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ABSTRACT 

Very high resolution satellite imagery have been increasingly used in many applications. Image analysis from 

a VHR satellite imagery requires information at object level to increase the accuracy. Classic pixel-based 

image classification methods only work based on the pixel information of the image and neglects the 

contextual elements (e.g., size, shape, texture, etc.). Therefore, this research is focused on developing a 

method that includes the contextual information as an input for image classification. Performing image 

classification at object level is a challenging task. Hierarchical Markov random field (MRF) approach is used 

in this research to incorporate contextual information of objects as prior information. 

Hierarchical MRF accommodates the integration of pixel-level and object-level image classification. At the 

first level, pixel-based MRF allows the image classification based on the prior and likelihood energy function. 

The prior energy function is controlled by smoothness parameter considering the neighbourhood system. 

The likelihood energy function contains the maximum likelihood classifier. The energy is optimized by 

simulated annealing (SA) technique. At the second level, object-based MRF employ size and texture 

information in the prior energy function. This method is applied over an oil palm plantation area at two 

different spatial resolution, which is the 0.5 m and 2 m resolution. 

The application of hierarchical MRF should improve the accuracy of the result by incorporating the 

contextual information. In this research, the hierarchical MRF is still difficult to employ the contextual 

information to each segment. This is proved by the appearance of improper size of segments in the results. 

The results obtained the highest quality in identifying oil palm tree crown compared to MLC and pixel-

based MRF. The MLC method leads to a higher quality than pixel-based MRF. Even though, by employing 

the pixel-based MRF on the pan-sharpened image, the result achieved higher kappa 𝜅 values. 

 

Key words: Hierarchical Markov random fields, Object-based image analysis, Image segmentation, Class spectral 

separability, Simulated annealing, Grey level co-occurrence matrix, Oil palm tree crown. 
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1. INTRODUCTION 

1.1. Motivation and problem statement 

Remote sensing data provide a huge amount of information about earth surface that can be used in many 

applications related to urban scenes, monitoring of forests, disaster management, etc. Over the past decade, 

very high resolution (VHR) satellite imagery, an image at a spatial resolution below one meter, have been 

increasingly used in various applications. Various commercial VHR satellite images, such as IKONOS, 

QuickBird, GeoEye-1, WorldView-2, WorldView-3 and Pleiades, are sufficient to extract small features of 

some land cover types (Shackelford & Davis, 2003).  

In current years, the development of image processing methods for the VHR satellite imagery become one 

of the most serious issues for the remote sensing researchers. Many studies focus on developing automatic 

data processing method for VHR satellite imagery. Automatic data processing method is essential for 

reducing the time of processing data and minimizing the inconsistency of the result of human interpretation. 

The methods are developed to reach a better analysis and interpretation result than a human operator. 

Although VHR satellite imagery provides more detailed features than the moderate and low resolution, it 

may also lead to some problems. As the spatial resolution gets higher, the spectral variation within one class 

of land cover type rises (Salehi et al., 2011). High spectral variation may lead to a lower accuracy of 

classification result. This problem may occur in the pixel-based classification. This traditional classification 

method is not perfectly suitable for vegetation mapping that may have either high spectral variations within 

the same class or similar spectral value among different classes (Sha et al., 2008). 

Geographic object-based image analysis (GEOBIA) has been widely suggested to be one of the solutions 

to handle the problems mentioned above. GEOBIA works more efficiently than pixel-based approach for 

higher resolution satellite imagery (Hay & Castilla, 2008). This approach works by grouping neighbouring 

pixels by a segmentation technique. In extracting feature from VHR satellite imagery using GEOBIA, some 

of the key features are size, shape, tone and texture. 

In this research, Markov random field (MRF) model based algorithm is proposed. Using an MRF model, a 

spatial correlation between neighbouring pixels can be defined. It is assumed that the configuration of a 

pixel given the configurations of the entire image is equal to the configuration of a pixel given the 

configurations of its neighbouring pixels (Tso & Mather, 2009). In the MRF approach, the neighbours pixels 

have a higher probability to be classified in the same class than different classes (Kasetkasem et al., 2005). 

In this research, object-based MRF is applied in combination with pixel-based image classification. To do 

so, hierarchical MRF is proposed in this research. This method has been proved in object-based image 

analysis, such as image segmentation, texture modelling (Graffigne et al., 1995). 

The current highest spatial resolution of VHR satellite imagery is a panchromatic band image at 30 cm and 

multispectral bands at 1.2 m resolution from WorldView-3. This is a typical spatial resolution specification 

for VHR images, which the panchromatic band has a higher resolution than other bands. Nowadays, many 

types of research require sub-meter spatial resolution imagery. To get a coloured image at finer spatial 

resolution, the image pan-sharpening technique can be applied. This technique fuses panchromatic image at 

higher resolution with multispectral images at lower resolution. This fusion method is suitable for visual 

interpretation but not for quantitative analysis because it introduces spectral or geometric distortions. Super-

resolution mapping (SRM) is a technique to produce a map at a finer spatial resolution than the spatial 

resolution of the image source using information from soft classification (Tatem et al., 2002). This method 

is one of the possible methods to be incorporated in MRF model.  
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The aim of applying each of the techniques described above is to develop a hierarchical MRF for object-

based image analysis (OBIA). In this research, the method will be applied for detecting and delineating oil 

palm trees. To the best of my knowledge, none of the previously developed methods combine the pixel-

based and object-based analysis using hierarchical MRF and applied it for oil palm trees inventory 

application. Applying object-based image analysis for oil palm trees mapping may give some advantages 

since oil palm trees have some object features that different from another landcover type in a plantation. 

Oil palm trees usually planted in a plantation with around 8 meter spacing from one tree to another. The 

diameter of the smallest oil palm tree crown is about 1 meter. Detecting and delineating oil palm trees using 

the traditional image classification method is difficult to get a high accuracy because the spectral variation 

within a class is larger than variation between the classes and some tree crown has a small size compared to 

the pixel size. Furthermore, this method may also be applied for another application with similar problems. 

1.2. Research identification 

The primary subjects focused in this research project can be defined through the following research 

objectives and research questions. 

1.2.1. Research objectives 

The main objective of this research is to apply and develop hierarchical Markov random fields for object-

based image analysis in VHR satellite imagery and apply it to detect and delineate oil palm tree crown in oil 

palm plantation. The following are the sub-objectives: 

 To design MRF probability model: prior, likelihood and posterior.  

 To combine pixel level and object level image analysis using hierarchical MRF. 

 To evaluate the performance of the applied method and compare the results with other methods. 

 

1.2.2. Research questions 

The research questions of this research are: 

 How to design MRF probability models? 

 How can pixel level and object level be combined using MRF? 

 How combinations of smoothness parameter for pixel and segment affect the accuracy? 

 How the most appropriate parameters for MRF should be determined? 

 How the assessment of the results should be performed? 

 Which size of oil palm tree crowns can be successfully identified? 

1.3. Innovation  

The novelty of this research are: 

 Development of image analysis algorithm that combines pixel level and object level image analysis 

using hierarchical MRF. 

 Application of hierarchical MRF object-based image analysis for detecting and delineating oil palm 

trees from very high resolution satellite imagery. 
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2. LITERATURE REVIEW 

In this chapter, a review of the literature relevant to this thesis is given to obtain the required understanding 

for this research. The first section reviews the methods used and developed for image segmentation. The 

object-based image analysis is explained in the second section. The section 2.3, section 2.4 and section 2.5 

presents the approaches related to this research. The last section presents the related works done for oil 

palm trees detection. 

2.1. Image Segmentation 

In image analysis context, image segmentation is a method to divide an image into relatively homogenous 

regions (Blaschke, 2010). A good image segmentation allows a uniform and homogeneous region and 

adjacent regions should have a contrast with respect to their characteristics and divided by a simple boundary 

(Haralick & Shapiro, 1985). Many techniques are available to implement the image segmentation, such as 

neural network architecture, MRF model, grey level histogram, region growing, and fuzzy set theoretic 

approaches.  

Adams and Bischof (1994) developed a robust, rapid, and free of tuning parameters algorithm of seeded 

region growing (SRG) for image segmentation. The growing region is initialized by individual pixels or 

regions and then merging pixels into their adjacent seed region. Shih and Cheng (2005) applied an automatic 

SRG for a colour image segmentation. In their research, the seeds are chosen automatically. The result 

showed a satisfactory result compared to other algorithms. 

Benz et al., (2004) employed multi-resolution fuzzy analysis of remote sensing data. They explained the 

method to combine the fuzzy methods and multi-resolution technique at the object level. The multi-

resolution technique is able to form an extremely homogeneous objects. This technique requires the scale 

parameter to control the segmentation process Drăguţ, at al. (2014) 

Senthilkumaran and Rajesh (2009) studied the edge detection technique for image segmentation by applying 

the soft computing approaches. They compared three soft computing approaches, which are fuzzy logic, 

genetic algorithm and neural network. The results indicated that the three approaches worked well in 

different particular condition. Bellon and Silva (2002) developed an algorithm to improve the image 

segmentation by edge detection. The algorithm is able to preserve the object topology and independent to 

noise. 

2.2. Object-based image analysis 

Object-based image analysis (OBIA) is a technique that considers the characteristics (spatial, spectral and 

temporal) of objects in segmenting an imagery (Hay & Castilla, 2006). OBIA has been introduced to 

overcome the limitations of the old-fashioned pixel-based image analysis that true geographical objects are 

missing and that contextual information is ignored. The main aim of using OBIA in remote sensing is to 

adapt the human interpretation of objects in providing accurate automatic / semi-automatic image analysis. 

Because of its advantages, OBIA has been widely used for many applications over the past decade. 

Myint et al., (2011) compared the result of pixel-based and object-based urban landcover classification from 

VHR image. They used the nearest neighbour classifier to classify vegetation classes, which are grass and 

trees/shrubs while membership neighbour classifier was used in classifying other class using different 

parameter values used for every class. The result showed that object-based classification gives a significantly 

better accuracy than pixel-based classification. 
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In OBIA approach, an image is subdivided into homogeneous regions based on both spectral reflectance 

values and its contextual information (shape, size, texture, etc.). This information hierarchically generated a 

network of image segments (Blaschke, 2005). Image segmentation process plays an important role in OBIA 

approach. Features are extracted with respect to their characteristics to distinguish one region from other 

different regions. Pixels that have the same characteristics will be grouped. Yu et al., (2006) quantified several 

features, including spectral features, textures, topographic features, and geometric features, for each object 

to classify a detailed vegetation map from an aerial imagery. In their research, a comprehensive information 

is highly required for the object features. 

Two essential characteristics of pixels in satellite image are tone and texture (Zhang, 1999). The tone is 

simply the average grey level of a region while the texture is the spatial distribution pattern of grey levels in 

a region. In some cases, image segmentation using tone doesn’t work properly because the average levels of 

different regions are similar to each other. Therefore, the texture segmentation algorithms are required to 

get a better result. Ryherd and Woodcock (1996) combined both spectral value and texture information 

from a medium spatial resolution satellite imagery to classify an area based on the trees density. The result 

shows that although incorporating texture gives a better result, the size information for each object is needed 

to improve the accuracy. 

Mallinis et al. (2008) found the OBIA approach for delineating forest vegetation using VHR imagery. A 

multi-resolution segmentation was followed by a classification tree and compared the result with a nearest 

neighbour classifier. Peña-Barragán et al. (2011) incorporated several vegetation indices with textural 

features and crop phenology to achieve an object-based crop identification using medium resolution 

imagery. The textural feature can distinguish between permanent crops. However, the vegetation indices 

present around 90% in the model.  

The texture is one of the important characteristics in OBIA. It gives information of tonal variation spatial 

distribution in an image (Haralick et al., 1973). The spatial relationship of pixels in a local neighbourhood is 

described to identify different objects. The texture may present different structures, which are periodic, 

semi-periodic and random.  

One of the most common methods for texture analysis is grey level co-occurrence matrix (GLCM). GLCM 

measure the textural characteristic of an image by specifying the spatial relationship of the measured 

different combinations of grey levels. The number of grey levels occurs in the image determine the size of 

GLCM. The relationship between pixels may be described by considering the difference of direction and 

distance. Haralick et al., (1973) successfully used a statistical method to compute textural features in an 

image by retrieving the information of spatial relationship of pixel values in GLCM. In the context of trees 

analysis, GLCM has been proved to become one of the methods in classifying trees species using 

multispectral VHR aerial imagery (Ramezani, 2015). 

2.3. Maximum likelihood classification 

MLC is one of the most common supervised classification technique based on Bayesian probability 

(Richards, 2012; Tso & Mather, 2009). It assumes that each class in an image is normally distributed. In 

principal, maximum likelihood (ML) classifier assign pixels to a class that has the highest probability of 

membership (Maselli et al., 1994). Strahler (1980) included the prior probabilities to ML classifier to calculate 

the posterior probabilities of class membership which combine the pixel value and the weight of the class. 

In order to improve the performance of MLC, Ediriwickrema and Khorram (1997) developed the 

hierarchical MLC by estimating the prior probabilities to the pixels that probably did not properly classified. 

Despite its limitations, the performance of MLC is comparable to other methods, such as support vector 

machines (SVM) and decision tress (DT). Otukei and Blaschke (2010) compared the result of MLC, SVM 
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and DT in assessing landcover change. The result shows that all of the methods achieved more than 85% 

accuracy. Although, the DT obtained the highest result. 

2.4. Hierarchical MRF 

Markov random field (MRF) is a stochastic approach to model contextual information by includes both the 

prior and posterior distribution on the original imagery (Geman & Geman, 1984). In MRF model, every 

image is assumed to have Markov properties, which is based on spatial dependence. This assumption is 

suitable for pixels in an image of earth surface where two adjacent pixels are more likely belong to the same 

landcover class. Based on this assumption, the isolated pixels are likely to be disappeared to allow 

homogeneous region. 

Maximum a posteriori (MAP) is one of the most used methods as a statistical criterion for MRF. The joint 

posterior probability of MRF labels is the objective of MAP. The MAP-MRF models derive the posterior 

distribution, determine the parameters and design optimization algorithms (Li, 2009). In MAP solution, 

when both prior distribution and likelihood function are known, the best that can be estimated is Bayes 

labelling. In Bayes labelling of MRF, the posterior distribution of an MRF become an important step. The 

posterior probability can be derived from prior and likelihood energy.  

The MRF can explain the dependence of the grey level of a pixel in an imagery on the grey level of its 

neighbouring pixels (Cross & Jain, 1983). This dependency can be described, such as in first order 

neighbourhood systems where every pixel has four neighbours or in second order neighbourhood systems 

where every pixel has eight neighbours. Kato and Pong (2006) combined colour and textural feature using 

MRF to obtain an image segmentation model. The MRF defined in the nearest neighbourhood system.  

Another application of MRF in image analysis is by applying hierarchical MRF. Yamazaki and Gingras (1995) 

modelled a hierarchical MRF that includes the observed intensity process and the hidden class label process. 

They used MAP criterion to estimate class label. Hu and Fahmy (1992) used hierarchical MRF to develop a 

new texture segmentation technique. They combined two particular MRF models. One is the multi-level 

logistic (MLL) model, which is an MRF model with conditional probability. The other is the binomial model 

for modelling textures inside the regions. The binomial model is for discrete random variables. This model 

is fit for satellite imagery segmentations because the grey levels in an image are discrete random variables. 

The hierarchical MRF is also suitable for synthetic aperture radar (SAR) image. Voisin et al., (2013) employed 

a quad-tree model to combine both amplitude SAR data and textural information in a hierarchical MRF 

model for urban area classification. 

2.5. Super-resolution mapping 

Aerial vehicle and space satellite are two most common platforms for acquiring remote sensing imagery. 

Both platforms have different specifications in acquiring imagery. One of the biggest differences is the 

spatial resolution of the acquired imagery. Nowadays the spatial resolution of imagery acquired from a 

satellite is lower than imagery acquired from an aerial vehicle. Spatial resolution plays an important role in 

landcover mapping using imagery data. A lower spatial resolution may contain mixed land cover class and a 

significant amount of mixed pixels may affect the result of image classification (Fisher, 1997). Therefore, 

sub-pixel classification may be one of the approaches to obtain higher accuracy of image classification result. 

Super-resolution mapping (SRM) is a technique for producing thematic map at a finer spatial resolution than 

that of input data from remote sensing imagery (Atkinson, 2009). This technique works under the 

assumption of spatial context. The main focus in SRM is to estimate the location of sub-pixel level within a 

pixel. This may require a lead from the soft classification that used to estimate the class proportion of image 

pixels. This is only become a lead since the spatial distribution within a pixel is still unknown (Muad, 2011). 
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Soft classification methods are developed to classify an image at a sub-pixel level. Some of the soft 

classification techniques are linear mixture model, maximum likelihood classification (MLC), fuzzy c-means 

and support vector machines (SVM). 

Some SRM algorithms that applied to the soft classification output require iterative optimization. A fine 

map generated from coarse output classification map. Then, it iteratively optimized by algorithms to get a 

satisfactory result. Mertens et al. (2003) employed genetic algorithms (GA) to obtain a super-resolution (SR) 

map from soft classification output. GA operated to find an optimal result by a set of solutions. 

Villa et al. (2011) proposed simulated annealing as a spatial regularization to achieve an SR map. HNN also 

applied to obtain SR map by  maintaining the class proportion information of the soft classification (Muad 

& Foody, 2012).  

SRM can be applied to both the input and the output as a post-processing of soft classification directly.  

Tatem et al. (2001) applied Hopfield neural network (HNN) as an energy minimization tool to obtain final 

classification map from a preliminarily classified map. Kasetkasem et al. (2005) applied the SRM technique 

directly to the input imagery data based on an MRF model. Ardila et al. (2011) considered a conditional 

probability function of both multispectral and panchromatic bands of raw VHR imagery in applying MRF-

based SRM. Tolpekin and Stein (2009) used class proportions of a coarse input imagery to study the effects 

of class separability on the accuracy of MRF-based SRM. Su et al. (2012) combined pixel swapping and 

contouring techniques to obtain SR map. The class boundary was represented by smoothing the pixel 

swapping output to draw the boundary of classes from the contour of a similar class member. 

2.6. Automatic Oil Palm Trees Detection 

In the field of extracting information of oil palm trees from satellite imagery, works have developed to detect 

oil palm tree crown and estimating oil palm tree age by using satellite-based imagery. Oil palm trees usually 

grow in a large plantation area. Oil palm tree crown has some characteristics that can be differentiated from 

other objects in a plantation area, which are round shape, green colour and diameter generally ranges from 

sub-meter to 14 meters. Srestasathiern and Rakwatin (2014) conducted a research on oil palm tree detection 

with high-resolution multispectral satellite imagery. They hypothesized that palm trees are located at the 

local peak within the oil palm plantation. The rank transformation was performed to the index image to 

enhance the separability between tree crowns and other objects. The non-maximal suppression algorithm 

was used to detect the local peak. The appropriate window size was determined using semi-variogram 

analysis. Chemura et al. (2015) studied an approach for determination of the age of oil palm tree from high-

resolution multispectral satellite imagery. They combined very high-resolution multispectral imagery data 

and regression techniques using a study case of Ejisu-Juaben district of Ghana. The relationship between 

age and crown projection area of oil palms was determined. The hierarchical classification using OBIA 

techniques on VHR satellite imagery was applied to determine the crown projection areas of oil palms. They 

combined crown projection areas obtained from the hierarchical classification and regression model 

developed from the field survey. 

The studies explained above have its own potential to be applied in a particular condition in an image. This 

research is focuses on developing image segmentation technique by combining pixel level and object level 

image analysis will be plugged into a hierarchical MRF model. At the pixel level, the analysis consists of 

exploring the neighbourhood system and the ML classifier. At the object level, the area and texture 

information are included to allow object-based image classification. The SRM technique may be 

incorporated into the hierarchical MRF model to achieve a sub-pixel image classification.  
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3. STUDY AREA AND DATA  

This chapter presents a brief description of the study area, remote sensing data and their pre-processing. 

Section 3.1 describes the study area, while Section 3.2 and 3.3 describes the satellite image data and reference 

data respectively. The section 3.4 explains briefly the software used in this research. 

3.1. Study area 

The study area is an oil palm plantation approximately located at 0° 58’ 47.01” N and 118° 2’ 6.57” E in 

Kutai Timur Regency, Kalimantan Timur Province, Indonesia. This regency is known as one of the leading 

areas in producing crude palm oil in Indonesia. The study area is a rectangular area of 5 km by 5 km which 

covers oil palm trees from various years of planted and diverse terrain. Figure 3.1 shows an overview of the 

study area.  

 
Figure 3.1: Overview of the study area 

3.2. GeoEye-1 Satellite Imagery data 

The GeoEye-1 satellite has multispectral and panchromatic bands with spatial resolutions of 2 m and 0.5 m 

respectively. The multispectral bands consist of blue (450 - 510 nm), green (510 - 580 nm), red (655 - 690 

nm) and near-infrared (780 - 920 nm) spectral bands while the panchromatic band captures 450 - 900 nm 

part of electromagnetic spectrum. The data used in this research were acquired on 25 May 2010. It covers 
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25 km2 area of oil palm plantation. In this research, the subset area used for acquiring the training and test 

dataset is 400 m2. The subset of the image is shown in Figure 3.2.  The image is considered as a good image 

for image classification since it has very low percentage of cloud cover at around 8%. It has also a moderate 

off nadir-angle at 16.68° and sun elevation angle at 59.85°. This can be seen in the image where some 

shadows occur in this image. Shadow may confuse the image classification process because it covers the 

true land cover lies on the ground. In this study, the shadow was classified as a class. 

 
Figure 3.2: GeoEye-1 Satellite Imagery in 2 m natural colour mode 

3.3. Reference data 

Reference data is required in this research to implement accuracy assessment for the final result. The 

accuracy assessment measures how well the performance of the applied method compared to the reference 

data. The reference data is a vector layer of tree crowns that was derived by digitization of tree crowns from 

0.5 m pan-sharpened GeoEye1 as shown in Figure 3.3.  
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Figure 3.3: Example of reference vectors for tree crown with false infra-red colour background 

3.4. Software 

In this research, different software was used for applying the proposed methodology and data visualization. 

ArcGIS 10.3.1 was used to delineate the training sets and test sets from the VHR image, calculating area 

size of tree crowns and map visualization. Erdas Imagine 2015 was used to make the image subset and pan-

sharpening the VHR image. Both ArcGIS 10.3.1 and ERDAS Imagine 2015 are well known commercial 

software for GIS and remote sensing. R version 3.2.2 software was used for implementing the method 

developed in this research and visualize the result. R software is an open-source software that able to 

compute and visualize statistical data developed by R Core Team (2015). More specifically, the packages 

used in this study is provided below: 

 rgdal developed by Bivand et al., (2015) 

 MASS developed by Venables and Ripley (2002) 

 e1071 developed by Meyer et al., (2015) 

 kernlab developed by Karatzoglou et al., (2004) 

 rgl developed by Adler et al., (2016) 

 Rcpp developed by Eddelbuettel and Francois (2011)  
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4. METHODOLOGY  

4.1. Spectral classes definition 

A supervised classification requires the definition of spectral classes and spectral statistics. In this context, 

training sets were used for estimation of class mean and covariance values of the imagery, while the test set 

was used for statistical analysis of the image classification accuracy. All the pixels in the imagery were labelled 

to represent the classes. To achieve a fair estimation of the elements of the class conditional mean vector 

and covariance matrix, a sufficient number of training pixels for each spectral class is required. In this 

research, the total number of training pixels is 800 pixels for the multispectral image and 12,598 pixels for 

the pan-sharpened image, which spread over the subset image as shown in Figure 4.1. 

 
Figure 4.1: Training set inside subset image in false infra-red colour mode 

Based on the visual interpretation of the image, five land cover classes were defined. The main focus of this 

study is the tree crown, but those classes should be defined with respect to the spectral value of all pixels in 

the imagery. The landcover classes consist of trees, grass, unpaved road, bare soil, and shadow. Considering the 

spectral value based on visual interpretation, there are some slight variations within tree crown class and 

there are some confusions between tree crown and grass. So, the training sets should be defined carefully to 

obtain a reasonable result. The training set was made in both multispectral and pan-sharpened image. The 

later was used as the reference for delineating the boundary since it has a finer spatial resolution.  

The values of one band against another were compared using a feature space. It shows a scatterplot with a 

dot for every pixel in the pixel. The pixel position in the feature space image is defined by the spectral values 

for the two chosen bands in the 2D feature space. Each dot in the feature space has a colour associated with 
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its class type. 3D feature space compares values of three bands in a three dimensional graph. The feature 

space of each class represented in an ellipse with a colour associated with its class type. A well separable 

class is one of the conditions that should be meet in order to achieve a high accuracy of classification. A 

significant overlap within classes should be prevented in the class feature space. A classification process 

would be less likely to produce an error in distinguishing class label if the overlap is small (Richards, 2012). 

In classifying remote sensing imagery, the spectral values within one class should be close while the spectral 

values of different classes should be well separated.  

Divergence, transformed divergence (TD), Bhattacharyya distance and Jeffries-Matusita (JM) distance are 

widely used to quantify class separability. Divergence is measured using the definition of the likelihood ratio. 

In Divergence, a small increase will lead to a much better classification accuracy. TD is used to minimize 

the effect of well-separated classes that may increase the average divergence value. JM distance is used to 

transform Bhattacharya distance. The JM distance has a tendency to suppress high separability values while 

overemphasizing the low separability ones (Gunal & Edizkan, 2008). It provides a trustworthy result since 

it performs more like the probability of correct classification (Swain & King, 1973). Tolpekin and Stein 

(2009) studied the effects of class separability on the accuracy of MRF-based SRM on a synthetic image. 

The values of class separability and scale factor are highly related to the optimal value of smoothness 

parameter, which resulted from the highest accuracy of classification.  

The class spectral separability was evaluated using the Jeffries–Matusita distance (JM) in both multispectral 

and pan-sharpened mode. Equation 4.1 shows the Bhattacharyya distance. According to the equation 4.2, 

the JM distance transforms the Bhattacharyya distance to a value ranging from 0 to 2. A distance of two 

spectral values with JM distance close 2 indicates a high degree of accuracy in classifying a pixel into one of 

those classes. This condition is preferred in class separability. 

𝐵𝛼𝛽 =  
1

8
 (µ

𝛼
−  µ

𝛽
)

𝑇
(

𝐶𝛼+𝐶𝛽

2
)

−1

(µ
𝛼

−  µ
𝛽
) +

1

2
ln (

|
𝐶𝛼+𝐶𝛽

2
|

√|𝐶𝛼| .|𝐶𝛽|

)                                                                        (4.1) 

𝐽𝑀𝛼𝛽 = 2(1 − 𝑒−𝐵𝛼𝛽)                                                                                                                                          (4.2) 

4.2. Markov random field 

The contextual dependencies of image pixels can be modelled by MRF (Li, 2009). Let 𝑥 be a random field 

on 𝑌 with random variables {𝑥1, 𝑥2, … , 𝑥𝑚} with regards to a neighbourhood system 𝑁. A random field 

that considers its neighbours is a MRF if the following three MRF properties are satisfied by its probability 

density function (Tso & Mather, 2009): 

1) Positivity: 𝑃(𝑥) > 0 for all possible configurations of  𝑥. In most cases, this condition is 

satisfied. The joint probability 𝑃(𝑥) is driven by local conditional properties (Besag, 1974).  

2) Markovianity: (𝑥𝑖|𝑥𝑌−𝑖) = 𝑃(𝑥𝑖|𝑥𝑁𝑖). This property indicates only neighbouring pixels have a 

direct interactions with each others. 

3) Homogeneity: 𝑃(𝑥𝑖|𝑥𝑁𝑖) is the same for all sites 𝑖, regardless of the relative position of the site. 

A neighbourhood system plays an important role in MRF. The first-order neighbourhood system has four 

pixels around the central pixel as shown in Figure 4.2 (a). Second-order neighbourhood system has four 

corner boundaries of the central pixel as shown in Figure 4.2 (b). A clique is a part of a neighbourhood 

system. It can be a single site, a pair of sites or triple of neighbouring pixels as shown in Figure 4.2 (c). In 

this research, a pair of sites clique is taken into consideration. Horizontal, vertical and diagonal neighbours 

are included in prior energy function in MRF model.  
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Figure 4.2: (a) First-order neighbourhood system; (b) Second-order neighbourhood system; (c) Cliques corresponds to the neighbourhood 

system (source: Li, 2009) 

The hierarchical MRF is used to apply two levels image classification technique. The first level is at the pixel 

level and the second level is at the object level. Both levels work in parallel to produce an object-based 

classified image. At the pixel level, MRF is used to incorporate the contribution of a local neighbourhood 

to a pixel. MRF at the object level includes the contribution of area and texture to allow object-based image 

classification.  

4.3. MRF at pixel level 

The MRF model at the pixel level in this research follows the research by (Ardila et al., 2011). In this setup, 

they allow SRM technique in the MRF model by including scale factor 𝑆. An image classification process 

using SRM considers multispectral image 𝑦 that consists of 𝐾 bands at spatial resolution 𝑅, this corresponds 

to a square area in the ground of size 𝑅2.  The pixel locations 𝑏𝑖 ∈ 𝐵, where 𝐵 is the 𝑀1 × 𝑀2 pixel matrix. 

The super-resolution map (SR map) 𝑐 is a classified map at finer spatial resolution 𝑟 < 𝑅 resulted from 

SRM method. The scale factor 𝑆 = 𝑅/𝑟 is considered as an integer. Each 𝑏𝑖 covers the same area on the 

ground as 𝑆2 finer resolution pixel 𝑎𝑖|𝑗. 𝐴 is a pixel matrix with size  (𝑆𝑀1)  × (𝑆𝑀2). The SR map 𝑐 is 

defined on the set of pixel locations 𝐴 and cover the same area as multispectral image 𝑦. In order to obtain 

the nominal scale for the result, 𝑆 = 1 is applied in this research. 

Multispectral image 𝑥 is assumed to have 𝐾 bands at spatial resolution 𝑟 on the set of pixels 𝐴. Image 𝑥 is 

not observed by satellite, while image 𝑦 is observed by satellite and is considered as spatially and spectrally 

degraded observations of image 𝑥. Furthermore, it is assumed that each pixel in image 𝑥 can be assigned to 

a unique class 𝑐(𝑎𝑗|𝑖) = 𝛼, 𝑎𝑗|𝑖 ∈ 𝐴. The relationship between image 𝑦 at pixel 𝑏𝑖 and 𝑥 can be established 

by the degradation model: 

𝑦(𝑏𝑖) =
1

𝑆2
∑ 𝑥(𝑎𝑗|𝑖)

𝑆2

𝑗=1

                                                                                                                                                         (4. 3) 

 
A classified image is modelled by using MRF that specifies a prior probability model in the following: 

𝑃(𝑐) =
1

𝑧1
exp [−

𝑈(𝑐)

𝑇
]                                                                                                                          (4.4) 

𝑃(𝑦|𝑐) =
1

𝑧2
exp [−

𝑈(𝑦|𝑐)

𝑇
]                                                                                                                                (4.5) 
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𝑃(𝑐|𝑦) =
1

𝑧3
exp [−

𝑈(𝑐|𝑦)

𝑇
]                                                                                                                                (4.6)  

Where, 

 𝑈(𝑐) = prior energy function of map 𝑐  

 𝑈(𝑦|𝑐) = likelihood energy function to multispectral image 𝑦 given the true SR map 𝑐 

𝑈(𝑐|𝑦) = posterior energy function of SR map 𝑐 given the multispectral image 𝑦 

 𝑇 = constant termed temperature 

 𝑧 = partition function = ∑ 𝑒𝑥𝑝 [−
𝑈(𝑐)

𝑇
] 𝑎𝑙𝑙 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑠 𝑜𝑓 𝑐  

According to Bayes theorem 

𝑃(𝑐|𝑦) ∝ 𝑃(𝑐) 𝑃(𝑦|𝑐)                                                                                                                                          (4.7) 

The energy functions can be expressed by 

𝑈(𝑐|𝑦) = 𝑈(𝑐) + 𝑈(𝑦|𝑐)                                                                                                                                     (4.8) 

4.3.1. Prior energy function 

Considering the pair of sites clique for the neighbouring system, the prior energy 𝑈(𝑐) is expressed by: 

𝑈(𝑐) = ∑ 𝑈 (𝑐(𝑎𝑗|𝑖))

𝑖𝑗

 

          = ∑ ∑ 𝑤(𝑎𝑙)𝐼 (𝑐(𝑎𝑗|𝑖), 𝑐(𝑎𝑙))

𝑙∈𝑁(𝑎𝑗|𝑖)𝑖𝑗

                                                                                                                    (4. 9) 

Where, 

𝑈 (𝑐(𝑎𝑗|𝑖)) = the local contribution to the prior energy from pixel 𝑐(𝑎𝑗|𝑖) 

𝑁(𝑎𝑗|𝑖) = the neighbourhood system of pixels 𝑎𝑗|𝑖 

𝑤(𝑎𝑙) = the weight of the contribution from neighbour pixel 𝑎𝑙 ∈ 𝑁(𝑎𝑗|𝑖)  

 𝐼(𝛼, 𝛽) takes the value 0 if 𝛼 = 𝛽 and 1 otherwise 

The weight of the contribution can be modelled as: 

𝑤(𝑎𝑙) = 𝑞 ∙ 𝜑(𝑎𝑙)                                                                                                                                                    (4.10) 

The value of parameter 𝑞 ranges from 0 to ∞ with higher values leading to a smoother solution. It controls 

the magnitude of the weights. As this model gives a smoot result, it reduces different class label between 

neighbourhood systems.  𝜑(𝑎𝑙) is employed as an isotropic expression that depends only on the distance 

𝑑(𝑎𝑗|𝑖, 𝑎𝑙).  

4.3.2. Likelihood energy function 

The likelihood model considers a normal distribution of a single pixel 𝑏𝑖 with value 𝑦(𝑏𝑖) with mean vector 

µ𝑖 and covariance matrix 𝐶𝑖. Both can be defined as  

µ𝑖  = ∑ 𝜃𝛼𝑖µ𝛼

𝐿

𝛼=1

                                                                                                                                                                                         (4. 11) 
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C𝑖  = ∑ 𝜃𝛼𝑖𝐶𝛼

𝐿

𝛼=1

                                                                                                                                                                                         (4. 12) 

Where, 

 𝜃𝛼𝑖 = the proportion of the class 𝛼 in the pixel 𝑏𝑖 

   

A probability model is designed for the class conditional density function 𝑃(𝑦|𝑐). Gaussian distribution is 

used because it assumes that the classes of pixels are normally distributed. This assumption also used to 

produce maximum likelihood classification. For a K dimensional space, the likelihood of 𝑦(𝑏𝑖), 

given 𝑐(𝑎𝑗|𝑖), is formed as 

𝑃(𝑦|𝑐) =  ∏ 𝑈 (𝑦(𝑏𝑖)|𝑐(𝑎𝑖|𝑗))

𝑖,𝑗

                                                                                                                                                  

              =  ∏(2𝜋)−𝐾/2|𝐶𝑖|
−1/2

𝑖,𝑗

𝑒𝑥𝑝 (−
1

2
(𝑦(𝑏𝑖) − µ𝑖  )

′𝐶𝑖
−1(𝑦(𝑏𝑖) − µ𝑖))                                                                 (4. 13) 

 

𝑈(𝑦|𝑐) = ∑ 𝑈 (𝑦(𝑏𝑖)|𝑐(𝑎𝑖|𝑗))

𝑖,𝑗

                                                                                                                                                    

             =  ∑ [
1

2
(𝑦(𝑏𝑖) − µ𝑖)′𝐶𝑖

−1(𝑦(𝑏𝑖) − µ𝑖) +
1

2
ln|𝐶𝑖|]

𝑖,𝑗

                                                                                      (4. 14) 

4.3.3. Posterior energy function 

Posterior energy function is needed for pixel class labelling based on MRF. 𝑃(𝑐|𝑦) is the posterior 

distribution of an MRF. This distribution is derived by combining the prior and likelihood models. So the 

posterior energy can be defined by: 

𝑈(𝑐|𝑦) = 𝑞 ∑ ∑ 𝜑(𝑎𝑙)𝐼 (𝑐(𝑎𝑗|𝑖), 𝑐(𝑎𝑙))

𝑙∈𝑁(𝑎𝑗|𝑖)𝑖𝑗

 +   𝑈(𝑦|𝑐)                                                                                                           (4. 15) 

The equation above is divided by 1 + 𝑞 and define the smoother parameter 𝜆: 

𝜆 =
𝑞

1+𝑞
 , 0 ≤ 𝜆 ≤ 1                                                                                                                   (4.16) 

 

This can be expressed by: 

 

𝑈(𝑐|𝑦) ∝ 𝜆 ∑ ∑ 𝜑(𝑎𝑙)𝐼 (𝑐(𝑎𝑗|𝑖), 𝑐(𝑎𝑙))

𝑙∈𝑁(𝑎𝑗|𝑖)𝑖𝑗

 +  (1 − 𝜆) 𝑈(𝑦|𝑐)                                                                                            (4. 17) 

The smoothness parameter λ controls the contributions from prior and likelihood models. The value ranges 

from 0 to 1. It will neglect the likelihood model and assign all pixels to the same value if the smoothness 

parameter 𝜆 is 1. 
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4.4. MRF at object level 

The MRF at the pixel level will create groups of pixels in the same class. At the object level MRF, this groups 

of pixels are treated as segments {𝑆1, 𝑆𝑠, … 𝑆𝑛}. By incorporating the contribution of area and texture, each 

segment may change its size and shape. Some of them may get bigger and some get smaller. Some segments 

may also disappear.  

4.4.1. Area contribution 

The segments consist of pixels belong to class trees is the main interest to be classified in this research. The 

size of tree crown is needed as one of the prior information of object-based image analysis. The shape of 

tree crown is roughly circular, so it was calculated by:  

𝐴 = 𝜋𝑟2                                                                                                                                                              (4.18) 

The size of tree crown was calculated in ArcGIS 10.3.1 software by digitizing 600 tree crowns in a circular 

shape. The tree crown statistics were done in R software for the probability density functions. Figure 4.3 (a) 

show the example of tree crowns samples using the panchromatic image as the background while Figure 

4.3 (b) show the logarithmic normal distribution of tree crown area in square meter unit. This area unit was 

converted into pixel unit because this unit is used in this image analysis. 

The size of other classes also estimated for object level prior information. The class shadow was estimated 

with the same method used for class trees. The size of shadow sample was calculated by delineating shadow 

objects in the image. The number of sample for class shadow are much smaller than the sample for class trees, 

but enough for a proper estimation. Class unpaved road, bare soil and grass were estimated by manually estimate 

the density function of the area size of each class. The probability of segment with area 𝐴𝑘 given the true 

class 𝐶 can be modelled by following the logarithmic normal distribution: 

𝑃(𝐴|𝐶) =
1

𝐴𝑘𝜎𝑐√2𝜋
 . 𝑒

−
(log𝐴𝑘−𝜇𝑐)

2

2𝜎𝑐
2

                                                                                                                      (4.19) 

The energy function can be expressed by 

𝑈(𝐴|𝐶) = log(𝐴𝑘𝜎𝑐√2𝜋) + 
(log𝐴𝑘−𝜇𝑐)2

2𝜎𝑐
2                                                                                                         (4.20) 

 

 

 
Figure 4.3: (a) Tree crowns digitization sample, (b) logarithmic normal distribution of tree crowns 
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4.4.2. Texture contribution 

The texture contribution used as one of input for classification because texture becomes an advantageous 

information in object-based classification. It cannot be used properly for the multispectral image, due to the 

insufficient spatial resolution. In this research, GCLM is used to compute textural characteristic in the image. 

Lag=1 pixel is used to compute because the small size of the tree crown. A larger lag would not effective in 

observing the textural feature of the tree crown. In texture analysis, pixel 𝑖 and its neighbouring pixel 𝑗 are 

a neighbour in term of pixel intensities, not pixel coordinates. Several statistics can be derived from the 

GLCM that provides information of textural features in an image, which are: 

 GLCM mean 

𝜇
𝑖

= ∑ 𝑖(𝑃𝑖,𝑗),           𝜇
𝑗

= ∑ 𝑗(𝑃𝑖,𝑗)           

𝑁−1

𝑖=0

𝑁−1

𝑗=0

                                                                                                   (4. 21) 

 GLCM variance 

𝛿𝑖
2 = ∑ 𝑃𝑖,𝑗(𝑖 − 𝜇

𝑖)
2
,           𝛿𝑗

2 = ∑ 𝑃𝑖,𝑗 (𝑗 − 𝜇
𝑗
)

2
𝑁−1

𝑗=0

𝑁−1

𝑗=0

                                                                                      (4. 22) 

 GLCM energy 

∑ 𝑃𝑖𝑗
2

𝑁−1

𝑖,𝑗=0

                                                                                                                                                                                  (4. 23) 

 GLCM entropy 

∑ 𝑃𝑖,𝑗(𝑙𝑜𝑔𝑃𝑖,𝑗)

𝑁−1

𝑖,𝑗=0

                                                                                                                                                                (4. 24) 

 GLCM contrast 

∑ 𝑃𝑖,𝑗(𝑖 − 𝑗)2

𝑁−1

𝑖,𝑗=0

                                                                                                                                                                   (4. 25) 

 GLCM dissimilarity 

∑ 𝑃𝑖,𝑗|𝑖 − 𝑗|2

𝑁−1

𝑖,𝑗=0

                                                                                                                                                                    (4. 26) 

 GLCM correlation 

∑ 𝑃𝑖,𝑗

(𝑖 − 𝜇
𝑖
) (𝑗 − 𝜇

𝑗
)

𝜎𝑖𝜎𝑗

𝑁−1

𝑖,𝑗=0

                                                                                                                                                 (4. 27) 

 GLCM homogeneity 

∑
𝑃𝑖,𝑗

1 + (𝑖 − 𝑗)2

𝑁−1

𝑖,𝑗=0

                                                                                                                                                                 (4. 28) 

 GLCM maximum probability 

max{𝑃𝑖,𝑗}                                                                                                                                                             (4. 29) 

 GLCM cluster shade 

∑ 𝑃𝑖,𝑗 (𝑖 − 𝜇
𝑖

+ 𝑗 − 𝜇
𝑗
)

3
𝑁−1

𝑖,𝑗=0

                                                                                                                                            (4. 30) 

 GLCM cluster prominence 
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∑ 𝑃𝑖,𝑗 (𝑖 − 𝜇
𝑖

+ 𝑗 − 𝜇
𝑗
)

4
𝑁−1

𝑖,𝑗=0

                                                                                                                                            (4. 31) 

In this research, the texture contribution is modelled by using a normal distribution. The probability of a 

segment with a GLCM measure 𝐺𝑘 given the true value of class 𝐶 can be described by 

𝑃(𝐺|𝐶) =
1

𝜎𝑐√2𝜋
 . 𝑒

−
(𝐺𝑘−𝜇𝑐)

2

2𝜎𝑐
2

                                                                                                                            (4.32)           

The energy function can be expressed by 

𝑈(𝐺|𝐶) = log(𝜎𝑐√2𝜋) + 
(𝐺𝑘−𝜇𝑐)2

2𝜎𝑐
2        

                =
(log𝐺𝑘−𝜇𝑐)

2

2𝜎𝑐
2                                                                                                                                          (4.33) 

4.4.3. Combining contextual contributions into a posterior energy function  

In order to accomplish the object-based image analysis, the contextual contributions for segment level MRF 

should be included into the posterior energy model 𝑈(𝑐|𝑦). This will combine the prior and likelihood 

energy at energy level 𝑈𝑝𝑖𝑥 and the energy at segment analysis for area and shape contribution 𝑈𝑠𝑒𝑔. 

𝑈𝑝𝑖𝑥 = ∑ (𝑈(𝑦
𝑖
|𝑐𝑖) + ∑ 𝑈(𝑐𝑖|𝑐𝑗)

𝑗∈𝑁𝑖

)

𝑁

𝑖=1

                                                                                                                      (4. 34) 

𝑈𝑠𝑒𝑔 = ∑ 𝑈𝑘(𝐴𝑘, 𝑐𝑘)

𝑁𝑠𝑒𝑔

𝑘=1

                                                                                                                                                      (4. 35) 

𝑈𝑡𝑜𝑡𝑎𝑙 = 𝑈𝑝𝑖𝑥 + 𝑈𝑠𝑒𝑔                                                                                                                                                                        

            =  ∑ (𝜆 𝑈(𝑦𝑖|𝑐𝑖) + (1 − 𝜆) ∑ 𝑈(𝑐𝑖|𝑐𝑗)

𝑗∈𝑁𝑖

)

𝑁

𝑖=1

 + 𝜆𝑠𝑒𝑔 ∑ 𝑈𝑘(𝐴𝑘, 𝑐𝑘)

𝑁𝑠𝑒𝑔

𝑘=1

                                                       (4. 36) 

Simulated annealing with Metropolis-Hastings sampler is used to optimize the change from energy 𝑈1 to 

energy 𝑈2. 

 ∆U = 𝑈2 − 𝑈
1
                                                                                                                                                  (4.37) 

A system may share energy with its neighbours, so it is not energetically isolated. This share is defined by a 

temperature T. The Boltzmann energy factor, 𝑒−
𝐸

𝑇 is proportional to probability.  

𝜌 = 𝑒−
∆U

𝑇                                                                                                                                                             (4.38) 

4.5. Image segmentation 

Image segmentation is a method in image analysis where the image partitioned into homogenous regions 

based on similarities in attribute values. Region growing is one of the approaches in image segmentation. 

This approach is initialized by merging regions from a seed pixel and growing iteratively to extend the region 

(Bins et al., 1996). In this research, the seed is chosen automatically because the position of the seed will not 

influence the segmentation result. Seeded region growing (SRG) is robust, swift and free of tuning 

parameters (Fan et al., 2005). The aim of SRG is to segment an image into regions with respect to a set of 
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𝑛 seeds. The initial seeds are replaced central pixels of the homogeneous region 𝑅. All the labelled pixels 

are called allocated pixels and the others are called the unallocated pixels. Let 𝐻 be the set of all unallocated 

pixels which are adjacent to at least one of the labelled regions: 

𝐻 = {(𝑎𝑗|𝑖) ∉ ⋃ 𝑅𝑖
𝑛
𝑖=1 |𝑁(𝑎𝑗|𝑖)  ∩ ⋃ 𝑅𝑖

𝑛
𝑖=1 ≠ 0}                                                                                                   (4.39) 

Where 𝑁(𝑎𝑗|𝑖) is the second-order neighbourhood system of the pixel (𝑎𝑗|𝑖) as shown in Figure 4.2 (b). 

The neighbourhood system controls how many neighbours taken into the consideration. A higher order 

neighbourhood system require higher computational time. On the other hand, a lower order neighbourhood 

system has a limited area in describing the relationships between pixels. In this research, the second-order 

neighbourhood system is used considering the tree crown size in both 2 m and 0.5 m images. Neighbouring 

segments should have different homogeneous characteristics.  

At object level, MRF works by forming a homogeneous segments. After the initial pixel level MRF, a number 

of segments or in the SRG called as regions. Each region consists of one or more pixel belong to the same 

class. A region shares a common boundary with its adjacent regions. Given the pixel 𝑎𝑗|𝑖 is the boundary 

pixel of region 𝑅𝑖, all the pixels of its adjacent regions in the second-order neighbourhood system 

(pixels 𝑎𝑗±1|𝑖±1) is explored. When the pixel at pixel location 𝑎𝑗±1|𝑖±1 is changed to the class of region 𝑅𝑖 

in the iterative process of object level MRF, it will merge into the region 𝑅𝑖 and become the boundary pixel 

of region 𝑅𝑖.  

The application of image segmentation in a classified image would change the initial pixel labelling. Figure 

4.4 shows the example of local changes possibilities in image segmentation due to the changes in pixels. 

Changes in one pixel may change the number of segments in an image. Local changes may also change the 

size of two or more segments by changes in the boundary pixel. Isolated pixels could be eliminated after 

image segmentation process. The local changes are calculated at segment level. These changes would make 

a difference in the energy before and after the image segmentation. This energy difference is optimized by 

using simulated annealing with Metropolis-Hastings sampler.  

 

 

Figure 4.4: Examples of local changes possibilities due to image segmentation; A: Changes in one pixel that merged several segments of 

Class 1 into one segment and divided Class 2 into several segments; B: Elimination of isolated pixel; C: Changes in one pixel that merged 

several segments of Class 1; D: Changes in boundary pixel that change the size of two adjacent segments; E: Isolated pixel emerges 
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Figure 4.5 illustrates the changes of one pixel in four iteration process. The pixel that change in this scenario 

is pixel 𝑎𝑗|𝑖 in the segment 𝑆𝑚 that belongs to the class 𝐶3. At the first iteration, this pixel changes into 

class 𝐶1. Consequently, this pixel belongs to the same class with segment 𝑆𝑘 that has pixel 𝑎𝑗+1|𝑖−1 as its 

pixel boundary. Since it is located in the neighbourhood system 𝑁(𝑎𝑗|𝑖), the segment 𝑆𝑚 merges into 

segment 𝑆𝑘. At the second iteration, the pixel 𝑎𝑗|𝑖 change into class 𝐶3. Therefore, it forms a new 

segment 𝑆𝑚. At the third iteration, the pixel 𝑎𝑗|𝑖 change into class 𝐶4. Hence, it belongs to the same class as 

segment 𝑆𝑙  and segment 𝑆𝑝 that located in pixel 𝑎𝑗|𝑖−1 and pixel 𝑎𝑗|𝑖+1. Because they belong to the same 

class and located in the same neighbourhood system, the merge into segment  𝑆𝑙 since it has the largest area 

before the third iteration. At the fourth iteration, the pixel 𝑎𝑗|𝑖−1 change into class 𝐶5. Accordingly, it split 

the segment 𝑆𝑙 into two segments, which are segment 𝑆𝑙 and segment 𝑆𝑝. Because it has the same class as 

segment  𝑆𝑜 and segment 𝑆𝑛 that located in pixel 𝑎𝑗+1|𝑖 and pixel 𝑎𝑗−1|𝑖, they merge into segment 𝑆𝑜. 

 
Figure 4.5: The segments changes because the changes of a pixel 

The energy changes of segments involved in the local changes of pixel 𝑎𝑗|𝑖 can be described by: 

 𝑈𝑠𝑒𝑔1
=  𝑈𝑘(𝑆𝑘| 𝐶1) + 𝑈𝑙(𝑆𝑙| 𝐶4) + 𝑈𝑚(𝑆𝑚| 𝐶3) + 𝑈𝑛(𝑆𝑛| 𝐶5) + 𝑈𝑜(𝑆𝑜| 𝐶5) + 𝑈𝑝(𝑆𝑝| 𝐶4)                                (4.40) 

 𝑈𝑠𝑒𝑔2
= 𝑈𝑘(𝑆𝑘 + 1| 𝐶1) + 𝑈𝑙(𝑆𝑙| 𝐶4) + 0 + 𝑈𝑛(𝑆𝑛| 𝐶5) + 𝑈𝑜(𝑆𝑜| 𝐶5) + 𝑈𝑝(𝑆𝑝| 𝐶4)                                         (4.41) 

 𝑈𝑠𝑒𝑔3
= 𝑈𝑘(𝑆𝑘 − 1| 𝐶1) + 𝑈𝑙(𝑆𝑙| 𝐶4) + 𝑈𝑚(𝑆𝑚| 𝐶2) + 𝑈𝑛(𝑆𝑛| 𝐶5) + 𝑈𝑜(𝑆𝑜| 𝐶5) + 𝑈𝑝(𝑆𝑝| 𝐶4)                   (4.42) 

 𝑈𝑠𝑒𝑔4
= 𝑈𝑘(𝑆𝑘| 𝐶1) + 𝑈𝑙(𝑆𝑙 + 5| 𝐶4) + 0 + 𝑈𝑛(𝑆𝑛| 𝐶5) + 𝑈𝑜(𝑆𝑜| 𝐶5) + 0                                                        (4.43) 

 𝑈𝑠𝑒𝑔5
= 𝑈𝑘(𝑆𝑘| 𝐶1) + 𝑈𝑙(𝑆𝑙 − 5| 𝐶4) + 0 + 0 + 𝑈𝑜(𝑆𝑜 + 4| 𝐶5) + 𝑈𝑝(𝑆𝑝| 𝐶4)                                                (4.44) 

The image in the above scenario consists of six segments before the iteration process starts or at the 𝑆𝑒𝑔1. 

The table 4.1 presents the size changes of each segments at every iteration process. The segment 𝑆𝑘 change 

at the second iteration when the segment 𝑆𝑚 merges into their segment. They increase by one pixel at 

the 𝑆𝑒𝑔2. The segment 𝑆𝑙 change at 𝑆𝑒𝑔4 with increase by five pixels after merged with the segment 𝑆𝑚 and 

segment 𝑆𝑝. The segment 𝑆𝑚 consists of one pixel at 𝑆𝑒𝑔1 and 𝑆𝑒𝑔3, when it belongs to class 𝐶3 and 

class 𝐶2. It disappear at 𝑆𝑒𝑔2, 𝑆𝑒𝑔4 and 𝑆𝑒𝑔5 when it merged into another segments and forms a large 

segment. The segment 𝑆𝑛 change at 𝑆𝑒𝑔5 when it merged into segment 𝑆𝑜. The segment 𝑆𝑜 change at 𝑆𝑒𝑔5 

when pixel 𝑎𝑗|𝑖 and segment 𝑆𝑛 merged into their segment. The segment 𝑆𝑝 merged into segment 𝑆𝑙 at the 

third iteration. 
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 𝑺𝒆𝒈𝟏 (pixel) 𝑺𝒆𝒈𝟐 (pixel) 𝑺𝒆𝒈𝟑 (pixel) 𝑺𝒆𝒈𝟒 (pixel) 𝑺𝒆𝒈𝟓 (pixel) 

𝑺𝒌 6 7 6 6 6 

𝑺𝒍 7 7 7 12 7 

𝑺𝒎 1 0 1 0 0 

𝑺𝒏 3 3 3 3 0 

𝑺𝒐 4 4 4 4 8 

𝑺𝒑 4 4 4 0 4 

Table 4.1: The size changes caused of each segments 

4.6. Parameter estimation 

4.6.1. Smoothness parameter at pixel level 

The smoothing parameter at the pixel level (λ) is an essential parameter in MRF-based image analysis. The 

optimal value of λ should be defined beforehand. It balance the conditional energy and the prior energy in 

the optimization process and determine the smoothness of the classification result. The estimation of λ can 

be done by several experiments or by estimation of training data. Trial and error experiment may be time-

consuming while estimation from training data is computationally expensive (Tolpekin & Stein, 2009). Trial 

and error experiments were used in this study to estimate λ. In this study, a subset image of 2 m multispectral 

GeoEye-1 satellite imagery was used to save the time. The optimal value of λ estimated by assessing the 

kappa 𝜅 value resulted from smoothness parameter λ values of 0.5, 0.7, 0.9 and 0.95 in this subset area at 

fixed other parameters (𝑇0=4, 𝑇𝑢𝑝𝑑 =0.95). The mean and standard deviation σ of kappa 𝜅 and overall 

accuracy value were calculated from 10 experiments of each λ value. 

4.6.2. Simulated annealing parameters 

Simulated annealing (SA) is widely used and works well as an optimization algorithm. It has been applied in 

wide range of areas since its introduction in 1983 (Aarts et al., 2005). The term of SA originally came from 

the way that metals and some liquids, cool and crystallize. Annealing is a process when the temperature 

cooled slowly and thermal equilibrium achieved at each stage of the gradual temperature lowering (Brooks 

& Morgan, 1995). Kirkpatrick (1984) studied the computational efficiency of simulated annealing when 

applied to graph partitioning and the traveling salesman problems. The results showed that simulated 

annealing is efficient for sufficiently large samples.  

SA is able to avoid local optima and obtain the global optima. In this research, the energy optimization 

controlled by two main parameters, initial temperature (𝑇0) and updating temperature (𝑇𝑢𝑝𝑑). In this study, 

the cooling schedule is explained by 𝑇 = 𝑇0 × 𝑇𝑢𝑝𝑑. Initially, the SA process starts at high 𝑇0 value and 

then cools down based on defined 𝑇𝑢𝑝𝑑. Under SA, it is assumed that the 𝑇0 will decrease iteratively until 

reaching the minimum energy solution. The 𝑇𝑢𝑝𝑑  should be defined carefully considering the duration of 

the computation time and the classification result. The 𝑇𝑢𝑝𝑑 controls the rate of temperature decrease. The 

process will stop if there is no more pixels are updated. The final result is expected to be achieved by applying 

the smoothness parameter λ. The smoothness parameter should be defined carefully since it is influential to 

classification result. The energy minimization is used for maximization of pixels class labelling. 

 
The values of parameters for simulated annealing process are estimated in the multispectral image.  Initial 

Temperature (𝑇0) and updating temperature (𝑇𝑢𝑝𝑑) are two parameters of simulated annealing. T is the 

temperature resulted from the iteration process. A lower T cause a tight coupling between neighbouring 

pixels and the image appear more regular while a higher T cause a loose coupling leading to chaotic 
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appearance (Geman & Geman, 1984). In this study, these parameters are estimated in the same subset image 

used in smoothness parameter estimation. 10 experiments of each value of 𝑇0 and 𝑇𝑢𝑝𝑑 are used to obtain 

optimal value.  

4.6.3. Smoothness parameter at object level 

The optimum value of smoothing parameter at the object level (λ𝑠𝑒𝑔) is estimated in a small subset. The 

subset area is smaller than the subset used for estimating smoothness parameter at pixel level λ. The result 

of each λ𝑠𝑒𝑔 value is measured by its kappa 𝜅 value and its quality in identifying the tree crown. The values 

measured in this parameter estimation are 0.1, 0.3, 0.5, 0.7, 1, 5 and 10. The value of λ𝑠𝑒𝑔 ranges from 0 to 

∞. The λ𝑠𝑒𝑔=10 is chosen as the maximum value because it has already give the example of the high λ𝑠𝑒𝑔 

value result. 

4.7. Accuracy assessment 

Accuracy assessment will be calculated from the error matrix of the tree crown class and background class 

in the final classification result. An error matrix is a powerful way to illustrate the accuracy of classification 

result. The major diagonal of error matrix shows the proper classification result of each class and the rest 

of other values of the matrix represent the misclassified pixels. 

User and producer accuracy and kappa 𝜅 value were calculated from the error matrix. User accuracy was 

corresponding to the error of commission (inclusion). It was calculated by dividing the number of correct 

pixels by the total number of pixels. Producer accuracy was corresponding to the error of omission 

(exclusion). It measures how well the reference pixels for each class have been classified. Kappa 𝜅 value is 

a discrete multivariate technique to measure the accuracy assessment of classification result (Congalton, 

1991). It is necessary to also include the user and producer accuracy and not to only rely on kappa 𝜅 because 

kappa 𝜅 is a ratio, which problems may occur (Pontius & Millones, 2011). 

The classification results of object-based MRF was also be assessed by compared with four classified images 

resulted from two other existing classification methods.  First alternative method to be compared with the 

object-based MRF results is MLC. It is one of the most common methods for land cover classification.  

Second, the MRF-based classification that was implemented in both 2 m multispectral and 0.5 m pan-

sharpened GeoEye-1 image.  

The main concern in this research is an object level image analysis. To get a fair assessment for object-based 

super resolution map, an object level accuracy assessment should be performed. Ardila et al., (2011) 

developed a method to apply object level accuracy assessment. They defined two type of errors will be 

identified based on a reference map. The first type of error is the area inside tree crown that identified as a 

non-tree crown. The second type of error is the area outside tree crown that identified as a tree crown. Then, 

a geometric error (GE) were calculated based on this errors.  

In this research, the object level accuracy assessment will be performed by identifying three status exclusively 

on detected and undetected tree crown class, which are: 

 True positive: Tree crown correctly detected as tree crown 

 False positive: Background class incorrectly detected as tree crown 

 False negative: Tree crown incorrectly detected as background class 

Figure 4.6 illustrates the implementation of the accuracy assessment. The accuracy assessment initialized by 

splitting the area inside and outside the tree crown area of the reference data. The segments inside the tree 

crown area are split into tree crown segment and non-tree crown segment. The segments outside the tree 
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crown also split with the same method. The tree crown segment inside the tree crown area are identified as 

the true positive. The non-tree segments inside the tree crown area and the tree segment outside the tree 

crown area is identified as the false negative and false positive respectively. The quality of the image 

classification performance was described by  

𝑄𝑢𝑎𝑙𝑖𝑡𝑦 =
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
. 100%                                                                              (4.45) 

The quality close to 100% represents a good quality result of the method in identifying tree crown. 

 

 
Figure 4.6: Accuracy assessment to measure the quality of the method in identifying tree crown 
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5. RESULTS  

This chapter presents the results of all methods implemented in this research. It is divided into four main 

sections which cover the results of the spectral classes’ definition based on the training set in the first section. 

In section 5.2, the results of all experimental results using the existing methods are given. The third section 

presents the result of the developed method. The last section covers the accuracy assessment performed for 

the developed method. 

5.1. Spectral classes definition 

In this image classification, five different colours represent five different classes, which are gold for the 

unpaved road, brown for bare soil, black for shadow, dark green for trees and light green for grass. The results 

presented in this section are highly related to the number of training samples used as the training area for a 

supervised classifier. Enough number of training samples is required in order to provide a proper training 

for the ML classifier used in this research. 

The creation of the training samples in this research was not a simple effort to reach an enough number of 

training samples. The class unpaved road has a narrow shape. In the multispectral mode, the width of the road 

is only three pixels at its widest point. Class shadow and trees are very small. In the multispectral mode, their 

size is vary from 1-4 pixels. The use of higher spatial resolution as a training sample makes the training area 

might be contaminated by their neighbour class in the multispectral image. Therefore, the 0.5 m pan-

sharpened image was used in identifying objects to help the creation of training samples. The number of 

training samples is not equal for all classes because some of the drawbacks mentioned above. The 

digitization of training dataset obtained 491 pixels in the multispectral image and 7,591 pixels in the pan-

sharpened image. 

5.1.1. Contingency Matrix 

Contingency matrix contains the number of pixels which are properly classified. The contingency matrix of 

training sets in the multispectral image is presented in Table 4.1. It shows that most of the pixels are correctly 

classified. Every class has a different number of pixels, which depend on the number of pixels for each class 

in the image. The class unpaved road has the highest accuracy with 100% for both producer’s and user’s 

accuracy. The class shadow has the highest error of commission with 2.4%. The highest error of omission is 

class trees with 1.39% error. Contingency analysis for training sets significantly depends on a choice of 

classification method and number of training pixels. The number of training pixels for the multispectral 

image is not too large in respect to the number of bands. This may influence the high accuracy of the 

contingency analysis. The method used in calculating the contingency analysis also influencing the result. In 

this research, the contingency analysis is measured for maximum likelihood classifier. 

 Unpaved Road Bare Soil Shadow Trees Grass 

Unpaved Road 106 0 0 0 0 

Bare Soil 0 152 0 0 0 

Shadow 0 2 121 1 0 

Trees 0 0 0 213 0 

Grass 0 0 0 2 203 

Table 5.1: Contingency matrix of training sets in multispectral image 
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The contingency matrix of training sets in the pan-sharpened image is also measured for maximum 

likelihood classifier. Based on Table 4.2, the overall accuracy shows a satisfying result. Similar to the result 

of contingency analysis in the multispectral image, class shadow and trees have the highest error of commission 

and error of omission respectively.  The number of training pixels in the pan-sharpened image is large 

enough to give a more fair contingency result. The training area for both images is the same, but in the pan-

sharpened image, the same training area covers roughly 16 times more pixels compare to the multispectral 

image.  

 Unpaved Road Bare Soil Shadow Trees Grass 

Unpaved Road 1581 1 2 8 0 

Bare Soil 10 2353 48 0 0 

Shadow 0 88 1818 181 9 

Trees 0 3 50 3180 1 

Grass 0 0 0 25 3240 

Table 5.2: Contingency matrix of training sets in pan-sharpened image 

5.1.2. Feature space 

Figure 5.1 shows the feature spaces of the 2 m multispectral image at significance level 0.9. The feature 

space in Figure 5.1 (A) shows that there is some overlap between trees and grass. A little overlap also appears 

between the unpaved road and bare soil and between bare soil and shadow. The feature space in Figure 5.1 (B) 

shows that there is a large overlap between trees and shadow. The feature space in Figure 5.1 (C) shows that 

it has similarities with feature space of Band 4 and Band 3, but the overlap between trees and grass is smaller 

and the overlap between the unpaved road and bare soil is slightly larger. In 3D feature space shown in Figure 

5.1 (D), it is shown that one class can be separated from other classes at significance level 0.9. Overall, in all 

feature spaces the class unpaved road has a significantly larger area than all other classes. It implies that the 

class unpaved road has the highest variance in this image. The overlap between classes may lead to a lower 

accuracy result of the image classification. 

 
Figure 5.1: Feature spaces of multispectral image at significance level 0.9 



HIERARCHICAL MARKOV RANDOM FIELDS FOR OBJECT-BASED IMAGE ANALYSIS 

 

25 

Figure 5.2 shows the feature spaces of 0.5 m pan-sharpened image at significance level 0.9. In this feature 

spaces, the overall overlap between classes is larger than the feature space of multispectral image as expected. 

The dots are a lot denser than those in 2 m multispectral image. This is caused by the training sets in the 

panchromatic image has more pixel and higher variance. The feature space in Figure 5.2 (A) and in 

Figure 5.2 (B), some of the grass pixels is sparsely overlapped with trees and shadow. The feature space in 

Figure 5.2 (C) has a larger overlap between each class although it has similar shape compared to feature 

space in Figure 5.2 (A). The overlap is smaller in 3D feature space compare to all 2D feature spaces. The 

small overlap is between the unpaved road and bare soil and between trees and grass. The class unpaved road covers 

the largest area in all of the feature spaces. 

 
Figure 5.2: Feature spaces of pan-sharpened image at significance level 0.9 

5.1.3. Class separability 

The separability measured is an indirect estimation of correct classification. The class spectral separability 

values in multispectral mode show that every class has a high degree of separability from the other classes 

as presented in Table 5.3. Some of them have the highest possible values while the lowest value is 1.937. 

The lowest value of class spectral separability is between grass and trees. Both classes are vegetation, so they 

are close in term of spectral value compare to other classes. The class spectral separability of bare soil from 

shadow is 1.951.  This might be caused by the shadow that occurs on the bare soil and by the reflectance value 

of bare soil that closest to shadow than the other classes. 

 Unpaved Road Bare Soil Shadow Trees Grass 

Unpaved Road 0 1.989 1.999 2.000 2.000 

Bare Soil 1.989 0 1.951 2.000 2.000 

Shadow 1.999 1.951 0 1.997 2.000 

Trees 2.000 2.000 1.997 0 1.937 

Grass 2.000 2.000 2.000 1.937 0 

Table 5.3: Class separability of multispectral image 
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The class spectral separability values in pan-sharpened mode show that the spectral separability of trees from 

shadow is 1.777, which is the lowest value compare to other values. By using visual interpretation, in higher 

spatial resolution, there are exist some shadows within the tree crown area. The second lowest spectral 

separability is the spectral separability of bare soil from shadow with a value of 1.832. Overall, Table 5.4 

presents a high degree of class spectral separability between classes and the spectral separability in pan-

sharpened mode is slightly lower with the one in multispectral mode. 

 Unpaved Road Bare Soil Shadow Trees Grass 

Unpaved Road 0 1.965 1.988 1.999 2.000 

Bare Soil 1.965 0 1.832 1.990 2.000 

Shadow 1.988 1.832 0 1.777 2.000 

Trees 1.999 1.990 1.777 0 1.938 

Grass 2.000 2.000 2.000 1.938 0 

Table 5.4: Class separability of pan-sharpened image 

5.2. Parameters estimation 

5.2.1. Smoothness parameter at pixel level 

Table 5.5 illustrates the smoothness parameter λ estimation of 2 m multispectral image. The mean kappa 𝜅 

value is decreasing following the increasing of λ. The λ value from 0.5 to 0.9 is not significantly different. 

While the λ value of 0.95 is leading to much lowest result accuracy amongst all the λ value. The standard 

deviation σ value of kappa 𝜅 and overall accuracy resulted from λ 0.95 is the highest. The computation time 

of the MRF classification using λ 0.95 is also the most expensive.  

λ Mean 𝜅 σ  𝜅 Mean Overall Accuracy σ  Overall Accuracy 

0.5 0.959 < 0.001 96.777 < 0.001 

0.7 0.958 0.001 96.732 0.068 

0.9 0.929 0.002 94.418 0.196 

0.95 0.853 0.005 88.597 0.408 

Table 5.5: Smoothness parameter at pixel level estimation of 2 m multispectral image 

Table 5.6 presents the smoothness parameter λ estimation of the 0.5 m multispectral image. The highest 

mean kappa 𝜅 is reached by employing λ value of 0.7 and 0.9. The λ value of 0.7 also leads to the highest 

overall accuracy mean score. Meanwhile, λ value of 0.9 is the second highest in overall accuracy mean at 

slightly lower score than λ value 0.7. The standard deviation σ of kappa 𝜅 and overall accuracy resulted from 

all parameter value are very small.  

λ Mean 𝜅 σ  𝜅 Mean Overall Accuracy σ  Overall Accuracy 

0.5 0.938 < 0.001 95.149 0.022 

0.7 0.942 0.001 95.443 0.049 

0.9 0.942 0.001 95.438 0.065 

0.95 0.938 < 0.001 95.139 0.02 

Table 5.6: Smoothness parameter at pixel level estimation of the 0.5 pan-sharpened image 

Both tables above indicate that a smoothness parameter estimations is not sufficient if it only refers to the 

kappa 𝜅 value and overall accuracy. The accuracy difference resulted from each of the smoothness parameter 
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λ is not significant. Furthermore, to make a better decision of choosing the best parameter, a visual 

interpretation of the parameter result is required. It gives a better understanding of how each of the 

smoothness parameter λ value affected the classification result. Based on this result, λ value 0.7 is chosen 

for both multispectral and pan-sharpened images. 

5.2.2. Simulated annealing parameters 

The simulated annealing parameters estimation result for the multispectral image shown in Table 5.7 for 

parameter 𝑇0. The 𝑇0 value 0 leads to the highest mean kappa 𝜅 value while 𝑇0 value 5 leads to the lowest 

mean kappa 𝜅 value. Nevertheless, the difference is only as small as 0.005. Similar results also appear in 

overall accuracy mean, where 𝑇0 value 0 and 5 leads to the highest and lowest score respectively. The 

difference between standard deviation σ of kappa 𝜅 resulted from each parameter 𝑇0 are not significant. For 

standard deviation σ of overall accuracy, the 𝑇0 value 10 leads to the highest value.  

  

 

 

 

 

 

Table 5.7: Parameter T0 estimation of 2 m multispectral image 

Table 5.8 presents the results of parameter estimation 𝑇𝑢𝑝𝑑. Each parameter resulting similar mean 𝜅 and 

standard deviation σ kappa 𝜅. The difference of the overall accuracy result is also very small. The 𝑇𝑢𝑝𝑑  0.99 

leads to the highest overall accuracy score. On the other hand, 𝑇𝑢𝑝𝑑 value 0.95 leads to the lowest overall 

accuracy score. The 𝑇𝑢𝑝𝑑 value 0.8 has the highest standard deviation σ of overall accuracy.  

𝑻𝒖𝒑𝒅 Mean 𝜅 σ  𝜅 Mean Overall Accuracy σ  Overall Accuracy 

0.8 0.929 0.003 94.446 0.231 

0.9 0.929 0.002 94.46 0.165 

0.95 0.929 0.002 94.432 0.188 

0.99 0.929 0.002 94.488 0.176 

Table 5.8: Parameter Tupd estimation of 2 m multispectral image 

Table 5.9 illustrates the result of experiments for parameter 𝑇0 optimal value. The results show that applying 

different 𝑇0 would not lead to a significant different on the result measured by kappa 𝜅. All the 𝑇0 values 

resulting very similar mean kappa 𝜅 and its standard deviation σ. The overall accuracy also implies the similar 

outcomes. The different between one overall accuracy mean to others is not significant. 

 

 

𝑻𝟎 Mean  𝜅 σ   𝜅 Mean Overall Accuracy σ  Overall Accuracy 

0 0.932 0.002 94.684 0.168 

1 0.928 0.002 94.376 0.139 

2 0.928 0.002 94.404 0.123 

3 0.928 0.001 94.390 0.094 

4 0.929 0.002 94.432 0.149 

5 0.927 0.002 94.334 0.177 

10 0.928 0.003 94.390 0.256 
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Table 5.9: Parameter T0 estimation of 0.5 m pan-sharpened image 

The result of the experiments for parameter 𝑇𝑢𝑝𝑑 estimation presented in Table 5.10. Considering the results 

of each mean kappa 𝜅 and standard deviation σ of kappa 𝜅, the 𝑇𝑢𝑝𝑑 value 0.95 has the highest mean kappa 

𝜅 score and lowest standard deviation σ of kappa 𝜅. Nonetheless, the difference is as low as 0,001. This 

𝑇𝑢𝑝𝑑 value also the lowest in term of standard deviation σ of overall accuracy with 0.033. The highest mean 

overall accuracy was reached by applying 𝑇𝑢𝑝𝑑 value 0.9. 

𝑻𝒖𝒑𝒅 Mean 𝜅 σ  𝜅 Mean Overall Accuracy σ  Overall Accuracy 

0.8 0.941 0.001 95.368 0.097 

0.9 0.941 0.001 95.425 0.092 

0.95 0.941 < 0.001 95.418 0.033 

0.99 0.940 0.001 95.347 0.088 

 

Table 5.10: Parameter Tupd estimation of 0.5 m pan-sharpened image 

The result of the simulated annealing parameters estimation shows that the difference between each 

parameter is not significant based on the mean of the kappa 𝜅 value. The standard deviation σ for all 

parameter combinations are very small. This estimation result makes all of the parameter combinations are 

proper to be used in the analysis. But, there are some other results to be considered beside kappa 𝜅 value, 

which are the visual result of the image analysis and the computation time. Parameter 𝑇0 does not affect too 

much on the accuracy, but a higher value of 𝑇0 leading to a longer computation time. Parameter 𝑇𝑢𝑝𝑑 

influencing the computation time quite heavily. Meanwhile, a higher value of 𝑇𝑢𝑝𝑑 leads to slower 

computation time. Based on all of the considerations above, two different parameter combinations was 

chosen differently for the multispectral and pan-sharpened image. For the multispectral image, the 𝑇0 value 

4 and 𝑇𝑢𝑝𝑑 value 0.9 is chosen.  𝑇0 value 4 and 𝑇𝑢𝑝𝑑 value 0.95 is chosen for the pan-sharpened image. 

5.2.3. Smoothness parameter at object level 

The smoothness parameter at object level for the multispectral image was estimated in a subset image with 

size 50 x 50 pixels or 10,000 m2. Table 5.11 shows the result of smoothness parameter at object level 

estimation of the multispectral image. Although the difference is not very significant, the result indicates 

that the quality of the method in identifying tree crown and kappa value is decreased when the λ𝑠𝑒𝑔 is 

increased. The quality and kappa value has the same behaviour by the changes of λ𝑠𝑒𝑔. With respect to this 

result, the λ𝑠𝑒𝑔 0.1 was chosen to be applied in the implementation of hierarchical MRF. Figure 5.3 depicts 

the results of the λ𝑠𝑒𝑔 optimum value estimation. The λ𝑠𝑒𝑔=10 leads to a very smooth result and consists 

of only three classes. 

𝑻𝟎 Mean  𝜅 σ   𝜅 Mean Overall Accuracy σ  Overall Accuracy 

0 0.940 < 0.001 95.323 0.021 

1 0.941 0.001 95.406 0.053 

2 0.941 0.001 95.426 0.074 

3 0.941 0.001 95.405 0.066 

4 0.941 0.001 95.424 0.052 

5 0.941 0.001 95.423 0.087 

10 0.941 0.001 95.421 0.052 
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𝛌 𝛌𝒔𝒆𝒈 Quality Kappa 𝜅 

0.7 

0.1 54.68% 0.750 

0.3 54.24% 0.308 

0.5 53.94% 0.143 

0.7 53.07% 0.143 

1.0 52.96% 0.143 

5.0 52.32% 0.143 

10.0 50.46% 0.100 

Table 5.11: Smoothness parameter at object level estimation of 2 m multispectral image 

 
Figure 5.3: Results of the 𝜆𝑠𝑒𝑔 optimum value estimation for 2 m multispectral image 

The smoothness parameter at object level for the pan-sharpened image was estimated in a subset image with 

size 100 x 100 pixels or 250 m2. Table 5.12 shows the result of smoothness parameter at object level 

estimation of the multispectral image. The result indicates that the quality of the method in identifying tree 

crown and kappa value is decreased when the λ𝑠𝑒𝑔 is increased. The quality and kappa value has the same 

behaviour by the changes of λ𝑠𝑒𝑔. With respect to this result, the λ𝑠𝑒𝑔 0.1 was chosen to be applied in the 

implementation of hierarchical MRF. Figure 5.4 showss the results of the λ𝑠𝑒𝑔 optimum value estimation. 

The result obtained by employing λ𝑠𝑒𝑔=10 eliminated small segments. Consequently, it consists of four 

classes and the total area of tree crowns became larger. 

𝛌 𝛌𝒔𝒆𝒈 Quality Kappa 𝜅 

0.7 

0.1 60.74% 0.633 

0.3 60.39% 0.612 

0.5 60.35% 0.612 

0.7 60.35% 0.607 

1.0 60.26% 0.601 

5.0 57.42% 0.509 

10.0 55.95% 0.430 

Table 5.12: Smoothness parameter at object level estimation of 0.5 m pan-sharpened image 
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Figure 5.4: Results of the 𝜆𝑠𝑒𝑔 optimum value estimation for 0.5 m pan-sharpened image 

5.3. Maximum likelihood classification 

Figure.5.5 presents the output of multispectral image classification using MLC with kappa 𝜅 value 0.959. As 

can be seen, the output has a salt and pepper effect occurs mainly in the grass and bare soil class. Some grass 

was misclassified as trees and vice versa. Some bare soil class was also misclassified as the unpaved road. The 

unpaved road class looks nicely classified without any significantly isolated pixels inside. Due to the insufficient 

of spatial resolution for automatically detecting oil palm trees, some small tree crowns was unable to be 

detected.  However, some small tree crowns with size as small as one pixel were successfully identified. 

Although, bigger tree crowns with size at four pixels has a higher chance to be identified.  

 
Figure 5.5: Classification result of multispectral image using maximum likelihood classifier 

Table 5.13 shows the confusion matrix of the classified image. The lowest user’s accuracy is the class tree at 

89.36%. Moreover, the class shadow has the only 100% user’s accuracy. The lowest producer’s accuracy is 
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class grass at 91.08%. The highest class in producer’s accuracy is the class unpaved road at 100% accuracy. The 

overall accuracy is very high at 96.77%. The highest misclassified occurred between two vegetation classes, 

which are trees and grass.  

 
Unpaved 

Road 
Bare Soil Shadow Trees Grass 

User’s 

Accuracy (%) 

Unpaved Road 132 1 0 0 0 99.25 

Bare Soil 0 111 1 0 0 99.11 

Shadow 0 0 86 0 0 100 

Trees 0 0 1 168 19 89.36 

Grass 0 0 0 1 193 99.48 

Producer’s 

Accuracy (%) 

100 99.11 97.73 99.41 91.08 96.77 

Table 5.13: Confusion matrix of MLC result from multispectral image 

Figure 5.6 presents the object-based accuracy assessment of MLC result from the multispectral image. The 

accuracy assessment shows that almost half of the area is identified as tree crown. There are 1,226 m2 

(43.53% of total area) identified as tree crown. The area of true positive is 1,148 m2, which covers 81.72% 

area of total tree crown from the reference data. The overall quality accuracy obtained from this method is 

48.37%. The quality is considerably low in term of delineating oil palm tree crown. 

 
Figure 5.6: Object-based accuracy assessment of MLC result from multispectral image 

Figure.5.7 presents the output of pan-sharpened image classification using maximum likelihood classifier 

with kappa 𝜅 value 0.935. The image shows a better result in distinguishing bare soil and unpaved road. Some 

grass still classified as tree crown. Some bigger tree crowns merging with their neighbour trees. Smaller tree 

crowns can be detected in this image. A salt and pepper effect occurs in the image. Based on the kappa 𝜅 

value, the classification of the pan-sharpened image has a lower accuracy than the classification of the 

multispectral image. But, based on visual interpretation, the result show a better result in detecting oil palm 

trees.  
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Figure 5.7: Classification result of pan-sharpened image using maximum likelihood classifier 

Table 5.14 shows the confusion matrix of the classified image. Similar to multispectral image classification 

result, the unpaved road has 100% producer’s accuracy. The class bare soil earned the top user’s accuracy at 

98.42%. The class trees is the lowest in user’s accuracy with just slightly above 90%. Most of them 

misclassified to class shadow and grass. The shadow has 90.54% producer’s accuracy, which is the lowest among 

the others. The overall accuracy is 94.96%. 

 
Unpaved 

Road 
Bare Soil Shadow Trees Grass 

User’s 

Accuracy (%) 

Unpaved Road 2057 99 6 0 3 95.01 

Bare Soil 0 1681 27 0 0 98.42 

Shadow 0 8 1273 70 1 94.16 

Trees 0 1 100 2422 154 90.47 

Grass 0 0 0 93 3156 97.14 

Producer’s 

Accuracy (%) 

100.00 93.96 90.54 93.69 95.23 94.96 

Table 5.14: Confusion matrix of MLC result from pan-sharpened image 

Figure 5.8 presents the object-based accuracy assessment of MLC result from the pan-sharpened image. 

The 41.9% of the area is classified as tree crown, this percentage is less than the result of the multispectral 

image. The percentage of true positive is 86.52% of the total area of tree crown from the reference data. 

The overall quality accuracy obtained from this method is 54.58%. Using a fine spatial resolution, smaller 

tree crown can be identified and the shape of each class is closer to the real shape and the quality is increased. 
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Figure 5.8: Object-based accuracy assessment of MLC result from pan-sharpened image 

5.4. Markov random field 

5.4.1. Pixel-based Markov random field 

The multispectral image classification using MRF output is much smoother than the one using MLC as 

shown Figure 5.9. The smoothness parameter reduces the salt and pepper effect significantly. Some similarly 

misclassified case appears in the image that happens between grass and trees and between bare soil and unpaved 

road. Some trees are merged with their neighbour trees. The kappa 𝜅 value of the image is 0.957. There is a 

slight increase of kappa 𝜅 value after introducing MRF for classifying the image.  

 
Figure 5.9: Classification result of multispectral image using Markov random field 

Table 5.15 presents the confusion matrix of the classified image. Two classes have top accuracy for each 

producer’s and user’s accuracy. The class unpaved road and bare soil have 100% accuracy in producer’s accuracy 
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while the unpaved road and shadow has 100% in user’s accuracy. The class trees have the lowest user’s accuracy 

at 88.42%. Most of the wrongly classified pixels are classified as the class grass. On the other hand, the class 

grass has the lowest producer’s accuracy at 90.09%. The overall accuracy obtained from the applied method 

is 96.63%. 

 
Unpaved 

Road 
Bare Soil Shadow Trees Grass 

User’s 

Accuracy (%) 

Unpaved Road 132 0 0 0 0 100.00 

Bare Soil 0 112 1 0 0 99.12 

Shadow 0 0 86 0 0 100.00 

Trees 0 0 1 168 21 88.42 

Grass 0 0 0 1 191 99.48 

Producer’s 

Accuracy (%) 
100.00 100.00 97.73 99.41 90.09 96.63 

Table 5.15: Confusion matrix of pixel-based MRF result from multispectral image 

Figure 5.10 presents the object-based accuracy assessment of pixel-based MRF result from the multispectral 

image. Compare to the result of the MLC, the MRF approach resulted a slightly lower accuracy of tree 

crown delineation. The percentage of true positive is 82.14% of the total tree crown area from the reference 

data. This is a little better than the MLC result. The overall quality accuracy obtained from this method is 

48.17%. In this method, some false negative pixels still occur in the middle of the tree crown although 

smoothness parameter has been applied. 

 
Figure 5.10: Object-based accuracy assessment of pixel-based MRF result from multispectral image 

Figure 5.11 presents the output of pan-sharpened image classification using MRF with kappa 𝜅 value 0.941. 

Some bigger trees are merged and some grass classified as tree crowns, especially on the west where they 

spectrally similar to trees. The unpaved road on the road section lined quiet smoothly. After applying MRF, 

the kappa 𝜅 value was slightly increased. Although it was still difficult to distinguish vegetation classes. Due 

to the smoothness effect, some small tree crowns were disappearing. On the other hand, some bigger tree 

crowns are merged.  
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Figure 5.11: Classification result of pan-sharpened image using Markov random field 

The error resulted from the pixel-based MRF result from the pan-sharpened image is shown in Table 5.16. 

The class trees has the lowest user’s accuracy at 90.65%. Most of the misclassified pixels are classified to class 

grass and shadow. The class shadow has the lowest producer’s accuracy at 90.83%. Most of the wrongly 

classified pixels are classified as trees. The unpaved road has the only class with an impeccable result in 

producer’s accuracy. The class bare soil has the highest user’s accuracy at 98.61%. The overall accuracy is 

95.42%. 

 

 
Unpaved 

Road 
Bare Soil Shadow Trees Grass 

User’s 

Accuracy (%) 

Unpaved Road 2057 74 5 0 2 96.21 

Bare Soil 0 1704 24 0 0 98.61 

Shadow 0 10 1277 64 2 94.38 

Trees 0 1 100 2443 151 90.65 

Grass 0 0 0 78 3159 97.59 

Producer’s 

Accuracy (%) 
100.00 95.25 90.83 94.51 95.32 95.42 

Table 5.16: Confusion matrix of pixel-based MRF result from pan-sharpened image 

Figure 5.12 presents the object-based accuracy assessment of pixel-based MRF result from the pan-

sharpened image. Compared to the result of MLC, the percentage of true positive is 87.57%, which is 

increased. The overall quality accuracy obtained from this method is 54.31%, which is quite similar 

compared to the MLC result. The smoothness parameter applied in this method can reduce some of the 

isolated pixels inside the tree crown. But, it also increased the number of false positive. 
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Figure 5.12: Object-based accuracy assessment of pixel-based MRF result from pan-sharpened image 

5.4.2. Object-based Markov random field 

Figure 5.13 shows the GLCM texture measurements in lag 1 for each training set reflecting each landcover 

class. This measurement is based on the same training set used in pixel-based image classification. The x-

axis show the different angles and y-axis shows the GLCM mean. The different between classes is quite 

narrow and it is difficult to legitimately distinguish one class from other classes. The dependence of the 

GLCM measurements of each class is not really dependent on the angle. The class unpaved road might be the 

only class that has a dependency on the angle, despite it is not significant. In this research, the GLCM 

dissimilarity is used to measure the texture contribution.  
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 Figure 5.13: GLCM measurements in lag 1. The figure shows the dependence of the GLCM texture measurement on the angle. 

Figure 5.14 show the histogram plot of the GLCM contrast frequency for each class. This histogram is 

modelled by a simple normal distribution to estimate the probability. The histogram of class trees shows the 

maximum frequency is in the middle of the histogram. The minimum frequencies are both in the left and 

right side.  

 
Figure 5.14: Histogram of GLCM contrast for each class in quantization level 8 

Figure 5.15 presents the output of multispectral image classification using object-based hierarchical MRF. 

The result is very smooth because only some small segments occur in this result. The main issue is the area 

of tree crown is large. Most of the tree crown merged into a larger segment. They cover the part of grass 

segment. Some grass also identified as bare soil class. Some small segments of unpaved road class is appeared 

where it should not. The kappa 𝜅 value of this method is 0.75. This kappa value is not comparable to the 

kappa obtained from the pixel-based methods above because of the difference in the size of the image. 
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Figure 5.15: Classification result of multispectral image using object-based hierarchical Markov random field 

Figure 5.16 presents the object-based accuracy assessment of object-based hierarchical MRF result from the 

multispectral image. The percentage of true positive is 87.02% of all tree crown in the reference dataset. The 

overall quality accuracy obtained from this method is 53.08%, which is higher than the result of both pixel-

based and object-based MRF method. The number of false positive is increased after applying the object-

based method, but the increasing of true positive and the decreasing of false negative leads to the highest 

quality of obtained from this image.  

 
Figure 5.16: Object-based accuracy assessment of object-based hierarchical MRF result from multispectral image 

Figure 5.17 presents the output of pan-sharpened image classification using object-based hierarchical MRF. 

The result of this method is not too smooth and still suffered the same problem as another class. Some 

small trees that identified in MRF method was disappeared because they merged into the segment in their 

neighbourhood system. The segments of unpaved road are identified, which is unnecessary. The unpaved road 

should be only occurs with a large segment. The kappa 𝜅 obtained from this method is 0.623. This result is 

lower than the result of the same method applied to the coarser spatial resolution.  
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Figure 5.17 Classification result of pan-sharpened image using object-based hierarchical Markov random field 

Figure 5.18 presents the object-based accuracy assessment of object-based hierarchical MRF result from the 

pan-sharpened image. The percentage of true positive is 90.15% of all tree crown in the reference dataset. 

The overall quality accuracy obtained from this method is 55.32%, which became the highest quality resulted 

from the 0.5 m pan-sharpened image. The application of object-based increased the true positive and 

decreased the false negative. 

 
Figure 5.18: Object-based accuracy assessment of object-based hierarchical MRF result from multispectral image 

5.5. Accuracy assessment 

5.5.1. Pixel-based accuracy assessment 

Table 5.17 presents the pixel-based accuracy assessments of all pixel-based method results applied in this 

research. The results is assessed with respect to their kappa 𝜅 value and overall accuracy. Overall, the result 

of MLC method on the multispectral image obtained the highest kappa 𝜅 and overall accuracy. The 
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multispectral image with regards to the applied methods obtained higher accuracy than the pan-sharpened 

image. The MRF method applied to multispectral image obtained slightly lower accuracy than MLC method. 

On the other hand, the MRF method applied to pan-sharpened image obtained higher accuracy than MLC 

method. 

Results 𝜅 Overall Accuracy 

MLC-Multispectral 0.959 96.77% 

MLC-Pansharpened 0.935 94.96% 

MRF-Multispectral 0.957 96.63% 

MRF-Pansharpened 0.941 95.42% 

Table 5.17: Pixel-based accuracy assessment of pixel-based method results 

5.5.2. Object-based accuracy assessment 

Table 5.18 illustrates the error detection at object level of all results. The three methods applied in this study 

lead to the same behaviour of errors in the result for both 2 m multispectral and 0.5 m pan-sharpened image. 

The false negative error will decrease when the result is smoother. On the other hand, the false positive will 

increase when the result is smoother. The result obtained from the pan-sharpened image has a less error. 

Results 
Error (m2) 

False Negative False Positive 

MLC-Multispectral 257 969 

MLC-Pansharpened 189 822 

MRF-Multispectral 251 991 

MRF-Pansharpened 175 861 

Obj-Multispectral 234 1,030 

Obj-Pansharpened 140 897 

Table 5.18: Error detection at object level of all results 

Table 5.19 presents the quality obtained from all methods. The overall quality is decreasing when the pixel-

based. After the introducing of the object-based MRF, the quality reached its highest value. The quality of 

the results obtained from the pan-sharpened image is better than the results from the multispectral image 

except the object-based MRF results. The results of pixel-based MRF have the lowest quality compared the 

other methods.  

Results Quality 

MLC-Multispectral 48.37% 

MLC-Pansharpened 54.58% 

MRF-Multispectral 48.17% 

MRF-Pansharpened 54.31% 

Obj-Multispectral 53.08% 

Obj-Pansharpened 55.32% 

Table 5.19: Quality of all results 
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6. DISCUSSION 

This chapter discusses the results from all the obtained results in chapter 5. The first section covers the 

discussion about the results obtained from each experiment to find the optimal parameters. The second 

section discusses the results of the classified images acquired from all methods.  

6.1. Parameter estimation results 

The objective of parameters estimation is to find the optimal value of parameters for each method applied 

in this research. Experiments were done for MRF-based image classification for both 2 m multispectral and 

0.5 m pan-sharpened image separately.  In general, each image shows different behaviour for each parameter 

combinations. 

The smoothness parameter λ gave different effect for the results of each multispectral image and pan-

sharpened image. In the multispectral image, the rise of λ should lead to a lower kappa 𝜅 value and overall 

accuracy. Higher λ should lead to a less stable result of the classification. The computational time also 

increases when λ is increasing. In the pan-sharpened image, the kappa 𝜅 and overall accuracy will increase 

when the λ increases until a peak point and decrease significantly. The kappa 𝜅 and overall accuracy result 

are highly dependent on the quality of the test data. In this research, the test data was derived from both 

pan-sharpened and multispectral image. This may have been influencing the statistical result of the image 

classification. Besides, the lack of spatial resolution of the multispectral image can also affect the classified 

image accuracy. In addition to the statistical analysis of the result, the effect of the smoothness parameter λ 

also explored visually. A less smooth classified image allows more isolated pixels exists in the classified 

image. Isolated pixels are not preferred to have existed in the classification result because it is unlike the fact 

on the ground. Visually, higher λ leads to a more preferred classification result.  

The results show that the parameter 𝑇0 and 𝑇𝑢𝑝𝑑 do not affect significantly the classification result in respect 

to their kappa 𝜅 value and overall accuracy. It was expected that higher 𝑇𝑢𝑝𝑑 would obtain higher accuracy 

results because of the slow cooling temperature. In the multispectral image, the lowest 𝑇0 value leads to the 

highest kappa 𝜅 and overall accuracy. But, the increasing of 𝑇0 value does not always leads to a lower 

accuracy of classification result. The highest 𝑇0 leads to the most unstable result. The statistical analysis of 

the shows that the each of the parameter 𝑇𝑢𝑝𝑑 value leads to a similar classification result. The stability of 

the result also similar, but the lowest 𝑇𝑢𝑝𝑑 value leads to the most unstable result. In the pan-sharpened 

image, the lowest 𝑇0 value leads to the lowest accuracy and the most stable result. Both parameters 

contribute to the computational time. Higher 𝑇0 and 𝑇𝑢𝑝𝑑 should lead to a more expensive computational 

time.  

In general, the results of λ𝑠𝑒𝑔 parameter estimation shows similar behaviour in both the multispectral and 

pan-sharpened image. In the multispectral image, the quality was gradually decreased when the λ𝑠𝑒𝑔 is 

increased. The difference between the result obtain from λ𝑠𝑒𝑔=0.1 and  λ𝑠𝑒𝑔=10 is 4.22%. This difference 

is not too significant. The difference between the higher and the lowest quality percentage in the pan-

sharpened image is also very narrow, which is 4.79%. Meanwhile, the results of λ𝑠𝑒𝑔 optimum value 

estimation shows a significant different visually. The result obtained by employing  λ𝑠𝑒𝑔=0.1 still allow some 

small segments to be appeared. On the other hand,  λ𝑠𝑒𝑔=10 does not allow small segments in the result. 

The result is very smooth. Consequently, some classes are eliminated because their segments are too small. 
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It also make the tree crown area became larger. Therefore, a higher  λ𝑠𝑒𝑔 leads to a lower quality and 𝜅 

value. 

6.2. Pixel-based and object-based results comparison 

In this research, three different approaches are applied to two images at two different spatial resolution, 

which is the 0.5 m and 2 m resolution. Although the focus is identifying oil palm tree crown, the overall 

image classification is also explored. Because of the difference in the spatial resolution, the results of 2 m 

multispectral and 0.5 m pan-sharpened image is not comparable. But, the application of object-based image 

classification for the 2 m multispectral image raises the potential of identifying tree crown. 

Figure 6.1 presents the comparison of each method applied in this research. The result of image classification 

using MLC method for 2 m multispectral image is not good enough to identify tree crown. In some areas 

tree crowns can be identified clearly. The tree crowns that can be identified are surrounded by background 

classes that have contrast colour compare to tree crown colour, such as bare soil and bright grass. Moreover. 

The small and medium size of tree crown is easier to be identified. Bigger tree crowns tend to merge with 

their surrounding background classes and other bigger trees. The background class and size of tree crowns 

are affecting the performance of MLC in identifying tree crown from 2 m multispectral image. The MRF-

based image classification for 2 m multispectral image shows similar behaviour to the MLC one. But, it 

reduces the salt and pepper effects on the result that can make the classified image smoother. This does not 

give an extremely positive impact on tree crown identification since there are only view isolated pixel inside 

tree crown area. The accuracy of the result by applying MRF is lower than MLC. The main issues of tree 

crown identification in this spatial resolution are difficulties in identifying very small tree crown and grass 

that identified as tree crown. These main issues are indicating the effect of the lack of spatial resolution and 

similarities in spectral value. This was expected beforehand as the spectral separability and feature space 

shown that tree crown and grass are close to each other. This was also proved by the confusion matrix in 

Table 5.11. Based on the object-based accuracy performance, the result of MLC and MRF cannot be 

separated. The overall quality performance is similar, although the MRF performed slightly better in 

delineating tree crown. The results show the difficulties in delineating tree crown located around class grass. 

Most of the cases, the grass also identified as class trees. Both methods experience the same problem. 

The identification of tree crown using MLC for 0.5 m pan-sharpened image is not satisfactory. But, from 

this spatial resolution, very small tree crown can be identified. Especially, those that surrounded by bare soil 

and bright grass. In this image, a considerable amount of shadows appeared around trees compared to the 

result from the lower spatial resolution. This classified image also suffered a high confusion between trees 

and grass. Some pixels inside trees class has identified as grass and shadow since their spectral value are closer 

to grass class and there are some shadows inside tree crown. These problems were predicted earlier by the 

class spectral separability, which shows that the separability of trees from shadow and grass are lower than the 

others. These isolated pixels inside tree crown can be reduced by employing MRF. The result of applying 

MRF was considerably higher than MLC since its smoothness and its higher kappa 𝜅 value. Based on the 

object-based accuracy assessment, the MLC performed better with respect to the overall quality 

performance. But, the MRF is better in delineating tree crown. Both methods suffer the same difficulties in 

distinguishing tree crown and grass. But, using the finer spatial resolution, the number of false positive can 

be significantly reduced.  

The application of λ𝑠𝑒𝑔 should make the hierarchical MRF result is smoother. But, in order to maintain the 

quality of the result, a low value of λ𝑠𝑒𝑔 was chosen in this research. Consequently, the object-based result 

is not extremely smooth. The results still show some small segments. But, these small segments helped the 
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result to obtain a higher quality. If the result is too smooth, then it will neglect the small segments, which 

might be the properly classified segments. The introduction of object-based approach applied for both 

images with optimum parameters leads to the highest quality. It increased the total area of the tree crown 

and decreased the false negative. The object-based MRF still difficult to penalize the wrong size value of 

each class. The tree class still merged into a large size and some small segments of unpaved road still appeared.  

 

 
Figure 6.1: Comparison of classification results using: MLC, pixel-based MRF and object-based MRF of multispectral and pan-sharpened 

image. 
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7. CONCLUSIONS AND RECOMMENDATIONS 

7.1. Conclusions 

 

 How to design MRF probability models? 

The MRF probability models were designed by examining the distribution of each pixel level and 

object level characteristics.  

 

 How pixel level and object level can be combined using MRF? 

The pixel level and object level were combined by applying hierarchical MRF at two different levels. 

 

 How combinations of smoothness parameter for pixel and segment affect the accuracy? 

A higher value of smoothness parameter at pixel level tend to give a higher accuracy. On the other 

hand a higher value of smoothness parameter at object level leads to a lower accuracy. 

 

 How the most appropriate parameters for MRF should be determined? 

The most appropriate parameters for MRF were determined by doing trial and error experiments.  

 

 How the assessment of the results should be performed? 

The assessment was performed in both pixel and object level. The pixel level assessed by using 

error matrix to calculate the 𝜅 accuracy and overall accuracy. At object level, the results were 

assessed by identifying true positive status on tree crown. 

 

 Which size of oil palm tree crowns can be successfully identified? 

The tree crown with size more than 4 m2 is easier to be identified. The tree crown smaller than 4 

m2 might be identified if it is located around bare soil. 

 

7.2. Recommendations 

 Incorporate the satellite imagery data with visual interpretation of people who have experience and 

expertise in analysing oil palm plantation. The visual interpretation may improve the quality of 

training dataset. This may become more important since ground truth dataset is not available.  

 This research does not introduces ground truth data, because the scope of work, limited time and 

the old acquired imagery. It is required to boost the quality in making the training area and assessing 

the quality of the result. It is recommended to integrate ground truth data in analysing the result of 

the applied method. This may increase the quality the research. 

 The method developed in this research has become one of methods to handle high spectral 

variation image. It is recommended to apply this method to a more heterogeneous landcover. The 

urban area would be an appropriate area to explore further this method because it contains more 

landcover types and smaller objects. 

 The computational time of the developed method is still too expensive for the application in oil 

palm plantation area. Oil palm plantations usually have a large size of area. Applying the object-
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based image classification in thousands of square kilometres of VHR imagery is a heavy work. So, 

a more efficient method is necessary. 

 This research shows that the spatial resolution of 2 m satellite imagery is not sufficient to detect 

small oil palm trees. Another alternatives are needed to overcome the limitation of image pan-

sharpening method. Employing scale factor to obtain finer spatial resolution result in super-

resolution mapping would be an interesting choice. It could be applied in hierarchical MRF 

developed in this research.  
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