The F1-score explained the harmonic mean of the precision and recall. The overall accuracy, kappa,
user accuracy and producer accuracy already explained in the section 3.14. In addition, the recall,
precision, and F1-score are explained in percent using the equation 54-56 (e.g., Bergado, 2016).

True Positive

Recall = x 100 54
eca True Positive + False Negetive G4

procist True Positive 100 55
_ X
recision True Positive + False Positive )

Precision X Recall

F1 —score = (2 X ) x 100 (56)

Precision + Recall

e Performance assessment based on locational indices

The locational performance assessment was done based on the commonly used locational accuracy
assessment indices such as Klocation and Kno (Ahmed, Ahmed, & Zhu, 2013; Megahed et al., 2015). The
Klocation (kappa for location) explained the kappa agreement for location while Kno (kappa for no
information) explained the overall agreement in terms of quantity and location (Eastman, 2012). These
indices were measured using validation module in Idrisi Selva. The locational accuracy assessment indices

explained classification agreement based on the location at grid cell level.
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e Performance assessment based on other indices

Beyond, the quantitative and locational agreement, other indices such as quality of the classified map and
time taken to execute the classification by the classifiers. The quality of the classified maps was compared
with the referenced and local land use classification scheme maps based on the visual interpretation of
shape, size, orientation, misclassification of the classified land use. In addition, the time taken for feature
extraction, feature selection, and parameter tuning was also compared for assessing overall time taken by
the classifiers to complete the classification.

3.16. Domain adaptation

The domain adaptation is a very efficient measure to assess the domain adaptability of the classifiers based
on the parameters extracted from one tile and same parameters are used for different tile (Bergado, 2016).
In this study, the sampled domain adaptation was employed to classify the urban land use of the tile one
from where training samples were taken. In addition, unsampled domain adaptation was also employed to
classify the urban land use of the tile two from where training samples were not taken, but the training
samples were taken from another tile one.
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4. RESULTS AND DISCUSSIONS

This chapter provides the results and discussion. The results are obtained from the selected methods and
datasets carried out in chapter 3, to address the research objectives and research questions.

41. Generated fused satelliete imagery

Figure 13 shows the fused image of the MS and PAN bands of Worldview-3 imagery which have been
produced using the HPF resolution merge (section 3.3). The figure 13 shows that the HPF provides very
realistic result without losing the spatial and spectral information of the original satellite image. This fused
satellite imagety provides detailed information of the different urban land cover/use as compate to the
original satellite imagery (see appendix figure B3.1).

Tilel Tile2

Figure 13. Shows Worldview3 fused satellite imageries of tilel and tile2 with 2501 X 2501 pixels, 2015.

4.2, Prepared referenced urban land cover/use maps

The figure 14 shows the reference urban land use maps have been prepared as explained in section 3.3.
This reference urban land use maps have been used for validation and accuracy assessment of the
classified urban land use maps. In addition, reference urban land cover maps that prepare from reference
land use map have been used for validation and accuracy assessment of the classified urban land covers
maps (appendix figure C1.1). Therefore, each of the referenced land use/cover maps has 2501 row by
2501 column with 6,255,001 pixels.
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Urban land use classes
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Figure 14. Shows referenced urban land use maps of Bengaluru city, 2015.

43. Multi-resolution image segmentation

The results of the multi-resolution segmentation employing the MRS with ESP tool on fused imagery
(explained in section 3.4) is shown in Table 7, producing different scale parameters for MRS level 1, level
2, and level-3 based on the selected compactness and shape parameter. In segmentation level 1, over-
segmentation is mostly observed which is shown in figure 15 which explains the over-segmentation effects
of MRS. In general, over-segmentation helps to distinguish objects with a small change of compactness
and shape of the object, and over-segmented objects are easy to merge by the classifiers.

Table 7. Scale parameter, shape and compactness used for the study.

Multi-resolution Scale Compactness Shape Number of | Mean segment
segmentation segments size (sq. metre)
Level 1 133 0.80 0.50 3171 228.03
Level 2 223 1100 657.34
Level 3 323 508 1423.38

The MRS level 2 and level 3 shows the number of segments gradually decreasing with the increases of
average segment size as compare to the level 1 (see table 7). This scenario produces the risk of under-
segmentation in MRS which is shown in figure 15. The highlighted segment of MRS level 2 covers
industrial and vacant land in one segment and does not fit with only the industrial land use. Similarly, MRS
level 3 includes three land uses such as industrial, vacant and transportation in one segment
(see figure 15). The under-segmentation is a big problem in image classification as compare to the over-
segment because classifier unable to split the under-segmented object into target land use classes. The
overall result shows that scale issues one of the significant problems in MRS which suggest to select an
appropriate scale for classifying urban land use/cover. Therefore, selection of best MRS level is very
difficult only based on visual inspection. In this regard, different MRS levels has statistically validated in
feature selection and parameter tuning process (see section 4.7 and 4.8) to select best MRS level for final
land use classification.
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Level 2

Level 3 Fused satellite imagery

- Industrial - Transportation Urban green Vacant land

Figure 15. Shows different MRS levels compare with referenced land use and VHR imagery.

4.4. Generated blocks

This section shows the different block sizes (see figure 16) obtains by employing the method explained in
section 3.5. Figure 16 shows number of the block in different block size (e.g., 29%X29, 43X43, etc.)
gradually decreases because of increases of scale size which shows that pure blocks(e.g., block fully covers
the land use) are dramatically reduced. Consequently, heterogeneous blocks are increased. The overall
result shows that scale issue one of the significant problems in BBIA which need to consider for better
land use classification. Similar to the MRS levels, it is also difficult to select best block size only based on
visual interpretation. In this regard, different blocks have statistically validated in feature selection and
parameter tuning process (see section 4.7 and 4.8) to select best block size for final land use classification.

m | (g
Block 29X29 pixels, Block 4343 pixels, Block 59%59 pixels, ~ Fused satellite imagery
7396 blocks 3364 blocks 1764 blocks

Residential - Industrial - Transportation Urban green Vacant land

Figure 16. Shows different block size compare with the referenced land use and VHR imagery.
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4.5, Extratced, aggregated and normalized Image features

In total, 135 image features (see figure 17; appendix table C2.1) have been extracted using the selected
advanced methods explained in section 3.6. In OBIA-based urban land cover classification, 120 features
are extracted while 125 features extracted for OBIA-Based urban land use classification. For BBIA-based
urban land use classification, 121 features are extracted (see figure 17; appendix table C2.1). These image
features have been normalized using the max-min method explained in section 3.7. These aggregated and
normalized features have been used for selecting the best featutres for urban land cover/use classification.

Image Features
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Figure 17. Shows image features for OBIA and BBIA-based urban land covet/use classification using SVM-RBF.

4.6. Training and test samples

This section shows the selected training, and test samples for urban land cover/use classification based on
the strategy explained in section 3.9. Table 8 and 9 shows the training and test samples have been selected
for OBIA and BBIA-based urban land use classification using SVM-RBF. In CNN-BBIA, 200 original
training samples have been artificially increased to 1000, 2000 and 3000 (e.g., augmented training samples)
by rotation in which training samples under each land use classes proportionally increases (e.g., each class
increase by 5, 10 and 15 times). The test samples for CNN is also same as SVM-RBF. These training
samples have been randomly split into training and validation samples using the 60:40 percent rule during
feature selection and parameter tuning. The training and test samples at MRS level 1 for SVM-RBF-
OBIA-based urban land cover classification are shown in appendix table C3.1.1, and C3.1.2. Training and
test samples at MRS level 2 and 3 for SVM-RBF-OBIA-based urban land use classification are shown in
appendix table C3.2.1, C3.2.2, and C3.2.3. In addition, training and test samples for block 43X43 pixel and
block 59%59 pixel for SVM-RBF-BBIA-based urban land use classification are shown in table appendix
C3.3.1,C3.3.2,and C3.3.3.
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Table 8. Training and test samples for SVM-RBF-OBIA-based urban land use classification (MRS level 1).

SL Training class Tilel (sampled domain) Tile2 (unsampled domain)

no. Number of training | Number of test Number of test pixels
objects pixels

1 Residential 50 2717828 2436234

2 Commercial 15 184944 435080

3 Industrial 30 845305 500283

4 Transportation 20 359030 340960

5 Urban green 35 1099990 1588720

6 Vacant land 20 873329 811553

7 Waterbody/Shadow 30 174575 142171

Total 200 6255001 6255001

Table 9. Training and test samples for SVM-RBF/CNN-BBIA-based urban land use classification (block 29x29).

SL Training class Tilel (sampled domain) Tile2 (unsampled domain)

no. Number of training | Number of test Number of test pixels
objects pixels

1 Residential 55 2717828 2436234

2 Commercial 17 184944 435080

3 Industrial 35 845305 500283

4 Transportation 22 359030 340960

5 Utrban green 36 1099990 1588720

6 Vacant land 20 873329 811553

7 Waterbody/shadow 15 174575 142171

Total 200 6255001 6255001

However, it is observed from the table 8, 9 and appendix C3.2 and C3.3 is that the variation in the number
of training samples in each land use class has occurred due to increase of scale size and decrease of pure
segments and blocks in each land use class.

4.7. Selected best image features

This section shows the selected best image features set for urban land cover/use classification employing
the method explained in section 3.11. Out of 120 features, 25 best features have been selected for SVM-
RBF-OBIA-based urban land cover classification in tile one. This selected best feature set at MRS level
lobtains highest overall accuracy (77.98%) as compare to the other features sets (see appendix table C4.1)
due to having better class separability (HSIC=0.0397) as compare to others. Figure 18 and table 10 shows
the best features selected from the 125 and 121 image features in tile one for SVM-RBF-OBIA and SVM-
RBF-BBIA-based urban land use classification. The selected best feature set at MRS level 1 provides the
highest overall accuracy (69.53 %) as compare to other features sets due to having higher class separability
(HSIC=0.05806) as compare to others features set. However, selected best feature set at MRS level 1
provides the highest overall accuracy (69.53 %) as compare to the feature set at MRS level 2 and 3
(see figure 18 and appendix table C4.2) due to the increasing effects of under-segmentation (see section
4.3). Similarly, selected best image feature set at block 29%X29 obtains highest overall accuracy (67.70%) as
compare to the other feature set due to having higher class separability (HSIC = 0.0574). However,
selected best feature set at block 29%X29 provides highest overall accuracy (67.70%) as compare to the
feature set at block 43%X43 and block 59%59 due to increasing effects of the mixed block caused by scale
issue (see section 4.4) (see figure 18 and appendix table C4.3). The best features which have been selected
from tile one and same features have been used for tile two for domain adaptation.
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Figure 18. Shows selection of best image features for SVM-RBF-OBIA and SVM-RBF-BBIA-based land use
classification using SFS-HSIC.

Table 10. Proposed best fifteen images features for urban land use classification using SFS-HSIC.

Number SVM-RBF-OBIA (MRS level 1) SVM-RBF-BBIA (block 29%29)
best of Features type | Name of the best features | Features type | Name of the best features
Features

1 Spectral Meanband3 Spectral Meanband1

2 Meanband4 Meanband?2

3 Meanband5 Meanband3

4 Meanband6 Meanband4

5 Meanband? Meanband5

6 Meanband8 Meanband6

7 Mean NDVI Meanband7

8 Textural GLCMcortrelation band1 Meanband8

9 GLDVentropy bandl Mean brightness

10 GLDVentropy band2 Mean NDVI

11 GLDVentropy band8 Textural GLCM entropy band8
12 Contextual | Aggregation index GLDV entropy band?
13 Fractal dimension Contextual | Aggregation index

14 Cohesion Cohesion

15 Largest patch index Largest patch index

The above result shows that features selection one of the very important consideration to select the
appropriate features which having better class separability for improving the urban land cover/use
classification accuracy. It is also observed that spectral features along with textural and contextual features
are very important for classifying urban land use because urban land use is mostly separated in terms of
texture and contextual features. In addition, one of the important findings is that most of the cases GLCM
widely used for classifying urban land use (e.g., Kuffer et al. 2017; Herold et al. 2003; Yanchen et al. 2014)
but result shows GLCM along with GLDV in most important for addressing texture in better way using
VHR imagery for urban land use classification (Aguilar et al., 2012). Another important obesrvation is that
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LBP, MPPR and geometric features are not selected perhaps due to combine effects of robust textural
features such as GLCM, GLDV and contextual fetaures such as spatial metrics.

However, in feature selection process, best gamma and fixed cost are equal to 100 are used for SVM-
RBF. However, the accuracy of the best feature sets in different MRS levels and block levels might be
varied while employing the best gamma and best cost value together. Thus, best feature set with higher
overall accuracy at MRS level 1 (15 features), MRS level 2 (20 features) and MRS level 3 (15 features) as
well as block 29%29 (15 features), 43X43 (20 features) and block 59%59 (10 features) (see figure 18,
appendix table C4.2 and C4.3) have been used for parameter tuning using k-fold cross-validation. This
helps to select the best image feature set at best MRS level and block level for urban land use classification
in a very efficient manner.

4.38.

This section shows the selected best parameters of SVM-RBF and CNN for urban land cover/use
classification employing the method explained in section 3.12. which are explained below:

Selcted best parameters

4.8.1. Best parameters of SVM-RBF

This section shows the results obtains from the holdout grid search 10-fold cross-validation explained in
section 3.12.1. The result shows that 25 best features at MRS level 1 shows that the best gamma (0.1668)
and best cost (1000) provides highest overall accuracy (78.21 %) as compare to others set of parameters
for SVM-RBF-OBIA-based urban land cover classification (see appendix table C5.1.1). Table 11 shows
the best parameters at different best features at different MRS and block level for SVM-RBF-OBIA and
SVM-RBF-BBIA -based urban land use classification. The result shows that the overall accuracy of
different best features at different MRS and block level has improved while employing best parameters as
compare to best gamma with fixed cost as explained in section 4.7. Therefore, it is also observed that best
features at MRS level 1 still provides highest overall accuracy (70.58%) as compare to the best features at
MRS level 2 MRS level 3 while employing best parameters (see appendix table C5.1.3, table 11). Similar,
outcome also shows in different block level (see appendix table C5.1.4, table 11). Therefore, the overall
result shows that parameter tuning one of the foremost consideration to improve the overall classification
accuracy by penalizing the cost of overfitting of the classifier (e.g., SVM-RBF). The results also prove that
the effect of under-segmentation in MRS level 2 and 3, as well as the effect of the mixed block in block
size 43X43 and 59%59, still exits while employing best parameters. Therefore, best parameters, best
features at MRS level 1 (best MRS level) and block 29%X29 (best block size) are selected in tile one
(see highlighted column of table 11), and same has used for tile two for domain adaptation.

Table 11. Parameter tuning for SVM-RBF-OBIA and SVM-RBF-BBIA using 10-fold cross-validation.

SVM-RBF SVM-RBF-OBIA SVM-RBF-BBIA

parameters | MRS level 1 | MRS level 2 | MRS level 3 | Block 29%x29 | Block 43x43 | Block 59%59
15 features | 20 features | 15 features 15 features 20 features 10 features

Best gamma 0.0599 0.1668 0.4642 1.292 0.4642 1.292

Best cost 1000 129.155 359.381 16.681 16.681 16.681

Overall 70.58 68.10 69.08 68.37 67.46 60.92

accuracy

o  Experiment of training samples size on proposed SVM-RBF best parameters

The experiment on the size of training samples is essential because the accuracy of the classifiers is
affected by the size of training samples due to the effect of Hughes phenomena. Thus, different size of
training samples has been experimented using the best parameters of SVM-RBF. The proposed best
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parameter of SVM-RBF-OBIA for urban land cover classification provides highest overall classification
(78.21%) on 200 training samples as compare to the other sample sizes (see appendix, table C5.1.2). Table
12 shows that 150 training samples provide highest overall classification accuracy as compare to other
sizes of training samples on proposed best parameters of SVM-RBF-OBIA (70.83%) and SVM-RBF-
BBIA (68.51%) for urban land use classification.

Table 12. Experiment of size of training samples for urban land use classification.

Size of training Overall accuracy
samples
SVM-RBF-OBIA SVM-RBF-BBIA
50 65.49 60.93
100 66.19 63.39
150 70.83 68.51
200 70.58 068.37

The result shows that the absence of optimum size of training samples has a serious effect on overall
classification accuracy. Therefore, the result also proves that experiment of different training samples size
is a good choice to improve the overall classification accuracy by reducing the effect of Hughes
phenomena (Mboga, 2017). Therefore, this proposed best training samples size (150) of tile one which has
been used for urban land use classification of tile two.

4.8.2. Best parameters of CNN

This section provides the best hyperparameters of the CNN which have been obtained employing the
parameters tuning strategy explained the section 3.12.2. This has done using 1000 training samples and
6,255,001 test samples with stochastic gradient descent. The best learning and regularization parameters
and CNN hyperparameters are explained below:

e Learning and regularization parameters

The best learning and regularization parameters of the CNN-BBIA-based urban land use classification
have been obtained using 6-fold cross-validation (see appendix table C5.2.1.1, C5.2.1.2, and C5.2.1.3,
figure C5.2.1.1.). The network obtains 65.12 % overall classification (see appendix table C5.2.1.3) on best
learning and regularization parameters (see table 13) with the fixed CNN configuration (see table 14). The
overall accuracy has decreased for other learning and regularization parameters due to overfitting of the
network. In the learning and regularization parameters tuning phase, zero padding is 2 and stride 1 have
been used for convolutional layers while zero padding 1 and stride 2 used for the pooling layers. In
addition, stride 1 and no zero padding have been used for FC layer.

Table 13. Best learning and regularization parameters of CNN-BBIA-based urban land use classification.

Hyperparameters Value
Batch size 10
Maximum number of epoch 1000
Momentum 0.90
Learning rate 0.001
Weight decay 0.01
Dropout rate in (D1 & D2) (0.25, 0.5)

44



EVALUATING THE PERFORMANCE OF MACHINE LEARNING ALGORITHMS FOR URBAN LAND USE MAPPING USING VERY HIGH RESOLUTION SATELLITE IMAGERY

Table 14. Fixed CNN configuration used for selecting best learning and regularization parameters.

Hyperparameters Value

Layers I-Ci-A-P-D1—C5-A-P-D1—FC-A-D2—O-5-CP
Non-linearity (A=RELU) used in Ci2and FC; RELU

Non-linearity (S= SoftMax) used in O SoftMax

Width of FC 128

Patch size 29

Number of filters, K 8

Size of filters 5

Pooling size 2

Note: I=input, C=convolution layer, A =activation, P=max pooling, D=dropout, FC=fully connected

layer, O=output, S= SoftMax, CP=class probability

The result shows that the use of inappropriate learning and regularization parameters has a serious effect
on overfitting of the network which affects the overall classification accuracy. Therefore, tuning of
learning and regularization parameters is one of the important consideration in CNN for urban land
use/cover classification (Bergado, 2016; Mboga, 2017).

e CNN hyperparameters

The 4-fold cross-validation of the CNN hyperparameters such as the number of filters, size of filters,
number of convolutional layers and number of fully-connected layers have been carried out which are
explained below:

o  Experiment on number of filters

The experiment on different number of filters have been carried out using the selected best learning and
regularization parameters (see appendix table C5.2.2.1) and with fixed others CNN hyperparameters
(see appendix table C5.2.2.2). Increasing the number of filters helps to learn complex features in one way
and increased huge parameters in another way (Bergado, 2016; Mboga, 2017). The increases of huge
parameters prone to overfitting of the network which reduces the overall classification accuracy (CS231n,
2018). As a result, the network provides 65.12% overall accuracy on the best 8 filters while accuracy has
decreased for the other filters due to overfitting of the network (see appendix table C5.2.2.3, figure 19).
The zero padding, stride for convolutional and FC layers are similar as mentioned in the tuning phase of
the learning and regularization parameters.

o Filter size experiment

The filter size experiment has been carried using best learning and regularization parameters (see appendix
table C5.2.2.4) and with fixed others CNN hyperparameters (see appendix table C5.2.2.5). The increase of
filter size learns large and more complex spatial pattern (e.g., edge and gradient) to address the particular
land use classes in one way and also to increase the parameters in another way (Bergado, 2016). Too large
filter overestimates the spatial pattern for a particular land use classes as well as large parameters leads to
overfitting of the network. The overfitting of the network reduces the overall classification accuracy. As a
result, the network provides the highest overall accuracy (65.12%) on filter size 5X5 pixels as compare to
the other filter sizes (see appendix table C5.2.2.6, figure 19). The zero padding for filter size 5, 15 and 25
are 2, 7 and 12 while stride 1 have been used for convolutional layers. The stride 1 and no zero padding
have been used for FC layer.
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Figure 19. Shows overall accuracy varied with different number of filters and filter sizes.

e  Experiment of different convolutional layers

The experiment of the different convolutional layer (C,) with the fixed FC layers (e.g., FC=1) which leads
to understand how the depth of the network helps to improve the classification accuracy. In addition,
increasing the number of convolutional layers sometimes provides more abstract features to improve the
classification accuracy (Mboga, 2017). However, increasing the number of convolutional layers also
sometimes oversimplify the features due to frequent drop of parameters thorough max-pooling in each
convolutional layer. As a result, two convolutional layers (Cz) with the fixed FC layers one with the best
learning and regularization parameters (see appendix table C5.2.2.7) and the best CNN hyperparameters
(see appendix table C5.2.2.8) provides highest overall classification accuracy (65.12%) as compare to other
convolution layers (see appendix table C5.2.2.9; figure 20). The zero padding, stride for convolutional and
FC layers are similar as mentioned in the tuning phase of the learning and regularization parameters and
number of filters experiment.

o  Experiment of different fully-connected layers

The experiment of different FC layers has been carried out with the fixed convolutional layer (e.g., 2) and
best learning and regularization parameters (see appendix table C5.2.2.10) and best CNN hyperparameters
(see appendix table C5.2.2.11). The FC layer is termed as the dense layer of CNN.
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Figure 20. Shows overall accuracy varied with different number of convolutional and FC layers.
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When increasing the FC layers, the network becomes complex. A complex network increases the risk of
overfitting of the network. As mentioned above overfitting the network reduces the classification
accuracy. The result shows that FC layer one gets the highest overall accuracy (65.12%) as compare to FC
layer two and three (see appendix table C5.2.2.12, figure 20). The zero padding, stride for convolutional
and FC layers are similar as mentioned in the tuning phase of the learning and regularization parameters,
number of filters experiment and number of convolutional layers experiment. The tuning of CNN
hyperparameters shows that overall classification is affected by the overfitting of the network while
employing unsuitable hyperparameters. Therefore, along with learning and regularization parameters,
tuning of CNN hyperparameters is also essential considering to learn best local contextual features to
improve the overall classification accuracy (Bergado, 2016 and Mboga, 2017). The best CNN parameters
as follows:

o Proposed best parameters and architecture of CNN

Based on the 10-fold cross-validation of CNN parameters, the proposed learning, and regularization
parameter, CNN hyperparameters and architecture are shown in table 15 and 16. The proposed CNN
architecture obtains two convolutional layers and one FC layer. The padding is 2 and stride 1 have been
used for convolutional layers while zero padding 1 and stride 2 used for the pooling layers. In addition,
stride 1 and no zero padding have been used for FC layer. The proposed CNN architecture has been
developed on tile one, which provides 65.12% overall classification accuracy on 1000 training samples and
6,255,001 test samples. This proposed CNN architecture is applied in tile two for domain adaptation.

Table 15. Proposed best learning and regularization parameters.

Hyperparameters Value
Batch size 10
Maximum number of epoch, t 1000
Momentum, a 0.90
Learning rate, € 0.001
Weight decay, A 0.01
Dropout rate, d: in (D1 & D2) (0.25, 0.5)

Table 16. Proposed best CNN configuration and hyperparameters.

Hyperparameters Value

Layers 1-Ci-A-P-D1—Cy-A-P-D1—FC;-A-D2—0O-S-CP
Non-linearity (A=RELU) used in Cipand FC; RELU

Non-linearity (S= SoftMax) used in O SoftMax

Width of FC 128

Patch size 29

Number of filters, K 8

Size of filters 5

Pooling size 2

Note: I=input, C=convolutional layer, A =activation, P=max pooling, D=dropout, FC=fully connected
layer, O=output, S= SoftMax, CP=class probability

o  Experiment of training sample sizes with proposed best parameters and architecture of CNN

Table 17 shows that the proposed best learning and regularization parameter (see table 15), CNN
hyperparameters and configuration (see table 16) provides the highest overall classification accuracy on
1000 training samples (augmented training samples) as compare to the other training samples. Overall
classification accuracy on training samples 200 is low (55%) because the CNN performs better on higher
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samples size or augmented training samples. However, too high samples size for a specific CNN
architecture, network gets overfitted and consequently reduces the overall classification accuracy
(see table 17). The result shows that use of the inappropriate size of training samples has a serious effect
on overfitting of the network because of the effects of Hughes phenomena. In addition, the result also
shows that use of augmented training samples one of the important choice to reduce the overfitting of the
network (Mboga, 2017). Therefore, the result proves that experiment on different size of training samples
as well as on augmented training samples has improved the overall classification accuracy by reducing the
overfitting of the network (see table 17).

Table 17. Experiment of size of training samples for urban land use classification.

Size of training samples Overall accuracy
200 55.00
1000 65.12
2000 62.77
3000 62.32
4.9. Urban land cover/use classification and accuarcy assesement

This section presents the urban land cover/use classification, validation, and accuracy. The urban use
classification has carried out in sampled (tile one) and unsampled (tile two) domain which are explained
below:

4.9.1. SVM-RBF-OBIA-based urban land cover classification

Based on the proposed best features set, SVM-RBF parameters and training samples size (see section 4.7
and 4.8.1), the SVM-RBF-OBIA provides 78.21% overall classification accuracy and kappa 0.6507 for
urban land cover classification in tile one (see appendix figure C6.1, table C6.1). In addition, while
adopting the similar proposed parameters as used in tile one, the SVM-RBF-OBIA provides 75.52 %
overall classification accuracy and kappa 0.6182 for urban land cover classification in tile two
(see appendix figure C6.2, table C6.2). These classified urban land cover have been used for the contextual
features (e.g., spatial metrics) extraction for urban land use classification (see section 3.0).

4.9.2. SVM-RBF-OBIA-based urban land use classification

Table 18 shows the accuracy of SVM-RBF-OBIA-based urban land use classification obtains using
proposed best features, SVM-RBF parameters and best size of training samples explained in section 4.7
and 4.8.1. Table 18 shows the overall accuracy is 65.30 % and kappa is 0.5467 (average of tile 1 and 2) in
SVM-RBF-OBIA-based urban land use classification. In addition, table 18 shows that both user and
producer accuracy of commercial land use is low as compare to residential and industrial land use in tile
one which explains that commercial land use mostly mixed with residential, industrial and vacant land use
(see appendix table C7.1, C7.2 and figure 21). In addition, results also show that user accuracy of
waterbody/shadow is low while producer accuracy is high. This explains that most of the land use
misclassified into waterbody/shadow because such land uses have shadow effects while
waterbody/shadow is less misclassified into other land use classes. The result also shows that accuracy is
significantly dropped in tile two due to very significant drop in the accuracy of the commercial, industrial,
vacant land and waterbody/shadow. Therefore, the overall result (both tiles) shows that complexity of
commercial, industrial and vacant land use as well as shadow effect one of the cause for reducing the
overall accuracy.
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Table 18. Accuracy of SVM-RBF-OBIA-based Urban land use classification.

Accuracy (%)

Land use classes Tile one (sampled domain) Tile two (unsampled domain)

User Producer User Producer
Residential 79.97 75.98 66.98 72.42
Commertcial 39.41 16.90 17.47 16.61
Industrial 77.00 60.49 16.57 8.71
Transportation 53.50 63.24 46.00 75.04
Utban green 75.77 84.49 85.53 79.66
Vacant land 58.02 59.12 51.59 38.38
Watetbody/shadow 38.57 85.86 19.29 41.29
Overall 70.83 60.30
Kappa 0.6231 0.4703

Tile one (sampled domain)

Worldview-3 Pan sharpened SVM-RBF-OBIA Classified land use Referenced land use

Tile two (unsampled domain)

Fa =~ 3] F .- i L ? :_r—” ;- . _‘.-‘-'Qf:"‘; e o
Wortldview-3 Pan shatpened image SVM-RBF-OBIA Classified land use Referenced land use

Urban land use classes

Residential - Commercial -Industrial - Transportation - Urban green

Vacant land - Waterbody

Figure 21. Shows SVM-RBF-OBIA-based urban land use classification of tile one and tile two.

49



EVALUATING THE PERFORMANCE OF MACHINE LEARNING ALGORITHMS FOR URBAN LAND USE MAPPING USING VERY HIGH RESOLUTION SATELLITE IMAGERY

4.9.3. SVM-RBF-BBIA-based urban land use classification

Table 19 shows that overall accuracy (OA) is 56.64% and kappa is 0.3900 (average of tile 1 and 2) of
SVM-RBF-BBIA-based urban land use classification which is less (overall accuracy -8.66% and
kappa -0.1567) than the SVM-RBF-OBIA because misclassification rate is high in most of the land use
classes such as commercial, industrial, vacant land and waterbody/shadow (see appendix table C8.1, C8.2
and figure 22). The one of the very important observation is that land use classes with a linear shape
(waterbody, transportation) misclassified within or between the land use classes because regular grid
unable to extract the complete shape of linear land uses as compare to OBIA. Another important
observation is that this classification minimizes the effect of shadow by merging the shadow with other
land use classes.
Table 19. Accuracy of SVM-RBF-BBIA-based urban land use classification.

Land use classes Accuracy (o)

Tile one (sampled domain) Tile two (unsampled domain)

User Producer User Producer

Residential 71.99 87.66 50.17 83.89
Commercial 32.68 25.18 33.83 5.91
Industrial 78.24 51.70 27.66 2.76
Transportation 36.31 61.41 22.55 54.92
Utban green 83.89 64.50 93.70 18.50
Vacant land 63.91 48.91 24.05 23.36
Waterbody/ 50.62 35.59 37.69 32.75
shadow
Overall accuracy 68.51 44.77
Kappa 0.5600 0.2200
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Tile one (sampled domain)

Worldview-3 Pan sharpened SVM-RBF-BBIA Classified land use Referenced land use

Tile two (unsampled domain)
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Wortldview-3 Pan sharpened image SVM-RBF-BBIA Classified land use Referenced land use

Urban land use classes

Residential ] Commercial [ Industrial ] Transportation | Urban green

Vacant land - Waterbody

Figure 22. Shows SVM-RBF-BBIA-based urban land use classification of tile one and tile two.

494, CNN-BBIA-based urban land use classification

Table 20 shows that CNN-BBIA obtains overall accuracy is 57.51%, and kappa is 0.4245 (average of tile 1
and 2) which is higher (overall accuracy +0.87%, +0.0345) than the SVM-RBF-BBIA and lower
(overall accuracy -7.79%, kappa -0.1222) than the SVM-RBF-OBIA. This shows that the misclassification
accuracy of commercial, industrial, vacant land, and waterbody/shadow (see figure 23 and appendix table
C9.1 and 9.2) quite higher than SVM-RBF-OBIA while less than the SVM-RBF-BBIA. One of the very
important observation is that land use classes with a linear shape (e.g., transportation, waterbody) has a
good classification in both sampled and unsampled domain as compare to the SVM-RBF-BBIA because
of the better edge detection ability of the CNN. In addition, another important observation is that this
classification minimizes the effect of shadow by merging with other land use classes similar to the SVM-
RBF-BBIA. This is because block/patch bigger than the shadows is automatically merged with other land

use classes.
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Table 20. Accuracy of CNN-BBIA-based urban land use classification.

Land use classes Accuracy (0)

Tile one (sampled domain) Tile two (unsampled domain)

User Producer User Producer
Residential 72.35 73.55 61.51 80.31
Commercial 20.19 27.59 6.98 4.65
Industrial 73.65 48.44 13.62 11.54
Transportation 44.58 62.63 54.50 66.34
Utban green 85.19 73.62 98.31 35.98
Vacant land 46.37 59.61 18.77 30.28
Waterbody/ 55.65 33.77 78.07 29.74
shadow
Overall 65.12 49.89

0.5274 0.3216

Kappa

Tile one (sampled domain)

CNN-BBIA C(lassified land use Referenced land use

Tile two (unsampled domain)

v - a;
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Wortldview-3 Pan sharpened CNN-BBIA Classified land use Referenced land use

Utrban land use classes

Industrial Transportation
p Urban green

Residential - Commercial

Vacant land - Waterbody

Figure 23. Shows CNN-BBIA-based urban land use classification of tile one and tile two.
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Form the above results, it is observed that misclassification of commercial, industrial is mostly happened
due to sharing of common features information with the residential and vacant land as well as between
commercial, industrial. This occurs due to increase of mixed land use pattern in the selected area. In
addition, another important observation is that overall accuracy, as well as the accuracy of other land uses
is affected by sharing of common features information of the waterbody and shadow because most of the
land uses have shadow effect in VHR imagery. It is also observed that effect of shadow is mostly
minimized in SVM-RBF-BBIA and CNN-BBIA while this effect significant in SVM-RBF-OBIA because
the segmentation follows the shape of the object. The overall results show that SVM-RBF-OBIA provides
higher classification accuracy as compare to SVM-RBF-BBIA and CNN-BBIA while CNN-BBIA
provides higher classification accuracy as compare to SVM-RBF-BBIA. In addition, very important
observation is that the accuracy is affected by the combination of classification algorithms and
classification approach which is most important consideration in land use classification. For detailed
explanation needs more accuracy assessment indices which are explained in section 4.10.

4.10. Performance evaluation

In this section, comparison of accuracy assessment indices of the selected machine learning algorithms has
been discussed in sampled and unsampled domain employing methods explained in section 3.15. This
helps to assess the performance and robustness of the classifiers for urban land use classification which
are explained below:

410.1. Performance based on quantitative indices

Table 21 shows that Fl-score of most of the urban land uses such as residential, commercial, industrial,
transportation in OBIA outperforms the BBIA. This explains that urban land uses are highly associated
with the images features related to shape, size and orientation of the land use objects along with others
features. In addition, Fl1-score of waterbody/shadow in BBIA outpetforms the OBIA which explains that
the OBIA is suffering from the effect of shadow in VHR imagery. The result also shows that F1-score of
most of the urban land uses in CNN outperforms the SVM-RBF. This is because classifying the complex
urban land use is highly related to the more complex contextual features learned by CNN.

Table 21. Performance of selected machine learning algorithms for urban land use classification (compiled tile one
(sampled domain) and tile two (unsampled domain) see appendix table C10.1, C10.2).

Land use SVM-RBF-OBIA SVM- RBF-BBIA CNN-BBIA

classes Recall | Precision | Fl-score | Recall | Precision | Fl-score | Recall | Precision | Fl-score

Residen. | 73.48 74.20 73.76 61.08 85.78 70.92 66.93 76.93 71.30

Commer. | 28.44 16.76 20.35 33.26 15.55 19.26 13.59 16.12 14.45

Industri. | 46.79 34.60 39.59 52.95 27.23 33.64 43.64 29.99 35.47

Trans. 49.75 69.14 57.50 29.43 58.17 38.81 49.54 64.49 55.97

Ur.green. | 80.05 82.08 81.19 88.80 41.50 51.91 91.75 54.80 65.83

Vacland | 54.81 48.75 51.29 43.98 36.14 39.56 32.57 44.95 37.67

Water/
shadow | 28.93 63.58 39.77 4416 34.17 38.42 66.86 31.76 42.55

Overall | 51.84 55.59 51.92 50.52 42.65 41.79 52.13 45.58 46.18
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Table 22. Performance of selected machine learning algorithms based on quantitative accuracy.

Tile SVM-RBF- OBIA SVM- RBF-BBIA CNN-BBIA
Opverall accuracy | Kappa | Overall accuracy | Kappa | Overall accuracy | Kappa
1 -sampled 70.83 0.6231 68.51 0.5600 65.12 0.5274
2-unsampled 60.30 0.4703 44.77 0.2200 49.89 0.3216
Overall 65.57 0.5467 56.64 0.3900 57.51 0.4245

Therefore, the overall F1-score, overall accuracy, and overall kappa (see table 21 and 22) shows that OBIA
outperform the BBIA and similarly CNN outperform the SVM-RBF. Another important observation also
is that OBIA outperforms the CNN. The similar results also observed in the unsampled domain (see table
21 and 22). This is because geometrical characteristics (e.g., shape, size, orientation, etc.) of OBIA is an
added advantage over others robust spectral, textural (e.g., GLCM, GLDV) and contextual characteristics
(e.g., spatial metrics) of land use classes for classifying complex urban land use as compare to BBIA and
CNN. Therefore, in previous research proven that CNN is outperform the SVM-RBF and also proven
that feeding of robust handicraft features (e.g., GLCM or CNN learned features) in SVM-RBF is most of
the cases competitive with the CNN (e.g., Mboga, 2017). Therefore, overall results also show that OBIA
are more transferable and robust as compare to BBIA and similarly CNN is more transferable and robust
as compare to SVM-RBF.

410.2. Performance based on locational indices

In terms of the locational agreement, table 23 shows that the overall Klocation (e.g., kappa for location)
and Kno (overall kappa both in quantity and location) in OBIA outperforms the BBIA and similatly, the
overall kappa (Kno) in CNN outperforms the SVM-RBF. The similar results also observe in the
unsampled domain (tile two).

Table 23. Performance of selected machine learning algorithms based on locational accuracy.

Tile SVM-RBF- OBIA SVM- RBF-BBIA CNN-BBIA
Klocation Kno Klocation Kno Klocation Kno
1 -sampled 0.6695 0.6596 0.6877 0.6326 0.5926 0.5931
2-unsampled 0.5361 0.5368 0.4230 0.3555 0.4498 0.4153
Overall 0.6028 0.5982 0.5554 0.4941 0.5212 0.5042

Therefore, in terms of the locational agreement, the result also proves that the OBIA is more robust and
transferable as compare to BBIA and similarly, CNN is more robust and transferable as compare to
SVM-RBF for urban land use classification.

410.3. Performance based on classified map quality

Visually the classified map of OBIA looks better in terms of quality as compare to the BBIA using the
reference (see appendix figure C10.1) and local land use maps (see appendix figure C10.2). Similatly,
visually the classified map of CNN also looks better as compare to the SVM-RBF (see appendix figure
C10.1 and C10.2). This comparison of classified map quality is based on overall shape, size, and
misclassification of land use classes. The misclassification visually shows the mixed and scatters pattern of
urban land use. Therefore, in terms of classified map quality, it is concluded that OBIA is more relevant as
compare to BBIA and similarly, CNN is more relevant as compare to SVM-RBF for urban land use
classification and to address the local land use classification scheme.

Therefore, based on the quantitative, locational and qualitative performance assessment the result shows
that OBIA is robust and more transferable as compare to BBIA and similarly, CNN is also robust and
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more transferable as compare to SVM-RBF for urban land use classification from VHR imagery. Hence,
the results suggest that the use of CNN in OBIA is an optimum choice to develop a most promising
urban land use classification approach from VHR imagery for developing countries like India.

410.4. Performance based on classification time

In this study, the selection of best image features, parameters and undergone land use classification in
SVM-RBF for OBIA or BBIA takes half an hour for a single tile. In addition, based on the best
parameters, the CNN-BBIA takes 5 hours to learn the features and to produce the final classified map of
one single tile. However, it is also observed that overall processing time is quite high in SVM-RBF as
compare to the CNN because additional time takes for preparing and exploring the handicraft image
features. Therefore, in larger city scale, the CNN is more relevant as compare to SVM-RBF because of
self-learning ability of CNN.

411.  Key summary of the results and discussions

The key summary of the results and discussion is that classification of urban land use from VHR imagery
is affected by the several factors such as types and number of image features, scale issues, parameters and
types of classifiers and size of training samples which are very sensitive to the overall classification
accuracy and quality of the results. Based on the sensitivity analysis results shows that OBIA outperforms
the BBIA and similarity CNN outperforms SVM-RBF. The OBIA outperforms the BBIA because one the
important reason is the geometrical characteristics of the OBIA which directly link with geometrical
properties of the urban land uses. In addition, CNN outperforms the SVM-RBF because CNN extracts
more complex contextual features which address the texture, edge, and gradient of the different urban
land uses. In this study, post-processing (for improving accuracy) has not done because in this case need
to link with other algorithms like Conditional Random Field (CRF) which require further study. The
conclusion of the results and discussion has explained in section 5.
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5. CONCLUSION AND RECOMMENDATION

In this section conclusions, reflections on research objectives and questions, research contribution,
limitations, and recommendations are drawn for future research:

5.1. Reflection on the research objective and research question

The main objective of this study was to evaluate the performance of different machine learning algorithms
for urban land use mapping. Thus, based on the research objective, a wide variety of image features (i.e.,
135 spectral, textural, geometric and contextual image features) were extracted from VHR imagery, and
such features were selected employing SFS-HSIC for SVM-RBF-based urban land use classification. Based
on this features selection it was observed that only 15 are very efficient image features out of the total 135
features. In addition, selection of optimum parameters of SVM-RBF employing hold-out cross-validation
improved the overall land use classification accuracy. However, it was also observed that varying the size
of training samples affected the overall classification accuracy. In SVM-RBF, 150 (out of 200) is the best
training samples size to reduce the effect of Hughes phenomena. This improved the overall urban land
use classification. In OBIA-based urban land use classification, the scale issue in segmentation (using
MRS) has a very serious effect on the overall classification accuracy. It was observed that the MRS level 1
(i.e., scale 133) provided the highest overall classification as compared the MRS level 2 (i.e., scale 223) and
MRS level 3 (i.e., scale 323). Similatly, scale issues were also observed in BBIA-based urban land use
classification in which the block size 29X29 showed the highest overall accuracy as compared to the block
size 43X43 and 59X59. Thus, based on the different accuracy assessment indices, map quality, time and
domain adaptation, it is concluded that SVM-RBF-OBIA is more relevant and robust as compared to the
SVM-RBF-BBIA for urban land use classification from VHR imager in the Indian context.

In CNN-BBIA based urban land use classification, it was observed that consistent use of learning and
regularization parameters and hyperparameters of CNN configuration reduced the risk of overfitting of
the network. This is because overfitting of the network reduced the overall classification accuracy. In
addition, one of the important observation from the network is that the co-adaptation of neurons was
detected in both convolutional and FC layer. Consequently, the use of dropout in both layers improved
the overall classification accuracy. Thus, experiments on the depth of the network showed a change of
overall classification accuracy because of the variation of learned contextual image features. Therefore, one
of the final observation is that the overall classification was improved while using augmented training
samples instead of original training samples because data augmentation is one of the important solutions
to resolve the overfitting of the network. Therefore, based on different accuracy assessment indices, map
quality, time and domain adaptation, finally, it is concluded that the OBIA is more relevant and robust as
compared to BBIA for urban land use classification from VHR imager in the Indian context. However,
using BBIA, CNN is more relevant and robust as compared to SVM-RBF for urban land use classification
from VHR imagery in the Indian context. Therefore, finally, Therefore, finally, it is recommended that
combining CNN and OBIA is the most promising starting point for further research on developing a
robust urban land use classification approach from VHR imagery for developing countries like India.

However, the research question as outlined in this research have been answered below:

e Specific objective 1: to select suitable image features for urban land use mapping.
What types of image features are extracted from VHR imagery using standard feature extraction
methods based on recent literatures?
In recent literatures, it was observed that GLCM, GLDV, LBP, MPPR and some geometric
(e.g., shape, compactness, etc.) and contextual image (e.g., spatial metrics) features were widely used
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for classifying urban land cover/use from VHR imagery (see section 2 and 3.6.). The previous
research has proven that the use of these image features provided good classification results for cities
outside of India. Hence, these features have been selected to explore for an Indian city to develop
robust features for urban land use classification from VHR imagery (see section 3.6, appendix table
C2.1).

What is the standard feature selection method used for selecting best features based on recent
literatures?

In recent literatures, several feature selection methods (e.g., PCA, rank, etc.) were explored but SFS
with HSIC proven to be a fast and robust feature selection approach in many research
(see section 3.11). Hence, SEFS-HSIC has been used to select the best features from the large volume
of extracted image features.

What are best the image features used to map urban land use using standard feature selection method?
Using SFS-HSIC, 15 best features (see section 4.7, table 10) such as spectral (image bands, NDVI and
mean brightness), textural (GLCM and GLDV) and contextual image features (aggregation index,
fractal dimension, cohesion and largest patch index) have been selected from the 135 extracted image
features (section 4.5, appendix table C2.1). From this result, it is concluded that the use of handicraft
image features for classifying land use from the satellite imagery (e.g., VHR) is not an optimum
solution in remote sensing because Hughes phenomena are highly related with high dimensional
image features. Hence, feature selection is a robust approach (for a large volume of features) in
remote sensing which is prerequisites to develop best classification approach from satellite imagery
(e.g., VHR).

Specific objective 2: to map urban land uses using SVM and CNN in OBIA and BBIA.

What types of urban land uses atre relevant based on national and local land use classification schemes
and available literatures?

In this study, seven relevant urban land use classes such as residential, commercial, industrial,
transportation, urban green, vacant land, and waterbody have been selected based on national
(NRSA, 2008) and local land use classification schemes (appendix table B5.1 and figure B3.2) and
available literatures (section 2, 3.8).

What are best parameters of SVM and CNN to improve the classification accuracy of urban land uses
employing OBIA and BBIA?

The best parameters of SVM-RBF (such as gamma 0.0599 and cost is 1000) provided the highest
overall accuracy using the best MRS level (level 1 and scale 133) and 150 training samples for OBIA-
based urban land use classification. Similatly, the best gamma of 1.292 and cost of 16.681 provided
the highest overall accuracy using the best block size (29 by 29 pixel) and 150 training samples for
BBIA-based urban land use classification (see section 4.8.1). In addition, best learning and
regularization parameters and hyperparameters of CNN provided the highest overall accuracy on 1000
augmented training samples for CNN-BBIA-based urban land use classification (see section 4.8.2).
Thus, it is concluded, parameters tuning is one of the best approach in remote sensing to develop
robust parameters for classifying land use from satellite imagery (e.g., VHR) because unsuitable
parameters always overfitted the classifiers.

What are the classification accuracies and time elapses executing a SVM in BBIA and OBIA
employing the best parameters and image features?

The SVM-RBF in OBIA achieved highest overall classification accuracies (e.g., overall
accuracy=05.57%, kappa= 0.5467) (see section 4.9.2) as compared to SVM-RBF in BBIA (e.g., overall

accuracy=506.64%, kappa= 0.3900) (see section 4.9.3) while employing best features (see section 4.7),
parameters and best size of training samples (see section 4.8.1). In addition, the computation time
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(half an hour in one tile) in both OBIA and BBIA is quite similar. In addition, it is also concluded
more time was elapsed for extracting handicraft image features as compared to the classification.
Finally, it is concluded that the classification accuracy varied between OBIA and BBIA due to added
advantages of addressing geometrical characteristics (shape, size etc.) of land use object in OBIA over
the other robust image features and best parameters because urban land use can easily be separated in
the VHR imagery in terms of geometry of the land use objects.

4. What are the classification accuracies and time elapses executing a CNN in BBIA employing the best
parameters?

The CNN in BBIA an overall accuracy of 57.51%, and kappa of 0.4245, etc. (see section 4.9.4)
employing best parameters (see section 4.8.2). In addition, 5 hours elapse was required to produce a
final classified map (one tile) in this classification. From this result, it is concluded that the use of best
parameters is the optimum choice to improve the overall classification by reducing the overfitting of
the network.

e Specific objective 3: to evaluate the performance of SVM and CNN in OBIA and BBIA for
urban land use classification.

1. What is the best strategy to measure the accuracy of SVM and CNN for urban land use classification?
In previous studies, most of the researchers evaluated the performance of classifiers based on only the
quantitative agreement, quality of the classified map and time (e.g., Bergado, 2016). However, the best
strategy (see section 4.10) is to evaluate the locational agreement and local land use classification
scheme along with the quantitative agreement, quality of classified map and time to address the
thematic, positional and temporal uncertainty of the classifiers to support local land use classification.
Thus, based on the best strategy, other than classical accuracy assessment indices (overall, kappa, etc.),
some additional advanced accuracy assessment indices (e.g., recall, precision, Fl-score, Klocation,
Kno, etc.) were used to evaluate SVM-RBF and CNN (see section 4.10).

2. What is the performance of SVM and CNN for urban land use classification?

Based on the best strategy adopted for measuring the difference accuracies of SVM-RBF and CNN
(see section 4.10), it is concluded that the CNN outperforms the SVM-RBF and similarly OBIA
outperforms the BBIA for classifying urban land use from VHR imagery in the Indian context.

5.2. Limitations and contributions

This study has few limitations such as shadow effects in VHR imagery as well as time constraints and
limited computer memory storage to experiment on more image tiles as well as across the whole city. This
study has several contributions such as firstly, explored the best image features from commonly used huge
image features for urban land use mapping. Secondly, explored how to develop best parameters of SVM-
RBF and CNN for urban land use classification from VHR imagery. Finally, this study has also explored
the best image classification approach (e.g., OBIA) and robust machine learning algorithm (e.g., CNN) for
urban land use mapping from VHR imagery for developing countries such as India. This study also
provides a starting point for developing detailed land use mapping from VHR imagery to implement
better spatial planning policy at the local scale. This is because detailed land use information was hidden
due to aggregation pattern of urban land use in the local land use classification scheme. However, in this
study, overall classification accuracy somehow low to implement planning policy and in this regard, need
some additional research for the improvement of the overall classification accuracy. The additional
research has recommended in section 5.3.
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5.3.

Recommendation for future study

The recommendation of future study has been listed in following heads:

Use of SVM-RBF for OBIA-based urban land use classification from VHR imagery is highly
recommended for Indian context as compared to SVM-RBF with BBIA.

Use of CNN for BBIA-based urban land use classification from VHR imagery is performing better
for the Indian context as compared to SVM-RBF for BBIA.

Combine CNN with OBIA to develop more a robust urban land use classification approach from
VHR imagery for the cities of developing country like India.

Use of parcels for a BBIA-based urban land use classification is highly recommended as compated to
the regular grids to improve the overall accuracy. This will help to extract detail road alignments as
well as land use because different attributes of urban land use varies between parcels.

Use height information such nDSM (e.g., normalized digital surface model) to improve the
classification because properties of urban land use varies with the height.

Experiment on different deep learning network such FCN (e.g., Fully Convolutional Network), DCN
(e.g., Deconvolutional Neural Network) and RCNN (e.g., Recurrent Convolutional Neural Network)
to learn finer contextual image features to improve the overall classification accuracy and obtain a
smoother classification outcome. In addition, experiments on integrating Conditional Random Field
(CRF) with CNN is a possible choice to improve the overall classification accuracy (Sun et al., 2016).
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APPENDIX

A. Review of literature
A1. Hyperparameters of supervised CNN network

Table Al.1. Hyperparameters of supervised CNN network (Bergado, 2016; Goodfellow et al., 2016; Mboga, 2017).

Hyperparameters ‘

Descriptions

(A) Learning and regularization parameters

i.  Batch size Number of training samples train by CNN in each iteration.
ii. Maximum Number of iteration during training the CNN network.
number of
epoch, t

1.

Learning rate, €

Learning fraction which explained how precisely updates the derivates of the SGD
to obtain minimum loss function in each epoch.

iv. Momentum, a Fraction used to accelerate the network during training.

v. Weight decay, A | It is used in L2 regularization norm which performs new loss function to minimize
the overfitting of network.

vi. Dropout, d; It is one of the very important regularization parameter which explained as the
percent of randomly dropping (ds) of neuron which is co-adapted with the other
neuron. The co-adaptation of neurons leads to the overfitting of the network.

(B) CNN configuration parameters

vii. Patch size Square patch which is 2-D image grid learn by network from the image.

viii. Number of Number of 2-D image grid learn by network from the image.

patch

ix. Filter size Dimension of 2-D filters in convolutional layers used to develop activation
features from the 2-D image patches learned by network.

x.  Number of filter | Number of 2-D filters in convolutional layers used to develop activation features
from the learned 2-D image patches.

xi. Pooling size Downsampling of non-linear activation feature in convolutional layers as a
function of max pooling which extract the maximum value in the n-size of pooling
region.

xii. Network depth | Number of convolutional layers and FC layers are termed as the depth of the

CNN network which affects the overall classification accuracy.
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A2. Multiresolution image segmentation

Table A2.1. Literatures review on selecting scale parameter, shape and compactness

SL Scale Compactness | Shape | Applications Overall References

No. | parameters Accuracy (%)

1 Default ESP2 0.50 0.50 Informal 85.54-86.33 (Naorem etal.,
settlement 20106)
mapping

2 ESP2 (55-153) | 0.50 0.50 Slum mapping | 64.00-70.80 (Pratomo, 2016)

3 ESP2 (40-300) | 0.50 0.50 Slum mapping | 47.00-68.00 (Kohli, 2015)

4 50 0.50 0.50 Utrban land use | 79.60-96.0 (Yanchen et al.,
mapping 2014)

5 10-150 0.50 0.70 Residential 75.00 (Stow et al.,
land use 2007)
mapping

Current Scale+1 Caleulate LV (n)

Segmentation Scale Level 1 Calculate LV(n-1)
Starting Scale
Lb Segmentation —7/ Seale Levl 2.1 #

A

Scale Level
n-1=Scale Level n

IV@-1)=LV(n) |«

Figure A2.1. Process of ESP tool for the estimation of scale parameter based on threshold of local variance
(Dragut et al,, 2014)

ESP - Estimation of Scale Parameter

[—— Local Variance —0O— Rate of Change |

a0 - - 140

7 + - 120

- 100

Local Variance
Rate of Change (10*3)

10 20 30 40 50 60 70 a0 90 100
Scale

Figure A2.2. LV and ROC estimated using ESP tool for three-level hierarchy MRS of Worldview fused imagery,
2015
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B1. Methodological flowchart
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B2. Study area
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Figure B2.1. Shows location of the study area (source: Openstreet map)
Table B3.1. Worldview3 Satellite imagery
Spatial . . Off Sun Repeat | Swath
) Radiometric . .
Sensors Spectral Bands (um) resolution . nadir | elevation | cycle (km)
resolution
(metre)

PAN

Band PAN: 0.45-0.80

0.34

11 bits

Band coastal: 0.40-0.45

Band blue:  0.45-0.51

Band green: 0.51-0.58

MS

Band yellow: 0.585-0.625

Band red: 0.63-0.69

1.38

Band red edge:0.705-0.745

Band NIR1: 0.77-0.895

Band NIR2:  0.86-1.02

14 bits 22.790

52.799

1 day

13.10
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Figure B3.1. Shows original Worldview3 satellite imageries of tile1 and tile2 with 2501 X 2501 pixels dimension.
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Table B3.2. Hardware and Software used for this study

Sl.no Hardware and software Purpose of use
operating system
1 e Hp-Pavilion Arc GIS 10.5.1 Creation of fishnet regular grid as the block,
desktop 7010TX, Labelled block and objects for training and test
CPU-intel corei7, sets,
DDR3, RAM- Creates features in raster format from the
12GB, HDD-640 features extracted in shape file and
GB, Graphic- Layout map design
2 NVidia 2GB, Erdas Imagine HPF image fusion,
OS-window7 home | 2015 Subset image, geo-referencing and
premium Feature aggregation with zonal statistics
3 and ECognition 9.2 Multi-resolution and chessboard segmentation
e DELL OptiPlex and
&Precision Feature extraction and aggregation
Workstation Fragstats 4.2.1 Developed contextual features based on spatial
CPU- Xeon E5- matrices
1 2643, Core 6, RAM- | R Studio 3.4.1 SFS feature section,
128GB, HDD- 2 SVM-RBF parameter tuning for urban land cover
TB, SSD-1TB, and urban land use classification and
OS- Linux Ubuntu SVM-RBF urban land cover and urban land use
classification
5 Matlab Extraction of LBF and MPPR features,
2017a&2017b Export of file from Matlab format to ENVI
format
CNN development
CNN for Urban land use classification
6 ENVI classic 5.3 Image normalization
7 Idrisi Selva 17.02 Measuring location-based accuracy indices
8 Microsoft office Thesis writing, chart and diagram, tabulation
2016
9 Adobe acrobat 8 Conversion of word file to pdf
10 NCH software Flowchart for methodology
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B4. Geometric features

Table B4.1. Description of geometric features used for OBIA-based Utrban land cover/use classification
(Definiens, 2012)

No. | Geometric Descriptions

features

1 Asymmetry Object is separated based on the comparison of the asymmetrical shape which
describes the relative length of the object compared to regular polygon,
measured by the ratio of major and minor axis of ellipse (e.g., square and
rectangular building, road, urban green polygon, etc.).

2 Compactness Object is separated based on the compactness of the object.

3 Elliptical fit Object is separated by comparing shape of the object with the elliptical shape
(e.g., square building from urban green polygon etc.).

4 Rectangular fit Object is separated by comparing the fitness of the object with the rectangular
shape (e.g., square building from rectangular building etc.).

5 Roundness Object is separated by comparing how similar the object is to an ellipse which
is calculated based by the radius of enclosed and enclosing ellipse (e.g.,
different polygons of waterbody, urban green, vacant land etc.).

6 Main direction Object is separated by comparing directional change which is measured by two
larger eigenvalues of spatial distribution of object (e.g., road from river etc.).

7 Shape Index Object is separated based on the different shapes (e.g., square and rectangular
building, road, urban green, etc.).

8 Border Index Object is separated based on the jaggedness of the object which is calculated
by using rectangular approximation (e.g., square building from rectangular
building, road etc.).

9 Radius of largest | Object is separated by comparing how object is similar to an ellipse (e.g.,

enclosed ellipse different polygons of waterbody, urban green, vacant land etc.).

10 | Radius of smallest | Object is separated by comparing how much the shape of the object is similar

enclosing ellipse to an ellipse (e.g., different polygons of waterbody, urban green, vacant land
etc.).

11 | Border length Object is separated based on the total length of the edges of the object shared
with the edge of the other object (e.g., building, road, urban green etc.).

12| Width Object is separated based on the width which is calculated from length to
width ratio of the object (e.g., road from the building).

13 | Length-width Object is separated based on the length and width ratio (e.g., road from the

ratio building or square building from rectangular building).

14 | Number of pixels | Number of pixels help to separate small object from the big object (e.g., small

buildings from large buildings).
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B5. Proposed urban land cover/use classification scheme

Table B5.1. Proposed urban land cover/land use classification scheme

Class | Urtban ILand Urban Land use
id covet Class Types Descriptions
id

1 Built-up 1 Residential This includes all types of formal and informal
settlements used for living. Mixed and public and
semi-public land uses are included in the residential
land use because of their similar building and
infrastructural characteristics.

2 Commercial Used for business, trade and commercial activity.
Large commercial area located in the city centre and
close to highly populated area. It has large building
size, and complex shape.

3 Industrial Used for production, manufacturing, factory,
warehousing etc. which is located close to rail line,
and commercial area.

2 Road 4 Transportation | Used for transportation. It is linear shape, which
includes rail, road, railway station and bus stops.

3 Vegetation 5 Urban green It includes parks, trees, plantation and agriculture.

4 Undeveloped | 6 Vacant land It includes wundeveloped land, area under
construction and cemetery etc.

5 Waterbody 7 Waterbody/ Canal, ponds tanks, river etc.

6 Shadow shadow Shades of different image objects (buildings/tress).
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B6. Feature selection
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Figure B6.1. Shows kernel matrices of input variables (K) and output variables (L) associated with HSIC=0.058 and
best sigma=0.464 in this study. The best sigma is selected based on the maximum HSIC value which was evaluated
using 10 different sequential sigma values that varies from 0.10 and 100 (using sigma<-10"seq(-1,2, len=10)).

C. Results and Discussions

C1. Referenced land cover maps

,4/
l/

<

/

Referenced land cover of Tilel Referenced land cover of Tile2

Land cover classes

Built-up - Road - Vegetation Undeveloped land - Waterbody

Figure C1.1. Show referenced urban land cover maps, 2015
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C2. Extracted, aggregated and normalized image features

Table C2.1. Extracted image features

Slno | Image Methods Image features Number of | Sources
features features
1 Spectral Mean Mean of all spectral bands 08 Fused VHR
Mean brightness 01 image
NDVI NDVI feature 01
2 Textural GLCM GLCM (mean) 08
GLCM (variance) 08
GLCM (homogeneity) 08
GLCM (contrast) 08
GLCM (dissimilarity) 08
GLCM (entropy) 08
GLCM (second moment) 08
GLCM (correlation) 08
GLDV GLDYV (ang.2 moment) 08
GLDV (entropy) 08
GLDV (mean) 08
GLDV(contrast) 08
LBP LBP feature 08
MPPR MPPR feature 02 Panchromatic
3 Geometric | Object Asymmetry 01 Fused VHR
level Compactness 01 image
geometry | Elliptical fit 01
Rectangular fit 01
Roundness 01
Main ditection 01
Shape Index 01
Boarder Index 01
Radius of largest enclosed ellipse 01
Radius of smallest enclosed 01
ellipse
Border length 01
Width 01
Length-width ratio 01
Number of pixels 01
4 Contextual | Spatial Path density 01 Urban Land
metrics Aggregation index 01 cover
Fractal dimension 01 (built-up)
Cohesion 01
Largest patch Index 01
Total features 135 -
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C3. Training and test samples

C3.1. Training and test samples for SVM-RBF-OBIA-based urban land cover

classification
Table C3.1.1. Training and test samples at MRS level
MRS level Total Total training Splitting  training samples into Test samples
segments samples 60:40 whole tile
Training set Validation set
Level 1 3171
Level 2 1100 200 120 80 6255001
Level 3 508

Table C3.1.2. Training and test samples for SVM-RBF-OBIA-based urban land cover classification (MRS level 1)

Class Training land Tile 1 Tile 2

1D cover classes Number of Number of Number of Number of test
training objects test pixel training objects pixel

1 Building 75 3659387 75 3307488

2 Road 20 369708 20 344350

3 Vegetation 46 1129351 46 1625177

4 Undeveloped land 23 895471 23 826730

5 Water body 10 99406 10 85615

6 Shadow 26 101678 26 65641

Total 200 6255001 200 6255001

C3.2. Training and test samples for SVM-RBF-OBIA-based urban land use

classification
Table C3.2.1. Training and test samples at MRS level
MRS level Total Total training Splitting  training samples into Test pixels
segments samples 60:40 whole tile
Training set Validation set
Level 1 3171
Level 2 1100 200 120 80 6255001
Level 3 508

Table C3.2.2. Training and test samples for SVM-RBF-OBIA-based urban land use classification (MRS level 2)

Class | Training land use Tilel

1D classes Number of training objects Number of test pixels
1 Residential 58 2717828

2 Commercial 15 184944

3 Industrial 40 845305

4 Transportation 16 359030

5 Urban green 35 1099990

6 Vacant land 13 873329

7 Water body/Shadow 23 174575

Total 200 6255001
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Table C3.2.3. Training and test samples for SVM-RBF-OBIA-based urban land use classification (MRS level 3)

Class | Training land use Tilel

1D classes Number of training objects Number of test pixels
1 Residential 66 2717828

2 Commercial 14 184944

3 Industrial 50 845305

4 Transportation 12 359030

5 Urban green 26 1099990

6 Vacant land 13 873329

7 Watet body/Shadow 19 174575

Total 200 6255001

C3.3. Training and test samples for SVM-RBF-BBIA-based urban land use

classification

Table C3.3.1. Training and test samples at block level

Blocks size Total Total training Splitting  training samples into Test pixels
blocks samples 60:40 whole tile
Training set Validation set
29 X 29 7396
43 X 43 3364 200 120 80 6255001
59 X 59 1764

Table C3.3.2. Training and test samples for SVM-RBF-BBIA-based urban land use classification (block 43%x43)

Class | Training land use Tilel

1D classes Number of training blocks Number of test pixels
1 Residential 60 2717828

2 Commercial 15 184944

3 Industrial 35 845305

4 Transportation 22 359030

5 Urban green 36 1099990

6 Vacant land 20 873329

7 Watet body/shadow 12 174575

Total 200 6255001

Table C3.3.3. Training and test samples for SVM-RBF-BBIA-based urban land use classification (block 59%59)

Class | Training land use Tilel

ID classes Number of training blocks Number of test pixels
1 Residential 70 2717828

2 Commercial 15 184944

3 Industrial 38 845305

4 Transportation 21 359030

5 Urban green 31 1099990

6 Vacant land 20 873329

7 Water body/shadow 05 174575

Total 200 6255001




C4. Features selection

Table C4.1. Features selection for SVM-RBF-OBIA-based urban land cover classification using SFS-HSIC

Best features 10 15 20 25 120
Name of features | 10, 90, 4, 5, 10, 90, 109, 10, 107,90, | 10,90, 109, 4, 1to 120
6,9,3,7,8, | 68,4,5,67,3, | 68,4,5,67,6, | 5,068,6,067,9,
2 6,9,82,2,58, | 3,9,7,84,8, | 3,7,8,2,84,
84,1 2,44,92,43, | 1,82,43,91,
91, 83, 82 83, 44,92, 31,
20, 36, 100
Best sigma 1.29155 1.29155 1.29155 1.29155 -
HSIC 0.03345184 | 0.03670414 0.03734782 0.03969606 -
Opver all accuracy 76.81 76.00 76.84 77.98 76.11

Table C4.2. Features selection for SVM-RBF-OBIA-based urban land use classification using SFS-HSIC

MRS Best features 10 15 20 25 125
Level
Level 1 | Name of 124, 125, 124,125, | 124,125,122, - 1to 125
features 122,10, 8, 7, 122, 10, 10, 8, 84, 7,
6,123,5,4 | 123,90,84, | 123,6,5, 4,
8,83,4,7, | 83,67,9, 3,2,
5,06, 3, 67 87,1, 86, 56
HSIC 0.05350289 | 0.05858687 | 0.05503954 - -
Best sigma 0.4641589 0.4641589 0.4641589 - -
Over all 68.09 69.53 68.94 61.59
accuracy
Level 2 | Name of 124, 125, 124,125, | 124,125,122, | 124,125,122, 1to 125
features 122,10, 123, 122,10, 10, 123, 90, 10, 90, 123,
90,3,4,5 6 | 123,90,3, | 107,3,4,82, | 82,3,4,84,5,
84,4,5,6, | 5,84,119,6, | 83,6,9, 2,706,
9,82,83,8 | 83,9,2, 1,67, | 79,1,7, 80, 8,
7 119, 78, 75, 87
HSIC 0.05497107 | 0.04976257 | 0.04873324 0.04559597 -
Best sigma 0.4641589 0.4641589 0.4641589 0.4641589 -
Over all 65.75 65.25 68.10 67.61 66.11
accuracy
Name of 122,125, 125, 122, 24,122,125, - 1to 125
Level 3 | features 124,10, 109, 124,107, 10, 107, 109,
110, 58, 107, 10, 110, 110, 58, 114,
90, 113 109, 113, | 90, 84, 108, 3,
84, 3, 90, 4,83, 5,113,
76, 4,108, 82,123, 6
119
HSIC 0.02967345 | 0.02559794 | 0.03132948 - -
Best sigma 0.4641589 0.4641589 0.4641589 - -
Over all 66.15 68.67 65.68 - 67.91
accuracy
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Note: Name and sequence of the 125 features explained the table C4.1 and C4.2

Name of the features Sequence of the | Name of the features Sequence of
features the features
Meanband 1-8 Elliptical fit 109
Mean brightness 9 Rectangular fit 110
Mean NDVI 10 Roundness 111
GLCM (mean) 11-18 Main direction 112
GLCM (SD) 19-26 Shape Index 113
GLCM (homogeneity) 27-34 Boarder Index 114
GLCM (contrast) 35-42 Radius of largest enclosed ellipse | 115
GLCM (dissimilarity) 43-50 Radius of smallest enclosed ellipse | 116
GLCM (entropy) 51-58 Border length 117
GLCM(Angular second moment) | 59-66 Width 118
GLCM (correlation) 67-74 Length-width ratio 119
GLDV (Angular second moment) | 75-82 Number of pixels 120
GLDV (entropy) 83-90 Path density 121
GLDV(mean) 91-98 Aggregation index 122
GLDV(contrast) 99-106 Fractal dimension 123
Asymmetry 107 Cohesion 124
Compactness 107 Largest patch Index 125

Table C4.3. Features selection for SVM-RBF-BBIA-based urban land use classification using SFS-HSIC

Blocks | Best features 10 15 20 25 121
29 X29 | Name of features 120, 118, 118, 120, 118, 120, 118,120,121, 4, | 1to 121
121, 3,4, | 121,3,4,10, | 121,10,3,4, | 5,3,10,1,2,9,
10,5,1,2, | 5,1,2,9,0, 1, 58,5, 2, 6, 58, 116, 7,
9 58,7, 89, 8 89,9, 6, 8, 115, 8, 89, 49,
86, 7, 85, 50, 92, 86, 85, 47,
91, 87 94, 46, 95
HSIC 0.06161469 | 0.05742712 0.0538051 0.06721506 -
Best sigma 0.4641589 | 0.4641589 0.4641589 0.4641589 -
Opver all accuracy 67.49 67.70 63.28 63.34 62.43
43 X43 | Name of features 118, 121, 118, 120, 118, 120, 118, 120, 121, 1 to 121
120, 5,4, | 121,5,10,4, | 121,10, 1106, 10, 5, 58, 115,
58, 3,10, | 115,58, 116, | 5,115,58,4, | 116,4,3,2,1,9,
115, 116 3,2,9,1,6, | 3,2,1,89,9, 8,7,06, 89, 51,
89 6,8,52,7, 56, 75, 60, 20,
75, 51 53, 87,52
HSIC 0.04928167 | 0.05237353 | 0.05753959 0.04798417 -
Best sigma 0.4641589 0.4641589 0.4641589 0.4641589 -
Over all accuracy 63.10 64.54 65.97 64.71 61.21
59 X59 | Name of features 118, 110, 118, 120, 118, 110, 118, 116, 115, 1 to 121
115,120, | 116, 115,58, | 115,121,58, | 120, 3, 58, 5, 4,
58,10,5,3, | 3,2,4,5,10, | 3,2,4,5,1, | 10,2,1,9, 54,0,
4,2 1,9, 89, 10, 54, 120, 52,89,7,8, 53,
6, 54 9,06, 53,89, 90, 84, 83, 80,
7,8,55 66, 29
HSIC 0.04997003 | 0.05041109 | 0.04922437 0.04808981 -
Best sigma 0.4641589 0.4641589 0.4641589 0.4641589 -
Opver all accuracy 60.78 58.53 58.31 58.07 55.27
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Note: Name and sequence of the 121 features explained the table C4.3

Name of the features Sequence of the | Name of the features Sequence of
features the features

Meanband 1-8 GLDV(Angular second moment) | 75-82

Mean brightness 9 GLDV (entropy) 83-90

Mean NDVI 10 GLDV (mean) 91-98

GLCM (mean) 11-18 GLDV (contrast) 99-106

GLCM (SD) 19-26 LBP feature 107-114

GLCM (homogeneity) 27-34 MPPR feature 115-116

GLCM (contrast) 35-42 Path density 117

GLCM (dissimilarity) 43-50 Aggregation index 118

GLCM (entropy) 51-58 Fractal dimension 119

GLCM(Angular second moment) | 59-66 Cohesion 120

GLCM (correlation) 67-74 Largest patch Index 121

C5. Parameter tuning

C5.1. Parameter tuning for SVM-RBF

Table C5.1.1. Best parameter for SVM-RBF-OBIA-based urban land cover classification

SVM-RBF parameter

MRS level 1, best 25 features

Name of features

10,90, 109, 4, 5, 68, 6, 67,9, 3, 7, 8, 2, 84, 1, 82, 43, 91, 83, 44, 92, 31, 20, 36, 100

Best gamma 0.166810
Best Cost 1000.00
Over all accuracy 78.21

Table C5.1.2. Experiment with size of training samples for SVM-RBF-OBIA-based urban land cover classification

(tile1)
Size of training samples Overall accuracy
50 71.00
100 75.16
150 77.29
200 78.21

Table C5.1.3. Best parameter for SVM-RBF-OBIA-based urban land use classification

SVM-RBF
parameter

MRS level 1
best 15 features

MRS level 2
best 20 features

MRS level 3
best 15 features

Name of features

124,125, 122, 10, 123, 90, 84,
8,83,4,7,5,6,3,67

124, 125, 122, 10, 123, 90,
107, 3, 4, 82, 5, 84, 119, 6, 83,

125, 122, 124, 107, 10, 110,
109, 113, 84, 3, 90, 76, 4, 108,

9,2,1,67,7 119
Best gamma 0.05994843 0.1668101 0.4641589
Best Cost 1000 129.155 359.3814
Over all accuracy 70.58 68.10 69.08
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Table C5.1.4. Best parameter for SVM-RBF-BBIA-based urban land use classification

Best features

Block 29 X29
best 15 features

best 20 features

Block 43 X 43

Block 59 X59
best 10 features

Name of features

118, 120, 121, 3, 4, 10, 5,

118, 120, 121, 10, 116, 5, 115, 58, 4,

118, 116, 115, 120, 58, 10,

1,2,9,6,58,7,89,8 3,2,1,89,9,6,8,52,7,75, 51 53,4,2
Best gamma 1.29155 0.4641589 1.29155
Best Cost 16.68101 16.68101 16.68101
Opver all accuracy 68.37 67.46 60.92

C5.2. Parameter tuning for CNN

C5.2.1. Tuning of learning and regularization parameters

Table C5.2.1.1. Learning and regularization parameters

Hyperparameters Value
Batch size 10
Maximum number of epoch, t 1000
Momentum, a 0.90
Learning rate, € 0.01, 0.001
Weight decay, A 0.01, 0.001, 0.0001

Dropout rate, d; in (D1 & D2)

(0, 0.5), (0.25, 0.5) (0.5, 0.5)

Table C5.2.1.2. Fixed CNN configuration for selecting best learning and regularization parameters

Hyperparameters Value

Layers 1-Ci-A-P-D1—C,-A-P-D1—FC;-A-D2—O0O-§-CP
Non-linearity (A=RELU) used in Cizand FC, RELU

Non-linearity (§= SoftMax) used in O SoftMax

Width of FC 128

Patch size 29

Number of filters, K 8

Size of filters 5

Pooling size 2

Note: I=input, C= convolutional layer, A =activation, P=max pooling, D=dropout, FC=fully connected

layer, O=output, S= SoftMax, CP=class probability
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Table C5.2.1.3. 6-fold cross-validation of learning and regularization parameters (training samples 1000)

Experiment K-fold Learning rate | Weight decay | Dropout, D1, D2 Overall

step accuracy (%)
1 0.01 0.01 42.9850
2 1 0.01 0.001 47.9757
3 0.01 0.0001 43.4501
4 0.001 0.01 ©,0.5) 60.1607
5 2 0.001 0.001 58.6014
6 0.001 0.0001 54.7037
7 0.01 0.01 50.2367
8 3 0.01 0.001 50.2389
9 0.01 0.0001 52.1664
10 0.001 0.01 025,0.5) 65.1242
11 4 0.001 0.001 61.6627
12 0.001 0.0001 60.9216
13 0.01 0.01 30.5377
14 5 0.01 0.001 22.5377
15 0.01 0.0001 43.4505
16 0.001 0.01 ©0:5,0.5) 62.1612
17 6 0.001 0.001 57.3533
18 0.001 0.0001 59.2925

05 top}err

0 500
epoch

500
epoch

1000

Figure C5.2.1.1. Shows objective loss and top layer error decreasing with increasing of epoch
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C5.2.2. Tuning of CNN hyperparameters

Experiment on number of filters

Table C5.2.2.1. Best learning and regularization parameters

Hyperparameters Value
Batch size 10
Maximum number of epoch, t 1000
Momentum, a 0.90
Learning rate, € 0.001
Weight decay, A 0.01
Dropout rate, d: in (D1 & D2) (0.25, 0.5)

Table C5.2.2.2. Number of filters experiment: CNN configuration

Hyperparameters Value

Layers 1-Ci-A-P-D1—C,-A-P-D1—FC;-A-D2—0O-S-CP
Non-linearity (A=RELU) used in Ci2and FCy RELU

Non-linearity (S= SoftMax) used in O SoftMax

Width of FC 128

Patch size 29

Number of filters, K 8,16,32,64

Size of filters 5

Pooling size 2

Note: I=input, C= convolutional layer, A =activation, P=max pooling, D=dropout, FC=fully connected

layer, O=output, S= SoftMax, CP=class probability

Table C5.2.2.3. Overall accuracy varied with the number of filters

Number of filters Overall accuracy (%)
8 65.12
16 61.30
32 61.82
64 62.55

Experiment on filter size

Table C5.2.2.4. Best learning and regularization parameters

Hyperparameters Value
Batch size 10
Maximum number of epoch, t 1000
Momentum, a 0.90
Learning rate, € 0.001
Weight decay, A 0.01
Dropout rate, d: in (D1 & D2) (0.25, 0.5)
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Table C5.2.2.5. Filter size experiment: CNN configuration

Hyperparameters

Value

Layers

1-C1-A-P-D1—C,-A-P-D1—FC;-A-D2—O0O-S-CP

Non-linearity (A=RELU) used in Cizand FC,

RELU

Non-linearity (S= SoftMax) used in O SoftMax
Width of FC 128
Patch size 29
Number of filters, K 8

Size of filters 5,15, 25
Pooling size 2

Note: I=input, C= convolutional layer, A =activation, P=max pooling, D=dropout, FC=fully connected
layer, O=output, S= SoftMax, CP=class probability

Table C5.2.2.6. Overall accuracy varied with the number of filters

Size of filters Overall accuracy (%)
5 65.12
15 61.86
25 62.58

Experiment on different convolutional layers with fixed FC=1

Table C5.2.2.7. Best learning and regularization parameters

Hyperparameters Value
Batch size 10
Maximum number of epoch, t 1000
Momentum, a 0.90
Learning rate, € 0.001
Weight decay, A 0.01
Dropout rate, d: in (D1 & D2) (0.25, 0.5)

Table C5.2.2.8. Experiment on C, layers with FCi: CNN configuration

Hyperparameters Value
Layers 1-C,-A-P-D1—FCi-A-D2—O0O-S-CP
Non-linearity (A=RELU) used in Cizand FC, RELU

Non-linearity (S= SoftMax) used in O SoftMax

Width of FC 128

Patch size 29

Number of filters, K 8

Size of filters 5

Pooling size 2

Note: I=input, C=convolutional layer, A =activation, P=max pooling, D=dropout, FC=fully connected

layer, O=output, S= SoftMax, CP=class probability

Table C5.2.2.9. Overall accuracy varied with the number convolutional layers (Cy)

Convolutional layers Overall accuracy (%)
2 65.12
3 43.45
4 43.45
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Experiment on different fully-connected layers with fixed Convolutional

layers=1

Table C5.2.2.10. Best learning and regulatization parameters
Hyperparameters Value
Batch size 10
Maximum number of epoch, t 1000
Momentum, a 0.90
Learning rate, € 0.001
Weight decay, A 0.01
Dropout rate, d: in (D1 & D2) (0.25, 0.5)

Table C5.2.2.11. Experiment on FC, layers with Ci: CNN configuration

Hyperparameters

Value

Layers

1-C1-A-P-D1—C-A-P-D1—FC,-A-D2—0O-S-CP

Non-linearity (A=RELU) used in Cizand FC,

RELU

Non-linearity (S= SoftMax) used in O SoftMax
Width of FC 128
Patch size 29
Number of filters, K 8

Size of filters 5
Pooling size 2

Note: I=input, C=convolutional layer, A =activation, P=max pooling, D=dropout, FC=fully connected

layer, O=output, S= SoftMax, CP=class probability

Table C5.2.2.12. Overall accuracy varied with the number fully-connected layers (FC,)

FC layers Opverall accuracy (%)
1 65.12
2 43.45
3 43.45
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C6. SVM-RBF-OBIA-based Urban land cover classification

e L

Wotldview-3 Pansharpened image ~OBIA-SVM-RBF Classified land cover Referenced land cover
Land cover classes

Building - Road - Vegetation Undeveloped land - Waterbody . Shadow

Figure C6.1. Shows SVM-RBF-OBIA-based classified urban land cover map of tile one

'y
‘ ﬁ
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Worldview-3 Pan sharpened OBIA-SVM-RBF Classified land cover Referenced land cover

Land cover classes

Building - Road - Vegetation Undeveloped land - Waterbody - Shadow

Figure C6.2. Shows SVM-RBF-OBIA-based classified urban land cover map of tile two
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Table C6.1. Confusion matrix of SVM-RBF-OBIA-based urban land cover classification (tile one)

Land cover classes Referenced
Building Road Vegetation | Undeveloped Water Shadow | UA %
land body
Building 3046055 58623 61721 188914 9103 18503 90.04
Road 86856 245789 27624 28965 1900 6393 61.83
E Urban green 139098 14403 938103 133448 3353 2892 76.19
= Undeveloped land 222692 32797 78084 514625 2471 1167 60.41
é‘ Water body 8317 2470 3124 5872 79519 4851 76.35
Shadow 156369 15626 20695 23647 3060 67872 23.63
PA % 83.24 66.48 83.07 57.47 80.00 0.66.75
Opver all accuracy =78.21%
Table C6.2. Confusion matrix of SVM-RBF-OBIA-based urban land cover classification (tile two)
Land cover classes Referenced
Building Road Vegetation | Undeveloped | Water body | Shadow | UA %
land
Building 2776617 60139 135375 366442 6253 7935 82.82
Road 30081 241080 25434 19563 12165 24606 68.31
?é Urban green 86346 9259 1273112 49757 9146 36 89.17
= Undeveloped land | 126466 5078 76182 356275 1528 38 62.99
E Water body 109235 19999 107787 15305 49640 5976 16.12
Shadow 178743 8795 7287 19388 6883 27050 10.90
PA % 83.95 70.01 78.34 43.09 57.98 41.21
Over all accuracy =75.52%
C7. SVM-RBF-OBIA-based Urban land use classification
Sampled domain
Table C7.1. Confusion matrix of SVM-RBF-OBIA-based urban land use classification (tile one)
Land use classes Referenced
Residential | Comm | Industrial | Transport | Urban | Vacantland | Water UA %
ercial ation green body/
shadow
Residential 2064898 84444 220880 56649 31166 109510 14480 79.97
Commertcial 8071 31256 3960 7252 3468 25152 152 39.41
Industrial 107380 18975 511356 726 6744 18107 844 77.00
—E) Transportation 64611 12730 30885 227042 31279 56683 1179 53.50
2| Urban green 125381 2453 27076 16553 929355 120139 5666 75.77
é Vacant land 194488 32095 38969 35589 70099 516325 2364 58.02
Waterbody/
shadow 152999 2991 12179 15219 27879 27413 149890 38.57
PA % 75.98 16.90 60.49 63.24 84.49 59.12 85.86

Over all accuracy =70.83% and kappa= 0.6089
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Unsampled domain

Table C7.2. Confusion matrix of SVM-RBF-OBIA-based urban land use classification (tile two)

Land cover classes Referenced
Residential | Comm | Industrial | Transport | Urban | Vacantland | Water UA %
ercial ation green body/
shadow
Residential 1764285 184770 | 257582 44468 65112 312700 5274 66.98
Commertcial 111213 72283 105839 13074 60372 40986 10034 17.47
Industrial 60344 121845 43580 8013 1082 26827 1351 16.57
2| Transportation 80949 17649 51524 255846 44001 54877 51295 46.00
;g Utban green 126713 10887 12101 9283 1265546 43045 12098 85.53
E Vacant land 122278 23618 20221 2081 120721 311475 3410 51.59
Waterbody/
shadow 170452 4028 9436 8195 31886 21643 58709 19.29
PA % 72.42 16.61 8.71 75.04 79.66 38.38 41.29
Over all accuracy =60.30% and kappa=0.4703
C8. SVM-RBF-BBIA-based Urban land use classification
Sampled domain
Table C8.1. Confusion matrix of SVM-RBF-BBIA-based urban land use classification (tile one)
Land cover classes Referenced
Resident | Commer | Industrial | Transportation | Urban | Vacant Water UA %
ial cial green land body/
shadow
Residential 2382473 96301 327387 80733 115331 | 249111 58256 71.99
Commercial 20679 46573 15635 885 29940 | 28061 735 32.68
Industrial 83067 20064 437063 64 4521 12672 1181 78.24
B Transportation 125190 9995 34933 220491 89328 | 84030 43326 36.31
2| Urban green 33601 2755 12003 16664 709502 | 64919 6347 83.89
é Vacant land 66176 9232 16344 23314 123598 | 427187 2604 63.91
Waterbody/
shadow 6642 24 1940 16879 27770 7349 62126 50.62
PA % 87.66 25.18 51.70 61.41 64.50 48.91 35.59

Over all accuracy =68.51% and kappa20.5581
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Unsampled domain

Table C8.2. Confusion matrix of SVM-RBF-BBIA-based urban land use classification (tile two)

Land cover classes Referenced
Residenti | Commer | Industrial Transportation Urban | Vacant Water UA %
al cial green land body/
shadow
Residential 2043710 315612 351833 100746 702214 | 534894 24602 50.17
Commercial 8611 25706 2605 870 20571 9765 7852 33.83
Industrial 9198 16980 13791 1161 796 7858 67 27.66
F§ Transportation 88067 16031 22752 187270 407581 | 60614 48075 22.55
'—§ Utban green 7239 622 1230 7 293836 4618 6057 93.70
& [ Vacant land 277780 59262 107698 4947 139827 | 189551 8954 24.05
Waterbody/
shadow 1629 867 374 45959 23895 4253 46564 37.69
PA % 83.89 5.91 2.76 54.92 18.50 23.36 32.75
Over all accuracy = 44.77% and kappa=0.2200
C9. CNN-BBIA-based Urban land use classification
Sampled domain
Table C9.1. Confusion matrix of CNN-BBIA-based urban land use classification (tile one)
Land cover classes Referenced
Resident | Commer | Industrial Transportation Urban | Vacant Water UA %
ial cial green land body/
shadow
Residential 1998924 84400 315337 55140 70558 | 192813 45730 72.35
Commercial 117826 51021 41308 7779 8030 25468 1313 20.19
Industrial 118322 18711 409434 1709 381 4254 3138 73.65
8| Transportation 113948 5186 25909 224863 29493 | 45181 59772 44.58
% Utrban green 31187 1174 4368 18971 809760 | 80260 4812 85.19
A~ Vacant land 335339 24431 48599 24930 167853 | 520572 862 46.37
Waterbody/ 2282 21 350 25638 13915 | 4781 | 58948 | 55.65
shadow
PA % 73.55 27.59 48.44 62.63 73.62 59.61 33.77

Opver all accuracy =65.12% and kappa=0.5274
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Unsampled domain

Table C9.2. Confusion matrix of CNN-BBIA-based urban land use classification (tile two)

Land cover classes Referenced
Residenti | Commer | Industrial | Transportation | Urban Vacant Water UA %
al cial green land body/
shadow
Residential 1956578 277392 253054 91809 140711 | 434625 26976 61.51
Commercial 79931 20210 25939 3339 75720 83219 1295 6.98
Industrial 215319 111468 57753 7374 356 30043 1751 13.62
?é Transportation 32510 5397 1787 226186 72890 16757 59511 54.50
% Urban green 1661 0 155 746 571591 1051 6196 98.31
& | Vacant land 150059 20570 161534 4358 723117 | 245746 4161 18.77
Waterbody/
shadow 176 43 61 7148 4335 112 42281 78.07
PA % 80.31 4.65 11.54 66.34 35.98 30.28 29.74

Over all accuracy =49.89% and kappa=0.3216

B11. Performance measurement and evaluation

Sampled domain

Table C10.1. Performance of selected machine learning algorithms for urban land use classification (tile one)

Land use SVM-RBF- OBIA SVM- RBF-BBIA CNN-BBIA
classes Recall | Precision | Fl-score | Recall | Precision | Fl-score | Recall | Precision | Fl-score
Residen. | 79.97 75.98 77.92 71.99 87.66 79.05 72.35 73.55 72.94
Commer. | 39.41 16.90 23.66 32.68 25.18 28.45 20.19 27.59 23.31
Industri. | 77.00 60.49 67.75 78.24 51.70 62.26 73.65 48.44 58.44
Trans. 53.50 63.24 57.96 36.31 61.41 45.64 44.58 62.63 52.09
Urgreen. | 75.77 | 8449 | 7989 [ 8389 | 6450 | 7293 | 8519 | 7362 | 7898
Vacland | 58.02 59.12 58.56 63.91 48.91 55.41 46.37 59.61 52.16
:Z;;ZZ] 3857 | 8586 | 3y | 5062 | 3559 | 59 | 5565 | 3377 | 4203
Overall | 60.32 63.73 59.85 59.66 53.57 55.08 56.85 54.17 54.28
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Unsampled domain

Table C10.2. Performance of selected machine learning algorithms for urban land use classification (tile two)

Land use SVM-RBF-OBIA SVM- RBF-BBIA CNN-BBIA

classes Recall | Precision | Fl-score | Recall | Precision | Fl-score | Recall | Precision | Fl-score

Residen. | 66.98 72.42 69.59 50.17 83.89 62.79 61.51 80.31 69.66

Commer. | 17.47 16.61 17.03 33.83 591 10.06 6.98 4.65 5.58

Industri. | 16.57 8.71 11.42 27.66 2.76 5.01 13.62 11.54 12.50

Trans. 46.00 75.04 57.04 22.55 54.92 31.98 54.50 66.34 59.84

Ur.green. | 85.53 79.66 82.49 93.70 18.50 30.89 98.31 35.98 52.68

Vacland | 51.59 38.38 44.01 24.05 23.36 23.70 18.77 30.28 23.17

Water/
shadow

19.29 41.29 26.30 37.69 32.75 35.05 78.07 29.74 43.07

4335 | 47.44 4398 | 4138 | 31.73 2850 | 4739 | 36.98 38.07

SVM-RBF-BBIA CNN-BBIA

Utrban land use classes

-Industrial - Transportation - Utban green

Residential - Commercial

Vacant land - Waterbody

Figure C10.1. Compares quality of classified map with referenced land use map (tile one sampled domain)
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Wotldview-3 Pan sharpened image Local land use classification scheme  Reference land use map
map (legend in appendix, figure B3.2)

SVM-RBF-OBIA SVM-RBF-BBIA CNN-BBIA

Proposed urban land use classes

Residential - Commercial -Industrial - Transportation - Urban green

Vacant land - Waterbody

Figure C10.2. Compares quality of proposed land use map with local land use classification scheme map
(tile one sampled domain)
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