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ABSTRACT 

The mapping of urban land use from very high resolution (VHR) imagery is a very challenging task in 

remote sensing in particular in developing country like India, where land use is complex in many aspects 

(e.g., shape, size, orientation, etc.). In this regard, machine learning algorithms like Support Vector 

Machine with Radial Basis Function (SVM-RBF) and Convolutional Neural Networks (CNN) offer 

opportunities to improve mapping result compared to classical parametric classifiers. This study mapped 

the urban land use in Bengaluru city, India. The main object of this study was to evaluate the performance 

of different machine learning algorithms such as SVM-RBF and CNN for urban land use mapping from 

VHR imagery. For this purpose, different aggregation levels (beyond pixels) were employed within the 

machine learning algorithms using object (OBIA) and block-based (BBIA) image classification 

approaches. In the object-based urban land use classification, multi-resolution segmentation optimized the 

with the estimate scale parameter (ESP) tool was carried to obtain segments of homogeneous land uses. 

Regular grids were employed in BBIA. The size of the grid was selected based on literature review, and 

local context. In addition, several image features (i.e., spectral, textural, geometric and contextual) were 

extracted and aggregated from VHR imagery as well as best features, parameters, and size of training 

samples were explored for OBIA and BBIA-based urban land use classification using SVM-RBF. For the 

CNN-BBIA-based urban land use classification, best learning and regularization parameters, CNN 

hyperparameters and size of training samples were explored. All of the above classifications were carried 

out on both sampled (i.e., from the tile where training samples were taken) and unsampled domain           

(i.e., from the tile where training samples not taken) to assess the domain adaptability of the classifiers. For 

validation, different accuracy assessment indices (e.g., overall, user and producer accuracy, kappa, etc.) 

were measured and beyond the classical accuracy measures several other accuracy assessment indices have 

been used (e.g., recall, precision, F1-score Klocation, etc.). In addition, the visual quality of the classified 

map was compared with the referenced map (local land use map) while computational time was compared 

between the classifiers. 

It was observed that overall accuracies of SVM-RBF-OBIA outperforms the SVM-RBF-BBIA and 

similarly, accuracies of CNN-BBIA outperforms the SVM-RBF-BBIA. Therefore, based on the 

performance evaluation it is concluded the OBIA is more relevant and robust for urban land use mapping 

from VHR imagery for the Indian context as compared to BBIA because urban land use is more related to 

the geometry (e.g., shape, size, area, etc.) of the land use. Similarly, CNN is more relevant and robust for 

urban land use mapping from VHR imagery for the Indian context as compared to SVM-RBF because 

CNN learned more complex contextual features which is essential for classifying complex land use. 

Therefore, this study provides a promising a starting guideline for the urban planner and local government 

to select appropriate machine algorithm and classification approach for efficiently mapping urban land use 

from VHR imagery. However, the classification accuracy in this research somehow low to implement 

planning policy. In this regard, the use of CNN combined with OBIA could be promising to develop a 

robust urban land use classification approach for VHR imagery. In addition, integration of some 

additional aggregation levels such parcels as blocks or additional data such as height information from a 

digital surface model (DSM), integrating conditional random field (CRF) with CNN might allow to 

improve the accuracies of urban land use classification.  

 

Keywords: machine learning, earth observation, urban land use, image classification, transferability. 
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1. INTRODUCTION 

1.1. Background and significance  

More than half (54 percent) of the world’s population lives in urban areas, with a projected increase to 66 

percent until 2050. In total, nearly 90 percent of this increase will concentrate in Asia and Africa       

(United Nations, 2015), affecting mostly low and medium income countries where the majority of the 

urban population is concentrated in highly urbanized centres. This rapid urbanization is driven by       

rural-urban migration. Migrants are attracted by job opportunities and better urban facilities, but due to 

the absence of appropriate planning policy, a large part of this growth is concentrated in informal 

settlements.  

This rapid urbanization is an increasing threat to the future sustainable development. For example, rapid 

urbanization associated with unplanned urban growth leads to high consumption of natural resources, 

congested and unorganized urban developments (United Nations, 2015). Unorganized urban 

developments lead to a complex arrangement of urban land uses (Kuffer & Barros, 2011) affecting most 

cities in the global south (Gevaert et al., 2017; Sandborn & Engstrom, 2016). The location, orientation, 

structures, and function of urban land uses such as residential, commercial and industrial areas are very 

complex (Sandborn & Engstrom, 2016). In addition, some of the land uses (e.g., slum, deprived area, etc.) 

are hidden in official planning documents (Kuffer et al., 2017; Nijman, 2008) and accuracy of overall land 

uses is questionable (Nijman, 2008).  Besides, in the rapidly growing urban area, information quickly gets 

outdated (Wentz et al., 2014). In this regard, accurate, consistent and timely information on city growth is 

required to support policy development towards sustainable development and prioritise policy on 

equitable access for present and future needs (United Nations, 2015; Wentz et al., 2014).  

Mapping of urban land use from satellite imagery is challenging because of the absence of an appropriate 

classification method (Sandborn & Engstrom, 2016; Tewkesbury et al., 2015; Wieland & Pittore, 2014). 

Very high resolution imagery can acquire textural, spectral and colour characteristics of land use which 

could be used in general land use classification (Sandborn & Engstrom, 2016). However, the urban 

landscape has heterogeneous spatial patterns and complex functional characteristics, which are very hard 

to distinguish in discrete land use classes using only spectral information. In complex urban areas, each 

land use has a distinct spectral response, texture, geometry, orientation, spatial arrangement and a 

functional characteristic such as transportation network, residential buildings, etc. (Sandborn & Engstrom, 

2016; Wieland & Pittore, 2014).  

In classical urban land use mapping, spectral information is commonly used (Liao et al., 2017; Mboga, 

2017; Tang et al., 2012; Wentz et al., 2008). Recent studies showed that adding additional geometrical 

(shape, size, area etc.) and contextual information (object-level, street block-level, and parcel-level 

attributes, etc.) is advantageous to improve classification accuracies (Cockx, Van de Voorde, & Canters, 

2014; Herold, Liu, & Clark, 2003; Kuffer et al., 2017; Yanchen et al., 2014). In this regard, VHR imagery 

are advantageous to extract geometric and contextual features for detailed urban land use classification 

(Hu & Wang, 2013; Li et al., 2016; Ma et al., 2015; Wu et al., 2009; Yanchen et al., 2014; Yang et al., 2010; 

Zhang et al., 2017). Recently, VHR are widely using for mapping detailed urban land use                      

(e.g., Li, et al., 2016), single urban land use (e.g. slums) (e.g., Naorem et al., 2016; Gevaert et al., 2017; 

Kohli, 2015; Kuffer et al., 2017; Mboga, 2017; Pratomo, 2016), road detection (e.g., Sameen & Pradhan, 

2016) and building footprint extraction (e.g., Gokon et al., 2015; Huang & Zhang, 2012). 

Pixel-based image analysis (PBIA) is a very common and widely used image classification approach which 

has several limitations like ‘salt and pepper effect’ (noise) and spectral confusion. In addition, traditional 
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PBIA like maximum likelihood classifier (MLC) also has several limitations such as mixed pixel 

classification, inability to integrate adequate contextual information and as a consequence, such classifier is 

unable to solve complex problems of urban land use classification  (Lu & Weng, 2007). In the           

object-based image analysis (OBIA), pixels are grouped into the object-level in which different spectral, 

textural, contextual and geometric features are extracted for classification. This approach is very 

convenient for extracting features related to shape, size and texture observed in VHR imageries       

(Herold et al., 2003; Kohli, 2015; Kuffer et al., 2017; Li et al., 2016; Ma et al., 2015).  

Another important image classification approach is block-based image analysis (BBIA) in which the entire 

image is split into blocks (e.g., regular grid, street block, etc.). After that, image features are extracted at 

block-level. Such extracted features at block-level can be used for urban land use classification         

(Herold et al., 2003; Sandborn & Engstrom, 2016). Thus, a block-based image classification approach 

extracts aggregated contextual information (form, shape, pattern) and is, therefore, more relevant for 

urban land use mapping (Herold et al., 2003; Sandborn & Engstrom, 2016; Silván-Cárdenas,         

Almazán-González, & Couturier, 2014). This is because, land use cannot be linked with pixels for the 

reason that a land use (zone) is the aggregation of several individual land cover objects (Herold et al., 

2003).  

Machine learning techniques are widely used in computer science, medical science, gaming technology for 

data mining, pattern recognition and image classifications (Persello & Bruzzone, 2014; Weiss, 

Khoshgoftaar, & Wang, 2016). Recently, machine learning is a widely used technique in geo-information 

science and earth observation for different application including urban land use mapping (Berger et al., 

2013; Wieland & Pittore, 2014), change detection analysis (Tewkesbury et al., 2015), road networks 

(Sameen & Pradhan, 2016) and building footprints extraction (Gokon et al., 2015; Huang & Zhang, 2012), 

slum delineations  (Gevaert et al., 2017) and urban village mapping (Liu et al., 2017) due to its smart, fast 

and cutting-edge ccomputational performance (Persello & Bruzzone, 2014; Weiss, Khoshgoftaar, & Wang, 

2016; Wieland & Pittore, 2014). In addition, the performance of machine learning algorithms on VHR 

imagery is promising due to their high capability of data integration, automatic learning of training 

samples, non-linear computation, customized algorithms and handling of wide-scale image analysis 

elements which are very essential for solving complex problems in the urban land use mapping (Persello & 

Bruzzone, 2014; Weiss, Khoshgoftaar, & Wang, 2016).   

In this regard, supervised machine learning algorithms such as support vector machine (SVM), decision 

tree (DT), random forest (RF), K-Nearest Neighbours are increasingly used for urban land use mapping 

(Berger et al., 2013; Wieland & Pittore, 2014). The Convolution Neural Network (CNN) is an advanced 

deep learning algorithm which is recently used by several researchers for urban land use classification by 

taking advantages of its self-extracting capability of image features (Bergado, Persello, & Gevaert, 2016; 

Lee & Kwon, 2016; Mboga, 2017). Thus, to overcome limitations of PBIA and traditional image 

classifiers, OBIA and BBIA are highly encouraged to be integrated with machine learning classifiers to 

improve the overall classification accuracy (Chuang & Shiu, 2016; Tewkesbury et al., 2015; Wieland & 

Pittore, 2014). In image classification, both SVM-RBF and CNN are robust machine learning algorithms 

(Mboga, 2017; Stavrakoudis et al., 2014; Tang et al., 2012) which have rarely been combined with OBIA 

and BBIA for urban land use classification of Indian cities. In this regard, SVM-RBF and CNN algorithms 

have been selected to test their performances on BBIA, and OBIA for classifying urban land uses in 

Bengaluru city, India. This study is carried out based on an experimental research design in which the 

performance of selected machine learning algorithms is evaluated using reference datasets. 

1.2. Research problem 

Based on the literature review, the research problem in this study has been explained below (see figure 1):  

Firstly, there is insufficient knowledge about the best image features for urban land use classification. 
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Secondly, to classify complex urban land use it necessities to use advanced and robust machine learning 

algorithms like SVM (e.g., Silván-Cárdenas et al., 2014) and CNN (e.g.,  Hu et al., 2015) which were rarely 

used for the Indian context. Thirdly, the classification of urban land use is more appropriate with OBIA  

and BBIA because the concept of land use related to the larger area instead of the pixel (Herold et al., 

2003). In general, OBIA (e.g., Man, Dong, & Guo, 2015) and BBIA (e.g., Sandborn & Engstrom, 2016) 

have not been much used for urban land use classification, and similarly, this also has not been previously 

explored for Indian cities. Finally, land use classification in India is commonly done by visual image 

interpretation with field survey in several city planning departments which is slow, time consuming, costly, 

and information gets quickly outdated. This study will help to resolve the above research gap by 

employing advanced image analysis techniques.  

  

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

1.3. Research objectives 

The main objective of this study is to evaluate the performance of different machine learning algorithms 

for urban land use mapping. 

1.3.1. Specific objectives 

The specific objectives are outlined to carry out the proposed research which as follows-  

1. To select suitable image features for urban land use mapping.  

2. To map urban land uses using SVM and CNN in OBIA and BBIA.   

3. To evaluate the performance of SVM and CNN in OBIA and BBIA for urban land use 

classification. 

1.4. Research questions 

Specific objective 1 

1. What types of image features are extracted from VHR imagery using standard feature extraction 

methods based on recent literatures? 

Gap in applying advanced algorithms 

Lack of BBIA and OBIA using SVM 
and CNN for urban land use 
classification from VHR imagery for 
Indian cities 

Gap in developing image features 

Lack of adequate and well-
developed image features from 
VHR imagery for urban land use 
classification.   

Research gap 

Methodological gap 

Figure 1. Shows research gaps. 

 



EVALUATING THE PERFORMANCE OF MACHINE LEARNING ALGORITHMS FOR URBAN LAND USE MAPPING USING VERY HIGH RESOLUTION SATELLITE IMAGERY 

 

4 

2. What is the standard feature selection method used for selecting best features based on recent 

literatures?  

3. What are best the image features used to map urban land use using standard feature selection 

method? 

Specific objective 2 

1. What types of urban land uses are relevant based on national and local land use classification 

schemes and available literatures? 

2. What are best parameters of SVM and CNN for classifying urban land uses employing OBIA and 

BBIA? 

3. What are the classification accuracies and time elapses executing a SVM in BBIA and OBIA 

employing the best parameters and image features? 

4. What are the classification accuracies and time elapses executing a CNN in BBIA employing the 

best parameters? 

Specific objective 3 

1. What is the best strategy to measure the accuracy of SVM and CNN for urban land use 

classification? 

2. What is the performance of SVM and CNN for urban land use classification? 

1.5. Conceptual framework 

This research is conceptualized in figure 2. The features extraction from the VHR imagery is a very 

primary concept in image classification. 

 

 
 

 

     

Features 

extraction and 

selection 

(except CNN) 

Parameter 

tuning  

Urban Land 

use 

classification 

 

Accuracy 

measures 
Evaluating 

performance  

OBIA BBIA 

SVM CNN 

Figure 2. Shows conceptual framework. 
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The concept of features extraction relates to the extraction of different spectral (e.g., spectral bands, 

NDVI, etc.), textural (e.g., GLCM, LBP, etc.), geometric (e.g., shape index, roundness, etc.) and contextual 

features (e.g., spatial matrices). In addition, another important concept is features selection which is used 

to select the best features that reduced the effects of Hughes phenomena and enhance the classification 

accuracy and computational performance (Camps-valls, Mooij, & Schölkopf, 2010; Persello & Bruzzone, 

2016; Damodaran, Courty, & Lefevre, 2017; Niazmardi, Safari, & Homayouni, 2017). Thus, next to the 

features selection, the parameter tuning is one of the very important concept in image classification which 

is used to select the best parameter to reduce the risk of overfitting of the classifiers and improve the 

classification accuracy. The concept of image classification relates to the approach (e.g., OBIA and BBIA) 

that is used in urban land cover/use classification. This incorporates the concept of features extraction, 

features selection, parameter tuning, and algorithms (e.g., SVM, CNN) used. Finally, accuracy measures 

and performance evaluation in image classification are used to validate and assesses the ability of the 

classifier to map urban land use.   

1.6. Thesis structure 

 

Chapter 1- provides the background and justification for selecting the research topic, research gap 

identification, research objectives, research question and conceptual framework.  

Chapter 2- provides a detailed literature review about pixel-based, object-based and block-based urban 

land use classification. This chapter also gives an overview of different types of machine learning 

algorithms, image features, feature extraction, and selection methods, parameter tuning methods, different 

types of urban land use classification scheme, urban land use pattern in Indian cities, etc.  

Chapter 3- introduces the study area, the dataset used, tools and software used. In this chapter, the 

physical and demographic status of the study area is discussed and similarly explained about the remote 

sensing and other referenced datasets. This chapter, provides a detailed discussion about the methods of 

pre-processing, block generation, image segmentation, features extraction, features selection, parameter 

tuning, architectures of SVM and CNN, land use classification, accuracy measures and performance 

assessment.   

Chapter 4- covers results and discussion such as extracted features, selected best features, best 

parameters, urban land cover and land use classification based on SVM-RBF-based OBIA and BBIA and 

CNN-based BBIA, etc. This chapter also covers the measuring accuracies of SVM-RBF-based OBIA and 

BBIA and CNN-based BBIA for urban land use and cover classification.  

Chapter 5- provides the conclusions and recommendations. In this section, synthesizing the research 

results by addressing the research objectives, research questions, limitations and drawing final 

recommendations for future research. 
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2. LITERATURE REVIEW 

The literature review has been carried on different approaches, methods, and contexts related to urban 

land use mapping using VHR imagery.   

2.1. Pixel-based image classification approach 

The PBIA is the standard and widely used approach in the field of remote sensing  (Lu & Weng, 2007). 

The PBIA is linked with the two concepts such as type one PBIA in which both input features and 

classification output are purely pixel-based (e.g., spectral band, NDVI features with SVM.). For example, 

Tang et al.(2012) were used spectral features (e.g., spectral band and others spectral features from Landsat 

TM) to evaluate the performance of the MLC, classification tree, Random forest, Bagging and SVM for 

urban land use classification of New Orleans and Baton Rouge, USA. The authors argued that SVM is the 

most robust classifier as compared to the others classifiers. Secondly, type two PBIA in which input 

features are computed from the neighbourhood (e.g., patch-based or window-based) of a single pixel and 

classification output is pixel-based (e.g., CNN; GLCM, local binary pattern, morphological profile features 

with SVM) which highly linked with the block-based image classification approach.  For example, Liao et 

al. (2017) were compared different image features using SVM for urban land use classification of the city 

of Ghent Belgium; Pavia, Italy; and Houston, USA. The authors argued that SVM with morphological 

features (e.g., type two PBIA) outperform the SVM with spectral bands (e.g., type one PBIA). In addition, 

Mboga (2017) was also used similar PBIA approach to compare the performance of SVM (using GLCM 

and CNN features from VHR IKONOS, hyperspectral imageries) with CNN for classifying urban land 

use like the formal and informal settlement of Dar es Salaam, Tanzania. The author argued that CNN 

outperform the SVM because of the high computational performance of complex contextual image 

features. Therefore, it is concluded that type two PBIA with an advanced classifier (e.g., CNN) 

outperform the type one PBIA as well as type two PBIA with a commonly used classifier (e.g., SVM, 

random forest, etc.) for urban land use classification.     

In addition, some of the studies employed the mixed PBIA approach in which input features computed 

pixel-wise and neighbourhood-wise, but classification output is pixel-wise. For example, Wentz et al. 

(2008) used both spectral (e.g., spectral band, NDVI, etc. from ASTER imagery) and contextual features 

(e.g., GLCM from ASTER imagery) for classifying the urban land use of  Delhi city, India using expert 

decision tree classifier. However, using PBIA, several urban land use classes such as residential, 

commercial, industrial, transportation etc. were classified in different studies outside India (e.g., Liao et al., 

2017; Mboga, 2017; Tang et al., 2012 ) but very limited study was carried out in India (e.g., Wentz et al., 

2008). In addition, for an Indian city (Delhi), Wentz et al. (2008) were unable to classify important urban 

land uses such as residential, commercial, etc. perhaps due to the limitations of the coarse resolution 

imagery (Aster) and the traditional image classifier.  The above studies reveal that the integration of 

textural and contextual features along with spectral features from VHR imagery in PBIA is very useful to 

classify detailed urban land use. In addition, the above literatures also claimed that the SVM and CNN are 

robust classifiers. CNN is a new and advanced classifier recently being applied for urban land use 

classification. 

2.2. Object-based image classification approach 

The OBIA is a widely used image classification approach employed in several studies for urban land use 

mapping (e.g., Kuffer et al., 2017; Ma et al., 2015; Man, Dong, & Guo, 2015; Yanchen et al., 2014). In 
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OBIA, both input features and classification output are based on object-level instead of pixel. The 

advantages of OBIA is that it included the geometric features (e.g., shape, size, etc.) along with others 

spectral (e.g., NDVI, nDSM, etc.), textural (e.g., GLCM, etc.) and contextual features (e.g., spatial metrics) 

at object-level. For example, Ma et al. (2015) used geometric (e.g., regularity) and contextual features (e.g., 

lacunarity) while Yanchen et al.(2014) included spectral (e.g., GLCM), contextual and geometric (e.g., 

asymmetry, border length, IHS transformation etc.) for urban land use classification. In addition, few 

researchers (e.g., Kuffer et al., 2017) integrated PBIA with OBIA to improve the classification of urban 

land use. This integration was used to include some important contextual features (e.g., spatial metrics 

from land cover) into OBIA for urban land use classification (Kuffer et al., 2017).  

Thus, Yanchen et al.(2014) were compared the performance of PBIA (using GLCM features) with OBIA 

using SVM for mapping urban land use of near Western 3rd Ring Road of Beijing, China. The authors 

argued that SVM with OBIA outperform the SVM with PBIA for urban land use classification. In OBIA, 

several VHR imageries such as VHR Aerial color images (e.g., Ma et al., 2015), VHR WorldView-2 (e.g., 

Kuffer et al., 2017), VHR hyperspectral (e.g., Man, Dong, & Guo, 2015) and LiDAR (e.g., Ma et al., 2015; 

Man, Dong, & Guo, 2015 ) were widely used for urban land use classification. The above study shows that 

OBIA was commonly used for the extraction of important urban land use such as residential, commercial, 

residential, transportation, etc. of the other than Indian cities (e.g., China, USA, etc.). Therefore, it is 

concluded, integration of PBIA with OBIA and is an additional advantage for improving the urban land 

use classification accuracy using VHR imagery.  Furthermore, it also concluded that the use of robust 

classifier such as SVM provides added advantages on OBIA for urban land use classification. 

2.3. Block-based image analysis approach 

The BBIA is an important image classification approach widely used for several studies for correlating or 

extracting urban land use from VHR imagery (e.g., Duque, Patino, & Betancourt, 2017; Sandborn & 

Engstrom, 2016; Silván-Cárdenas et al.,2014). In BBIA, both input features and classification results are 

based on block-level (e.g., regular grid, parcel, etc.). However, some other PBIA approach such as CNN 

strongly linked with BBIA because CNN aggregated more abstract features at patch-level (CS231n, 2018; 

Bergado, 2016; Mboga, 2017). In addition,  in BBIA some of the studies used regular grid (e.g., Duque, 

Patino, & Betancourt, 2017; Herold et al. 2003; Sandborn & Engstrom, 2016) while others used parcel 

(e.g., Hu & Wang, 2013; Silván-Cárdenas et al.,2014) or road network grid (e.g., Li et al.,2016) for 

correlating or classifying urban land use. This block was either downloaded from the Openstreet map (e.g., 

Li et al.,2016)  or prepared by manual digitization (e.,g., Hu & Wang, 2013) or automatically generated 

from the software (e.g., Duque, Patino, & Betancourt, 2017). Similar to the OBIA, the BBIA also included 

spectral (e.g., NDVI, nDSM etc.), textural (e.g., GLCM, LBP etc.), contextual (e.g., spatial metrics) and 

geometric features (e.g., shape, compactness etc.) (except geometric features for regular grid) for urban 

land use classification as observed in above studies.  

It was observed that some of the studied were integrated PBIA (e.g., Cockx, Van de Voorde, & Canters, 

2014;  Hu & Wang, 2013) or OBIA (e.g., ., Li et al., 2016) with BBIA for improving urban land use 

classification accuracy. This integration was done to extract other contextual features such as spatial 

metrics (e.g., Herold et al. 2003), coverage ratio (e.g., Li et al., 2016), etc. from land cover and such 

features were used for BBIA-based urban land use classification. In BBIA, one of the very important facts 

is the this also can include demographic and socio-economic information of land use such as population 

density, tax information, etc. along with others features while parcel is conder as the block (Wu et al., 

2007).  However, it was also observed that some of the studied compared classifiers such as SVM with 

MLC (e.g., Silván-Cárdenas et al.,2014 ) and SVM with CNN (e.g., Mboga, 2017) for BBIA-based urban 

land use from VHR imagery (e.g., Quick Bird images, LiDAR, etc.). Based on the performance of these 

classifiers the authors concluded that SVM outperforms the MLC while CNN outperforms the SVM. In 

addition, from the above studies, it was also observed that BBIA was used widely used for classifying 
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important urban land use such as residential, commercial, industrial, transportation, etc. of the cities 

outside India (e.g., China, Africa, USA, etc.). Therefore, from the above literatures, it is concluded that 

CNN with BBIA is robust classification approach as compared to SVM with BBIA which was never used 

for detailed urban land use classification for Indian cities from VHR imagery. Furthermore, it is also 

concluded that integration of PBIA or OBIA with BBIA is an added advantage for urban land use 

classification from VHR imagery. 

2.4. Support vector machine with radial basis function  

The Support Vector Machine with Radial Basis Function (SVM-RBF) is a robust classical machine 

learning algorithm for non-parametric as well as non-linear image classification problems (Bruzzone & 

Persello, 2009; Gevaert et al., 2016). The SVM is a binary classifier (0, 1) which used to solve the linear 

(see figure 3(A)) and non-linear classification problem (see figure 3(B)). In the non-linear SVM, non-linear 

mapping function φ(xi) (see equation 1-4) was employed to separate the two classes (yi ∈ +1, -1)               

(see equation 4) corresponding to the n set of training samples (xi) from the hyperplane (H) based on 

margin maximization (M) of primal quadratic optimization problem (see equation 3) which explained in 

equation 1-4 and figure 3 (Bruzzone & Persello, 2009; Gevaert et al., 2016; Mourão-Miranda et al., 2011). 

 

𝑦𝑖𝑓(𝑥) = 𝑤. φ(x𝑖)  + 𝑏                                                                                                            (1) 

 

   𝐻: 𝑦𝑖𝑓(φ(x𝑖) = 0                                                                                                                        (2)     

            

   min
   𝑤𝑏ξ

{
1

2
‖𝑤‖2 + 𝐶 ∑ ξ𝑖

𝑛

𝑖=1

 }                                                                                                            (3)     

 

              𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:  𝑦𝑖 . (𝑤. φ(x𝑖) + b ≥ 1 − ξ𝑖 , 𝑖 = 1, … . . , 𝑛    

                                  ξ𝑖 > 0, 𝑖 = 1, … . . , 𝑛   
 

              𝐶𝑙𝑎𝑠𝑠 𝑠𝑒𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:  𝑦𝑖𝑓(φ(x𝑖) > 0 ⇒ 𝑦𝑖 = +1                                              
                                               𝑎𝑛𝑑    𝑦𝑖𝑓(φ(x𝑖) < 0 ⇒ 𝑦𝑖 = −1                                         (4)  

 
Where, where, w=weight vector, b=bias, C=regularization parameter corresponds to the cost of the 

wrong classification.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b)Kernel induced feature space 
(A) Linear separation of two 

class problem 

Support vectors 
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(a)Input feature space  

φ ( , ) 

(B) Non-linear separation of two class problem using 
kernel function (e.g., input data transforms into (b)) 

Figure 3. Shows SVM architecture for linear and non-linear class separation problem (Bruzzone & Persello, 2009). 
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The dual problems of quadratic optimization employed by Lagrange multipliers to solve the primal 

quadratic optimization problem (see equation 6). In addition, non-linear mapping function (φ(xi). φ(xj)) is 

replaced by the kernel function of Gaussian Radial Basis Function (KRBF (xi, xj) = φ(xi ). φ(xj )) (equation 5) 

to developed SVM-RBF which explained in equation 5-6 (Gevaert et al., 2016). 

                         𝐾𝑅𝐵𝐹(𝑋𝑖, 𝑋𝑗) = exp (−
‖𝑋𝑖 − 𝑋𝑗‖

2

2𝜎2
                                                                   (5) 

 

                                 max
                                                 𝑎

{∑ 𝑎𝑖 −
1

2

𝑛

𝑖=1

∑ ∑ 𝑦𝑖𝑦𝑗𝑎𝑖

𝑛

𝑗=1

𝑛

𝑖=1

𝑎𝑗𝐾𝑅𝐵𝐹(𝑥𝑖, 𝑥𝑗)}                                          (6)         

      𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: ∑ 𝑦𝑖

𝑛

𝑖=1

𝑎𝑖 = 0, 0 ≤ 𝑎𝑖 ≤ 𝐶, 𝑖 = 1, … . , 𝑛                        

Where, ai= Lagrange multipliers, σ= bandwidth in Gaussian function is determined by the median distance 

of training samples. The architecture of SVM for a two class problem is solved by the common rule of 

one-against-other (OAO) while a multiclass problem is solved by one-against-all (OAA) (Richards & Jia, 

2006). As mentioned in the equation, the SVM-RBF classifier is controlled by two classification 

parameters, i.e., cost (C) and gamma (σ) (Suykens,2001). The cost parameter is used to control the slack 

variables (noise) and outliers while the gamma parameter used to control the width of RBF kernel of the 

variables from the decision plane (Gevaert et al., 2016; Mourão-Miranda et al., 2011). Both the cost and 

gamma parameters control the classification accuracy (Persello & Bruzzone, 2014; Suykens, 2001). The 

optimum cost and gamma parameters reduce the risk of overfitting and improve classification accuracy 

which could be obtained by the parameter tuning using grid search hold-out k-fold cross-validation 

function (Persello & Bruzzone, 2014).  

2.5. Artificial neural network 

The Artificial Neural Network (ANN) is one of the very advanced computing algorithm in computer 

science which derived its name from the human biological neuron(Atkinson & Tatnall, 1997; Madani, 

2008). In human biological nervous systems, different neurons are connected to the others neuron 

through the synapses which is a biological neural network (BNN). In a BNN, neuron (consist of cell body, 

axon, and dendrite) collects input information (e.g., taste) from the biological detectors (e.g., tongue) and 

passing this information to the reflector (e.g., brain) through interconnected neurons to take the final 

decision (e.g., types of taste) in feedforward and feedback response process (Atkinson & Tatnall, 1997). In 

this process, input information (x1, x2..,...,xn) is collected through dendrite and is transformed into 

electrochemical signal through activation in the cell body, and this activated signal is transmitted from one 

neuron to another neuron through an axon.  

 

 

 

 

 

 

 

 

 

 

Figure 4. Shows structure and function of ANN similar to biological BNN adopted from (CS231n, 2018). 
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The activation of the neuron performs with the weight (w) obtained from the synapses (connectors of two 

neurons) and unit bias (b) which explained in figure 4 (CS231n, 2018; Mboga, 2017). Thus, later scientist 

transformed the principle of BNN into ANN to solve several complex problems using advanced 

mathematical and statistical computations. Initially, the ANN was used for pattern recognition (Kim et al., 

2012; Kim, 2010; Madani, 2008) but recently it is increasingly used in remote sensing for land use/cover 

classification (e.g., Bergado, 2016; Civco, 1993; Paoletti et al., 2017; Yuan, Van Der Wiele, & Khorram, 

2009). The neuron in the ANN is termed as perceptron and based on the arrangement of layers in the 

network is called a single layer perceptron (SLP) or multilayer perceptron (MLP) which explained below.         

2.5.1. Single layer perceptron  

The single layer perceptron (SLP) is a very simple form of an ANN which was initially designed by 

McCulloch-Pitts (1943) to solve the linear separable problem of two classes from the hyperplane(P) in a n-

dimensional space based on the sign activation function (sgn) (Zhang & Zhang, 1999). The SLP consists 

of a single neuron with input (xi) and output (y). The weighted sum of the input is calculated using input 

(xi), weight factor (wi) and threshold (e.g., bias) using the equation 7. The weighted sum of the input is 

activated in feedforward process using sign activation function followed by either OR, AND or NOT 

Boolean logic to solve the simple linear classification problems which are explained in equation 7-8 and 

figure 5  (Degeratu, Schiopu, & Degeratu, 2001). The equation 7 and 8 explained that when a weighted 

sum of the input is less than the threshold (xp) of the neuron, the output will be -1 otherwise 1.  

 

                                 𝑦 = 𝑠𝑔𝑛 (𝑣 = ∑ 𝑤𝑖. 𝑥𝑖

𝑛

𝑖

− x𝑝)                                                                   (7) 

 

                            𝑠𝑔𝑛(𝑣) = {  
1             𝑣 > 0                                         
0             𝑣 = 0                                        

− 1             𝑣 < 0                                            
                                     (8)      

 
  

 

 

 

 

 

 

 

 

 

The limitation of  SLP is that it is unable to provide a non-linear solution of a multiclass class problem 

because SLP can only adopt the AND, OR and NOT Boolean logic for linear separable of two classes 

(Degeratu et al., 2001). The non-linear solution for complex multiclass classification problem required 

more neurons which could be solved with XOR Boolean logic (Kim & Choi, 1997). Later, multiclass 

classification problems were introduced in ANN through advanced activation function with feedforward 

and backpropagation algorithms which explained in MLP.   

2.5.2. Multilayer perceptron  

The multilayer perceptron (MLP) is an advanced ANN over SLP-ANN which is configured with input 

layer(xi), hidden layers and output layer (yi) (Lin, 2011) (see figure 6). In MLP, the result is obtained 

through feedforward computation of the weighted sum of learned input (xi) with weight(wi) and bias (bi) 

using non-linear activation function (e.g., sigmoid, tanh) followed by XOR Boolean logic (Lin, 2011). In 

Single hidden layer with single neuron 

Figure 5. Shows SLP scheme of McCulloch-Pitts (1943) adopted and modified from (Degeratu et al., 2001). 
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MLP, each neuron of the input, hidden or output layers are fully connected with all neurons of the 

preceding or succeeding layers  (Lin, 2011) (see figure 6).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the MLP learning process, a weighted sum of each neuron is computed using the input (xi), weight (wi) 

and unit bias (bi) which is explained in the equation 9 (CS231n, 2018).  

 

𝑦𝑖 = ∑ 𝑤𝑖. 𝑥𝑖

𝑛

𝑖

+ 𝑏𝑖                                                                            (9)       

The weighted sum of the neuron (yi) is activated using most commonly used non-linear activation 

functions such as sigmoid and hyperbolic tangent function (tanh) to get the output (oi) which explained in 

the equation 10 and 11 ( Lin, 2011; Mboga, 2017). 

 

𝑜𝑖 = 𝑡𝑎𝑛ℎ(𝑦𝑖)                                                                              (10) 

𝑜𝑖 =
1

1 + 𝑒−𝑦𝑖
                                                                               (11) 

The output of the neuron (oi) in layer (li) is fully connected with the succeeding neuron in the next 

layer(li+1) as an input. Thus, the network feeds the input to the neuron of the next layer to get the final 

output, which is called as feedforward process in the network perceptron phase (e.g., perceptron learning 

rule). The perceptron learning rule with activation function is termed as the generalization phase of MLP.  

However, while employing function and architecture of MLP in deep learning (e.g., CNN), two different 

advanced activation functions (e.g., RELU, SoftMax) were applied for two different types hidden layers. 

Firstly, rectified liner unit (RELU) activation function was applied in the hidden layer (e.g., convolutional 

layers) instead of sigmoid function because RELU is fast and robust as compared to the other activation 

functions (CS231n, 2018). Thus, activation output (oi) of the weighted sum of the neuron (yi) in the 

hidden layer was computed using RELU activation function which is explained in the equation 12 

(CS231n, 2018). 

Input layer Hidden layer Output layer 

∑  

 

∑  

 

∑  

 

bias 

x1 

x2 

xn 

bias 

y1 ∑  

 

∑  

 

∑  

 

y2 

yn 

x1 

x2 

xn 

Feedforward of input backpropagation of error 

Figure 6. Shows ANN-MLP architecture with input layers (three neurons), one hidden layer (three neurons) and 
output layer (three neuron).  
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                                                       𝑜𝑖 = 𝑅𝑒𝑙𝑢(𝑦𝑖)                                                                   (12)       

 𝑤ℎ𝑒𝑟𝑒, 𝑅𝑒𝑙𝑢 = 𝑓(𝑦𝑖) = max(0, 𝑦𝑖)                            

 

Secondary, SoftMax activation function was applied in the output layer of the last hidden layer (oi) to get 

the final output probability (e.g., between 0-1) (e.g., posterior probability) of the different class label (oj) 

which explained in the equation 13 (Mboga, 2017). 

 

𝑝(𝑜𝑗|𝑜𝑖) =
exp (𝑜𝑗)

∑ 𝑒𝑥𝑝(𝑜𝑖)𝑛
𝑖=1

                                                                                                (13) 

 

Where, n=un-normalized sample of n number of class, i and j. In the generalization phase of MLP, 

network measures the learning error (En(w)) from the n training samples using the equation 14 which is 

called as the objective loss function (e.g., cross-entropy or negative log likelihood) (Bergado, 2016).  

 

                              𝐸𝑛(𝑤) = − ∑ 𝑡𝑖

𝑖

log 𝑜𝑖                                                                      (14) 

Where, ti= vector encoding (0 or 1) of true label vector corresponding to the ith class and oi=output 

probability label vector of the ith class. The error measured using objective loss function is automatically 

minimized by updating the weight of the preceding neurons using delta rule (∆) which is explained in 

equation 15 (Bergado, 2016). 

                                   ∆𝑤(𝜏) = −𝜖(𝜏)
𝜕𝐸(𝜏)

𝜕𝑤(𝜏)
+ 𝑎∆𝑤(𝜏 − 1)                                               (15)  

 

Where, w=weight, ϵ(τ)= learning rate, τ=epoch, a=momentum and ∂E(τ)/∂w(τ) =gradient. The delta rule 

is called as the backpropagation algorithm with stochastic gradient descent (SGD). This phase of the MLP 

is termed as the optimization phase. The optimization phase is controlled by some initialization parameter 

of the network such as learning rate, momentum, and epoch as explained in equation 15. The learning rate 

(e.g., 1/10, 1/100, 1/1000, etc.) is the fraction of learning which explained how precisely updates the 

derivates of the SGD to obtain minimum loss function in each epoch. In addition, learning rate also 

controls the speed of learning while momentum (0-1) is used to accelerate the learning in each epoch 

(Mboga, 2017). The epoch is the number of iteration of the network. In addition, overfitting of the 

network (resulted while increase depth of the network) can be managed by applying regularization 

parameters such as weight decay (λ) in the L2 regularization norm and dropout (e.g., randomly dropping 

out percent of neuron to minimize co-adaptation between neuron) (Srivastava et al., 2014; Bergado, 2016). 

The L2 regularization norm for the new loss function J(w) is explained in the equation 16 (Bergado, 2016).  

 

                                             𝐽(𝑤) = 𝐸(𝑤) + 𝜆 ‖𝑤‖2                                                                 (16) 

 

However, cross-validation is one of the options to select optimum initialization and regularization 

parameters to minimize the loss function in network optimization process. 

2.5.3. Convolutional neural networks 

In this study, the selected ANN is the convolutional neural networks (CNN) because of its advanced 

pattern recognition ability. The convolutional neural networks (CNN) employed function (e.g., activation, 

feedforward, and backpropagation, etc.) and architecture of the MLP (e.g., hidden layers) in the networks. 

The difference between MLP and CNN is observed in terms of architecture and depth of the network 

which is explained in MLP (see section 2.5.3) and in this section (Bergado, 2016). In CNN, two types of 

hidden layers are used. Firstly, type one hidden layer is convolutional layer which is the sparsely connected 
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neuron, and secondly, type two hidden layer is the fully-connected layers which are similar to the fully-

connected neuron of the MLP. The CNN is used for the grid-based data structure to solve non-linear 

multiclass classification problems (Goodfellow et al., 2016). Consequently, CNN was used for many grid-

based multiclass classification problems such as land cover/use classification from satellite imagery during 

past several decades (e.g., Bergado, 2016; Hu et al., 2015; Lee & Kwon, 2016; Mboga, 2017; Paoletti et al., 

2017).  

In addition, the most commonly used architecture of CNN (e.g., in MatConNet library) was developed  

with input layer, convolutional layers (conv), activation layer, pooling layers, fully-connected layers (FC) 

and output layer (e.g., INPUT-CONV-RELU-POOLING-FC-OUTPUT) (CS231n, 2018; Bergado, 2016) 

see figure 7. The input layer is a 3-D volume (length, width, and depth) which consists of n number of 2-D 

image patches. As an example, eight spectral of bands of 29 X 29 image patches (29X29X8) are used as 

the input for the first convolution layer in this study. Similarly, the structure of the convolution layer is the 

3-D volume (length, height, and depth) which includes n number of 2-D convolving filters (e.g., 5X5X8) 

that produced the equivalent size of output volume. The spatial size of the output volume of convolution 

layer (Convout) can be  estimated as the function of input size (I), filter (F), stride and zero padding (P) 

using equation 17 and the output must be an integer (CS231n, 2018 ). 

 

                  𝐶𝑜𝑛𝑣𝑜𝑢𝑡𝑝𝑢𝑡 = (
𝐼𝑠𝑖𝑧𝑒 − 𝐹𝑠𝑖𝑧𝑒 + 2𝑃

𝑆
) + 1                                                          (17) 

 

However, the depth of the output volume (e.g., number of activation maps) of the convolution layer 

(Convout) is user-defined. In addition, the zero padding can be determined in relation to the filter size 

using the equation 18 (CS231n, 2018).   

 

                       𝑍𝑒𝑟𝑜 𝑃𝑎𝑑𝑑𝑖𝑛𝑔 = (
𝐹𝑠𝑖𝑧𝑒 − 1

2
)                                                                                (18)           

 

The stride is the step of sliding filter over the spatial input while zero padding is the zero around the 

border of the spatial input which is used for preserving the spatial characteristic of the object (CS231n, 

2018).  The principle of CNN is the sparse connectivity, parameter sharing and equivariant representations 

(Goodfellow et al., 2016). In terms of sparse connectivity, the output unit (e.g., neuron) of the convolution 

layers (s) is sparsely connected with the unit of input layer (x) by the function of convolving kernel 

(moving filter) where the kernel size is less than the input size (Goodfellow et al., 2016).  
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Figure 7. Shows an example of sparsely and full connected neurons in the CNN. 
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In case of the FC layer, the output neuron is fully-connected with all preceding input neurons as 

mentioned in the MLP (see figure 7). The convolving kernel (e.g., 3X3 local neighbourhood) in input layer 

(e.g., x) is the receptive field of the neuron of the convolutional layer (e.g., s1) (see figure7). As an example 

(see figure 7), if a convolutional layer consists of 16 neurons (e.g., 4X4) and each neuron having the 

random weight 9 (3X3) +1 bias=10 parameters then this convolutional layer obtained total 160 

parameters (16*10). Similarly, the parameters sharing explained the use of the same parameters of the 

preceding neurons of the convolutional layer to the succeeding neuron of the next convolutional layer. In 

case of the FC layer, parameter sharing is restricted and used only once (Mboga, 2017). In addition, 

equivariant representations explained the change of input and output happens in the same way 

(Goodfellow et al., 2016).  

The convolutional layer is followed by non-linear activation (e.g., RELU mentioned in MLP) and pooling 

(e.g., subsampling). The output volume of the non-linear activation layer is the same as the input volume 

because the output volume is independent of the non-linear activation. The sub-sampling of the activation 

layer was done using the max-polling function, which helps to downsampling the input volume and 

reduces the parameters (Goodfellow et al., 2016). The max-polling function is performed by the function 

of maximum aggregation algorithm using the n-size of pooling region with a specific number of the stride 

(e.g., 2 X 2 pooling is used as an example in figure 7). Thus, the pooling output layer is the input for the 

next convolution layer, and again the same function is used for the following pooling layer (e.g., 

equivariant transformation). The final pooling layer is the input for the fully-connected layer (1 X 1 X 

depth). At the end of the fully-connected layer, the SoftMax activation was applied to obtain the output 

class probability as mentioned in MLP. Thus, a wider layer (e.g., convolutional layer) is transformed into a 

dense layer (e.g., FC) as observed in the CNN architecture (Lee & Kwon, 2016). The CNN network is 

trained, regularized and optimized through feedforward and backpropagation algorithm with stochastic 

gradient descent (SGD) as mentioned in MLP. 

A supervised CNN network is more relevant to train the image patches from VHR imagery because more 

complex contextual features can be extracted from the imagery with very high spectral and spatial 

resolution (Bergado, 2016; Mboga, 2017; Paoletti et al., 2017). In a supervised CNN, the network trains 

the training patches associated with label information to learn more invariant and complex local contextual 

features which are validated with the unseen test data (e.g., validation set). As explained the function and 

architectures of the supervised CNN, the network is incorporated with several hyperparameters such as 

learning and regularization parameters and hyperparameters related to the network architecture which 

have explained in the appendix table A1.1. The inconsistent use of hyperparameters in the networks leads 

to the overfitting of the networks in the learning process. In addition, others parameters like size of 

training samples and data augmentation are one of the considerations to control the overfitting of the 

network (CS231n, 2018; Bergado, 2016; Mboga, 2017). The overfitting of the network causes a drop of 

the overall classification accuracy. In this regard, K-fold cross-validation is one option to mitigate the 

overfitting of the CNN networks (Bergado, 2016; Mboga, 2017). The hierarchical order of different layers 

in a supervised CNN (e.g., input, convolutional layers, activation, pooling, and FC) are varied according to 

the different network architecture (e.g., LeNet, AlexNet, GoogLeNet, VGG Net, etc.) (CS231n, 2018). 

The simpleCNN wrapper of MatConvNet library provides an efficient and simple CNN architecture with 

linear chains of a computational building block as compared to other libraries (MatConvNet, 2018).  

2.6. Multi-resolution image segmentaion 

Image segmentation is a primary step in OBIA for land cover or land use classification (Kohli, 2015; 

Kuffer et al., 2017; Pratomo, 2016). There are several image segmentation algorithms (chessboard, 

quadtree, contrast split, etc.). However, multi-resolution segmentation (MRS) is widely used for land cover 

or land use classification using Ecognition software (Kohli, 2015; Kuffer et al., 2017; Pratomo, 2016). The 

multi-resolution image segmentation is a bottom-up approach in which the scale parameter (scale size), 
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compactness and shape are an important for aggregating homogeneous object based on their shape, size 

and compactness in the imagery (Drǎguţ & Eisank, 2012; Drǎguţ et al., 2014; Pratomo, 2016). The 

selection of an appropriate scale parameter is a challenging task and depends on the application (Pratomo, 

2016). In the most studies, the selection of the scale parameter, shape and compactness is based on trial 

and error using visual assessment (Pratomo, 2016) (See appendix table A2.1). In recent studies, ESP tool 

(estimate scale parameter) was efficiently used for estimating scale parameters (Drăgut et al., 2014) while 

shape and compactness were selected based on the visual fitness of the segmentation (See appendix table 

A2.1). The ESP tool is chosen for MRS because it estimates the best scale parameters (SP) which control 

the internal heterogeneity (spectral) of image object that corresponds to their average size (Drăgut et al., 

2014).  

The ESP tool in MRS is an interactive process which is carried out in a three-level hierarchy (e.g., level1, 

level2 and level 3) based on the local variance (LV) and rate of change of local variance (ROC/ROC-LV) 

of multiple layers (e.g. eight spectral bands in this study) at image object level (Drăgut et al., 2014)                       

(see appendix figure A2.1). In this interactive process, the segmentation is hierarchically passing from 

lower to upper level based on the condition satisfied based on the LV value see appendix figure A2.1. In 

this process, the ESP tool automatical calculates the local variance, which is explained by equation 19 

(Drăgut et al., 2014) while the rate of change of LV is explained by equation 20 (Drǎguţ, Tiede, & Levick, 

2010). 

 
 

                                        𝑚𝑒𝑎𝑛 𝐿𝑉    =          
𝐿𝑉1+𝐿𝑉2+⋯….…+𝐿𝑉𝑛

𝑛
                                                     (19) 

 

                                     𝑅𝑂𝐶      =           [𝐿 −
(𝐿 − 1)

𝐿 − 1
] × 100                                                  (20) 

 

Where, n=number of image layers, L=LV at the target level, L-1=LV at next lower level. The LV value is 

increased with the increase of the scale parameter (size of segmented objects) while ROC-LV is opposite 

to the scale parameter which is explained in appendix figure A2.2. The ROC-LV curve explains how the 

LV value changes from one object level to another with changing of scale (Drǎguţ et al., 2010). According 

to Drǎguţ et al. (2010), only LV cannot help to select the best scale parameters, and in this regard, both 

LV and ROC-LV are required to select the best scale parameter because both explain the change of LV 

with the size of the segment. The peak of ROC-LV curve illustrates the best segmented object at an 

appropriate scale with lesser internal heterogeneity (Drǎguţ et al., 2010). The segmentation sometimes 

suffers from under-segmentation (e.g., exceed the boundary of the target object to others object) or over-

segmentation (e.g., multiple segmentation of the same object) (Drǎguţ et al., 2010). Drăgut et al.(2014) 

statistically validated the segmentation based on Area Fit Index (AFI), index of under-segmentation and 

over-segmentation and Quality Rate (QR). The under-segmentation is more problematic than over-

segmentation because multiple segments are easy to merge to get large object while it is hard to split 

segments (containing several objects). 

2.7. Urban land use mapping in India 

From literatures on Indian cities, few researchers classified single urban land use from VHR imagery either 

using OBIA (e.g., Kuffer & Barros, 2011; Sameen & Pradhan, 2016) or combining PBIA and OBIA (e.g., 

Kuffer et al., 2017) while few authors classified detailed urban land use from coarse resolution imagery 

using traditional classifier in PBIA (e.g., Wentz et al., 2008). Furthermore, few studies in last decades 

employed detailed urban land use classification using coarse resolution satellite imagery and visual 

interpretation (e.g., Pathan et al.,1989; Pathan et al., 1991). In 2006, the Ministry of Urban Development, 

Government of India initiated the National Urban Information System (NUIS) programme for developing 
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a detailed geospatial database of urban land use at 1:10,000 scale for 152 Indian cities (including Bengaluru 

city). In this programme, high-resolution satellite imageries are used for visual interpretation in a GIS 

environment to classify detailed urban land use for urban development and management (NRSA, 2008). 

The employed method is very slow, expensive and information get quickly outdated.   

2.8. Urban land use pattern in Indian cities 

The urban land use pattern in Indian cities has a complex urban form, design, and function due to 

unplanned urban developments (Chadchan & Shankar, 2012; Kotharkar, Bahadure, & Sarda, 2014). The 

urban form explains the spatial arrangement of different land use across the city while urban design 

explains the architectural form of the city (e.g., shape, size of buildings, etc.).  In addition, the function of 

land use relates to use of land for a specific purpose such as residential land use for living, commercial 

land use for trade and commerce, etc. (Alam, 2011). The complex urban form relates to the unorganized 

form of land use which does not follow the standard urban land use planning model (e.g., sector model, 

Hoyt, 1939; concentric zone model, Burges, 1925, etc.) (Alam, 2011). In unorganized urban form,  shape, 

size, structure, orientation, colour and function of different urban land uses are often very similar because 

some of the land use mixed with other land uses (e.g., commercial with residential or commercial with 

industrial, etc.)  (Alam, 2011; Chadchan & Shankar, 2012). This complexity of urban land use in Indian 

cities was occurred due to the ill implementation of planning regulation by the local planning authority due 

to political interferences (Chaplin, 2011).  Most Indian cities, including Bengaluru, have complex urban 

land use patterns, which are shown in master planning maps (appendix figure B3.2) and satellite imagery 

(appendix figure B3.1).  
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3. RESEARCH METHODOLOGY 

In this study, urban land use classification of the Bengaluru city was carried out from the VHR imagery 

using SVM-RBF and CNN with OBIA and BBIA which explained in the appendix figure B1.1. The land 

use classification carried out using SVM-RBF and OBIA, or BBIA is termed as SVM-RBF-OBIA or SVM-

RBF-BBIA. Similarly, the land use classification carried out using CNN and BBIA is termed as CNN-

BBIA. In SVM-RBF-OBIA-based urban land use classification, several sub-processes were employed, i.e., 

multi-resolution segmentation, features extraction, aggregation and normalization at object-level, feature 

selection, parameter tuning, classification, validation, and accuracy assessment. Similarly, SVM-RBF-

BBIA-based urban land use classification employed block generation (regular grids), features extraction, 

aggregation and normalization at block-level and others process are the same as for SVM-RBF-OBIA. In 

addition, in CNN-BBIA several sub-processes were employed such generation of patch-based 3-D 

training samples, parameter tuning (e.g., learning and regularization parameters, hyperparameters, depth, 

etc.), classification, validation, and accuracy assessment. Finally, accuracy assessment indices (overall 

accuracy, kappa, etc.) were compared to assess their performance for all urban land use classification 

outputs.  The above stated methods are explained below: 

3.1. Study area 

Bengaluru city is located in the Karnataka state, India (see appendix figure B2.1). The Bengaluru city has 

8,495,492 inhabitants with an annual population growth rate of 3.25 percent. The city is known as the “IT 

hub of Asia” and “Silicon Valley of India” covering an area of 786 sq. km built-up land (Bangalore 

Development Authority, 2007; Census, 2011). The city attracts several national and international 

investments for developing better trade, commerce, industry and living infrastructures. Timely and 

accurate information of city growth is required to support competitive economic growth and sustainable 

urban development (United Nations, 2015). In this regard, Bengaluru city is selected as a study area to 

map the urban land use from VHR imagery using machine learning algorithms due to non-availability of a 

detailed land use map. In this study, a small part of the city close to city centre (two tiles covering 850 by 

850 metre each tile) is selected because most of the proposed land use classes are observed in this area.  

3.2. Datasets and software used  

The Worldview3 multispectral (MS) and panchromatic (PAN) VHR satellite imagery and Bengaluru city 

land use map as the secondary data used in this study (see appendix table B3.1, figure B3.1, and B3.2). The 

VHR imagery of 15th February 2015 was collected from the DynaSlum project 

(http://www.dynaslum.com/overview/). The Bengaluru city reference land use map is collected from the 

revised master plan, 2015. This reference land use maps show details of many land uses such as urban 

green, vacant land, etc. was missing from the original ground information as observed from the satellite 

image, Google Earth and Openstreet map (see appendix figure B3.1 and B3.2). A fused VHR imagery 

(MS+PAN) has been used for extracting image features while the land use map was used for extracting 

training, validation and test data. In addition, Google Earth and Openstreet map are used for preparing a 

referenced map because few land use/cover classes like vacant land, urban green, shadow, and waterbody 

were not in the master plan map. Two tiles, of each 2501 by 2501 pixel were selected to measure the 

transferability of the selected machine learning algorithms. Several softwares and programming languages 

were used to carry out this research which explained in the appendix, table B3.2. 

http://www.dynaslum.com/overview/
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3.3. Pre-processing  

The pre-processing of satellite imagery and other referenced data was carried out before feature extraction 

and classification. Firstly, a fusion of MS and PAN was carried out by High Pass Filter (HPF) resolution 

merge using Erdas Image 2015 (see figure 8). This improves the spectral and spatial resolution of the 

image. The High Pass Filter image fusion was selected in this study because it provides an excellent 

detailed and a realistic representation of the scene as compared to others image fusion techniques        

(e.g., Intensity-Hue-Saturation, Principle Component Analysis, Gram-Schmidt, etc) (Hexagon Geospatial, 

2017; Nikolakopoulos & Oikonomidis, 2015; Nikolakopoulos & Konstantinos, 2008; Yusuf et al., 2013).  

 

 

 

 

 

 

 

 

Secondly, master plan map was georeferenced with VHR imagery (UTM projection, Zone 43 and datum 

WGS 1984) using polynomial model one in Erdas Image 2015. Thirdly, based on the proposed land use 

classification scheme, the referenced land use map was prepared for validation and assessing the accuracy 

of the classified land use maps. The master plan map of the Bengaluru city, google earth and Openstreet 

map were used to prepare this reference map using visual interpretation. The minimum mapping unit in 

the visual interpretation was 100 m2,  which was decided based on the minimum scale size of the selected 

block (i.e., 29×29 pixel=97.23m2) in this study. Finally, referenced land cover maps were prepared by 

aggregating this referenced land use maps for validation and accuracy assessment of the classified urban 

land cover maps. 

3.4. Multi-resolution image segmentation  

Based on the literature review the multi-resolution image segmentation (MRS) was used for OBIA. In this 

study, eight spectral bands of fused VHR worldview imagery were used for segmentation using MRS with 

EPS tool in eCognition software.  The compactness parameter 0.80 and shape parameters 0.50 were used 

for MRS segmentation followed by bottom-up segmentation approach. MRS-ESP was used to 

automatically extracted the three optimal scale parameters (e.g., level 1, level 2 and level 3) with user-

defined increments of scale size 1 for MRS level 1, 5 for MRS level 2 and 50 for MRS level 3. Validation 

of the different segmentation level was carried out based on the land use classification accuracies. 

3.5. Block generation 

In this study, regular square grids are used to aggregate different image features. Three types of block have 

been selected, block 1 (29×29 pixels=9.86×9.86 metre), block 2 (43×43 pixels=14.62×14.62 metre and 

block 3 (59×59 pixels=20.06×20.06 metre). The blocks were prepared using fishnet tool in Arc GIS 10.5.1. 

Block 1 is selected based on the minimum mapping size of land use in the image. It is assumed that the 

minimum size of the urban green area (e.g., vegetated area), transportation (e.g., medium size road) are 

closed to 10 metre, and the other land use (e.g., single tree, narrow road, etc.) smaller than 10 metre are 

excluded. Sandborn & Engstrom (2016) argued that block size 4 (9.76 metre) is more significantly 

correlated with extracted features than the block size 8 (19.52 metre). Thus, block2 and block3 have been 

selected with the linear incrementation of approximately 5 metre (14 pixels) for the urban land use 

classification. 

Worldview-3: Multispectral  Worldview-3: panchromatic  Worldview-3: HPF pansharpened 

image  
Figure 8. Shows HPF resolutions merge of Worldview-3 multispectral and panchromatic bands, 2015. 
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3.6. Feature extraction and aggregation 

In this study, image features are conceptualized and selected based on literatures review (see figure 9). The 

spectral (e.g., mean bands, mean rightness, NDVI), textural (e.g., GLCM, GLDV, LBP, MPPR), geometric 

(e.g., asymmetry, compactness, Elliptical fit etc.) and contextual features (spatial metrics, e.g., patch 

density, aggregation index, fractal dimension etc.) were separately extracted and aggregated for OBIA and 

BBIA (See figure 9). The spectral, textural and geometric features were extracted from fussed VHR 

imagery while contextual features were extracted from urban land cover (e.g., built-up) using the Fragstats 

software. In this study, the mean was used for aggregating image features. However, CNN has the self-

extraction capability of image features explained in section 3.10.2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The image features as summarised in figure 9 for OBIA and BBIA-based urban land cover/use 

classification using SVM-RBF are explained below:  

3.6.1. Features for OBIA 

In this study, following image features were extracted and aggregated in OBIA. These object-level features 

have been used for both urban land cover and urban land use classification:   

• Mean spectral band 

The mean of spectral value (DN values) of all eight spectral bands of the original fussed VHR image was 

extracted and aggregated, providing the mean spectral response of different urban land cover/use objects  

(Aguilar et al., 2012). 

• Mean brightness 

The mean brightness was extracted by averaging brightness of 8 spectral bands. The higher mean values 

indicate brighter objects while lower mean values indicate darker objects (Aguilar et al., 2012). The lower 
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Figure 9. Shows feature selected for OBIA and BBIA for urban land use/cover classification using SVM-RBF. 
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mean brightness value shows the waterbody, shadow, road networks and dark green vegetation in a dark 

colour while higher brightness values show buildings, light vegetation and vacant land in grey to bright 

colour. However, the variation of brightness in different land uses such as residential, commercial, 

industrial is depends on the materials used on the roof, level of pollution and age of buildings, etc.   

• Mean normalized difference vegetation index 

The mean normalized Difference Vegetation Index (NDVImean) is the robust indicator either used for 

separating different types of vegetation or for separating vegetation from the non-vegetation areas (Nouri, 

Beecham, Anderson, & Nagler, 2013). The mean NDVI was extracted from the mean Near-Infrared 

(NIR1, band7) and mean Red (band5) spectral bands using equation 21 (Nouri et al., 2013). 

 

𝑁𝐷𝑉𝐼𝑚𝑒𝑎𝑛 = (
(𝑀𝑒𝑎𝑛 𝑏𝑎𝑛𝑑7 − 𝑀𝑒𝑎𝑛 𝑏𝑎𝑛𝑑5)

(𝑀𝑒𝑎𝑛 𝑏𝑎𝑛𝑑7 + 𝑀𝑒𝑎𝑛 𝑏𝑎𝑛𝑑5)
)                                     (21) 

 

A higher mean NDVI value indicates healthy vegetation and lower NDVI unhealthy vegetation or non-

vegetation areas (e.g., built-up areas) (Nouri et al., 2013). Thus, mean NDVI is widely used for 

distinguishing urban from non-urban areas (Nouri et al., 2013) as well as classifying different types of 

urban land cover/use in VHR imageries (e.g.,Berger et al., 2013; Man et al., 2015; Sandborn & Engstrom, 

2016; Silván-Cárdenas et al., 2014; Sun et al., 2016; Zhan, Molenaar, & Xiao, 2001). 

• Gray level co-occurrence vector  

The Gray Level Co-occurrence Matrix (GLCM) is a robust and widely used algorithm for extracting 

texture from the satellite imagery for characterizing different types land cover/use (e.g., Wieland & Pittore, 

2014; Zhang et al., 2017).  

 
 

 

 

 

 

 

 

 

 

 

 

The GLCM computes the spatial dependency of grey-tone to characterize the texture of the image objects 

based on the relationship of angular direction and distances of neighbouring pixel pairs in the image      

(see figure 10) (Haralick et al., 1973). Haralick et al.(1973) developed 14 GLCM matrices in which eight 

matrices were extracted using equation 22 to 29 (Laliberte & Rango, 2009) with the user-defined angular 

direction (e.g., mean of four direction. 
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Eight gray-tone spatial dependence matrices 

(GLCM matrices): 

• GLCMmean 

• GLCMstandard deviation(SD) 

• GLCMhomogeneity 

• GLCM contrast 

• GLCMdissimilarity 

• GLCMentropy 

• GLCMAngular second moment(ASM)) 

• GLCMcorrelation 

Cell 1 & 5 are 0 degree nearest neighbour, Cell 4 & 8 are 45 degree nearest neighbour 

Cell 3 & 7 are 90 degree nearest neighbour and Cell 2 & 6 are 135 degree nearest neighbour 

 Figure 10. Shows different nearest neighbours and GLCM matrices (Haralick et al., 1973). 
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𝐺𝐿𝐶𝑀𝑚𝑒𝑎𝑛 = ∑ 𝑃𝑖,𝑗

𝑁−1

𝑖,𝑗=0

𝑁2⁄                                                                          (22)        

𝐺𝐿𝐶𝑀𝑆𝐷 = √𝜎𝑖
2; √𝜎𝑗

2                                                                               (23)   

                             𝑤ℎ𝑒𝑟𝑒,  

                                          𝜎𝑖
2 = ∑ 𝑃𝑖,𝑗

𝑁−1

𝑖,𝑗=0

(𝑖 − 𝜇𝑖)2    𝑎𝑛𝑑    𝜎𝑗
2 =   ∑ 𝑃𝑖,𝑗

𝑁−1

𝑖,𝑗=0

(𝑗 − 𝜇𝑗)
2

                               

   𝐺𝐿𝐶𝑀ℎ𝑜𝑚𝑜ℎ𝑔𝑒𝑛𝑖𝑡𝑦 = ∑
𝑃𝑖,𝑗

1 + (𝑖 − 𝑗)2

𝑁−1

𝑖,𝑗=0

                                                                  (24)                       

𝐺𝐿𝐶𝑀𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 = ∑ 𝑃𝑖,𝑗(𝑖 − 𝑗)2                                                                     (25)            

𝑁−1

𝑖,𝑗=0

 

𝐺𝐿𝐶𝑀𝑑𝑖𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 = ∑ 𝑃𝑖,𝑗|𝑖 − 𝑗|

𝑁−1

𝑖,𝑗=0

                                                                        (26)                     

𝐺𝐿𝐶𝑀𝑒𝑛𝑡𝑟𝑜𝑝𝑦 = ∑ 𝑃𝑖,𝑗

𝑁−1

𝑖,𝑗=0

(−𝐼𝑛 𝑃𝑖,𝑗)                                                                 (27)              

𝐺𝐿𝐶𝑀𝐴𝑆𝑀 = ∑ 𝑃2
𝑖,𝑗

𝑁−1

𝑖,𝑗=0

                                                                                 (28)        

𝐺𝐿𝐶𝑀𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 = ∑ 𝑃𝑖,𝑗

𝑁−1

𝑖,𝑗=0

(𝑖 − 𝜇𝑖)(𝑗 − 𝜇𝑗)

𝜎𝑖𝜎𝑗
                                                      (29)                     

Where, Pij, represents normalized gray value at location ij of the matrix; σi and σj are the standard deviation 

of the row, i and column, j; μi and μj are mean of the row, i and column, j and N is the number of row and 

column. In this study, the above eight GLCM matrices were applied on each of the eight spectral bands of 

the fussed VHR image. The GLCM matrices were calculated in mean of four angular directions (00, 450, 

900, 1350) because several studies proved that this angular direction provides very optimum results        

(e.g., Laliberte & Rango, 2009; Shabat & Tapamo, 2014; Yanchen et al., 2014; X. Zhang et al., 2017).  

These measures help to separate one urban land cover/use from another because each urban land 

cover/use has distinct spatial identity such as smoothness, orderliness, and orientation, etc.  

• Gray level difference vector 

The Gray Level Difference Vector (GLDV) is the sum of the diagonals of the GLCM, which is used to 

calculate the absolute difference of neighbours (Aguilar et al., 2012; Laliberte & Rango, 2009; Shabat & 

Tapamo, 2014). Four GLDV matrices were calculated for each of the eight spectral bands with a mean of 

four directions (00, 450, 900, 1350) using equation 30-33 (Laliberte & Rango, 2009).  

 

𝐺𝐿𝐷𝑉𝑚𝑒𝑎𝑛 = ∑ 𝑉𝑘

𝑁−1

𝑖,𝑗=0

𝑁2⁄                                                                          (30)        

𝐺𝐿𝐷𝑉𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 = ∑ 𝑃𝑘(𝑖 − 𝑗)2                                                                     (31)            

𝑁−1

𝑖,𝑗=0
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             𝐺𝐿𝐷𝑉𝑒𝑛𝑡𝑟𝑜𝑝𝑦 = ∑ 𝑃𝑘

𝑁−1

𝑖,𝑗=0

(−𝐼𝑛 𝑃𝑘)                                                                   (32)                          

               𝐺𝐿𝐷𝑉𝐴𝑆𝑀 = ∑ 𝑃2
𝑘

𝑁−1

𝑖,𝑗=0

                                                                                 (33)                    

Where Vk represents the normalized GLDV and k is equal to |i-j|. Previous researches showed that the 

classification accuracy improved using the GLDV matrices for urban land cover/use from VHR imagery 

(e.g., Aguilar et al., 2012; Laliberte & Rango, 2009).  

• Geometric features 

The geometric features (see appendix table B4.1) allow to separate one image object from others based on 

their shape and size. They are widely used to improve classification accuracy for urban land use 

classification (Aguilar et al., 2012; Y. Huang et al., 2017; Lei Ma, Cheng, Li, Liu, & Ma, 2015; Yanchen et 

al., 2014), because each urban land use has a distinct shape, size and spatial arrangements (Sandborn & 

Engstrom, 2016). 

• Spatial metrics 

The spatial metrics are robust indicators used for quantifying spatial structures and patterns based on 

density, aggregation, fragmentations, cohesion, and shape of the different spatial objects (Herold et al., 

2005; Herold et al., 2003; McGarigal et al., 2012). Spatial metrics were primarily used quantifying dynamics 

of different land covers (e.g., Herold et al., 2005) but recently, they are increasingly used for urban land 

use classification (e.g., Herold et al., 2003; Kohli, 2015; Kuffer & Barros, 2011; Kuffer et al., 2017) 

because, each urban land use is shaped by either aggregation and cohesion or fragmentation of different 

urban land covers. The built-up land cover (e.g., using OBIA-SVM-RBF classification) map was used for 

the extraction of the following spatial metrics using equations (see table 1) (McGarigal et al., 2012) in 

Fragstats 4.2.1. These spatial metrics were selected based on previous studies (e.g., Herold et al., 2003; 

Kohli, 2015; Kuffer & Barros, 2011; Kuffer et al., 2017), showing an improve in classification accuracy 

along with spectral, textural and geometric features.  
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Table 1. Description of the spatial metrics used for OBIA/BBIA-based urban land use classification            
(McGarigal et al., 2012). 

No. Spatial 

metrics 

Equations Range  Descriptions 

1 Patch 

Density  

 
𝑛𝑖

𝐴
(10,000)(100) 

PD>0, 

constrained by cell 

size 

PD measures the number of patch 

per 100 hectares. 

2 Aggregation 

Index (AI) 

 

[
𝑔𝑖𝑖

𝑚𝑎𝑥 → 𝑔𝑖𝑖
] (100) 

0 ≤ AI ≤ 100 AI measures the probability of a 

patch likely to be the same class. AI is 

equal to 0 when patches are 

maximally disaggregated and 100 

when they are maximally aggregated.  

3 Fractal 

Dimension  

 
2 𝐼𝑛 (0.25 𝑃𝑖𝑗)

𝐼𝑛 𝑎𝑖𝑗
 

1 ≦ FD ≦ 2 FD measures the shape complexity of 

the patch. FD equal to 1 represents 

simple shape while 2 represents the 

highly convoluted shape of the patch 

4 Cohesion  
[

∑ 𝑃𝑖𝑗
𝑛
𝑗=1

∑ 𝑃𝑖𝑗√𝑎𝑖𝑗
𝑛
𝑗=1

] . 

[1 −
1

√𝑍
]

−1

. (100) 

0≤ Cohesion< 100 Cohesion measures the physical 

connectedness of the patch. Cohesion 

is equal to 0 explains the landscape 

becomes subdivided and 

disconnected while Cohesion is equal 

to 100 explains opposite.  

5 Largest 

Patch Index 

 
 
∑ max (𝑎𝑖𝑗

𝑎
𝑗=1 )

𝐴
 (100)     

0 < LPI ≦ 100 LPI measures the dominance of the 

largest patch in comparison of the 

entire landscape. LPI approaches to 0 

explains the dominance of the largest 

patch in comparison of the entire 

landscape is increasingly small while 

LPI equal to 100 explains landscape 

consists of a single patch.   

where, ni=number patch in class, i in the landscape; A=total area (m2 )  of landscape; gii=number of like 

adjacencies between pixels of class, i; max-gii=maximum number of like adjacencies between pixels of 

class, i; Pij=perimeter (m) of patch ij; aij=area (m2 )of patch ij; Z=total number of cell in the landscape.                                    

3.6.2. Features for BBIA 

The following features have also been used for BBIA: Mean Spectral bands, Mean Brightness, Mean 

Normalized Difference Vegetation Index, Gray Level Co-occurrence Matrix, Gray Level Difference 

Vector and Spatial Metrics. These features (except spatial metrics) were extracted and aggregated in block-

level using chessboard segmentation in E-cognition 9.2 (Kamal, Phinn, & Johansen, 2015; Pedersen, 

2016). In this process, weight was given to fishnet grid while scale size is considered same as the size of 

the fishnet grid. In this study, automatically generated chessboard grid was not used due to resolve the 

locational mismatch between fishnet grid and chessboard segmentation grid.  In addition, spatial metrics 

were extracted and aggregated in block-level using a user-defined grid (e.g., the regular grid is considered 

as the user-defined grid) in Fragstats 4.2.1. Beyond these features, some more features have been used for 

BBIA which as follows: 
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• Rotation invariant local binary pattern 

The Local Binary Pattern (LBP) is a very important texture mapping algorithm which was initially used for 

computer vision, pattern recognition and signal processing (e.g., Pietikäinen et al., 2011; Wang et al., 2014) 

but recently it is increasingly used for satellite image processing for urban land cover/use mapping        

(e.g., Sandborn & Engstrom, 2016). Primarily, regular LBP (LBPP,R) was used to extract the texture from 

the image based on the monotonic transformation (e.g., linear) of gray value in a circular symmetric 

neighbour set of pixels in the neighbourhood. This was calculated by thresholding and weighting using 

equation 34-38 (Wang et al., 2014).   

𝐿𝐵𝑃𝑃,𝑅 (𝑥𝑐 , 𝑦𝑐) =  ∑ 𝑠(

𝑃−1

𝑃=0

𝑔𝑃 − 𝑔𝑐)2𝑃                                                                  (34) 

𝑎𝑛𝑑, 𝑠(𝑥) =  {
1   𝑥   ≥ 0     
0   𝑥   < 0      

   

Where, s(x)=thresholding scale function, x=(gp-gc), xc, yc=x, y position of the central pixel, gp=pixel value 

of the neighbourhood, gc=central pixel value of the neighbourhood, P=total number of neighbours, 

R=radius of the neighbourhood. In addition, an optimum size or radius of the neighbourhood was 

estimated by using the equation 35 and 36 to design an appropriate LBP for texture mapping.   

 

𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟ℎ𝑜𝑜𝑑 𝑠𝑖𝑧𝑒 (𝑛) = ((𝑅 × 2) + 1)                                                      (35) 

𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟ℎ𝑜𝑜𝑑 𝑟𝑎𝑑𝑖𝑢𝑠 (𝑅) = ((𝑛 − 1)/2)                                                   (36) 

Thus, the diagonal distance of neighbours from the central pixel was calculated using bilinear interpolation 

method which explained in the equation 37 (Wang et al., 2014). 

 

𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 (𝑔𝑃) = (𝑥𝑐 + 𝑅𝑠𝑖𝑛 (
2𝜋𝑖

𝑃
)) , (𝑦𝑐 + 𝑅𝑠𝑖𝑛 (

2𝜋𝑖

𝑃
))                                  (37)   

Similarly, the regular LBPP,R patterns or bins was estimated for different P values (e.g., 256 for P=8) using 

the equation 38 (Wang et al., 2014). 

 

𝐿𝐵𝑃𝑃,𝑅  𝑝𝑎𝑡𝑡𝑒𝑟𝑛/𝑏𝑖𝑛𝑠 = 2𝑃                                                                                          (38) 

Secondly, regular LBPP,R  was used to measure the rotated invariant LBP (LBPri
P,R) to resolve the issues of 

rotation. In this regard, a unique identifier was assigned to each rotation invariant local binary pattern 

using equation 39 (Wang et al., 2014). 

 

𝐿𝐵𝑃𝑃,𝑅
𝑟𝑖 = 𝑚𝑖𝑛{𝑅𝑂𝑅(𝐿𝐵𝑃𝑃,𝑅 , 𝑃) |   𝑃 = 0,1, … … . , 𝑃 − 1}                                                  (39)               

Where, ri=rotated invariance, ROR (x, P) explained the LBPP,R  code, x is rotated P times in clockwise 

direction at 450  angular intervals around the central pixel.  In this study, LBPri
8,14, LBPri

8,21, and LBPri
8,29 

were used to extract the image texture for eight spectral bands based on the different radius (R=14, 21, 

29). This radius was selected based on the chosen block size (e.g., 29, 43, 59) in this study. The LBPri
8,14, 

LBPri
8,21, and LBPri

8,29 were extracted a combination of 36 unique rotated invariant uniform (e.g., two 

patterns as 0-1 and 1-0) and non-uniform (e.g., combination 0-1 pattern) spatial transition patterns using 

the Matlab code developed by Nikolay S. (2017). In this study, P=8 and different R for LBPri
P,R were 

selected because, in many studies (e.g., Mehta & Egiazarian, 2013; Ojala, Pietikainen, & Maenpaa, 2002), 

P=8 and different R (R>=1) produce higher texture classification accuracy as compared to the other 

combination of P and R. Finally, this feature was aggregated in fishnet grid using zonal attributes of Erdas 

Imaging  software.   
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• Morphological profiles for partial reconstruction 

The mathematical morphological profiles (MPs) were initially developed for the pattern recognition, face 

recognition and computer vision (e.g, Dias, Cousty, & Najman, 2014; González-Castro, Debayle, & Pinoli, 

2014) but recently, this is widely used for mapping urban land cover/use from VHR imagery                          

(e.g., Dalla Mura et al., 2010; Liao et al., 2015, Liao et al., 2017). MPs were used to extract shape geometry 

of image object based on the concatenation of morphological closing (∏φ) and morphological opening 

profiles (∏γ) using structural element and partial reconstruction operator (e.g., partial geodesic) explained  

in equation 40  (Dalla Mura et al., 2010). 

 

𝑀𝑃𝑠(𝑓) = ∏ :
𝑖

 ⟨ 
∏ =𝑖 ∏ ,𝜑𝜆

    𝑤𝑖𝑡ℎ    𝜆 = (𝑛 − 1 + 𝑖),    ∀𝜆 ∈  [1, 𝑛];                    

∏ =𝑖 ∏ ,𝛾𝜆
    𝑤𝑖𝑡ℎ    𝜆 = (𝑖 − 𝑛 − 1),     ∀𝜆 ∈  [𝑛 + 1, 2𝑛 + 1].

       (40) 

The morphological opening profile (γR) was used to removing brighter connected object from the image 

(f) with erosion (εi) followed by dilation (δi) operator. In this regard,  same size of the structural element (i) 

and partial geodesic reconstruction operator by dilation (Rδ
f) was used which explained in  equation 41  

(Dalla Mura et al., 2010). 

 

𝛾𝑅
𝑖 (𝑓) = 𝑅𝑓

𝛿 (𝜀𝑖(𝑓))                                                                                 (41) 

Similarly, the morphological closing profile (φR) was also used to remove the darker connected object from 

the image (f) with dilation (δi) followed by erosion (εi) operator. In this regard, same size of the structural 

element (i) and partial geodesic reconstruction operator by erosion (Rε
f) was also used which explained in 

equation 42 (Dalla Mura et al., 2010). 

 

𝜑𝑅
𝑖 (𝑓) = 𝑅𝑓

𝜀 (𝛿𝑖(𝑓))                                                                                    (42) 

In this study, partial geodesic reconstruction was selected because it can preserve the actual shape and size 

of the rectangular or near rectangular object as compared to geodesic reconstruction while employing disk 

shape SE (Liao et al., 2017). The partial geodesic reconstruction was computed measuring partial geodesic 

distance using the equation 43. 

 

𝑃𝑎𝑟𝑡𝑖𝑎𝑙 𝑔𝑒𝑜𝑑𝑒𝑠𝑖𝑐 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑑) = 2(√2 − 1)𝑅                                              (43)          

However, in MPPR one limiting factor is the  shape (e.g., square, disk, etc.) and size of the SE because an 

object smaller than the SE is automatically deleted and with an increase in size of SE more objects are 

deleted (Dalla Mura et al., 2010; Liao et al., 2017). In this study, disk shape SE was used because it is very 

commonly used for urban land use mapping from the VHR imagery  (e.g., Liao et al., 2017). The radius 

(R) and size of SE were computed using the equation 44 and 45. 

𝑅𝑎𝑑𝑖𝑢𝑠 𝑜𝑓 𝑆𝐸 (𝑅) =
𝑆 + 1

2
                                                                              (44) 

                            𝑆𝑖𝑧𝑒 𝑜𝑓 𝑆𝐸 (𝑆) = (2𝑅  − 1)                                                                       (45)        

In this study, morphological profiles with partial reconstruction (MPPRs) with disk shape SE was used to 

extract morphological features from the panchromatic image using the Matlab code developed by                      

Liao et al., (2017).  The SE size was considered same as the selected block size 29, 43 and 59 as defined in 

this study. Finally, this feature was aggregated in fishnet grid using zonal attributes of Erdas Imaging 

software. 
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3.7. Normalization of image features 

The extracted image features and fused image were normalized using max-min standardization method 

using ENVI classic 5.3.  The value of the normalized image features varies from 0 to 1. The normalized 

image features were used for feature selection, parameter tuning and land cover/use classification using 

SVM_RBF. The normalized fused image was used to train the CNN for land use classification.  

3.8. Urban land cover/use classification scheme  

In this study, six relevant urban land covers and seven urban land uses are selected based on literatures 

review, national (NRSA, 2008), and local land cover/use classification schemes (e.g., master plan) and 

empirical experience of the study area (see figure 11). In the local land use classification scheme 9 main 

land use and 15 sub-land use classes were mapped, but in this study area, only 6 main land use and 12 sub-

land use classes are observed. In this study, few land use classes were merged into main land use class 

because of their homogeneous urban characteristic (appendix table B5.1). In addition, few land use classes 

have been added in this study due to missing of such land use classes in the master plan map                 

(see appendix figure B3.2). In this study, shadow is not a land cover/use but has included to understands 

the ability of the classifiers (or classification approach) to mitigate or extract the shadow in final 

classification because VHR image has a big issue of shadow effect. Therefore, the proposed urban land 

cover/use has explained in the appendix table B5.1.  

 

 

 

 

 

 

 

 

 

 

3.9. Selection of training and test samples 

The selection of optimum sample sizes is a very challenging task in image classification to reduce the 

effects of Hughes phenomena (Persello & Bruzzone, 2010; Persello & Bruzzone, 2016). In this study, 

segment/block was selected as the training sample unit while pixel as the test sample unit which was 

labeled using referenced land cover/use maps. In previous studies several sampling techniques              

(see equation 46 and 47) were employed to select the optimum size of training samples (Park & Stenstrom, 

2008).  

                                       𝑁 =
4𝑝(100 − 𝑝)

𝜀2
                                                                        (46)           

                                                  𝑁 = 30𝑛𝑐                                                                                        (47)                     

Where, p=expected accuracy (%), ε=allowable error (%), n=number image features, c=number of LULC 

classes. However, in this study user-defined training samples was selected using stratified random sampling 

(seeding 1002) depending on the available pure sample segments or blocks (e.g., block with single land 

cover/use) (see figure 12). The number of pure segments/blocks are controlled by the scale size            

(e.g., Yanchen et al., 2014; Zhang et al., 2017; Zhen et al., 2013). In addition, training samples were 

Proposed urban land 

cover/use classification 

scheme 

Urban land cover classes 

• Built-up 

• Road 

• Vegetation  

• Undeveloped land  

• Waterbody  

• Shadow 

Urban land use classes 

• Residential  

• Commercial  

• Industrial  

• Transportation  

• Urban green 

• Vacant land 

• Waterbody/shadow 

Figure 11. Shows proposed urban land cover/use classification scheme. 
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randomly split into training and validation sets using 60:40 rule (e.g., Duque, Patino, & Betancourt, 2017) 

for features selection and parameter tuning (Persello & Bruzzone, 2010). However, in CNN training 

samples were increased (e.g., augmented training samples) by rotating original training samples in different 

angles. The test set was selected as whole tiles (6,255,001 pixels) to assess both pure and mixed segments 

or blocks for pixel-based final accuracy assessment (see figure 12). The strategy for selecting training, 

validation and test samples are explained in figure 12.  

 

 

 

 

 

 

 

 

 

 

 

 

 

3.10. Design and implementation of selected machine lerning algorithms 

Based on the literature review, SVM-RBF and CNN were implemented in this study for OBIA and BBIA-

based urban land use classification which explained below: 

3.10.1. Support vector machine with radial basis function  

The Support Vector Machine with Radial Basis Function (SVM-RBF) was applied to solve multi-class 

classification problems. In addition, the cost and gamma parameters of SVM-RBF were tuned using k-fold 

cross-validation to mitigate the change of overfitting of the classifier and improve the classification 

accuracy (Persello & Bruzzone, 2014). The parameter tuning is explained in the section 3.12.1. Therefore, 

the SVM-RBF was developed in R studio programming language for classifying OBIA and BBIA-based 

urban land cover/use classification.  

3.10.2. Convolutional neural networks 

As explained in the section 2.5.3, the CNN is configured with Input Layer-Convolutional Layer-Activation 

Layer-Pooling Layer-FC layer-Output layer which was implemented in this study employing simpleCNN 

wrapper of MatConvNet in Matlab programing language. As the CNN holds the function (input, 

activation, feedforward, back propagation, etc.) and structure of MLP (hidden layers) then it is initialized, 

regularized and optimized with feedforward and backpropagation algorithm with stochastic gradient 

descent (SGD) (see section 2.5.1 and 2.5.3). Table 2 shows the commonly used initialization and 

regularization parameters to train the network for urban land use classification which were initially 

implemented in this study based on the literature review (e.g., Bergado, 2016; Mboga, 2017).  

 

 

 

 

Training samples 

Validation samples 

Referenced LULC class A 

OBIA BBIA 

Referenced LULC class B 

Segments/blocks  

Test samples 

Figure 12. Strategy for selection of training, validation and test samples for OBIA and BBIA using SVM and CNN. 
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Table 2. Initial learning and regularization parameters. 

Hyper parameters Value 
Batch size 10 
Maximum number of epoch, τ 1000 
Momentum, 𝑎 0.90 
Learning rate, ϵ 0.01 
Weight decay, λ 0.01 
Dropout rate, dr in (D1 & D2) (0, 0.5) 

 

In addition, table 3 shows the initial architecture of the CNN which were implemented in this study based 

on the literature review (e.g., Bergado, 2016; Mboga, 2017). The architecture of the CNN is explained 

below: 

• Input layer 

In this study, 3D input layers consist of 1000 2D training patches of 29X29 size from eight spectral bands 

were initially implemented to train the network using SGD (see table 3). This training patches                         

(e.g., training samples) were randomly split into training and validation set using 60:40 rule to train and 

validate the network. 

Table 3. Initial CNN configuration and hyperparameters. 

Hyper parameters Value 
Layers I-C1-A-P-D1—C2-A-P-D1—FC1-A-D2—O-S-CP 
Non-linearity (A=RELU) used in C1-2 and FC1 RELU 
Non-linearity (S= SoftMax) used in O SoftMax 
Width of FC 128 
Patch size 29  
Number of filters, K 8 
Size of filters 5 
Pooling size 2 

Note: I=input, C=convolutional layer, A =activation, P=max pooling, D=dropout, FC=fully connected 

layer, O=output, S= SoftMax, CP=class probability  

• Convolutional layers  

In this study, two convolutional layers with eight neighbourhood filters of 5X5 size (e.g., receptive field) 

(e.g., eight filters in each of the convolutional layers) were initially implemented to learn the features from 

input layer using SGD (see table 3). In addition, commonly used stride one was implemented in this layer 

(CS231n, 2018; Bergado, 2016; Mboga, 2017). Thus, zero padding (e.g., initially 2) was selected based on 

the equation 18 in section 2.5.3. However, the spatial size of the output volume in convolution layers was 

managed by the equation 17 in section 2.5.3. 

• Activation and pooling layers 

In this study, a non-linear activation function such as RELU was implemented in the output volume of 

the convolutional layers to generalize the network using SGD (see table 3). The RELU activation function 

is explained in equation 12 in section 2.5.2. In addition, the max-pooling function was employed in the 

output volume of the activation layer for sub-sampling and parameter reduction which helps to extract 

more abstract features (Goodfellow et al., 2016). In this study, commonly  used max-pooling region 2X2, 

stride two and zero padding one were employed in activation layer to train the network using SGD 

(CS231n, 2018; Bergado, 2016; Mboga, 2017) (see table 3).  
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• Fully-connected and output layers 

Initially, FC layer one with 128 neurons were implemented in this study (see table 3). In addition, seven 

output layers were implemented to classify the seven urban land use classes. In FC layer, stride one and no 

zero padding were commonly used (e.g., Bergado, 2016; Mboga, 2017). The posterior probability of this 

output layer was computed using the SoftMax activation function using equation 13 in section 2.5.2.  

Thus, cross-entropy objective loss function was implemented in this network to estimate the 

misclassification error, which was minimized using backpropagation with stochastic gradient descent 

(SGD) optimization function. The cross-entropy objective loss function and SGD employ equation 14 

and 15 and in section 2.5.2. Finally, the posterior probability of output layers was used for land use 

classification which was used for final accuracy assessment using whole tiles (6,255,001 pixels). However, 

different learning and regularization parameters and CNN hyperaerated were used for parameters tuning 

using K-fold cross-validation which explained in section 3.12.2. This helps to select best hyperparameters 

to reduce the overfitting of the network and improve the overall classification accuracy (Bergado, 2016; 

Mboga, 2017).  

3.11. Feature selection 

Feature selection was carried out for SVM-RBF-OBIA and SVM-RBF-BBIA-based urban land cover/use 

classification because to reduce the risk of Hughes phenomena (Damodaran et al., 2017; Persello & 

Bruzzone, 2016). SFS-HSIC, a supervised feature selection method was employed because it is very 

simple, fast, robust as compared to the other feature selection methods (e.g., PCA, rank, etc.) for selecting 

features from the high-dimensional feature space (Persello & Bruzzone, 2016; Damodaran et al., 2017; 

Huang et al., 2017). Firstly, Hilbert–Schmidt Independence Criterion (HSIC) was used to estimate the 

class separability by summarizing the reproducing kernel Hilbert space (RKHS) for class dependency (or 

similarity) measure (Persello & Bruzzone, 2016; Damodaran et al., 2017). HSIC is the square of the 

Hilbert–Schmidt norm of the cross-covariance operator (‖CXY ‖2HS) which was measured from the RKHS 

using equation 48 (Persello & Bruzzone, 2016).   

 

    𝐻𝑆𝐼𝐶(𝐻, 𝐺, 𝑃(𝑋, 𝑌)) = ‖𝐶𝑋𝑌‖2
𝐻𝑆                                                                                       (48) 

𝑤ℎ𝑒𝑟𝑒, ‖𝐶𝑋𝑌‖2
𝐻𝑆 = 𝐸𝑥𝑥′𝑦𝑦′[𝑘(𝑥, 𝑥′)𝑙(𝑦, 𝑦′)] + 𝐸𝑥𝑥′[𝑘(𝑥, 𝑥′)]𝐸𝑦𝑦′[𝑘(𝑦, 𝑦′)] 

−2𝐸𝑥𝑦[𝐸𝑥′𝑘(𝑥, 𝑥′)]𝐸𝑦′[𝑙(𝑦, 𝑦′)]] 

Where, Exx’, yy’ is the expectation over both (x,y) according to the joint probability distribution, P(X,Y) and 

an additional pair of variables (x’,y’) with the distribution P(X’,Y’) drawn independently from the RKSH. 

Similarly, k(x,x’) is the kernel function (Gaussian radial basis function) which is used to evaluate the 

similarity between input instances while l(y,y’) is the kernel function for output instances. The Gaussian 

radial basis function is explained equation 5 in section 2.4. With the given training set (X,Y), the empirical 

measures of the HSIC were used to evaluate the class dependency based on the degree of alignment of the 

input kernel matrix, K and output kernel matrix, L using equation 49 (Persello & Bruzzone, 2016).  

 

                                    𝐻𝑆𝐼�̂�(𝑋, 𝑌) =
1

𝑚2
𝑇𝑅(𝐾𝐻𝐿𝐻)                                                          (49)  

where, m=number of training samples, H=centering matrix, T=trace operator. The HSIC value is equal to 

0 explained the X (e.g., image features) and Y (e.g., land cover/use class labels) variables are highly 

independent while a higher value of HSIC described the strong dependence between X and Y variables    

(see appendix figure B6.1). As the RBF kernel used for computing HSIC, so the variation of sigma value 

affects the HSIC value. Hence, 10-fold cross-validation of sigma value (sigma= 1-1 to 102) was used to 

select best HSIC value corresponding to the maximum sigma value. Secondly, Sequential Feature Selection 
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(SFS) strategy was employed to select the best set of features sequentially which corresponds to the 

maximum HSIC and Sigma value. The SFS-HSIC was developed in R studio programming language. In 

this study, 200 training samples were split into training and validation sets using 60:40 rule for selecting 

and validation best images features. Thus, 120 image features were used for selecting best features set for 

OBIA-based urban land cover classification using SFS-HSIC. In addition, 125 images were used selecting 

best features set for OBIA-based urban land use classification while 121 image features were used for 

selecting best features set for BBIA-based urban land use classification. Finally, SVM-RBF with a fixed 

cost equal to 100 and best gamma (e.g., Sigma) was used for final accuracy assessment of the selected best 

features set using 6,255,001 test pixels. 

3.12. Parameter tuning 

The parameter tuning is a very crucial step in image classification to developed best parameter of 

classifiers which provided maximum classification accuracy. The parameters tuning was employed for 

tile1, and same parameters were used for urban land cover/use classification for tile1 and tile2 to assess 

the domain adaptation (transferability) of the classifiers. This strategy was applied for the SVM-RBF-based 

OBIA and BBIA and CNN-based BBIA which has explained below.  

3.12.1. Parameter tuning for SVM-RBF 

In this study, the grid search hold-out 10-fold cross-validation was employed to obtain best cost and 

gamma parameters of SVM-RBF for OBIA and BBIA-based urban land cover/use classification. The grid 

search hold-out k-fold cross-validation was applied in this study, because this is a fast, robust and widely 

used algorithm for parameters tuning in SVM-RBF-based image classification (Damodaran et al., 2017; Li 

et al., 2016; Liao et al., 2017; Sun et al., 2016). In the study, the cost range (C) is 10-1 to 103  (0.1-1000) 

while gamma (σ) range is 10-3 to 101 (0.001 to 10) were selected because the higher value of cost and 

gamma parameters leads to overfitting in the classification problem (Duque et al., 2017). The cost and 

gamma range were divided into 10 sequential folds for grid search hold-out cross-validation using SVM-

RBF. In this study, parameter tuning was carried out by splitting 200 training samples into training and 

validation sets to train and validate the algorithm for selecting best parameters. The final overall accuracy 

of the selected best parameters was assessed using 6,255,001 test pixels (e.g., whole tile).  

3.12.2. Parameter tuning for CNN 

The hyperparameters of CNN as divided into two categories such as learning and regularization 

parameters and hyperparameters related to configuration which were used for parameter tuning. As 

mentioned above, parameter tuning using k-fold cross-validation is a robust approach to resolve the risk 

of overfitting of the classification algorithm. In this study, 10-fold cross-validation (K) of the 

hyperparameters was carried which mentioned in table 4, 5 and 6 following the guideline of the previous 

researches (e.g., Bergado, 2016; Mboga, 2017). In this study, 1000 training samples were split into training 

and validation sets using 60:40 rule to train and validate the network for selecting best hyperparameters. 

The final overall accuracy of the selected best hyperparameters was assessed using 6,255,001 test pixels 

(e.g., whole tile). 

• Learning and regularization parameters 

Table 4 shows the different learning and regularization parameters which were used for 6-fold cross-

validation. In this cross-validation process, initial CNN configuration was used which explained in                   

table 5.  
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Table 4. Experiments on leaning and regularization parameters. 

Hyperparameters Values 
Batch size 10 
Maximum number of epoch, τ 1000 
Momentum, 𝑎 0.90 
Learning rate, ϵ 0.01, 0.001 
Weight decay, λ 0.01, 0.001, 0.0001 
Dropout rate, dr in (D1 & D2) (0, 0.5), (0.25, 0.5) (0.5, 0.5) 

 

Initially, two convolutional layers and one fully-connected layer were used to train the CNN with 

stochastic gradient descent (see table 5). A batch size 10 and maximum epoch 1000 were selected based on 

the initial experiment on others batch size 5, 15 and epoch 500 and 1500 based on classification accuracy 

on the validation set. It was observed that the network gets overfitted while using batch size 5, 15 and 

epoch 500 and 1500 as compared to batch size 10 and epoch 1000.  In addition, momentum is 0.90 is 

commonly used to train the network (e.g., Bergado, 2016; Mboga, 2017). However, different learning rate, 

weight decay, and dropout rate experimented because the network is affected by the risk of overfitting due 

to inappropriate use of such learning and regularization parameters (Bergado, 2016; Mboga, 2017; 

Srivastava et al., 2014).   

• Hyperparameters related to CNN configuration  

Table 6 shows different hyperparameters related to the CNN configuration which were tuned using the 

best learning and regularization parameters and initial CNN configuration showing in table 4 and 5. This 

initial CNN configuration as showing in Table 5 was selected based on the guideline of the previous 

research carried by Bergado, 2016 and Mboga, 2017. A patch size 29 was selected based on the highest 

accuracy obtained by the SVM-RBF-BBIA for urban land use classification. In this study, 4-fold cross-

validation (K) was carried out to select the best hyperparameters related to the CNN configuration using 

the same training, validation and test samples as used for tuning the learning and regularization 

parameters.  

Table 5. Initial CNN configuration. 

Hyperparameters Values 

Layers I-C1-A-P-D1—C2-A-P-D1—FC1-A-D2—O-S-CP 

Non-linearity (A=RELU) used in C1-2 and FC1 RELU 

Non-linearity (S= SoftMax) used in O SoftMax 

Width of FC 128 

Patch size 29  

Number of filters, K 8 

Size of filters 5 

Pooling size 2 

Note: I=input, C=convolution layer, A =activation, P=max pooling, D=dropout, FC=fully connected 

layer, O=output, S= SoftMax, CP=class probability 

 

The cross-validation of these hyperparameters related to CNN configuration is essential because the 

network is overfitted due to high volume of parameters sharing and complex depth of the network which 

controlled by the hyperparameters mentioned in table 6 (Bergado, 2016; Mboga, 2017).   
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Table 6. Experiments on hyperparameters related to CNN configuration. 

Hyper-parameters K-1 K-2 K-3 K-4 

Patch size 29 29 29 29 

Number of filters 8,16,32,64 Best  Best Best 

Filter dimension 5 5,15,25 Best Best 

Number of convolutional layer (Cn) 2 2 1, 2,3,4 Best 

Number of fully-connected layers (FCn) 1 1 1 1,2,3 

 

The varying zero padding (e.g., 2 for filter size 5) in the convolutional layer was used which determined 

with the equation 18 in section 2.5.3 while the stride one was commonly used. However, the spatial size of 

the output volume in convolution layers was managed by the equation 17 in section 2.5.3. In addition, 

pooling size two, zero padding one and stride two were commonly used in the max-pooling layer. 

Similarly, stride one and no zero padding were commonly used in FC layer (e.g., Bergado, 2016; Mboga, 

2017).  

3.13. Urban  land cover/use classification 

The SVM-RBF and CNN were used to perform supervised OBIA and BBIA-based urban land cover/use 

classification, which is explained below.  

• Urban land cover classification 

The SVM-RBF-based supervised OBIA was used for urban land cover classification using the best 

selected image features, best cost and gamma parameters and best size of training samples. The 

classification of the urban land cover is carried out to extract contextual features using spatial metrics. 

• Urban land use classification 

SVM-RBF and CNN were used for supervised OBIA and BBIA-based urban land use classification. The 

SVM-RBF was used for supervised OBIA and BBIA-based urban land use classification using best 

selected features, best cost and gamma parameters and best size of training samples. Similarly, the CNN 

was to carry out supervised BBIA-based urban land use classification using best hyperparameters and best 

size of training samples.  

3.14. Validation and accuracy assessments 

The validation allows to test the ability of the classifiers/algorithms to solve the classification problems 

with reference to ground reality. In image analysis, accuracy assessment of the classification results can be 

done in many ways (e.g., pixel-based, point-based, area-based etc.) depending on the types of image 

classification approaches (e.g., PBIA, OBIA, etc.). In PBIA, pixel-based accuracy assessment is most 

commonly used (e.g., Persello & Bruzzone, 2010) while area-based accuracy assessment is common for 

OBIA (e.g., Ma et al., 2015) and BBIA (e.g., Duque et al., 2017). The point-based and area-based accuracy 

assessment approaches using samples test point and polygon (using sampling technique) are more 

susceptible to the risk of biasness for OBIA and BBIA. This is happened because there is a combination 

of pure and mixed objects or blocks in OBIA and BBIA occurred due to scale issue (e.g., Ma et al., 2015) 

which cannot equally be assessed using sampling technique. In this regard, pixel-based accuracy 

assessment approach was used to evaluate whole tiles pixel-wise (e.g., 6,255,001 test pixels) for OBIA and 

BBIA-based urban land cover/use classification. The pixel-based accuracy assessment was performed to 

measure the different quantitative accuracy assessment indices (e.g., overall accuracy, user accuracy, 

producer accuracy and kappa) from the confusion matrix using equation 50-53 (Persello & Bruzzone, 

2010; Huang et al., 2017).     
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              𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦, 𝑂𝐴 = (
∑ 𝐶𝑖𝑖

𝑛
𝑖=1

𝑁
) × 100                                                                       (50) 

 

      𝑈𝑠𝑒𝑟 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦, 𝑈𝐴 =
𝐶𝑖𝑖

𝐶𝑖+
 ×  100                                                                                  (51) 

 

        𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑟 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦, 𝑃𝐴 =
𝐶𝑖𝑖

𝐶+𝑖
 ×  100                                                                                  (52)           

 

                                           𝐾𝑎𝑝𝑝𝑎 =
𝑁 ∑ 𝐶𝑖𝑗 − ∑ 𝐶𝑖+. 𝐶+𝑖

𝑛
𝑖=1

𝑛
𝑖=1

𝑁2 − ∑ 𝐶𝑖+. 𝐶+𝑖
𝑛
𝑖=1

                                                    (53)            

 

Where, n=number of land cover or use classes; N=total number of test samples, Cii=number of correctly 

classified by the class, i; Ci+=row total of class, i; C+i=column total of class, i. The overall accuracy 

explained the land cover/use correctly classified by the classifier with reference to the test samples and 

classification output itself. In addition, user accuracy explained the accuracy with reference to classification 

output itself while produced accuracy explained the accuracy with reference to the test samples. In 

addition, kappa coefficient +1 means the classification is better than the random classification while 0 and 

-1 explained the opposite (Humboldt State University, 2018).  

3.15. Evaluation of performance  

The performances of the selected machine learning algorithms for urban land use classification were 

evaluated based on the different accuracies assessment indices (e.g., Bergado, 2016). These accuracies 

assessment indices were measured from the confusion matrix which explained below.  

• Performance assessment based on quantitative indices 

The quantitative performance assessment was done based on the commonly used quantitative accuracy 

assessment indices such as overall accuracy, kappa, recall, precision, and F1-score. However, recall 

explained to user accuracy (UA) while precision explained to producer accuracy (PA)  (Radoux & Bogaert, 

2017). The F1-score explained the harmonic mean of the precision and recall. The overall accuracy, kappa, 

user accuracy and producer accuracy already explained in the section 3.14. In addition, the recall, 

precision, and F1-score are explained in percent using the equation 54-56 (e.g.,  Bergado, 2016).  

 

          𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑒𝑡𝑖𝑣𝑒
× 100                                                         (54)    

 

          𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
× 100                                                         (55)          

 

   𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = (2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×  𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
) × 100                                                                  (56)    

• Performance assessment based on locational indices 

The locational performance assessment was done based on the commonly used locational accuracy 

assessment indices such as Klocation and Kno (Ahmed, Ahmed, & Zhu, 2013; Megahed et al., 2015). The 

Klocation (kappa for location) explained the kappa agreement for location while Kno (kappa for no 

information) explained the overall agreement in terms of quantity and location (Eastman, 2012). These 

indices were measured using validation module in Idrisi Selva. The locational accuracy assessment indices 

explained classification agreement based on the location at grid cell level. 
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• Performance assessment based on other indices 

Beyond, the quantitative and locational agreement, other indices such as quality of the classified map and 

time taken to execute the classification by the classifiers. The quality of the classified maps was compared 

with the referenced and local land use classification scheme maps based on the visual interpretation of 

shape, size, orientation, misclassification of the classified land use. In addition, the time taken for feature 

extraction, feature selection, and parameter tuning was also compared for assessing overall time taken by 

the classifiers to complete the classification.  

3.16. Domain adaptation 

The domain adaptation is a very efficient measure to assess the domain adaptability of the classifiers based 

on the parameters extracted from one tile and same parameters are used for different tile (Bergado, 2016). 

In this study, the sampled domain adaptation was employed to classify the urban land use of the tile one 

from where training samples were taken. In addition, unsampled domain adaptation was also employed to 

classify the urban land use of the tile two from where training samples were not taken, but the training 

samples were taken from another tile one.  
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4. RESULTS AND DISCUSSIONS 

This chapter provides the results and discussion. The results are obtained from the selected methods and 

datasets carried out in chapter 3, to address the research objectives and research questions.    

4.1. Generated fused satelliete imagery 

Figure 13 shows the fused image of the MS and PAN bands of Worldview-3 imagery which have been 

produced using the HPF resolution merge (section 3.3). The figure 13 shows that the HPF provides very 

realistic result without losing the spatial and spectral information of the original satellite image. This fused 

satellite imagery provides detailed information of the different urban land cover/use as compare to the 

original satellite imagery (see appendix figure B3.1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.2. Prepared referenced urban land cover/use maps 

The figure 14 shows the reference urban land use maps have been prepared as explained in section 3.3. 

This reference urban land use maps have been used for validation and accuracy assessment of the 

classified urban land use maps. In addition, reference urban land cover maps that prepare from reference 

land use map have been used for validation and accuracy assessment of the classified urban land covers 

maps (appendix figure C1.1). Therefore, each of the referenced land use/cover maps has 2501 row by 

2501 column with 6,255,001 pixels. 

 

 

 

 

 

 

 

Tile1 Tile2 

Figure 13. Shows Worldview3 fused satellite imageries of tile1 and tile2 with 2501 × 2501 pixels, 2015. 
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4.3. Multi-resolution image segmentation  

The results of the multi-resolution segmentation employing the MRS with ESP tool on fused imagery 

(explained in section 3.4) is shown in Table 7, producing different scale parameters for MRS level 1, level 

2, and level-3 based on the selected compactness and shape parameter. In segmentation level 1, over-

segmentation is mostly observed which is shown in figure 15 which explains the over-segmentation effects 

of MRS. In general, over-segmentation helps to distinguish objects with a small change of compactness 

and shape of the object, and over-segmented objects are easy to merge by the classifiers.   

 

Table 7. Scale parameter, shape and compactness used for the study. 

Multi-resolution 

segmentation  

Scale Compactness Shape Number of 

segments 

Mean segment 

size (sq. metre) 

Level 1 133 0.80 0.50 3171 228.03 

Level 2 223 1100 657.34 

Level 3 323 508 1423.38 

 

The MRS level 2 and level 3 shows the number of segments gradually decreasing with the increases of 

average segment size as compare to the level 1 (see table 7). This scenario produces the risk of under-

segmentation in MRS which is shown in figure 15. The highlighted segment of MRS level 2 covers 

industrial and vacant land in one segment and does not fit with only the industrial land use. Similarly, MRS 

level 3 includes three land uses such as industrial, vacant and transportation in one segment                   

(see figure 15). The under-segmentation is a big problem in image classification as compare to the over-

segment because classifier unable to split the under-segmented object into target land use classes. The 

overall result shows that scale issues one of the significant problems in MRS which suggest to select an 

appropriate scale for classifying urban land use/cover.  Therefore, selection of best MRS level is very 

difficult only based on visual inspection. In this regard, different MRS levels has statistically validated in 

feature selection and parameter tuning process (see section 4.7 and 4.8) to select best MRS level for final 

land use classification.      
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Figure 14. Shows referenced urban land use maps of Bengaluru city, 2015. 
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4.4. Generated blocks 

This section shows the different block sizes (see figure  16) obtains by employing the method explained in 

section 3.5. Figure 16 shows number of the block in different block size (e.g., 29×29, 43×43, etc.) 

gradually decreases because of increases of scale size which shows that pure blocks(e.g., block fully covers 

the land use) are dramatically reduced. Consequently, heterogeneous blocks are increased. The overall 

result shows that scale issue one of the significant problems in BBIA which need to consider for better 

land use classification. Similar to the MRS levels, it is also difficult to select best block size only based on 

visual interpretation. In this regard, different blocks have statistically validated in feature selection and 

parameter tuning process (see section 4.7 and 4.8) to select best block size for final land use classification. 
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Figure 15. Shows different MRS levels compare with referenced land use and VHR imagery. 
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Figure 16.  Shows different block size compare with the referenced land use and VHR imagery. 
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4.5. Extratced, aggregated and normalized Image features 

In total, 135 image features (see figure 17; appendix table C2.1) have been extracted using the selected 

advanced methods explained in section 3.6. In OBIA-based urban land cover classification, 120 features 

are extracted while 125 features extracted for OBIA-Based urban land use classification. For BBIA-based 

urban land use classification, 121 features are extracted (see figure 17; appendix table C2.1). These image 

features have been normalized using the max-min method explained in section 3.7. These aggregated and 

normalized features have been used for selecting the best features for urban land cover/use classification. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.6. Training and test samples 

This section shows the selected training, and test samples for urban land cover/use classification based on 

the strategy explained in section 3.9. Table 8 and 9 shows the training and test samples have been selected 

for OBIA and BBIA-based urban land use classification using SVM-RBF. In CNN-BBIA, 200 original 

training samples have been artificially increased to 1000, 2000 and 3000 (e.g., augmented training samples) 

by rotation in which training samples under each land use classes proportionally increases (e.g., each class 

increase by 5, 10 and 15 times). The test samples for CNN is also same as SVM-RBF. These training 

samples have been randomly split into training and validation samples using the 60:40 percent rule during 

feature selection and parameter tuning. The training and test samples at MRS level 1 for SVM-RBF-

OBIA-based urban land cover classification are shown in appendix table C3.1.1, and C3.1.2. Training and 

test samples at MRS level 2 and 3 for SVM-RBF-OBIA-based urban land use classification are shown in 

appendix table C3.2.1, C3.2.2, and C3.2.3. In addition, training and test samples for block 43×43 pixel and 

block 59×59 pixel for SVM-RBF-BBIA-based urban land use classification are shown in table appendix 

C3.3.1, C3.3.2, and C3.3.3. 
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Figure 17. Shows image features for OBIA and BBIA-based urban land cover/use classification using SVM-RBF. 
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Table 8. Training and test samples for SVM-RBF-OBIA-based urban land use classification (MRS level 1). 

Sl. 
no. 

Training class Tile1 (sampled domain) Tile2 (unsampled domain) 

Number of training 
objects  

Number of test 
pixels 

Number of test pixels 

1 Residential  50 2717828 2436234 

2 Commercial  15 184944 435080 

3 Industrial  30 845305 500283 

4 Transportation  20 359030 340960 

5 Urban green 35 1099990 1588720 

6 Vacant land 20 873329 811553 

7 Waterbody/Shadow  30 174575 142171 

Total  200 6255001 6255001 

 
Table 9. Training and test samples for SVM-RBF/CNN-BBIA-based urban land use classification (block 29×29). 

Sl. 
no. 

Training class Tile1 (sampled domain) Tile2 (unsampled domain) 

Number of training 
objects  

Number of test 
pixels 

Number of test pixels 

1 Residential  55 2717828 2436234 

2 Commercial  17 184944 435080 

3 Industrial  35 845305 500283 

4 Transportation  22 359030 340960 

5 Urban green 36 1099990 1588720 

6 Vacant land 20 873329 811553 

7 Waterbody/shadow 15 174575 142171 

Total  200 6255001 6255001 

 

However, it is observed from the table 8, 9 and appendix C3.2 and C3.3 is that the variation in the number 

of training samples in each land use class has occurred due to increase of scale size and decrease of pure 

segments and blocks in each land use class. 

4.7. Selected best image features 

This section shows the selected best image features set for urban land cover/use classification employing 

the method explained in section 3.11. Out of 120 features, 25 best features have been selected for SVM-

RBF-OBIA-based urban land cover classification in tile one. This selected best feature set at MRS level 

1obtains highest overall accuracy (77.98%) as compare to the other features sets (see appendix table C4.1) 

due to having better class separability (HSIC=0.0397) as compare to others. Figure 18 and table 10 shows 

the best features selected from the 125 and 121 image features in tile one for SVM-RBF-OBIA and SVM-

RBF-BBIA-based urban land use classification. The selected best feature set at MRS level 1 provides the 

highest overall accuracy (69.53 %) as compare to other features sets due to having higher class separability 

(HSIC=0.0586) as compare to others features set. However, selected best feature set at MRS level 1 

provides the highest overall accuracy (69.53 %) as compare to the feature set at MRS level 2 and 3         

(see figure 18 and appendix table C4.2) due to the increasing effects of under-segmentation (see section 

4.3). Similarly, selected best image feature set at block 29×29 obtains highest overall accuracy (67.70%) as 

compare to the other feature set due to having higher class separability (HSIC = 0.0574). However, 

selected best feature set at block 29×29 provides highest overall accuracy (67.70%) as compare to the 

feature set at block 43×43 and block 59×59 due to increasing effects of the mixed block caused by scale 

issue (see section 4.4) (see figure 18 and appendix table C4.3). The best features which have been selected 

from tile one and same features have been used for tile two for domain adaptation. 
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Table 10. Proposed best fifteen images features for urban land use classification using SFS-HSIC. 

Number 
best of 
Features  

SVM-RBF-OBIA (MRS level 1) SVM-RBF-BBIA (block 29×29) 
Features type Name of the best features Features type Name of the best features 

1 Spectral  Meanband3 Spectral  Meanband1 
2 Meanband4 Meanband2 
3 Meanband5 Meanband3 
4 Meanband6 Meanband4 
5 Meanband7 Meanband5 
6 Meanband8 Meanband6 
7 Mean NDVI Meanband7 
8 Textural  GLCMcorrelation band1 Meanband8 
9 GLDVentropy band1 Mean brightness 
10 GLDVentropy band2 Mean NDVI 
11 GLDVentropy band8 Textural GLCM entropy band8 
12 Contextual  

 

 

Aggregation index GLDV entropy band7 
13 Fractal dimension Contextual Aggregation index 
14 Cohesion  Cohesion  
15 Largest patch index Largest patch index 

 

The above result shows that features selection one of the very important consideration to select the 

appropriate features which having better class separability for improving the urban land cover/use 

classification accuracy. It is also observed that spectral features along with textural and contextual features 

are very important for classifying urban land use because urban land use is mostly separated in terms of 

texture and contextual features. In addition, one of the important findings is that most of the cases GLCM 

widely used for classifying urban land use (e.g., Kuffer et al. 2017; Herold et al. 2003; Yanchen et al. 2014)  

but result shows GLCM along with GLDV in most important for addressing texture in better way using 

VHR imagery for urban land use classification (Aguilar et al., 2012). Another important obesrvation is that 
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Figure 18. Shows selection of best image features for SVM-RBF-OBIA and SVM-RBF-BBIA-based land use 
classification using SFS-HSIC. 
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LBP, MPPR and geometric features are not selected perhaps due to combine effects of robust textural 

features such as GLCM, GLDV and contextual fetaures such as spatial metrics. 

 However, in feature selection process, best gamma and fixed cost are equal to 100 are used for SVM-

RBF. However, the accuracy of the best feature sets in different MRS levels and block levels might be 

varied while employing the best gamma and best cost value together. Thus, best feature set with higher 

overall accuracy at MRS level 1 (15 features), MRS level 2 (20 features) and MRS level 3 (15 features) as 

well as block 29×29 (15 features), 43X43 (20 features) and block 59×59 (10 features) (see figure 18, 

appendix table C4.2 and C4.3) have been used for parameter tuning using k-fold cross-validation. This 

helps to select the best image feature set at best MRS level and block level for urban land use classification 

in a very efficient manner.  

4.8. Selcted best parameters 

This section shows the selected best parameters of SVM-RBF and CNN for urban land cover/use 

classification employing the method explained in section 3.12. which are explained below: 

4.8.1. Best parameters of SVM-RBF 

This section shows the results obtains from the holdout grid search 10-fold cross-validation explained in 

section 3.12.1.  The result shows that 25 best features at MRS level 1 shows that the best gamma (0.1668) 

and best cost (1000) provides highest overall accuracy (78.21 %) as compare to others set of parameters 

for SVM-RBF-OBIA-based urban land cover classification (see appendix table C5.1.1). Table 11 shows 

the best parameters at different best features at different MRS and block level for SVM-RBF-OBIA and 

SVM-RBF-BBIA -based urban land use classification. The result shows that the overall accuracy of 

different best features at different MRS and block level has improved while employing best parameters as 

compare to best gamma with fixed cost as explained in section 4.7. Therefore, it is also observed that best 

features at MRS level 1 still provides highest overall accuracy (70.58%) as compare to the best features at 

MRS level 2 MRS level 3 while employing best parameters (see appendix table C5.1.3, table 11). Similar, 

outcome also shows in different block level (see appendix table C5.1.4, table 11). Therefore, the overall 

result shows that parameter tuning one of the foremost consideration to improve the overall classification 

accuracy by penalizing the cost of overfitting of the classifier (e.g., SVM-RBF). The results also prove that 

the effect of under-segmentation in MRS level 2 and 3, as well as the effect of the mixed block in block 

size 43×43 and 59×59, still exits while employing best parameters. Therefore, best parameters, best 

features at MRS level 1 (best MRS level) and block 29×29 (best block size) are selected in tile one                    

(see highlighted column of table 11), and same has used for tile two for domain adaptation. 

 
Table 11. Parameter tuning for SVM-RBF-OBIA and SVM-RBF-BBIA using 10-fold cross-validation. 

SVM-RBF 

parameters 

SVM-RBF-OBIA SVM-RBF-BBIA 

MRS level 1 

15 features 

MRS level 2 

20 features 

MRS level 3 

15 features 

Block 29×29 

15 features 

Block 43×43 

20 features 

Block 59×59 

10 features 

Best gamma 0.0599 0.1668 0.4642 1.292 0.4642 1.292 

Best cost 1000 129.155 359.381 16.681 16.681 16.681 

Overall 

accuracy 
70.58 68.10 69.08 68.37 67.46 60.92 

• Experiment of training samples size on proposed SVM-RBF best parameters 

The experiment on the size of training samples is essential because the accuracy of the classifiers is 

affected by the size of training samples due to the effect of Hughes phenomena. Thus, different size of 

training samples has been experimented using the best parameters of SVM-RBF. The proposed best 
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parameter of SVM-RBF-OBIA for urban land cover classification provides highest overall classification 

(78.21%) on 200 training samples as compare to the other sample sizes (see appendix, table C5.1.2).  Table 

12 shows that 150 training samples provide highest overall classification accuracy as compare to other 

sizes of training samples on proposed best parameters of SVM-RBF-OBIA (70.83%) and SVM-RBF-

BBIA (68.51%) for urban land use classification.   

 

Table 12. Experiment of size of training samples for urban land use classification. 

Size of training 
samples 

Overall accuracy 

 SVM-RBF-OBIA  SVM-RBF-BBIA 

50 65.49 60.93 

100 66.19 63.39 

150 70.83 68.51 

200 70.58 68.37 

 

The result shows that the absence of optimum size of training samples has a serious effect on overall 

classification accuracy. Therefore, the result also proves that experiment of different training samples size 

is a good choice to improve the overall classification accuracy by reducing the effect of Hughes 

phenomena (Mboga, 2017). Therefore, this proposed best training samples size (150) of tile one which has 

been used for urban land use classification of tile two.  

4.8.2. Best parameters of CNN 

This section provides the best hyperparameters of the CNN which have been obtained employing the 

parameters tuning strategy explained the section 3.12.2. This has done using 1000 training samples and 

6,255,001 test samples with stochastic gradient descent. The best learning and regularization parameters 

and CNN hyperparameters are explained below: 

• Learning and regularization parameters  

The best learning and regularization parameters of the CNN-BBIA-based urban land use classification 

have been obtained using 6-fold cross-validation (see appendix table C5.2.1.1, C5.2.1.2, and C5.2.1.3, 

figure C5.2.1.1.). The network obtains 65.12 % overall classification (see appendix table C5.2.1.3) on best 

learning and regularization parameters (see table 13) with the fixed CNN configuration (see table 14). The 

overall accuracy has decreased for other learning and regularization parameters due to overfitting of the 

network.  In the learning and regularization parameters tuning phase, zero padding is 2 and stride 1 have 

been used for convolutional layers while zero padding 1 and stride 2 used for the pooling layers. In 

addition, stride 1 and no zero padding have been used for FC layer.  

 
Table 13. Best learning and regularization parameters of CNN-BBIA-based urban land use classification. 

Hyperparameters Value 
Batch size 10 
Maximum number of epoch 1000 
Momentum 0.90 
Learning rate 0.001 
Weight decay  0.01 
Dropout rate in (D1 & D2)  (0.25, 0.5)  
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Table 14. Fixed CNN configuration used for selecting best learning and regularization parameters. 

Hyperparameters Value 

Layers I-C1-A-P-D1—C2-A-P-D1—FC1-A-D2—O-S-CP 

Non-linearity (A=RELU) used in C1-2 and FC1 RELU 

Non-linearity (S= SoftMax) used in O SoftMax 

Width of FC 128 

Patch size 29  

Number of filters, K 8 

Size of filters 5 

Pooling size 2 

Note: I=input, C=convolution layer, A =activation, P=max pooling, D=dropout, FC=fully connected 

layer, O=output, S= SoftMax, CP=class probability  

 

The result shows that the use of inappropriate learning and regularization parameters has a serious effect 

on overfitting of the network which affects the overall classification accuracy. Therefore, tuning of 

learning and regularization parameters is one of the important consideration in CNN for urban land 

use/cover classification (Bergado, 2016; Mboga, 2017). 

• CNN hyperparameters  

The 4-fold cross-validation of the CNN hyperparameters such as the number of filters, size of filters, 

number of convolutional layers and number of fully-connected layers have been carried out which are 

explained below:  

• Experiment on number of filters  

The experiment on different number of filters have been carried out using the selected best learning and 

regularization parameters (see appendix table C5.2.2.1) and with fixed others CNN hyperparameters               

(see appendix table C5.2.2.2). Increasing the number of filters helps to learn complex features in one way 

and increased huge parameters in another way (Bergado, 2016; Mboga, 2017). The increases of huge 

parameters prone to overfitting of the network which reduces the overall classification accuracy (CS231n, 

2018). As a result, the network provides 65.12% overall accuracy on the best 8 filters while accuracy has 

decreased for the other filters due to overfitting of the network (see appendix table C5.2.2.3, figure 19). 

The zero padding, stride for convolutional and FC layers are similar as mentioned in the tuning phase of 

the learning and regularization parameters.  

• Filter size experiment  

The filter size experiment has been carried using best learning and regularization parameters (see appendix 

table C5.2.2.4) and with fixed others CNN hyperparameters (see appendix table C5.2.2.5). The increase of 

filter size learns large and more complex spatial pattern (e.g., edge and gradient) to address the particular 

land use classes in one way and also to increase the parameters in another way (Bergado, 2016). Too large 

filter overestimates the spatial pattern for a particular land use classes as well as large parameters leads to 

overfitting of the network. The overfitting of the network reduces the overall classification accuracy. As a 

result, the network provides the highest overall accuracy (65.12%) on filter size 5X5 pixels as compare to 

the other filter sizes (see appendix table C5.2.2.6, figure 19). The zero padding for filter size 5, 15 and 25 

are 2, 7 and 12 while stride 1 have been used for convolutional layers. The stride 1 and no zero padding 

have been used for FC layer.   
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• Experiment of different convolutional layers 

The experiment of the different convolutional layer (Cn) with the fixed FC layers (e.g., FC=1) which leads 

to understand how the depth of the network helps to improve the classification accuracy. In addition, 

increasing the number of convolutional layers sometimes provides more abstract features to improve the 

classification accuracy (Mboga, 2017). However, increasing the number of convolutional layers also 

sometimes oversimplify the features due to frequent drop of parameters thorough max-pooling in each 

convolutional layer. As a result, two convolutional layers (C2) with the fixed FC layers one with the best 

learning and regularization parameters (see appendix table C5.2.2.7) and the best CNN hyperparameters      

(see appendix table C5.2.2.8) provides highest overall classification accuracy (65.12%) as compare to other 

convolution layers (see appendix table C5.2.2.9; figure 20). The zero padding, stride for convolutional and 

FC layers are similar as mentioned in the tuning phase of the learning and regularization parameters and 

number of filters experiment. 

• Experiment of different fully-connected layers 

The experiment of different FC layers has been carried out with the fixed convolutional layer (e.g., 2) and 

best learning and regularization parameters (see appendix table C5.2.2.10) and best CNN hyperparameters 

(see appendix table C5.2.2.11). The FC layer is termed as the dense layer of CNN.  
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Figure 19. Shows overall accuracy varied with different number of filters and filter sizes. 

40

45

50

55

60

65

70

2 3 4

O
v
er

al
l 
ac

cu
ra

cy
,
O

A
 (

%
)

Number of convolutional layers

Selection of best convolutional layers

40

45

50

55

60

65

70

1 2 3
Number of FC layers

O
v
er

al
l 
ac

cu
ra

cy
,
O

A
 (

%
)

Selection of best FC layers

Figure 20. Shows overall accuracy varied with different number of convolutional and FC layers. 
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When increasing the FC layers, the network becomes complex. A complex network increases the risk of 

overfitting of the network. As mentioned above overfitting the network reduces the classification 

accuracy. The result shows that FC layer one gets the highest overall accuracy (65.12%) as compare to FC 

layer two and three (see appendix table C5.2.2.12, figure 20). The zero padding, stride for convolutional 

and FC layers are similar as mentioned in the tuning phase of the learning and regularization parameters, 

number of filters experiment and number of convolutional layers experiment. The tuning of CNN 

hyperparameters shows that overall classification is affected by the overfitting of the network while 

employing unsuitable hyperparameters. Therefore, along with learning and regularization parameters, 

tuning of CNN hyperparameters is also essential considering to learn best local contextual features to 

improve the overall classification accuracy (Bergado, 2016 and Mboga, 2017). The best CNN parameters 

as follows: 

• Proposed best parameters and architecture of CNN  

Based on the 10-fold cross-validation of CNN parameters, the proposed learning, and regularization 

parameter, CNN hyperparameters and architecture are shown in table 15 and 16. The proposed CNN 

architecture obtains two convolutional layers and one FC layer. The padding is 2 and stride 1 have been 

used for convolutional layers while zero padding 1 and stride 2 used for the pooling layers. In addition, 

stride 1 and no zero padding have been used for FC layer. The proposed CNN architecture has been 

developed on tile one, which provides 65.12% overall classification accuracy on 1000 training samples and 

6,255,001 test samples. This proposed CNN architecture is applied in tile two for domain adaptation.  

 

Table 15. Proposed best learning and regularization parameters. 

Hyperparameters Value 
Batch size 10 
Maximum number of epoch, τ 1000 
Momentum, 𝑎 0.90 
Learning rate, ϵ 0.001 
Weight decay, λ 0.01 
Dropout rate, dr in (D1 & D2) (0.25, 0.5) 

 

Table 16. Proposed best CNN configuration and hyperparameters. 

Hyperparameters Value 
Layers I-C1-A-P-D1—C2-A-P-D1—FC1-A-D2—O-S-CP 
Non-linearity (A=RELU) used in C1-2 and FC1 RELU 
Non-linearity (S= SoftMax) used in O SoftMax 
Width of FC 128 
Patch size 29  
Number of filters, K 8 
Size of filters 5 
Pooling size 2 

Note: I=input, C=convolutional layer, A =activation, P=max pooling, D=dropout, FC=fully connected 

layer, O=output, S= SoftMax, CP=class probability  

• Experiment of training sample sizes with proposed best parameters and architecture of CNN  

Table 17 shows that the proposed best learning and regularization parameter (see table 15), CNN 

hyperparameters and configuration (see table 16) provides the highest overall classification accuracy on 

1000 training samples (augmented training samples) as compare to the other training samples. Overall 

classification accuracy on training samples 200 is low (55%) because the CNN performs better on higher 
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samples size or augmented training samples. However, too high samples size for a specific CNN 

architecture, network gets overfitted and consequently reduces the overall classification accuracy                      

(see table 17).  The result shows that use of the inappropriate size of training samples has a serious effect 

on overfitting of the network because of the effects of Hughes phenomena. In addition, the result also 

shows that use of augmented training samples one of the important choice to reduce the overfitting of the 

network (Mboga, 2017). Therefore, the result proves that experiment on different size of training samples 

as well as on augmented training samples has improved the overall classification accuracy by reducing the 

overfitting of the network (see table 17).     

 

Table 17. Experiment of size of training samples for urban land use classification. 

Size of training samples Overall accuracy 
200 55.00 
1000 65.12 
2000 62.77 
3000 62.32 

4.9. Urban land cover/use classification and accuarcy assesement 

This section presents the urban land cover/use classification, validation, and accuracy. The urban use 

classification has carried out in sampled (tile one) and unsampled (tile two) domain which are explained 

below: 

4.9.1. SVM-RBF-OBIA-based urban land cover classification 

Based on the proposed best features set, SVM-RBF parameters and training samples size (see section 4.7 

and 4.8.1), the SVM-RBF-OBIA provides 78.21% overall classification accuracy and kappa 0.6507 for 

urban land cover classification in tile one (see appendix figure C6.1, table C6.1). In addition, while 

adopting the similar proposed parameters as used in tile one, the SVM-RBF-OBIA provides 75.52 % 

overall classification accuracy and kappa 0.6182 for urban land cover classification in tile two                 

(see appendix figure C6.2, table C6.2). These classified urban land cover have been used for the contextual 

features (e.g., spatial metrics) extraction for urban land use classification (see section 3.6). 

4.9.2. SVM-RBF-OBIA-based urban land use classification 

Table 18 shows the accuracy of SVM-RBF-OBIA-based urban land use classification obtains using 

proposed best features, SVM-RBF parameters and best size of training samples explained in section 4.7 

and 4.8.1. Table 18 shows the overall accuracy is 65.30 % and kappa is 0.5467 (average of tile 1 and 2) in 

SVM-RBF-OBIA-based urban land use classification. In addition, table 18 shows that both user and 

producer accuracy of commercial land use is low as compare to residential and industrial land use in tile 

one which explains that commercial land use mostly mixed with residential, industrial and vacant land use 

(see appendix table C7.1, C7.2 and figure 21). In addition, results also show that user accuracy of 

waterbody/shadow is low while producer accuracy is high. This explains that most of the land use 

misclassified into waterbody/shadow because such land uses have shadow effects while 

waterbody/shadow is less misclassified into other land use classes.  The result also shows that accuracy is 

significantly dropped in tile two due to very significant drop in the accuracy of the commercial, industrial, 

vacant land and waterbody/shadow. Therefore, the overall result (both tiles) shows that complexity of 

commercial, industrial and vacant land use as well as shadow effect one of the cause for reducing the 

overall accuracy.   
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Table 18. Accuracy of SVM-RBF-OBIA-based Urban land use classification. 

Land use classes 
Accuracy (%) 

Tile one (sampled domain) Tile two (unsampled domain) 
User Producer User  Producer 

Residential 79.97 75.98 66.98 72.42 
Commercial 39.41 16.90 17.47 16.61 
Industrial 77.00 60.49 16.57 8.71 
Transportation 53.50 63.24 46.00 75.04 
Urban green 75.77 84.49 85.53 79.66 
Vacant land 58.02 59.12 51.59 38.38 
Waterbody/shadow 38.57 85.86 19.29 41.29 
Overall  70.83 60.30 
Kappa  0.6231 0.4703 
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Figure 21. Shows SVM-RBF-OBIA-based urban land use classification of tile one and tile two. 
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4.9.3. SVM-RBF-BBIA-based urban land use classification 

Table 19 shows that overall accuracy (OA) is 56.64% and kappa is 0.3900 (average of tile 1 and 2) of 

SVM-RBF-BBIA-based urban land use classification which is less (overall accuracy -8.66% and                   

kappa -0.1567) than the SVM-RBF-OBIA because misclassification rate is high in most of the land use 

classes such as commercial, industrial, vacant land and waterbody/shadow (see appendix table C8.1, C8.2 

and figure 22). The one of the very important observation is that land use classes with a linear shape 

(waterbody, transportation) misclassified within or between the land use classes because regular grid 

unable to extract the complete shape of linear land uses as compare to OBIA. Another important 

observation is that this classification minimizes the effect of shadow by merging the shadow with other 

land use classes.  

Table 19. Accuracy of SVM-RBF-BBIA-based urban land use classification. 

Land use classes 
Accuracy (%) 

Tile one (sampled domain) Tile two (unsampled domain) 
 User Producer User Producer 
Residential 71.99 87.66 50.17 83.89 
Commercial 32.68 25.18 33.83 5.91 
Industrial 78.24 51.70 27.66 2.76 
Transportation 36.31 61.41 22.55 54.92 
Urban green 83.89 64.50 93.70 18.50 
Vacant land 63.91 48.91 24.05 23.36 
Waterbody/ 
shadow 

50.62 35.59 37.69 32.75 

Overall accuracy  68.51 44.77 
Kappa  0.5600 0.2200 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



EVALUATING THE PERFORMANCE OF MACHINE LEARNING ALGORITHMS FOR URBAN LAND USE MAPPING USING VERY HIGH RESOLUTION SATELLITE IMAGERY 

 

51 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.9.4. CNN-BBIA-based urban land use classification 

Table 20 shows that CNN-BBIA obtains overall accuracy is 57.51%, and kappa is 0.4245 (average of tile 1 

and 2) which is higher (overall accuracy +0.87%, +0.0345) than the SVM-RBF-BBIA and lower             

(overall accuracy -7.79%, kappa -0.1222) than the SVM-RBF-OBIA. This shows that the misclassification 

accuracy of commercial, industrial, vacant land, and waterbody/shadow (see figure 23 and appendix table 

C9.1 and 9.2) quite higher than SVM-RBF-OBIA while less than the SVM-RBF-BBIA. One of the very 

important observation is that land use classes with a linear shape (e.g., transportation, waterbody) has a 

good classification in both sampled and unsampled domain as compare to the SVM-RBF-BBIA because 

of the better edge detection ability of the CNN. In addition, another important observation is that this 

classification minimizes the effect of shadow by merging with other land use classes similar to the SVM-

RBF-BBIA. This is because block/patch bigger than the shadows is automatically merged with other land 

use classes.  
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Figure 22. Shows SVM-RBF-BBIA-based urban land use classification of tile one and tile two. 
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Table 20. Accuracy of CNN-BBIA-based urban land use classification. 

Land use classes 
Accuracy (%) 

Tile one (sampled domain) Tile two (unsampled domain) 
 User Producer User Producer 
Residential 72.35 73.55 61.51 80.31 
Commercial 20.19 27.59 6.98 4.65 
Industrial 73.65 48.44 13.62 11.54 
Transportation 44.58 62.63 54.50 66.34 
Urban green 85.19 73.62 98.31 35.98 
Vacant land 46.37 59.61 18.77 30.28 
Waterbody/ 
shadow 

55.65 33.77 78.07 29.74 

Overall   65.12 49.89 

Kappa  
0.5274 

 
0.3216 
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Figure 23. Shows CNN-BBIA-based urban land use classification of tile one and tile two. 
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Form the above results, it is observed that misclassification of commercial, industrial is mostly happened 

due to sharing of common features information with the residential and vacant land as well as between 

commercial, industrial. This occurs due to increase of mixed land use pattern in the selected area. In 

addition, another important observation is that overall accuracy, as well as the accuracy of other land uses 

is affected by sharing of common features information of the waterbody and shadow because most of the 

land uses have shadow effect in VHR imagery. It is also observed that effect of shadow is mostly 

minimized in SVM-RBF-BBIA and CNN-BBIA while this effect significant in SVM-RBF-OBIA because 

the segmentation follows the shape of the object. The overall results show that SVM-RBF-OBIA provides 

higher classification accuracy as compare to SVM-RBF-BBIA and CNN-BBIA while CNN-BBIA 

provides higher classification accuracy as compare to SVM-RBF-BBIA. In addition, very important 

observation is that the accuracy is affected by the combination of classification algorithms and 

classification approach which is most important consideration in land use classification. For detailed 

explanation needs more accuracy assessment indices which are explained in section 4.10. 

4.10. Performance evaluation 

In this section, comparison of accuracy assessment indices of the selected machine learning algorithms has 

been discussed in sampled and unsampled domain employing methods explained in section 3.15. This 

helps to assess the performance and robustness of the classifiers for urban land use classification which 

are explained below:     

4.10.1. Performance based on quantitative indices 

Table 21 shows that F1-score of most of the urban land uses such as residential, commercial, industrial, 

transportation in OBIA outperforms the BBIA. This explains that urban land uses are highly associated 

with the images features related to shape, size and orientation of the land use objects along with others 

features. In addition, F1-score of waterbody/shadow in BBIA outperforms the OBIA which explains that 

the OBIA is suffering from the effect of shadow in VHR imagery. The result also shows that F1-score of 

most of the urban land uses in CNN outperforms the SVM-RBF. This is because classifying the complex 

urban land use is highly related to the more complex contextual features learned by CNN.  

 
Table 21. Performance of selected machine learning algorithms for urban land use classification (compiled tile one 

(sampled domain) and tile two (unsampled domain) see appendix table C10.1, C10.2). 

Land use 

classes 

SVM-RBF-OBIA SVM- RBF-BBIA CNN-BBIA 

Recall Precision F1-score Recall Precision F1-score Recall Precision F1-score 

Residen. 73.48 74.20 73.76 61.08 85.78 70.92 66.93 76.93 71.30 

Commer. 28.44 16.76 20.35 33.26 15.55 19.26 13.59 16.12 14.45 

Industri. 46.79 34.60 39.59 52.95 27.23 33.64 43.64 29.99 35.47 

Trans. 49.75 69.14 57.50 29.43 58.17 38.81 49.54 64.49 55.97 

Ur.green. 80.65 82.08 81.19 88.80 41.50 51.91 91.75 54.80 65.83 

Vac.land 54.81 48.75 51.29 43.98 36.14 39.56 32.57 44.95 37.67 

Water/ 

shadow 28.93 63.58 39.77 44.16 34.17 38.42 66.86 31.76 42.55 

Overall  51.84 55.59 51.92 50.52 42.65 41.79 52.13 45.58 46.18 
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Table 22. Performance of selected machine learning algorithms based on quantitative accuracy. 

Tile  SVM-RBF- OBIA SVM- RBF-BBIA CNN-BBIA 

Overall accuracy Kappa  Overall accuracy Kappa  Overall accuracy Kappa  

1 -sampled  70.83 0.6231 68.51 0.5600 65.12 0.5274 

2-unsampled  60.30 0.4703 44.77 0.2200 49.89 0.3216 

Overall  65.57 0.5467 56.64 0.3900 57.51 0.4245 

 

Therefore, the overall F1-score, overall accuracy, and overall kappa (see table 21 and 22) shows that OBIA 

outperform the BBIA and similarly CNN outperform the SVM-RBF. Another important observation also 

is that OBIA outperforms the CNN. The similar results also observed in the unsampled domain (see table 

21 and 22). This is because geometrical characteristics (e.g., shape, size, orientation, etc.) of OBIA is an 

added advantage over others robust spectral, textural (e.g., GLCM, GLDV) and contextual characteristics 

(e.g., spatial metrics) of land use classes for classifying complex urban land use as compare to BBIA and 

CNN. Therefore, in previous research proven that CNN is outperform the SVM-RBF and also proven 

that feeding of robust handicraft features (e.g., GLCM or CNN learned features) in SVM-RBF is most of 

the cases competitive with the CNN (e.g., Mboga, 2017). Therefore, overall results also show that OBIA 

are more transferable and robust as compare to BBIA and similarly CNN is more transferable and robust 

as compare to SVM-RBF. 

4.10.2. Performance based on locational indices 

In terms of the locational agreement, table 23 shows that the overall Klocation (e.g., kappa for location) 

and Kno (overall kappa both in quantity and location) in OBIA outperforms the BBIA and similarly, the 

overall kappa (Kno) in CNN outperforms the SVM-RBF. The similar results also observe in the 

unsampled domain (tile two).  

 
Table 23. Performance of selected machine learning algorithms based on locational accuracy.  

Tile  SVM-RBF- OBIA SVM- RBF-BBIA CNN-BBIA 

Klocation Kno  Klocation Kno  Klocation Kno  

1 -sampled  0.6695 0.6596 0.6877 0.6326 0.5926 0.5931 

2-unsampled  0.5361 0.5368 0.4230 0.3555 0.4498 0.4153 

Overall  0.6028 0.5982 0.5554 0.4941 0.5212 0.5042 

 

Therefore, in terms of the locational agreement, the result also proves that the OBIA is more robust and 

transferable as compare to BBIA and similarly, CNN is more robust and transferable as compare to  

SVM-RBF for urban land use classification. 

4.10.3. Performance based on classified map quality 

Visually the classified map of OBIA looks better in terms of quality as compare to the BBIA using the 

reference (see appendix figure C10.1) and local land use maps (see appendix figure C10.2). Similarly, 

visually the classified map of CNN also looks better as compare to the SVM-RBF (see appendix figure 

C10.1 and C10.2). This comparison of classified map quality is based on overall shape, size, and 

misclassification of land use classes. The misclassification visually shows the mixed and scatters pattern of 

urban land use. Therefore, in terms of classified map quality, it is concluded that OBIA is more relevant as 

compare to BBIA and similarly, CNN is more relevant as compare to SVM-RBF for urban land use 

classification and to address the local land use classification scheme.  

Therefore, based on the quantitative, locational and qualitative performance assessment the result shows 

that OBIA is robust and more transferable as compare to BBIA and similarly, CNN is also robust and 
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more transferable as compare to SVM-RBF for urban land use classification from VHR imagery. Hence, 

the results suggest that the use of CNN in OBIA is an optimum choice to develop a most promising 

urban land use classification approach from VHR imagery for developing countries like India. 

4.10.4. Performance based on classification time 

In this study, the selection of best image features, parameters and undergone land use classification in 

SVM-RBF for OBIA or BBIA takes half an hour for a single tile. In addition, based on the best 

parameters, the CNN-BBIA takes 5 hours to learn the features and to produce the final classified map of 

one single tile. However, it is also observed that overall processing time is quite high in SVM-RBF as 

compare to the CNN because additional time takes for preparing and exploring the handicraft image 

features. Therefore, in larger city scale, the CNN is more relevant as compare to SVM-RBF because of 

self-learning ability of CNN. 

4.11. Key summary of the results and discussions 

The key summary of the results and discussion is that classification of urban land use from VHR imagery 

is affected by the several factors such as types and number of image features, scale issues, parameters and 

types of classifiers and size of training samples which are very sensitive to the overall classification 

accuracy and quality of the results.  Based on the sensitivity analysis results shows that OBIA outperforms 

the BBIA and similarity CNN outperforms SVM-RBF. The OBIA outperforms the BBIA because one the 

important reason is the geometrical characteristics of the OBIA which directly link with geometrical 

properties of the urban land uses. In addition, CNN outperforms the SVM-RBF because CNN extracts 

more complex contextual features which address the texture, edge, and gradient of the different urban 

land uses. In this study, post-processing (for improving accuracy) has not done because in this case need 

to link with other algorithms like Conditional Random Field (CRF) which require further study. The 

conclusion of the results and discussion has explained in section 5.   
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5. CONCLUSION AND RECOMMENDATION  

In this section conclusions, reflections on research objectives and questions, research contribution, 

limitations, and recommendations are drawn for future research:  

5.1. Reflection on the research objective and research question 

The main objective of this study was to evaluate the performance of different machine learning algorithms 

for urban land use mapping. Thus, based on the research objective, a wide variety of image features (i.e., 

135 spectral, textural, geometric and contextual image features) were extracted from VHR imagery, and 

such features were selected employing SFS-HSIC for SVM-RBF-based urban land use classification. Based 

on this features selection it was observed that only 15 are very efficient image features out of the total 135 

features. In addition, selection of optimum parameters of SVM-RBF employing hold-out cross-validation 

improved the overall land use classification accuracy. However, it was also observed that varying the size 

of training samples affected the overall classification accuracy. In SVM-RBF, 150 (out of 200) is the best 

training samples size to reduce the effect of Hughes phenomena.  This improved the overall urban land 

use classification. In OBIA-based urban land use classification, the scale issue in segmentation (using 

MRS) has a very serious effect on the overall classification accuracy. It was observed that the MRS level 1 

(i.e., scale 133) provided the highest overall classification as compared the MRS level 2 (i.e., scale 223) and 

MRS level 3 (i.e., scale 323). Similarly, scale issues were also observed in BBIA-based urban land use 

classification in which the block size 29X29 showed the highest overall accuracy as compared to the block 

size 43X43 and 59X59. Thus, based on the different accuracy assessment indices, map quality, time and 

domain adaptation, it is concluded that SVM-RBF-OBIA is more relevant and robust as compared to the 

SVM-RBF-BBIA for urban land use classification from VHR imager in the Indian context.  

In CNN-BBIA based urban land use classification, it was observed that consistent use of learning and 

regularization parameters and hyperparameters of CNN configuration reduced the risk of overfitting of 

the network. This is because overfitting of the network reduced the overall classification accuracy. In 

addition, one of the important observation from the network is that the co-adaptation of neurons was 

detected in both convolutional and FC layer. Consequently, the use of dropout in both layers improved 

the overall classification accuracy. Thus, experiments on the depth of the network showed a change of 

overall classification accuracy because of the variation of learned contextual image features. Therefore, one 

of the final observation is that the overall classification was improved while using augmented training 

samples instead of original training samples because data augmentation is one of the important solutions 

to resolve the overfitting of the network. Therefore, based on different accuracy assessment indices, map 

quality, time and domain adaptation, finally, it is concluded that the OBIA is more relevant and robust as 

compared to BBIA for urban land use classification from VHR imager in the Indian context. However, 

using BBIA, CNN is more relevant and robust as compared to SVM-RBF for urban land use classification 

from VHR imagery in the Indian context. Therefore, finally, Therefore, finally, it is recommended that 

combining CNN and OBIA is the most promising starting point for further research on developing a 

robust urban land use classification approach from VHR imagery for developing countries like India.  

However, the research question as outlined in this research have been answered below:    

• Specific objective 1: to select suitable image features for urban land use mapping. 

1. What types of image features are extracted from VHR imagery using standard feature extraction 

methods based on recent literatures? 

In recent literatures, it was observed that GLCM, GLDV, LBP, MPPR and some geometric                     

(e.g., shape, compactness, etc.) and contextual image (e.g., spatial metrics) features were widely used 
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for classifying urban land cover/use from VHR imagery (see section 2 and 3.6.). The previous 

research has proven that the use of these image features provided good classification results for cities 

outside of India. Hence, these features have been selected to explore for an Indian city to develop 

robust features for urban land use classification from VHR imagery (see section 3.6, appendix table 

C2.1).   

2. What is the standard feature selection method used for selecting best features based on recent 

literatures? 

In recent literatures, several feature selection methods (e.g., PCA, rank, etc.) were explored but SFS 

with HSIC proven to be a fast and robust feature selection approach in many research                                

(see section 3.11). Hence, SFS-HSIC has been used to select the best features from the large volume 

of extracted image features.  

3. What are best the image features used to map urban land use using standard feature selection method? 

Using SFS-HSIC, 15 best features (see section 4.7, table 10) such as spectral (image bands, NDVI and 

mean brightness), textural (GLCM and GLDV) and contextual image features (aggregation index, 

fractal dimension, cohesion and largest patch index) have been selected from the 135 extracted image 

features (section 4.5, appendix table C2.1). From this result, it is concluded that the use of handicraft 

image features for classifying land use from the satellite imagery (e.g., VHR) is not an optimum 

solution in remote sensing because Hughes phenomena are highly related with high dimensional 

image features. Hence, feature selection is a robust approach (for a large volume of features) in 

remote sensing which is prerequisites to develop best classification approach from satellite imagery 

(e.g., VHR). 

 

• Specific objective 2: to map urban land uses using SVM and CNN in OBIA and BBIA.   

1. What types of urban land uses are relevant based on national and local land use classification schemes 

and available literatures? 

In this study, seven relevant urban land use classes such as residential, commercial, industrial, 

transportation, urban green, vacant land, and waterbody have been selected based on national    

(NRSA, 2008) and local land use classification schemes (appendix table B5.1 and figure B3.2) and 

available literatures (section 2, 3.8).  

2. What are best parameters of SVM and CNN to improve the classification accuracy of urban land uses 

employing OBIA and BBIA? 

The best parameters of SVM-RBF (such as gamma 0.0599 and cost is 1000) provided the highest 

overall accuracy using the best MRS level (level 1 and scale 133) and 150 training samples for OBIA-

based urban land use classification. Similarly, the best gamma of 1.292 and cost of 16.681 provided 

the highest overall accuracy using the best block size (29 by 29 pixel) and 150 training samples for 

BBIA-based urban land use classification (see section 4.8.1). In addition, best learning and 

regularization parameters and hyperparameters of CNN provided the highest overall accuracy on 1000 

augmented training samples for CNN-BBIA-based urban land use classification (see section 4.8.2). 

Thus, it is concluded, parameters tuning is one of the best approach in remote sensing to develop 

robust parameters for classifying land use from satellite imagery (e.g., VHR) because unsuitable 

parameters always overfitted the classifiers.   

3. What are the classification accuracies and time elapses executing a SVM in BBIA and OBIA 

employing the best parameters and image features? 

The SVM-RBF in OBIA achieved highest overall classification accuracies (e.g., overall 

accuracy=65.57%, kappa= 0.5467) (see section 4.9.2) as compared to SVM-RBF in BBIA (e.g., overall 

accuracy=56.64%, kappa= 0.3900) (see section 4.9.3) while employing best features (see section 4.7), 

parameters and best size of training samples (see section 4.8.1). In addition, the computation time 
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(half an hour in one tile) in both OBIA and BBIA is quite similar. In addition, it is also concluded 

more time was elapsed for extracting handicraft image features as compared to the classification. 

Finally, it is concluded that the classification accuracy varied between OBIA and BBIA due to added 

advantages of addressing geometrical characteristics (shape, size etc.) of land use object in OBIA over 

the other robust image features and best parameters because urban land use can easily be separated in 

the VHR imagery in terms of geometry of the land use objects.   

4. What are the classification accuracies and time elapses executing a CNN in BBIA employing the best 

parameters? 

The CNN in BBIA an overall accuracy of 57.51%, and kappa of 0.4245, etc. (see section 4.9.4) 

employing best parameters (see section 4.8.2). In addition, 5 hours elapse was required to produce a 

final classified map (one tile) in this classification. From this result, it is concluded that the use of best 

parameters is the optimum choice to improve the overall classification by reducing the overfitting of 

the network.  

• Specific objective 3: to evaluate the performance of SVM and CNN in OBIA and BBIA for 

urban land use classification. 

1. What is the best strategy to measure the accuracy of SVM and CNN for urban land use classification? 

In previous studies, most of the researchers evaluated the performance of classifiers based on only the 

quantitative agreement, quality of the classified map and time (e.g., Bergado, 2016). However, the best 

strategy (see section 4.10) is to evaluate the locational agreement and local land use classification 

scheme along with the quantitative agreement, quality of classified map and time to address the 

thematic, positional and temporal uncertainty of the classifiers to support local land use classification. 

Thus, based on the best strategy, other than classical accuracy assessment indices (overall, kappa, etc.), 

some additional advanced accuracy assessment indices (e.g., recall, precision, F1-score, Klocation, 

Kno, etc.) were used to evaluate SVM-RBF and CNN (see section 4.10). 

2. What is the performance of SVM and CNN for urban land use classification? 

Based on the best strategy adopted for measuring the difference accuracies of SVM-RBF and CNN 

(see section 4.10), it is concluded that the CNN outperforms the SVM-RBF and similarly OBIA 

outperforms the BBIA for classifying urban land use from VHR imagery in the Indian context.   

5.2. Limitations and contributions  

This study has few limitations such as shadow effects in VHR imagery as well as time constraints and 

limited computer memory storage to experiment on more image tiles as well as across the whole city. This 

study has several contributions such as firstly, explored the best image features from commonly used huge 

image features for urban land use mapping. Secondly, explored how to develop best parameters of SVM-

RBF and CNN for urban land use classification from VHR imagery. Finally, this study has also explored 

the best image classification approach (e.g., OBIA) and robust machine learning algorithm (e.g., CNN) for 

urban land use mapping from VHR imagery for developing countries such as India. This study also 

provides a starting point for developing detailed land use mapping from VHR imagery to implement 

better spatial planning policy at the local scale. This is because detailed land use information was hidden 

due to aggregation pattern of urban land use in the local land use classification scheme. However, in this 

study, overall classification accuracy somehow low to implement planning policy and in this regard, need 

some additional research for the improvement of the overall classification accuracy. The additional 

research has recommended in section 5.3.  
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5.3. Recommendation for future study 

The recommendation of future study has been listed in following heads: 

• Use of SVM-RBF for OBIA-based urban land use classification from VHR imagery is highly 

recommended for Indian context as compared to SVM-RBF with BBIA. 

•  Use of CNN for BBIA-based urban land use classification from VHR imagery is performing better 

for the Indian context as compared to SVM-RBF for BBIA. 

• Combine CNN with OBIA to develop more a robust urban land use classification approach from 

VHR imagery for the cities of developing country like India. 

• Use of parcels for a BBIA-based urban land use classification is highly recommended as compared to 

the regular grids to improve the overall accuracy. This will help to extract detail road alignments as 

well as land use because different attributes of urban land use varies between parcels. 

• Use height information such nDSM (e.g., normalized digital surface model) to improve the 

classification because properties of urban land use varies with the height.  

• Experiment on different deep learning network such FCN (e.g., Fully Convolutional Network), DCN 

(e.g., Deconvolutional Neural Network) and RCNN (e.g., Recurrent Convolutional Neural Network) 

to learn finer contextual image features to improve the overall classification accuracy and obtain a 

smoother classification outcome. In addition, experiments on integrating Conditional Random Field 

(CRF) with CNN is a possible choice to improve the overall classification accuracy (Sun et al., 2016).  
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APPENDIX 

A. Review of literature 
A1. Hyperparameters of supervised CNN network 
 
Table A1.1. Hyperparameters of supervised CNN network (Bergado, 2016; Goodfellow et al., 2016; Mboga, 2017).  

Hyperparameters Descriptions 

(A) Learning and regularization parameters 

i. Batch size Number of training samples train by CNN in each iteration. 

ii. Maximum 

number of 

epoch, τ 

Number of iteration during training the CNN network.  

iii. Learning rate, ϵ Learning fraction which explained how precisely updates the derivates of the SGD 

to obtain minimum loss function in each epoch. 

iv. Momentum, 𝑎 Fraction used to accelerate the network during training.  

v. Weight decay, λ It is used in L2 regularization norm which performs new loss function to minimize 

the overfitting of network. 

vi. Dropout, dr It is one of the very important regularization parameter which explained as the 

percent of randomly dropping (dr) of neuron which is co-adapted with the other 

neuron. The co-adaptation of neurons leads to the overfitting of the network. 

(B) CNN configuration parameters  

vii. Patch size Square patch which is 2-D image grid learn by network from the image. 

viii. Number of 

patch 

Number of 2-D image grid learn by network from the image. 

ix. Filter size Dimension of 2-D filters in convolutional layers used to develop activation 

features from the 2-D image patches learned by network. 

x. Number of filter Number of 2-D filters in convolutional layers used to develop activation features 

from the learned 2-D image patches. 

xi. Pooling size Downsampling of non-linear activation feature in convolutional layers as a 

function of max pooling which extract the maximum value in the n-size of pooling 

region.  

xii. Network depth  Number of convolutional layers and FC layers are termed as the depth of the 

CNN network which affects the overall classification accuracy. 
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A2. Multiresolution image segmentation  
 

Table A2.1. Literatures review on selecting scale parameter, shape and compactness 

Sl. 

No. 

Scale 

parameters 

Compactness  Shape  Applications Overall 

Accuracy (%) 

References 

1 Default ESP2 0.50 0.50 Informal 

settlement 

mapping 

85.54-86.33 (Naorem etal., 

2016) 

2 ESP2 (55-153) 0.50 0.50 Slum mapping 64.00-70.80 (Pratomo, 2016) 

3 ESP2 (40-300) 0.50 0.50 Slum mapping 47.00-68.00 (Kohli, 2015) 

4 50 0.50 0.50 Urban land use 

mapping 

79.60-96.0 (Yanchen et al., 

2014) 

5 10-150 0.50 0.70 Residential 

land use 

mapping 

75.00 (Stow et al., 

2007) 

 
   
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
B. Research Methodology 

Figure A2.1. Process of ESP tool for the estimation of scale parameter based on threshold of local variance  

(Drăgut et al., 2014) 

Figure A2.2.  LV and ROC estimated using ESP tool for three-level hierarchy MRS of Worldview fused imagery, 
2015 
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B1. Methodological flowchart 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure B1.1. Shows methodological flowchart 
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B2. Study area  
 

 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
B3. Dataset and software used  
 

Table B3.1. Worldview3 Satellite imagery 

Sensors Spectral Bands (μm) 

Spatial 

resolution

(metre) 

Radiometric 

resolution 

Off 

nadir 

Sun 

elevation 

Repeat  

cycle 

Swath 

(km) 

PAN Band PAN:   0.45-0.80 0.34 11 bits 

 

22.790 

 

52.790 

 

1 day 

 

13.10 
MS 

 

Band coastal: 0.40-0.45 

1.38 14 bits 

Band blue:     0.45-0.51 

Band green:   0.51-0.58 

Band yellow:  0.585-0.625 

Band red:       0.63-0.69 

Band red edge:0.705-0.745 

Band NIR1:    0.77-0.895 

Band NIR2:    0.86-1.02 

 

 

 

Figure B2.1. Shows location of the study area (source: Openstreet map) 
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Figure B3.1. Shows original Worldview3 satellite imageries of tile1 and tile2 with 2501 X 2501 pixels dimension, 2015 

Tile1 Tile2 

Panchromatic band1 

Multispectral bands (1 to 8) 
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Tile1 

Tile2 

Figure B3.2. Shows master plan map of tile1 and tile2 with 2501 X 2501 pixels dimension, 2015 
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Table B3.2. Hardware and Software used for this study 

Sl.no Hardware and 

operating system 

software  Purpose of use 

1 • Hp-Pavilion 

desktop 7010TX, 

CPU-intel corei7,  

    DDR3, RAM-     

12GB, HDD-640 

GB, Graphic-

NVidia 2GB, 

OS-window7 home 

premium 

 and 

• DELL OptiPlex 

&Precision 

Workstation  

CPU- Xeon E5‐

2643, Core 6, RAM-

128GB, HDD- 2 

TB, SSD-1TB,  

OS- Linux Ubuntu 

Arc GIS 10.5.1 • Creation of fishnet regular grid as the block,  

• Labelled block and objects for training and test 

sets,  

• Creates features in raster format from the 

features extracted in shape file and  

• Layout map design 

2 Erdas Imagine 

2015 

• HPF image fusion, 

• Subset image, geo-referencing and 

• Feature aggregation with zonal statistics 

3 ECognition 9.2 • Multi-resolution and chessboard segmentation 

and 

• Feature extraction and aggregation 

 Fragstats 4.2.1 • Developed contextual features based on spatial 

matrices 

4 R Studio 3.4.1 • SFS feature section,  

• SVM-RBF parameter tuning for urban land cover 

and urban land use classification and 

•  SVM-RBF urban land cover and urban land use 

classification 

5 Matlab 

2017a&2017b  

• Extraction of LBF and MPPR features, 

• Export of file from Matlab format to ENVI 

format 

• CNN development 

• CNN for Urban land use classification 

6 ENVI classic 5.3 • Image normalization 

7 Idrisi Selva 17.02 • Measuring location-based accuracy indices 

8 Microsoft office 

2016 

• Thesis writing, chart and diagram, tabulation 

9 Adobe acrobat 8 • Conversion of word file to pdf 

10 NCH software  • Flowchart for methodology  
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B4. Geometric features  
 

Table B4.1. Description of geometric features used for OBIA-based Urban land cover/use classification             

(Definiens, 2012) 

No. Geometric 

features 

Descriptions 

1 Asymmetry Object is separated based on the comparison of the asymmetrical shape which 

describes the relative length of the object compared to regular polygon, 

measured by the ratio of major and minor axis of ellipse (e.g., square and 

rectangular building, road, urban green polygon, etc.). 

2 Compactness Object is separated based on the compactness of the object. 

3 Elliptical fit  Object is separated by comparing shape of the object with the elliptical shape 

(e.g., square building from urban green polygon etc.).  

4 Rectangular fit Object is separated by comparing the fitness of the object with the rectangular 

shape (e.g., square building from rectangular building etc.). 

5 Roundness  Object is separated by comparing how similar the object is to an ellipse which 

is calculated based by the radius of enclosed and enclosing ellipse (e.g., 

different polygons of waterbody, urban green, vacant land etc.).  

6 Main direction Object is separated by comparing directional change which is measured by two 

larger eigenvalues of spatial distribution of object (e.g., road from river etc.). 

7 Shape Index Object is separated based on the different shapes (e.g., square and rectangular 

building, road, urban green, etc.). 

8 Border Index  Object is separated based on the jaggedness of the object which is calculated 

by using rectangular approximation (e.g., square building from rectangular 

building, road etc.). 

9 Radius of largest 

enclosed ellipse 

Object is separated by comparing how object is similar to an ellipse (e.g., 

different polygons of waterbody, urban green, vacant land etc.). 

10 Radius of smallest 

enclosing ellipse 

Object is separated by comparing how much the shape of the object is similar 

to an ellipse (e.g., different polygons of waterbody, urban green, vacant land 

etc.). 

11 Border length   Object is separated based on the total length of the edges of the object shared 

with the edge of the other object (e.g., building, road, urban green etc.). 

12 Width  Object is separated based on the width which is calculated from length to 

width ratio of the object (e.g., road from the building). 

13 Length-width 

ratio 

Object is separated based on the length and width ratio (e.g., road from the 

building or square building from rectangular building). 

14 Number of pixels Number of pixels help to separate small object from the big object (e.g., small 

buildings from large buildings).  
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B5. Proposed urban land cover/use classification scheme  
 
 

Table B5.1. Proposed urban land cover/land use classification scheme 

Class 

id 

Urban Land 

cover  

Urban Land use  

Class 

id 

Types Descriptions 

1 Built-up 1 Residential This includes all types of formal and informal 

settlements used for living. Mixed and public and 

semi-public land uses are included in the residential 

land use because of their similar building and 

infrastructural characteristics. 

2 Commercial Used for business, trade and commercial activity. 

Large commercial area located in the city centre and 

close to highly populated area. It has large building 

size, and complex shape. 

3 Industrial Used for production, manufacturing, factory, 

warehousing etc. which is located close to rail line, 

and commercial area. 

2 Road 4 Transportation Used for transportation. It is linear shape, which 

includes rail, road, railway station and bus stops. 

3 Vegetation  5 Urban green It includes parks, trees, plantation and agriculture. 

4 Undeveloped 6 Vacant land It includes undeveloped land, area under 

construction and cemetery etc. 

5 Waterbody 7 Waterbody/ 

shadow 

Canal, ponds tanks, river etc. 

6 Shadow  Shades of different image objects (buildings/tress). 
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B6. Feature selection  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

C. Results and Discussions  
 

C1. Referenced land cover maps 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Referenced land cover of Tile1 

 

Referenced land cover of Tile2 

 

Built-up 

Building 

Road 

 

Vegetation 

 

Undeveloped land 

 

Waterbody 

 

Land cover classes 

 

Figure C1.1. Show referenced urban land cover maps, 2015 

 

Kernel matrix of input variables (K) Kernel matrix of output variables (L)   

Figure B6.1. Shows kernel matrices of input variables (K) and output variables (L) associated with HSIC=0.058 and 
best sigma=0.464 in this study. The best sigma is selected based on the maximum HSIC value which was evaluated 
using 10 different sequential sigma values that varies from 0.10 and 100 (using sigma<-10^seq(-1,2, len=10)).  
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C2. Extracted, aggregated and normalized image features 
 

Table C2.1. Extracted image features 

Sl.no Image 

features  

Methods   Image features  Number of 

features 

Sources  

1 Spectral  Mean  Mean of all spectral bands 08 Fused VHR 

image 

 

Mean brightness 01 

NDVI NDVI feature 01 

2 Textural  GLCM  GLCM (mean) 08 

GLCM (variance) 08 

GLCM (homogeneity) 08 

GLCM (contrast) 08 

GLCM (dissimilarity) 08 

GLCM (entropy) 08 

GLCM (second moment) 08 

GLCM (correlation) 08 

GLDV 

 

GLDV (ang.2 moment) 08 

GLDV(entropy) 08 

GLDV(mean) 08 

GLDV(contrast) 08 

LBP LBP feature 08 

MPPR MPPR feature 02 Panchromatic 

3 Geometric  Object  

level 

geometry  

Asymmetry 01 Fused VHR 

image 

 

Compactness 01 

Elliptical fit  01 

Rectangular fit 01 

Roundness  01 

Main direction 01 

Shape Index 01 

Boarder Index  01 

Radius of largest enclosed ellipse 01 

Radius of smallest enclosed 

ellipse 

01 

Border length   01 

Width  01 

Length-width ratio 01 

Number of pixels 01 

4 

 

Contextual  Spatial 

metrics  

Path density  01 Urban Land 

cover  

(built-up) 

Aggregation index  01 

Fractal dimension  01 

Cohesion  01 

Largest patch Index 01 

Total features  135 - 
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C3. Training and test samples  
 

C3.1. Training and test samples for SVM-RBF-OBIA-based urban land cover 
classification 

 
Table C3.1.1. Training and test samples at MRS level 

MRS level Total 
segments 

Total training 
samples  

Splitting   training samples into 
60:40 

Test samples  
whole tile 

Training set Validation set 
Level 1 3171 

200 120 80 6255001 Level 2 1100 
Level 3 508 

 

Table C3.1.2. Training and test samples for SVM-RBF-OBIA-based urban land cover classification (MRS level 1) 

Class 
ID 

Training land 
cover classes 

Tile 1  Tile 2 

Number of 
training objects 

Number of 
test pixel 

Number of 
training objects 

Number of test 
pixel 

1 Building  75 3659387 75 3307488 
2 Road  20 369708 20 344350 
3 Vegetation  46 1129351 46 1625177 
4 Undeveloped land 23 895471 23 826730 
5 Water body 10 99406 10 85615 
6 Shadow  26 101678 26 65641 
Total  200 6255001 200 6255001 
 

C3.2. Training and test samples for SVM-RBF-OBIA-based urban land use 
classification  

Table C3.2.1. Training and test samples at MRS level 

MRS level Total 
segments 

Total training 
samples  

Splitting   training samples into 
60:40 

Test pixels  
whole tile 

Training set Validation set 
Level 1 3171 

200 120 80 6255001 Level 2 1100 
Level 3 508 

 

Table C3.2.2. Training and test samples for SVM-RBF-OBIA-based urban land use classification (MRS level 2) 

Class 
ID 

Training land use 
classes 

Tile1  
Number of training objects Number of test pixels 

1 Residential  58 2717828 
2 Commercial  15 184944 
3 Industrial  40 845305 
4 Transportation  16 359030 
5 Urban green 35 1099990 
6 Vacant land 13 873329 
7 Water body/Shadow  23 174575 
Total  200 6255001 
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Table C3.2.3. Training and test samples for SVM-RBF-OBIA-based urban land use classification (MRS level 3) 

Class 
ID 

Training land use 
classes 

Tile1  
Number of training objects Number of test pixels 

1 Residential  66 2717828 
2 Commercial  14 184944 
3 Industrial  50 845305 
4 Transportation  12 359030 
5 Urban green 26 1099990 
6 Vacant land 13 873329 
7 Water body/Shadow  19 174575 
Total  200 6255001 
 
 

C3.3. Training and test samples for SVM-RBF-BBIA-based urban land use 
classification  
 

Table C3.3.1. Training and test samples at block level 

Blocks size Total 
blocks 

Total training 
samples  

Splitting   training samples into 
60:40 

Test pixels  
whole tile 

Training set Validation set 
29 × 29 7396 

200 120 80 6255001 43 × 43 3364 
59 × 59 1764 

 

Table C3.3.2. Training and test samples for SVM-RBF-BBIA-based urban land use classification (block 43×43) 

Class 
ID 

Training land use 
classes 

Tile1 

Number of training blocks  Number of test pixels 
1 Residential  60 2717828 
2 Commercial  15 184944 
3 Industrial  35 845305 
4 Transportation  22 359030 
5 Urban green 36 1099990 
6 Vacant land 20 873329 
7 Water body/shadow 12 174575 
Total  200 6255001 
 

Table C3.3.3. Training and test samples for SVM-RBF-BBIA-based urban land use classification (block 59×59) 

Class 
ID 

Training land use 
classes 

Tile1 

Number of training blocks Number of test pixels 

1 Residential  70 2717828 
2 Commercial  15 184944 
3 Industrial  38 845305 
4 Transportation  21 359030 
5 Urban green 31 1099990 
6 Vacant land 20 873329 
7 Water body/shadow 05 174575 
Total  200 6255001 
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C4. Features selection   
 
 

Table C4.1. Features selection for SVM-RBF-OBIA-based urban land cover classification using SFS-HSIC 

Best features  10 15 20 25 120 
Name of features 10, 90, 4, 5, 

6, 9, 3, 7, 8, 
2 

10, 90, 109, 
68, 4, 5, 67, 3, 
6, 9, 82, 2, 58, 

84, 1 

10, 107, 90, 
68, 4, 5, 67, 6, 
3, 9, 7, 84, 8, 
2, 44, 92, 43, 

91, 83, 82 

10, 90, 109, 4, 
5, 68, 6, 67, 9, 
3, 7, 8, 2, 84, 
1, 82, 43, 91, 
83, 44, 92, 31, 

20, 36, 100 

1 to 120 

Best sigma 1.29155 1.29155 1.29155 1.29155 - 
HSIC  0.03345184 0.03670414 0.03734782 0.03969606 - 

Over all accuracy  76.81 76.00 76.84 77.98 76.11 
 
 
 

Table C4.2. Features selection for SVM-RBF-OBIA-based urban land use classification using SFS-HSIC 

MRS 
Level 

Best features  10 15 20 25 125 

Level 1 Name of 
features 

124, 125, 
122, 10, 8, 7, 
6, 123, 5, 4 

124, 125, 
122, 10, 

123, 90, 84, 
8, 83, 4, 7, 
5, 6, 3, 67 

124, 125, 122, 
10, 8, 84, 7, 
123, 6, 5, 4, 

83, 67, 9, 3, 2, 
87, 1, 86, 56 

- 1 to 125 

HSIC  0.05350289 0.05858687 0.05503954 - - 

Best sigma 0.4641589 0.4641589 0.4641589 - - 

Over all 
accuracy  

68.09 69.53 68.94  61.59 

Level 2 Name of 
features 

124, 125, 
122, 10, 123, 
90, 3, 4, 5, 6 

124, 125, 
122, 10, 

123, 90, 3, 
84, 4, 5, 6, 
9, 82, 83, 8 

124, 125, 122, 
10, 123, 90, 
107, 3, 4, 82, 
5, 84, 119, 6, 
83, 9, 2, 1, 67, 

7 

124, 125, 122, 
10, 90, 123, 

82, 3, 4, 84, 5, 
83, 6, 9, 2, 76, 
79, 1, 7, 80, 8, 
119, 78, 75, 87 

1 to 125 

HSIC  0.05497107 0.04976257 0.04873324 0.04559597 - 
Best sigma 0.4641589 0.4641589 0.4641589 0.4641589 - 
Over all 
accuracy  

65.75 65.25 68.10 67.61 66.11 

 
Level 3 

Name of 
features 

122, 125, 
124, 10, 109, 
110, 58, 107, 

90, 113 

125, 122, 
124, 107, 
10, 110, 
109, 113, 
84, 3, 90, 
76, 4, 108, 

119 

24, 122, 125, 
10, 107, 109, 
110, 58, 114, 
90, 84, 108, 3, 
4, 83, 5, 113, 

82, 123, 6 

- 1 to 125 

HSIC  0.02967345 0.02559794 0.03132948 - - 
Best sigma 0.4641589 0.4641589 0.4641589 - - 
Over all 
accuracy  

66.15 68.67 65.68 - 67.91 
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Note: Name and sequence of the 125 features explained the table C4.1 and C4.2 

 
Name of the features  Sequence of the 

features 
Name of the features  Sequence of 

the features 
Meanband  1-8 Elliptical fit  109 
Mean brightness 9 Rectangular fit 110 
Mean NDVI 10 Roundness  111 
GLCM (mean) 11-18 Main direction 112 
GLCM (SD) 19-26 Shape Index 113 
GLCM (homogeneity) 27-34 Boarder Index  114 
GLCM (contrast) 35-42 Radius of largest enclosed ellipse 115 
GLCM (dissimilarity) 43-50 Radius of smallest enclosed ellipse 116 
GLCM (entropy) 51-58 Border length   117 
GLCM(Angular second moment) 59-66 Width  118 
GLCM (correlation) 67-74 Length-width ratio 119 
GLDV(Angular second moment) 75-82 Number of pixels 120 
GLDV(entropy) 83-90 Path density  121 
GLDV(mean) 91-98 Aggregation index  122 
GLDV(contrast) 99-106 Fractal dimension  123 
Asymmetry 107 Cohesion  124 
Compactness 107 Largest patch Index 125 
 
 

Table C4.3. Features selection for SVM-RBF-BBIA-based urban land use classification using SFS-HSIC 

Blocks  Best features  10 15 20 25 121 
29 ×29 Name of features 120, 118, 

121, 3, 4, 
10, 5, 1, 2, 

9 

118, 120, 
121, 3, 4, 10, 
5, 1, 2, 9, 6, 
58, 7, 89, 8 

118, 120, 
121, 10, 3, 4, 
1, 58, 5, 2, 
89, 9, 6, 8, 

86, 7, 85, 50, 
91, 87 

118, 120, 121, 4, 
5, 3, 10, 1, 2, 9, 
6, 58, 116, 7, 
115, 8, 89, 49, 
92, 86, 85, 47, 

94, 46, 95 

1 to 121 

HSIC  0.06161469 0.05742712 0.0538051 0.06721506 - 

Best sigma 0.4641589 0.4641589 0.4641589 0.4641589 - 

Over all accuracy  67.49 67.70 63.28 63.34 62.43 
43 ×43 Name of features 118, 121, 

120, 5, 4, 
58, 3, 10, 
115, 116 

118, 120, 
121, 5, 10, 4, 
115, 58, 116, 
3, 2, 9, 1, 6, 

89 

118, 120, 
121, 10, 116, 
5, 115, 58, 4, 
3, 2, 1, 89, 9, 
6, 8, 52, 7, 

75, 51 

118, 120, 121, 
10, 5, 58, 115, 

116, 4, 3, 2, 1, 9, 
8, 7, 6, 89, 51, 
56, 75, 66, 26, 

53, 87, 52 

1 to 121 

HSIC  0.04928167 0.05237353 0.05753959 0.04798417 - 
Best sigma 0.4641589 0.4641589 0.4641589 0.4641589 - 
Over all accuracy  63.10 64.54 65.97 64.71 61.21 

59 ×59 Name of features 118, 116, 
115, 120, 

58, 10, 5, 3, 
4, 2 

118, 120, 
116, 115, 58, 
3, 2, 4, 5, 10, 

1, 9, 89,  
6, 54 

118, 116, 
115, 121, 58, 
3, 2, 4, 5, 1, 
10, 54, 120, 
9, 6, 53, 89, 

7, 8, 55 

118, 116, 115, 
120, 3, 58, 5, 4, 
10, 2, 1, 9, 54, 6, 
52, 89, 7, 8, 53, 
90, 84, 83, 80, 

66, 29 

1 to 121 

HSIC  0.04997003 0.05041109 0.04922437 0.04808981 - 
Best sigma 0.4641589 0.4641589 0.4641589 0.4641589 - 
Over all accuracy  60.78 58.53 58.31 58.07 55.27 
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Note: Name and sequence of the 121 features explained the table C4.3 

 
Name of the features  Sequence of the 

features  
Name of the features  Sequence of 

the features 
Meanband  1-8 GLDV(Angular second moment) 75-82 

Mean brightness 9 GLDV(entropy) 83-90 

Mean NDVI 10 GLDV(mean) 91-98 

GLCM (mean) 11-18 GLDV(contrast) 99-106 

GLCM (SD) 19-26 LBP feature 107-114 

GLCM (homogeneity) 27-34 MPPR feature 115-116 

GLCM (contrast) 35-42 Path density  117 

GLCM (dissimilarity) 43-50 Aggregation index  118 

GLCM (entropy) 51-58 Fractal dimension  119 

GLCM(Angular second moment) 59-66 Cohesion  120 

GLCM (correlation) 67-74 Largest patch Index 121 

 
 

C5. Parameter tuning   
C5.1. Parameter tuning for SVM-RBF   
 

Table C5.1.1. Best parameter for SVM-RBF-OBIA-based urban land cover classification 

SVM-RBF parameter   MRS level 1, best 25 features   

Name of features 10, 90, 109, 4, 5, 68, 6, 67, 9, 3, 7, 8, 2, 84, 1, 82, 43, 91, 83, 44, 92, 31, 20, 36, 100 

Best gamma 0.166810 

Best Cost 1000.00 

Over all accuracy  78.21 

 
Table C5.1.2. Experiment with size of training samples for SVM-RBF-OBIA-based urban land cover classification 

(tile1) 

Size of training samples Overall accuracy 

50 71.00 

100 75.16 

150 77.29 

200 78.21 

 
 

Table C5.1.3. Best parameter for SVM-RBF-OBIA-based urban land use classification 

SVM-RBF 
parameter   

MRS level 1 
best 15 features   

MRS level 2 
best 20 features 

MRS level 3 
best 15 features 

Name of features 124, 125, 122, 10, 123, 90, 84, 
8, 83, 4, 7, 5, 6, 3, 67 

124, 125, 122, 10, 123, 90, 
107, 3, 4, 82, 5, 84, 119, 6, 83, 

9, 2, 1, 67, 7 

125, 122, 124, 107, 10, 110, 
109, 113, 84, 3, 90, 76, 4, 108, 

119 

Best gamma 0.05994843 0.1668101 0.4641589 

Best Cost 1000 129.155 359.3814 

Over all accuracy  70.58 68.10 69.08 
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Table C5.1.4. Best parameter for SVM-RBF-BBIA-based urban land use classification 

Best features  Block 29 ×29  

best 15 features 

Block 43 × 43  

best 20 features 

Block 59 ×59  

best 10 features 

Name of features 118, 120, 121, 3, 4, 10, 5, 
1, 2, 9, 6, 58, 7, 89, 8 

118, 120, 121, 10, 116, 5, 115, 58, 4, 
3, 2, 1, 89, 9, 6, 8, 52, 7, 75, 51 

118, 116, 115, 120, 58, 10, 
5, 3, 4, 2 

Best gamma 1.29155 0.4641589 1.29155 

Best Cost 16.68101 16.68101 16.68101 

Over all accuracy  68.37 67.46 60.92 

 
C5.2. Parameter tuning for CNN  
 
C5.2.1. Tuning of learning and regularization parameters 
 
 

Table C5.2.1.1. Learning and regularization parameters 

Hyperparameters Value 
Batch size 10 

Maximum number of epoch, τ 1000 

Momentum, 𝑎 0.90 

Learning rate, ϵ 0.01, 0.001 

Weight decay, λ 0.01, 0.001, 0.0001 

Dropout rate, dr in (D1 & D2) (0, 0.5), (0.25, 0.5) (0.5, 0.5) 

 

Table C5.2.1.2. Fixed CNN configuration for selecting best learning and regularization parameters 

Hyperparameters Value 
Layers I-C1-A-P-D1—C2-A-P-D1—FC1-A-D2—O-S-CP 
Non-linearity (A=RELU) used in C1-2 and FC1 RELU 
Non-linearity (S= SoftMax) used in O SoftMax 
Width of FC 128 
Patch size 29  
Number of filters, K 8 
Size of filters 5 
Pooling size 2 
Note: I=input, C= convolutional layer, A =activation, P=max pooling, D=dropout, FC=fully connected 

layer, O=output, S= SoftMax, CP=class probability  
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Table C5.2.1.3. 6-fold cross-validation of learning and regularization parameters (training samples 1000) 

Experiment 
step 

K-fold Learning rate Weight decay Dropout, D1, D2  Overall 
accuracy (%) 

1 
1 

0.01 0.01 

(0, 0.5) 

42.9850 
2 0.01 0.001 47.9757 
3 0.01 0.0001 43.4501 
4 

2 
0.001 0.01 60.1607 

5 0.001 0.001 58.6014 
6 0.001 0.0001 54.7037 
7 

3 
0.01 0.01 

(0.25, 0.5) 

50.2367 
8 0.01 0.001 50.2389 
9 0.01 0.0001 52.1664 
10 

4 
0.001 0.01 65.1242 

11 0.001 0.001 61.6627 
12 0.001 0.0001 60.9216 
13 

5 
0.01 0.01 

(0.5, 0.5) 

30.5377 
14 0.01 0.001 22.5377 
15 0.01 0.0001 43.4505 
16 

6 
0.001 0.01 62.1612 

17 0.001 0.001 57.3533 
18 0.001 0.0001 59.2925 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure C5.2.1.1. Shows objective loss and top layer error decreasing with increasing of epoch 
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C5.2.2. Tuning of CNN hyperparameters 
 
Experiment on number of filters 
 

Table C5.2.2.1. Best learning and regularization parameters 

Hyperparameters Value 
Batch size 10 
Maximum number of epoch, τ 1000 
Momentum, 𝑎 0.90 
Learning rate, ϵ 0.001 
Weight decay, λ 0.01 
Dropout rate, dr in (D1 & D2) (0.25, 0.5) 
 

Table C5.2.2.2. Number of filters experiment: CNN configuration  

Hyperparameters Value 
Layers I-C1-A-P-D1—C2-A-P-D1—FC1-A-D2—O-S-CP 
Non-linearity (A=RELU) used in C1-2 and FC1 RELU 
Non-linearity (S= SoftMax) used in O SoftMax 
Width of FC 128 
Patch size 29  
Number of filters, K 8,16,32,64 
Size of filters 5 
Pooling size 2 
Note: I=input, C= convolutional layer, A =activation, P=max pooling, D=dropout, FC=fully connected 

layer, O=output, S= SoftMax, CP=class probability  

 

Table C5.2.2.3. Overall accuracy varied with the number of filters 

Number of filters Overall accuracy (%) 
8 65.12 
16 61.30 
32 61.82 
64 62.55 

 

Experiment on filter size 
 

Table C5.2.2.4. Best learning and regularization parameters 

Hyperparameters Value 
Batch size 10 
Maximum number of epoch, τ 1000 
Momentum, 𝑎 0.90 
Learning rate, ϵ 0.001 
Weight decay, λ 0.01 
Dropout rate, dr in (D1 & D2) (0.25, 0.5) 
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Table C5.2.2.5. Filter size experiment: CNN configuration  

Hyperparameters Value 
Layers I-C1-A-P-D1—C2-A-P-D1—FC1-A-D2—O-S-CP 
Non-linearity (A=RELU) used in C1-2 and FC1 RELU 
Non-linearity (S= SoftMax) used in O SoftMax 
Width of FC 128 
Patch size 29  
Number of filters, K 8 
Size of filters 5,15, 25 
Pooling size 2 
Note: I=input, C= convolutional layer, A =activation, P=max pooling, D=dropout, FC=fully connected 

layer, O=output, S= SoftMax, CP=class probability  

 

Table C5.2.2.6. Overall accuracy varied with the number of filters 

Size of filters Overall accuracy (%) 
5 65.12 
15 61.86 
25 62.58 

 

Experiment on different convolutional layers with fixed FC=1 
 

Table C5.2.2.7. Best learning and regularization parameters 

Hyperparameters Value 
Batch size 10 
Maximum number of epoch, τ 1000 
Momentum, 𝑎 0.90 
Learning rate, ϵ 0.001 
Weight decay, λ 0.01 
Dropout rate, dr in (D1 & D2) (0.25, 0.5) 

 

Table C5.2.2.8. Experiment on Cn layers with FC1: CNN configuration  

Hyperparameters Value 
Layers I-Cn-A-P-D1—FC1-A-D2—O-S-CP 
Non-linearity (A=RELU) used in C1-2 and FC1 RELU 
Non-linearity (S= SoftMax) used in O SoftMax 
Width of FC 128 
Patch size 29  
Number of filters, K 8 
Size of filters 5 
Pooling size 2 
Note: I=input, C=convolutional layer, A =activation, P=max pooling, D=dropout, FC=fully connected 

layer, O=output, S= SoftMax, CP=class probability  

Table C5.2.2.9. Overall accuracy varied with the number convolutional layers (Cn) 

Convolutional layers Overall accuracy (%) 
2 65.12 
3 43.45 
4 43.45 
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Experiment on different fully-connected layers with fixed Convolutional 
layers=1 

Table C5.2.2.10. Best learning and regularization parameters 

Hyperparameters Value 
Batch size 10 
Maximum number of epoch, τ 1000 
Momentum, 𝑎 0.90 
Learning rate, ϵ 0.001 
Weight decay, λ 0.01 
Dropout rate, dr in (D1 & D2) (0.25, 0.5) 
 

Table C5.2.2.11. Experiment on FCn layers with C1: CNN configuration  

Hyperparameters Value 
Layers I-C1-A-P-D1—C2-A-P-D1—FCn-A-D2—O-S-CP 
Non-linearity (A=RELU) used in C1-2 and FC1 RELU 
Non-linearity (S= SoftMax) used in O SoftMax 
Width of FC 128 
Patch size 29  
Number of filters, K 8 
Size of filters 5 
Pooling size 2 
Note: I=input, C=convolutional layer, A =activation, P=max pooling, D=dropout, FC=fully connected 

layer, O=output, S= SoftMax, CP=class probability  

 

Table C5.2.2.12. Overall accuracy varied with the number fully-connected layers (FCn) 

FC layers Overall accuracy (%) 
1 65.12 
2 43.45 
3 43.45 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

88 

C6. SVM-RBF-OBIA-based Urban land cover classification  
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Figure C6.2. Shows SVM-RBF-OBIA-based classified urban land cover map of tile two 
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Figure C6.1. Shows SVM-RBF-OBIA-based classified urban land cover map of tile one 
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Table C6.1. Confusion matrix of SVM-RBF-OBIA-based urban land cover classification (tile one) 

Land cover classes Referenced 
Building Road Vegetation Undeveloped 

land 
Water 
body 

Shadow UA % 

P
re

d
ic

te
d

 

          

Building 3046055 58623 61721 188914 9103 18503 90.04 

Road 86856 245789 27624 28965 1900 6393 61.83 

Urban green 139098 14403 938103 133448 3353 2892 76.19 

Undeveloped land 222692 32797 78084 514625 2471 1167 60.41 

Water body 8317 2470 3124 5872 79519 4851 76.35 

Shadow 156369 15626 20695 23647 3060 67872 23.63 

PA % 83.24 66.48 83.07 57.47 80.00 0.66.75  

Over all accuracy =78.21% 

Table C6.2. Confusion matrix of SVM-RBF-OBIA-based urban land cover classification (tile two) 

Land cover classes Referenced 
Building Road Vegetation Undeveloped 

land 
Water body Shadow UA % 

P
re

d
ic

te
d

 

          

Building 2776617 60139 135375 366442 6253 7935 82.82 

Road 30081 241080 25434 19563 12165 24606 68.31 

Urban green 86346 9259 1273112 49757 9146 36 89.17 

Undeveloped land 126466 5078 76182 356275 1528 38 62.99 

Water body 109235 19999 107787 15305 49640 5976 16.12 

Shadow 178743 8795 7287 19388 6883 27050 10.90 

PA % 83.95 70.01 78.34 43.09 57.98 41.21  

Over all accuracy =75.52% 

 

C7. SVM-RBF-OBIA-based Urban land use classification  
 

Sampled domain 

 
Table C7.1. Confusion matrix of SVM-RBF-OBIA-based urban land use classification (tile one) 

Land use classes Referenced 
Residential Comm

ercial 
Industrial Transport

ation 
Urban 
green 

Vacant land Water 
body/ 

shadow 

UA % 

P
re

d
ic

te
d

 

          

Residential 2064898 84444 220880 56649 31166 109510 14480 79.97 

Commercial 8071 31256 3960 7252 3468 25152 152 39.41 

Industrial 107380 18975 511356 726 6744 18107 844 77.00 

Transportation 64611 12730 30885 227042 31279 56683 1179 53.50 

Urban green 125381 2453 27076 16553 929355 120139 5666 75.77 

Vacant land 194488 32095 38969 35589 70099 516325 2364 58.02 

Waterbody/ 
shadow 152999 2991 12179 15219 27879 27413 149890 38.57 

PA % 75.98 16.90 60.49 63.24 84.49 59.12 85.86  

Over all accuracy =70.83% and kappa= 0.6089 
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Unsampled domain 
 

Table C7.2. Confusion matrix of SVM-RBF-OBIA-based urban land use classification (tile two) 

Land cover classes Referenced 

Residential Comm

ercial 

Industrial Transport

ation 

Urban 

green 

Vacant land Water 

body/ 

shadow 

UA % 

P
re

d
ic

te
d

 

          
Residential 1764285 184770 257582 44468 65112 312700 5274 66.98 

Commercial 111213 72283 105839 13074 60372 40986 10034 17.47 

Industrial 60344 121845 43580 8013 1082 26827 1351 16.57 

Transportation 80949 17649 51524 255846 44001 54877 51295 46.00 

Urban green 126713 10887 12101 9283 1265546 43045 12098 85.53 

Vacant land 122278 23618 20221 2081 120721 311475 3410 51.59 

Waterbody/ 

shadow 170452 4028 9436 8195 31886 21643 58709 19.29 

PA % 72.42 16.61 8.71 75.04 79.66 38.38 41.29  

Over all accuracy =60.30% and kappa=0.4703 

 
C8. SVM-RBF-BBIA-based Urban land use classification 
 Sampled domain 
 

Table C8.1. Confusion matrix of SVM-RBF-BBIA-based urban land use classification (tile one) 

Land cover classes Referenced 
Resident

ial 
Commer

cial 
Industrial Transportation Urban 

green 
Vacant 

land 
Water 
body/ 

shadow 

UA % 

P
re

d
ic

te
d

 

          

Residential 2382473 96301 327387 80733 115331 249111 58256 71.99 

Commercial 20679 46573 15635 885 29940 28061 735 32.68 

Industrial 83067 20064 437063 64 4521 12672 1181 78.24 

Transportation 125190 9995 34933 220491 89328 84030 43326 36.31 

Urban green 33601 2755 12003 16664 709502 64919 6347 83.89 

Vacant land 66176 9232 16344 23314 123598 427187 2604 63.91 

Waterbody/ 
shadow 6642 24 1940 16879 27770 7349 62126 50.62 

PA % 87.66 25.18 51.70 61.41 64.50 48.91 35.59  

Over all accuracy =68.51% and kappa=0.5581 
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Unsampled domain 
 

Table C8.2. Confusion matrix of SVM-RBF-BBIA-based urban land use classification (tile two) 

Land cover classes Referenced 

Residenti
al 

Commer
cial 

Industrial Transportation Urban 
green 

Vacant 
land 

Water 
body/ 

shadow 

UA % 

P
re

d
ic

te
d

 

          
Residential 2043710 315612 351833 100746 702214 534894 24602 50.17 

Commercial 8611 25706 2605 870 20571 9765 7852 33.83 

Industrial 9198 16980 13791 1161 796 7858 67 27.66 

Transportation 88067 16031 22752 187270 407581 60614 48075 22.55 

Urban green 7239 622 1230 7 293836 4618 6057 93.70 

Vacant land 277780 59262 107698 4947 139827 189551 8954 24.05 

Waterbody/ 
shadow 1629 867 374 45959 23895 4253 46564 37.69 

PA % 83.89 5.91 2.76 54.92 18.50 23.36 32.75  

Over all accuracy = 44.77% and kappa=0.2200 

 

 

C9. CNN-BBIA-based Urban land use classification  

Sampled domain 
 

Table C9.1. Confusion matrix of CNN-BBIA-based urban land use classification (tile one) 

Land cover classes Referenced 

Resident
ial 

Commer
cial 

Industrial Transportation Urban 
green 

Vacant 
land 

Water 
body/ 

shadow 

UA % 

P
re

d
ic

te
d

 

          

Residential 1998924 84400 315337 55140 70558 192813 45730 72.35 
Commercial 117826 51021 41308 7779 8030 25468 1313 20.19 

Industrial 118322 18711 409434 1709 381 4254 3138 73.65 

Transportation 113948 5186 25909 224863 29493 45181 59772 44.58 

Urban green 31187 1174 4368 18971 809760 80260 4812 85.19 

Vacant land 335339 24431 48599 24930 167853 520572 862 46.37 

Waterbody/ 
shadow 

2282 21 350 25638 13915 4781 58948 55.65 

PA % 73.55 27.59 48.44 62.63 73.62 59.61 33.77  

Over all accuracy =65.12% and kappa=0.5274 
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Unsampled domain 
 

Table C9.2. Confusion matrix of CNN-BBIA-based urban land use classification (tile two) 

Land cover classes Referenced 

Residenti

al 

Commer

cial 

Industrial Transportation Urban 

green 

Vacant 

land 

Water 

body/ 

shadow 

UA % 

P
re

d
ic

te
d

 

          

Residential 1956578 277392 253054 91809 140711 434625 26976 61.51 

Commercial 79931 20210 25939 3339 75720 83219 1295 6.98 

Industrial 215319 111468 57753 7374 356 30043 1751 13.62 

Transportation 32510 5397 1787 226186 72890 16757 59511 54.50 

Urban green 1661 0 155 746 571591 1051 6196 98.31 

Vacant land 150059 20570 161534 4358 723117 245746 4161 18.77 

Waterbody/ 

shadow 176 43 61 7148 4335 112 42281 78.07 

PA % 80.31 4.65 11.54 66.34 35.98 30.28 29.74  

Over all accuracy =49.89% and kappa=0.3216 

B11. Performance measurement and evaluation 

Sampled domain 
 

Table C10.1. Performance of selected machine learning algorithms for urban land use classification (tile one) 

Land use 

classes 

SVM-RBF- OBIA SVM- RBF-BBIA CNN-BBIA 

Recall Precision F1-score Recall  Precision F1-score Recall  Precision F1-score 

Residen. 79.97 75.98 77.92 71.99 87.66 79.05 72.35 73.55 72.94 

Commer. 39.41 16.90 23.66 32.68 25.18 28.45 20.19 27.59 23.31 

Industri. 77.00 60.49 67.75 78.24 51.70 62.26 73.65 48.44 58.44 

Trans. 53.50 63.24 57.96 36.31 61.41 45.64 44.58 62.63 52.09 

Ur.green. 75.77 84.49 79.89 83.89 64.50 72.93 85.19 73.62 78.98 

Vac.land 58.02 59.12 58.56 63.91 48.91 55.41 46.37 59.61 52.16 

Water/ 

shadow 
38.57 85.86 53.23 50.62 35.59 41.79 

55.65 33.77 42.03 

Overall  60.32 63.73 59.85 59.66 53.57 55.08 56.85 54.17 54.28 
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Unsampled domain 
 

Table C10.2. Performance of selected machine learning algorithms for urban land use classification (tile two) 

Land use 

classes 

SVM-RBF-OBIA SVM- RBF-BBIA CNN-BBIA 

Recall Precision F1-score Recall Precision F1-score Recall Precision F1-score 

Residen. 66.98 72.42 69.59 50.17 83.89 62.79 61.51 80.31 69.66 

Commer. 17.47 16.61 17.03 33.83 5.91 10.06 6.98 4.65 5.58 

Industri. 16.57 8.71 11.42 27.66 2.76 5.01 13.62 11.54 12.50 

Trans. 46.00 75.04 57.04 22.55 54.92 31.98 54.50 66.34 59.84 

Ur.green. 85.53 79.66 82.49 93.70 18.50 30.89 98.31 35.98 52.68 

Vac.land 51.59 38.38 44.01 24.05 23.36 23.70 18.77 30.28 23.17 

Water/ 

shadow 
19.29 41.29 26.30 37.69 32.75 35.05 78.07 29.74 43.07 

 43.35 47.44 43.98 41.38 31.73 28.50 47.39 36.98 38.07 
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Figure C10.1. Compares quality of classified map with referenced land use map (tile one sampled domain) 
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Figure C10.2. Compares quality of proposed land use map with local land use classification scheme map 
 (tile one sampled domain) 
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