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Summary

The current transition from generating energy with fossil fuels towards a more clean and sustainable energy
generation influences our society on many levels. Replacing fossil fuel cars by electric vehicles (EV) is an
important step in this transition. EVs are a suitable alternative to fossil fuel cars, as they do not exhaust
carbon-dioxide directly from the exhaust and are overall less environmentally damaging. However, banning
out fossil fuels like gasoline and diesel does not mean our demand to travel decreases. All these EVs need
to charge, preferably from a sustainable electricity source. However, our current electricity grid might
not be suitable to handle a large uptake in the penetration rate of EVs. EVs use relatively high-powered
chargers and the energy demands are large, which can induce a severe load on the grid. This thesis re-
searches to what extent the Dutch low-voltage electricity grid can handle an increase in EV penetration rate.

The Dutch low-voltage (LV) grid consists out of an estimated 300,000 feeder cables. The outcome of a
clustering method for a part of the Dutch LV grid is used to approximate a set of 26 feeders with dif-
ferent features, such as length, number of connections and cable type that can represent the Dutch LV
grid. These feeders are implemented in an LV grid model in DEMKit, a tool for simulating smart grids,
developed at the University of Twente. The Artificial Load Profile Generator, which works together with
DEMKit, allows us to create realistic household load models. These household load models are combined
with the grid models of the feeders and this allows us to simulate different types of situations.

The input for the Artificial Load Profile Generator is based on a database with statistics from the Dutch
central office for statistics, or ’Centraal Bureau voor de Statistiek’. This database provides detailed demo-
graphic information about every neighborhood in the Netherlands. This coupling makes it straightforward
to combine certain demographic settings to specific LV feeders. These demographic settings determine the
type of houses in such a neighborhood and the household composition, which then determine the household
load profile for that specific house. For each of the 26 feeders, the maximum number of simultaneously
charging EVs is determined as a physical limit. Charging more EVs than specified results in violating the
feeder limits by either overloading the current capacity of a feeder or creating a critical voltage drop.

We propose a model to estimate the probability that an EV is charging in a certain timeslot on a cer-
tain day, using plug-in time distributions of real EV charging sessions. Five different charging regimes
are introduced and combined into a single model with two EV charging power levels. Based on this, the
model calculates the probability that a certain number of EVs in a neighborhood charges simultaneously.
Combining this with the limits of each feeder, we can estimate the expected number of blackouts for all
possible EV penetration rates for all individual feeders. This is translated to a situation for the whole of
the Netherlands. Currently, the LV grid in the Netherlands experiences 52 daily power interruptions, or
blackouts, on average per day. The results show that at an EV penetration rate of 30%, the expected
number of daily blackouts in the Netherlands increases by 20%. However, after surpassing this value and
further increasing the EV penetration rate, the expected number of blackouts rapidly increases.
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Chapter 1

Introduction

1.1 Motivation
In the current energy transition from fossil fuel energy towards more clean and sustainable energy generation
with e.g. solar and wind energy, a lot of interest is also going out to the transport and mobility sector.
Since EVs make it possible to drive on sustainable generated energy without (directly) emitting carbon
dioxide and other greenhouse gasses, they are currently seen by the Dutch government as an important
piece of the energy transition. The Dutch government has propagated their ambitions on transport and
mobility in the 2017 Coalition Agreement ”Confidence in the Future” [1]. For passenger cars, three main
goals are set:

• ”By 2020, 10% of all new passenger cars sold will have an electric powertrain and plug. This goal is
realized: the total share of battery electric vehicles in the sales numbers of 2019 is 13.7%.

• ”By 2025, 50% of all new passenger cars sold will have an electric powertrain and a plug, and at
least 30% of these vehicles (15% of the total) will be fully electric.”

• ”By 2030, 100% of all new passenger cars sold will be zero-emission”

To reach these goals, the Dutch government is using fiscal advantages for zero-emission cars, with success:
the total number of electric vehicles (EVs) in the Netherlands is increasing. Up to the end of 2016, this in-
crease is mainly contributed to by the sales numbers of Plug-in Hybrid Electric Vehicles (PHEV) but due to
government policy reducing the fiscal advantage of PHEV these sales diminished. The fiscal advantage for
PHEV owners was reduced since these cars are not considered to be zero-emission cars. The two categories
considered zero-emission cars are Battery Electric Vehicles (BEV) and Fuel Cell Electric Vehicles (FCEV).
FCEVs are still of small importance in the total mix of EV in the Netherlands, but the BEV share is steadily
growing, according to numbers published by the Rijksdienst voor Ondernemend Nederland (RVO) [2].

This increase of the BEV share can have severe implications for the Dutch electricity grid infrastructure.
Considering that the capacity of a Tesla Model S battery pack of 95 kWh is enough to drive up to 610
kilometers [3], but also to power a typical four person household (considering an annual electricity con-
sumption of 3500 kWh) for up to ten days, implicates that the amount of energy needed to drive is large.
All passenger cars in the Netherlands together drove 105 billion kilometers on Dutch soil in 2018 [4]. Cal-
culating this for BEVs with an average consumption of 17.5 kWh per 100 kilometer results in about 18.4
TWh of extra electrical energy demand, while the current total annual household electricity consumption in
the Netherlands is around 22.7 TWh [5]. Summarizing: if all passenger vehicle kilometers would be driven
electric due to such BEVs (in a futuristic scenario), this causes an increase in electricity consumption close
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2 Chapter 1. Introduction

to the magnitude of all current household electricity consumption together. This does not even include
further electrification of our society with heat pumps and induction cooking. Combining this amount of
energy and expected peak demands of charging power with additional electric heating and cooking demand
can result in massive power peak demands on the grid.

This research aims at analyzing the potential impact of this emerging electrification on the existing grid
structures. The main scope of this thesis is to research the impact of a potential increase in BEV on the
local LV grid by calculating the expected number of black-outs at certain EV penetration rates. To allow
for a general method, a model is proposed that combines demographic information of neighborhoods and
corresponding energy load profiles with available LV grid infrastructure. Once this method is applied to
study the general case for EV charging in the Netherlands, two typical scenarios for sub-urban and rural
areas are presented wherein we combine typical LV grid layouts for these areas with expected future loads.
Furthermore, a scenario simulation is presented using a grid model based on an existing location.

1.2 Framework

Currently, a lot of research on EV driving, charging and infrastructure is carried out in the Netherlands. For
example, [6] presents research results on public charging infrastructure mainly focusing on the four largest
cities of the Netherlands. While this publication covers a lot of interesting research on different aspects like
user groups and their behavior, policy making, the smart use of data and (smart) charging infrastructure
for the past five years, it does not cover the actual impact on existing electricity grid structures in much
detail.

The paper by Van der Burgt et al. [7] uses the NEMO Tool Suite to simulate the grid impact of EV
charging. Unfortunately, the tool never got out of the development phase and was canceled later on,
according to email correspondence with one of the authors. Interesting is that it targets specifically on LV
grids and penetration rates of EVs in those LV grids and actively takes into account PV, more or less a
similar direction that this research is aiming at.

The authors of [8] propose methods to quantify acceptable EV penetration in an existing neighborhood.
This paper describes a case study in Malaysia. It presents models of an existing neighborhood and studies
uncontrolled EV charging (using both unbalanced and uniform distribution of EV chargers over the three
phases) as well as controlled EV charging of Nissan LEAFs with a 24 kWh battery and compares the
situation for older built and newly built networks. Dubay and Santoso [9] present a thorough literature
review of the impact of EV charging in residential areas and proposes methods to evaluate the impact on
distribution grid voltage quality. They also propose a number of solutions in the form of smart charging
algorithms to mitigate the impact of EV charging.

A field study in Lochem, the Netherlands [10] is a proper example of the problem statement of this thesis.
This project studied a ’2025’ scenario in which 20 EVs, representing a penetration rate of 25%, were
charged simultaneously in the same LV grid. Aided by local volunteers, the local grid is pushed to its limits
by simultaneously using electrical ovens and other home appliances. With ’success’: a huge imbalance
between the phases was seen and after about 30 minutes after the start of this stress test, a fuse melted
causing a service interruption.

The research in this thesis tries to extend the aforementioned publications with a broader view on the
situation in the Netherlands by looking at the impact of increasing EV penetration rates on the nationwide
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LV grid. It combines existing grids with possible EV penetration rates and demographic information to
define possible chances and risks regarding the adoption of EVs in the Netherlands on local level.

1.3 Research questions

The main goal of this research is to explore the effects of a significant increase of EVs in the Dutch elec-
tricity grid on a local level. The hypothesis is that the existing Dutch electricity grid in its current form,
without any control mechanisms, has a certain maximum penetration rate of EVs. This gives rise to the
first research question:

”What penetration rate of electric vehicles may cause problems for the Dutch electricity grid
in its current form, if no preventive measures are taken? ”

The answers to this question depends on many different factors. This research aims to develop a method
to model, analyze and quantify these factors. This leads to the following sub-questions:

”I. How to systematically model the current Dutch LV grid infrastructure, making it possible to identify
different frequently occurring grid structures and avoiding the need for a case-by-case approach?”

”II. How to characterize the future loads in Dutch LV grids with regard to the integration of EV charging?

”III. How to model the expected future loads with corresponding LV grid structures to identify potential
problematic combinations of loads and grid structures?”

If preventive measures in any form are taken, the possible maximum penetration rate of EVs increases,
since the usable capacity of the local grid is extended. This rises the second main research question:

”What are possible solutions for scenarios with problematically high EV penetration rates in
local grids and how do these solutions increase the allowed penetration rate?”

1.4 Approach

The first step towards answering the research questions is a background study on the playing field of this
problem. This means that all important factors, such as the structure of the current Dutch LV electricity
grid and the Dutch EV market (available EV models, capacity and charging techniques) are identified and
described. This gives a basis to further classify and quantify the inputs for e.g. simulations using the
DEMKit smart grid modeling software, further explained in Chapter 3.

The next step is combining all information on LV grids with information on actual existing neighborhoods.
To keep flexibility in simulating different scenarios, the proposed solution considers a split between a
(technical) grid model and a (demographic) user model to generate energy load profiles :

• 1. Grid model: the physical LV feeder lines, cable type, number of branches and connections: this
defines the technical properties of the feeder and tells something about the maximum capacity of
such a system.
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• 2. Load model: uses demographic information on the type of neighborhood and its residents, e.g.
rich/poor, young/old, large/small families and houses to generate energy load profiles. Further-
more, this might indicate the expected penetration rate of EV and other technologies like PV and
heatpumps.

Those two models combined are the main input for the simulations. The Dutch LV grid is represented
by 26 so-called ’generic feeders’ that we consider representative for the entire Dutch LV grid. For every
generic feeder, we determine the maximum number of simultaneously charging EVs. Charging more than
this maximum number of EVs simultaneously causes a local blackout on that specific feeder. We develop
a model that uses an existing EV plug-in time distribution, different energy demands and charging power
levels as inputs to calculate the probability that such a blackout situation occurs. With the combination
the grid model and load models, we calculate the expected number of additional blackouts in the Dutch
LV grid due to EV charging at different EV penetration rates when allowing uncontrolled EV charging.

1.5 Thesis organization
This thesis is structured as follows. Chapter 2 presents all relevant technical information the Dutch LV
grid and EVs. Chapter 3 introduces the proposed models, methods and input data. Chapter 4 presents
the general findings regarding the EV penetration rate for the Dutch LV grid by using the proposed model
and methods and explains how we arrive at the final results. To connect the general findings to real life
situations and to show the working of the proposed methods in more detail, Chapter 5 presents three
scenarios. Chapter 6 presents the final conclusions and recommendations.



Chapter 2

Background

2.1 Introduction
This chapter introduces relevant background information for this research. It starts with a description of
the Dutch electricity grid in Section 2.2: a general overview of the grid as a whole and a more detailed
description of the low-voltage grids in the distribution networks. The section also introduces the main
power and voltage limit regulations for the LV grid. These limits are used later on in the thesis to define
the maximum capacity of the individual feeders. Section 2.3 introduces the basic features that describe
the current status of EV adoption, available charging techniques and expected future EV penetration rates.
It introduces data and research that can describe the EV energy demand, as well as an introduction on
Smart Charging (SC) and currently as well as soon-to-be available EV models and their properties.

2.2 The Dutch electricity grid
In the Dutch electricity grid, electricity is transported using AC current on 4 main operating voltage
levels [11]. Every level has a specific function:

• Interconnection net or Very high voltage grid 220 and 380 kV, used to transport electricity over
larger distances throughout the Netherlands and across the border to other parts of continental
Europe.

• Transport net or High voltage grid 50, 110 and 150 kV for transmission at regional level.

• Regional distribution net or Intermediate voltage grid 3 - 30 kV for supply to large users and for
distribution.

• Local distribution net or Low voltage grid 230 and 400 V for connection of small enterprise and
households.

A general overview is given in Figure 2.1, which shows the traditional grid layout. We see a main generating
station, connected with transmission lines (yellow) to substations in the regional and local distribution nets
(purple). Traditionally, this layout has always been used in the same manner: a centralized generating
station producing energy which is transported over the network in increasingly narrow ’capillaries’, all in
the same direction with a more or less predictable load. However, with the technological advancements over
the last decades and the increasing electrification of our society with EV, PV, heatpumps and induction
cooking, the traditional way of network planning is not sufficient anymore. One the one hand, while extra
loads like EVs, heatpumps and induction cooking are still reasonably predictable, they impose a much higher
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6 Chapter 2. Background

load on the grid than it was originally designed for. On the other hand, we see emerging technologies like
PV causing houses to become energy producers instead of just consumers. This is also a feature for which
our traditional grid was not designed. This does not mean it is totally unfit for the tasks, but it means
we have to make clever use of existing infrastructure to prevent spending a lot of money on replacing the
current infrastructure.

Figure 2.1: Graphical representation of the electricity grid, sorted by function [12].

2.2.1 Low voltage network

The low-voltage (LV) network in the Netherlands consists mostly out of underground cables and operates
with 3-phase 230/400 V at 50 Hz. The LV network is mostly radial designed, which means it can be
described as a tree-like structure, schematically shown in Figure 2.2. Every LV substation is connected to
a MV network and can host multiple so-called feeders, described by the green lines in the schematic. A
feeder is defined as the 1 main cable connecting a set of households directly to the LV side of a transformer.
These LV feeders can vary widely in topology: while most feeders in urban areas are relatively short with a
large number of connections, rural feeders are characterized by being longer and hosting less connections,
which obviously is the result of the placement of buildings in the respective areas. Not only their length
and number of connections vary, but also the choice of cable material is a very important feature of such
LV feeders and varies widely dependent on the local situation. LV cables in the Netherlands are typically
located underground at a depth of around 60 cm, consisting of 4-wires: 3 for the phases and 1 neutral.
Nowadays, at the installation of new LV cables, the full length of the main cable consists out of one
standardized diameter (for purchasing and installation advantage reasons) and the cables are made out
of aluminum. This is contrary to before, where feeders were built out of different types of cable mixed
together, using thinner (and cheaper) cables near the end of a feeder, similar to a human vein system. In
addition to that, when extending the local LV grid, different types of cables are used next to the ones that
are already present or it might be possible that a connection cable suddenly becomes a main cable. This is
also indicated in Figure 2.2 by using different line thickness for the feeder cable parts. Since the economic
lifetime of a LV grid is expected to be over 40 years, one can imagine that these ’traditional’ setups and
feeders are still common. More information on the modeling of LV networks is given in Section 3.2.

2.2.2 Voltage and power limitations

The low voltage parts of the Dutch grid are managed and maintained by the local grid operators. These
local grids have to comply to specific power quality standards, covered by law in the Dutch Netcode [13].
These baseline quality standards are considered the minimum requirements for a functioning low voltage
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Figure 2.2: Tree-like LV grid with multiple feeder lines out of one MV/LV substation, most common
situation in the Netherlands.

grid. The European version of this regulation is the NEN50160. The two most important specifications are
considered to be the voltage requirement and the maximum power requirement. The voltage everywhere
on the LV grid should be +/− 10% of the nominal voltage of 230 V, so minimal 207 and maximal 253 V.
Operating the LV grid outside of these bounds results in problems with equipment on the network and
might decrease the lifetime of connected appliances, so this should be avoided. With the introduction
of high power demanding equipment like EV chargers and distributed generation with PV, staying within
these voltage boundaries has become increasingly difficult, as demonstrated in Figure 2.3.

Furthermore, every LV feeder in the network is protected by a main fuse located at the transformer to
provide protection against short-circuit. The rating of this fuse is dependent on local factors like cable
type, number of connections and type of loads. Overloading this fuse for a longer time, e.g. in the case of
peak demand due to EV charging, causes the fuse to burn, creating a local black-out.
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Figure 2.3: Demonstrating LV grid voltage problems in situations with increasing consumption and in-
creasing distributed generation [14].

2.3 Electric vehicles
A 2017 study with 286 respondents [15] suggests that the typical Dutch EV driver is a well-educated middle
aged man with a high-paying job. But it also suggests that, in a few years time, this may not be valid
anymore. Due to an anticipated lower total cost of ownership (TCO) and an increase in the different (also
smaller) EV models, EVs become accessible for a much broader public and even outperform gasoline cars
in terms of TCO in some cases already [16]. To model the demand for EV charging in the Netherlands, we
need background information on a number of topics, starting with the total number of EVs in the Dutch
fleet, which is further described in Section 2.3.1. All these EVs in the total fleet travel certain distances,
introduced in Section 2.3.2. Section 2.3.3 introduces background information on different possibilities of
charging. Section 2.3.4 introduces Smart Charging and section 2.3.5 introduces currently and some future
available EV models.

2.3.1 Electric vehicle fleet size

A well-known method to describe the adoption of new technology is to use the ’S-curve’. For EVs, this
S-curve is described in [17] and shown in Figure 2.4. The Netherlands is already approaching the ’early
majority’ phase and thus the adoption of EVs is likely to grow quicker during the coming decades. Note
that in different neighborhoods, the EV penetration rate might vary because of demographic circumstances,
but that the remainder of this section focuses on the Dutch EV market as a whole.

While the S-curve is more of a general estimation, we also have access to more extensive research. A TNO
report [18] of August 2018 makes an estimation of the EV market penetration in 2030. Information on
factors such as TCO, customer purchase decisions, EV market demand, different car segmentation and the
Dutch tax situation regarding private and company cars was all taken into account, combined and analyzed.
The conclusion sounds that ’the uptake of EV until 2030 is beset with uncertainties.’ The main bottleneck
indicated here is the market for A and B segment cars (the small to reasonably sized cars such as the Opel
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Figure 2.4: EV adoption S-curve showing the Netherlands as one of the early adopters [17].

Corsa, Volkswagen Polo and comparable), which make up almost 50% of the Dutch total passenger vehicle
fleet. For these market segments EV might be less interesting, because of the relatively higher purchase
price and relatively higher TCO due to the lower average annual mileages. Other factors influencing this
total fleet size is the market-mismatch between second-hand cars coming out of the lease-arrangements
after four or five years (which traditionally mainly have been medium to larger sized diesel cars) and the
domestic demand for small petrol cars. This mismatch is possibly continued with the current generation of
relatively large EVs (such as the Tesla Model S and Model 3 that are leased right now), which are likely to
be too expensive for the domestic second-hand small car demand and are exported from the Netherlands in
the coming years. The next generation of somewhat smaller EVs, such as the Volkswagen ID.3, Volkswagen
e-Up!, Renault Zoe and Hyundai models with catalog prices of around €30,000-35,000, may be the first
BEVs very suitable for the Dutch second hand market. A theoretical ’optimistic’ scenario presented in the
report is that in 2030, EV sales may amount to 65% of the Dutch passenger car market. This corresponds
with a maximum total fleet size of 2.8 million vehicles in 2030, with the largest segment for compact family
cars (C-segment). The ’less optimistic’ scenario depicted in the report estimates a 45% market share of
BEVs. The ElaadNL foundation suggests three possible scenarios [19] for 2030 with the number of EVs
estimated at 1, 1.6 or 2.3 million vehicles which would then represent an average nationwide penetration
rate of respectively 12, 19.2 and 27.6%.

The goal of the Dutch government for 2030 is set at 100% market share for zero-emission vehicles. The
actual fleet size that belongs to that goal is not known, since the fleet size depends on the sales numbers
and market share of the years prior to 2030. Furthermore, the government goal is defined as zero-emission
vehicles (not exclusively BEVs), so this scenario is not considered in this analysis. For this thesis, we include
the TNO and ElaadNL reports, which results in the following possible EV fleet size scenarios for 2030:

• TNO report optimistic scenario: 65% market share and a total fleet size of in total 2.8 million BEVs,
representing a penetration rate of 33.6%;

• The ElaadNL scenarios describing BEV fleet sizes of 1, 1.6 and 2.3 million, representing penetration
rates of respectively 12, 19.2 and 27.6%.
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Note that ’market share’ refers to the share of EVs as percentage of all newly sold car that year and that
’fleet size’ represents the actual number of EVs in the total Dutch fleet up to and including that year.
Penetration rate describes the percentage of EVs in the total fleet of passenger cars.

2.3.2 Traveled kilometers per day and energy demand

The average Dutch passenger car travels 38 kilometer daily, according to CBS [20]. However, the research
project ”Onderzoek Verplaatsingen in Nederland”(OViN) [4] shows that distances per destination vary
widely: about 24 km per day for commuting, 22 km for visiting friends and family, 18 km for sports and
around 7 km for a shopping trip. Another interesting finding of this research is that only 10% of passenger
car drivers drive more than 125 km per day. All these driven kilometers directly say something about the
required electrical energy, but also on the expected peak loads: only a few cars in the neighborhood with
a large energy demand might be less of an issue compared to a lot of cars with a small energy demand
but all charging at the same time instance. Also local variations might play a role: inhabitants of rural
areas might be likely to cover more distance with their cars compared to inhabitants of urban areas. As
for the general case, we can use data as in Figure 2.5 which shows a distribution of energy demand per
charging event for private, workplace and public charging. We observe that in about half of the private
charging events, more than 20 kWh is demanded. This also directly implies that not every EV is charged
every day, since 20 kWh of charging represents 100 to 150 km of driving (depending on the EV model and
driving style), while from CBS data we know that only 10% of the passenger cars drive more than 125 km
daily. This means a major part of the charging sessions represent the driving distance of multiple days.
Furthermore, the energy demand for private charging sessions is significantly higher compared to public
and workplace charging sessions.
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Figure 2.5: For each typical charging location (private, public and workplace), ElaadNL has generated
normalized profiles based on large volumes of real charging events [21]. This figure shows the
distribution of energy demand per charging session at each location type.
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2.3.3 AC charging

When considering EV charging, we distinguish two main categories: AC and DC charging. AC charging is
mainly used for home charging and public charging poles in LV grids. DC charging is mostly seen among
highways, outside the residential LV grid. DC charging is sometimes referred to as ’fast-charging’, because
it can charge with powers of up to e.g. 150 kW, such as the Tesla Supercharger. These power levels are
too high and therefore unrealistic for existing LV grids and this is also the reason this thesis focuses on AC
charging only.

Nowadays, all common AC chargers can deliver between 2.3 kW (which can be delivered by a standard
single-phase wall plug to the vehicle) up to 22 kW with a more sophisticated three-phase charger. See
Table 2.1 for an overview of the different available type of AC chargers. Next to the home environment,
these AC chargers are of the same type that may be installed at work locations. Furthermore, public AC
charging poles rely on the same configurations.

Charging point Max. power
single-phase 10 A wall plug 2.3 kW
single-phase 16 A charger 3.7 kW
single-phase 32 A charger 7.4 kW
three-phase 16 A charger 11 kW
three-phase 32 A charger 22 kW

Table 2.1: Possible AC charging options.

Next to the specification of the AC charger, the specification of the EV is decisive on the maximum charging
speed. A Tesla Model 3 is limited to 11 kW charging power, whereas the Model S and X contain a 16.5 kW
on-board charger. Smaller cars like the Skoda CITIGOe-iV contain an on-board charger with a maximum
power of 7.2 kW. These restrictions only hold for AC charging, DC fast charging is independent of this
since it bypasses the on-board charger. From public charging point data we know that the main charging
power levels currently used are 11 kW and 3.7 kW, and that the 11 kW share is increasing over the past few
years, shown in Figure 2.6. Charging at levels over 11 kW is not common. For the remainder of this thesis,
we focus on the two main power levels of BEV charging: single-phase 16 A (3.7 kW) and three-phase 16 A
(11 kW).

Charging at home

”An estimated one-third of the Dutch households have access to a private parking space”, according to the
department of the RVO that studies electrical mobility in the Netherlands, when asked. We assume that all
detached and duplex houses have the luxury of a privately owned driveway and thus have the possibility of
charging their EV on their own property with their own charger, either single-phase or three-phase. A part
of the terraced and corner houses also have this possibility. The other part of terraced and corner houses do
not have a privately owned driveway. They either park down the street and charge at a semi-public charging
pole or end up in a situation like in Figure 2.7, where an EV owner powers his vehicle via a charging cable
that runs over the ground in the public space. Up until today, it is up to local government how to deal with
these private charging cables in public space. Some municipalities allow it, but in some municipalities it is
forbidden, like in the town of Wijchen, where a law allowing these situations got rejected [22]. Residents
of apartment buildings may have access to a private parking garage where they can install a private EV
charger or may use a public charging point near their house.
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Figure 2.6: Charging data from public charging points show a trend toward higher power demand per
EV [21]. Note that the power distribution for the year 2020 is based on the charging data
from the first two months of the year.

Figure 2.7: Situation in the town of Wijchen, where an EV owner powers his EV via a charging cable that
runs from out of his house, through the public space, into his EV that is parked on a public
parking spot [22].

2.3.4 Smart Charging

Smart Charging (SC) is an umbrella term for all kind of techniques that allow controlled charging of EVs
with the aim to minimize the likelihood of electricity grid overload or failure, but also to ensure that EVs
are charged properly and on the right time according to mobility demands. The ElaadNL foundation aims
to introduce the SC charging concept into Dutch society and recently published their ’Smart Charging
Guide’ [19] describing the latest progress and adoption of SC in the Netherlands. There are various ways of
implementing SC, but they all share the same common goal: to reduce peak load by controlling the power
level of EV chargers to prevent overloading of the local LV grid without reducing the experienced comfort
level of EV drivers. In this thesis, we mainly look at uncontrolled EV charging to determine the limit (in
terms of EV penetration rate) of the current LV grid. SC might help to extend this limit significantly.
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Adoption of smart charging

The idea of smart charging can be widely adopted, if the user has the possibility to ’overrule’ the smart
charging system. People do not expect to use this function often, but want to have the possibility, according
to a Dutch EV driver study [15]. A recent UK study [23] interviewing 60 users and prospective users of
EVs shows that two-thirds prefer user-managed charging (UMC) over supplier-managed charging (SMC)
because of better personal control. This studies imply that, when properly implemented and a ’overrule’
button is available (either at a penalty or not), EV users are open for smart charging options.

2.3.5 Available BEV models and features

Up to and including 2016, the Dutch EV market was mainly dominated by PHEV. This ended when the
government cut tax advantages for this category of EV because users were barely using the charging plug
of the vehicle, so the environmental advantage was minimal. This is shown in Table 2.2: the number
of registered PHEV is stable, while total BEV registrations increase steadily. The total share of FCEV
is still very small, which has multiple reasons, one of them being the fact that the Netherlands only has
3 publicly accessible hydrogen refueling locations in Rhoon (near Rotterdam), Helmond and Arnhem [2].
Furthermore, hydrogen as energy energy carrier (using currently available production and storage methods)
is less efficient compared to a battery as energy carrier.

31-12-2016 31-12-2017 31-12-2018 30-11-2019 31-12-2019 30-06-2020
BEV 13,105 21,115 44,489 84,372 107,536 122,195
FCEV 30 41 50 177 215 265
PHEV 98,903 98,217 97,702 96,010 95,885 99,642
Total 122,083 119,373 142,736 180,559 203,636 222,102

Table 2.2: Number of electric passenger cars registered in the Netherlands [2].

The total number of passenger cars in the Netherlands is currently approximately 8.5 million, thus the
current penetration rate of BEVs and PHEVs together is approximately 2.6%. The BEV and PHEV market
share in June 2020 is 11.3% and 4.5% respectively. An interesting finding in Table 2.2 is the peak in
BEV sales in December 2019, just before the government tax advantages were sobered down for 2020: the
’bijtelling’ arrangement went from 4% to 8%, meaning that it becomes more expensive to drive cars in that
arrangement. More than half of these sales in December 2019 are Tesla Model 3’s, the most popular BEV
in the Netherlands at that moment. For the Model 3, the new tax rules resulted in a net cost increase of
about €1000. [24] This indicates that tax incentives still play a major role in the adoption of EV. A further
breakdown of these BEV registrations show the following top 10 most popular models in the Netherlands
up to and including June 2020 as shown in Table 2.3.

This overview is relevant since it shows the models that are available in the future composition of the
Dutch BEV fleet. The most important specifications like availability, usable battery capacity, AC charger
capacity, expected range and catalog price for a number of popular models are depicted in Table 2.4.
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Position Make/model Number Since last
month (MtM)

Since the same month
previous year (YtY)

1 Tesla Model 3 32,597 +722 +26,534
2 Tesla Model S 12,849 -28 +205
3 Nissan LEAF 9,678 +100 +2,794
4 Volkswagen e-Golf 8,988 +332 +3,739
5 Hyundai Kona 7,695 +357 +4,781
6 BMW i3 6,735 +75 +2,190
7 Renault Zoe 6,654 +149 +2,109
8 Kia Niro 6,130 +548 +4,296
9 Tesla Model X 5,203 +19 +507

10 Jaguar I-Pace 4,338 -1 +711

Table 2.3: Top 10 BEV models registered in the Netherlands up to and including June 2020 [2].

Model Available Usable capacity
[kWh]

AC charger kW] Range [km] Price NL

Tesla Model 3 LRDM now 72,5 11 460 € 59.998
Tesla Model 3 SR expected 40 11 265 € 43.500
Tesla Model 3 SR+ now 47,5 11 315 € 49.998
Tesla Model 3 LR P now 72,5 11 445 € 65.598
Tesla Model S LR now 95 16,5 525 € 88.818
Tesla Model S P now 95 16,5 510 € 105.718
Tesla Model X L now 95 16,5 460 € 94.618
Tesla Model X P now 95 16,5 445 € 110.818
Tesla Model Y LRDM from 2021 75 11 425 € 65.018
Tesla Model Y LR P from 2021 75 11 410 € 71.018
Nissan Leaf now 36 3,6 220 € 36.990
Nissan Leaf e+ now 56 6,6 330 € 45.850
Volkswagen e-Golf now 32 7,2 190 € 34.295
Volkswagen ID.3 SR late 2020* 45 7,2 275 € 30.000
Volkswagen ID.3 MR late 2020* 58 11 345 € 40.000
Volkswagen ID.3 LR late 2020* 77 11 450 € 47.500
Volkswagen e-Up! now 32,2 7,2 200 € 23.475
BMW i3 now 37,9 11 235 € 42.411
BMW iX3 late 2020* 74 11 350 € 70.000
Hyundai Kona E 39 now 39,2 11 250 € 36.795
Hyundai Kona E 64 now 64 11 400 € 41.595
Renault Zoe ZE50 now 52 22 320 € 33.590
Jaguar I-Pace now 84,7 7,4 370 € 81.800
Hyunday IONIQ now 38,3 7,2 260 € 36.995
Audi e-tron 50 quattro now 64,7 11 285 € 71.900

Table 2.4: Most relevant specifications for currently and soon to be available BEVs [25].
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Modeling

3.1 Introduction
To simulate future scenarios of EV penetration rates in the Netherlands, the software package DEMKit [26]
is used, together with the Artificial Load Profile Generator (ALPG) [27]. The Decentralized Energy Man-
agement toolKit (DEMKit) is a software tool developed at the University of Twente for research on smart
grid technologies. DEMKit offers a framework to simulate complete neighborhoods equipped with com-
monly available technologies like photovoltaic (PV) installations, heatpumps, battery systems, electric
vehicle charging and other devices e.g. washing machines and dishwashers. As input for these simulations,
reliable household consumption profiles and usage patterns are necessary, which are generated by the ALPG.

To ensure flexibility when simulating different scenarios, we choose to subdivide the model in different
entities. These entities then can be altered separately without modifying the entire model. We start with
a model of the physical LV grid, described in Section 3.2. The LV grid model carries information on the
physical LV feeders, such as cable type, cable length, topology and number of connections. Next is the
so-called ’Household load model’, described in Section 3.3. This model takes demographic information as
input and translates this by using the ALPG to household load profiles. This allows us to quickly adapt
the model to all kinds of circumstances and neighborhoods. Section 3.4 describes the implementation of
EVs and the corresponding modeling inputs. Section 3.5 describes the implementation of PV. Section 3.6
describes how we define a blackout on an LV feeder.

Defining EVs and PV installations as a separate device load next to the uncontrollable household loads
instead of including them in the uncontrollable household loads makes it possible to increase or decrease
the penetration rate of these technologies independently. The different loads are placed on a grid topology
to simulate and analyze the outcomes of such combinations. A schematic for these four entities is given
in Figure 3.1.

Household load

Grid model node

PVEV

Figure 3.1: The four entities of the presented model.
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3.2 Grid model
As described in Section 2.2, the Dutch LV distribution net consists mostly out of radially designed nets.
This section describes the way that the LV grid is modeled for this thesis. The relevant DEMKit features
used in this thesis are introduced here, starting with the general construction of an LV grid model for a
neighborhood, consisting of nodes representing the households and connections between the nodes repre-
senting the cables. Furthermore, nodes representing transformers or cable junctions may be added. This
allows the user to build virtually every possible radial network configuration by adding different nodes and
branches. The main advantage of this structure is that it allows us to determine what happens anywhere
in the simulation of a local LV grid. DEMKit furthermore contains options for load flow modeling, which
makes it convenient to analyze voltage levels at every node and detect possible exceeding of boundaries.

3.2.1 Nodes and connections

The LV grid model in DEMKit has a tree-like structure with the transformer as the root node (see Fig-
ure 3.2). For the other nodes and the connections between the nodes the following holds:

• All nodes are identified by a unique number;

• the nodes itself do not have any physical attributes with respect to the grid model;

• all leaf nodes represent houses that can host loads in the form of appliances;
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Figure 3.2: DEMkit basic grid structure.

Each leaf node represents a position that can host a load in the form of a household load profile (with an
optional EV or PV installation), see Figure 3.3. These household load profiles vary with different household
configurations and are further explained in Section 3.3. When in this thesis is stated that we place EVs or
PV installations in ’the end of the feeder’, we mean that we place these loads on the available positions
on the feeder starting from the last position on the feeder (as seen from the transformer) working towards
the transformer. Similarly, when we state that we place loads ’from the beginning’ of the feeder, we place
the loads on the feeder by starting at the first position (as seen from the transformer) towards the end.
E.g. if we place two EVs ’from the beginning’ of the feeder or ’on the first positions’, we place the EVs on
NODE-0003 and NODE-0005 in Figure 3.3, i.e. the first available positions for such loads.

3.2.2 Cables

The cables are specified as a conductor by a basic pi-model [11] without the capacitance effect, resulting
in a series impedance Z in ohms (Ω) per kilometer for each conductor:

Z = R+ jX (3.1)
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Figure 3.3: DEMkit grid model with loads.

where R describes the resistance of the conductor in ohms (Ω) per kilometer cable and X describes the
reactance of the conductor in ohms (Ω) per kilometer cable. Furthermore, every cable type has a nominal
current capacity in [A] which should not be exceeded for longer periods of time. Table 3.1 shows the
parameters used for the different types of cables. The type of cable is described with a number for its cross
section in mm2 and a notation for the material, either Al for aluminum or Cu for copper. Note that the
actual resistance and reactance also depend on surrounding temperature, moisture content of the ground
in which the cables are located and the physical condition of the cables. However, to reduce the number of
parameters in the model, this approach with standardized values [11] is considered sufficient. The length
of the cables is dependent on the specific grid structure topology.

Type R [Ω/km] X [Ω/km] Capacity [A]
50 Al 0.64 0.088 115
70 Al 0.44 0.085 130
95 Al 0.32 0.082 175

150 Al 0.21 0.079 230
35 Cu 0.53 0.074 100
50 Cu 0.39 0.072 125
70 Cu 0.27 0.070 155
95 Cu 0.19 0.069 190

150 Cu 0.13 0.063 255

Table 3.1: Cable properties used in the model [11].

3.2.3 Low voltage network topologies

Every LV feeder in the Netherlands may be more or less unique in terms of its properties such as cable
type, cable length and the number of connections to the cable. However, many of these feeders are also
very similar to each other and it is useful to exploit this feature. A 2015 CIRED paper on clustering of
LV networks [28] describes a method to cluster a large number of feeders with different properties and
create a smaller set of ’generic’ feeders that can accurately describe the original set. Figure 3.4 shows the
distributions of feeder length, customers per feeder and cable types of the original dataset. From 88,000
feeders in the network of a Dutch DSO, the researchers were able to construct a generic feeder set of only
94 classes using a fuzzy k-means clustering approach. With the 26 most common clusters, we are able to
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reconstruct 71.3% of the total LV network of this specific DSO. The PhD thesis [29] that also contains this
work describes the full list. Note here that the original source data is already somewhat outdated, so it is
not possible to draw conclusions on the state of the LV grid of the specific DSO. However, this research
is considered relevant and detailed enough to give an estimation on the main feeder configurations used
in the Dutch LV grid. Note that, in practice, feeders might consist of segments with different cable types
and thicknesses, as was mentioned in Section 2.2.1, but that this is too detailed to use in the proposed
modeling method, so all main feeder cables are modeled as a single main cable type. Also, all clusters are
considered to be a single piece of main cable with all houses attached to it, i.e. without any branches. The
length in between the connections is specified as the average length, thus dividing the total feeder length
by the number of connections. For the remainder of this thesis, all these generic feeders are described
using these features and referred to as a Cluster with a corresponding number.

Figure 3.4: Distribution of the feeder length, customers per feeder and cable types in the LV grid of a
Dutch DSO [28].

3.2.4 Residential connections

The residential consumer can choose the different connections at Liander (the largest network operator in
the Netherlands) given in Table 3.3. These connections are also available at other locations and network
operators in the Netherlands (with only minor differences), so these connections listed in Table 3.3 are
considered to be the standard. Heavier connections are possible in the LV grid in the form of 3x50 A,
3x63 A and 3x80 A, however these are aimed at small shops and businesses and thus are not considered
here. Both in real life and in the model, loads can either be connected to one of the three phases in a
single-phase connection or are connected using a three phase connection to divide the loads over the three
phases. For PV installations above 3.7 kW and/or EV chargers above that limit, a three-phase connection
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Cluster Length [m] Main cable type Total household connections [#] Occurence [%]
01 150 150 Al 17 6.4
02 270 70 Cu 24 4.5
03 266 95 Al 39 4.5
04 218 50 Cu 19 4.4
05 362 150 Al 32 4.1
06 290 50 Al 26 3.4
07 386 95 Al 49 3.4
08 633 150 Al 70 3.3

Table 3.2: First eight most common feeder clusters [28].

is advised by DSOs, so in our model, houses with these installation sizes receive a three-phase connection,
all other houses receive a single-phase connection.

In case of single-phase connections to a MV/LV transformer, the preferred situation for the DSO would
be that the houses on a feeder would all be divided uniformly over the different phases, since this reduces
load-balancing problems. In practice, this is not always the case and the exact distribution is not known.
In this thesis, the distribution of single-phase connections over the different phases is done uniformly unless
mentioned otherwise.

Modeling assumption 1. Households with PV installations and/or EV chargers rated 3.7 kW or above, a
three-phase connection is required.

Modeling assumption 2. All single-phase connections are divided uniformly over the households unless
mentioned otherwise.

Configuration Power Number of connections in NL Features

Single-phase 40 A 9,2 kW ”Still very common in a lot of houses” ”Standard appliances +
small number of PV panels

Three-phase 25 A 17 kW ”One in three houses” ”For additional PV, heat
pump and EV charging”

Three-phase 40 A 27 kW No information ”Additional power
for e.g. sauna/jacuzzi”

Table 3.3: Most common type of residential connections in the Netherlands according to Liander [30].
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3.3 Household load model
This section describes the implementation of the household load model. Section 3.3.1 introduces the
functionality of the tool that is used to simulate household power profiles. Section 3.3.2 describes the
coupling between the available demographic data and the inputs for the ALPG.

3.3.1 Energy load of a house

The energy load of a house depends on the type of house and its residents. A household can consist
out of adults, either jobless, working (part- or full-time) or retired, students and children. A set of these
persons together form a household. The annual consumption of these households follows a Gaussian
distribution with the mean and variation listed in Table 3.4. The Artificial Load Profile Generator (ALPG)
then takes care of creating a realistic power profile while incorporating the average annual consumption,
extensively described in [27]. The ALPG incorporates a realistic household load based on all commonly
available household equipment i.e. fridges, washing machines, televisions, computers, lighting etc. and
simulates flexibility and user behavior by incorporating different types of persons within households. It
creates pseudo-random schedules with varying leave and arrival times, also accounting for random family
outings e.g. shopping trips. The ALPG outputs all necessary data of day-to-day household activity that
is representative for an actual household power consumption curve. Furthermore it allows for operation of
control mechanisms by communicating about possible flexibility in the form of outputting start-times and
end-times of all equipment.

Household type Annual consumption Persons (Adults)
Single worker 2010 ± 400 kWh 1 (1)

Dual worker 3360 ± 700 kWh 2 (2)
Family dual worker 5260 ± 1800 kWh 3 - 6 (2)

Family single worker 5260 ± 1800 kWh 3 - 6 (2)
Family single parent 4400 ± 1800 kWh 2 - 5 (1)

Dual retired 3360 ± 700 kWh 2 (2)
Single retired 2010 ± 400 kWh 1 (1)

Table 3.4: Predefined household configurations [27].

To show the impact of different household configurations, simulations of a neighborhood consisting of 39
households of the same type were done. In these simulations no PV and EV was included. Note that
this is a rather extreme case, since it is unlikely that every household on a feeder is of the same type, but
this example is used to indicate the significant differences between the different household configurations.
Figure 3.5 shows the summed meter output of each of the household sets. Severe peak load differences are
possible as seen in Figure 3.6 e.g. of 35 kW between the Family dual parent and Single retired set. This
stresses the importance of the different base load scenarios since this peak load difference can in theory
make room on a feeder for e.g. three 11-kW EV chargers (or e.g. ten 3.7-kW chargers!).



3.3. Household load model 21

00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00

10

20

30

40

50
Po

we
r [

kW
]

Family dual worker
Dual worker
Family single parent
Single retired

Figure 3.5: One week of simulations on sets of 39 of the same household types: 30-minute average. These
simulations are done without any EV or PV installation.
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Figure 3.6: One day simulation on sets of 39 of the same household types: 15-minute average. These
simulations are done without any EV or PV installation.

3.3.2 Demographic inputs

The Dutch Central Office for Statistics (’Centraal Bureau voor de Statistiek’ (CBS)) publishes the annual
report ’Kerncijfers wijken en buurten’ (’Key figures for neighborhoods’) [31]. This data set contains
information on the main demographic statistics of every individual neighborhood in the Netherlands and is
used as the basis for the demographic classification in this thesis. It distinguishes between five main types
of houses and three main types of households. The most recent complete data set originates from 2017
and is used in this thesis. This section describes the considerations and assumptions needed to classify the
type of houses and households.

Type of houses

The following five housing types are distinguished by CBS:

• Detached house or ’vrijstaand huis’;

• Duplex house or ’twee-onder-één-kap-woning’;

• Terraced house or ’tussenwoning’;

• Corner house or ’hoekwoning’;

• Apartment houses.
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Next to this classification, CBS registers the average market value of the houses and the percentage of
single-family and multiple-family houses in all individual neighborhoods in the Netherlands. A single-
family house is defined as a house that forms one physical building, so basically every detached, duplex,
terraced and corner house. Multiple-family houses are defined as houses that form a building together with
other houses, so these classify as apartments. The data set contains information on age classes and also
distinguishes between single- and multiple person households, households with and without children and
lists an average household size. Another advantage of the CBS data set is that it contains data on income
and details about vehicle possession. These features can be used as base to make assumptions about the
adoption of EV in different locations.

%

Woningtypen	van	woningeigenaren	per	provincie,	2015

vrijstaande	woning 2-onder-1-kapwoning
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Figure 3.7: Type of houses of per province and for the whole of the Netherlands [32]. Dark green represents
apartment houses, light green are terraced and corner houses, dark blue represents duplex
houses and light blue represents the detached houses.

Figure 3.7 shows the type of houses per province and for the whole of the Netherlands. The large majority
of 42.5% of the Dutch people live in a terraced or corner house, 23% live in a detached house, 19.6% live
in a duplex house and the remaining 14.9% of the people live in an apartment.

Type of households

On January 1, 2017, the Netherlands counted 7.8 million households. CBS classifies these households in
three main groups: single-person households, multiple-person households with children and multiple-person
households without children, according to the following definitions:

Definition 1. A single-person household is a household consisting out of one adult person.

Definition 2. A multiple-person household with children consist out of un-married pairs with children,
married pairs with children and 1-parent households.

Definition 3. A multiple-person household without children consist out of un-married pairs without chil-
dren, married pairs without children and all other households.

The ratio between for the whole of the Netherlands between those three classifications is 38% for 1-person
households, 33% for multiple-person households with children and 29% for multiple-person households
without children. To couple this demographic data of the CBS to the ALPG models of Section 3.3,
additional general CBS classifications are used:
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• Of the multiple-person households with children, 22% is a single-parent household, classifying 7% of
the total households as FamilySingleParent.

• About 80% of the couples in the Netherlands are two-earners (called dual workers in the model),
which is used to distinguish between FamilyDualWorker and FamilySingleWorker.

• About 27% of the total households in the Netherlands receive AOW (general retirement fund),
meaning at least one of the persons in the household has retired. Of these retired households,
40% (about 11% total) is classified as SingleRetired and 60% (about 16% total) is classified as
DualRetired.

• We assume that adults that have not yet retired and are living in a single-person household or as
a couple without children all either work or study, so the remaining households are classified as
SingleWorker or DualWorker. We do not consider a separate household model for jobless people:
we assume their energy usage comparable to households with working people. In theory, jobless
people might even consume more energy since they might be in the house more often, but this
group is assumed to be too small to have a large impact on the final results, thus we choose to not
unnecessarily complicate the model.

Adopting these classifications makes it possible to introduce the ’classification factors’ of Table 3.5 to
quickly adapt the model inputs per location: we choose a neighborhood out of the ’Kerncijfers wijken en
buurten’, we read out the household ratios and then apply the classification factors. The result is a load
model that represents the demographic distribution in that particular neighborhood. For the whole of the
Netherlands, the result is shown in Figure 3.8.

CBS ’Kerncijfers Wijken en Buurten’ Classification factor ALPG model

Single-person
0.29 SingleRetired
0.71 SingleWorker

Multiple-person with children
0.21 FamilySingleParent
0.64 FamilyDualWorker
0.15 FamilySingleWorker

Multiple-person without children
0.55 DualRetired
0.45 DualWorker

Table 3.5: Household type classification factors.

Figure 3.8: The demographic household distribution for the Netherlands.
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3.4 Electric vehicle model

This section describes all methods and inputs used for the modeling of EVs in this thesis. Section 3.4.1
introduces the main parameters and connection to the rest of the model structure. Section 3.4.2 describes
a definition on ’charging behavior’ to get an indication on how, when and where people charge their EVs.
Section 3.4.3 introduces the used method and data to model the EV charging probability based on plug-in
time data and charging time duration data of a UK-based project that involves Nissan LEAFs. Section
3.4.5 introduces a dataset provided by ElaadNL that can also serve as a plug-in time distribution for the
proposed model.

3.4.1 Main parameters

An EV can be assigned to an individual household. As mentioned in Section 2.3.3, the EV charging options
are restricted to either a three-phase (3x16A) 11 kW charger or a single-phase (1x16A) 3.7 kW charger.
The outputs of the ALPG for the EV model are the departure time in the morning, plug-in time in the
evening and the required charge in Wh. This is sufficient information for DEMKit to simulate EV usage:
when no control mechanism is applied, charging always starts at the earliest possible time at the maximum
available charging power and the EV always charges to full when connected.

3.4.2 Charging behavior

Charging behavior is defined as the way that people use the available charging infrastructure and is related
to the charging power, battery capacity and the number of kilometers driven (or energy needed): the Dutch
driver study [15] mentioned earlier confirms that the charging frequency is negatively correlated to battery
size. Tesla Model S owners with large battery packs charge significantly less often than Nissan LEAF (with
only a 24 kWh battery pack) drivers do: 62% of the Model S drivers state that they charge no more than
three times per week, while 80% of the LEAF drivers state they charge four to six times a week.

Statistical analysis of EV charging behavior

Statistical analysis of 221 Nissan LEAF users spread across the United Kingdom [33] gives insight into
charging behavior, using data from the My Electric Avenue (MEA) [34] project. Probability density func-
tions (PDFs) of the number of connections per days, start charging time, initial SOC and final SOC per
connection for both weekdays and weekends have been created that are very useful in simulating and verify-
ing actual EV charging cycles. Approximately 70% of the EVs connects once a day, typically when the SOC
is between 25 and 75% and approximately 65% of the EVs finish their first daily charging session with a
full battery. Downside of this research is that it only concluded Nissan LEAF models with a limited battery
capacity of 24 kWh, which is rather small compared to e.g. the popular Tesla models with capacities of 40
to 95 kWh. Another research project using real-world EV charging session data from a charging-at-home
field trial in Flanders with about 8.5k charging sessions (iMove) and a large-scale EV public charging pole
deployment in The Netherlands (ElaadNL) with 90k charging sessions [35] found three distinct charging
behaviors:

• Charge near home: arrival mostly late in the afternoon and evening, departures mostly in the morning
with long sojourn times averaging over 15 hours, sometimes multiple days.

• Charge near work: arrivals early in the morning, departures in the late afternoon with sojourn
averaging around nine hours. Probably people that park and charge their car at work or at commute
points e.g. near train stations.
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• Park to charge: short sojourn times averaging a little over three hours lasting not much longer than
the time that was required to charge the battery. The research paper hypothesizes that these people
park specifically with the aim to charge their EV battery.

Since the iMove project considers only home chargers, the park near work behavior is not seen in that data.
For the ElaadNL dataset used in [35], considering only public charging poles, the researchers hypothesize
that people in the charge near home cluster are people that live nearby the public charging pole and
park their car overnight. An interesting finding is the ratio of charge near home (59.1%) and park to
charge (40.9%) for the iMove charge-at-home trial, implying that only three out of five charging sessions
is overnight, with the remaining sessions scattered over the day.

3.4.3 Modeling EV charging probability

Charging an EV is defined as an EV charging session, consisting out of two parameters that influence
the outcome of such a session to the system: the start time of the charging session and the duration
of the charging session, which is directly related to the required energy and the charging power. To
demonstrate the model, we consider a street with a certain number of EVs, somewhere in the Netherlands.
To determine the probability that an EV somewhere in the street is charging, we assume a charging session
as an independent event that has a probability distribution. With the two main parameters, plug-in time
pplugin and charging duration pduration, it is possible to define the probability that an EV in the system is
charging in a given discretized time interval. For evaluating pplugin and pduration, data from the UK-based
project My Electric Avenue (MEA) [34] is used. Figure 3.9 shows the hourly probability distribution of EV
start charging times, pplugin, from the MEA project.
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Figure 3.9: Hourly probability distribution of the EV start charging times pplugin for weekdays. Start
charging in hour 8 is defined as plugging in between 08:00 and 08:59.

Next to this start charging time, the time the EV actually spends charging is necessary to define the status
of the EV. For each charging session in the data set, the length is known. If we bin these charging sessions
into 1-hour bins, we know how many EVs stop charging every hour and what the probability is that an
EV is still charging after a certain number of hours since the start of the charging session. At hour 1, the
probability an EV is charging is 1, since it just arrived to the system. At hour 2, some EVs have already
finished charging and are leaving the system and the probability that it is still charging is 0.776. The
distribution for this is called pduration and is shown in Table 3.6.

1st hour 2nd hour 3rd hour 4th hour 5th hour 6th hour
1.000 0.776 0.624 0.474 0.324 0.195

Table 3.6: Probability pduration showing the probability that an EV is still charging after n hours.
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Combining pplugin and pduration by multiplying them results in Table 3.7. This value is called pEVcharging

and describes the probability that an EV is charging at that specific moment.

pEVcharging = pplugin · pduration (3.2)

Consider the following example: for every EV in the system it holds that at e.g. 16:00, the probability
is 0.077 that it is charging, which is directly related to the probability distribution of the start charging
times in Figure 3.9. For the next time intervals, this start charging probability pplugin is multiplied by the
probability it is still charging in the next time interval, pduration. Using this approach, we can calculate the
probability that an EV is in the charging state is the highest in the 19:00-20:00 time slot.

EV arrival time
Time of day 15:00 16:00 17:00 18:00 19:00 20:00

15:00 0.056 0.043 0.027 0.013 0.004 0.001
16:00 0 0.077 0.060 0.037 0.018 0.006
17:00 0 0 0.095 0.073 0.046 0.022
18:00 0 0 0 0.095 0.074 0.046
19:00 0 0 0 0 0.079 0.061
20:00 0 0 0 0 0 0.067

Probability an EV is charging: 0.056 0.0120 0.181 0.219 0.220 0.202

Table 3.7: Part of the hourly probability distribution for charging of an EV.

Note that by using this approach and modeling charging sessions as independent events, we cannot account
for dependent events, such as days when the national team plays a football match. Because the normal
schedule of a significant share of the people changes and synchronizes, the proposed probability distributions
for plug-in times might not be valid anymore.

3.4.4 Charging time duration as input

Instead of using data of charging events for the charging time duration, we modify the charging duration
probability pduration to create a generalized method with inputs for charging power and energy demand. We
still use the MEA data of the previous section to define the plug-in time distribution pplugin, but we modify
pduration by making it a model input. we also choose a higher resolution (15-minute intervals vs. 60-
minute intervals). A 15-minute interval is chosen since we consider this small enough to detect a blackout:
overloading a feeder fuse for a short time is often not immediately problematic due to their dynamic rating,
but overloading a fuse for longer than 15 minutes can result in a burning fuse. Using the same concept as
for the hourly discretized situation, the MEA data on start times of EV charging is binned into 15-minute
intervals, resulting in a 15-minute interval plug-in time probability distribution pplugin shown in Figure 3.10.

Now, pduration is not based on the MEA project data anymore, but on a model input tcharge, the vehicle
charging time, which is based on the number of driven kilometers, per-km energy consumption and charging
power. So the plug-in time distribution is borrowed from the MEA project, but the actual charging duration
depends on chosen inputs. The EV charging time is defined as:

tcharge = sdrivenηEV

Pcharging
= Echarged

Pcharging
(3.3)

where sdriven is the range in kilometers that is going to be charged into the EV, ηEV the energy-efficiency of
the EV and Pcharging defines the charging power. ηEV is set at a specific value, so tcharge is directly related
to the required energy, Echarged, and the charging power. For the remainder of this thesis, the traveled
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Figure 3.10: Distribution of the EV start charging times pplugin for weekdays. Start charging in interval
18:00 is defined as plugging in between 18:00 and 18:15.

distance, sdriven is chosen as a discretized value. Future work may extend the model by introducing e.g. a
Gaussian distribution shown in Figure 3.11 for the traveled distance such that the traveled distance varies
among the different EVs. The resulting charging time duration probability pduration for this is shown in
Figure 3.12.
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Figure 3.11: Truncated normal distribution of the number of kilometers driven before an EV is charged.
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Figure 3.12: Distribution of charging time duration probability pduration for n 15-minute intervals by using
the truncated normal distribution as input and a charging power of 3.7 kW.

Again, by multiplying the plug-in time distribution pplugin with the charging time duration pduration we cal-
culate the EV charging probability pEVcharging. For the sketched situation, pEVcharging for every 15-minute
interval is shown in Figure 3.13. With this information, we can predict the probability that an EV is in the
state of charging for any 15 minute timeslot of a day. The graph shows us that during the night from 03:00
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Figure 3.13: Result of the plug-in time distribution multiplied by the charging time duration probability
distribution: the probability that any single EV is charging at a specific 15-minute time
interval, known as pEVcharging.

to 06:00 the probability that an EV is charging is relatively low compared to the evening peaks between
18:00 and 21:00. People plug in their EVs more often in the evening, which results in a higher EV charging
probability.

3.4.5 ElaadNL dataset

Next to the MEA dataset, a dataset from ElaadNL is introduced in this section. This dataset contains
ready-made plug-in time distributions for EVs for private and public charging sessions based on large
volumes of real charging events. The plug-in time distribution for weekdays is given in Figure 3.14.
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Figure 3.14: ElaadNL dataset on distribution of EV plug-in times on weekdays.

Since public AC chargers are mostly situated in the LV grid, we choose to combine the private and public
distributions to create one plug-in time distribution as model input for the remainder of this thesis. From
the ElaadNL dataset we also know that the distribution of private and public charging sessions among
weekdays is more or less evenly distributed, shown in Figure 3.15. The ElaadNL has a number of advan-
tages over the MEA dataset, since it combines multiple data sources and has more variety in EV models
compared to only 221 Nissan LEAF models of the MEA dataset. Furthermore, the ElaadNL dataset is
already processed, compared to the MEA data which might contain irregularities. The influence on the
proposed model for both the MEA and ElaadNL datasets is compared in Section 4.4.
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Private charging sessions
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Figure 3.15: Distribution of charging sessions over the days of the week per location type [21]. Note that
for both private and public charging, all weekday sessions (Monday to Friday) are distributed
almost uniformly over the different weekdays.

3.5 PV production model

The generated PV power is modeled by real-world irradiance data over a full year. The chosen size for
the PV installation is based on the current Dutch support scheme based on yearly netmetering. As such,
the size is chosen such that the yearly PV production gets close to the expected yearly power consumption
specifies by the base load (see last subsection). Furthermore, it is possible to assign a PV setup to each
house individually and the rooftop orientation is randomly chosen using a Gaussian distribution, as described
in [27]. The PV model takes hourly irradiance data as input and sends a (linear interpolated) minute power
profile as output. Note that the irradiance data is directly related to the geographical location, so a set
of hourly-irradiance data of the desired location can be used as input. Since the solar irradiance in the
Netherlands is quite constant, i.e. people in the southern provinces do not benefit significantly more from
their PV installation compared to people in the northern provinces, we chose to use a solar irradiance profile
of the region Twente, already included in DEMkit. Note that this production model based on the Dutch
netmetering scheme does not include situations in which houseowners install additional PV to compensate
for their EV or heat pump consumption.

3.6 LV feeder blackout

An LV feeder blackout is defined as either a capacity overload, i.e. when the maximum power in the feeder
is reached, or voltage levels in the feeder drop below the allowed limit. Since reliable data on fuse values
in the current LV grid is unavailable because these are determined locally by the applicable situation, the
maximum power in the feeder is defined as the maximum nominal current in the feeder cable.

Modeling assumption 3 (LV feeder blackout). An LV feeder blackout is defined as overloading the LV
feeder, either by overloading the feeder cable current carrying capacity or voltage levels either exceeding
253 V or dropping below 207 V.
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3.6.1 Blackouts due to EV charging

If we have a set of n EVs, the probability that K EVs in that set charge in a specific time interval is
represented by the probability mass function of a binomial distribution:

P (K = k) =
(
n

k

)
pk(1− p)n−k (3.4)

where p is defined as the probability that a single EV charges on a certain time interval (as described in
Section 3.4.3). However, we are not interested in the situation of precisely k EVs charging, but in the
situation of a possible blackout, where at least k EVs charge simultaneously. For this we take the sum:

pblackout = P (K ≥ k)

=
n∑
k

P (K = k)
(3.5)

for K ∈ {k → n}. Note that pblackout represents the blackout probability for one physical feeder at a
certain time interval. To find the total number of local blackouts for the whole of the Netherlands, we
multiply pblackout by the total number of feeders of that specific type. To demonstrate this, we show the
results for Cluster 03 in Figure 3.16. Cluster 03 features a 266 meter cable of the 95 Al type with 39
household connections and represents 4.5% of the total network of approximately 300,000 LV feeders. We
assume the maximum number of simultaneously charging EVs to be 9. Thus, a blackout occurs at k = 10,
n varies with the penetration rate. E.g. if n = 20, the EV penetration rate is 20

39 = 51% and we sum
all situations for K ∈ {10 → 20}, resulting in pblackout for that specific penetration rate. For the next
step, EV penetration rate 21

39 = 54%, we take K ∈ {10 → 21}, and so on. In the case of this example,
p = 0.13 between 19:15 and 19:30. This means that we assume that all individual EVs in the set have
the same charging probability of 0.13 during that time interval. We use Equation 3.5 to calculate the
probability that ten or more out of the total set of n households are charging an EV at that time interval.
At around 85% EV penetration rate, the probability of a blackout for a single feeder, pblackout = 0.005
between 19:15 and 19:30. This means that this part of the grid, representing 4.5% of the total feeders,
encounters 0.045× 300, 000× 0.005 ≈ 68 blackouts daily on that specific time interval where p = 0.13.
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Figure 3.16: Number of blackouts occurring on all Cluster 03 type feeders with pEVcharging = 0.13 and
corresponding blackout probability for a single feeder at all possible EV penetration rates.
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3.6.2 Maximum PV capacity

Instead of creating blackouts and voltage problems by drawing too much power from the grid when e.g.
charging EVs, it is also possible to create voltage problems and even blackouts by injecting too much power
into the grid, as was described in Section 2.2.2. Since PV inverters shut down or curtail themselves when
the grid voltage rises too high, it is unlikely that these inverters cause severe grid problems. However, this
is highly inconvenient for the owner of such a PV installation, since it means a lower than expected yield.
In practice, the PV installations with the largest distance to the transformer shut down or curtail first, since
the voltage rises the highest in that location. To determine the maximum PV capacity, we choose the day
with the highest solar peak irradiance and increase the number of installations on the feeder until either
the current or voltage limits are violated. The capacity of the individual PV installations is determined by
the Dutch support scheme based on yearly netmetering, as was explained in Section 3.5.

3.7 Summary
This chapter introduced the technical details of the proposed model. By making a direct coupling of demo-
graphic data of all areas in the Netherlands with the ALPG, we can quickly adapt the model for different
demographic situations. However, assumptions and generalizations were needed to guarantee the flexibility
that was aimed for. The separation between the grid model, a basic household load model and an EV and
PV model allows for variations in the penetration rates of these technologies and an ease of adaption of
LV grid properties.

To assure the usability of the LV grid models for this thesis, several simplifications and assumptions where
needed. This was a deliberate choice, since too much details would create too many different situations
which would require more research and simulation time. Introducing the clustering approach makes it
possible to describe the Dutch LV grid as a whole with only a small set of clusters, without the need for a
case-by-case approach for every part of the LV grid.

To model EV charging sessions, two datasets are used, with the ElaadNL dataset as preferred dataset
because of its features and the fact that it is already pre-processed. The EV charging sessions itself are
modeled as independent events with a plug-in time probability and a charging time duration probability.
By estimating the probability that a single EV in the system charges at a certain time interval, we calculate
the probability that more than a given number of EVs in a set charges simultaneously. Such a situation
is defined as a blackout caused by EV charging and thus identifies the limit in terms of simultaneously
charging EVs of all specified clusters. Each of the specified clusters represents a part of the LV grid and
the occurrence rate of each of these clusters in the Dutch LV grid is known. We use this to make an
estimation of the maximum EV penetration rate for the Netherlands in the next chapter.
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Chapter 4

General results

4.1 Introduction

This chapter describes the general results and findings that have been acquired by using the described
methods. The goal of this chapter is to derive the maximum penetration rate of EVs in the current LV grid
and identify from which penetration rate problems in the current infrastructure start to appear. Here, we
show a more general approach on the Dutch LV grid as a whole, in contrast to Chapter 5, which focuses
on scenarios with specific example cases.

The chapter starts with an estimation of the maximum number of EV chargers that in theory can simul-
taneously operate on a single feeder, in Section 4.2. To do this, we use the top 26 generic feeder clusters,
which together represent over 70% of the Dutch LV grid (this was explained in Section 3.2.3 of the previous
chapter). Also, the effect of location of the EV charger within a feeder (with respect to the transformer)
is discussed in this section. When the maximum capacity of the LV networks in the grid is determined, we
continue with estimating from which EV penetration rates possible feeder blackouts start to appear and
what the consequences of these feeder blackouts are for the Dutch LV grid as a whole.

We do this by looking at the different factors that influence the EV charging probability. The EV charging
probability is defined in the previous chapter as the product of a plug-in time distribution and a charg-
ing time duration, thus dependent on energy demand and charging power. Section 4.3 shows the effect
of increasing charging duration on the value of probability that an EV charges at a certain moment in
time. Section 4.4 shows the effects of different plug-in time distributions. In Section 4.5 we shortly in-
vestigate what the effect of the EV charging probability on the probability of a blackout on a single feeder is.

In Section 4.6 we extend the used model in such a way that we can take into account that not all EVs
charge every day. We propose a method to describe different charging session frequencies and show the
impact of this on the probability of a blackout on an LV feeder. All the results of the proposed methods on
the clusters of Section 4.2 are then combined to create a general result for the Dutch LV grid as a whole.
We do this in Section 4.7, where we show the final outcomes of the analysis by counting the estimated
daily blackouts by uncontrolled EV charging for the Dutch LV grid and comparing these values to the
current situation. This allows us to draw a conclusion regarding the maximum EV penetration rate in the
Netherlands using the described assumptions and proposed description of the Dutch LV grid.
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4.2 Maximum number of EVs on feeder

The two main properties that determine the maximum capacity of a feeder are the current level at the
transformer (should not exceed the cable capacity) and the voltage level in the feeder (should not exceed
+- 10% of 230 V) as was described in Section 2.2.1. We do not consider any PV installation in these
simulations, so we calculate the current in the first segment of the cable, since that is where we assume
the highest current. The voltage is calculated at the last segment of the cable. To determine he maximum
feeder capacity in terms of number of EV chargers, every cluster is simulated and simultaneously charging
EVs are added one-by-one to mimic increasing EV penetration rates for both 3.7 and 11 kW chargers. The
maximum capacity of a feeder is defined by either a violation of the cable current limit or a critical voltage
drop over the cable. To demonstrate how this works, Figure 4.1 shows part of the simulation result for
Cluster 08. Observe that, although the feeder cable could carry more current, the voltage at the end of
the feeder drops below 207 V starting from six simultaneously charging 11 kW chargers. This is thus the
maximum feeder capacity in this case.
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Figure 4.1: Simulation of Cluster 08 with 11 kW chargers located at the last positions of the feeder. The
bold red lines represent the voltage and current limits, the dashed red line represents the -5%
voltage drop level.

4.2.1 Effect of location on feeder

The physical location of the loads on the feeder might influence the results, e.g. when placing all loads
on the end of the feeder, a voltage level violation might occur before a current level violation. To address
this, all simulations are done twice, once by locating the EV charger loads starting from the end to the
begin of the feeder (on the last positions viewed form the transformer) and once from the begin to the
end of the feeder (on the first positions viewed from the transformer). Examples from Cluster 04 with
11 kW chargers are shown in Figure 4.2 and Figure 4.3. Note that the difference of the voltage curve is
quite substantial and that the difference in current in both situations due to the placement strategy of the
EV chargers are only minor. For the final result on this specific cluster, this has no implications, as the
black-out situation still occurs when charging seven EVs simultaneously since the current limit is violated
earlier than the voltage limit in both cases.
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4.2.2 Individual cluster simulation results

The results for all simulated clusters are summarized in Table 4.1. All simulations are carried out with a
transformer voltage level of 230 V. The maximal number of simultaneous charging EVs within each cluster
is defined as sketched in the previous sections. Hereby, a violation of the feeder power capacity is indicated
with a (P), while a feeder voltage violation is indicated by a (V). Note that for 11 kW charging, taking
into account the occurrence rates of the clusters, about 71% of the capacity problems is power related
(overloading the LV cable with too much current), the other 29% is related to voltage drops. For 3.7 kW
charging, this ratio shifts to 83% and 27% for power and voltage problems respectively. Note that in the
presented results, the loads are always spread over the phases as uniformly as possible.
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Figure 4.2: Simulation of Cluster 04 with 11 kW chargers located at the last positions of the feeder. The
bold red lines represent the voltage and current limits, the dashed red line represents the -5%
voltage drop level. With seven simultaneously charging home chargers with 11 kW power
rating, a blackout occurs, thus the maximum is set at six.
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Figure 4.3: Simulation of Cluster 04 with 11 kW chargers located at the first positions of the feeder. The
bold red lines represent the voltage and current limits, the dashed red line represents the -5%
voltage drop level. With seven simultaneously charging home chargers with 11 kW power
rating, a blackout occurs, thus the maximum is set at six.
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Cluster Total
HH [-]

Cable type max. simultaneous
11 kW charger [-]

max. simultaneous
3.7 kW charger [-]

Occurence
[%]

01 17 150 Al - 150 m 13 (76%) - (P) 17 (100%) - (-) 6.4
02 24 70 Cu - 270 m 8 (33%) - (P) 24 (100%) - (-) 4.5
03 39 95 Al - 266 m 8 (21%) - (P) 25 (64%) - (P) 4.5
04 19 50 Cu - 218 m 6 (32%) - (P) 19 (100%) - (-) 4.4
05 32 150 Al - 362 m 11 (34%) - (P) 32 (100%) - (-) 4.1
06 26 50 Al - 290 m 5 (19%) - (V) 16 (62%) - (P) 3.4
07 49 95 Al - 386 m 8 (16%) - (V) 22 (45%) - (P) 3.4
08 70 150 Al - 633 m 6 (9%) - (V) 20 (29%) - (V) 3.3
09 27 50 Cu - 320 m 5 (19%) - (P) 15 (56%) - (P) 3.2
10 35 95 Al - 439 m 8 (23%) - (V) 24 (69%) - (P) 2.9
11 33 95 Al - 371 m 8 (24%) - (P) 24 (73%) - (P) 2.9
12 13 35 Cu - 277 m 5 (38%) - (P) 13 (100%) - (-) 2.8
13 62 150 Al - 499 m 10 (16%) - (V) 29 (47% ) - (P) 2.6
14 38 95 Al - 227 m 8 (21%) - (P) 24 (63%) - (P) 2.5
15 51 95 Al - 567 m 5 (10%) - (V) 17 (33%) - (V) 2.2
16 26 150 Al - 354 m 11 (42%) - (P) 26 (100%) - (-) 2.1
17 67 70 Cu - 233 m 6 (9%) - (P) 17 (25%) - (P) 2.1
18 11 35 Cu - 187 m 5 (45%) - (P) 11 (100%) - (-) 1.8
19 13 35 Cu - 190 m 5 (38%)- (P) 13 (100%) - (-) 1.8
20 33 70 Cu - 595 m 7 (21%) - (V) 20 (61%) - (P) 1.7
21 46 150 Al - 498 m 10 (22%) - (P) 30 (65%) - (P) 1.6
22 12 35 Cu - 146 m 5 (42%) - (P) 12 (100%) - (-) 1.6
23 26 35 Cu - 392 m 4 (15%) - (P) 12 (46%) - (P) 1.5
24 58 95 Cu - 1011 m 5 (9%) - (V) 16 (28%) - (V) 1.5
25 30 50 Cu - 246 m 5 (17%) - (P) 15 (50%) - (P) 1.3
26 25 150 Al - 453 m 11 (44%) - (P) 25 (100%) (-) 1.2

Table 4.1: Maximum feeder capacity in terms of simultaneously charging EVs and corresponding EV
penetration rate on that feeder (percentage between brackets). The table also indicates if
either the feeder power capacity (P) is reached or a critical voltage drop (V) appears. Total
HH denotes the number of households on the feeder, while Occurence represents the percentage
of feeders in the Dutch LV grid that are resembled by that cluster.
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4.3 Effect of charging time on EV charging probability
To determine the effect of the charging time tcharge on the EV charging probability pEVcharging, the required
energy per charging session Echarged is based on a set of values corresponding to travel distances of 50
to 300 km with 50 km intervals. This means that, whenever an EV charges, it charges the exact amount
of energy to cover the specified travel distance at the specified charging power. Figure 4.4 and Figure
4.5 show the results for Pcharging = 3.7 kW and Pcharging = 11 kW respectively using the plug-in time
distribution of the MEA dataset.

With Figure 4.4 and Figure 4.5 we describe the probability that an EV is charging in a certain timeslot
when it charges a specified energy demand (7.5, 15, 22.5, 30, 37.5 or 45 kWh) using a specified charging
power (either 3.7 kW or 11 kW) for a single EV. When the amount of energy that is charged in a session
increases, the charging time increases and thus the probability that an EV is charging in a certain time
interval, the EV charging probability pEVcharging increases. This also works the other way around: increas-
ing the charging power leads to a lower EV charging probability for the same energy demands, since the
time needed for charging decreases an thus the probability that an EV is in the state of charging decreases.
This is why the EV charging probability pEVcharging for 11 kW charging is generally much lower. In coming
sections, we use pEVcharging to describe the expected behavior of a set of EVs, e.g. in a street, and thus to
calculate the probability of charging more than a given number of EVs simultaneously on a certain timeslot.

Note, that the charging time tcharge for 100 km (15 kWh) at Pcharging = 3.7 kW is similar to tcharge for
300 km (45 kWh) at Pcharging = 11 kW (both 4 hours) and thus both cases show a similar EV charging
probability. After all, the time the EV spends charging is the same in both cases, thus the probability
that they are in the charging state is the same. We observe that an increasing tcharge also results in a
shift in peak moment time. This also holds for charging power, where for 11 kW charging the maximum
pEVcharging is visible around 19:00, while for 3.7 kW charging the peak moment shifts to around 22:00 (in
the case of charging 30 kWh). This is again explained by the corresponding increase in charging time,
which by definition results in an EV that is in the state of charging for a longer time period after its plug-in
moment.

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00

Time [hh:mm]

0

0.2

0.4

0.6

0.8

1

p
E

V
ch

ar
gi

ng
 [-

]

300 km | 45.0 kWh | tcharge  = 12h

250 km | 37.5 kWh | tcharge  = 10h

200 km | 30.0 kWh | tcharge  = 8h

150 km | 22.5 kWh | tcharge  = 6h

100 km | 15.0 kWh | tcharge  = 4h

50 km   | 7.5 kWh   | tcharge  = 2h

Figure 4.4: Effect of increasing charging time tcharge on EV charging probability (pEVcharging), results
shown for 3.7 kW charging with the MEA plug-in time data. Every line represents the prob-
ability that an EV is charging in a certain 15-minute timeslot, in the case of charging the
according energy demand on a certain day.
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Figure 4.5: Effect of increasing charging time tcharge on EV charging probability (pEVcharging), results
shown for 11 kW charging with the MEA plug-in time data. Every line represents the prob-
ability that an EV is charging in a certain 15-minute timeslot, in the case of charging the
according energy demand on a certain day.

Figure 4.6 shows the maximum value of the EV charging probability distribution, but for energy demands
of 5 to 25 kWh for both charging power levels of 3.7 and 11 kW. Notice the steady increase of pEVcharging:
the more energy demand is needed by every individual EV every day, the higher the maximum probability
an EV is charging.
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Figure 4.6: Energy demand per EV per day and corresponding maximum pEVcharging value.
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4.4 Effect of plug in time on EV charging probability
Next to the MEA dataset that was introduced in Section 3.4.2 and used as example when modeling the EV
charging probability, the Dutch foundation ElaadNL also provides a regularly updated open dataset, intro-
duced in Section 3.4.5. The dataset contains EV arrival plug-times in private, public and work environments.
To check the effect of this plug in time probability distribution resulting from this dataset, we compare both
datasets by creating a similar plot for the ElaadNL data as we did for the MEA data in the previous section.

Comparing the Figures 4.7 and 4.8 with the Figures 4.4 and 4.5, we observe for both distributions a
similar behavior in terms of peak moment, but a main difference in the maximum EV charging probability
value: 0.411 (3.7 kW ElaadNL) and 0.172 (11 kW ElaadNL) compared to 0.345 (3.7 kW MEA) and
0.123 (11 kW MEA) for e.g. 15 kWh-charging. The advantages of the ElaadNL data already discussed in
Section 3.4.5, such as combining multiple data sources (instead of using only Nissan LEAF models for the
MEA dataset) makes the ElaadNL data our preferred data set for the remainder of this thesis.
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Figure 4.7: EV charging probability for five different energy demands, results shown for 3.7 kW charging
with the plug-in time distribution based on the ElaadNL data for private and public charging
sessions combined.
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Figure 4.8: EV charging probability for five different energy demands, results shown for 11 kW charging
with the plug-in time distribution based on the ElaadNL data for private and public charging
sessions combined.

We observe an evening peak for both charging power levels. However, the 3.7 kW charging power level of
Figure 4.7 shows also an increased EV charging probability during the night. This is due to the fact that
EVs that charge with the lower 3.7 kW power level require more time to charge the given energy demand
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compared to charging with 11 kW. This increasespEVcharging: the probability that an EV is in state of
charging. Overall, the EV charging probability for 11 kW charging is much lower due to this effect of
reduced charging time.

4.5 Effect of EV charging probability on blackout probability
To show the effect of the EV charging probability (pEVcharging) on the feeder blackout probability (pblackout),
pblackout is calculated for pEVcharging values ranging from 0.05 to 0.30 with increments of 0.05. As example,
the result of Cluster 03 shown in Figure 4.9. The orange line of the right y-axis represents pblackout for a
single feeder and the blue bars (left y-axis) represent the total number of daily blackouts in the LV grid,
as defined in Section 3.6.1. In Figure 4.10, these calculations are summarized in one graph.
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Figure 4.9: Effect of increasing pEVcharging on total daily blackouts, results shown for Cluster 03, repre-
senting 4.5% of the Dutch LV network, using 11 kW EV chargers.

These graphs show that an increasing EV charging probability leads to an increase in blackouts. In other
words: when people charge more EVs simultaneously, the risk of LV feeder blackouts increases. The
example for Cluster 03 in Figure 4.10 shows this. Cluster 03 represents 4.5% of the Dutch LV grid (with
an estimated 300,000 feeders total). If the maximum EV blackout probability value (which depends on
energy demand, charging frequency and charging time) for a certain timeslot is determined at 0.15, this
leads to roughly two blackouts per day in 4.5% of the Dutch LV grid when the EV penetration rate reaches
about 33%, indicated by the yellow line in Figure 4.10. However, this method of calculating the blackout
probability contains a number of simplifications. Firstly, we assume here that all EVs charge everyday with
the same energy demand, which we consider highly unlikely. Secondly, to calculate the blackout probability
on a certain day, we only consider the timeslot with the highest EV charging probability. This is unfair,
since blackouts might also occur in other timeslots. If we want to know the probability of a blackout on a
certain day, we also need to take the other timeslots into account. Thirdly, we assume here that all EVs
charge with the same power level, either 3.7 or 11 kW, which we also consider to be unlikely. In the next
section, we address these simplifications and introduce methods to avoid these simplifications.
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Figure 4.10: Effect of EV penetration rate and pEVcharging on daily blackouts, results shown for Cluster
03, representing 4.5% of the Dutch LV network, using 11 kW EV chargers. This graph
summarizes Figure 4.9.

4.6 Effect of charging frequency

This section introduces a method to analyze the effect of the trade-off between charging more frequently,
but shorter and charging less frequently, but longer. From the previous sections it is evident that a longer
charging time tcharge increases the probability that an EV charges for each time interval on a certain day.
After all, increasing the duration of the time an EV needs to charge (regardless if that is caused by lowering
charging power or increasing energy demand) ensures that the EV charges for a longer period of time and
thus has a higher probability to be in the charging state. This also implies that the probability that any
given EV charges simultaneously with other EVs increases, which is something we want to avoid since it
increases the probability on a blackout. This means that a smaller tcharge seems to be beneficial. One
way to reduce tcharge is to charge more frequently in a certain time span, since this reduces the energy
demand per charging session and thus the time per session that an EV charges. However, more charging
sessions might on the other hand also increase the peak loads on the grid again, and thus increase the
probability of a blackout. The previous section estimated the daily blackouts for a scenario in which all EVs
charge everyday and with the same amount of energy. In practice, this distribution is unlikely. People use
different EV models with different battery sizes and exhibit different charging behavior. This means that
the charging frequency, i.e. the number of charging sessions in a certain period, may vary among different
EV owners. Some EV owners may charge their EV only 2-3 times per week, other EV owners plug in their
EV e.g. every day.

To analyze the impact of these varying number of EV charging sessions on the load of an LV feeder, we
determine four things: (1) if an EV is charging on any given day, (2) the energy demand for that session,
(3) the time the charging sessions starts (the plug-in time) and (4) the duration of the charging sessions
(which depends on the charging power and energy demand)(4). The chosen approach to model these
aspects is based on a number of assumptions. First, we assume that every EV drives 38 kilometer per day
(this is in line with CBS statistics [20]). We use this average only to demonstrate the model. In future
work, this part can be extended by using e.g. a distribution with an average and a standard deviation
for driven kilometers. We choose an average energy efficiency of 0.175 kWh per kilometer. The required
energy is assumed to be charged with an AC charger in the LV grid, either a home charger or a (semi-)
public charging pole in the LV grid, near the house of the EV owner, thus connected on the same LV
feeder as the house. Secondly, we assume that any given EV charges according to one of five predefined
charging options: charging the energy equivalent of 38 km every day, charging the energy equivalent of
2× 38 = 76 km every other day, charging the energy equivalent of 3× 38 = 114 km every third day, and
so on up to charging the energy equivalent of 5×38 = 190 kilometer every fifth day. We call these options
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’charging regimes’. Once we assign an EV to any given charging regime, the probability that it charges at
a specific quarter over the day is given according to the distributions seen in Figure 4.11 and Figure 4.12.
This probability distribution applies for the day the EV is scheduled to charge. For the other days, where
it does not charge, the EV has no charging distribution. These probability distributions combine the
plug-in time probability with the charging duration of the discretized energy demands, as was introduced
in Section 3.4.3. The next section, Section 4.6.1, applies this method to a uniform distribution of the
charging regimes to determine the number of EVs that is charging on a certain day and the corresponding
probability of a blackout on every individual timeslot (quarter of the day). Section 4.6.2 shows how to
accumulate these probabilities to calculate the probability of a blackout on a certain day. Section 4.6.3
introduces an alternative distribution of charging regimes and compares this to the other available distribu-
tions of charging regimes. Finally, Section 4.6.4 combines both 3.7 and 11 kW power levels into one model.
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Figure 4.11: EV charging probability pEVcharging using 3.7 kW charging for five different energy demands.
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Figure 4.12: EV charging probability pEVcharging using 11 kW charging for five different energy demands.

4.6.1 Modeling different charging regimes

As mentioned earlier, we consider five discretized charging charging regimes: we charge every day the
energy equivalent of 38 kilometer, every two days the energy equivalent of 2 × 38 = 76 kilometer up
to charging the energy equivalent of 190 kilometer every five days. We charge each of the given EVs
according to one charging regime only. This implies that not every EV charges every day. For the EVs
charging according to regime 1, the probability that the EV charges on a certain day is 1, since they charge
every day. For the EVs that charge according to regime 2, the possibility that the EV charges on a certain
day is 0.5, since this EV only charges once in two days. For charging regime 3, 4 and 5 the same structure
holds. We denote this probability by αx, with x the charging regime number. We assume further that the



44 Chapter 4. General results

five charging regimes are distributed uniformly over the EV owners, e.g. 20% of the EV owners show the
behavior of charging regime 1, 20% of the EV owners show behavior of charging regime 2 etc. We call
this probability βx, where x again denotes the charging regime number. Note that, for a given charging
regime, the energy demand has to be specified. E.g. when charging once every three days, the EV charges
the energy equivalent of 3× 38 = 114 kilometers. Note that the αx values for every regime are fixed, but
that βx depends on the scenarios, i.e. if in certain scenarios 80% of the EV owners charge every day, β1

should be set to 0.8. With these values, we can calculate the expected number of EVs that charge on a
specific day. For a given charging regime x, the number of EVs that charge, kx, is defined as:

kx = N × βx × αx (4.1)

where N represents the total number of EVs in the set. Since we can not charge e.g. 25 and ’one-fifth’
EV on a day, we round kx to whole numbers. To find the expected total number n of EVs that charge on
a specific day, we take the sum over all charging regimes:

n =
5∑

x=1
kx (4.2)

To demonstrate this, we consider a street, somewhere in the Netherlands, with 60 households connected to
one feeder. Of the 60 households, 40 possess an EV (N=40), representing an EV penetration rate of 67%.
We use Equation 4.1 to calculate kx: 40×0.2× 1

1 = 8 EVs charge according to regime 1, 40×0.2× 1
2 = 4

EVs charge according to regime 2 and so on. The results for all charging regimes are displayed in Table
4.2. Accumulating all values for kx according to Equation 4.2 results in the expected number n of EVs
charging on a certain day is 19. Note that, using this equal distribution for βx, only 19

40 = 47.5% of the
EVs charge on a certain day, the other 21 EVs do not charge that day.

Charging regime x αx βx kx

1 1
1 0.2 8

2 1
2 0.2 4

3 1
3 0.2 3

4 1
4 0.2 3

5 1
5 0.2 1

Table 4.2: Example values for the five charging regimes. αx indicates the probability that an EV charges
on a certain day. βx indicates the share of the total EVs in the set that show that particular
behavior. Using N = 40 results in the values kx, the number of EVs that charges that day
according to regime kx.

For a given charging regime, we can determine the EV charging probability at a certain time interval
pEVcharging, based on the results in Section 4.4 (shown for 3.7 kW charging in Figure 4.11). Note that for
every charging regime, the corresponding pEVcharging is denoted by px with x the charging regime number.
By using the EV charging probability, we combine the plug-in time with the duration of the charging
session. This explains that, for charging regimes with a higher energy demand, the EV charging probability
pEVcharging is higher, since EVs charge longer. If we consider the charging sessions as independent events
with a probability of ’success’ (i.e. when charging happens) given by the EV charging probability for the
different charging regimes px, we get a binomial distribution for the probability that exactly n̄ out of the
set of n EVs charge in a timeslot t:

pn
n̄(t) =

(
n

n̄

)(
px(t)

)(n̄)(1− px(t)
)(n−n̄) (4.3)
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Note that px varies for every EV. Every charging regime has its own given px distribution, with kx EVs
following that given distribution. In this example, only k1 = 8 EVs follow the distribution for p1, k2 = 4
EVs for p2 and so on. This is different from a binomial distribution with identically distributed px, where
all n̄ EVs would follow the same px. This requires us to multiply the power terms with a factor kx

n , i.e.
only the fraction of n (the total EVs) that charge according to the specified charging regime. This ensures
that only kx EVs follow a certain distribution px.

pn
n̄(t) =

(
n

n̄

)(
p1(t)

)(n̄× k1
n )(

1− p1(t)
)((n−n̄)× k1

n

)

×
(
p2(t)

)(n̄× k2
n )(

1− p2(t)
)((n−n̄)× k2

n

)
×
(
p3(t)

)(n̄× k3
n )(

1− p3(t)
)((n−n̄)× k3

n

)
×
(
p4(t)

)(n̄× k4
n )(

1− p4(t)
)((n−n̄)× k4

n

)
×
(
p5(t)

)(n̄× k5
n )(

1− p5(t)
)((n−n̄)× k5

n

)
,

(4.4)

where pn
n̄ is the probability that n̄ of the total n EVs charge on a certain time interval and kx is the number

of EVs that charge according to EV charging probability distribution px with x ∈ {1, 2, 3, 4, 5}. Note that
we use time dependent probabilities px. This allows us to estimate the time slot with the largest probability
of a blackout. To demonstrate this, we continue with the introduced example: a street in the Netherlands,
with 60 households connected to one feeder. We assume that on this particular feeder, we can allow only
a maximum of 12 simultaneously operating 3.7 kW EV chargers. Furthermore we assume that out of the
60 households, 40 possess an EV. This represents an EV penetration rate of 67%. We use the charging
regimes with corresponding βx values of Table 4.2. Using Equation 4.2, we have already calculated that
the expected number of EVs charging on a day is 19. Notice that this is the direct consequence of the
equal distribution of charging regimes among the EVs. As this grid capacity is 12 EVs, we are interested in
the probability of the situation that 13 or more EVs charge simultaneously, since this represents a blackout
situation. Figure 4.13 shows all probabilities of a certain number of EVs charging, represented by the col-
ored bars. The legend of the plot indicates how many EVs charge simultaneously, e.g. ’EVs charging = 13’
indicates the probability that exactly 13 EVs charge simultaneously, ’EVs charging = 14’ for exactly 14
simultaneously charging EVs and so on. Note that each dashed line represents the individual case according
to the legend. Also note that the probability for the higher numbers, e.g. ’EVs charging = 17’ are not
visible in the plot, since that probability is very low, almost negligible and thus not visible on this scale.
The solid bold line is the sum of all these probabilities, i.e. the total probability that 9 or more EVs charge
in the same timeslot. That means that the solid bold line represents the total probability of a blackout,
with a maximum probability of 1.2 × 10−3 in the timeslot of 19:15 - 19:30. In practice this means that,
in this scenario, the situation with more than 12 simultaneously charging EVs is estimated to occur once
every 833 days in that time slot.

We can make the same calculation for a penetration rate of 100%. This implies N = 60, from that
follows that n = 27 EVs are expected to charge on a particular day and the maximum blackout probability
becomes 0.033, see the blue line in Figure 4.14. This results in a potential blackout due to EV charging
once every 30 days in this specific timeslot. The probability of a blackout during that entire day is higher,
since blackouts do occur not only at the timeslot with the highest probability, but also on other timeslots.
The probability of a blackout in these other timeslots is admittedly lower, but to find the total blackout
probability on a certain day we need to accumulate all the probabilities of a blackout for every timeslot.
This is shown in the next section.
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Figure 4.13: Blackout probability for 13 up to 19 charging EVs on a certain day. The dashed lines represent
the individual situations, e.g. ’EVs charging = 13’ indicates the probability that exactly 13
EVs are charging simultaneously. The solid bold line represents the sum of all the individual
dashed lines and thus represents the total probability of a blackout.
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Figure 4.14: Blackout probability for 13 up to 27 charging EVs on a certain day. The dashed lines represent
the individual situations, e.g. ’EVs charging = 13’ indicates the probability that exactly 13
EVs are charging simultaneously. The solid bold line represents the sum of all the individual
dashed lines and thus represents the total probability of a blackout.

4.6.2 Blackout probability for a full day

To accumulate probabilities, we have to consider all possible outcomes. We have 96 possible timeslots for
a blackout. In any timeslot, a blackout can or can not occur and we know the probability of this by the
solid bold in Figure 4.13. However, for a blackout to appear in a time period t we also need to know that
there has not been a blackout in the previous time periods 1 → t − 1. Otherwise the system would not
have ’reached’ time period t. To demonstrate this, we give in Table 4.3 the blackout probability values
for five timeslots as pxx with xx as the timeslot number, e.g. timeslot 72 for 18:00-18:15. Note that pxx

describes the probability of a blackout at that certain timeslot, while (1 − pxx) describes the probability
that a blackout does not occur at that time slot.
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18:00-18:15 18:15-18:30 18:30-18:45 18:45-19:00 19:00-19:15
p72 - - - -

(1− p72) p73 - - -
(1− p72) (1− p73) p74 - -
(1− p72) (1− p73) (1− p74) p75 -
(1− p72) (1− p73) (1− p74) (1− p75) p76

Table 4.3: Example table to demonstrate cumulative blackout probability.

Every row describes a possible outcome. In every timeslot a blackout can or can not happen and we assume
that a blackout can only happen once per possible outcome. By taking the product of all values in a row,
the probability of that single outcome is calculated. To calculate the probability for a whole day, we sum
all 96 possible outcomes to calculate the probability that in any of these 96 timeslots a blackout occurs.
For the case of Figure 4.13, this results in a blackout probability of 0.0073 (once every 137 days). The
case of Figure 4.14 results in a blackout probability of 0.192 (once every five days).

This indicates that EV penetration rates of 67% and 100% result in serious problems for the local grid in
the sketched situation. To show the relation between the blackout probability and EV penetration rate,
we plot these in Figure 4.15. To make this plot, we calculate pn

n̄ (Equation 4.4) for every number of EVs
from 0 to 60, so from 0 to 100% penetration rate and for each of these cases we calculate the blackout
probability for the entire day. Next to this, the same figure also shows the plots of expected days before
a blackout occurs and the corresponding expected number of blackouts per year. Note that the lines are
not perfectly smooth and that the variation is not the same among the different EV penetration rates.
This is due to the necessary rounding of the kx values since it is practically impossible to charge e.g. 0.8
EVs. Furthermore, to execute the calculations, the binomial coefficient n̄ needs to be a positive integer by
definition.
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Figure 4.15: Blackout probability, number of days for an estimated blackout and expected blackouts per
year for the sketched scenario using 3.7 kW charging only.

4.6.3 Altering the charging regime distribution

In the previously introduced example, we assumed βx, the share of EVs that follow one of the five charging
regimes, equal for every charging regime. From statistical analysis of EV charging sessions, introduced in
Section 3.4.2, we know that charging frequency varies and is negatively correlated to battery size: EVs with
smaller batteries charge more often: 80% of the Nissan LEAF drivers (with only a 24 kWh battery pack)
state that they charge 4 to 6 times per week, while 62% of the Tesla Model S (with a 95 kWh battery
pack) drivers state they charge no more than 3 times per week. Based on this information, we adapt the
distribution of the charging regimes, i.e. we alter the value for βx. We propose the distribution shown in
Table 4.4, where we use N = 40 (67% EV penetration rate) as example. We choose αx as 0.55, 0.15,
0.10, 0.10 and 0.10, thus 55% of the EVs following charging regime 1, 15% following charging regime 2
and so on. We call this charging regime distribution 55/15/10/10/10. Using this example, 28 out of the
total 40 EVs (70%) are charging every day.

Charging regime x αx βx kx

1 1
1 0.55 22

2 1
2 0.15 3

3 1
3 0.10 1

4 1
4 0.10 1

5 1
5 0.10 1

Table 4.4: Values for the 55/15/10/10/10 charging regime distribution. αx indicates the possibility that
an EV is charging on a certain day. βx indicates the share of of the total EVs in the set that
show that particular behavior. Using N = 40 (for 67% EV penetration rate) results in the
shown values for kx.
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Figure 4.16 shows the results of the 55/15/10/10/10 distribution of EV charging regimes. Comparing
this to the equal βx distribution of the previous section in Figure 4.15, we see that the blackouts occur
already at a lower penetration rate, from 35-40% onwards instead of beyond 45-50%. Furthermore, the
maximum probability on a blackout is higher compared to the previous example. This result is due to the
fact that more EVs charge on a certain day with this new distribution: 70% vs. only 47.5% of the equal
20/20/20/20/20 distribution.
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Figure 4.16: Blackout probability, number of days for an estimated blackout and expected blackouts per
year for the 55/15/10/10/10 charging regime distribution using 3.7 kW charging only.

We make the same calculations for 11 kW charging, using the EV charging probability distributions for
11 kW charging shown in Figure 4.12. Since charging with 11 kW is about 3 times faster compared to
3.7 kW, the EV charging probability is much lower, since tcharge decreases. However, we can also host
roughly 3 times less of these higher powered EV chargers at the same time because of feeder limitations.
Figure 4.17 shows the results for the 55/15/10/10/10 charging regime distribution with a maximum of 4
simultaneously charging 11 kW chargers. Now, blackouts are expected already from 15-20% EV penetration
rate onwards due to the lower number of possible simultaneously charging EVs: the feeder limit is reached
earlier since we only need 4 simultaneously charging EVs instead of 12.



50 Chapter 4. General results

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

P
ro

b
a
b
ili

ty
 o

n
 b

la
c
k
o
u
t 
[-

]

0 10 20 30 40 50 60 70 80 90 100
0

100

200

300

400

500

B
la

c
k
o
u
t 
e
v
e
ry

 X
 d

a
y
 [
-]

0 10 20 30 40 50 60 70 80 90 100

EV penetration rate [%]

0

1

2

3

4

5

B
la

c
k
o
u
ts

 p
e
r 

y
e
a
r 

[-
]

Figure 4.17: Blackout probability, number of days for an estimated blackout and expected blackouts per
year for the 55/15/10/10/10 charging regime distribution using 11 kW charging only.
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4.6.4 Combining power levels

We assume that it is unlikely that all EV owners and all (semi-)public charging poles in a neighborhood
use the same power level (either 3.7 or 11 kW). Therefore we propose to combine these power levels with
a certain ratio. This means that, if we have a number of EV chargers in a set, a share of them are 11 kW
chargers and the other share consists out 3.7 kW chargers. Thus, the EVs with of 3.7 kW chargers follow
one of the five charging regimes available for that 3.7 kW power level, the other EVs, in the share of 11
kW chargers, follow one of the five charging regimes available for the 11 kW power level. To model this,
we extend Equation 4.4 with another 5 terms. Now, we have in total 10 terms, 5 terms for each power
level and 2 terms for each charging regime. Since a share of the EVs now is charged with one of the two
power levels, we multiply the power term for each 3.7 kW charging regime with the charging power factor
FP and the power term for each 11 kW charging regime with (1− FP ). This means that number of EVs
kx is multiplied by FP or (1− FP ) to account for the share of EVs that charge either with 3.7 or 11 kW
charging power. If e.g. 70% of the EVs charge with 3.7 kW, FP = 0.7 and (1− FP ) becomes 0.3.

pn
n̄(t) =

(
n

n̄

)(
p3.7

1 (t)
)(n̄× k1

n ×FP )(
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(4.5)

where pn
n̄ is the probability that n̄ of the total n EVs are charging on a certain time interval, kx is the

number of EVs that charge according to EV charging probability distribution pz
x with x ∈ {1, 2, 3, 4, 5} and

z indicates the charging power level, either 3.7 or 11 kW. The data on public charging points presented
in Section 2.3.3 show a trend towards higher power demand per charging session, thus we assume a
50/50 ratio between 3.7 and 11 kW here. For the cases with only one power level, the maximal allowed
simultaneous charging sessions could be calculated directly. However now this is no longer possible as this
number depends on the type of the EVs present at the charging stations. To simplify the situation, we
assume for the maximum allowed number of simultaneous charging sessions that we have an equal number
of both power levels, i.e. a 50/50 ratio. This implies that now the maximum number of simultaneously
charging EVs is six: three of each power level, since (3× 3.7) + (3× 11) = 44.1 which closely approaches
the maximum capacity of 12 × 3.7 = 44.4 kW. Figure 4.18 shows the result of this approach for the
55/15/10/10/10 charging regime distribution. Comparing this result to the Figure 4.16 and Figure 4.17
shows that problems with the combined power levels start at higher EV penetration rates compared to the
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situation that we charge with 11 kW only, but at lower EV penetration rates compared to when we charge
with 3.7 kW only.
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Figure 4.18: Blackout probability, number of days for an estimated blackout and expected blackouts per
year for the sketched scenario using a 50/50 ratio of both charging power levels 3.7 and 11
kW.

4.7 Effects on the national LV grid

According to statistics from Netbeheer Nederland [36], the Dutch grid experienced 19.962 power inter-
ruptions on average per year between 2014-2018, which is almost 55 power interruptions per day. It is in
common interest to keep this value as low as possible, so any significant increase is considered unaccept-
able. Note that 10 additional daily interruptions leads to an increase of nearly 20%, which we consider to
be the maximum acceptable value.

To investigate the effects on the national LV grid, we propose to apply two methods. The first method we
call the ’single charging regime’ method, since every EV in the set is expected to show the same behavior,
e.g. for pEVcharging = 0.20 at 3.7 kW charging, the energy demand per EV per day is about 6 kWh and
each EV is charged every day with exactly that amount of energy. This is based on the work of Section 4.5
and makes it straightforward to show the effect of EV energy demand and charging power on the Dutch
LV grid. This method is shown in Section 4.7.1. However, in practice, such an homogeneous EV charging
scenario is unrealistic and is regarded as a rather simplistic initial way of modeling the charging of EVs.
Section 3.4.2 showed that not every EV is charged every day and that the number of charging sessions
during a week is dependent on external factors such as battery size. The previous Section 4.6 introduced
a method to account for this. The method can be a basis for estimating the expected blackout probability
by taking into account two different power levels and five different charging regimes for each power level.
Section 4.7.2 shows the results for this case.
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4.7.1 Single charging regime method

To quantify the impact of increasing EV penetration rates on the number of daily blackouts, we determine
all the single feeder daily blackouts that occur in the whole Dutch LV grid at different EV penetration rates
and charging probabilities pEVcharging. Since the occurrence rate of all simulated clusters is known (Table
4.1 in Section 4.2.2), we can extrapolate from the 26 simulated clusters (representing 71.3% of the Dutch
LV grid) to 100% to estimate the number of daily blackouts in the estimated total of 300,000 LV feeders in
the Netherlands. The results are presented in Figure 4.19 and 4.20 for 3.7 kW and 11 kW charging respec-
tively. Observe that the number of daily blackouts is sensitive to the EV charging probability, pEVcharging,
and that for the 3.7 kW chargers a broader range for pEVcharging is required, since the charging time tcharge

increases at lower charging powers. Note that pEVcharging describes the probability that an EV charges at a
certain time by combining the charging start time probability and the duration of a charging session. For the
38 km per day scenario we know that pEVcharging is 0.228 for 3.7 kW charging and 0.073 for 11 kW charging.

From this method, we can conclude that, when applying only relatively high-power 11 kW charging, the
current LV grid already may experience significant problems in terms of additional daily blackouts from EV
penetration rates of 20%-25% and beyond. Applying only relatively low-power 3.7 kW charging, problems
might be postponed to EV penetration rates of about 50%. In practice, there is a mix of both power levels
present. Thus, the maximum EV penetration rate is expected somewhere in the range 14-50%. The main
weakness of this method is that we can only consider one charging regime at a time. We have to choose
a single value for pEVcharging, which defines the charging regime and power level that all EVs in the set
follow. We also have to assume that every EV has to charge every day. As this does not seem to be very
realistic, we introduced a model that can incorporate different charging regimes and power levels at the
same time in Section 4.6. The next section shows the results of that improved model.
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Figure 4.19: Effect of EV penetration rate and EV charging probability, pEVcharging, on number of black-
outs in the Netherlands, using 3.7 kW EV chargers. The data in this graph takes into account
all estimated 300,000 feeders in the Dutch LV grid. The line in bold represents the estimated
maximum EV charging probability for the ’38 kilometer per day’ charging scenario, while the
red dashed line represents the 20% black-out increase level.
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Figure 4.20: Effect of EV penetration rate and EV charging probability, pEVcharging, on number of black-
outs in the Netherlands, using 11 kW EV chargers. The data in this graph takes into account
all estimated 300,000 feeders in the Dutch LV grid. The line in bold represents the estimated
maximum EV charging probability for the ’38 kilometer per day’ charging scenario, while the
red dashed line represents the 20% black-out increase level.

4.7.2 Multiple charging regimes method

Where the single charging regime method assumes that every EV charges every day and charges the same
amount of energy, this multiple charging regime method considers that only a subset of the total number
of available EVs on a feeder charges on a certain day and that there is a variety in the amount of energy
these EVs charge. The EVs that do not charge on a certain day are putting no stress on the grid on that
day but they are part of the EV penetration rate. To show the results of an increasing EV penetration
rate on the expected daily blackouts in the Dutch LV grid, we use the 55/15/10/10/10 charging regime
distribution proposed in Section 4.6.3, where 55% of the EVs follows regime 1, 15% regime 2 and so on.
With this charging regime distribution, 70% of the available EVs on a feeder is charging on a certain day,
while the other 30% is not charging. Applying this method for both 3.7 kW and 11 kW charging results
respectively in the Figures 4.21 and 4.22. Note that the five clusters causing problems for 3.7 kW charging
are the same clusters which cause the first problems for 11 kW charging, namely Cluster 8, 15, 17, 23
and 24. These are also the clusters with relatively the lowest possibilities for simultaneously charging EVs,
according to Table 4.1 in Section 4.2. These five clusters represent about 15% of the total LV feeders in
the Netherlands (corrected for the total estimated 300,000).

The main advantage of this multiple charging regime method is that we can combine different charging
behavior, whereas with the single charging regime method we are restricted to a single charging regime for
every EV in the model. In Figure 4.23 and 4.24, 7 charging regimes for both 3.7 and 11 kW are compared:
the uniformly distributed 20/20/20/20/20 charging regime distribution, the 55/15/10/10/10 charging
regime distribution and the situations in which all EVs follow 1 of the 5 separate charging regimes. Note
again that ’charging regime 1’ means that every EV is charging the energy equivalent of 38 km every day,
’charging regime 2’ is used to indicate that an EV charges the energy equivalent of 2× 38 = 76 km every
days, and so on. Comparing all EVs charging according to regime 1 (charging every EV every day) with
the 55/15/10/10/10 charging regime distribution, we observe that, for 3.7 kW charging, the acceptable
EV penetration rate is extended by 15-20%. For 11 kW charging, the effect is weaker, but the allowable
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Figure 4.21: Expected daily blackouts using 3.7 kW charging and the proposed charging regime distribu-
tion. The line in bold represents the total number of daily blackouts corrected for all feeders
in the Netherlands.
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Figure 4.22: Expected daily blackouts using 11 kW charging and the proposed charging regime distribu-
tion. The line in bold represents the total number of daily blackouts corrected for all feeders
in the Netherlands.

EV penetration rate can still be extended by about 5-10%. Changing the charging regime to an equal
distribution among the five different regimes increases the allowable EV penetration rate even further: an
extra 20-25% for 3.7 kW charging and about 5% extra for the 11 kW charging case. This result can be
explained by the fact that such an uniformly distributed charging regime lowers the number of charging
sessions on a certain day. Although the average length of the charging sessions on such a day increases,
the final blackout probability decreases since the probability of overloading a feeder is lower.
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Figure 4.23: Comparison of the impact of different 3.7 kW charging regimes on expected daily blackouts
in the Netherlands.
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Figure 4.24: Comparison of the impact of different 11 kW charging regimes on expected daily blackouts
in the Netherlands.

Notice that we would expect ”All EVs charging according to regime 1” to match the bold lines in Figure
4.19 and Figure 4.20 for the corresponding power level in the single charging regime method, since they
both represent the same charging regime. However, this is not the case, since the single regime charging
method only takes into account the probability of a blackout on the timeslot with the highest probability,
not for a full day. This is another advantage of the multiple charging regime method over the single
charging regime method.

4.7.3 Combining power levels

In Section 4.6.4 we already stated that we assume it unlikely that all EV chargers charge according to the
same power level and we proposed to use a 50/50 ratio of 3.7 and 11 kW chargers for this model. This
means that, if we have a number of EV chargers in a set, roughly half of them are 11 kW chargers and
the other half are 3.7 kW chargers. So, we end up with one single value for simultaneously charging EVs
instead of one value for 11 kW charging and one value for 3.7 kW charging. To do this, we use the results
from Table 4.1 from Section 4.2.2, which show the maximum simultaneously charging EVs for the two
different power levels. From this, we can estimate the available peak power for each cluster and divide that
peak capacity among the 2 charging power levels. We take Cluster 02 as example. Cluster 02 can in theory
handle eight simultaneously charging 11 kW chargers. This is roughly a 8 × 11 kW = 88 kW load. This
defines the available maximum capacity available for EV charging. To divide this 50/50 among 11 and 3.7
kW charging power levels, we end up with six possible chargers for each power level, since 6× 11 kW= 66
kW and 6× 3.7 kW= 22.2 kW, which is roughly 88 kW. The total number of simultaneously charging EVs
on this feeder becomes 12, on the condition that roughly half of these EVs charge with 11 kW and roughly
the other half charges with 3.7 kW. The result of the combinations for all 26 clusters is shown in Table 4.5.
Figure 4.25 shows the EV penetration rate plotted against the expected daily blackouts for the using both
3.7 and 11 kW charging power levels in a 50/50 distribution. Comparing this to Figure 4.21 and Figure
4.22 that represent the cases for 3.7 and 11 kW charging only, we find that the 50/50 ratio falls in between
both curves, as expected.
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Figure 4.25: Expected daily blackouts using both 3.7 and 11 kW chargers (in a 50/50 ratio) for the
proposed charging regime distribution. The line in bold represents the total number of daily
blackouts corrected for all feeders in the Netherlands.

Cluster Total HH [-] max. simultaneous chargers [-] Occurence [%]
01 17 17 (100%) 6.4
02 24 12 (50%) 4.5
03 39 12 (31%) 4.5
04 19 10 (53%) 4.4
05 32 16 (50%) 4.1
06 26 8 (31%) 3.4
07 49 12 (25%) 3.4
08 70 10 (19%) 3.3
09 27 8 (30%) 3.2
10 35 12 (34%) 2.9
11 33 12 (36%) 2.9
12 13 8 (62%) 2.8
13 62 14 (23%) 2.6
14 38 12 (32%) 2.5
15 51 8 (16%) 2.2
16 26 16 (62%) 2.1
17 67 10 (15%) 2.1
18 11 8 (73%) 1.8
19 13 8 (62%) 1.8
20 33 10 (31%) 1.7
21 46 14 (31%) 1.6
22 12 8 (67%) 1.6
23 26 6 (23%) 1.5
24 58 8 (14%) 1.5
25 30 8 (27%) 1.3
26 25 16 (64%) 1.2

Table 4.5: Maximum feeder capacity in terms of simultaneously charging EVs following a 50/50 ratio for
3.7 and 11 kW chargers. The corresponding EV penetration rate on that feeder is denoted by
the percentage between brackets. Total HH denotes the number of households on the feeder,
while Occurence represents the percentage of feeders in the Dutch LV grid that are resembled
by that cluster.
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4.7.4 Summary

In this section, two methods to analyse the impact of an increasing EV penetration rate on the Dutch
LV grid are introduced: the so called ’single charging regime method’ and the ’multiple charging regime
method’. With the single charging regime method, we get a feeling for what happens when all EVs in
general increase their energy demand. When the energy demand increases, the charging time increases and
thus the probability that EVs charge during the same time interval, pEVcharging, increases. This increases
the number of estimated daily blackouts.

The multiple charging regime method allows us to extend the first observations by also taking into account
that not every EV charges every day and taking into account different charging regimes per EV. The
proposed method makes it possible to compare different charging regimes and different charging powers.
By showing the effect of different charging regimes, we can conclude that dividing the charging sessions
evenly among weekdays is preferable in terms of reducing the load on the LV grid. However, this is not very
realistic or applicable, since we although we may try to influence charging behavior, we can not force people
to charge their EV only on certain days. Using the 55/15/10/10/10 charging regime distribution and the
50/50 ratio of 3.7 and 11 kW power levels, the maximum EV penetration rate for the Netherlands estimated
to be around 30%. The model can be used to further study the effect of different charging regime distri-
butions and to estimate the probabilities of simultaneously charging EVs in uncontrolled charging situations.

4.8 Summary

The methods and corresponding results of this chapter show that the current LV grid infrastructure in the
Netherlands faces problems when we assume uncontrolled EV charging. We use a set of generic feeders
to describe a large part of the LV grid. For each of the generic feeders we find a maximum allowable
number of simultaneous EV charging sessions. In about 70% of the feeder cables, the current capacity
limit is reached before a critical voltage drop appears. In the other 30%, a critical voltage drop near the
end of the feeder occurs earlier than a current capacity problem. Voltage drops might be prevented by
increasing the transformer voltage level, but this can induce problems on sunny days with relatively high
PV power production. We assume that these generic feeders proportionally represent the whole LV grid,
so we can make statements about the expected number of blackouts in the Netherlands with uncontrolled
EV charging.

By describing the probability of an EV charging session, pEVcharging, we capture the influence of energy
demand, charging power and plug-in time distribution in one single value. This approach allows us to draw
conclusions on the EV penetration rate for the whole Dutch LV grid. From the graphs in Section 4.7.1,
we know that this value heavily influences the results. This indicates that how often, when and with what
power and energy demand people are charging their EV is crucial to say something about the possible EV
penetration rate. However, with the available data we can make an estimation for a general scenario in
which every EV drives 38 kilometers per day. The results show that, using the proposed 38 kilometer per
day scenario, a 20% increase from the current level of daily blackouts is to be expected from as early as
20-25% EV penetration rate when expecting 3-phase 11 kW charging only. Decreasing power levels to
3.7 kW significantly extends this point to beyond 50%. However, in reality deal with varying power levels,
so the maximum EV penetration rate for the whole of the Netherlands is considered to be somewhere in
between the mentioned boundaries.
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Section 4.7.2 shows the results for the proposed ’multiple charging regime’ model that also incorporates
the effect of EVs that charge according to different charging regimes, but still for the two charging power
levels separately. Charging with only 3.7 kW, problematic EV penetration rate is found aroun 55%, while
charging all EVs in residential areas with 11 kW charges, problems already rise around 10% EV penetration
rate. In Section 4.7.3 these two power levels are combined into one model in which the ratio between the
two power levels can be adjusted. Using this last method, the problematic nationwide EV penetration rate
is 30%. An interesting finding here is that out of the 26 clusters, five given feeders are typically causing
the first problems. These feeders are mainly characterized by their high number of connections, creating a
higher probability of simultaneously charging EVs.

To arrive at the conclusions regarding the effects on the national LV grid, some assumptions were needed.
First of all, it is still questionable if the presented generic feeders correctly represent the entire Dutch
LV grid, the current method only estimates the situation by using relatively outdated feeder data and a
clustering method in which details may be lost. Secondly, the feeder limits used are not chosen according
to a very conservative estimate. There is a fair chance that the chosen limits for peak power capacity
overhead are too high. Local situations with combinations of different cable properties might create a
blackout at lower EV penetration rates than what is projected in this method. Next to these LV feeder
limits, we also have to deal with transformer limits. In general, the stacked capacity of every individual
feeder connected to the same transformer is significantly higher than the capacity of the transformer. This
means that if e.g. five feeders are connected to one transformer and all five feeders operate at e.g. 85% of
their maximum capacity, the transformer limit might be already reached, without ever reaching the limit of
even one of the feeders. Thirdly, with the available data, we can make predictions on charging sessions as
being independent events and thus estimate the probability on problematic situations on normal weekdays.
In the case of any special event that might make the EV charging sessions dependent, e.g. a popular
soccer match of the national football team for which a lot of people arrive at home early or around the
same time, expected charging behavior changes. In such a case, the number of maximum simultaneously
charging EVs remains the same, but the probability of problematic situations might increase. Additionally,
other emerging electrification technologies like heatpumps and induction cooking might play a role in
the maximum capacity of a feeder. Another important assumption we make for the final conclusion on
maximum EV penetration rate is that all EV energy demand is charged with a charger in an LV residential
area. Since EV owners might also be able to charge their EV e.g. at work, in shopping malls or along
highways,the energy demand charged in the LV feeders in residential areas might be lower than the proposed
energy equivalent of 38 kilometer per day.
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Chapter 5

Scenario simulations

5.1 Introduction
This chapter presents a number of scenarios in detail to demonstrate the working of the proposed modeling
methods in different situations, which enables us to analyze how local settings influence the result of the
more general results on the whole Dutch LV grid of Section 4.7. Two typical scenarios for sub-urban
and rural areas, with characteristics based on the work in [37], are tested by using artificial grid models
combined with existing demographic settings. Next to maximum EV penetration rates, we investigate the
maximum PV penetration rates in these situations and problems with voltage rise. Section 5.2 starts with
the analysis of the sub-urban scenario, followed by Section 5.3 which considers a typical rural area feeder.
The last case is on a verified grid model used in a field test in Lochem [10] and is presented in Section 5.4.

5.2 Sub-urban feeder scenario
The chosen sub-urban-scenario feeder is 225 meters long, utilizes a 150 Al cable and hosts 58 connected
houses. These features are derived from the work in [29] and we consider this to be a typical feeder
in sub-urban areas, with houses relatively close together, but a variety in housing types, i.e. mainly
duplex and detached houses mixed together. As demographic input for this specific scenario, we chose the
neighborhood Eilermarke in the municipality of Enschede. It is the youngest (in terms of residents) area in
Enschede: it hosts mostly young families with slightly above average incomes.

5.2.1 Demographic inputs of Eilermarke

The CBS database for Eilermarke specifies 13% single-person households, 65% multiple-person households
with kids and only 22% multiple-person households without children. Some other statistics about Eilermarke
in 2017 are:

• 39.9% of the population is 24 years old or younger, only 5.3% is 65 years or older;

• Relatively little poverty: only 3.5% around social minimum;

• 687 houses, 70% owner-occupied, 24% rented from a housing association, other 6% privately rented.
All houses are built after the year 2000, average market value €210k;

• 600 multiple-person households of which 450 (75%) have children.

• Average yearly electricity consumption of 3590 kWh, average yearly gas consumption of 1160 m3.

61



62 Chapter 5. Scenario simulations

• On average 1,2 cars per household.

Using the demographic input method described in Section 3.3.2, this results in the demographic household
distribution in Figure 5.1. Figure 5.2 shows a Google Maps satellite image of the area, showing its typical
sub-urban features and layout. Taking into account the relatively low age of the residents (mostly families),
the slightly-above average income and the number of cars per household, this might become a neighborhood
with a relatively large uptake of EV in the coming decades. Also, the layout of the neighborhood provides
parking space, either an individual driveway or enough public parking space with options to host public AC
chargers.

Figure 5.1: The demographic household distribution for the Eilermarke, municipality of Enschede.

5.2.2 Feeder limits

From the results of simulations, we know that on this feeder the maximum number of simultaneously
operating EV chargers is 10 x 11 kW or 30 x 3.7 kW. Charging with these loads, which is about 111 kW
total peak (about 37 kW per phase) causes a blackout. At these numbers, voltages are still within the
acceptable limits due to the short length of the feeder, but current levels reach the maximum capacity of
the 150 Al cable and an LV network blackout is very likely due to overloading. Since voltage levels stay
within the allowed limits, the location of EV charging loads within the feeder is not taken into account.
When we assume the EVs in this neighborhood charge according to a 50/50 mix of both charging power
levels, the maximum number of simultaneously charging EVs is chosen to be 14: seven of each power level,
resulting in a total power peak of around 103 kW. This is slightly under the 111 kW level, leaving some
room for unforeseen loads e.g. cooking equipment.
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Figure 5.2: Google Maps satellite image of the Eilermarke, municipality of Enschede. This neighborhood
is considered to be a typical sub-urban area, containing both detached and terraced houses
and plenty of parking space.

5.2.3 EV penetration

To obtain insight in the influence of the EV penetration rate in this combination of LV grid structure and
demographic composition, we consider the 38 km per day scenario from Section 4.6, imposing an energy
demand of 33.25 kWh per five days that can be charged according to one of the five charging regimes. For
this scenario we calculate the number of expected blackouts per year for this specific feeder depending on
EV penetration rate. The achieved results are given in Figure 5.3. The expected blackouts per year are
calculated using the proposed charging regime distribution 55/15/10/10/10 and a 50/50 ratio between
3.7 kW and 11 kW charging power.

Although for a single LV feeder the achieved result might not be very alarming, since even at around 80% EV
penetration rate we expect at most one blackout per year. However, all Dutch LV grids contain an estimated
300,000 feeders. If e.g. only 3.33% (10,000) of the total feeders in the Netherlands are comparable to this
type, the expected additional yearly blackouts will be significant, as can be seen in Figure 5.4. Note that
on a national level this means we can expect an increase in blackouts of about 100 already at 50% EV
penetration rate and that this increases very quickly, with an expected 100 additional blackouts at around
70% EV penetration rate, only for these group of 10,000 feeders. This is significant, since nowadays the
yearly average for the Netherlands is 19,962 power interruptions per year, as we mentioned in Section 4.7.
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Figure 5.3: Expected blackouts per year at all possible EV penetration rates for the sub-urban scenario
single feeder, using the 55/15/10/10/10 charging regime distribution and the 50/50 ratio
between 3.7 and 11 kW charging power.
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Figure 5.4: Expected number of blackouts per year for all possible EV penetration rates in all 10,000 of
the sub-urban scenario single feeders together, using the 55/15/10/10/10 charging regime
distribution and the 50/50 ratio between 3.7 and 11 kW charging power.

5.2.4 PV penetration

To determine the maximum PV penetration level for this type of feeder and the given demographic distri-
bution, we determine the maximum number of PV installations on the feeder for which the simulation for
the day with the highest solar irradiance peak still does not lead to problems. The properties of the PV
installations are determined according to the approach from Section 3.5. Furthermore, we add installations
starting from end of the feeder. Since this feeder is relatively short and uses a relatively thick cable,
we encounter no voltage problems, but encounter a current overload at 33 PV installations leading to a
maximum PV penetration rate of 58%. Note that these simulations are carried out with only the basic
household load and PV installations, meaning that EV chargers are not considered here.

5.2.5 Summary

For the sub-urban scenario, problems with EV penetration rates may start to appear from 45-50% onward.
Since we have a large set of these type of feeders together, we can expect a high number of blackouts in
the Netherlands. With the annual energy consumption based on the demographic inputs, we were able
to simulate suitably sized PV installations. According to the results, it may be possible to equip up to
58% of the households with PV installations on this specific feeder before problems start to appear. The
sub-urban feeder type is relatively short, so problems with overloading the cables is always prior to critical
voltage drops. Since there may be an overlap (in time) between EV charging power demand and PV power
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Figure 5.5: Simulation results of adding PV installations starting from the end of the sub-urban feeder.

generation surplus, this might influence the results. If surplus PV power can directly be supplied to an
EV, the overloading of the transformer due to PV generation might be (partly) mitigated and the number
of simultaneously charging EVs at that moment might be higher. However, increasing electrification with
e.g. heatpumps and induction cooking might again lower the possible EV penetration rate.

5.3 Rural feeder scenario
A rural feeder is typically characterized by its relatively large length and few connections, which is a direct
consequence of how the houses in such areas are located: with relatively large distances in between. For
the analysis, we consider a feeder with 18 connections and a length of 1084 meter. We simplify the analysis
by choosing in this subsection one type of cable for the full length (70 Cu).

5.3.1 Demographic inputs

Since this is a rural area, all the houses are considered to be relatively large detached houses with energy
loads as the FamilyDualWorker type described in Section 3.3.1. This choice represents the higher energy
consumption and PV installation sizes in these relatively large detached houses. In detail, this implies
that each household on the feeder consumes 5260 ± 1800 kWh annually. Note that this does not cover
operating farms, which probably consume a lot more energy. Their effect on EV penetration rates remains
a topic of further research.

5.3.2 Feeder limits

Installing three 11 kW chargers at the last positions of the feeder (as seen from the transformer) already
causes a severe voltage drop. In Figure 5.6 a part of the simulation for this scenario in which two 11 kW
chargers on the last positions of the feeder start charging at 17:00 is given.
Due to the relatively long length, the maximum EV penetration rate is location sensitive. Placing EV
chargers in the end of the feeder, more than one kilometer away from the transformer, becomes problematic
very quickly, as shown in Figure 5.7. In Figure 5.8, where we place EV chargers on the first positions (as
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Figure 5.6: Simulation result of installing three 11 kW EV chargers at the last positions of the rural feeder.

seen from the transformer) towards the end, the current limit is reached even prior to a critical voltage
drop.
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Figure 5.7: Simulation result of installing 11 kW EV chargers at the last positions of the rural feeder.



5.3. Rural feeder scenario 67

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
200
205
210
215
220
225
230

Vo
lta

ge
 e

nd
 o

f f
ee

de
r [

V]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Number of EVs on feeder [-]

0

50

100

150

200

250

Cu
rre

nt
 a

t t
ra

ns
fo

rm
er

 [A
]

Figure 5.8: Simulation result of installing 11 kW EV chargers at the first positions of the rural feeder.

Thus, by charging EVs near the end of the feeder, on positions the furthest away from the transformer,
we can only host three 11 kW EV chargers, while when we install the EV chargers by starting from the
transformer, we can host seven 11 kW chargers. For 3.7 kW charging, the situation is different. With only
18 households, every household can charge an EV with 3.7 kW simultaneously and this is even regardless
of the location according to Figure 5.9 and Figure 5.10. In the next section we analyze the impact of these
different limiting factors.
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Figure 5.9: Simulation result of adding 3.7 kW EV chargers from the last position of the rural feeder.
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Figure 5.10: Simulation result of adding 3.7 kW EV chargers from the first position of the rural feeder.

5.3.3 EV penetration

The previous section shows that the rural feeder in this example can host an EV charging load of 18× 3.7
kW = 66.6 kW if we distribute the load uniformly along the feeder by charging with 3.7 kW at every
household. However, if we increase the charging power and redistribute the load towards the very end of
the feeder, we can only host 3× 11 kW= 33 kW. As an alternative, we simulate a 50/50 ratio between
both power levels, where every household receives either a 3.7 kW or an 11 kW EV charger, alternately
starting with a 3.7 kW charger at the end of the feeder. The results are shown in Figure 5.11 and Figure
5.12. For this scenario, the maximal number of EV chargers is seven if we install EV chargers on the last
positions on the feeder. Installing chargers at the first positions allows to charge about twelve EVs.

We analyze the impact of the positioning of the EV chargers by comparing the effect on estimated blackouts
in both situations. The corresponding results using the 55/15/10/10/10 charging regime distribution are
given in Figure 5.13. Notice that the probability of a blackout becomes very small in the case of charging
EVs in the first positions, when we can host a maximum of twelve EVs. Charging EVs on the last positions
of the feeder, with a maximum of seven EVs, becomes problematic, since there is a higher probability of a
blackout in the form of a critical voltage drop.
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Figure 5.11: Simulation result from adding a 50/50 mixture of both power levels EV chargers on the last
positions of the rural feeder.
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Figure 5.12: Simulation result of adding a 50/50 mixture of both power levels EV chargers on the first
positions of the rural feeder.

5.3.4 PV penetration

In contrast to the short sub-urban feeder of Section 5.2, where voltage problems did not play a role, rural
type feeders are more likely to experience voltage problems due to their length. This is shown in Figure
5.14, where only six PV installations are installed on the last positions of the feeder. This situation results
already in a violation of the voltage limits on days with the highest solar irradiance. The PV installations
are designed with the Dutch net-metering regulations in mind, thus accordingly to the approach described
in Section 3.5.
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Figure 5.13: Comparison of the effect on blackout probability and blackouts per year, using the
55/15/10/10/10 charging regime distribution with a maximum of twelve vs. seven simulta-
neously charging EVs.
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Figure 5.14: Simulation results of placing PV installations on the last positions (as seen from the trans-
former) on the rural feeder.

5.3.5 Summary

The rural feeder illustrates the problem that most feeders of this type experience: voltage drops below the
limits occur before violating the current capacity of the feeder, due to the relatively large length of the
cable. Simulations show that charging even two or three EVs with 11 kW chargers on the last positions of
the feeder is already problematic, while charging seven or even eight 11 kW chargers in the first positions,
close to the transformer, might not be as problematic. This severely influences the blackout probability,
since already a small number of simultaneously charging EVs can create a blackout. This makes analysis
not as straightforward compared to feeders in which we experience current capacity problems prior to a
critical voltage drop. The same holds for power generation: when six out of the eighteen households near
the end of the feeder in this example install a PV installation, voltage limits are already exceeded on days
with a lot of solar irradiance, while the current capacity is still far away from its limit.
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5.4 Lochem

In this section, a scenario is considered which is based on an existing LV grid network located in the
neighborhood Zuiderenk in the town of Lochem. This scenario is interesting since it contains an actual
existing LV grid network instead of the two synthetic ones from the previous sections. Also, the topology
of this network and the correct cable properties are known and a field test was carried out in which this
particular feeder was overloaded by mainly due to a larger number of EV chargers being used simultaneously
[10]. The transformer where this feeder originates is named based on its location: ’Mauritsweg’. Figure
5.15 shows a Google Maps satellite image of the situation, with a line drawn on top to indicate the
feeder location. The feeder is mainly located on the Graanweg, Haverkamp and Koedijk and consists
of 80 connections, 21 of them being apartments in the same building. The model topology is shown in
Figure 5.16. We distinguish two split points of the feeder which result in three branches. The longest
section of the feeder, from from node 00 to 124, is about 800 meter and is referred to as Branch 1. The
second longest section is from node 00 to 101, which is about 580 meter and is referred to as Branch 2.
The section from node 00 to node 87 is about 480 meter and is referred to as Branch 3. Node 00 to 74 is
the common part of all three branches and node 88 to 94 is the common part of Branch 1 and Branch 2.
We choose to indicate the branches by their full length from the last position to the first position node 00
to clarify the placements of loads later on in the simulation results.

Figure 5.15: Google Maps satellite image of the feeder on the transformer at the Mauritsweg, located in
the neighborhood Zuiderenk, municipality of Lochem.

5.4.1 Demographic inputs

The demographic household distribution for the Zuiderenk is shown in Figure 5.17, indicating a relativity
large share of single-person households and households without children.

5.4.2 Feeder limits

To analyze the Lochem feeder, we simulate a number of different situations to analyze the effect of the
branches. We start by adding EV chargers on the first positions of the feeder. Note, that the first positions
from node 00 to node 74 are part of all the three branches. This part can host 34 households, thus
potentially 34 EVs. Since we start on the first positions of the feeder, we experience a current capacity
overload prior to a critical voltage drop. Starting from nine 11 kW EV chargers plugged in simultaneously,
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Figure 5.16: Model topology of the feeder for the Lochem case. The dashed lines are used to fit the
figure for this thesis, but represent a continuation of the applied numbering scheme for use
in the model.

Figure 5.17: The demographic household distribution for the neighborhood Zuiderenk, Lochem.

the feeder current capacity is exceeded. When applying 3.7 kW chargers, the limit is 28 simultaneously
charging EVs. However, since we are also interested in the effect of the unequal length of the three
branches, it is most interesting to add EVs from the ends of all three branches towards the transformer.
For 11 kW charging, we only find voltage related problems in Branch 1. In Branch 2 and 3, the voltage
dropped significantly, but it did not fall below the 207 V limit. In those cases, again the current capacity
limit of the cable is reached before a critical voltage drop appears. For 3.7 kW charging, current capacity
problems occurred at 28 chargers, always prior to a critical voltage drop. The results are summarized in
Table 5.1. The findings are considered in line with the field test carried out on the same network (see [10]),
where similar power loads caused a short service interruption by heavily overloading a fuse for a substantial
amount of time. The maximum peak power overhead for this feeder is thus determined as somewhere
around 100 kW (9× 11 kW = 99 kW and 28× 3.7 kW = 103.6 kW). However, in contrast to the situation
of the field test, we use an equal distribution of the EVs over the phases and a nominal voltage of 230 V,
whereas one of the main problem in the field test was a severe unbalance on the phases and the nominal
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phase voltage before the start of the stress test was a few volts higher.

Simulation Maximum 11 kW chargers Maximum 3.7 kW chargers
Total feeder - begin to end 9 (P) 28 (P)
Branch 1 - end to begin 7 (V) 28 (P)
Branch 2 - end to begin 9 (P) 28 (P)
Branch 3 - end to begin 9 (P) 28 (P)

Table 5.1: Simulation results for the feeder in Lochem.

5.4.3 EV penetration

Based on the results of the previous subsection we identified the peak power that is available on this feeder:
around 100 kW. In this subsection we use this to determine the possible EV penetration rate. For this,
we again use the proposed 55/15/10/10/10 charging regime distribution and the 50/50 ratio for the two
charging power levels. The maximum number of EVs we can simultaneously charge is chosen to be 14,
since 7×3.7 kW = 25.9 kW and 7×11 kW = 77 kW which is together a total load of 102.9 kW. Figure 5.18
shows that the probability of a blackout for such a situation is relatively low. Even at 50% EV penetration
rate, so 40 EVs on this feeder, the probability of a blackout on this single feeder looks almost negligible.
Again, for this particular single feeder, problems may seem small, but since we have thousands of similar
feeders in the Netherlands, expected blackouts for the total LV grid in the Netherlands rise, shown in Figure
5.19 for 10,000 of these type of feeders together.
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Figure 5.18: Expected blackout probability and total expected blackouts per year at increasing EV pene-
tration rates for the feeder in Lochem.
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Figure 5.19: Expected number of blackouts per year for all possible EV penetration rates in 10,000 of
the Lochem scenario single feeders together, using the 55/15/10/10/10 charging regime
distribution and the 50/50 ratio between 3.7 and 11 kW charging power.
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5.4.4 Summary

The simulations for the Lochem scenario show that the branching of the feeder has little effect on the
maximum EV penetration rate, since the branches 2 and 3 did not show any divergent outcomes. Branch
1 did show a problem with high power 11 kW chargers near the end, but this is mainly caused by the
length of this branch itself and the voltage drop that occurs because of that, not because of two other
branches being present. Problematic EV penetration rates for this individual feeder are only visible from
60-70% onward. However, similar to the sub-urban scenario, with thousands of such feeders together we
may expect a steep increase in blackouts all across the Netherlands from 50% EV penetration rates onward.

5.5 Summary

This section presents three small case-studies that show the coupling between the demographic model and
the grid model. Section 5.2 shows an analysis of a typical sub-urban area. We found the probability of a
blackout for this type of feeder with the mentioned charging regimes. We also showed the impact of such
a single type of feeder when considering more similar feeders to the LV grid: a low blackout probability
on a single type of feeder might become problematic if we consider thousands of them in the same elec-
tricity grid. From 40-50% EV penetration rate the number of expected blackouts for these type of feeders
increases significantly. Since we encounter current capacity problems prior to critical voltage drops, the
location of the EV chargers along this feeder type does not influence the results. This makes the analysis
easier when comparing this to the rural-type feeder of Section 5.3, where location of the EV charger plays
a role. The simulations show that, if all 18 households on the feeder would only charge with 3.7 kW,
no problems would occur here. Using the 50/50 mix of the two power levels, the maximum number of
simultaneously charging EVs was found to be seven or twelve, depending on the location. However, when
the last two or three households in the end of the feeder both have an 11 kW charger for their EV, the
situation changes again and even less than seven charging EVs might become problematic. The scenario
based on an existing LV grid in Section 5.4 uses a verified grid model and contains some branches, whereas
the two synthetic examples do not have any branches and consist out of one type of cable for the whole
feeder. Analysis showed that these branches did not severely influence the EV charging capacity.

The demographic model is used only to specify the demographic composition and corresponding energy
consumption in the neighborhood. In future work, we propose to extend this with demographic information
to model the features of the type of EVs that are present and the energy demand of EVs in these areas.
Furthermore, next to EV and PV installations, additional electrification in the form of induction cooking
and using heat pumps instead of gas heating is gaining popularity. This means that the possible number
of simultaneously charging EVs decreases, since induction cooking and heatpumps may draw a significant
amount of power from the LV grid when owners want to charge their EV. However, an increasing EV
penetration rate in a neighborhood also offers opportunities, since the surplus of PV generation can be
stored in these EV batteries. Using the available information on plug-in times, we may be able to predict
the effect of this. Simultaneously generating PV power and charging EVs might also mitigate a part of the
voltage problems, because their seems to be at least some overlap in time between those two in most cases.

By analyzing the three scenarios, it becomes clear that local differences may play a large role for the pos-
sibilities of EV charging in residential areas. The result of the general analysis on the whole of the Dutch
LV grid of Section 4.7 is indeed a very general analysis. Especially the models of rural areas might need
additional attention to cover the specific features of these type of feeders. Their relatively large length
ensures that the placement of the different loads significantly influences the results.
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Chapter 6

Conclusions and recommendations

6.1 Conclusions

This section provides answers to the research questions stated in Chapter 1, by using the findings from the
literature, the investigated data and the simulation results. The first main research question focuses on
the effects of a significant increase of EV penetration in the current LV grid:

”What penetration rate of electric vehicles will cause problems for the Dutch electricity grid
in its current form, if no preventive measures are taken? ”

To answer this first main question, three sub-questions are answered:

”I. How to characterize the current Dutch LV grid in a systematic way that makes it possible to identify
different frequently occurring situations? Hereby it is important to leave out enough detail to avoid the
need for a case-by-case approach.”

The answer to this question is presented in Chapter 3, specifically in Section 3.2. Hereby, the basis of
the used grid and load flow models was already present in DEMkit [26]. By using the outcomes of the
data clustering approach found in [28], we were able to describe a large part of the LV grid by exploiting
the common characteristics of LV feeders. This gives the opportunity to study the characteristics of the
entire LV grid with a relatively small set of generic feeders and thus to avoid the need for a case-by-case
approach. The clustering method reduces a set of approximately 300,000 feeders to a set of 94 generic
types. With the 26 most common types, we are able to reconstruct the main characteristics like length,
number of connections and an approximation of cable type for 71.3% of the Dutch LV grid.

”II. How to characterize the future loads in Dutch LV grids with regard to the integration of EV charging?

Section 2.3 introduces the main features and considerations for the uptake and integration of EV in the
Netherlands. It describes the required power levels and gives an indication of the energy demand. Sec-
tion 3.4 dives deeper into the usage of EV and describes the actual modeling method. To characterize future
loads with regard to the integration of EV charging, data of real charging sessions is used. The probability
that a single EV charges on a given feeder is used to characterize the behavior of a set of EVs on a single
feeder. With this information, we can approximate the probability that certain combinations of EVs charge
simultaneously and thus might cause a blackout on an LV feeder. The multiple charging regime modeling
method introduced in Section 4.6 combines a plug-in time distribution, discretized energy demands and two
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charging power levels in a single model to calculate not only the blackout probability, but also the timeslot
with the highest blackout probability. The used inputs can easily be altered by using different plug-in time
distributions or energy demands, which makes this model a proper basis for further research on EV charging.

”III. How to model the expected future loads with corresponding LV grid structures to identify potential
problematic combinations of loads and grid structures?”

The household load model introduced in Section 3.3 uses the ALPG [27] as basis, creating typical household
energy load profiles. These typical household configurations are coupled to demographic data from the
CBS [31], such that the energy load of every neighborhood in the Netherlands can be estimated. Using
these energy load profiles on typical LV feeder configurations allows flexible configuration of different sce-
narios. Examples of this can be found in Chapter 5, where two archetypes of feeder configurations and
one existing feeder used in a field test are simulated and analyzed. Using this approach, with a separation
of the grid model and the household load model, gives us the flexibility to quickly adapt the model for
different scenarios and allows us to distribute EVs, PV installations and other equipment and user behavior
on a very detailed level among the households.

The answer to the main research question is given in Chapter 4, specifically in Section 4.7. Using the pro-
posed scenario in which every EV travels 38 kilometer per day, we estimate the maximum EV penetration
to be around 10% if all these EVs would use 11 kW charging only. For only 3.7 kW charging, the risk
of overloading the grid is much lower, with EV penetration rates possible in the range of 50 to 60%. In
reality, there exists a mix between different charging powers, with main power levels at 3.7 and 11 kW
charging. The proposed method shows an increase in expected blackouts starting at EV penetration rates
in the range of 20 to 30%. Considering the EV fleet size estimations for 2030 given in Section 2.3.1 with
optimistic scenarios of 27.6% and 33.6% penetration rate and considering a 50/50 mix of 3.7 and 11 kW
charging, one may expect an increase in black-out events already by 2030, if no adequate measures are
taken. Important here is the observation that if the EV penetration rate on a feeder passes a certain point,
a sort of turning point, where the total expected number of blackouts for the whole of the Netherlands
starts to rise steeply.

Looking in more detail to the different scenarios of Chapter 5, we have to conclude that local situations
can vary significantly. For sub-urban areas, the expected possible penetration rate is higher compared to
rural areas. This is mainly due to the typical characteristics of rural feeders. Because of their relatively
large length, critical voltage drops occur often prior to a current capacity violation.

Based on the estimated maximum EV penetration rate for the Netherlands, we may have to look for op-
portunities to extend this penetration rate. If suitable preventive measures in any form are taken, it should
be possible to increase the maximum penetration rate of EVs without creating additional blackouts. This
rises the second main research question:

”What are possible solutions for scenarios with problematically high EV penetration rates in
local grids and how do these solutions increase the allowed penetration rate?”

The first observation is that, to extend the maximum EV penetration rate, it is essential to reduce the
peak loads on the LV grid, either by lowering power demand or by shifting energy demand in time. The
simulations and calculations in this thesis show that it is always preferable to charge with 3.7 kW compared
to 11 kW, because the advantage of a factor 3 shorter duration of charging sessions does not make up



6.2. Recommendations 79

for the spreading of charging power demand. Lowering power demand for all EVs from 11 kW to only 3.7
kW could improve the maximum EV penetration rate from about 10% to somewhere in the range of 50
to 60%, as was explained before. Furthermore, we observed that charging an EV only once a week with a
longer charging session time imposes the least stress on the LV grid compared to charging more often with
smaller energy demands. However, this holds if and only if these charging sessions are spread evenly over
the weekdays. But, according to the available data, this is true for the current situation in the Netherlands.
It may be possible to motivate EV owners to charge only on certain days, but we can not force them, so we
do not consider this as a viable solution. This research shows that, if we allow uncontrolled EV charging
in residential areas, Smart Charging initiatives that implement features like peak shaving by controlling the
charging power of (a part of) the EVs in a neighborhood is necessary to prevent LV feeders from blackouts.

From the perspective of the LV feeder cables, we found that typically a given set of five clusters are the
main cause of problems (i.e. at the low EV penetration rates), as explained in Section 4.7.3. These clusters
are typically characterized by their relatively large number of household connections and relatively large
length. Together, these five clusters represent about 15% of the Dutch LV grid. Replacing these type of
feeders by more suitable designs may decrease the expected blackouts at EV penetration rates of up to 50%
significantly. The other 85% of the feeders are only problematic starting from an EV penetration rate of
around 55%, according to the findings using the 55/15/10/10/10 charging regime and the 50/50 charging
power ratio for the whole of the Netherlands. However, 15% of 300,000 feeders means that 45,000 LV
network cables need to be replaced. If we aim to replace these before 2030, this is equal to replacing
more than 17 complete LV feeders per working day until 2030. This is a very difficult (if not practically
impossible) and costly operation, which again stresses the need for a functional smart charging solution as
e.g. the so-called ’Profile Steering’ approach proposed in [38].

6.2 Recommendations

To further increase the usefulness of the proposed models, it is essential to use more detailed information
on the LV feeder network in the Netherlands. The used clustering approach is a good starting point, but
it lacks detailed information on the exact composition of LV cables. Furthermore, the assumed maximal
current capacity of the feeders is probably overestimated, since each feeder is secured by a fuse that is rated
with a lower current value than the actual cable current capacity, for safety reasons. Also, the decision
to only simulate the clusters that represent 71.3% of all the feeders in the Netherlands and from there
extrapolate this to 100% is a simplification that needs additional research, since the remaining 28.7% of
the grid could show deviating behavior due to their different features.

Evidence was found that feeders with a relatively high number of households and a relatively long cable
length are causing the first problems with increasing EV penetration rates. To prevent problems, the best
approach would be to start with solutions especially for this type of feeders. An estimated 15% of the
total 300,000 feeders are problematic at significantly lower EV penetration rates compared to the other
85% in which problems are expected, but only at relatively higher EV penetration rates. Further research
could focus on exactly these type of feeders and investigate their impact in more detail. For DSOs this
information might be useful to identify the problematic areas that cause problems first.

This research focused on individual LV feeders. It does not take into account overloading at the transformer
that can occur prior to overloading a single feeder due to the stacking effect of multiple feeders connected
to one transformer: the maximal capacity of all the given feeders connected to one transformer together
is almost always higher than the transformer capacity itself. Probably, this stacking effect further reduces
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the possible maximum EV penetration rate, but this needs additional research. The model presented in
this thesis can be fairly easily extended to account for this.

By choosing the scenario in which every EV drives 38 kilometer per day we ignore variations in the driving
distance. Furthermore, by assuming that all EVs charge all that required energy in a residential area, we
ignore all energy that is charged at e.g. work or other destinations such as shopping malls. Further research
has to be done to identify what the effect of this destination charging is for the EV energy demand in
residential areas.

There seems to be a reasonable overlap in time between surplus PV generation and expected EV charging
energy demand and it is worthwhile to further investigate this synergy. From a feeder capacity perspective,
this overlap might increase the maximum EV penetration rate since PV production might decrease the
current level at the transformer and decrease the voltage drops along the feeder.

The proposed multiple charging regime model to estimate the probability of blackouts can be further
extended by using not only probability distributions over time for the plug-in time, but also for the energy
demand and traveled kilometers (instead of using five discretized regimes). Also, by choosing the 50/50
power level, we ignored all the cases in which this ratio is different. Probably, there are situations in which
this ratio for the connected EVs on a feeder deviates and the model should be extended to account for this.
With these improvements, the model is also applicable to other situations. E.g. for parking lots or large
parking spaces on company premises, we only need to adjust the parameters for plug-in time, charging
power and energy demand.
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