

Design and Orchestration of Web

Processing Services as Service

Chains

NZABANDORA APHRODIS

February, 2016

SUPERVISORS:

Dr. J.M. Morales

Dr. Ir. R.L.G. Lemmens

i

Thesis submitted to the Faculty of Geo-Information Science and Earth
Observation of the University of Twente in partial fulfilment of the
requirements for the degree of Master of Science in Geo-information Science
and Earth Observation.
Specialization: Geo-Informatics

SUPERVISORS:
Dr. J.M. Morales
Dr. Ir. R.L.G. Lemmens

THESIS ASSESSMENT BOARD:
Chair: prof.dr. M.J. Kraak
External examiner: dr.ir. C.H.J. Lemmen; Kadaster
Supervisor: dr.J.M. Morales
Second supervisor: dr.ir. R.L.G. Lemmens

Design and Orchestration of Web

Processing Services as Service

Chains

NZABANDORA APHRODIS

Enschede, The Netherlands, February, 2016

ii

DISCLAIMER
This document describes work undertaken as part of a programme of study at the Faculty of Geo-Information Science and
Earth Observation of the University of Twente. All views and opinions expressed therein remain the sole responsibility of the
author and do not necessarily represent those of the Faculty.

iii

ABSTRACT

Currently, the standards and many technologies behind web services are being developed. It is now
possible to use distributed, self-contained, and modular applications in day-to-day work activities. GIS
applications are nowadays developing on a distributed architecture composed of independent and
specialized geo-services, designed to offer distributed functionality over the web environment. However, it
is necessary to move from monolithic, coarse-grained services to fully web applications capable of
processing more than one task at a time. Such applications can be assembled from individual web services
that are orchestrated according to user-defined requirements.

Moreover, an architectural design is needed to allow its combination for specifying one or more needs. In
this research, we investigated on how BPMN and geoprocessing services (WPS) can work together to
create workflow containing spatial service based organizational flowchart. We realize that for both
standard to work together an application programming interface (API) is needed. This application is
triggered when the workflow is being orchestrated and controls the communication between workflow
and the remote services. This application also extracts the information from the tasks in the workflow and
construct the appropriate request to instantiate the services. Therefore, An API was developed with
required functions to identify BPMN tasks that represent geo-services activity in the workflow, within
those functions API is able to read geo-service tasks properties in workflow and make appropriate service
call through a developed python script. The order that the services are called is based on sequences of
activities in the workflow.

The external python script defines a standard way of sending WPS execute request based on OGC
standard. It takes parameters from API and sends WPS execute request to Geo-server which was used as
WPS implementation server in this research. BPMN was used to describe the sequence flow of activities
and their execution order at high-level. In addition, API describes the low-level description of services
such service call based on sequence and execution order as it is in BPMN workflow and organizational
flowchart. This method was tested with a proof-of-concept where an organizational workflow of the
municipality was modelled with BPMN and the sequence of geo-tasks in workflow were chained based on
our proposed approach. In the end, the user is able to visualize the result combining the involved services
on the web page.

Keywords: BPMN, Web service, service chain, orchestration, web processing services (WPS), API, and
process engine.

iv

ACKNOWLEDGEMENTS

This is a great opportunity to express my deep and sincere gratitude to my first supervisor Dr. J.M.
Morales for his supervision, unlimited time for constructive discussion and guidance throughout this
research period. I would also like to thank my second supervisor Dr. Ir. R.L.G. Lemmens for sharing his
idea with me, his support and suggestions during my research work
I would like to thank the government of Rwanda throughout the ministry of natural resources and
Rwanda Natural resources authority (RNRA)/Land and Mapping department (LMD) for their financial
support offered to me to pursue my Master of Science in Geo-Information Science and Earth
Observation in the Netherlands.
Special thanks to Dr. Emmanuel Nkurunziza Director General of RNRA and Eng. Sagashya former
Deputy Director General for LMD for their encouragement during my study
Special thanks to my GFM classmates and all friends for their friendship and support throughout this
study. Many thanks to my family for their encouragement and moral support. To my mommy brothers
and sister.
Thanks also to all Rwandan community in ITC, my friend Jean Paul Ngarambe, Olivier Nzamuye for their
encouragement and moral support during my time stay in Netherlands.
Special Thanks to my Girlfriend Justine Mukarubuga for your love and encouragement without
considering the distance between us.
Above all, many thanks to my God for everything

v

TABLE OF CONTENTS

1. INTRODUCTION ... 1

1.1 Motivation and Problem Statement ... 1
1.2 Research identification ... 2
1.3 Method adopted .. 3
1.4 Structure of the Thesis ... 4

2. WEB SERVICE ARCHITECTURE AND WEB SERVICE ORCHESTRATION 5
2.1 Introduction ... 5
2.2 Service Oriented Architecture (SOA) .. 5
2.3 Web Service and Geo-Service ... 6
2.4 Web Processing Service (WPS) .. 10
2.5 Web Service Orchestration ... 13
2.6 Business Process Management Notation (BPMN)... 14
2.7 Summary .. 16

3. ANALYSING REQUIREMENT OF CHAINING WEB PROCESSING SERVICES 17
3.1 Introduction .. 17
3.2 Web Service Orchestration Style ... 17
3.3 Moving from high-level orchestration to low-level service implementation details 19
3.4 Procedures of Service Chaining with BPMN .. 20
3.5 Summary .. 21

4. CHAINING WPS PROCESSES WITH BPMN .. 23
4.1 Introduction .. 23
4.2 Process Modelling with BPMN ... 23
4.3 Extending BPMN Functionality .. 24
4.4 Components of new proposed method ... 26
4.5 Summary .. 32

5 IMPLEMENTATION OF WPS ORCHESTRATION METHOD .. 33
5.1 Introduction .. 33
5.2 System prototype Functionality ... 33
5.3 Summary .. 47

6 DISCUSSION, CONCLUSION, AND RECOMMENDATION .. 49
6.1 Introduction .. 49
6.2 Discussion ... 49
6.3 Conclusion .. 51
6.4 Recommendation ... 51

LIST OF REFERENCES ... 52

vi

LIST OF FIGURES

Figure 2.1: SOA Publish-Find-Bind paradigm ... 5
Figure 2.2: Web Service Communication (GIS HYDRO, 2009) .. 7
Figure 2.3: Synchronous service calls ... 8
Figure 2.4: Sequence diagram of Asynchronous Service invocation... 8
Figure 2.5: Common BPMN elements used throughout this research (Object Management Group et al.,
2011) .. 15
Figure 3.1: Example modelling buffer WPS operation with BPMN .. 20
Figure 4.1: Example of complex question that users may have ... 23
Figure 4.2: Method for extending BPMN to chain geo-processes services ... 25
Figure 4.3: The main components showing how BPMN can be extended to handle WPS processes 26
Figure 4.4: Workflow showing how a task service can be used in a different way in workflow 27
Figure 4.5: Sequence Diagram showing the interaction of components involved in WPS chaining with
BPMN ... 30
Figure 4.6: Flowchart showing the execution steps of BPM diagram, API and python script 31
Figure 5.1: Organizational workflow of the activities in the office of planner represented as flowchart 34
Figure 5.2: BPMN Process model for land use planning model. .. 35
Figure 5.3: Create a web entry on start event to initiate workflow ... 36
Figure 5.4: Example of how Web entry is linked to dynaForm in workflow .. 36
Figure 5.5: Landuse planning workflow parameter inputs ... 37
Figure 5.6: Sequence diagram showing the execution order of WPS services .. 41
Figure 5.7: The status of task in BPMN diagram during the model execution ... 43
Figure 5.8: The status of task in BPMN diagram at the end model execution ... 44
Figure 5.9: Buffered Enschede boundary and Enschede urban area .. 45
Figure 5.10: Forest that intersects the boundary of Enschede and buffered Forest .. 45
Figure 5.11: Final Map showing part of urban area affected by expansion of forest 46

vii

LIST OF TABLES

Table 2.1: Example of GetCapabilities Request .. 11
Table 2.2: An example of a DescribeProcess request via HTTP GET ... 11
Table 2.3: An example of a DescribeProcess request via HTTP POST ... 12
Table 2.4: An example of an Execute request via HTTP GET .. 12
Table 4.1: Technology, Tool and programming language used .. 32

viii

LIST OF ABBREVIATIONS

API: Application Programming Interface
BPEL: Business Process Execution Language
BPM: Business Process Management
BPMN: Business Process Management and Notation
BPMS: Business Process Management Software

CGI: Common Graphical Interface
CSS: Cascading Style Sheet
GI: Geographic Information
GIS: Geographic Information System
GML: Geographic Markup Language
HTML: Hypertext Transfer Protocol

HTTP: Hyper-Text Transfer Protocol
ISO: International Organization for Standardization
KVP: Key-Value-Pair
OGC: Open Geospatial Consortium

OWS: OGC Web Service
REST: Representational State Transfer
SDI: Spatial Data Infrastructure
SOA: Service-Oriented Architecture
SOAP: Simple Object Access Protocol
UDDI: Universal Description Discovery and Integration
URL: Uniform Resource Locator
W3C: World Wide Web Consortium
WCS: Web Coverage Service
WFS: Web Feature Services
WFS-T: Transaction Web Feature Service
WMS: Web Map Service
WMTS: Web Map Tile Service
WPS: Web Processing Services
WS: Web Service
WSDL: Web Service Description Language
WWW: World Wide Web
XML: Extensible Markup Language
XPDL: XML Process Definition Language

DESIGN AND ORCHESTRATION OF WEB PROCESSING SERVICES AS SERVICE CHAINS

1

1. INTRODUCTION

1.1 Motivation and Problem Statement

Currently, the standards and many technologies behind web services are being developed. It is now
possible to use distributed, self-contained, and modular applications in day-to-day work activities.
Geographic information applications are nowadays developing on a distributed architecture composed of
independent and specialized geo-services, designed to offer distributed functionality over the web
environment. However, it is necessary to move from monolithic, coarse-grained services to fully web
applications capable of processing more than one task at a time. Such applications can be assembled from
individual web services that are orchestrated according to user-defined requirements.

In order to deal with spatial questions, the geospatial information system has been used to extract spatial
information from the geospatial database(s). However, every system has its own proprietary format, GIS
does not seem like open and interoperable. Due to the advancement of the computing systems and
innovation in technologies such as Service Oriented Architecture (SOA), GIS has been changed from
stand-alone systems to a service based model, and its functionality can be consumed as service over the
web.

The key aspect of SOA is service orchestration, Service orchestration is the process of coordination and
arrangement of multiple services exposed as a single aggregate service for creating new application
requirements (Stollberg & Zipf, 2007). Therefore, when a single service cannot fulfil the requirement, the
combination of several services should be used to do the tasks. In geoprocessing solving the complex
problem requires chaining more than one service, whereby the output of one service is an input of
another service. However, the orchestration of services from different geospatial nodes requires dealing
with heterogeneity issues that are mainly related to syntactic and semantic interoperability.
The fast development of internet technology and computing systems has increased the need for spatial
information sharing and interoperability among heterogeneous spatial information systems over the web
environment. Therefore, the use of spatial data infrastructure (SDI) facilitates Geo-information user
community to access distributed data over the web environment(de By, Lemmens, & Morales, 2009).
Furthermore, in distributed geoprocessing web services play a key role in publishing and discovering geo-
information resources such as geospatial data and processing tools over the web (Mukherjee & Ghosh,
2010). For this purpose, Open Geospatial Consortium (OGC) launched the Web Processing Service
(WPS) standard (OGC, Mueller, & Pross, 2015). This standard defines a standardized interface that
facilitates publishing, discovery and binding the geospatial processes. It also allows execution of geospatial
processes over the web using image data formats or data exchange standards such as XML/GML.
Moreover, WPS provides client access to pre-programmed computation models that operate on spatially
referenced data.

A geospatial process means computation, an algorithm or a model that is made available as a service
instance operating on spatially referenced raster or vector data (Meng, Xie, & Bian, 2010).
For that reason, in order to provide the complex functionality of web services to the users, a method and
methodology for designing and assembly of services are needed.
There are a number of possibilities to arrange web processes; this includes Business Process Execution
Language (BPEL) engines, which dependent on WSDL (Web Service Description Language), and BPMN
etc. Moreover, most of the web services are not described by WSDL. So, a software developer who uses
BPEL to orchestrate services needs to create a WSDL file for each individual participant services. In
addition to that, orchestrating services using BPEL approach is a problem because it is not capable of
transmitting binary data which is saved in response to Web Map Service GetMap or Web Coverage
Service GetCoverage Request (Stollberg & Zipf, 2007).

DESIGN AND ORCHESTRATION OF WEB PROCESSING SERVICES AS SERVICE CHAINS

2

Therefore, the goal of this research is to develop a method which will help users to use BPMN notation to
chain geo-processes based on organizational workflow. The proposed method insists on how BPMN and
OGC web processing services can understand each other to create a workflow containing geoprocessing
services.

1.2 Research identification

1.2.1 Research objectives

The main objective of this research project is to design an orchestration of web processing services as
service chains.
In addition, BPMN (Business Process Modelling Notation) standard is used for providing a standardized
and comprehensible graphical notation, to represent the geo-processes and their workflow at a high level.
In order to meet the main objective the following sub-objectives are addressed:

1. To determine the requirement for the creation of service chains.
2. To use standardized and readily understandable graphical notation, to represent the geo-processes

and their workflow in the process model.
3. To analyse and develop a mechanism to transform and orchestrate service chain into an

executable workflow (SDI application)

1.2.2 Research questions

1. What are the requirements to create a service chain? (sub-objective 1)
2. How to use standardized and readily understandable graphical notation like (BPMN), to represent

the geo-processes and their workflow? (sub-objective 2)
3. What are the procedures of chaining geo-services with BPMN? (sub-objective 2)
4. How can web service orchestration improve the exploitation of OGC services? (sub- objective 3)
5. How to build and orchestrate the service chain into an executable workflow? (sub- objective 3)

1.2.3 Innovation aimed at

The main objective of this thesis was to design a method to orchestrate workflow containing web
processing services (WPS) as service chain by using BPMN. As a proof-of-concept, a workflow for
showing the part of the urban area that can be affected by the expansion of forest in new Landuse
planning was implemented.
Based on organizational workflow all processes and their corresponding inputs and outputs was modelled
in BPMN notation using ProcessMaker modelling tool to define the sequence of activities and their
execution order in the workflow. The integrated execution of the services supporting task is done by
developed API and python script.

1.2.4 Related Work

Lots of research has been conducted, and several approaches for orchestrating and chaining distributed
services were proposed in order to facilitate access and visualization of spatial data.
However, the integration of web processing services in the service chain remains questionable due to the
complexity of service to the user based on their requirements. ISO have been proposed three types of
service chaining which deal with handling the complexity of services to the users.
Those types are: user-controlled, aggregate, and workflow managed. But also, the methodology for
chaining geo-services are needed for integration of both syntactic and semantic service description (Rob
Lemmens et al. 2007 and R. Lemmens et al. 2006). "The basis of orchestrating geoprocessing is to
facilitate the implementation of an expeditious application system that can handle spatial-analytic function
on the web" (Meng et al. 2010 and Kagoyire, 2009), BPEL as an orchestration language provide the ability
to call services, process responses and handle process variables, control structure and errors Yu et al.,
(2012) and Jordan & Alves, (2007a).

DESIGN AND ORCHESTRATION OF WEB PROCESSING SERVICES AS SERVICE CHAINS

3

For instance, Mukherjee, Mukherjee, & Ghosh, (2011) uses the service chaining approach along with
fuzzy engine to avail more accuracy in decision making. (Stollberg & Zipf, 2007 and Meng et al. 2010)
investigated on the possibility of using WPS orchestration to respond to the disaster management
questions. Campagna, (2014) investigate on orchestrating spatial planning process using the high-level
business process management. He used Bonita BPM as BPMS in orchestrating WPS services in Planning
Systems. In(Campagna, 2014), Bonita BPM was used to offer the possibilities of reusing the predefined
connectors for several systems and application. In addition, Bonita BPM allows the creation of new
connector from scratch that allows execution and the control of workflows based on BPMN standard.
Bonita Engine API’s allows also the creation of a custom connector that can interact with external
services such spatial web services for enabling them to be chained by the BPMS.

Campagna, Ivanov, & Massa, (2014) also investigate in the orchestration of services with Common
Gateway Interface (CGI) written in Python 2.7 for executing several geoprocessing services that are
available on the WPS server. Here, the orchestration and chaining services within BPMS has performed
trough custom connectors scripts developed for Bonita BPM community relying on python.
This research will be interested in orchestrating services with BPMN standard as an essential block of
BPM which was not natively developed for handling WPS services. A new method was developed and
tested with a concrete use case.

1.3 Method adopted

This section describes the approach used to address our research problem to attain the research
objectives. To accomplish this research work, the five core workflows of software development life-cycle
as explained in described in Teams, (2004): Requirement definition, analysis, design, implementation and
test.

1. Service orchestration requirement definition: During the requirement definition, we started by
studying literature related geoprocessing workflows, the functionalities of web services or geo-
services. In addition, Business Process management and notation (BPMN) was studied in deep as
a methodological and technical approach for geoprocessing workflow design and
implementations in this research. The current version of web processing services (WPS) will be
studied as well.

2. Chaining requirement analysis: during this step the functional and non-functional requirement for
orchestrating OGC service such WPS and WFS using BPMN standard were captured and
analysed for designing a geoprocessing workflow method using high-level business process
management tools.

3. Process Design: based on defined and analysed requirement the service chaining method using
BPMN notation was designed.

4. Method implementation: during the implementation, the designed chaining method during design
phase will be transformed into a generic method for chaining of services functionality.

5. Chaining method testing: During this step the implemented method will be tested by using the
application scenario as proof- of- concept.

As a proof-of-concept, an organizational workflow model was designed and analysed using BPMN
elements. BPMN service task was used as an artefact that represents processing-unit (geo-service) in the
process model at a high-level.
These artefacts must be defined in the sequence that the services they represent must be called.
Additional, API was developed to identify those geo-services in workflow and triggers the service call
through a developed python script.

DESIGN AND ORCHESTRATION OF WEB PROCESSING SERVICES AS SERVICE CHAINS

4

1.4 Structure of the Thesis

The thesis is structured into six chapters:
Chapter 1: Problem statement and motivation
This chapter provides the outline of the research; describe the research motivation, research problem,
research objectives, research questions, related works, and the method adopted.
Chapter2: Web service architecture and web Service Orchestration
In this chapter, the basic information on SOA, web services, OGC services specifically WPS specification,
Mode of communication and high-level business process modelling literature were reviewed for the
preparation of next chapter.
Chapter 3: Analysing Requirement of Extending BPMN to chain geoprocessing services (WPS)
In this chapter, the mechanism of putting service together and move them from a high-level (BPMN)
service orchestration description to an operational workflow was analysed as service chaining requirement
based on general literature from chapter 2. The result of this analysis was used to design chaining method
for WPS processing functionality with BPMN.
Chapter 4: Procedures of chaining WPS processes with BPMN
In this chapter, a method to model geo-processes with BPMN was designed. BPMN is used to model
processes at high-level and an API were developed to describe low-level service implementation details
such as service call by identifying BPMN tasks representing geo-service and make a call through a
developed python script.
Chapter 5: Implementation of WPS Orchestration Method
This chapter describes the implementation of system prototype; the method proposed in chapter 4 was
implemented within a chosen scenario as proof of concept.
Chapter 6: Discussion, Conclusion, and Recommendation
It contains the conclusion of the research report, outlining the achievement in the regards to innovation
and recommendation for future research.

DESIGN AND ORCHESTRATION OF WEB PROCESSING SERVICES AS SERVICE CHAINS

5

2. WEB SERVICE ARCHITECTURE AND WEB SERVICE
ORCHESTRATION

2.1 Introduction

While carrying out, their daily activities most organizations need to share different information and
resources over the internet. To become shareable, these resources need to be designed and provided as
web service. Moreover, an architectural design is needed to allow the combination services for satisfying
one or more needs. Service-oriented architecture (SOA) is one of architectural pattern in computer
software design, where each application components provide service to other components via a
communication protocol, typically over a network. For an organization to run their business based on web
services it is necessary to interconnect their business and their systems.
The chapter starts with service oriented architecture in section 2.2, web services and Geoservices in
section 2.3, OGC Web processing services (WPS) in section 2.4, Web service orchestration in section 2.5,
Business Process Management Notation (BPMN) in section 2.6 and the last section 2.7 is a summary.

2.2 Service Oriented Architecture (SOA)

Service Oriented Architecture is a design paradigm for software systems. It is defined differently according
to the context of use. In the context of this research, SOA is defined as software architectural concept that
defines the use of services to support user’s software requirements (Josuttis, 2007a). By Josuttis, (2007b)
all definitions of SOA agree that SOA is “a paradigm for improving flexibility”.

Service Oriented Architecture provides the way for developing new business services by reusing existing
components of the program within the enterprise rather than rewriting the codes from scratch and
developing new infrastructure. In the context of business process management (BPM), Web service
orchestration is a process of coordination and arrangement of multiple services exposed as a single service
for creating new aggregate service in line with real application requirements (Stollberg & Zipf, 2007). A
web service can be defined as a program that offers its functionality to different systems through a defined
interface over open protocols such as UDDI, SOAP, and HTTP. We distinguish three components in the
concept of SOA; Service provider, service directory and service consumer (see figure 2.1). In addition to
these components, it has also three operations; publish, bind, and find (Josuttis, 2007a) (see figure 1).

Figure 2.1: SOA Publish-Find-Bind paradigm

DESIGN AND ORCHESTRATION OF WEB PROCESSING SERVICES AS SERVICE CHAINS

6

SOA relates the roles of these components with the operations to maintain automated discovery and the
use of services.
The mentioned components can be described as the following:

 Service provider: publishes services to a registry and makes them available over the internet for
the requests of customers.

 Service consumer: performs service discovery operations on the service registry in order to find
the needed service, and accesses the services.

 Service directory helps service providers and service requesters to find each other by acting as a
registry of the services.

The difference of SOA to classic modularization of program logic is that the functionality encapsulated by
web service is delivered from business functions composing business processes(Booth et al., 2004).
For a business process, in order to operate in SOA environment services must have declaratively
functional requirements and capabilities in agreed machine-readable format. According to
Georgakopoulos, Ritter, & Benatallah, (2007), “the concept of SOA is not restricted to the technical side
but also reaches out to the business process management (BPM)”. That is because the functionality of
web service is obtained from business functions that make up business processes, not from information
technology systems.

SOA is concerned with the independent construction of services that can be combined into meaningful,
high-level processes within the context of the Business (Georgakopoulos et al., 2007). SOA avoid the
storage of the data used for a given processing activities in local copies and repositories of data.
Furthermore, the algorithm used in one processing can be also used in others processing. Therefore, the
use of SOA approach in the system can produce the systems flexible to the change of requirements,
technologies, and offer easy system maintenance and more consistent of data and functionality. In this
context, SOA is used as an abstract unit that allows sharing and encapsulating pieces of functionality and
providing the way of exposing the processing functionality as a service over web environment.

2.3 Web Service and Geo-Service

2.3.1 Web Services

Different organizations and books provide a number of web services definitions. “Web services is defined
as self-contained, modular, distributed, dynamic applications that can be distributed, published, and
located” (Abdaldhem Albreshne, Patrik Fuhrer, 2009). Web services can be also invoked in a web
environment to create processes and chains of operations within the process. In addition web services are
a loosely-coupled function without paying attention to the platform implemented(Booth et al., 2004). Web
services are built based on open standards such as HTTP, TCP/IP and XML (Abdaldhem Albreshne,
Patrik Fuhrer, 2009). The concept of web service is basically needed for information and resources sharing
to offer system reusability over the web environment. According to Josuttis, (2007) web service is the
most preferred way of SOA realization. Its main goal is to achieve interoperability between different
applications by using standards.

In addition, web service allows flexible integration of heterogeneous systems in a different domain such as
B2C, B2B and organization applications integration using loosely coupled integration model as stated by
Jordan & Alves, (2007a) and Abdaldhem Albreshne, Patrik Fuhrer, (2009).
In SOA, messaging protocol SOAP is used to enable interoperability between separately distributed
systems. It basically standardizes the communication of distributed systems over the web. In general,
SOAP is exchanged through HTTP which is a protocol used by internet browser to access web resources
(Abdaldhem Albreshne, Patrik Fuhrer, 2009). For a service to be used it has to be discovered, UDDI
enables businesses to list themselves on the internet. It generally enables business companies to interact
and find each other in the web environment. The description of service is provided in Web Service
Definition Language (WSDL). WSDL is W3C specification to ensure that all web services are described in
consistent manner internet (see figure 2.2).

DESIGN AND ORCHESTRATION OF WEB PROCESSING SERVICES AS SERVICE CHAINS

7

Figure 2.2: Web Service Communication (GIS HYDRO, 2009)

The potential integration of web services can be achieved when applications and business processes are
able to integrate their complex interactions by using a standard process interaction model as explained in
Jordan & Alves, (2007a) and Kudrass, (2003). This integration is also needed for the implementation of
the complex model which involves several OGC services instances that can be chained to define a
geoprocessing workflow for solving the complexity of real world problems. The example can be Disaster
management and land use suitability analysis land use planning where different actors and several
processing units involved in producing a suitable map for suitability analysis.

The Communication of Web Services

Web services perform functions; those functions can be from a simple request to complicated processes
(Abdaldhem Albreshne, Patrik Fuhrer, 2009). After service deployment, it can be invoked and discovered
by different applications or web services. Messaging protocol Simple Object Access Protocol (SOAP) is
used to invoke web services. Simple Object Access Protocol messages are encoded in XML and
transported over HTTP (Abdaldhem Albreshne, Patrik Fuhrer, 2009). The message exchange pattern is
defined in a web service description language (WSDL). They are two communication modes in web
services: Synchronous and Asynchronous.
In geospatial processing, some processes such as risk management and planning process require a
combination of multiple services and deal with a large amount of data which takes a long execution time
(Westerholt & Resch, 2015). Whereby, the communication mode is needed to inform the user different
status of execution or where to take the result at the end of execution. The most of OGC standard and
specifications are based on synchronous protocol even if the synchronous protocol is not enough to
satisfy the more complex geoprocessing task (Hu, Yue, & Gong, 2013).

 Synchronous communication

In web services synchronous means every time that a client access web service application he receives a
SOAP response. Synchronous communication mode in web services is request- response operation. In
this type of communication, the client requires immediate response to the request (Westerholt & Resch,
2015). The OCG defines synchronous WPS as requirement class that indicate the general availability of
synchronous capabilities on a WPS Server(OGC et al., 2015).
In synchronous communication, the connection of client remains open from the time the request is sent
to the server; until the server sends back the response to the user (see figure 2.3). The advantage of this
communication is that the client application knows the status of the requested service operation in very
short time (Hu et al., 2013).

DESIGN AND ORCHESTRATION OF WEB PROCESSING SERVICES AS SERVICE CHAINS

8

Moreover, it represents some limitations because the server deals with a large number of concurrent
connections as each client maintains an open connection while waiting for the result (Westerholt & Resch,
2015).

Figure 2.3: Synchronous service calls

 Asynchronous communication

In asynchronous, a user sent a request and he doesn’t need to wait for the response. Whenever the
response is ready he will receive a feedback call. Such communication behaviour is common to the
services that require the complex processing that may take long processing time(Hu et al., 2013). In this
communication, the situation might get worse when a sender sends a lot of asynchronous messages.
Moreover, the order in which the user sends requests might be different from the order of receiving
responses and the awaited response might not arrive at the time (Westerholt & Resch, 2015). Therefore,
because sender and receiver are not synchronized the send need to wait until the response is available (see
figure 2.4).

Figure 2.4: Sequence diagram of Asynchronous Service invocation

sd Synchronous Serv ice Inv ocations

Client Service

Response()

execute request()

Request()

sd Asynchronous Serv ice Inv ocation

Client Service Request store Request Execution

2. Send request on queue()

6. Acknowledgement()

5.

callback()

3. Derver Request ()

1. Request()

4. Do work()

DESIGN AND ORCHESTRATION OF WEB PROCESSING SERVICES AS SERVICE CHAINS

9

2.3.2 Geo-Services

Geoservices are normal web services that focus on geospatial information. Basically, geographic
information comes from different sources and formats. Moreover, some processes such as spatial
planning, disaster management require the use of geo-services to combine data different formats.
For that reason, SOA approach is applied to GIS domain where a number of standards have been
launched. In fact, the evolution of technology moves GIS applications from standalone towards loosely
coupled and distributed model based on specialized, self-contained, and interoperable geospatial web
services. By Alameh, (2003), Geo-services can be grouped into different categories:

1. Data Services

Data access services are the services which provide access to actual spatial data sets. Data access service
includes Web Coverage Services (WCS), Web Feature Services (WFS), and Web Feature Services-
Transactional (WFS-T).

 Web Coverage Services (WCS)

This specification defines how WCS offers multi-dimensional coverage for access to the data over the
internet(Baumann, 2012). By Baumann, this document also defines the basic requirements that WCS
implementation must fulfil to support the retrieval of spatial data such as “coverage” to represent
space/time-varying phenomena etc.
Different to WMS (Specification, 2001) and WFS which returns spatial data to be portrayed as a static
map and spatial features respectively, WCS provides access to data coverage (Baumann, 2012).

 Web Feature Services (WFS)

This specification defines the way that geographic information is created, modified and exchanged on the
internet through platform-independent calls(Date et al., 2015). In computing systems, OGC WFS
provides an interface that allows the request for spatial features over the web(Date et al., 2015).
WFS is an OGC interface for discovery and providing access to geospatial feature data (vector data) in
GML format (Meng et al., 2010). Further, data access provides access to Web Feature Services-
Transactional (WFS-T) which enables editing feature geometry and related descriptive information.

2. Portrayal Services

 Web Map Services (WMS)

Web map service standard produces a map of georeferenced data from the geodatabase. It also serves
image maps to one or more distributed spatial database by defining geographic layer and area of interest to
be processed (Specification, 2001). This specification defines three operations: GetCapabilities which
returns service metadata, GetMap which returns map image and finally, GetFeatureInfo which returns
information on feature showed on the map.

 OGC Web Map Tile Services (WMTS)

Web map tile services provide a base solution to serve digital maps from predefined image tiles. This
standard also implements the existing WMS, but WMS focuses on enabling users to obtain exactly the
final image (OGC, 2010). WMTS advertises the available map tiles through its declaration in service
metadata. This declaration defines the available tiles in each layer, style, format, scale, reference system and
in all fragment of the covered area(OGC, 2010).

DESIGN AND ORCHESTRATION OF WEB PROCESSING SERVICES AS SERVICE CHAINS

10

3. Registry or catalogue service

Registry or catalogue service provides a mechanism to register, search, describe, maintain and discovery to
geospatial data and services to the users and applications (Senkler, 2007).

4. Processing Services

Open Geospatial Consortium (OGC) launched the Web Processing Service (WPS) standard. This
standard defines a standardized interface that facilitates publishing, discovery and binding the geospatial
processes(OGC et al., 2015). Moreover, WPS provides client access to pre-programmed computation
models that operate on spatially referenced data (OGC et al., 2015).
In this research, we focused on WPS as our objective is to design an orchestration method for web
processing services as service chains. Service chain in this context is an orchestration of web processing
services where the output of the service executed first can cover at least one input of the next
service(consider service as WPS operation or activity).

2.4 Web Processing Service (WPS)

As discussed in the previous section they are several number of OGC services but this research focuses
on Web processing Services (WPS) as it is based on the orchestration of web processing services where
different WPS instances need to be combined to answer user’s questions. Web Features Services (WFS)
was used to provide input features to WPS but is not more discussed. The main goal of WPS is to serve as
host of one or more processing functionalities which can be accessed and executed in a web
environment(OGC et al., 2015). Up to now, different WPS versions was published by OGC consortium
but the current one is (OGC et al., 2015). The role of this standard is to define a standardized interface
that provides the rules of how inputs and output (request and response) for geospatial processing services
are manipulated. Examples of web processing services can be polygon overlay, coordinate transformation,
buffering, intersection, and data conversion etc.

 This interface plays a key role in spatial processing services because it provides all required information
on how input and output of a specific operation are manipulated and treated as input to the next
operation(OGC et al., 2015). By its methods, WPS defines how a client can request the execution of a
process, and how the output from the process is manipulated. The standardized interface provided by
OGC also facilitates publishing, discovery and binding the geospatial processes services which are also key
for service orchestration see figure 2.1.

In data manipulation or processing, WPS plays a key role in allowing execution of geospatial processes
over the web using different data exchange standards such as XML, GML etc. Moreover, in the context of
information and resources sharing WPS provides client access to pre-programmed computation models
that operate on the georeferenced dataset (Mukherjee & Ghosh, 2010). A geospatial process means a
computation, an algorithm or a model that is made available as a service instance operating on spatially
referenced raster or vector data (Meng et al., 2010).

2.4.1 Building WPS request

In the context of WPS implementation, it is necessary to know how to build a request for one or more
operation for its description or execution. By (OGC et al., 2015), WPS is accessed from the web browser
by the use of Hypertext Transfer Protocol (HTTP), which enables communication between client and
server (see figure 2.3). This protocol uses two methods Get and Post for accessing WPS Server(OGC et
al., 2015). HTTP Get is used for retrieving the targeted information from WPS server and HTTP Post is
used to submit the data to be processed to specified resources. The current WPS specification defines six
different operations: GetCapabilities, DescribeProcess, Execute, GetStatus, GetResult and Dismiss (OGC
et al., 2015).

DESIGN AND ORCHESTRATION OF WEB PROCESSING SERVICES AS SERVICE CHAINS

11

But in this research GetCapabilities, DescribeProcess and execute are only used for providing the basic
information on available processes and metadata in the implementation of WPS orchestration in chapter
five of this research.

WPS GetCapabilities operation

This operation is required to all OGC services. Its role in the context of WPS implementation is to
provide access the basic service metadata such as service identification, service provider, operation
metadata, and links to the operations and all processes offered by WPS implementation Server(OGC et
al., 2015). This server has to support the GetCapabilities operation via HTTP GET or HTTP POST but
the last one is optional (OGC et al., 2015). The response of this operation is an XML document called
capabilities document. The Key–Value-Pair (KVP) of GetCapabilities request uses two mandatory
parameters request and service. The KVP can be translated into an XML request submitted via HTTP
POST to the WPS implementation Server. Moreover, both request (KVP or XML) return an XML
document to inform the client about the processes being offered by WPS instance for more information
refer to (OGC et al., 2015) (see table 2.1 for example).

Example of WPS GetCapabilities Request

http://Placeholder/geoserver/ows?
 service=WPS&
 version=2.0.0&
 request=Getcapabilities

Address of the Server
Type of OGC web service
Service version
Request Type

Table 2.1: Example of GetCapabilities Request

WPS DescribeProcess operation

This operation is more important to WPS client who need to request full information on one or more
processes that can be executed by the service in service orchestration or business process. This description
includes the input (s), output (s) parameters and formats that can be used to automatically build a user
interface and the parameter values to be used to execute needed processes (OGC et al., 2015).

Example of WPS DescribeProcess Request

By OGC Standard, this request inherits basic properties from the requestBaseType. It has an identifier to
identify process with other processes (OGC et al., 2015). In case, the service supports multiple languages
for describing the process the desired language of the free-text elements in the process description may be
required for a language parameter. By(OGC et al., 2015) WPS server implements HTTP GET for transfer
of DescribeProcess request, using KVP encoded (see table 2.2).

http://Placeholder /geo-server/ows?
 Request=DescribeProcess&
 Service=WPS&
 Version=2.0.0&
 Language=en&
 Identifier=intersection,union,buffer

Server Address
Request Type
Service Name
Version of the Service
Language
Process to be requested

Table 2.2: An example of a DescribeProcess request via HTTP GET

This request also can be sent using HTTP POST to WPS Servers using XML encoding only (OGC et al.,
2015) (see table 2.3).

DESIGN AND ORCHESTRATION OF WEB PROCESSING SERVICES AS SERVICE CHAINS

12

<DescribeProcess service="WPS" version="1.0.0" language="en">
 <ows:Identifier>intersection</ows:Identifier>
 <ows:Identifier>union</ows:Identifier>
</DescribeProcess">

Table 2.3: An example of a DescribeProcess request via HTTP POST

WPS Execute Operation

WPS execute operation differ from WPS GetCapabilities and WPS DescribeProcess operations in the way
that the request is sent to the server (OGC et al., 2015). It allows WPS users to run a specified process
implemented by WPS implementation server. Therefore, the provided input parameter values return the
output to WPS client after execution, Moreover, the inputs can be directly included in WPS execute the
request or by reference (OGC et al., 2015).

Example of WPS Execute Request

WPS execute request provides support for multiple inputs, each input is referred to the forms of inputs as
required for single WPS execute Request (OGC et al., 2015). The most used way of providing large inputs
to WPS server is providing one or more URLs of inputs values for invoking WPS execute the request.
Table 2.4 shows how WPS execute request can be sent to the WPS server using HTTP Get for transfer of
the execute request by the use of KVP to encode the parameters(OGC et al., 2015).

http://Placeholder/geoserver/ows?
 Request=Execute&
 Service=WPS&
 Version=2.0.0&
 Language=en-CA&
 Identifier=Buffer&
 DataInputs=""&
 ResponseDocument=BufferedPoly&
 storeExecuteResponse=true&
 lineage=true&
 status=true

WPS Server Address
Request Name
Service Name
Version number
Language
Operation to be performed by WPS
server
KVP encoded inputs parameters
Response document name
Execute Store responde

Table 2.4: An example of an Execute request via HTTP GET

In addition, WPS server uses a mandatory method HTTP POST. When this method is used to
execute a process, an XML file containing inputs parameters is sent to the server. This method is
also used when more than one inputs parameter are needed by the operation (OGC et al., 2015).
In this research, we used HTTP POST method to send execute request to WPS Server.

2.4.2 WPS data types

The OGC standard defines three types of inputs and outputs: Literal data, ComplexData, and
BoundingBoxData (OGC et al., 2015).

 ComplexData: This data type is used for pasting the complex data such as Vector. Raster and
other data to the server like the URL of the GetFeature request. It does not describe the
particular structure for value encoding.
This type is a realization of the abstract DataDescription elements. Moreover, the complex data
value is directly passed or returned by a process.

DESIGN AND ORCHESTRATION OF WEB PROCESSING SERVICES AS SERVICE CHAINS

13

 LiteralData this type can be any character string of special type; it encodes atomic data such as
String, Float, Integer and Boolean. It also inherits essential elements from OGC web service:
DomainType. It should also use the well-known types from XML schema by their URIs.

 BoundingBoxData this type is used if someone needs to define or obtain some kind of
bounding box like upper or lower coordinates.

2.5 Web Service Orchestration

In section 2.3 of this chapter, we explained how service is published, find and bind. Once a service is
published it can be discovered by another web service or any application. It may happen that some
questions require the combination of multiple services; in that case, service can be orchestrated and
executed as service chain. The orchestration is the process of describing the automated arrangement,
coordination and management of operations within a process. In the context of this research web service,
the orchestration is the process of describing automated arrangement of services based on their execution
order to solve user problem that requires the combination of multiple services. In addition, the
orchestration is also defined as a process of interacting two or more application or web services together
to automate a process.

In (Zhao, Di, & Yu, 2012), based on the standard of web service access and web service interaction,
individual services can be reused and assembled into a service chain to represent high-level service
workflow of activities. Workflow modelling is a technique that uses several description tools, mainly
schemas and diagrams to describe processes inside the enterprise. Processes are series of activities that are
executed in a predefined sequence ordered according to a set of process rules. According to Růžička,
(2009) running process model means reading inputs, invoking web services for remote processing, decide
based on the condition given by the modeller, repeating some part of the process where necessary for
father operations.

In most case processes need to be transformed by intermediate languages such as Business Process
Execution Language (BPEL) and BPMN. BPMN is a standard for graphically representing business
processes but not geo-processes services. This language is rich semantically and allows representing
activities (tasks/sub-processes), actors (pool, lanes) and a variety of execution constraints. Business
workflow languages such as BPMN, BPEL and XPDL plays a complementary role to model at both high-
level and low-level of the business workflow and geo-processes (Strickland, Whittington, Taylor, & Wang,
2006).

BPMN is essentially a graphical notation to build an abstract workflow with a set of high-level tasks to
achieve the goal. Term “high-level” is used in this research to describe the overall goals and the features of
the model. In addition, “low- level” is used to describe the individual components by providing all details.
It is basically concerned with an individual component within the model.
BPEL and XPDL are aimed at describing the executable workflows, the specification of low-level
implementation details such as calling a web services or geo-services in the process model, gathering their
responses and handling the proper transformation operations as it is explained in Chinosi & Trombetta,
(2012) and Zhao, Foerster, & Yue, (2012).

Campagna et al., (2014) defined how BPMN can be used to model geo-processes by developing a
connector to support execution of distributed data such as Web feature Services (WFS), web processing
services (WPS). By (Campagna, 2014), BPMN can be used in the different planning process for solving GI
questions with iterative shifts from high-level general models to executable workflow. Web service
orchestration works through message exchange in the domain layer. Since single service is not designed to
communicate with other services of the different application. Therefore, messages must be exchanged
between nodes according to predefined business logic and execution order so that the composite service
systems or application can run as it is demanded by the end users.

DESIGN AND ORCHESTRATION OF WEB PROCESSING SERVICES AS SERVICE CHAINS

14

A Web services enable this communication by using a combination of open protocols and standards like
XML, SOAP and WSDL (Abdaldhem Albreshne, Patrik Fuhrer, 2009). It uses XML for tagging the data,
Simple Object Access Protocol (SOAP) for sending and receiving messages and finally WSDL to describe
the availability of the services (see figure 2.2). Service chaining can be done manually by feeding the output
of one process to be the input of next process, semi-automatically by defining the sequence of web service
interaction in a configuration file, or fully automatically by providing capabilities to establish a self-
organizing-net. In geoprocessing, a process is an atomic service designed to perform one single WPS task.
Therefore, in service orchestration and chaining, several processes are combined to carry out the activities.
In this research, a new method of using BPMN to allow call and chaining geo-service such as WPS, WFS
was developed and implemented with a proof-of-concept.

2.6 Business Process Management Notation (BPMN)

The BPMN specification is originally developed and conceived by Business Process Management
Initiative (BPMI) but is currently maintained by Object Management Group (OMG) as graphical notation
with clear semantics. This specification provides a graphical notation for expressing business process in a
Business Process Diagram (BPD) (Object Management Group, Parida, & Mahapatra, 2011). This
specification also presents the way of obtaining automatically XML code to deploy in workflow engines or
to be shared. With this specification is possible to bind the graphical notation elements and constructs a
block of structured process execution as explained in Object Management Group et al., (2011) and
Allweyer, (2010).

BPMN is rich semantically and allows representing activities (tasks/sub-processes), actors (pool, lanes)
and a variety of execution constraints. A task with the process can be automatic or mixed, and manual.
The automated task can support the execution of distributed data such as Web feature Services (WFS),
processing services like Web Processing services (WPS) as explained in Campagna et al., (2014).
In this research, BPMN is used to provide the basic elements to model WPS orchestration based on
organizational workflow at a high level and to describe executable workflow or the processes at low-level
implementation details through a developed API and python Script. BPMN provides several elements to
build workflow in an abstract way and align the functional structure of tasks at high-level (see figure 2.5).

DESIGN AND ORCHESTRATION OF WEB PROCESSING SERVICES AS SERVICE CHAINS

15

Figure 2.5: Common BPMN elements used throughout this research (Object Management Group et al.,

2011)

DESIGN AND ORCHESTRATION OF WEB PROCESSING SERVICES AS SERVICE CHAINS

16

Business process modelling has been an important topic in research communities (Foerster, Schaeffer,
Brauner, & Jirka, 2009). Whereas, the use of web service technologies enabled different protocols to
create process composition by integrating internal and external business processes including their
interactions (Ying, Qunyong, & Linjun, 2012). The orchestration language like BPEL is the most common
used technology to orchestrate web services (Donaubauer & Straub, 2010). Although, it has some
limitation of interacting only with SOAP web services. Moreover, the graphical representation of BPEL
does not provide a top level model for business but it provides a chain of web services. Therefore, the
new BPMN specification answers this problem by defining a process in terms of business tasks with no
limit to web services calls. Up today, BPMN standard is important for an organization to achieve business
process interaction. Moreover, this specification has some limitation to be addressed may be in next
version. This research focusses on how BPMN can be extended to allow the call of spatial services in the
process model.

2.7 Summary

In this chapter, we studied literature related to different concepts need for implementation of our research
basically functionalities of web services or geo-services in geo-information processing. In addition,
Business Process Modelling and Notation (BPMN) were studied in deep as a methodological and
technical approach for designing and implementing geoprocessing workflow. The current version of web
processing services (WPS) was studied as well. The content of this chapter is necessary for two next
chapters: analysing requirements of chaining WPS services and chaining WPS processes with BPMN as it
provides the overview of how different technologies and theories are described in a scientific way.

DESIGN AND ORCHESTRATION OF WEB PROCESSING SERVICES AS SERVICE CHAINS

17

3. ANALYSING REQUIREMENT OF CHAINING WEB
PROCESSING SERVICES

3.1 Introduction

This chapter discusses and analyses the functional and non-functional requirements that are needed for
chaining two or more web services or geo-services using business process management and notation
(BPMN). We explored how BPMN notation can include geoprocessing services (WPS) in the workflows.
In addition, we also explore different styles of web service orchestration. The chapter starts with web
service orchestration style in section 3.2, moving from high-level service orchestration to low level service
implementation details in section 3.3, procedures of service chaining WPS services with BPMN in section
3.4, and the last section 3.5 is a summary.

3.2 Web Service Orchestration Style

The evolution of business and technologies increases the number of systems that run businesses. In
current processes, the real requirements for linking systems are needed. Today’s technology of web
services and web service orchestration offer a future-proof secured, accessible, and scalable mechanism
for system communication and process reuse(Strickland et al., 2006). Moreover, these technologies are
needed in spatial data processing when utilizing a large volume of data from one or multiple systems to
carry out business process or to answer some geospatial questions that require the combination of
multiple services.

The term “high-level orchestration” is used in this research to describe the overall goals and the features
of the model. It also describes the execution and sequence flow of the main components of the model
that would be developed. Therefore, the modeller must describe the sequence in which the activities
follow each other. In addition to that, modeller ensures that the described sequences are structurally
equivalent to the sequence of business functions as described in the organizational workflow.
Therefore, the different programming languages for web service orchestration can be used to describe the
sequence of which the services are called and make the sequence executable (Coalition, 2012). In addition,
business process modelling standards such as BPMN and BPEL that are based on orchestration languages
have to be evolved for supporting the conversion from business process model to the executable service
orchestration.

Consequently, BPMN used as a methodology to design, analyse and implement our process model
workflow does not allow call of geo-services through its element. Although, chaining geo-processes
require defining the sequence of which tasks or activities that are used to perform a single process
(processing unit) or combined processes in more complex structures. A high-level orchestration can be
defined as a container for individual processes activities and workflow within (Strickland et al., 2006).

In fact, BPMN is an XML-based modelling tool that specifies how to define a business process in terms
of orchestration or chaining of existing web services(Database and Expert Systems Applications: 17th
International Conference, DEXA 2006, Krakow, Poland, September 4-8, 2006, Proceedings, 2006).
Service chaining is a process whereby, the output of the first called service in the workflow can cover at
least one input to the next service. In the geospatial process, chaining services are needed when no single
service can fulfil the business goal. International Organization for Standardization, (2005) and Rob
Lemmens et al. (2007) distinguishes three approaches of chaining geo-services:

DESIGN AND ORCHESTRATION OF WEB PROCESSING SERVICES AS SERVICE CHAINS

18

User defined chaining: In this chaining type, the human user defines and controls the order of
individual service execution (Rob Lemmens et al., 2007). Hence, it is the role of the user to discover and
to evaluate the fitness of services by determining a valid sequence of service and controls the execution
order. Additionally, users are responsible for ensuring that the inputs and outputs of individual services
are compatible and the complete chain is semantically correct.
This pattern is also called transparent chaining because the details are not hidden from the users as
explained in Schaeffer, (2009).

Workflow Managed Chaining: in this approach a human user invokes a service that controls and
manages the chain; also that service is aware of the individual service in the chain. The involvement of the
user in the step of this type of chain is mostly watching the individual service execution (International
Organization for Standardization, 2005). Its difference to the previous type is that the existence of a
defined chain is assumed prior to the user executing the chain Schaeffer (2009) and Rob Lemmens et al.
(2007).
 In addition, the user can provide the parameter particularly to a specific instance but, relies on workflow
service to carry out the chain. In this pattern, the chain is abstractly predefined and stored in the workflow
engine. Based on predefined service chain, the workflow service is able to determine what are the
appropriate data source, processing services, control the sequence of execution and present the final result
to the users (Schaeffer, 2009)

Opaque Chaining: In this pattern, all participant service appears as a single service to the user
(International Organization for Standardization, 2005). It has a central control service which handles all
coordination of the individual services that are part of the chain and hide all details to the user. The user
may or may not be aware of the fact that the aggregate service hides a chain (Schaeffer, 2009). Therefore,
the aggregate service is responsible for service coordination. Like the workflow managed pattern, the
existence of predefined service chain in the sense of deployed instance of the chain is
assumed(International Organization for Standardization, 2005 and Rob Lemmens et al. ,2007).

In this research, we used opaque chaining pattern because all participant services in workflow appear as
single service to the user. In addition, in the approach we used BPMN has process engine which controls
the execution of the workflow. That means process engine can work as a service which controls individual
service execution as it has to delegate service task to execute in the workflow. From literature review the
following requirements are captured to model workflow activities in terms of orchestration where many of
them are provided by BPMN itself:

 Identify all elements required for process model to chain service. BPMN present service chaining
in the form of diagrams.

 After identifying the elements, the next step is to model the process using the process model
editor. The modeller needs to spend a lot of time here by specifying how tasks are connected to
each other, the sequence flow and their order of execution.

 Define the process data. In this step, the modeller introduces the data required by the process
model. Therefore, he needs to specify modelling entity relationship diagram and the capability to
use different data format like XML etc.

 Control flow structure needs to be considered to allow direct implementation of service chain,

 The mechanism to allow the hierarchical decomposition as key feature of orchestration must be
considered for dealing with complexity of process workflow,

 Data handling mechanism is needed for defining, transferring and manipulating the complexity of
data structures,

 Exception handling mechanism must be defined because the execution in orchestration deals with
several operations which require taking into account the error handling mechanism during the
execution,

 Mechanism of message correlation must be considered because; during the execution the multiple
orchestration instances run in parallel. Then, to support the correct routing of the message the
modeller must define how messages are correlated.

DESIGN AND ORCHESTRATION OF WEB PROCESSING SERVICES AS SERVICE CHAINS

19

 Mark all BPMN element representing geoprocessing services in BPMN diagram

 Create a special element with clear semantics to identify BPMN elements representing
geoprocessing services in the process model.

 Define a mechanism to send service execution request to WPS Server.

3.3 Moving from high-level orchestration to low-level service
implementation details

In fact, here we use three different process design approaches to model geo-processes. The modeller may
use them in their natural separated order. The first approach is abstract process specifications which
define the complex tasks in an abstract way. This approach is suitable for describing the processes at high-
level abstraction and makes the description more suitable for all kinds of users (Barker & Van Hemert,
2007).
The second approach is considered as an intermediate approach which expresses the power of the
complete notation to describe activity flow and the exception paths (Barker & Van Hemert, 2007). At this
step, the model still not executable but all semantics behind the tasks are defined and subjected to the
validation rules. Moreover, the modeller can define some pre-conditions, post-conditions and select
instances of the processes which participate in orchestration(Barker & Van Hemert, 2007). Even if some
technical details such as specification of data structures required are omitted at this step but orchestration
can be executed to test the validity and completeness of process model(Barker & Van Hemert, 2007). This
approach corresponds to an algorithmic description of a conceptual model (Barker & Van Hemert, 2007).
The last approach is execution which makes possible to execute orchestration model specification by
using process execution engine. Today, BPMN is the most adopted for modelling business processes as it
is a graphical notation with a clear semantics. In addition to that, it represents the mechanism to obtain
semi-automatic XML codes to deploy in orchestration engine (Barker & Van Hemert, 2007).

After analysing our orchestration requirement and what BPMN can offer, we can use this standard in this
research to create a workflow containing web processing services. As we said before BPMN offers
notation elements to represent services at high-level. Therefore, lower level description of the workflow is
needed to make it executable. Although, the main solution adopted for executing BPMN models up to
version 1.2 was through their mapping to another language. Moreover, serialize BPMN diagram using
both XML Process Definition Language XPDL (Coalition, 2012) and BPEL (Jordan & Alves, 2007b), a
block-oriented language is possible. Serialization is the process of translating data structure from one
format to another format that can be stored and reconstructed in the same or different computer (Shapiro
et al., 2012).

In Ouyang, Aalst, Wil, & Arthur (2009) an algorithm can be found for automatic transformation of
business process diagram components to a block-structured language BPEL. But, the current version (2.0)
of BPMN (Object Management Group et al., 2011) brought important changes and interesting
innovations. The most important innovation in this current standard is that BPMN models can be stored
in a standardized XML-based format and the introduction of Metamodel (Hallwyl, Henglein, &
Hildebrandt, 2010).

Based on these new features BPMN 2.0 models can be exchanged between tools and direct execution of
BPMN 2.0 is possible. Therefore, mapping to another language for execution is no longer needed
according to Hallwyl, Henglein, & Hildebrandt (2010) and Allweyer (2010). BPMN interact with external
systems by using so-called service task, consequently, no BPMN element or connector was developed by
OMG in BPMN for calling OGC services. The service task provided by BPMN is only for SOAP web
services which flow WSDL specifications for allowing interoperability between systems.
 Therefore, in this project, a new mechanism of calling spatial services in BPMN model is implemented by
developing API and an external python script.

DESIGN AND ORCHESTRATION OF WEB PROCESSING SERVICES AS SERVICE CHAINS

20

This API identifies BPMN tasks representing geo-service activity in the workflow, read their properties
and make service call through a python script. Though, in this API tasks that represent geo-services in the
process model, are identified and all its properties are known for making service call. The low-level service
description is implemented in this API interface and it triggers execution of python script to send a service
request to WPS server. Moreover, input parameters of the process model are supplied by the user through
a developed web entry.

3.4 Procedures of Service Chaining with BPMN

Today’s research on application and earth system involves the acquisition, analysing and modelling
heterogeneous geospatial data (Díaz, Pepe, Granell, Carrara, & Rampini, 2010). Where geoprocessing and
spatial analysis are becoming more complex and require a combination of multiple services. In addition,
some spatial questions involve actors, activities, resources, and result to be modelled. Therefore, “service
chain is a solution aimed to solve complex application tasks by changing the way of development and
deployment of those applications” Zhao et al., (2012) and Friis-Christensen, Ostländer, Lutz, & Bernard,
(2007). As a result, “by wrapping data and processes with web services it is easy to transform a spatial
processing model into a service chain” (Meek, Jackson, & Leibovici, 2016).

Generally, a geo-service process can be an atomic process which runs independently and composite
service (orchestration of service) which consist of a sequence of processes in a predefined pattern.
Orchestration of web processing services is a composite process. Because several web services or geo-
services are chained to solve a spatial problem. A process is defined by its inputs, outputs and operations.
The relationship between activities in process model is modelled by specific symbols of Business Process
Modelling and Notation (BPMN). Furthermore, the input of each task or activities in process model is
specified based on the operation. For example in computation buffer, a script task requires two inputs
parameters: Distance and data input specifying the required data for specific operation. For example URL
of a GetFeature request for WFS which is delivered as input for executing the request.

Figure 3.1: Example modelling buffer WPS operation with BPMN

Figure 3.1 shows the required inputs parameters in the process model of computing buffer. In this
process, two parameters are required to be provided by the external user in the process: Distance and
WFS URL indicating the location of the spatial data required for that operation.
 In fact, BPMN does not provide task or connector for calling an OGC services such WFS, WPS etc. The
way of handling this problem is discussed in chapter four.

In service chaining process, it is required to specify control structure like sequences and the conditional
statements (If-Then-Else) indicating what task is coming after another. The important feature in service
chain is to specify how the output of one operation can be used as an input to another operation in
process model based on organizational workflow. From literature review we identified different
procedures for combining multiple services into service chains:

DESIGN AND ORCHESTRATION OF WEB PROCESSING SERVICES AS SERVICE CHAINS

21

 Identify all BPMN elements required for modelling processes based on organizational workflow.
BPMN present service chaining in the form of diagrams.

 After identifying the elements, the next step is to model the process using the process model
editor, for example, ProcessMaker.

 Mark all BPMN service task representing geo-service in BPMN diagram, and any other additional
settings. Tasks in BPMN diagram can be assigned to the different job; in this case task
representing geo-service in the diagram was mark as WPS service so that the API will be able to
distinguish them from the other tasks during the execution of the workflow.

 Each task in the process model should have a unique number to differentiate it with other tasks.
The tasks in process model are equipped with a unique identifier, this identifier helps process
engine to delegate task for execution by reading its position in the process model.

 Create BPMN element able to identify those element marked as geoservices to allow them to
make service call. In addition to that, this element should allow the interaction between different
components involved in our proposed method and also allows saving the service execution result
to model variables repository.

 The service requester should be able to find out about the process status and, in case the process
has completed, where to pick the result. For single atomic WPS service execution, the user sends
a request and waits for a response after service execution. In case multiple services need to be
combined to answer user questions, a methodology of combining them is needed and the
involved services need to be identified in the workflow. The services are modelled as activities
into the workflow so that a single request of the user executes workflow into a service chain.
During workflow execution user can still receiving the information about chain execution and he
can also be able to see where he is in the workflow.

 All involved geo-services were described based on OGC standard. In WPS implementation, it is
necessary to know how to build a request for one or more operation for its description or
execution because WPS is accessed from the web browser by the use of Hypertext Transfer
Protocol (HTTP), which enables communication between client and server. This protocol uses
two methods Get and Post for accessing WPS Server. HTTP Get is used for retrieving the
targeted information from WPS server and HTTP Post is used to submit the data to be processed
to specified resources.

 Develop an external python script for sending WPS execute post request and receiving a response
from the WPS server. After modelling activities and their sequences of execution, identifying the
geo-services and their properties in workflow, describing the services based on standard and
needed operations, the last step is to send execute post request to WPS server. A python script
was developed to send execute post request to WPS server for execution (see table 2.4).

3.5 Summary

In this chapter, different approaches of orchestrating web processing services (WPS) with BPMN have
been identified. In addition, the procedures and the functional requirements of chaining two or more web
services or geo-services were discussed. We have also identified the requirements of moving from high-
level service orchestration to low level service implementation details. As a result, two or more services are
chainable if an output of the first called service can cover at least one input of the next service. In BPMN,
the services must be flowed sequentially and defined in the way that an output of the first service is an
input to the next service. The defined requirements in this chapter are the inputs to the next chapter as it
will help to design a method to orchestrate two or more services with BPMN notation.

DESIGN AND ORCHESTRATION OF WEB PROCESSING SERVICES AS SERVICE CHAINS

22

DESIGN AND ORCHESTRATION OF WEB PROCESSING SERVICES AS SERVICE CHAINS

23

4. CHAINING WPS PROCESSES WITH BPMN

4.1 Introduction

The objective of this chapter is to propose a method of extending the functionality of Business Process
Modelling and Notation (BPMN) to include geoprocessing services. The proposed method will allow
BPMN to model geospatial processes by developing a mechanism of how BPMN element representing
geospatial services in the workflow can be identified and adapted to make a service call through a
developed API and python script. The chapter starts with introducing process modelling with BPMN in
section 4.2, Extending BPMN functionality in section 4.3, Components of new proposed method in
section 4.4 and the last section 4.5 is a summary.

4.2 Process Modelling with BPMN

BPMN specification presents the way of obtaining automatic XML code to deploy in workflow engines or
to be shared in different domains. Therefore, process modelling with BPMN can support different
methodologies to represent the workflow and the participants as well as different modelling goals such as
orchestration using the actual business process (Chinosi & Trombetta, 2012). As discussed before, several
GI questions may require the combination of multiple services where the output of one service is an input
to the next service (See Figure 4.1).
In figure 4.1 for example, user need a method of combining the listed dataset with corresponding
operations so that he can get the final result from the operation combining all dataset required from a
single request. Therefore, the requirement listed in sections 3.4 can be applied in this case to define a
method whereby, based on organizational workflow BPMN can be used to model geo-processes, their
corresponding inputs and outputs.

Figure 4.1: Example of complex question that users may have

Legend

I: Input
R: Result or output
 : Input dataset
OWS: OGC web Services
 : Process

DESIGN AND ORCHESTRATION OF WEB PROCESSING SERVICES AS SERVICE CHAINS

24

In BPMN we count three levels of process modelling:

 Process Mapping

Process mapping is the first activities within BPMN to model processes, in section 3.4 we listed some
procedures of chaining spatial services within this notation to include spatial services. The first two
procedures concern with process mapping where the modeller, after analysing workflow of activities he
can choose the BPMN elements to use and an editor which provides BPMN notations. As we said before
here, the modeller needs to spend a lot of time by specifying how tasks are connected to each other, the
sequence flow and their order of execution based on organizational workflow. The result of this level is a
chain of activities in the form of BPMN diagram.

 Process Description

Given that, all processing units services and their inputs was modelled using BPMN notation, at this level
process is extended with enough information, like marking the tasks representing geo-services, create
variables to contain inputs and output from processing units execution, create dynamic form and step,
create users and process rules, and assign tasks to corresponding users.

 Process Model

This is what in our case we call chain of activity or BPMN diagram, at this level process model, is
equipped with enough information which makes it ready for being analysed and executed. ProcessMaker
used as BPMN editor that has an essential element to execute the workflow, but is not able to distinguish,
activities representing geo-services to make service call as it was not designed for that. Therefore, this
research we proposed the creation of special element able to identify all tasks representing geo-service
activity in workflow and read their properties to make service. This element should be equipped with
enough function to allow connection of BPMN tasks representing geoservices in BPMN diagram
(workflow) to their corresponding services make service. The involved WPS services are described based
on OCG WPS execute post request as explained in section 2.4 (see table 2.4).

In section 4.3, a method to model geo-services with BPMN is designed based on the requirement. This
method will answer the above questions (see figure 4.1), whereby, the processes, inputs and outputs
represented in the workflow are modelled with BPMN into BPMN diagram. Figure 2.5 explains the basic
BPMN elements to create BPMN diagram. To that end, the procedures listed in section 3.4 are flowed to
include web processing services in the diagram, remember that BPMN present service chaining in the
form of diagrams.

4.3 Extending BPMN Functionality

As explained in problem statement of this research, and section 4.2 most of the users require the use of
multiple services to respond to GI questions, it may happen that some questions require the involvement
of actors, activities, resources, objectives, and outputs in solving such questions. Moreover, an
architectural design is needed to allow service combination for satisfying one or more needs.
In order to respond to the spatial question and real-world processes which require the combination of
multiple services and data from different sources, we should consider several steps to model geo-
processes. This research comes up with a new method of modelling geo-processes with BPMN which was
not natively created for modelling geo-services (see figure 4.2). The different research was conducted on
how BPMN can be used in the realization of a complex process model that involves several WPS
instances to be chained to one another, to define a geoprocessing workflow.

DESIGN AND ORCHESTRATION OF WEB PROCESSING SERVICES AS SERVICE CHAINS

25

In Schaeffer (2009), OGC has been working on the integration of their standards with orchestration
languages and standard toward web service orchestration. They have explored the use of BPMN as an
option to create spatial web service chaining. In Prager, Klímek, & Růžička (2009), BPMN technology has
been used to enable integration between any spatial services. Moreover, Albrecht, Derman, &
Ramasubramanian (2008) introduces the use of ontologies and model such as BPMN to standardize the
way that process communicate to each other in geospatial languages.
This research describes a system that supports geospatial requirement into a business process. In addition,
those requirements can be integrated into BPMN business workflow by marking BPMN elements that
represent spatial service in the process model and develop a new element able to identify and read their
properties in the workflow to make a service call (see Figure 4.2 and 4.3).

Figure 4.2: Method for extending BPMN to chain geo-processes services

Figure 4.2 illustrates the main steps of proposed method to extend BPMN to model geo-processes.
Within this method, two or more executable WPS processing units instances can be chained in one-way or
another within BPMN diagram to answer GI questions. The steps within this method are described
below:

 BPMN Diagram

BPMN was used in this research to define a sequence of activities and their execution order based on
organizational workflow. Consequently, it was not designed to model geo-processes as explained in
problem statement of this research. For this diagram to include web processing services, we developed an
able to identify all BPMN elements marked as geo-service in the workflow to make service call.

 API

API is a special element developed in this research based on the requirement to allow BPMN to include
geoprocessing services. This element is able to identify all BPMN tasks marked as geo-services, once those
tasks are identified; it triggers the service parameters in right order to make a geo-service call. However,
within this API, the inputs parameters of geo-services in the workflow can be queried from workflow
model repository (Database). It also defines the necessary functions to interact with all the components of
the method.

DESIGN AND ORCHESTRATION OF WEB PROCESSING SERVICES AS SERVICE CHAINS

26

 Python Script

This script was developed to send service execute request to WPS server. Once API has identified tasks
representing geo-services and read their properties, the next step is to trigger the execution of python
script. This script takes inputs of service to be executed from the API as the API is able to directly
communicate with BPMN workflow when the workflow is running. In section 2.4 of this thesis, we
explained how this request is sent to WPS Server.

 Client

The client in this context is a user, how managed the workflow. The role of this user is to provide the
required inputs initiate the workflow. This user will get the status of workflow execution until he gets the
final result on the web page.

 Geo-server WPS

Geo-server is an open source server designed for sharing spatial data. This server allows flexibility in map
creation and spatial data sharing, in addition to that, it also publishes data from any spatial data source
over open standard. WPS is not a part of geo-server by default; it is only available as an extension.
Geoserver within this extension acts as WPS implementation server.

In fact, within this method, WPS operation as a service can be represented by a task marked geo-service in
BPMN workflow to represent geo-process in the workflow at high-level. In BPMN workflow modelling,
web service can represent one or more activities (tasks) to carry out the business process in the process
model. Thus, orchestration can be defined as sequence flow of all activities or services involved to carry
out the business process in the organizational workflow. As discussed before BPMN service task is used
to represent the spatial service in the workflow but it call still work as normal BPMN service task for none
geo-processes tasks.

4.4 Components of new proposed method

Figure 4.3 illustrates the functional and technological architecture of the main components of proposed
method for extending BPMN to include geoprocessing services. The structure is made up of four
components. The role of each component in figure 4.3 is explained below:

Figure 4.3: The main components showing how BPMN can be extended to handle WPS processes

DESIGN AND ORCHESTRATION OF WEB PROCESSING SERVICES AS SERVICE CHAINS

27

4.4.1 BPMN Diagram

The first component in this technological architecture of chaining WPS services using BPMN is a BPMN
diagram (workflow). This workflow is a set of user activities into complex tasks, it is normally suitable for
defining activities at high-level. During this step, the modeller needs to identify BPMN elements to
describe the activity flow and define their sequence of execution. In addition to that, the modeller needs to
add all required information such as variables, dynamic forms, steps, business rules and other settings to
make workflow executable. Remember that BPMN was not natively created for handling geoprocessing
services. Therefore, all tasks representing geo-services in the workflow are identified and marked to be
differentiated with the other tasks in the workflow. Then, during workflow execution, the delegated task
needs to be checked and linked to their properties to make service call.

4.4.2 API

API is the most important element in this architecture as it makes BPMN chain geoprocessing services by
identifying BPMN tasks representing geo-service to make service call. This component has the necessary
functions to communicate with the workflow during its execution. As explained in previous components,
the user draws a workflow and put all addition settings to make it executable. The result from BPMN is a
diagram showing the sequences of activities in the workflow. Workflow can contain the geo-processes and
none geo-processes.

Figure 4.4: Workflow showing how a task service can be used in a different way in workflow

In this workflow, service task is used to represent geo-service but it can still use in its normal way during
the model execution. Developed API is only concerned to Geo-service; by convention, a service task
representing geo-services in the workflow should start by the abbreviation of the service name that it
represents such WPS, WFS, and WMS etc.

In the above example service task representing geo-service calls feature about the urban area and next
service task calls a web service function that calculates the population density. The role of this API is to
identify what are the tasks representing geo-processes in the workflow and equip them with enough
information to make service call. Once those tasks are known the API reads their properties such as
inputs parameters from the model variable repository and triggers the execution of python script to set
service execute request WPS server. Once this execution is completed the script notifies the API the
completeness or the status of execution. API also notifies the completeness of geo-services execution to
process engine to continue executing the rest of the workflow up to the end. This operation will be
repeated up to the end of workflow execution. The result of this execution is saved in the folder created
on the computer and its URL is sent to model variables repository. The following are the required
functions for this API to perform his job:

DESIGN AND ORCHESTRATION OF WEB PROCESSING SERVICES AS SERVICE CHAINS

28

a. CheckTaskType()

This function checks the type of delegated task by querying BPMN_activity table of workflow schemas or
by using Processmaker REST API. Then, if the type of task is service task the function InstantiateTask() is
called to check if the task is representing geo-service activity in the workflow. In fact, when the execution
of workflow starts the API is triggered and process engine creates CaseID of the running process and
delegation index on delegated task to run, that index is sent to the API. By calling CheckTaskType()
function the API is able to know the type of task. If the task delegated is service task API InstantiateTask()
function is called otherwise another function is called.

b. InstantiateTask()

This function check if a returned task by the previous function is representing geo-service activity in
workflow by reading its properties in process model repository. Once the function is presenting geo-
service, an instance of that task is created to make service call and getVariables() is called to return an array
of parameters (variable names and values) attached to that task.

c. GetVariables()

This function can use either Processmaker web service or query process model database to get variables
and values linked to that particular task. The returned array of variables and values are saved in API global
variables to be used later in ExecuteService() function.

d. ExecuteService()

This function triggers the execution of python script with parameters returned GetVariables() function.
ExecuteService() function triggers the execution of python script. After the script is executed it inbox the
API by sending the execution status if the status shows the successful completion of the service execution
API SendResult() function is called to send the result to the model variable repository.

e. SendResult()

This function is called after python script is successful executed, it is used to send the URL of the service
execution result to the model variable to be saved and used as an input to the next activity of the
workflow.

f. NextTask()

This function is called to handover activity to process engine and route case to the next task in the
workflow.

4.4.3 External Python Script

The role of this component is to send WPS execute post request to WPS server. This script gets
parameters as system variables from API, those parameters are URLs of WFS GetFeature request or any
other parameter depending upon the operation to be executed. Post request sent to WPS server requires
three parameters:

 URL is the address of WPS server where geo-processes are deployed and implemented,

 Data is an XML file specifying which WPS operation to be executed, inputs parameters, data
types and format of the result,

 The last parameter is header which defines the content type

In section 2.4 we described how WPS execute post request is sent to the WPS server for executing one or

more service requested. In table 2.4 we provided an example on how WPS execute request is sent to the
server.

DESIGN AND ORCHESTRATION OF WEB PROCESSING SERVICES AS SERVICE CHAINS

29

4.4.4 OGC Web Services

OGC web services are cloud services provided by OGC to allow users to integrate spatial data in their
application.
Figure 4.5 shows how those components sequentially interact with each other during the execution of the
workflow.

D
E

S
IG

N
 A

N
D

 O
R

C
H

E
S

T
R

A
T

IO
N

 O
F

 W
E

B
 P

R
O

C
E

S
S

IN
G

 S
E

R
V

IC
E

S
 A

S
 S

E
R

V
IC

E
 C

H
A

IN
S

30

 F
ig

u
re

 4
.5

:
S
eq

u
en

ce
 D

ia
gr

am
 s

h
o

w
in

g
th

e
in

te
ra

ct
io

n
 o

f
co

m
p

o
n

en
ts

 i
n

v
o

lv
ed

 i
n

 W
P

S
 c

h
ai

n
in

g
w

it
h

 B
P

M
N

s
d

 W
P

S
 O

rc
h

e
s

tr
a

ti
o

n
 w

it
h

 B
P

M
N

W
P

S
 S

e
rv

e
r

W
F

S
P

y
th

o
n

 S
c
ri

p
t

P
ro

c
e

ss
M

a
ke

r
W

S
W

e
b

 P
a

g
e

C
li

e
n

t

P
ro

c
e

ss
 e

n
g

in
e

P
ro

c
e

ss
 v

a
ri

a
b

le

re
p

o
si

to
ry

A
P

I

C
a

ll
 p

y
th

o
n

 s
c
ri

p
t

to
 e

x
e

c
u

te
 s

e
rv

ic
e

()

R
e

su
lt

()

S
e

n
d

 p
a

ra
m

e
te

rs
 t

o
 m

o
d

e
l

re
p

o
si

to
ry

()

F
e

a
tu

re
s(

)

Q
u

e
ry

 t
h

e
 F

e
a

tu
re

s(
)

D
e

la
g

a
te

 t
a

sk
 t

o
 r

u
n

 a
n

d
 s

e
n

d
 c

a
se

ID
 a

n
d

D
e

le
g

a
ti

o
n

 I
n

d
e

x
 t

o
 m

o
d

e
l

re
p

o
si

to
ry

()

S
e

n
d

 W
P

S
 E

x
e

c
u

te
 R

e
q

u
e

st
()

R
e

q
u

e
st

 f
o

r
in

p
u

t
p

a
ra

m
e

te
rs

()

S
e

n
d

 U
R

L
 o

f
th

e
 R

e
su

lt
 t

o
 A

P
I(

)

G
e

tV
a

ri
a

b
le

s(
)

S
e

n
d

 r
e

su
lt

 U
R

L
 t

o
 m

o
d

e
l

re
p

o
si

to
ry

()
E

x
e

c
u

te
 R

e
q

u
e

st
()

q
u

e
ry

 d
e

la
g

a
te

d
 t

a
sk

()

G
e

tF
e

a
tu

re
 R

e
q

u
e

st
()

F
il

l
in

 m
o

d
e

l
p

a
ra

m
e

te
rs

()

d
e

la
g

a
te

d
 t

a
sk

 i
n

d
e

x
()

F
in

a
l

R
e

su
lt

()

S
a

v
e

 m
o

d
e

l
p

a
ra

m
e

te
rs

()

DESIGN AND ORCHESTRATION OF WEB PROCESSING SERVICES AS SERVICE CHAINS

31

The API functions are called in an iterative way to do their job in the workflow. Figure 4.5 capture the
flowchart showing which API function is needed and when it will be called during the execution of the
workflow.

Start

Fill in Web Entry

Form

All required

parameters

Process model

repository

Are variable

saved?

Process Engine

Create case and

Delegate Task to

run

Send

Message to

the user

API
Web Service or

REST API

Query delegated task to run

Is Task

Service?

Identify the tasks

representing geo-

services and read their

properties

Continue

execution

Is geo-service

task?

Read inputs

parameters

Send

Notification

Is inputs

available?

Send

Notification

Execute python

script to make

service call

Python Script

Fill input

parameters to

WPS execute

Request

Execute operation

service

D
a

ta
S

e
t

R
e

p
o

s
it
o

ry

Send Result()

Is the last

Task?

End of Process

Yes

Yes

Yes

Yes

Yes

No

No

No

No

No

Figure 4.6: Flowchart showing the execution steps of BPM diagram, API and python script

DESIGN AND ORCHESTRATION OF WEB PROCESSING SERVICES AS SERVICE CHAINS

32

WPS returns a response which is an XML-encoded to python script and saves it to user created folder and
file. The URL link corresponding to this result is sent to model variable repository through the API
SendResult() function. In this research, we used Geo-Server WPS extension for geoprocessing functionality
on Apache Tomcat. The result of the execution can then be transmitted to the next activity in the
workflow as input parameter which defines orchestration. This process will be repeated until the end of
workflow execution.
To implement this method different technology, tools and programming languages are used. See table 4.1

Components Technology, Tool and programming language

Process model or workflow ProcessMaker

API PHP

External Script Python

OWS Cloud services, Geo-server

Table 4.1: Technology, Tool and programming language used

ProcessMaker: is an open source workflow management system. It is BPMN implementation; it has all
necessary BPMN elements for a small organization to create their business workflow. ProcessMaker has a
database for storing process tasks and all setting related to it.

PHP: PHP is server side programming language used to create API to allow remote access to the services,
workflow functionality, identify BPMN element representing geo-service, and make service call services
through a python script.

Python: Python was used to create a script that sends WPS execute post request to WPS server as
requested by Process engine through API interface. WSDL Web Service Description Language as an
XML-based language was used to describe and locate web services. In addition to that, three client-side
scripting languages (Open Layer JavaScript extension, HTML and CSS) were used to implement the user
interface.
Geo-server: is used as WPS implementation server. The spatial services are described based on OGC
standard to allow them to be discovered from the web.

4.5 Summary
In this chapter, a new method for extending BPMN to handle WPS processes was proposed as a solution
for an organization to include geoprocessing services in their workflow and model to geo-processes that
require the combination of multiple services. The different component of the proposed method was
explained in this chapter. BPMN was used to provide the basic notation to create a sequences and
execution order of activities in the workflow. An API was created to identify all BPMN tasks representing
geo-services in workflow and make service call through a developed python script. The result from this
call is saved and its location is sent to process variable through API function to be used later in the rest of
workflow execution. The script defines post request specifying which operation to execute, server address
content type etc. this method is implemented in chapter 5 to demonstrate the functionality of newly
developed method.

DESIGN AND ORCHESTRATION OF WEB PROCESSING SERVICES AS SERVICE CHAINS

33

5 IMPLEMENTATION OF WPS ORCHESTRATION
METHOD

5.1 Introduction

For the implementation of new Landuse plan, the BPMN is used to design workflows containing activities
including their logic sequence relying on structure proposed in chapter four. BPMN is also used for
describing the workflow at information viewpoint and its composition into single activities. As discussed
modelling spatial processes with BPMN needs a special element as it was not designed for interacting with
spatial data and geoprocessing services. Moreover, with BPMN editors such as Processmaker, it is possible
to configure the inputs and its associated activities using technology tool and programming to implement
each task in the workflow. An example of such functionality is used to illustrate how BPMN can be
extended to orchestrate spatial services such as WFS and WPS in land use planning. The chapter starts
with System prototype functionality in section 5.2, and summary in section 5.3.

5.2 System prototype Functionality

The aim of this prototype implementation is to test that the method for extending the functionality of the
BPMN standard to model geo-processes and call spatial services works. The chosen scenario of this
research is to help the planner of Enschede municipality to know which part of the urban area that will be
affected by the expansion of forest. In fact, in land use planning activities knowing the land use of a given
area and its boundaries is one of the most activities in geo-information application. Therefore, the
municipality of Enschede is planning to update their land use by only expanding the forest area.

Three required datasets are available as web service but the way of combining them based on
organizational workflow is needed to identify the part of the urban area that can be affected by the
expansion of forest in new landuse plan. Here, the planner is only interested to know which part of the
urban area affected by new land use planning implementation which takes care in expanding the
environmental area such as a forest.

This case was chosen as proof-of-concept because it involves different geo-processes which need to be
chained in sequence way following the organizational workflow such that the result of the first executed
service is used as an input to the next operation or activity and the rest of workflow execution. Figure 5.1
depicts, as workflow various spatial operations and its inputs of our chosen scenario. The figure also
shows how the tasks are sequentially defined in the view of the human to produce the result. Additionally,
figure 5.1 also show the relation between operations and their inputs.
This scenario requires five inputs where three of them are WFS GetFeature URL which queries features
from PostGIS database, buffer distance and the address of WPS implementation server.

WFS GetFeature URL inputs:

 http://win371.ad.utwente.nl/cgi-
bin/mapserv.exe?map=//win371.ad.utwente.nl/student/s6019978/Thesis/configWFS.map&SE
RVICE=WFS&VERSION=1.0.0&REQUEST=GetFeature&TYPENAME=neighbourhood

 http://win371.ad.utwente.nl/cgi-
bin/mapserv.exe?map=//win371.ad.utwente.nl/student/s6019978/Thesis/configWFS.map&SE
RVICE=WFS&VERSION=1.0.0&REQUEST=GetFeature&TYPENAME=forest_areas

 http://win371.ad.utwente.nl/cgi-
bin/mapserv.exe?map=//win371.ad.utwente.nl/student/s6019978/Thesis/configWFS.map&SE
RVICE=WFS&VERSION=1.0.0&REQUEST=GetFeature&TYPENAME=urban_areas

http://win371.ad.utwente.nl/cgi-bin/mapserv.exe?map=//win371.ad.utwente.nl/student/s6019978/Thesis/configWFS.map&SERVICE=WFS&VERSION=1.0.0&REQUEST=GetFeature&TYPENAME=neighbourhood
http://win371.ad.utwente.nl/cgi-bin/mapserv.exe?map=//win371.ad.utwente.nl/student/s6019978/Thesis/configWFS.map&SERVICE=WFS&VERSION=1.0.0&REQUEST=GetFeature&TYPENAME=neighbourhood
http://win371.ad.utwente.nl/cgi-bin/mapserv.exe?map=//win371.ad.utwente.nl/student/s6019978/Thesis/configWFS.map&SERVICE=WFS&VERSION=1.0.0&REQUEST=GetFeature&TYPENAME=neighbourhood
http://win371.ad.utwente.nl/cgi-bin/mapserv.exe?map=//win371.ad.utwente.nl/student/s6019978/Thesis/configWFS.map&SERVICE=WFS&VERSION=1.0.0&REQUEST=GetFeature&TYPENAME=forest_areas
http://win371.ad.utwente.nl/cgi-bin/mapserv.exe?map=//win371.ad.utwente.nl/student/s6019978/Thesis/configWFS.map&SERVICE=WFS&VERSION=1.0.0&REQUEST=GetFeature&TYPENAME=forest_areas
http://win371.ad.utwente.nl/cgi-bin/mapserv.exe?map=//win371.ad.utwente.nl/student/s6019978/Thesis/configWFS.map&SERVICE=WFS&VERSION=1.0.0&REQUEST=GetFeature&TYPENAME=forest_areas
http://win371.ad.utwente.nl/cgi-bin/mapserv.exe?map=//win371.ad.utwente.nl/student/s6019978/Thesis/configWFS.map&SERVICE=WFS&VERSION=1.0.0&REQUEST=GetFeature&TYPENAME=urban_areas
http://win371.ad.utwente.nl/cgi-bin/mapserv.exe?map=//win371.ad.utwente.nl/student/s6019978/Thesis/configWFS.map&SERVICE=WFS&VERSION=1.0.0&REQUEST=GetFeature&TYPENAME=urban_areas
http://win371.ad.utwente.nl/cgi-bin/mapserv.exe?map=//win371.ad.utwente.nl/student/s6019978/Thesis/configWFS.map&SERVICE=WFS&VERSION=1.0.0&REQUEST=GetFeature&TYPENAME=urban_areas

DESIGN AND ORCHESTRATION OF WEB PROCESSING SERVICES AS SERVICE CHAINS

34

WPS implementation Server Address:

 http://130.89.236.184:8080/geoserver/ows

The process that planner carries out, in this case, is as flows: First, the administrative boundary of
Enschede is required and expanded at a given distance. Second, the result from expanded boundary is
intersected to forest dataset. Finally, the result from this intersection is expanded at a certain distance and
intersects with an urban area in order to get the urban area that affected by the expansion of forest area.

Enschede

Administrative boundary

spatial data

Buffer

Buffered

boundary

Forest Spatial Data

Intersection

Built-up Spatial Data

Intersected

Forest Area

Buffer

Buffered

Forest Area

Intersection

Built-up area that intersect

Forest area at a given

Distance

WFS

GetFeature
WFS

GetFeature
WFS

GetFeature

WPS

Response

WPS

Response

WPS

Response

WPS

Response

Buffer

Distance

Figure 5.1: Organizational workflow of the activities in the office of planner represented as flowchart

5.2.1 Modelling landuse planning processes with BPMN

The first need for the prototype is to have the chosen process, as depicted in figure 5.1, modelled
according to our approach. To that end, the execution order of activities and their sequence flow as
illustrated in figure 5.1 processing services and their inputs were modelled using BPMN notation (see
Figure 5.2).

http://130.89.236.184:8080/geoserver/ows

DESIGN AND ORCHESTRATION OF WEB PROCESSING SERVICES AS SERVICE CHAINS

35

Figure 5.2: BPMN Process model for land use planning model.

For modelling, the landuse planning activities different types of BPMN elements were used. BPMN
Service task (See figure 2.5) is used to represent geo-processes service in workflow, BPMN Receive task
(See figure 2.5) is used to show in workflow the activity that receives the result from the previous
processing unit and finally, a BPMN user task (See Figure 2.5) is used to represent tasks that require user
inputs see figure 2.5 of chapter two for more explanations about used task types and other used BPMN
elements.
As explained in previous chapters this standard is not designed to interact with spatial services. To call
spatial services within BPMN, service task have been used as a task that represents geo-process service in
the landuse planning workflow. Moreover, tasks that correspond to geo-service in process model were
adapted to make a service call through a developed API and python script.

In Figure 5.2 service tasks are marked with a red circle to show activity representing geo-service in land
use planning workflow. The marked task is numbered as shown in figure 5.2. (1) WPS Buffer this is the
first operation of this workflow which creates a buffer on the administrative boundary of Enschede. (2)
WPS intersect admin boundary and forest this operation intersect both dataset to have forest are that
intersect the boundary of Enschede. (3)WPS buffer forest, this operation create a buffer on the forest that
intersects Enschede administrative boundary. (4) WPS intersect forest and built up this is the last
operation in this workflow it shows the final result of the area affected by the expansion of the forest. In
addition, each task in the workflow is assigned to the user in charge, in this case, all tasks are assigned to
the planner. The second step after mapping all organizational processes in BPMN workflow, marking
different activities in workflow and assigning activities to the corresponding user is to create workflow
variables to store process data.

Creation of process variables

Process variables are defined as variables created within the project to store process data. They can be
used in any of the objects in the process. These variables are also used to populate fields in dynamic forms
within the process model. For landuse planning workflow, different variables were created to store
process data during workflow execution. To provide values to these variables dynamic form was created
and the filed in dynamic form were linked to their corresponding variables.

DESIGN AND ORCHESTRATION OF WEB PROCESSING SERVICES AS SERVICE CHAINS

36

5.2.2 Landuse planning model realization

A web entry was created as a mechanism for the planner to pass on the workflow details about
the datasets (services) to be used and any other parameters required for the execution of the
workflow. In BPMN designer, web entry is linked to specific start event which indicates where it
can initiate the workflow (see figure 5.3).

Figure 5.3: Create a web entry on start event to initiate workflow

Web entry provides a web link to dynamic form in the first task of the workflow (see figure 22)

Figure 5.4: Example of how Web entry is linked to dynaForm in workflow

The role of this web entry is to enable the planner to initiate a new case with all required inputs from the
external web interface without manual logging to ProcessMaker. For the planner to externally login
ProcessMaker, ProcessMaker web service login function was called in web entry to provide access to
external users figure 2.2 shows how web service is discovered by the service requester. Within web entry,
the planner fills out the dynamic form (see figure 5.5) and submits data to the workflow process data
repository through the web service. After inputs submission process engine initiates the workflow by
creating CaseID and delegation index of the task delegated to run, this index is sent to API.

DESIGN AND ORCHESTRATION OF WEB PROCESSING SERVICES AS SERVICE CHAINS

37

Figure 5.5: Landuse planning workflow parameter inputs

This interface allows the user to provide input parameters to the workflow variable repository through
web entry and web service. The landuse planning workflow requires five inputs parameter: WFS
GetFeature URL of Enschede administrative boundary, Buffer distance, WFS GetFeature URL of Forest
area, WFS GetFeature URL of the urban area and Base URL which is an address of WPS server. The
interface that displays the result to the user is developed using internet browser as application software
that is able to access a web server and interpret client codes (HTML, Open Layer JavaScript extension and
Cascading Style Sheet (CSS)) see annex 3 for the source codes.

In realization of landuse planning model all inputs area aggregated in one form, even if they are required
for intermediate tasks. This is because web entry which was created to allow external users to provide
inputs for initiating the workflow from an external web page is only used to start the case.
Once the submit button id clicked the API is triggered to check if delegate activity in workflow is
representing geo-process service by calling a function called CheckTaskType(). Listing 1 shows the
CheckTaskType() function but the function call can be found in annex 2 of this research.

Listing 1: CheckTaskType() function.

DESIGN AND ORCHESTRATION OF WEB PROCESSING SERVICES AS SERVICE CHAINS

38

After knowing the type of task, the API function InstantiateTask() is called to determine if the
BPMN task is representing geo-service activity in workflow and if so extract the required data
from its variables by calling getVariables(). Listing 2 show the InstantiateTask() function and the
function call can be found in annex 3.

Listing 2: InstantiateTask() function

API getVariables() function extract the required variables of BPMN task representing geo-service
and save it to global variable. Here is the simplified code of getVariables() function, moreover, the
function call can be found in annex 3.

DESIGN AND ORCHESTRATION OF WEB PROCESSING SERVICES AS SERVICE CHAINS

39

Listing 3: GetVariables() Function

Once the require process data are available API ExecuteService() function is called to trigger the execution
of python script which sends WPS post request to WPS server (see Listing 4 for the simplified code of
this function)

Listing 4: simplified codes for ExecuteService()

DESIGN AND ORCHESTRATION OF WEB PROCESSING SERVICES AS SERVICE CHAINS

40

The call of this script triggers the execution of python script which sends WPS post request to Geo-Server
which was used as WPS server in this thesis. This script takes input parameters from API ExecuteService()
and API getVariables() function depending on the WPS operation to execute. See the codes for WPSBuffer
python script but function call can be found in annex 3.

Listing 5: WPSBuffer python script

In fact, API was created to allow remote access to BPMN element, services and identify the BPMN task
representing geo-service in the process workflow. Moreover, it also makes service call of identified geo-
service in workflow through a python script. In addition, python Script was developed to send WPS
execute request to WPS server. Below you can found a figure 5.6 showing how WPS operations are
executed sequentially based on their order in the organizational workflow.

DESIGN AND ORCHESTRATION OF WEB PROCESSING SERVICES AS SERVICE CHAINS

41

Figure 5.6: Sequence diagram showing the execution order of WPS services

WPS execute post request sends three input parameters to WPS Server: address of WPS server, data and
content-type. Data is an XML files which defines the operation to be performed, the required input
dataset or any other inputs, Data types of inputs and the format of the result as we discussed in section
2.4. See below XML file send to WPS server.

sd Comminication between Python Script and Serv ices

API

Python Script WPS WFS

Get boundary features()

Forest that intersect the boundary of municipality()

Execute request()

Final Result()

Send URL of boundary features()

Send request to GeoDB()

Built-up Features()

Urban Features URL()

Send request to geoDB()

Buffer "Featureboundary and Distance"()

Urban area that intersect the boundary of Forest()

Forest Features()

Buffered forest()
Execute operation()

boundaryFeatures()

Forest intersected municipality boundary()

Execute request()

Intersection " Buffered Forest Result and Urban Features"()

GetUrban Features()

Buffered boundary()

Forest feature URL()

Buffered Forest()

GetFeature Forest()

Buffered boundary()

Execute operation()

Execute operation()

Buffer "intersected forest result and Distance"()

Intersection "Buffered boundary and Forest Features"()

DESIGN AND ORCHESTRATION OF WEB PROCESSING SERVICES AS SERVICE CHAINS

42

Listing 6: XML file sent to WPS Server as data in post request

If the script is successfully executed API hands the execution back to process engine to continue
executing the rest of the workflow by executing the code below. If an error occurred during
execution this function will send an error message to the planner.

Listing 7: codes showing handover of execution of the workflow between API and
process engine

The result or output of each processing unit is saved in created folder and file on the server and the URL
link of the result is sent to process model variable repository by call API SendResult() function and it can
be used as input to the next processing unit or activities as illustrated in Figure 5.1 and 5.2. These figures
show the sequence and the execution order of different tasks in the process model. Below are codes for
sending execution result URL model variable repository.

DESIGN AND ORCHESTRATION OF WEB PROCESSING SERVICES AS SERVICE CHAINS

43

Listing 8: Send Result to Process repository

In fact, when planner sent inputs parameters to land use planning workflow the submit button triggers the
execution of the workflow. Activities in the workflow are executed sequentially based on their sequence
see figure 5.2, for landuse planning workflow execution order. As longer as the workflow is executed and
some tasks are completed, if needed the intermediate status of the workflow can be visualized by the
planner and it will show the status using a different colour (see figure 5.7 and 5.8).

Figure 5.7: The status of task in BPMN diagram during the model execution

DESIGN AND ORCHESTRATION OF WEB PROCESSING SERVICES AS SERVICE CHAINS

44

Figure 5.8: The status of task in BPMN diagram at the end model execution

Legend

The explained processes will be repeated as long as the workflow is running. After the final step of land
use planning model execution, all results of WPS process units in the workflow are saved in workflow
variables repository. The final result returned by land use planning workflow execution is in GML format,
and it can be downloaded or visualized in web form as shown in figure 5.11. Different interfaces of each
operation in the workflow are also captured as it is shown in figure 5.9 and 5.10. Moreover, as we
discussed before the purpose of this scenario was to demonstrate if the proposed method for including
geoprocessing services (WPS) in BPMN works. Therefore, as a result, the planner is able to visualize part
of the urban area that is affected by the expansion of forest area in a new implementation of Landuse plan
under construction in the municipality of Enschede. In addition, the planner also is able to see different
interface showing the result of each service execution in the workflow as shown in figure 5.9 and 5.10 and
the codes are provided in annex 3 of this thesis.

DESIGN AND ORCHESTRATION OF WEB PROCESSING SERVICES AS SERVICE CHAINS

45

Figure 5.9: Buffered Enschede boundary and Enschede urban area

Figure 5.10: Forest that intersects the boundary of Enschede and buffered Forest

DESIGN AND ORCHESTRATION OF WEB PROCESSING SERVICES AS SERVICE CHAINS

46

Figure 5.11: Final Map showing part of urban area affected by expansion of forest

DESIGN AND ORCHESTRATION OF WEB PROCESSING SERVICES AS SERVICE CHAINS

47

5.3 Summary

In this chapter, we implemented and tested with an example as proof-of-concept a new proposed method
in this research for handling WPS services with BPMN. An API with different functions was developed to
identify BPMN tasks representing geoprocessing services activities in workflow and make the call of
services through a developed python script. Land use planning workflow was modelled with BPMN
notation and all geo-services within the workflow was identified and executed flowing the approach
developed in this research. To that end, the planner is able to visualize the result of workflow execution
on a web page or downloading a GML file corresponding to the final result. The codes used to implement
both API, Landuse planning, a python script and result visualization codes can be found in the annex
1,2,3,4 of this thesis.

DESIGN AND ORCHESTRATION OF WEB PROCESSING SERVICES AS SERVICE CHAINS

48

DESIGN AND ORCHESTRATION OF WEB PROCESSING SERVICES AS SERVICE CHAINS

49

6 DISCUSSION, CONCLUSION, AND
RECOMMENDATION

6.1 Introduction

In this research, we have proposed a method for extending the BPMN notation to include modelling
elements for geoprocessing services. This way BPMN can be used to model all elements of a process
including inputs, outputs and activities at the information viewpoint for geospatial workflows. Once
BPMN model is completed, it can be orchestrated. During the orchestration, tasks that correspond to
geoservices are identified to instantiate their corresponding service calls. The communication between
BPMN model and the geoservices is realized through the API that accompanies our method.

6.2 Discussion

To realize the research objective, the flowing questions were addressed:

1. What are the requirements to create a service chain?

When we started this research, it was not possible to orchestrate services chain containing OGC services
using BPMN. We looked into the existing functionality of BPMN, and into the specifications of OGC
processing services, to understand why they cannot work together. We determined that to create OGC
enabled service chains with BPMN, we need to include a BPMN element with new semantics so that it
can be used to identify tasks involving OGC services in a workflow and link them to their corresponding
OGC interface to make the necessary service calls. In additional to the new BPMN element’s semantics, a
set of functions were identified that were required to realize the communication with the actual services.
All other aspects of the interaction between OGC services, such as their execution order or sequential
constraints can be handled with standard BPMN elements.

2. How to use standardized and readily understandable graphical notation like (BPMN), to
represent geo-processes and their workflow?

When an organization need to run workflows using BPMN and wanted to include geoprocessing services
in those workflows this organization will have troubles. To execute BPMN tasks in a chain that
correspond to OGC services, an application programming interface (API) is needed. This application is
triggered when the workflow is being orchestrated and controls the communication between workflow
and the remote services. This application also extracts the information from the tasks in the workflow and
construct the appropriate request to instantiate the services. At the same time, it is responsible for
inserting back into the workflow the response of the services.
This communication is done in two steps:

 API extracts the data from the workflow and,

 Python script writes services requests and redirects the responses.

DESIGN AND ORCHESTRATION OF WEB PROCESSING SERVICES AS SERVICE CHAINS

50

3. What are the procedures of chaining geo-services with BPMN?

To chain a set of geoprocessing unit into a service chain, it is necessary to model the functional properties
which enable two or more activities to interact each other within the chain. Here we listed the main
procedures:

Process Mapping

Process mapping is the first activities within BPMN to model processes, at this level we:

 Identified all BPMN elements required to model processes based on organizational workflow.

 We created a workflow using the BPMN editor, for example, ProcessMaker. The result of this

step is BPMN diagram showing the sequence of different services.

Process Description

Given that, all processing units services and their inputs was modelled using BPMN notation, at this level
process is extended with enough information, such as marking the tasks representing geo-services, create
variables to contain inputs and output from processing units execution, create dynamic form, step, users
process rules, and assign tasks to corresponding users etc.

Process Model

This is what in our case we call workflow of activity or BPMN diagram, at this level the workflow, is

equipped with enough information which makes it ready for being analysed and executed. BPMN has

essential element to execute the workflow, but is not able to distinguish, activities representing geo-

services to make service call as it was not designed for that. Therefore, the API we developed is involved

to identify all tasks representing geo-service activity in workflow and read their properties to make

appropriate service call. This element is equipped with enough function to allow connection of BPMN

tasks representing geoservices in BPMN diagram (workflow) to their corresponding services. In addition

to that all involved geo-services were described based on OGC standard and service requester is defined

to be able to find out about the process status and, in case the process has completed, where to pick the

result. Finally, a python script is trigged to send service execution request to the server.

4. How can web service orchestration improve the exploitation of OGC services?

Web service orchestration is the key for assembling geo-services into useful geoprocessing workflows.
According to OGC WPS can be incorporated into service chains to make a sequence of web services. In
service chaining, a set of services needs to be combined to work together to do the job. When this
composition is done manually it becomes very complex and error prone. Therefore, we created the
mechanism of putting those services together to avoid errors and make workflow easy to execute. To do
that we basically focused on how BPMN and OGC services can understand each other to create a
workflow containing spatial data and geoprocessing services based on organizational workflow. To create
such sequence of services requires the analyses of what OGC provides and how a service can be requested
based on the standard.

5. How to build and orchestrate the service chain into an executable workflow?

The main solution adopted for executing BPMN models up to version 1.2 was through their mapping to
another language but with BPMN 2.0 is possible to obtain semi-automatically XML codes to deploy in
orchestration engine. BPEL and XPDL are aimed to describe the executable workflows the specification
of low-level implementation details such as calling a web services or geo-services, gathering their
responses and handling the proper transformation operations.

DESIGN AND ORCHESTRATION OF WEB PROCESSING SERVICES AS SERVICE CHAINS

51

In this research, as BPMN was not natively created to model geo-services different way was proposed and
implemented. To this end, API was developed to identify BPMN tasks representing geo-service in
workflow, describe the individual components by providing all details and instantiate these geo-services to
make service call through a python script.
At the same time, it is responsible for inserting back into the workflow the response of the services.
ProcessMaker engine runs a workflow and returns an index of delegated task to the API through
ProcessMaker web service. In the end, the result from execution is saved and web interface was developed
to help the user to visualize the result from the execution.

6.3 Conclusion

We have studied the functionalities and the limitations of BPMN to model geoprocesses. To that end,
those limitations were removed by new proposed method in section 4.3 of this thesis. In that section, we
have proposed and develop an API accompanies with different functions able to identify BPMN element
representing geoservices to make a service call. In the same way, a python script was developed to send
the execute request to WPS server. A use case was implemented in chapter 5 to demonstrate the
functionality of our developed method. Moreover, it has been tested with a single use case. Based on that
we concluded that the limitation of BPMN to model geoprocessing services was removed now, it is no
longer a problem to model WPS services using BPMN.

6.4 Recommendation

In order to improve the outcome of this research project, we recommend the following:

Implementation of “geo-task”

For none technical persons (persons with no programming background) to be able to benefit both
standard BPMN and OGC services, A “geo-task” need to be developed and added in BPMN as a spatial
task or a task that has spatial information. A “geo-task” in this case is a type of task with clear semantics
to recognize, describe the spatial data and spatial services in the context of the business process workflow.
Then, during the execution of the workflow, the specialized BPMN element to run workflow can
recognize it as spatial task or task that has spatial information such as Location etc.

Extending BPMN business rule task to support geospatial data and services

BPMN provides a business rule task that defines a mechanism for a process to provide inputs to a
business rule engine and get the output after of the computation. The interested MSc student can study
the functionality of this task and adds more functionality to make it useful for supporting spatial data and
spatial services.

Extend the functionality of new proposed method

Even if the proposed method is good enough to chain WPS services using BPMN, the current
functionality of the new proposed method can be enhanced by adding more functionality or components
where necessary.
For example, python script developed to send WPS execute request need to be enhanced to describe all
possible number of WPS operations, marking service task representing geo-services in BPMN diagram
need to be enhanced by providing a significant symbol to differentiate service task representing geo-
service and normal service task. In addition, to that error handling and input validation mechanism need
to be improved and, if possible, include non-functional requirements such as security and quality of
service etc.

DESIGN AND ORCHESTRATION OF WEB PROCESSING SERVICES AS SERVICE CHAINS

52

LIST OF REFERENCES

Abdaldhem Albreshne, Patrik Fuhrer, J. P. (2009). Web Services Technologies: State of the Art. Retrieved

January 28, 2016, from
http://diuf.unifr.ch/drupal/softeng/sites/diuf.unifr.ch.drupal.softeng/files/file/publications/intern
al/WP09-04.pdf

Alameh, N. (2003). Chaining geographic information web services. IEEE Internet Computing, 7(5), 22–29.
doi:10.1109/MIC.2003.1232514

Albrecht, J., Derman, B., & Ramasubramanian, L. (2008). Geo-ontology tools: The missing link.
doi:10.1111/j.1467-9671.2008.01108.x

Allweyer, T. (2010). BPMN 2.0: Introduction to the Standard for Business Process Modeling. BoD – Books on
Demand. Retrieved from
https://books.google.com/books?hl=en&lr=&id=fdlC7K_3dzEC&pgis=1

Barker, A., & Van Hemert, J. I. (2007). Scientific Workflow: A Survey and Research Directions.
doi:10.1007/978-3-540-68111-3

Baumann, P. (2012). OGC® WCS 2.0 Interface Standard- Core: Corrigendum. Retrieved January 31,
2016, from
http://www.opengeospatial.org/standards/wcs\npapers2://publication/uuid/D303A640-AF41-
432D-B72C-593E1BDCFF47

Booth, D., Haas, H., McCabe, F., Newcomer, E., Champion, M., Ferris, C., & Orchard, D. (2004). Web
Services Architecture. Retrieved October 16, 2015, from http://www.w3.org/TR/ws-arch/#whatis

Campagna, M. (2014). Orchestrating the spatial planning process : from Business Process Management to
2 nd generation Planning Support Systems. Retrieved August 18, 2015, from http://www.agile-
online.org/Conference_Paper/cds/agile_2014/agile2014_132.pdf

Campagna, M., Ivanov, K., & Massa, P. (2014). Implementing Metaplanning with Business Process
Management. Procedia Environmental Sciences, 22, 199–209. doi:10.1016/j.proenv.2014.11.020

Chinosi, M., & Trombetta, A. (2012). BPMN: An introduction to the standard.
doi:10.1016/j.csi.2011.06.002

Coalition, W. M. (2012). Workflow Standard Process Definition Interface--XML Process Definition
Language. Retrieved October 26, 2015, from http://www.xpdl.org/nugen/p/gseonklyf/a/2009-4-7
xpdl 2.doc

Database and Expert Systems Applications: 17th International Conference, DEXA 2006, Krakow, Poland, September
4-8, 2006, Proceedings. (2006). Springer Science & Business Media. Retrieved from
https://books.google.com/books?id=W07Q1D18Z80C&pgis=1

Date, S., Date, A., Date, P., Editor, C. S., Liang, S., Huang, C., & Khalafbeigi, T. (2015). Open Geospatial
Consortium. Retrieved January 31, 2016, from http://docs.opengeospatial.org/is/09-025r2/09-
025r2.html

de By, R. a., Lemmens, R., & Morales, J. (2009). A skeleton design theory for spatial data infrastructure:
Methodical construction of SDI nodes and SDI networks. Earth Science Informatics, 2(4), 299–313.
doi:10.1007/s12145-009-0034-7

Díaz, L., Pepe, M., Granell, C., Carrara, P., & Rampini, A. (2010). Developing and chaining web
processing services for hydrological models. International Archives of the Photogrammetry, Remote Sensing
and Spatial Information Sciences - ISPRS Archives, 38(4W13). Retrieved from
http://www.scopus.com/inward/record.url?eid=2-s2.0-84923870654&partnerID=tZOtx3y1

Donaubauer, A., & Straub, F. (2010). A Spatial Decision Service for BPEL. Retrieved October 17, 2015,
from http://www.isprs.org/proceedings/xxxviii/4-W13/ID_40.pdf

Foerster, T., Schaeffer, B., Brauner, J., & Jirka, S. (2009). Integrating OGC web processing services into
geospatial Mass-market applications. Proceedings of the International Conference on Advanced Geographic
Information Systems and Web Services, GEOWS 2009, 98–103. doi:10.1109/GEOWS.2009.19

Friis-Christensen, A., Ostländer, N., Lutz, M., & Bernard, L. (2007). Designing service architectures for
distributed geoprocessing: Challenges and future directions. Transactions in GIS, 11(6), 799–818.
doi:10.1111/j.1467-9671.2007.01075.x

DESIGN AND ORCHESTRATION OF WEB PROCESSING SERVICES AS SERVICE CHAINS

53

Georgakopoulos, D., Ritter, N., & Benatallah, B. (2007). Service-Oriented Computing ICSOC 2006: 4th
International Conference, Chicago, IL, USA, December 4-7, 2006, Workshop Proceedings. Springer Science &
Business Media. Retrieved from https://books.google.com/books?id=rc3Y9Mthsc8C&pgis=1

GIS HYDRO 2009. (2009). Retrieved December 21, 2015, from
https://www.crwr.utexas.edu/gis/gishydro09/what_is_SOA.html

Hallwyl, T., Henglein, F., & Hildebrandt, T. (2010). A standard-driven implementaion of WS-BPEL 2.0.
In Proceedings of the 2010 ACM Symposium on Applied Computing - SAC ’10 (p. 2472). New York, New
York, USA: ACM Press. doi:10.1145/1774088.1774599

Hu, L., Yue, P., & Gong, J. (2013). Asynchronous geoprocessing services: An interoperable approach. In
2013 Second International Conference on Agro-Geoinformatics (Agro-Geoinformatics) (pp. 408–412). IEEE.
doi:10.1109/Argo-Geoinformatics.2013.6621953

International Organization for Standardization. (2005). ISO 19119:2005 Geographic information --
Services. Retrieved January 4, 2016, from
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=39890

Jordan, D., & Alves, A. (2007a). Web Services Business Process Execution Language Version 2. 0.
doi:10.1146/annurev.biophys.37.032807.125832

Jordan, D., & Alves, A. (2007b). Web Services Business Process Execution Language Version 2. 0.
doi:10.1146/annurev.biophys.37.032807.125832

Josuttis, N. M. (2007a). Soa in practice: the art of distributed system Design. doi:citeulike-article-
id:2722436

Josuttis, N. M. (2007b). Soa in practice: the art of distributed system Design. doi:citeulike-article-
id:2722436

Kagoyire, C. (2009). Web geoprocessing services on GML with fast XML database. University of Twente Faculty
of Geo-information and Earth Observation (ITC). Retrieved from
http://www.itc.nl/library/papers_2009/msc/gfm/kagoyire.pdf

Kudrass, T. (2003). Describing architectures using RM-ODP. Retrieved February 11, 2016, from
http://www.imn.htwk-leipzig.de/~kudrass/Publikationen/OOPSLA99.pdf

Lemmens, R., de By, R., Gould, M., Wytzisk, A., Granell, C., & van Oosterom, P. (2007). Enhancing Geo-
Service Chaining through Deep Service Descriptions. Transactions in GIS, 11(6), 849–871.
doi:10.1111/j.1467-9671.2007.01079.x

Lemmens, R., Wytzisk, A., By, R. d., Granell, C., Gould, M., & van Oosterom, P. (2006). Integrating
Semantic and Syntactic Descriptions to Chain Geographic Services. IEEE Internet Computing, 10(5),
42–52. doi:10.1109/MIC.2006.106

Meek, S., Jackson, M., & Leibovici, D. G. (2016). A BPMN solution for chaining OGC services to quality
assure location-based crowdsourced data. Computers & Geosciences, 87, 76–83.
doi:10.1016/j.cageo.2015.12.003

Meng, X., Xie, Y., & Bian, F. (2010). Distributed geospatial analysis through web processing service: A
case study of earthquake disaster assessment. doi:10.4304/jsw.5.6.671-679

Mukherjee, J., & Ghosh, S. K. (2010). Geospatial service chaining in decision support systems. In
Proceedings of the 2010 Annual IEEE India Conference: Green Energy, Computing and Communication,
INDICON 2010 (pp. 1–4). IEEE. doi:10.1109/INDCON.2010.5712654

Mukherjee, J., Mukherjee, I., & Ghosh, S. K. (2011). Framework for spatial query resolution for decision
support using geospatial service chaining and fuzzy reasoning. doi:10.1007/978-3-642-19423-8_9

Object Management Group, Parida, R., & Mahapatra, S. (2011). Business Process Model and Notation
(BPMN) Version 2.0. doi:10.1007/s11576-008-0096-z

OGC. (2010). OpenGIS ® Web Map Tile Service Implementation Standard. Retrieved January 31, 2016,
from http://www.opengeospatial.org/standards/wmts

OGC, Mueller, M., & Pross, B. (2015). OGC WPS 2.0 Interface Standard. Retrieved August 2, 2015, from
http://www.opengeospatial.org/pressroom/pressreleases/2241

Ouyang, C., Aalst, V. Der, Wil, M. P., & Arthur, H. M. (2009). From business process models to process-
oriented software systems: The BPMN to BPEL way. doi:10.1016/S0190-9622(06)01179-0

Prager, M., Klímek, F., & Růžička, J. (2009). GeoWeb Services Orchestration Based on BPEL or BPMN.
Retrieved from
http://www.researchgate.net/publication/229010710_GeoWeb_Services_Orchestration_Based_on
_BPEL_or_BPMN

DESIGN AND ORCHESTRATION OF WEB PROCESSING SERVICES AS SERVICE CHAINS

54

Růžička, J. (2009). ISO 19115 for GeoWeb services orchestration. Geoinformatics FCE CTU, 3, 51–66.
doi:10.14311/gi.3.5

Schaeffer, B. (2009). OGC OWS-6 Geoprocessing Workflow Architecture Engineering Report. Retrieved
October 26, 2015, from https://portal.opengeospatial.org/files/?artifact_id=34968

Senkler, K. (2007). Open Geospatial Consortium Inc. OpenGIS ® Catalogue Services Specification 2. 0 .
2 - ISO Metadata Application Profile. Retrieved January 31, 2016, from
http://www.opengeospatial.org/standards/cat\nhttp://portal.opengeospatial.org/files/?artifact_id
=20555

Shapiro, R., White, S. a, Bock, C., Palmer, N., zur Muehlen, M., Brambilla, M., & Gagné, D. (2012).
BPMN 2.0 Handbook Second Edition: Methods, Concepts, Case Studies and Standards in Business Process
Modeling Notation (BPMN). Future Strategies Inc. Retrieved from
https://books.google.com/books?id=9U3DO5PoTDQC&pgis=1

Specification, A. (2001). Category : OpenGIS ® Implementation Specification Status : Adopted
Specification Web Map Service Implementation Specification. Retrieved January 31, 2016, from
https://earthdata.nasa.gov/files/01-068r3_web_map_service_implementation_specification.pdf

Stollberg, B., & Zipf, A. (2007). OGC Web Processing Service Interface for Web Service Orchestration
Aggregating Geo-processing Services in a Bomb Threat Scenario. doi:10.1007/978-3-540-76925-
5_18

Strickland, A., Whittington, D., Taylor, P., & Wang, B. (2006). Analysis of BPEL and High-Level Web
Service Orchestration: Bringing Benefits to the Problems of the Business. In Database and Expert
Systems Applications (Vol. 4080, pp. 123–137). doi:10.1007/11827405_13

Teams, D. (2004). Rational Unified Process Best Practices for Software. doi:10.1.1.27.4399
Westerholt, R., & Resch, B. (2015). Asynchronous Geospatial Processing: An Event-Driven Push-Based

Architecture for the OGC Web Processing Service. Transactions in GIS, 19(3), 455–479.
doi:10.1111/tgis.12104

Ying, Y., Qunyong, W., & Linjun, K. (2012). Integrate geo-spatial web processing services by workflow
technology. doi:10.1007/978-3-642-27323-0_41

Yu, G. E., Zhao, P., Di, L., Chen, A., Deng, M., & Bai, Y. (2012). BPELPower-A BPEL execution engine
for geospatial web services. Computers and Geosciences, 47, 87–101. doi:10.1016/j.cageo.2011.11.029

Zhao, P., Di, L., & Yu, G. (2012). Building asynchronous geospatial processing workflows with web
services. Computers & Geosciences, 39, 34–41. doi:10.1016/j.cageo.2011.06.006

Zhao, P., Foerster, T., & Yue, P. (2012). The Geoprocessing Web. doi:10.1016/j.cageo.2012.04.021

DESIGN AND ORCHESTRATION OF WEB PROCESSING SERVICES AS SERVICE CHAINS

55

ANNEX 1: API Function Definitions

<?php
global $TaskType1;

// Function to check type of task
function CheckTaskType()
{
 $connection = mysql_connect('130.89.231.83:3309','root', 'Aphro@rnra2013') or
 die('Unable to connect: '. mysql_error()); // Create a connection to workflow
model database
 mysql_select_db('wf_workflow');//select workflow model database when connection is
established

 $queryoutcome = mysql_query("SELECT APP_UID FROM wf_workflow.application order by
APP_NUMBER desc limit 1") or
 die("Error: can't connect to application table.\n");

 $record = mysql_fetch_array($queryoutcome, MYSQL_ASSOC);
 $CaseID= $record['APP_UID']; // Current CasID returned by process engine
 // query the delagated index for running task in particular caseID
 $result2 = mysql_query("SELECT DEL_INDEX
 FROM app_delegation
 WHERE APP_UID ='$CaseID'
 ORDER BY DEL_INDEX DESC
 LIMIT 1") or
 die("Error: Unable to query the app_delegation table.\n");//Error
control
 $record2 = mysql_fetch_array($result2, MYSQL_ASSOC);
 $IndexID= $record2['DEL_INDEX'];
 // quert the running TaskID (this is the task with top delagation index)
 $result3 = mysql_query("SELECT TAS_UID FROM wf_workflow.app_delegation where
APP_UID='$CaseID' and DEL_INDEX=$IndexID") or
 die("Error: Unable to query app_delegation table.\n");

 $record3 = mysql_fetch_array($result3, MYSQL_ASSOC);
 $TaskID=$record3['TAS_UID'];
 //Query Task type of the running task in land use planning model
 $result4 = mysql_query("SELECT ACT_TASK_TYPE FROM wf_workflow.bpmn_activity
where ACT_UID='$TaskID'") or
 die("Error: Unable to query bpmn_activity table.\n");
 $record4 = mysql_fetch_array($result4, MYSQL_ASSOC);
 $TaskType=$record4['ACT_TASK_TYPE'];
 // query which task name associated with such particular running task

 return $TaskType;
}
//Function that instantiate task

function InstantiateTask()
{
 $TaskType=CheckTaskType();
 $connection = mysql_connect('130.89.231.83:3309','root', 'Aphro@rnra2013') or

DESIGN AND ORCHESTRATION OF WEB PROCESSING SERVICES AS SERVICE CHAINS

56

 die('Could not connect: '. mysql_error()); // Create a connection to workflow
model database
 mysql_select_db('wf_workflow');//select workflow model database when connection is
established
 // query which task name associated with such particular running task
 $queryoutcome = mysql_query("SELECT APP_UID FROM wf_workflow.application order by
APP_NUMBER desc limit 1") or
 die("Error: Unable to query the USER table.\n");
 $record = mysql_fetch_array($queryoutcome, MYSQL_ASSOC);
 $CaseID= $record['APP_UID']; // Current CasID returned by process engine
 // query the delagated index for running task in particular caseID
 $result2 = mysql_query("SELECT DEL_INDEX
 FROM app_delegation
 WHERE APP_UID ='$CaseID'
 ORDER BY DEL_INDEX DESC
 LIMIT 1") or
 die("Error: Unable to query the app_delegation table.\n");//Error
control
 $record2 = mysql_fetch_array($result2, MYSQL_ASSOC);
 $IndexID= $record2['DEL_INDEX'];
 // quert the running TaskID (this is the task with top delagation index)
 $result3 = mysql_query("SELECT TAS_UID FROM wf_workflow.app_delegation where
APP_UID='$CaseID' and DEL_INDEX=$IndexID") or
 die("Error: Unable to query app_delegation table.\n");

 $record3 = mysql_fetch_array($result3, MYSQL_ASSOC);
 $TaskID=$record3['TAS_UID'];
 if ($TaskType=="SERVICETASK")
 {
 $result5 = mysql_query("SELECT ACT_NAME FROM wf_workflow.bpmn_activity where
ACT_UID='$TaskID' and ACT_NAME LIKE 'WPS%'") or
 die("Error: Unable to query the bpmn_activity table.\n");
 $record5 = mysql_fetch_array($result5, MYSQL_ASSOC);
 $ActivityName=$record5['ACT_NAME'];
 }
 else
 {
 $result5 = mysql_query("SELECT ACT_NAME FROM wf_workflow.bpmn_activity where
ACT_UID='$TaskID'") or
 die("Error: Unable to query the bpmn_activity table.\n");
 $record5 = mysql_fetch_array($result5, MYSQL_ASSOC);
 $ActivityName=$record5['ACT_NAME'];
 }
 return $ActivityName;
}
//Function that retrieves task properties

function GetVariables($params2)
{
require_once('Authentication.php');
$user = new SoapClient('http://130.89.231.83:8084/sysworkflow/en/green/services/wsdl2');
$parameters = array(array('userid'=>$username, 'password'=>$password));
$outcome = $user->__SoapCall('login', $parameters);
if ($outcome->status_code == 0)
 $sessionId = $outcome->message;

DESIGN AND ORCHESTRATION OF WEB PROCESSING SERVICES AS SERVICE CHAINS

57

 else
 print "Unable to connect to ProcessMaker.\nError Number: $outcome->status_code\n" .
 "Error Message: $outcome->message\n";
 $parameters = array(array('sessionId'=>$sessionId));
 $outcome = $user->__SoapCall('caseList', $parameters);
 $casesArray = $outcome->cases;
 $conn = mysql_connect('130.89.231.83:3309','root', 'Aphro@rnra2013') or
 die('Could not connect: '. mysql_error());
 mysql_select_db('wf_workflow');
 $queryoutcome = mysql_query("SELECT APP_UID FROM wf_workflow.application order by
APP_NUMBER desc limit 1") or
 die("Error: Unable to query the USER table.\n");

 $record = mysql_fetch_array($queryoutcome, MYSQL_ASSOC);
 $CaseID= $record['APP_UID']; // Current CasID from processmaker database
 if ($casesArray != (object) NULL)
 {
 foreach ($casesArray as $case)
 if ($case->guid==$CaseID)
 $index=$case->delIndex ;
 $caseId=$case->guid;
 }

 class Structvariable {
 public $name;
 }
$vars = $params2;
 $variables = array();
 foreach ($vars as $var)
 {
 $obj = new Structvariable();
 $obj->name = $var;
 $variables[] = $obj;
 }
 $parameters = array(array('sessionId'=>$sessionId, 'caseId'=>$caseId,
 'variables'=>$variables));
 $outcome = $user->__SoapCall('getVariables', $parameters);
 if ($outcome->status_code == 0 && $outcome->variables != (object) NULL)
 {
 $variablesArray = $outcome->variables;
 }
 return $variablesArray;
 }

//Function that returns a delegated task index

function ReturnIndex()
{
require_once('Authentication.php');
$user = new SoapClient('http://130.89.231.83:8084/sysworkflow/en/green/services/wsdl2'); // Login
Processmaker to access its functionality
$parameter = array(array('userid'=>$username, 'password'=>$password));
$outcome = $user->__SoapCall('login', $parameter);
if ($outcome->status_code == 0)
 $sessionId = $outcome->message;

DESIGN AND ORCHESTRATION OF WEB PROCESSING SERVICES AS SERVICE CHAINS

58

 else
 print "Failed to connect to ProcessMaker.\nError Number: $outcome->status_code\n" .
 "Error Message: $outcome->message\n";
 $parameter = array(array('sessionId'=>$sessionId));
 $outcome = $user->__SoapCall('caseList', $parameter);
 $casesArray = $outcome->cases;
 $connection = mysql_connect('130.89.231.83:3309','root', 'Aphro@rnra2013') or
 die('Unable to connect: '. mysql_error());
 mysql_select_db('wf_workflow');
 $queryoutcome = mysql_query("SELECT APP_UID FROM wf_workflow.application order by
APP_NUMBER desc limit 1") or
 die("Error: Unable to query the application table.\n");
 $record = mysql_fetch_array($queryoutcome, MYSQL_ASSOC);
 $CaseID= $record['APP_UID']; // Current CasID from processmaker database
 if ($casesArray != (object) NULL)
 {
 foreach ($casesArray as $case)
 if ($case->guid==$CaseID)
 $index=$case->delIndex ;
 $caseId=$case->guid;
 }
 return $index;
}

// Function that send URL result of the executed service to process maker model repository

function SendResult($param2)
{
require_once('Authentication.php');
$user = new SoapClient('http://130.89.231.83:8084/sysworkflow/en/green/services/wsdl2');
$parameter = array(array('userid'=>$username, 'password'=>$password));
$outcome = $user->__SoapCall('login', $parameter);
if ($outcome->status_code == 0)
 $sessionId = $outcome->message;
 else
 print "Unable to connect to ProcessMaker.\nError Number: $outcome->status_code\n" .
 "Error Message: $outcome->message\n";

 class variableListStruct {
 public $name;
 public $value;
 }
 $vars = $param2 ;
 $variables = array();
 foreach ($vars as $key => $val)
 {
 $obj = new variableListStruct();
 $obj->name = $key;
 $obj->value = $val;
 $variables[] = $obj;
 }
 $parameter = array(array('sessionId'=>$sessionId, 'caseId'=>$caseId, 'variables'=>$variables));
 $outcome = $user->__SoapCall('sendVariables', $parameter);
 if ($outcome->status_code != 0)
 print "Error: $outcome->message \n";

DESIGN AND ORCHESTRATION OF WEB PROCESSING SERVICES AS SERVICE CHAINS

59

 else
 print $outcome->message;
}

// Function that calls python script to execute service request
function ExecuteService($Parameters)
{
 for($i = 0, $c = count($array); $i < $c; $i++)
 var_dump($array[$i]);
 $param1=$Parameters[0];
 $param2=$Parameters[1];
 $param3=$Parameters[2];
 $command="python WPSBuffer.py $param1 $param2 $param3";
 $Status='';
 ob_start();// prevent outputting till you are done
 passthru($command);
 // get the result out
 $Status=ob_get_contents();
 ob_end_clean();// clean up the Status
 if ($Status==200)
 {

$resultUrl="http://win371.ad.utwente.nl/student/s6019978/Thesis/BoundaryBufferresult.xml";
 print("Task executed sucessfully!!!");

 echo '<form
action="http://win371.ad.utwente.nl/student/s6019978/Thesis/APIControlScript.php"><input
type="submit" value="Next Task" /></form>';
 }
 else
 {
 echo "Sorry Unable tocall python Script";

 }

return $Status;
}

//Function that move the case to the next task during workflow execution

function NextTask()
{
$connection = mysql_connect('130.89.231.83:3309','root', 'Aphro@rnra2013') or die('Could not connect:
'. mysql_error());
 mysql_select_db('wf_workflow');
 $queryoutcome = mysql_query("SELECT APP_UID FROM wf_workflow.application order by
APP_NUMBER desc limit 1") or
 die("Error: Unable to query the application table.\n");
 $record = mysql_fetch_array($queryoutcome, MYSQL_ASSOC);
 $CaseID= $record['APP_UID'];
$Scriptresult=ExecuteService();
if($Scriptresult==200)
{
require_once('Authentication.php');
$user = new SoapClient('http://130.89.231.83:8084/sysworkflow/en/green/services/wsdl2');

DESIGN AND ORCHESTRATION OF WEB PROCESSING SERVICES AS SERVICE CHAINS

60

$parameters = array(array('userid'=>$username, 'password'=>$password));
$outcome = $user->__SoapCall('login', $parameters);
if ($outcome->status_code == 0)
 $sessionId = $outcome->message;
 else
 print "Unable to connect to ProcessMaker.\nError Number: $outcome->status_code\n" ."Error
Message: $outcome->message\n";
 #Route case
 $parameters = array(array('sessionId'=>$sessionId,
 'caseId'=>$CaseID, 'delIndex'=> $index));
 $outcome = $user->__SoapCall('routeCase', $parameters);
 if ($outcome->status_code == 0)
 {
 print "Case derived: $outcome->message \n";
 }
 else
 print "Error deriving case: $outcome->message \n";
}
else
 echo "Sorry Unable to call python Script";
}

// Function that route case

Function routeCase()
{
require_once('Authentication.php');
$user = new SoapClient('http://130.89.231.83:8084/sysworkflow/en/green/services/wsdl2');
$parameters = array(array('userid'=>$username, 'password'=>$password));
$outcome = $user->__SoapCall('login', $parameters);
if ($outcome->status_code == 0)
 $sessionId = $outcome->message;
 else
 print "Unable to connect to ProcessMaker.\nError Number: $outcome->status_code\n" ."Error
Message: $outcome->message\n";
 $connection = mysql_connect('130.89.231.83:3309','root', 'Aphro@rnra2013') or die('Could not
connect: '. mysql_error());
 mysql_select_db('wf_workflow');
 $queryoutcome = mysql_query("SELECT APP_UID FROM wf_workflow.application order by
APP_NUMBER desc limit 1") or
 die("Error: Unable to query the application table.\n");
 $record = mysql_fetch_array($queryoutcome, MYSQL_ASSOC);
 $CaseID= $record['APP_UID']; // Current CaseID from processmaker database
 $outcome = $user->__SoapCall('caseList', $parameters);
 $casesArray = $outcome->cases;
 if ($casesArray != (object) NULL)
 {
 foreach ($casesArray as $case)
 if ($case->guid==$CaseID)
 $index=$case->delIndex ;
 $caseId=$case->guid;
 }
$parameters = array(array('sessionId'=>$sessionId,'caseId'=>$CaseID, 'delIndex'=>$index));
 $outcome = $user->__SoapCall('routeCase', $parameters);
 if ($outcome->status_code == 0)

DESIGN AND ORCHESTRATION OF WEB PROCESSING SERVICES AS SERVICE CHAINS

61

 {
 echo '<form
action="http://win371.ad.utwente.nl/student/s6019978/Thesis/APIControlScript.php"><input
type="submit" value="Next Task" /></form>';
 }
}
 ?>

DESIGN AND ORCHESTRATION OF WEB PROCESSING SERVICES AS SERVICE CHAINS

62

ANNEX 2: Landuse Planning Implementation Codes

<?php
global $index;
global $caseId;
global $ActivityName;
global $taskid;
global $WFSBoundary;
global $WFSDistance;
global $BufferResult;
global $WFSForestUrl;
global $WPSBuffer_Result;
global $WFSForest;
global $WPSForestresult;
global $Base_Url;
global $taskType;
global $StatusID;
include 'API.php';
$index=ReturnIndex();
print $index;
 switch($index)
 {
 case 1:
 $taskType=CheckTaskType();
 //Check the returned task;
 if ($taskType=="USERTASK")
 {
 $ActivityName=InstantiateTask();
 if ($ActivityName=="WFS Forest")
 {
 routeCase();// move to the next task
 }
 if ($ActivityName=="WFS Built-Up Area")
 {
 routeCase();//move to the next task
 }
 if ($ActivityName=="WFS Admin boundary and Distance")
 {
 routeCase();//move to the next task
 }
 }
 elseif ($taskType=="RECEIVETASK")
 {
 $ActivityName=InstantiateTask();//check the name of activity
 if ($ActivityName=="Buffered Admin Boundary")
 {

SendResult(array('WPSBuffer_Result'=>'http://win371.ad.utwente.nl/student/s6019978/Thesis/Bounda
ryBufferresult.xml'));
 routeCase();
 }
 if ($ActivityName=="Intersected Area")
 {

DESIGN AND ORCHESTRATION OF WEB PROCESSING SERVICES AS SERVICE CHAINS

63

SendResult(array('WPSIntersectionResult'=>'http://win371.ad.utwente.nl/student/s6019978/Thesis/For
est_boundaryIntersection.xml'));
 routeCase();
 }
 if ($ActivityName=="Buffered Forest")
 {

SendResult(array('WPSForestBufferedResult'=>'http://win371.ad.utwente.nl/student/s6019978/Thesis/
ForestBufferedresult.xml'));
 routeCase();
 }
 }
 elseif ($taskType=="SERVICETASK")
 {
 $ActivityName=InstantiateTask();// Instiantiate function
 if ($ActivityName=="WPS Buffer")
 {

$parameter=GetVariables(array('WFS_Admin_Boundary','Distance','Base_Url'));
 $WFSBoundary=$parameter[0]->value;
 $WFSDistance=$parameter[1]->value;
 $WFSBoundary = str_replace('&', ',', $WFSBoundary);
 $BaseUrl=$parameter[2]->value;

$StatusID=ExecuteService(array('$WFSBoundary','$WFSDistance',' $BaseUrl'));
 if ($StatusID==200)
 {
 NextTask();
 }
 }
 if ($ActivityName=="WPS Intersect admin boundary and Forest")
 {

$parameter=GetVariables(array('WPSBuffer_Result','WFSForest','Base_Url'));
 $BufferResult=$parameter[0]->value;
 $WFSForestUrl= $parameter[1]->value;
 $WFSForestUrl = str_replace('&', ',', $WFSForestUrl);
 $BaseUrl= $parameter[2]->value;

 $StatusID=ExecuteService(array('$BufferResult','$WFSForestUrl',' $BaseUrl'));
 if ($StatusID==200)
 {
 NextTask();
 }
 }
 if ($ActivityName=="WPS Buffer Forest")
 {

$parameter=GetVariables(array('WPSForestBufferedResult','BuiltupFeaures','Base_Url'));
 $WPSForestresult=$parameter[0]->value;
 $WFSBuiltupFeauresUrl= $parameter[1]->value;
 $WFSBuiltupFeauresUrl = str_replace('&', ',',
$WFSBuiltupFeauresUrl);
 $BaseUrl=$parameter[2]->value;

DESIGN AND ORCHESTRATION OF WEB PROCESSING SERVICES AS SERVICE CHAINS

64

 $StatusID=ExecuteService(array('$WPSForestresult','$WFSBuiltupFeauresUrl',' $BaseUrl'));
 if ($StatusID==200)
 {
 NextTask();
 }
 }
 if ($ActivityName=="WPS Intersect Forest and Built-up")
 {

$parameter=GetVariables(array('WPSIntersectionResult','Distance','Base_Url'));
 $WPSForestresult=$variablesArray[0]->value;
 $WFSDistance=$variablesArray[1]->value;
 $BaseUrl=$variablesArray[2]->value;

 $StatusID=ExecuteService(array('$WPSForestresult','$WFSDistance',' $BaseUrl'));
 if ($StatusID==200)
 {
 NextTask();
 }
 }
 }
 elseif ($taskType=="EMPTY")
 {

SendResult(array('Final_Result'=>'http://win371.ad.utwente.nl/student/s6019978/Thesis/FinalResult.x
ml'));
 routeCase();
 }

 else
 {
 print "sorry no task to execute";
 }
 break;

………………………………………………………………………. // up to case 12

 case 12:
 $taskType=CheckTaskType();
 //Check the returned task;
 if ($taskType=="USERTASK")
 {
 $ActivityName=InstantiateTask();
 if ($ActivityName=="WFS Forest")
 {
 routeCase();//move to the next task }
 if ($ActivityName=="WFS Built-Up Area")
 {
 routeCase();//move to the next task
 }
 if ($ActivityName=="WFS Admin boundary and Distance")
 {

DESIGN AND ORCHESTRATION OF WEB PROCESSING SERVICES AS SERVICE CHAINS

65

 routeCase();//move to the next task
 }
 }
 elseif ($taskType=="RECEIVETASK")
 {
 $ActivityName=InstantiateTask();//check the name of activity
 if ($ActivityName=="Buffered Admin Boundary")
 {

SendResult(array('WPSBuffer_Result'=>'http://win371.ad.utwente.nl/student/s6019978/Thesis/Bounda
ryBufferresult.xml'));
 routeCase();
 }
 if ($ActivityName=="Intersected Area")
 {

SendResult(array('WPSIntersectionResult'=>'http://win371.ad.utwente.nl/student/s6019978/Thesis/For
est_boundaryIntersection.xml'));
 routeCase();
 }
 if ($ActivityName=="Buffered Forest")
 {

SendResult(array('WPSForestBufferedResult'=>'http://win371.ad.utwente.nl/student/s6019978/Thesis/
ForestBufferedresult.xml'));
 routeCase();
 }
 }
 elseif ($taskType=="SERVICETASK")
 {
 $ActivityName=InstantiateTask();// Instiantiate function
 if ($ActivityName=="WPS Buffer")
 {

$parameter=GetVariables(array('WFS_Admin_Boundary','Distance','Base_Url'));
 $WFSBoundary=$parameter[0]->value;
 $WFSDistance=$parameter[1]->value;
 $WFSBoundary = str_replace('&', ',', $WFSBoundary);
 $BaseUrl=$parameter[2]->value;

$StatusID=ExecuteService(array('$WFSBoundary','$WFSDistance',' $BaseUrl'));
 if ($StatusID==200)
 {
 NextTask();
 }
 }
 if ($ActivityName=="WPS Intersect admin boundary and Forest")
 {

$parameter=GetVariables(array('WPSBuffer_Result','WFSForest','Base_Url'));
 $BufferResult=$parameter[0]->value;
 $WFSForestUrl= $parameter[1]->value;
 $WFSForestUrl = str_replace('&', ',', $WFSForestUrl);
 $BaseUrl= $parameter[2]->value;

DESIGN AND ORCHESTRATION OF WEB PROCESSING SERVICES AS SERVICE CHAINS

66

 $StatusID=ExecuteService(array('$BufferResult','$WFSForestUrl',' $BaseUrl'));
 if ($StatusID==200)
 {
 NextTask();
 }
 }
 if ($ActivityName=="WPS Buffer Forest")
 {

$parameter=GetVariables(array('WPSForestBufferedResult','BuiltupFeaures','Base_Url'));
 $WPSForestresult=$parameter[0]->value;
 $WFSBuiltupFeauresUrl= $parameter[1]->value;
 $WFSBuiltupFeauresUrl = str_replace('&', ',',
$WFSBuiltupFeauresUrl);
 $BaseUrl=$parameter[2]->value;

 $StatusID=ExecuteService(array('$WPSForestresult','$WFSBuiltupFeauresUrl',' $BaseUrl'));
 if ($StatusID==200)
 {
 NextTask();
 }
 }
 if ($ActivityName=="WPS Intersect Forest and Built-up")
 {

$parameter=GetVariables(array('WPSIntersectionResult','Distance','Base_Url'));
 $WPSForestresult=$variablesArray[0]->value;
 $WFSDistance=$variablesArray[1]->value;
 $BaseUrl=$variablesArray[2]->value;

 $StatusID=ExecuteService(array('$WPSForestresult','$WFSDistance',' $BaseUrl'));
 if ($StatusID==200)
 {
 NextTask();
 }
 }
 }
 elseif ($taskType=="EMPTY")
 {

SendResult(array('Final_Result'=>'http://win371.ad.utwente.nl/student/s6019978/Thesis/FinalResult.x
ml'));
 routeCase();
 }

 else
 {
 print "sorry no task to execute";
 }
 break;
 default:
 //print 'default';
 print 'Sorry the process is ended';
 }

DESIGN AND ORCHESTRATION OF WEB PROCESSING SERVICES AS SERVICE CHAINS

67

ANNEX 3: Landuse Planning Result Visualization Codes

<!DOCTYPE html>
<html>
 <head>
 <title>WPS Orchestration result visualization</title>
 <link rel="stylesheet" href="openlayers/theme/default/style.css" type="text/css">
 <link rel="stylesheet" href="default.css" type="text/css">
 <link rel="stylesheet" href="style.css" type="text/css">
 <link rel="stylesheet" href="main.css" type="text/css">
 <script src="OpenLayers/OpenLayers.js"></script>
 <script src="http://maps.google.com/maps/api/js?v=3&sensor=false"></script>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
 <meta name="viewport" content="width=device-width, initial-scale=1.0, maximum-
scale=1.0, user-scalable=0">

 </head>

 <h1></h1>

 <script type="text/javascript">
 function init() {
 var map = new OpenLayers.Map("map", {
 projection: new OpenLayers.Projection("EPSG:3857"),
 });
 var style2 = OpenLayers.Util.extend({},
OpenLayers.Feature.Vector.style['default']);
 style2.fillOpacity = 0.2;
 style2.graphicOpacity = 2;
 style2.strokeWidth = 4;
 style2.strokeColor = "Yellow";
 style2.strokeOpacity = 2;

 var style = OpenLayers.Util.extend({},
OpenLayers.Feature.Vector.style['default']);
 style.fillOpacity = 0.2;
 style.graphicOpacity =2;
 style.strokeWidth = 4;
 style.strokeColor = "Green";
 style.strokeOpacity = 2;
 style.backgroundGraphic= "Green";

 var style3 = OpenLayers.Util.extend({},
OpenLayers.Feature.Vector.style['default']);
 style3.fillOpacity = 0.2;
 style3.graphicOpacity = 1;
 style3.strokeWidth = 4;
 style3.strokeColor = "MediumPurple";
 style3.strokeOpacity = 0.5;
 style3.backgroundGraphic= "MediumPurple";

DESIGN AND ORCHESTRATION OF WEB PROCESSING SERVICES AS SERVICE CHAINS

68

 gmap = new OpenLayers.Layer.Google("Google Streets");
 var base = new OpenLayers.Layer.OSM("OSM Map");
 map.addLayer(gmap);
 map.addLayer(base);
 var center = new OpenLayers.LonLat(767373.67735,6840176.77234);
 map.setCenter(center,12);
 //map.addControl(new OpenLayers.Control.OverviewMap());
 map.addControl(new OpenLayers.Control.MousePosition());
 map.addControl(new OpenLayers.Control.LayerSwitcher());

 map.addControl(new OpenLayers.Control.KeyboardDefaults());

 var Features = new OpenLayers.Layer.Vector("Enschede", {
 strategies: [new OpenLayers.Strategy.BBOX()],
 protocol: new OpenLayers.Protocol.WFS({
 version: "1.0.0",
 url: "http://win371.ad.utwente.nl/cgi-
bin/mapserv.exe?map=//win371.ad.utwente.nl/student/s6019978/Thesis/configWFS.map",
 featureType: "neighbourhood",
 geometryName: "geom",
 srsName: "EPSG:3857"

 }),
 styleMap: new OpenLayers.StyleMap({
 strokeWidth: 4,
 strokeColor: "red",
 fillColor: "green",
 fillOpacity: 0.2,
 backgroundGraphic:"Yellow"
 }),

 });
 //console.log(Features)
 map.addLayer(Features);

 var BuiltUpFeatures = new OpenLayers.Layer.Vector("Enschede", {
 strategies: [new OpenLayers.Strategy.BBOX()],
 protocol: new OpenLayers.Protocol.WFS({
 version: "1.0.0",
 url: "http://win371.ad.utwente.nl/cgi-
bin/mapserv.exe?map=//win371.ad.utwente.nl/student/s6019978/Thesis/configWFS.map",
 featureType: "urban_areas",
 geometryName: "geom",
 srsName: "EPSG:3857"

 }),
 styleMap: new OpenLayers.StyleMap({
 strokeWidth: 2,
 strokeColor: "red",
 fillColor: "blue",
 fillOpacity: 0.2,
 //backgroundGraphic:"khaki"
 }),

DESIGN AND ORCHESTRATION OF WEB PROCESSING SERVICES AS SERVICE CHAINS

69

 });
 //console.log(Features)
 //map.addLayer(BuiltUpFeatures);

 var WPSIntersection = new OpenLayers.Layer.Vector("WPSIntersection", {
 style : style,
 strategies: [new OpenLayers.Strategy.Fixed()],
 protocol: new OpenLayers.Protocol.HTTP({
 url: "Forest_boundaryIntersection.xml",
 format: new OpenLayers.Format.GML()
 })
 });
 map.addLayer(WPSIntersection);
 var WPSBuiltupIntersection = new OpenLayers.Layer.Vector("WPSBuiltupIntersection", {
 style : style3,
 strategies: [new OpenLayers.Strategy.Fixed()],
 protocol: new OpenLayers.Protocol.HTTP({
 url: "FinalResult.xml",
 styles: 'greenline',
 format: new OpenLayers.Format.GML()
 })
 });
 map.addLayer(WPSBuiltupIntersection);
 var WPSBuffer = new OpenLayers.Layer.Vector("WPSBuffer", {
 style : style2,
 strategies: [new OpenLayers.Strategy.Fixed()],
 protocol: new OpenLayers.Protocol.HTTP({
 url: "BoundaryBufferresult.xml",
 format: new OpenLayers.Format.GML()
 })
 });
 // map.addLayer(WPSBuffer);

 var WPSBufferedForest = new OpenLayers.Layer.Vector("WPSBufferedForest", {
 style : style2,
 strategies: [new OpenLayers.Strategy.Fixed()],
 protocol: new OpenLayers.Protocol.HTTP({
 url: "ForestBufferedresult.xml",
 format: new OpenLayers.Format.GML()
 })
 });
 map.addLayer(WPSBufferedForest);

 map.addControl(new OpenLayers.Control.Attribution());
 map.addControl(new OpenLayers.Control.Navigation()); //Adds zoom & drag functionality to
the map
 map.addControl(new OpenLayers.Control.PanZoomBar()); //Displays the zoom in & zoom out
controls
 var scaleline = new OpenLayers.Control.ScaleLine({
 div: document.getElementById("scaleline-id")
 });
 map.addControl(scaleline);

DESIGN AND ORCHESTRATION OF WEB PROCESSING SERVICES AS SERVICE CHAINS

70

}
 </script>
 <body onload="init()">

 <div id="map" style="position: absolute; left: 5px; top
: 5px; width: 510px; height: 700px; overflow: hidden; border
: 1px solid blue; "></div>

<div id="legend" style="position:absolute; width:250px;
height:200px; left: 520px; top: 5px; overflow: auto;
border: 1px solid blue; ">
<hr size="5" align="left" width="10%" color="#FF0000">: Enschede admin boundary

<hr size="5" align="left" width="10%" color="#9966CC">: boundary of buit-up area

<hr size="5" align="left" width="10%" color="#008000">: boundary of forest area

<hr size="5" align="left" width="10%" color="#FFFF31">: boundary of buffered Forest

</div>

 </body>
</html>

DESIGN AND ORCHESTRATION OF WEB PROCESSING SERVICES AS SERVICE CHAINS

71

ANNEX 4: Python script to send WPS execute request to WPS server

Buffer operation
import requests
import sys
import urllib.request
import cgitb; cgitb.enable()
import cgi
import json
import xml.etree.ElementTree as ET
try:
 tree = ET.ElementTree(file='InputTest.xml')
 WFS_AdminBoundary_Url=sys.argv[1].replace(",","&") #Get Processmaker WFS admin Features
variable in Python
 DistanceBuffer=float(sys.argv[2]) #Get Processmaker Distance variable in Python
 #Base_url = 'http://130.89.236.184:8080/geoserver/ows'
 Base_url=sys.argv[3]
 #print(DistanceBuffer)
 #print(WFS_AdminBoundary_Url)
 #Base_url = 'http://130.89.236.184:8080/geoserver/ows'
 form = cgi.FieldStorage()
 root = tree.getroot()
 ###
 for child in root.iter():
 #print(child.tag,child.attrib,child.text)
 if ((child.tag=='{http://www.opengis.net/wps/1.0.0}LiteralData')and (child.text is None)):
 child.text=str(DistanceBuffer)
 if child.tag=='{http://www.opengis.net/wps/1.0.0}Reference':
 textvalue=child.attrib
 if not textvalue['{http://www.w3.org/1999/xlink}href']:
 textvalue['{http://www.w3.org/1999/xlink}href']=WFS_AdminBoundary_Url
 tree.write('output.xml')
 ###
 file=open('output.xml','r')
 k=file.read()
 headers={'Content-Type': 'application/xml'}
 # Send WPS execute operation to the Server
 resp=requests.post(Base_url,data=k,headers=headers)
 print(resp.status_code)
 file=open('BoundaryBufferresult.xml','w')
 file.write(resp.text)
 file.close()
except Exception as e:
 print (str(e))

Intersection Operation

import requests
import cgitb; cgitb.enable()
import sys
import xml.etree.ElementTree as ET

Buffer_Result=sys.argv[1] #Get WPS buffer resuli from processmaker variable to Python

DESIGN AND ORCHESTRATION OF WEB PROCESSING SERVICES AS SERVICE CHAINS

72

WFS_Forest_Url= sys.argv[2].replace(",","&") #Get Processmaker WFS Forest Features variable in
Python
Base_url=sys.argv[3]
try:
 #Base_url = 'http://130.89.236.184:8080/geoserver/ows'
 #def Intersection_Opeartion(Base_url,WFS_Forest_Url,Buffer_Result):
 tree = ET.ElementTree(file='IntersectionInputdata.xml')
 root = tree.getroot()

 for child in root.iter():
 if child.tag=='{http://www.opengis.net/wps/1.0.0}Reference':
 textvalue=child.attrib
 if textvalue['{http://www.w3.org/1999/xlink}href']:
 textvalue['{http://www.w3.org/1999/xlink}href']=Buffer_Result

 if not textvalue['{http://www.w3.org/1999/xlink}href']:
 textvalue['{http://www.w3.org/1999/xlink}href']=WFS_Forest_Url

 tree.write('output.xml')

 file=open('output.xml','r')
 k=file.read()
 headers={'Content-Type': 'application/xml'}
 # Send WPS execute operation to the Server
 resp=requests.post(Base_url,data=k,headers=headers)
 print(resp.status_code)
 file=open('Forest_boundaryIntersection.xml','w')
 file.write(resp.text)
 file.close()

except Exception as e:
 print (str(e))

DESIGN AND ORCHESTRATION OF WEB PROCESSING SERVICES AS SERVICE CHAINS

73

ANNEX 5: XML File Used As Data Input To WPS Server

Buffer

<?xml version="1.0" encoding="UTF-8"?><wps:Execute version="1.0.0"
service="WPS" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://www.opengis.net/wps/1.0.0" xmlns:wfs="http://www.opengis.net/wfs"
 xmlns:wps="http://www.opengis.net/wps/1.0.0" xmlns:ows="http://www.opengis.net/ows/1.1"
 xmlns:gml="http://www.opengis.net/gml" xmlns:ogc="http://www.opengis.net/ogc"
 xmlns:wcs="http://www.opengis.net/wcs/1.1.1" xmlns:xlink="http://www.w3.org/1999/xlink"
 xsi:schemaLocation="http://www.opengis.net/wps/1.0.0
http://schemas.opengis.net/wps/1.0.0/wpsAll.xsd">
 <ows:Identifier>gs:BufferFeatureCollection</ows:Identifier>
 <wps:DataInputs>
 <wps:Input>
 <ows:Identifier>features</ows:Identifier>
 <wps:Reference mimeType="application/wfs-collection-1.0" xlink:href="WFS URL"
method="GET"/>
 </wps:Input>
 <wps:Input>
 <ows:Identifier>distance</ows:Identifier>
 <wps:Data>
 <wps:LiteralData>Buffer Distance</wps:LiteralData>
 </wps:Data>
 </wps:Input>
 </wps:DataInputs>
 <wps:ResponseForm>
 <wps:RawDataOutput mimeType="text/xml; subtype=wfs-collection/1.0">
 <ows:Identifier>result</ows:Identifier>
 </wps:RawDataOutput>
 </wps:ResponseForm>
</wps:Execute>

Intersection

<?xml version="1.0" encoding="UTF-8"?><wps:Execute version="1.0.0"
 service="WPS" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://www.opengis.net/wps/1.0.0" xmlns:wfs="http://www.opengis.net/wfs"
 xmlns:wps="http://www.opengis.net/wps/1.0.0" xmlns:ows="http://www.opengis.net/ows/1.1"
 xmlns:gml="http://www.opengis.net/gml" xmlns:ogc="http://www.opengis.net/ogc"
 xmlns:wcs="http://www.opengis.net/wcs/1.1.1" xmlns:xlink="http://www.w3.org/1999/xlink"
 xsi:schemaLocation="http://www.opengis.net/wps/1.0.0
http://schemas.opengis.net/wps/1.0.0/wpsAll.xsd">
 <ows:Identifier>vec:IntersectionFeatureCollection</ows:Identifier>
 <wps:DataInputs>
 <wps:Input>
 <ows:Identifier>first feature collection</ows:Identifier>
 <wps:Reference xlink:href="BufferResult URL" method="GET"/>
 </wps:Input>
 <wps:Input>
 <ows:Identifier>second feature collection</ows:Identifier>
 <wps:Reference xlink:href="Feature WFS URL" method="GET"/>

DESIGN AND ORCHESTRATION OF WEB PROCESSING SERVICES AS SERVICE CHAINS

74

 </wps:Input>
 </wps:DataInputs>
 <wps:ResponseForm>
 <wps:RawDataOutput mimeType="application/wfs-collection-1.0">
 <ows:Identifier>result</ows:Identifier>
 </wps:RawDataOutput>
 </wps:ResponseForm>
</wps:Execute>

