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ABSTRACT 

Timely and accurate information on crop production is important for planning food-related decisions at 

both government and household level. However, acquiring such data is often a major challenge in most 

countries in Sub-Saharan Africa. The crop fields in these countries are highly fragmented with fuzzy 

boundaries and a complex cropping system. The use of coarse spatial resolution imagery (> 250 meters) in 

such landscape is often limited by mixed pixel problem and mismatch between field boundaries and the 

image pixel size. However, rapid technological development has seen improvement of remote sensing 

technologies whereby acquisition of very fine spatial resolution imagery (< 1 meter) with improved revisit 

time of less than a day, has been made possible at affordable cost. Such imagery include Unmanned Aerial 

Vehicle (UAV) and satellite data such as WorldView (WV) provided by Digital Globe (DG). These high 

quality remote sensing products have wide range of applications in many fields including agriculture. 

 

This study was a proof-of concept to determine applicability of fine spatial resolution data in improving 

maize yield estimation at field level. The study was conducted in Kilosa District, Tanzania. The main aim of 

this study was to estimating maize yield at field-level using fine spatial resolution UAV, WorldView -2 and 

WorldView-3 images. Vegetation index metrics (VI) were derived from these fine spatial resolution images 

and together with field-level interview yield data, an empirical linear regression models were developed. 

Availability of same date UAV and WV images provided an opportunity to test performance of VI derived 

index by integrating the two datasets. Bootstrap statistical technique was applied in model validation. The 

optimal model with high adjusted coefficient of determination (adjR2), low Root Mean Square Error (RMSE) 

and low standard error (SE) was used to derive yield variability map. The resulting yield variability map was 

correlated with field collected maize yield data using Spearman’s rank correlation in order determine the 

relationship between spatial yield variability map and the actual yield status. 

 

Results indicate that the Enhanced Vegetation Index (EVI) outperformed the popularly used Normalized 

Difference Vegetation index. EVI explained 63% of maize yield variability. The optimal period was found 

to be at fruit development stage of maize growth which occurs 60-75 days after sowing. The single-date VI 

showed to be the best predictor, followed by cumulative VI (cumVI) while maximum VI (maxVI) explained 

the least variability. In terms of the sensor performance, WorldView outperformed UAV as it had 

consistently large R2 with maize yield. The correlation between same date UAV and WV showed a good 

correlation of R2=0.51 using randomly selected averaged NDVI values. However, result of new WV NDVI 

derived from UAV using the linear equation computed from same data UAV and WV gave an R2 of 0.44 

indicating good potential of fusing VI data acquired from UAV and WV data. The yield variability within 

the fields had a coefficient of variation of 33%. In terms of the effect of field management factors on yield, 

weeding and method of tilling showed to have a significant impact on yield. Although high correlation 

coefficient was realized with the single-date imagery, most of the other metrics apart from cumulative 

vegetation index showed a weak relationship with yield. Furthermore, a scatter plot derived from the maize 

yield model showed an unusual trend where for high yield, it corresponded to low EVI. As a result of this, 

it was noted that the study did not give convincing results as to the performance of fine spatial resolution 

in estimating yield as it was limited by high differences in field management practices. 
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1. INTRODUCTION 

1.1. Introduction 

Agriculture plays a significant role in achieving the World Bank Group agenda of ending poverty and hunger 

by 2030 (Townsend, 2015). Globally, 805 million people are estimated to be chronically undernourished, of 

which 23.8 % live in sub-Saharan Africa (FAO et al., 2014). To improve this situation, the World Bank 

(2008) highlights the importance of agriculture and its related industries as a principal option for spurring 

growth, overcoming poverty and enhancing food security in the Sub-Saharan Africa (SSA) region. In this 

predominantly agriculture-based economy, small-scale farmers account for 75 % of the region’s agricultural 

production and 75% of employment (Salami et al., 2010) 

 

In East Africa, maize (Zea mays) is an important cereal food crop planted annually on approximately 7.3 

million hectares corresponding to 21% of the arable area and 41% of the land under cereals (Erenstein et 

al., 2011). It is typically rain-fed and is cultivated across a range of latitudes, altitudes, moisture regimes, 

slopes and soil types (Livingston et al., 2011; Smale et al., 2003). Maize is primarily produced for home 

consumption and for local markets by small-scale family farms (Erenstein et al., 2011). In Kenya and 

Tanzania, maize consumption represents on average 40% of the daily dietary calorie requirement (Groote 

et al., 2002).  

 

Maize yield in the region shows a high spatial and temporal variability. Large-scale spatial variability can be 

explained by differences in rainfall and soil characteristics (HarvestChoice, 2010; Marques da Silva et al., 

2008; Smale et al., 2011; Thornton et al., 2009; Yengoh, 2012) while small-scale variability is importantly 

influenced by farm management decisions like sowing dates, weeding, pests, diseases, fertilizer application 

and method of tilling applied. Furthermore, small-scale variability is attributed to biophysical factors such 

as rainfall, soil properties, elevation and floods (Nathan, 2014; Sacks et al., 2010; Vyas et al., 2013). An 

important determinant of temporal variability of maize yields is the interannual variability of rainfall and 

temperature, resulting in frequent droughts in the region (Funk et al., 2009; Magehema et al., 2014; Porter 

et al., 2005). This large yield variability underlines the need to assess and monitor yields within the growing 

season. 

 

Maize yield can be obtained by dividing maize production by the cultivated (or harvested) area. Data on 

maize production and area cultivated are often derived from area frame sampling and statistical farm register 

(Everaers, 2010). Area frame sampling is the breakdown of a land area into relatively homogenous sampling 

units commonly referred to as primary sampling units (PSU) (Willett, 1981). Aerial photographs and remote 

sensing images such as Landsat has been used in dividing these areas upon which farmers interviews are 

carried out. Although area frame sampling is a well-developed and efficient technique for collecting 

agricultural data, it is limited by high cost and tedious implementation process. The second approach is the 

use statistical farm registers. These refer to up-to-date agricultural registers kept by the government 

ministries at a different administrative level which includes household demographics, market information, 

business and tax registers. Upon compiling all these sources of data, detailed agricultural statistics at the 

household level can be obtained at relatively low cost. However, one major challenge with farm registers is 

linking  registers with different variables can be tedious and also there is the issue of accuracy of information 

provided in these records (Turtoi et al., 2012; Väisänen, 2009). 
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Remote Sensing data has a wide range of applications in the field of agriculture. Some of these applications 

include maize yield estimation (Claverie et al., 2012; Lewis et al., 1998; Nathan, 2014; Prasad et al., 2006), 

crop mapping (Jain et al., 2013; Khan et al., 2010), source input data for crop models (Reynolds et al., 2000; 

Vintrou et al., 2014) and as an indirect indicator of crop yields (Van Wart et al., 2013). Indirect indicators 

are usually obtained by evaluating the inter-seasonal variability of vegetation indices derived from coarse-

resolution (>100m) optical sensors, and empirically relating these to measured crop yield (Funk et al., 2009; 

Rembold et al., 2013; Wu et al., 2013). This is based on the premise that crop yield strongly relates to the 

green biomass which develops over the season and which is often estimated from spectral properties derived 

from satellite observations (Meroni et al., 2013).Examples of such indices include Normalized Difference 

Vegetation Index (NDVI) which is the widely used vegetation index, but many other indices exist that have 

been used to better account for atmospheric and soil background effects (Henrich et al., 2012; Qi et al., 

1994). The availability of dense time series remote sensing data from coarse resolution images has been 

exploited to derive time-related vegetation index metrics (VI) data and applied to crop yield estimation 

(Bolton et al., 2013; Wang et al., 2014). These time-related VI metrics commonly referred to as phenology 

metrics describes the timing of vegetation events using data derived from synoptic sensors (Brown et al., 

2008, 2010; de Beurs et al., 2005).  

 

Although there are a number of vegetation metrics that has been applied in vegetation studies, this study 

will focus on three specific VI metrics, single-date vegetation index, cumulative variable vegetation index 

(cumVI) and season’s maximum vegetation index (MaxVI). A key rationale for using coarse-resolution data 

in most yield assessment studies is their short (daily) revisit time with global coverage, which permits to 

precisely follow vegetation development even in the case of frequent overcast conditions and to reduce 

atmospheric effects (Atzberger, 2013; Rembold et al., 2013). 

 

Although coarse-resolution time series data provide relevant input for assessing crop production, a number 

of limitations exist. Coarse spatial resolution measurements of spectral reflectance contain mixed 

information from several surface types hence complicating signal interpretation. Moreover, with coarse 

resolution data, it is difficult to classify specific crop types given most crop fields in SSA are small and 

regularly multi-cropped (Lobell, 2013; Nathan, 2014; Rembold et al., 2013). Besides the small agricultural 

parcels giving rise to mixed spectra, crop condition and yields can also vary widely between fields making it 

difficult to directly relate a spectral or temporal signature to a specific crop occurrence or condition 

(Hoefsloot et al., 2012). In order to avoid mixed pixels problem, Claverie et al. (2012) suggested the use of 

fine spatial resolution data (<10 meters). However, finer spatial resolution mostly implies a lower 

observation frequency and a high cost. 

 

The recent development of sensors collecting fine spatial resolution data at shorter temporal intervals is 

opening a new frontier in agricultural monitoring. The mixed pixel limitation from coarse spatial resolution 

remote sensing data is being progressively reduced by the availability of fine spatial and temporal resolution 

sensors (Johnson et al., 2012; Rembold et al., 2013). While one avenue could be to combine information 

from fine and coarse resolution sensors using image fusion techniques (Gevaert et al., 2014; Stenger et al., 

2009; Laigang Wang et al., 2014; Zurita-Milla et al., 2011), new fine-resolution satellites are being launched 

that directly provide shorter revisit capabilities. For example, the Sentinel-2A satellite launched on 23 June 

2015 is capable of monitoring variability in land surface conditions due to its wide swath width, 13 multi-

spectral bands in visible, near infrared and shortwave spectrum coupled with a high revisit time of 5 days 

once Sentinel-2B is in place 2016 (European Space Agency, 2015).  

 

 



ASSESSING FIELD-LEVEL MAIZE YIELD VARIABILITY IN TANZANIA USING MULTI-TEMPORAL VERY HIGH RESOLUTION IMAGERY 

9 

In parallel to satellite developments, the use of airborne sensors such as those onboard Unmanned Aerial 

Vehicles (UAV) is increasingly being adopted for crop monitoring and yield assessment (Geipel et al., 2014; 

Lin et al., 2011; Palermo, 2015). UAV sensors provide very fine resolution data of up to 1 cm depending on 

the flight height, camera type, and sensor resolution with flexible revisit time as determined by the user 

(SenseFly Ltd., 2015). A good example is a study by Geipel et al., (2014)  where they combined crop height 

model with fine resolution VI derived from UAV RGB bands and which was able to explain 74% of maize 

yield variability. Fine spatial resolution imagery is important for establishing better maize VI-yield  

relationship at early stages of crop development, which gets less important as the crop grows to a point of 

becoming disadvantageous (Geipel et al., 2014). This is attributed to high soil reflectance during early growth 

stages which reduce progressively as the crop grows. The increasing use of fine spatial and temporal sensors 

is driven by the need for accurate field level monitoring and the growing need for micro-level planning (de 

By et al., 2015; Singh et al., 2002). 

 

Despite the promise of satellite and UAV data of fine spatial and temporal resolution for crop yield 

estimation, until the present, only a few studies have been carried out that reliably estimate yields. Particularly 

for smallholders systems in East Africa, it is envisaged that important advances could be made in accurately 

estimating maize yield at field-scale from very fine spatial resolution and multi-spectral imagery. An initial 

approach to achieve this is to evaluate if VI-maize yield empirical relationships can accurately describe the 

link between VI and field-level yield data at the different moment of the season. If feasible, such 

relationships could potentially be extrapolated to obtain yield estimates for larger areas. The study, therefore, 

aimed at establishing an optimal vegetation index (VI) and best period for estimating field-level maize yield 

using fine resolution UAV and WorldView imagery and develop maize yield spatial variability map which 

would be explained based on filed-level management information collected during the field work. This study 

is carried out in the context of Spurring Transformation in Agriculture through use of Remote Sensing 

(STARS), a project which is led by Faculty of ITC, University of Twente, in partnership with five other 

leading research organizations, private companies, local research institutes and government ministries in 

East Africa, West Africa and South East Asia. 

 

The main research objective of this MSc thesis is to study maize yield variability from fine spatial resolution, 

multi-temporal Unmanned Aerial Vehicle (UAV) and WorldView (WV) imagery and explain this variability 

from differences in field management for two 1 x 1 km areas in Kilosa district, Tanzania.  

 

To achieve this, the following specific objectives are defined:  

1. To establish empirical relationships between field-level interview maize yield data and UAV/WV 

derived vegetation indices (derived from single-date and multi-temporal images) 

2. To apply the empirical relationship that explains most of the yield variability to the two 1x1 km 

areas to visualize spatial differences in maize yield; 

3. To determine in-field spatial yield variability using field interview data and explain the variability 

based on differences in field management practices; 

In order to achieve these objectives, the study was guided by the following research questions:- 

a) Which vegetation index metrics and timing explain most of the yield variability as derived from 

single-date, cumulative VI and maximum VI metrics? 

b) What is the maize growing stage for the optimal maize yield assessment using VI metrics and 

field interview data? 

c) To what extent does estimated maize yield vary within and between fields? 

d) Can we discern maize fields that clearly show a high, average low maize yield variability 

e) To determine in-field spatial yield variability using field interview data and explain effect of 

management factors on yield. 
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2. STUDY AREA AND DATA 

2.1. Study Area 

The study was carried out in two 1 km by 1 km sites in Gongoni and Mbuyuni locations in Kilosa District, 

Morogoro Region, Tanzania (37.122 E; 6.652 S and 37.142 E and 6.672 S) as shown in Figure 1. The 

elevation ranges between 350 and 500 meters above sea level with a sloping rising of less than 10 percent.  

 
Figure 1: The location of the 1 km by 1 km field study sites: (a) Gongoni site imaged by a true-colour UAV of 19 
April 2015; and (b) Mbuyuni site imaged by a false-colour UAV image of 19 April 2015. The black lines indicate 
some of the sampled maize fields. 

 

a 

b 
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Kilosa District has an average annual rainfall of 976mm per year divided by two rainfall seasons. The main 

rainfall season starts in February to June with May being the wettest month. The district experiences an 

average eight months of rainfall (October-May), with the highest levels between February and March. The 

rainfall distribution is bimodal in good years, with short rains (October-January) followed by long rains (mid-

February-May). However, the year 2015 and the previous two years seem to show a different trend with 

rainfall pattern indicating a single rainfall season based on agro-climatic condition monitor developed by 

Group on Earth Observations Global Agricultural Monitoring (GEOGLAM). The rainfall data is based on 

0.05 degree resolution 10-daily rainfall regional average estimates from Climate Hazards Group Infrared 

Precipitation with Station data (CHIRPS) and NDVI composites from MODIS data (Moderate Resolution 

Imaging Spectro-radiometer); which is an e-MODIS product of the United States Geological Survey (USGS) 

acquired by the Terra satellite and consist of 8-day maximum value NDVI composites at 250 m resolution. 

The mean annual temperature is 24.6 °C with a daily mean maximum temperature of 26.9°C during the 

rainfall season in the month of May and lowest of 21.8°C during the dry months of July and August. 

 

Figure 2: Kilosa District 10-day rainfall estimates and 8-day NDVI time series composites over the period 

2013-2015 and mean NDVI for the year 2000-2015. 

 

The soil in the area has varying proportions of sand, silt and clay as presented on the soil maps in Figure 3. 

The map was derived from International Soil Reference and Information Centre (ISRIC) Soil Information 

database. The soil data comprises 250 m global soil database with different characteristics modeled from 

satellite-derived data and validated with more than 3000 ground sample points (ISRIC - World Soil 

Information, 2015). The dominant soil texture in Gongoni is sandy clay while clay is dominant in Mbuyuni 

(described using online soil texture pyramid developed by United States Department of Agriculture (USDA). 

The difference in soil texture was evident within and between fields with varying color differences; sandy 

soils having dominant bright colors while clay soil having dark in color (Figure 4). 

 

 

 

 

http://pekko.geog.umd.edu/glam/tanzania/zoom2.php
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Figure 3: Spatial variation of percentage of soil texture in Gongoni (a) and Mbuyuni (b).The grey lines indicate the 
sampled maize fields. 

 
Figure 4: USDA Soil texture triangle showing proportions of - (a) Sandy clay in Gongoni indicated by red pointer 

and (b) Clay soil in Mbuyuni marked by purple pointer 

a a a 

b b b 
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More than 80 percent of the Kilosa population depends mainly on agriculture as a source of food and 

income. A variety of crops is grown on the two study sites which include maize, rice, millet, cassava, beans, 

and cowpeas. Apart from food crops, main cash crops include cashew nuts, coconuts, bananas and sugar 

cane. Small scale farming where the average farmland is less than one hectare represents 90 per cent of 

agriculture with large scale farming representing the remaining 10 percent (Kajembe et al., 2013). The small-

scale farm holders are mostly subsistence farmers who produce mainly for domestic use, selling only their 

surplus to the nearby local markets. There is limited usage of inputs such as inorganic fertilizer, organic 

fertilizer or improved seeds with almost 95 per cent using hand hoes for cultivation.  

 

The land ownership in Gongoni is leasehold as it was initially state-owned sisal plantation until 2000 when 

it was leased to the farmers, most who have cultivated for less than five years. In Mbuyuni, most land is 

family owned mainly inherited from grandparents with farming having been practiced in these fields since 

1960’s. The planting season coincides with the start of rainfall season in late February and early March. The 

farming system includes intercropping, mixed and mono-cropping. In most cases, the planting dates for the 

main crop and the intercrop has a span of two to three weeks which is different for mixed cropping system 

in which all the crops are planted at the same time. Common crops mixed with maize include pigeon peas, 

sesame, and cowpeas while intercrops include groundnuts and sunflower. Figure 5 indicates maize 

development stages and different transition period as described by (Meier, 2001; Ransom, 2013). The blue 

and red arrows indicate period in which WV and UAV imagery were acquired respectively.  

 

 
Figure 5: Maize development stages with corresponding remotely sensed images and transition dates from one stage 
to another  
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2.2. Unmanned Aerial Vehicle (UAV) Data 

Three fine resolution multi-spectral UAV and four WorldView-2 and -3 images were used in this study. The 

images were acquired on different dates during the maize growing season in the year 2015 as indicated in 

Table 1. 

 
Table 1: Aerial and satellite imagery acquisition periods 

Source 14 Feb 15  19 April 15 13 May 15 13 Jun 15 26 Jun 15 22 Jul 15 

Sensor WV- 3   WV-2 WV-3 WV-3 

UAV RGB  UAV-Gongoni UAV-Mbuyuni UAV-Gongoni   

UAV NIR  UAV-Mbuyuni UAV-Gongoni UAV-Gongoni   

   UAV-Mbuyuni UAV-Mbuyuni   

 

The UAV images were acquired using two cameras, Red-Green-Blue (RGB) and Red-Green-Near infrared 

(NIR) which were flown twice, each time with a different camera as shown in Figure 6. Both cameras had 

different spectral ranges as indicated in Table 2. The UAV-NIR camera was a modification of the original 

RGB camera using a band-pass filter to allow it detect radiation in NIR band (Lebourgeois et al., 2008). 

During the modification, the blue band was replaced with NIR band. The UAV carried on board a Canon 

S100NIR NIR camera with 12 megapixels controlled by the drone’s autopilot. 
` 

Figure 6: A fixed wing eBee UAV with different types of camera (Source: SenseFly, 2015) 

The RGB and NIR wavelength response function for each the RGB and NIR sensors is indicated Figure 7 
 

Figure 7: S100 RGB and NIR camera wavelength response function (Source: (Arellano, 2015) 

https://www.sensefly.com/drones/ebee.html
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Table 2: WV and UAV spectral band wavelengths  

Satellite Aerial 

Sensor Band 
Wavelength 
range (nm) 

Spatial 
reso.(m) Image Band 

Wavelength range 
(nm) 

Spatial 
reso. (m) 

WV-2 
B2: Blue 450-510 1.6 

eBee  
RGB B1:Red 575-725nm 0.05 

B3: Green 510-580 1.6  B2:Green 400-640nm 0.05 

B5: Red 630-690 1.6  B3:Blue 390-510nm 0.05 

B6: Red Edge 705-745 1.6     

B7: NIR1 770-895 1.6     

B8: NIR2 860-1040 1.6     
WV-3 B2: Blue 450-510 1.2 eBee  

NIR 
B1:Red 575-675nm 0.05 

B3: Green 510-580 1.2 B2:Green 450-650nm 0.05 

B5: Red 630-690 1.2 B3:NIR 800-900nm 0.05 

B6: Red Edge 705-745 1.2    

B7: NIR1 770-895 1.2    

B8: NIR2 860-1040 1.2    

 

 

The UAV aerial imagery with a ground pixel resolution of 0.05 m per pixel at 114 meters above the ground 

surface was acquired using eBee Unmanned Aerial Vehicle (UAV), manufactured by Sensefly Ltd 

(Cheseaux-Lausanne, Switzerland). Field campaigns, flight planning, and actual imagery acquisition was 

carried by University of Maryland (UMD), USA in collaboration with Sokoine University of Agriculture 

(SUA) in Morogoro, Tanzania under the umbrella of STARS project. UAV imagery acquisition within the 

two 1x1 km study site in Kilosa (Figure 1) was carried out once every month beginning from April to June, 

which was the main maize farming season. Despite the initial idea of flying twice per month, it was decided 

to fly once a month due to field logistic challenges. During data pre-processing, there was a failure in 

generating RGB composites for Mbuyuni and NIR for Gongoni acquired on 19 March 2015. UAV image 

pre-processing was carried out by STARS project partners at the University of Maryland (UMD). The eBee 

has an inbuilt GPS unit that collects its position and an inertial navigation system that collects the camera 

orientation and angular parameters that are both necessary for proper image projection (Sharma et al., 2014). 

Orthorecfication was implemented automatically using eBee’s Postflight Terra 3D software package. 

Radiometric calibration was carried out to convert digital numbers (DN) to the top of atmosphere (TOA) 

reflectance values. In order to reduce the effect of sun angle, data collection was scheduled between 10 am 

and 12 noon before the overhead sun and in a cloud-free atmosphere as suggested by Honkavaara et al., 

(2013). In addition, the atmospheric correction was not carried out as there was a minimal atmospheric 

effect due to low flying height (110 meter above the ground surface).  

2.3.  WorldView Data 

WorldView-2 and WorldView-3 imagery were acquired by the STARS project from Digital Globe Company, 

an American commercial vendor of space imagery and geospatial content based in Longmont, Colorado, 

United States. The WorldView-2 and World View-3 imagery spatial resolution was 1.6 meters and 1.2 meters 

respectively. Total of 6 images were acquired between February 2015 and July 2015 which is the main maize 

growing period. However, two images for May and July had clouds and were not used in the study. Although 
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most farmers planted in March, there were few others who planted in February and, therefore, the 14 

February image qualified to be used. 

 

 The sequence of correcting WV images was first radiometric calibration which involved the conversion of 

digital numbers (DN) to the top of atmosphere reflectance using the physical gain parameters contained in 

the satellite metadata file. Thereafter, the atmospheric correction was carried out using Second Simulation 

of a Satellite Signal in a the Solar Spectrum Vector (6s) radiative transfer model specifically adjusted for the 

Digital Globe data which includes WV imagery (Vermote et al., 2006). The algorithm uses external 

information derived from MODIS for aerosol and atmospheric condition estimation on the day of image 

acquisition to correct the effect of aerosol and a gaseous particle that might have had an effect on the 

reflectance received by the sensors.  

 

The last step was orthorectification process which was applied using satellite-derived geometric metadata. 

The pre-processing procedure of WV images was carried out by STARS project team here in ITC. Although 

the geometric correction was carried out with high precision using automated workflow for both datasets, 

there was location shift between UAV and WV which was manually corrected by editing WV image header 

file so as to shift X and Y pixel location to a point where features such as roads and buildings showed an 

almost a perfect merge with UAV imagery. The location shift of the WV image pixels shifted results are 

summarized in Table 3 and Figure 8 shows the flow chart describing the pre-processing steps used on WV 

data. 

 
Table 3: WorldView geometric shift to fit UAV imagery 

Satellite_ 

Image ID 

Date Spatial 

Resolution (m) 

X shift 

(pixels) 

Y shift 

(pixels) 

54330600010 14-02-15 1.2 148 -54 

54460880010 13-06-15 1.6 42 48 

54487783010 26-06-15 1.2 -139.5 13 

54551817010 22-07-15 1.6 48 -54 

 

 

 
Figure 8: Flowchart describing the WV and UAV pre-processing steps 
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2.4. Integration of same date WorldView and UAV imagery 

The availability of UAV and WV of the same date (13 June 2015) provided an opportunity for creating WV 

VI of 13 May 2015 using a regression model to establish the relationship between reflectance of UAV and 

WV imagery. Integration used in this context meant using relationship established from two remote sensing 

data acquired by different sensors to generate a new image of a different date if imagery of one sensor is 

available. This was carried out to determine if possible to integrate aerial and satellite data so as to fill data 

availability gap due to limitation such as of cloud on WV images and in case there is a failure in acquiring 

UAV image, then an alternative approach is available. First a test was carried out by correlating the average 

field-level NDVI between the two datasets which showed a good relationship with R2 =0.77. The result 

indicated that the two images responded almost similarly to vegetation reflectance and, therefore, an attempt 

was made to integrate the images using simple linear regression model. 

 

The first step was to compute the NDVI of the two images (WV and UAV) at their original spatial 

resolutions. The second step was to resample both the WV and UAV to 8 m spatial resolution using nearest 

neighbourhood technique. The reason for resampling to a coarser resolution was to ensure a complete 

overlap of the pixels so that a linear relationship could be established between NDVI reflectance’s of the 

two sensors. The regression equation would help in determining the reflectance bias within the two sensors 

which would then be applied to an NDVI image of different date (either WV or UAV). The computation 

of VI was to harmonize the differences in band reflectance from the two images. To compute regression 

equation, pixel values were randomly selected from 780 points and coefficient of determination computed. 

A square buffer of 0.8 meters was generated and mean NDVI values computed using zonal statistics for 

each of the random points. The average NDVI within each of the 780 randomly selected points were 

exported and coefficient of determination computed which gave an R2 =0.51 (n=780). The reason field-

averaged NDVI was not used was to minimize pixel contamination and therefore choice of small area was 

preferred. It was therefore assumed that there was minimal heterogeneity within the 0.8m square buffer 

 

Y=0.6577x + 0.1343                                                                                                                                                  (1)   

Where Y is the VI values of the new WV generated; x is the UAV pixel values acquired on 13 May 2015 and 

0.134 is the reflectance bias error. The regression equation was applied to the UAV imagery of 13 May 2015, 

taking its pixels values as the independent variable and WV as the dependent variable so as to compute a 

WorldView NDVI map of 13 May 2015 at 8 meter spatial resolution. 

Figure 9: Flow chart showing the steps taken when computing the integrated imagery NDVI from UAV 
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Figure 10: Scatter plot of field level NDVI between same data UAV and WV imagery 

 

Figure 11: Equation applied to derived new WV NDVI imaged from same date UAV and WV NDVI VI imagery 

2.5. Field-level interview data  

 

The purpose of the fieldwork was to collect data on maize production, harvested area, and management 

activities carried out at field-level during the maize growing period between February and July 2015. The 

field work was conducted from 28th September and ended on 16th October 2015. The farmer interview was 

carried at the location where maize was grown for two main reasons, first for the farmer to show the extent 

of his field thus ensure accurate field delineation and secondly to collect field-based location data such as 

the observed difference in yield within the field. Total of 54 farmers were selected using a purposive random 

sampling approach in which twenty-eight (28) farmers drawn from Gongoni and twenty-six (26) from 

Mbuyuni.         

y = 0.6577x + 0.1343
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Purposive and random selection of the interviewed farmers was carried out based on whether their fields 

were part of the farm management units (FMU) monitored by the STARS project team during the entire 

maize growing season, secondly the estimated maize production as perceived by the farmers on a scale of 

high-average-low production. The reason for asking the farmer to identify high-average-low production 

fields was to capture a large range of occurring yield levels which provide representativeness of the un-

sampled fields and help in explaining maize yield difference within and between fields. To further categorize 

the fields in terms of high-medium-low production range, visual check on the UAV image acquired on 15th 

May 2015 gave an idea of the maize status since it was possible to identify farms with green, pale green and 

yellow colored section of the fields. Maize production was reported in a number of bags of maize cobs per 

field. To convert this to standard units, two bags of maize cobs contained in standard large sized gunny bags 

were converted to a one-100kg bag of shelled maize. The approximation was reached upon after wide 

consultation with farmers and local agriculture extension officer.  

 

Additionally, field management practices such as date of sowing, harvesting, weed and pesticide control, 

cropping system, land ownership, source of seeds, period of planting (whether before or after rains), tilling 

method applied, fertilizer/manure applied shocks experienced during the growing season, The farmer 

response during the interview was keyed into CSEntry Android programmed App downloaded from Google 

Play Store using android phone. Every new entry was captured as record and automatically assigned an ID 

which was entered separately in the table with unique ID and timestamp and the end of the day, it was 

downloaded and errors checked and corrected before the leaving for the field the next day. The advantage 

of CSEntry as compared to paper based interviewed is that it reduced data entry errors and time. In addition, 

it allowed collection of geo-tagged photos which facilitated post-field data analysis. 

 

The maize fields were digitized using the 13th May 2015 UAV-RGB imagery as the background layer.  The 

image was chosen given the difference between maize and non-maize fields was distinct. It is also important 

to note that the GPS points collected around the field with the guidance of the farmer were overlaid on the 

image so as to show the exact extent of the field section where maize was grown. To ensure the digitized 

fields merge with field production and management interview data collected using the tablet, the same 

unique identifier was used for each digitized field and the corresponding household interview data. 

Considering the effect of trees and vegetation along the field boundaries edges on the computation of field-

level image band mean, the original field polygon was shrunk by 70% of the original area using QGIS vector 

buffer by percentage plug-in to generate the boundaries shown in Figure 12. Maize field area was computed 

using field calculator in ArcGIS software. The maize field area was computed based on the original digitized 

boundary and not the 70% shrunk boundary.  

 

Figure 12: Digitized maize field boundaries(red) with 70% shrunk field boundaries (yellow); (b) photo taken 

during the field work showing the fuzzy boundary between two adjacent maize fields separated by a tree. 

a b 
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3. METHODS 

3.1. Spectral indices and metrics computation 

Spectral vegetation indices were calculated based on the UAV-RGB, UAV-NIR, and WV images. The mean 

spectral bands values were extracted for each of the UAV and WV image using zonal statistics in QGIS. 

The shapefile with unique field identifier, farmers name, field area, maize production and computed maize 

yield (ton/ha) were appended to the corresponding mean band value. This was performed separately for the 

WV and UAV imagery. The computed vegetation indices are listed in Table 4. The choice of the vegetation 

index was considered based on index that has been most applied in maize yield modelling, vegetation index 

that considers the use of RGB band section of electromagnetic spectrum and which computation algorithm 

applied includes either ratio or band difference. 

 
Table 4: Vegetation Indices evaluated in the study 

 

Vegetation Index Equation Author 

Normalized difference 

vegetation index 

NDVI=(NIR−R )/(NIR+ R) (Rouse et al., 1974) 

Modified soil adjusted 

vegetation index 

MSAVI=0.5{2*NIR+1−√[(2*NIR+1)2−8(NIR−R)]} (Qi et al., 1994) 

Enhanced vegetation 

index 

EVI=2.5(NIR − R)/(NIR + 6*R − 7.5*B + 1) (Huete et al., 2002) 

Visible atmospherically 

resistant index 

VARI=(G−R)/(G+ R−B) (Gitelson et al., 2002) 

Difference Vegetation 

Index 

DVI=NIR-R (Tucker, C. 1979) 

Transformed 

chlorophyll absorption 

reflectance index 

TCARI=3[(Redge−R)− 0.2(Redge−G)(Redge/R)] (Haboudane et al., 

2002) 

Excess Green Index ExG=2*G-R-B (Woebbecke et al., 

1995) 

Green Difference 

Vegetation Index 

GDVI=NIR-G  

Green Normalized 

Difference 

Vegetation Index 

GNDVI=(NIR-G)/NIR+G (Gitelson et al., 1996) 

Ratio vegetation index 

(also called simple 

ratio) 

RVI=NIR/R (Jordan C.F., 1969) 

Green leaf index GLI=(2*G − R − B)/(2·G + R + B) (Louhaichi et al. 2001) 

Green Atmospheric 

Resistant Index 

GARI=NIR-[G-1(B-R)]/NIR+[G-1(B-R)] where  (Gitelson et al., 1996) 

Green Ration 

Vegetation Index 

GRVI=NIR/G (Sripada, R. et al 2006) 
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3.2. Maize yields modeling approach 

To estimate maize yield from the WV and UAV images, linear relationships were established between field-

level maize yield data obtained from the interviews and field-averaged vegetation indices. A variety of 

vegetation indices were computed from each image and vegetation indices metrics were used to develop 

different models. Adjusted coefficient of determination, Root means Square Error, bias-corrected and 

accelerated confidence interval were the parameters used to assess model performance computing using the 

bootstrap resampling technique in R. The following section will explain in detail step by step process that 

was undertaken to derive maize yield relationships models and the criteria for selecting the optimal one.  

 

Statistical analysis was carried out on the field-level yield interview data to determine if the data were 

normally distributed. According to Shapiro-Wilk test (W=0.000, p=0.05) (Figure 13) the data were not 

normally distributed. This has an effect in computing statistical analysis such as regression and analysis of 

variance at it will lead to bias (the result being not be representative of the population). To overcome the 

normality issues with the data, a simple linear regression model was used to calibrate the model and 

bootstrap resampling technique applied for validating the model. Although there are many other available 

statistical validation techniques which have been applied to validate VI-yield relationships such as cross-

validation and Jack-knife method, bootstrap resampling was preferred due to non-normal nature of the data 

and the small sample (n=54) to allow application of either cross-validation or jack-knife method. 

Furthermore, bootstrap method is less biased and with less coefficient  of variation as compared to Jack-

knife and cross-validation methods (Efron et al., 1983). However it is limited in that it relies on a 

representative sample and has got high variability as a result of finite replication commonly referred to as 

Monte Carlo error (Koehler et al., 2009) 

 

Figure 13: Non-normal distributed maize yield data (a) bar graph fitted with normal line and (b) Q-Q plot which 
shows the deviation of the distribution within the normal fit line. 

The bootstrap, like cross-validation, is a data resampling approach (same data used several times) in order 

to derive mean, standard error of prediction and bias-corrected and accelerated (BCa) interval. It is a 

resampling method with replacement from the target population and this means the sample drawn may have 

some of the data represented several times. As a rule of thumb, the sample should be more than the square 

of the samples (in this case 54*54). 

 

𝑌𝑖𝑒𝑙𝑑𝑚𝑜𝑑𝑒𝑙 < −𝑙𝑚(𝑥~𝑦, 𝑑𝑎𝑡𝑎 = 𝑑)                                                                           (2) 

  

Where yield model (Equation 2) is described as a function of 𝑥; which is the dependent variable (in this case 

maize yield); 𝑦  the independent variable (VI metrics) and 𝑑 ; sampled field-level yield data The model 
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summary statistics  provides coefficient for the model (the constant and the slope) R2, Adjusted R2 and level 

of statistical significance (p-value). Once the model is derived, the next step is to validate the model using 

the bootstrap resampling method (Equation 3). 

 

𝑌𝑖𝑒𝑙𝑑𝑚𝑜𝑑𝑒𝑙. 𝑏𝑜𝑜𝑡 < −𝑙𝑚. 𝑏𝑜𝑜𝑡(𝑌𝑖𝑒𝑙𝑑𝑚𝑜𝑑𝑒𝑙, 𝑅 = 𝑁)                                              (3) 

 

In this case 𝑌𝑖𝑒𝑙𝑑𝑚𝑜𝑑𝑒𝑙. 𝑏𝑜𝑜𝑡 is a function of the relationship established in the liner equation (2) applied 

with resampling (𝑅) for a number of times 𝑁 (approximately 54 * 54~3600). The summary of the model 

provides the model coefficient and the validated R2 which in this study, the model with the highest validated 

R2 is selected as the optimal model. An example of the function as applied in R-software is presented in the 

screen dump in (Figure 14) for the maxGARI derived from WV imagery. 

 
Figure 14: Bootstrap scrip applied for validating VI-maize yield relationship 

Besides evaluating the relationship between single-date VI and maize yield, a number of VI temporal 

integration approaches were used that combine VI information from multiple dates. These included maxVI 

and cumVI. These vegetation index metrics are important in studying vegetation development, for example, 

looking at its phenological characteristics such as germination, leaf emergence and the start of senescence 

(Vrieling et al., 2011). In addition, single-date VI would be incompatible with yield estimation equation since 

the simple regression would neglect man-induced factors which have an eventual effect on yield increase 

(Huang et al., 2013). Furthermore, longer VI integration periods minimizes variability in yield prediction as 

results of variations in image acquisition dates, processing and difference in management factors such as 

early or late planting. The VI metrics around period of maximum VI have shown to be strongly correlated 

to maize yield (Mkhabela et al., 2011). In most of the crop yield studies, periods around flowering and fruit 
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development has shown to  have high yield-reflectance relationship (Laigang Wang et al., 2014). On the 

other hand, VI changes outside this period (i.e. early and late in the season) have shown to have a poor 

relationship with yield. Therefore, most studies have concluded that the period between mid-late growing 

periods is a good indicator of yield. Considering the optimal period has been established around the period 

of maximum VI, MaxVI metrics was tested to determine if season’s maximum VI can provide better yield 

estimate.  

 

 Therefore, the first approach was to extract mean band surface reflectance values using zonal statistics from 

the digitized field boundaries and exported to Microsoft excel for VI computation. The second step was to 

compute the various single-date VI described in Table 4. Studies have shown that the longer the VI 

integration, the minimal the variability in yield prediction (Laigang Wang et al., 2014). The maxVI was 

derived from the highest VI value derived from each single-date image which was assumed to be equal to 

the peak value of the seasonal VI. Data interpolation was not applied to single-date VI in order to determine 

the value at each single period of crop growth. Summary of computed metrics is presented in Table 5. 
 
Table 5: Vegetation index variables and the calculation formulas 

Vegetation index variables  Description of formulas 

VIw1 14th Feb. 2015 WV-VI index   

VIw2 13th May. 2015 WV-VI index   

VIw3 26th Jun. 2015 WV-VI index   

VIw4 22th Jul. 2015 WV-VI index   

cumVIw1-w2 VIw1 + VIw2 

cumVIw1-w3 VIw1 + VIw2 + VIw3 

cumVIw1-w4 VIw1 + VIw2 + VIw3 + VIw4 

cumVIw2-w3 VIw2 + VIw3 

cumVIw2-w4 VIw2 + VIw3 + VIw4 

cumVIw3-w4 VIw3 + VIw4 

maxVIw1-w4 Max(VIw1 ;VIw2 ;VIw3 ;VIw4) 

VIu1 19th Apr. 2015 UAV-VI index  (RGB & NIR) 

VIu2 13th May. 2015 UAV-VI index  (RGB & NIR) 

VIu3 13th Jun. 2015 UAV-VI index   (RGB & NIR) 

cumVIu1-u2 VIu1 + VIu2 

cumVIu1-u3 VIu1 + VIu2 + VIu3 

cumVIu2-u3 VIu2 + VIu3 

maxVIu1-u4 Max(VIu1; VIu2; VIu3) 

 

The maize yield estimation model were evaluated using the following indicators:- 

Root mean square error (RMSE): 

 

RMSE = √∑
(𝑌𝑖−𝑌′

𝑖)
2

𝑛

𝑛

𝑖=1

 

 

 

 

                                                                              4  

 

Where, n is the number of observation Y1 is the observed and Y’1 is the predicted value 
 
 
 
Adjusted coefficient of determination: 
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𝐴𝑑𝑗𝑅2 = 1 − (1 − 𝑅2) ⌈
𝑛 − 1

𝑛 − (𝑘 + 1)
⌉ 

 

                                                                      5 

Where 𝑛 = number of sample and 𝑘 the number of independent variable in the regression 

 

Apart from yield data collected, management factors such as tilling methods, cropping system source of 

seeds planted, the frequency of weeding, sowing date, the level of pest and diseases infestation were analyzed 

to determine if it had a significant difference in maize yield. One way analysis of variance (ANOVA) 

approach was used to determine the influence of management factors on maize yield. The prediction 

accuracy of the different modeling strategies was assessed by Root Mean Square Error (RMSE). The test 

under the null hypothesis (Ho) was that there was no significant differences (p> α > 0.05) between the 

different management factors applied at field-level on maize yield and an alternative hypothesis (H1) that 

the management factors applied by the farmers had significant differences on maize yield (p< α < 0.05). In 

the event the p < α (which indicates no difference between the groups) a further test between the 

combination of different groups was performed using Fisher Least Significance Difference (LSD) method 

using Equation 6 as described in (Williams et al., 2010). The rationale behind the LSD technique is that 

when the null hypothesis is true, the value of (t) statistics evaluating the difference between group’s a1 and 

a2 is equal to zero.  

|𝑀𝑎1+  𝑀𝑎2  | > 𝐿𝑆𝐷 = 𝑡𝑣𝛼√𝑀𝑆𝑠(𝐴)( 1

𝑆𝑎1
+ 1

𝑆𝑎2
)                                      6 

3.3. Field-level maize yields spatial variability  

The field level yield variability map was derived based on the optimal index which gave the highest adjusted 

correlation coefficient with actual maize yield with low RMSE and bias error. The selected model was 

applied to the best performing VI imagery to derive yield variability map. Since the VI derived from the 

different images was computed based on mean band values extracted, the optimal VI was computed so as 

to derive VI of each pixel and the model equation applied. The result was a yield map in which each pixel 

represent maize yield in that specific location in tons per hectare.   

 

A further test on the effect of yield management factors influences on maize yield. Using the sample points 

ranked in order of high-average-low yield was tested using Spearman's rank correlation. This was achieved 

by first creating a square buffer of 4 meters around the sample points to gather for GPS errors and geometric 

correction errors. Secondly zonal statistics was applied to extract yield values corresponding to the-the 

farmer reported yield rank. This was then exported to Microsoft Excel and non-parametric Spearman's rank 

correlation analysed to determine to what level of accuracy are the location the farmer reported high yield 

correspond to high VI values. The Figure 15 shows some of the in-field sampled data with a 4-meter buffer 

used to aggregate yield data within those pixels.  
 
Figure 15: Field-level reported maize yield rank locations with the 4-meter buffer 
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4. RESULTS  

4.1. Correlation coefficients between maize yield and VI metrices tested 

 

The coefficient of determination (R2) between maize yield and the VI variables derived from UAV-RGB, 

UAV-NIR, and WV-NIR VI metrics are summarized in Figure 16.The colored cells indicate R2 of maize 

yield-VI relationship at a given date. The point at which the same dates converge in both X and Y axis 

indicate R2 derived from a single-date VI imagery while different date’s combination indicates cumVI 

between the selected dates. The top section of the chart indicates the maximum VI-yield relatioship. 

 
Figure 16: Coefficient of determination of maize yield and temporal VI metrics derived from UAV-RGB and UAV-
NIR images. For the majority of the fields, the dates 19th April 2015 correspond to inflorescence stage of maize 
stage, 13th May 2015 flowering, and 13th June 2015 silking stage. The R2 was significant at the p < 0.001 except for 
the lowest R2 < 0.02. 
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Figure 17: Correlation coefficient of maize yield and WV-VI data and maize yield at different stages of maize 
development. In most fields 14th February 2015 correspond to sowing period; 13th June 2015-silking, 26th June 2015-
fruit development and 22nd July 2015 senescence period. The R2 has at p < 0.001 except for the lowest R2 < 0. 

The correlation coefficient between maize yield-VI metrics obtained from single-date images indicates a 

weak maize yield-VI relationship at the beginning of the maize growing period, whereas the relationship 

between for imagery during the silking stage is significant for both the UAV and WV vegetation indices. 

The largest correlation coefficient  derived from VI metrics and yield computed from UAV-RGB imagery 

was GRVI (R2=0.5) and VARI (R2=0.508) while for UAV-NIR was NDVI (R2=0.322) and MSAVI 

(R2=0.322) and with regard to WV-NIR, EVI (R2=0.613) and GARI (R2=0.603. The possible reason could 

be that around this period active photosynthetic activity is taking place in the maize and, therefore, any 

interference during this period such as insufficient water supply, nutrients, and disease or pest infestation 

would have adverse effects on maize yield. One notable observation is the weak relationship of maize yield-

VI in the month of February whereby there was little vegetation including weeds considering the fields had 

been  sowed. 

 

Furthermore, the maize-VI relationship seems to deteriorate after a period of maximum greenness which is 

estimated around 13 May 2015 given most maize fields had consistently high VI values around this period. 

This could be as a result of declining photosynthetic activity as a result of a reduction in chlorophyll content 

which NIR vegetation index is most sensitive to. Therefore, the reflectance reaching the sensors is reduced 

as the maize heads toward senescence period. However, the WV imagery acquired during the senescence 

(22 July 2015) period had a stronger relationship with yield as compared to imagery acquired in the month 

of February. This was expected considering there were fields with mixed crops such as pigeon peas, 
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sunflower and also fields planted late were still green. Although at inflorescence stage the maize crop is fully 

grown and characterized with maximum greenness, it still showed a small R2 value (<0.1) with UAV imagery. 

This can be attributed to differences in weeding whereby in some fields, weeding had been completed while 

in some it was in progress. In addition, some fields though weeded had good maize crop but had lower VI 

because of weed removal. Apart from this, other vegetation growing in the maize field (either intercropped 

or mixed) contributed to high VI value considering they were almost same height as maize plant. Figure 18 

provides insights on the status of the maize field during this period. 

 

 
Figure 18: Very fine-resolution RGB image acquired on 13 May 2015 (flowering stage) showing maize field with (a) 
mixed sunflower with same height as maize (b) half weeded maize field (c) mono-cropped maize yield at 
inflorescence stage and (d) Mono cropped maize field with patches of weeds at flowering stage. 

As maize crop grows towards silking stage (one month later), the relationship is seen to have improved with 

VARI derived from UAV-RGB and EVI derived from WV-NIR large R2. Surprisingly, though, increased 

yield (highlighted in red in scatter in Figure 19) shows to correspond to decreased VI. This is contrary to 

what the model describes i.e. increase in VI corresponds to increased yield. A plausible argument for this 

unusual pattern could be the accuracy of interview data collected. There is the possibility of farmers having 

over reported maize production which leads to such inconsistencies whereby the yield does not correspond 

to the VI values. Secondly, it could be variation in planting dates which leads to differences in stages of 

maize development. The other reason could be related to single-date imagery VI which provides reflectance 

of a single period which is varies from field to field.   
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Figure 19: Scatter plot showing the relationship of maize yield with single-date (a) VARI (UAV-RGB) and 

(b) WV-EVI during silking maize growth stage. The red points indicate unusual pattern of yield which 

corresponds to low yield.  

 

The cumulative UAV-RGB and UAV-NIR vegetation index results indicate weak VI-maize yield 

relationship the largest being cumVARI (R2=0.455) during the flowering and fruit development as compared 

to VI derived during silking and fruit development cumNDVI (R2=0.372). As compared to WV derived 

index cumGNDVI (R2=0.570), showed better maize yield-VI relationship during silking and fruit 

development. This shows that cumVI derived from WV performed better than UAV-RGB and UAV-NIR 

cumVI’s which could have been majorly contributed by the difference in image acquisition dates. As noted 

in the results, the inclusion of a longer VI integration period result to the weak maize-VI relationship as 

compared to shorter integration period from the flowering period. The other factor (though not directly 

tested) could be as a result of narrow WV spectral range as compared to broader UAV spectral range which 

might have resulted in a difference in sensor sensitivity to maize vegetation reflectance. The observed 

variation is better explained by the scatter plots in Figure 20. 

 
Figure 20: Maize yield-cumVARI relationship derived from UAV-NIR during flowering-fruit development stage and 
(b) WorldView Maize yield-cumNDVI relationship during silking-fruit  

y = 7.6475x + 0.253
R² = 0.4553

n=28

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0.00 0.05 0.10 0.15 0.20 0.25

M
ai

ze
 y

ie
ld

 (
to

n
/h

a)

(a) UAV-NIR cumVARI  ( flowering and fruit 
development)

y = 6.4763x - 7.1869
R² = 0.5704

n=54

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

1.15 1.25 1.35 1.45 1.55

M
ai

ze
 y

ie
ld

 (
to

n
/h

a)

(b) WV-CumNDVI (Silking and fruit 
development)

y = 11.609x + 1.0657
R² = 0.508

n=28

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

-0.06 -0.04 -0.02 0.00 0.02 0.04 0.06 0.08 0.10

M
a
iz

e
 y

ie
ld

 (
to

n
/

h
a
)

VARI UAV-RGB (fruit developmet stage)

y = 10.576x - 4.3502
R² = 0.613

N=54

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

0.40 0.45 0.50 0.55 0.60 0.65 0.70

M
ai

ze
 y

ie
ld

 (
to

n
/h

a)

Single date EVI acquired on 13/6/2015 



ASSESSING FIELD-LEVEL MAIZE YIELD VARIABILITY IN TANZANIA USING MULTI-TEMPORAL VERY HIGH RESOLUTION IMAGERY 

29 

Maximum VI showed consistently small R2 values in all the VI’s tested in both the UAV-RGB and UAV-

NIR sensor. The best UAV-RGB result was derived from maxVARI (R2=0.089) while for UAV-NIR was 

maxMSAVI (R2=0.313). In regard to WV, maxGARI (R2=0.514) gave the best relationship with maize yield.  

One probable reason for the variable performance of maxVI is the confounding effect of weeds and other 

crops (sunflower and pigeon peas) grown together with maize in the same field which gave a high VI value. 

The performance of season’s maxVI derived from WV was higher than what was observed with RGB 

derived VI’s and this could be as a result of the difference in dates of image acquisition.  

Scatter plot of the yield-VI variation derived from maxMSAVI and maxGARI during the maize growing 

season is indicated in Figure 21. 

 
Figure 21: (a) Maize yield relationship with maxMSAVI derived from UAV-NIR during the maize growing season 
from sowing to senescence and (b) maxGARI derived from WV-NIR data 

The results obtained from integrating WV and UAV indicate the coefficient of determination was 0.44, 

which was derived using single-date NDVI imagery at fruit development stage. This indicates a good 

potential for image integration in estimating maize yield at large scale by integrating very high spatial 

resolution imagery with coarse resolution data. However, advanced image fusion algorithm is recommended 

for enhancing the accuracy of the VI imagery integration, especially for multi-temporal imagery integration.  

 

In summary, single-date WV vegetation index metrics performed better than UAV-RGB and NIR derived 

metrics. Likewise, the performance of single-date UAV-RGB camera VI metrics was better than UAV-NIR 

camera. However, cumulative UAV-NIR vegetation index data showed a better relationship than with 

single-date imagery during flowering and fruit development stage. There was general agreement between the 

three datasets on the best period for estimating maize yield to be during fruit development which occurs 

approximately 60-70 days from the sowing date.  
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Table 6: Summary of optimal VI indices and vegetation variables with corresponding R2 and maize yield RMSE 

Bands Sensor VI Metrix Maize stage Index function R2 Adj.R2 RMSE n 

RGB UAV Single image.  Fruit dev VARI Y= 11.609x+ 1.06 0.508*** 0.489 0.483 28 

NIR UAV Single image Fruit dev NDVI Y=4.298x – 1.278 0.322*** 0.307 0.600 50 

NIR UAV Single image Fruit dev MSAVI Y=5.394x – 5.417 0.322*** 0.308 0.600 54 

NIR WV Single image Fruit dev EVI Y = 10.57x - 4.3502 0.613*** 0.626 0.460 54 

RGB UAV Variable Silking-Fruit-dev. VARI Y=7.647x + 0.253 0.455*** 0.434 0.532 28 

NIR UAV Variable Silking-Fruit-dev. NDVI Y=3.551x – 3.148 0.372*** 0.359 0.577 50 

NIR WV Variable Silking-Fruit-dev. GNDVI Y=6.476x – 7.187 0.570*** 0.562 0.586 54 

RGB UAV MaxVARI Entire season VARI Y=0.00022 + 1.049 0.031* -0.006 0.750 28 

NIR UAV MaxMSAVI Entire season MSAVI Y=12.28x – 14.84 0.313*** 0.299 0.603 50 

NIR WV MaxGARI Entire season GARI Y=9.116x – 3.711 0.514*** 0.504 0.500 54 

Level of statistical significance p***=0.01; p**=0.05;  p*=0.1 

n-number of sampled (varies depending on availability of NIR, RGB imagery) 

4.2. Bootstrap model validation results 

The bootstrap resampling validation computed using R-software was able to resample the data (n=54) 

3600 times and generated normally distributed bootstrap sample using linear model derived from EVI 

index data and maize yield relation as shown in Figure 22. The histogram and the quantile plots indicate 

the sampled population distribution was normally sampled test. 

 
Figure 22: Normal distribution of the bootstrap sample population distribution shown in the histogram and the 
quartile plots computed from Enhanced Vegetation Index (EVI). 

The results indicate clearly that EVI was the optimal index. The criteria used to select the optimal model 

was the model with high AdjR2, RMSE, Standard Error (SE) and high lower and upper in  bias-corrected 

and accelerated (BCa) at 95% confidence interval as summarized in Table 7. In addition, the model with a 

small sample (n=28) considering the samples were drawn from only one study site.  
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Table 7: Bootstrap result of maize yield-VI validation 

VI metric Equation AdR2 RMSE SD Bias 

 
SE BCa (95% CI 

Lower 

bound 

Upper 

bound 

EVI Y = 10.576x - 

4.3502 

0.601* 0.460 0.478 0.028 0.072 0.476 0.753 

cumGNDVI Y=6.476x – 

7.187 

0.562* 0.586 0.654 0.003 0.079 0.399 0.707 

MaxGARI Y=9.116x – 

3.711 

0.504* 0.500 0.093 0.006 0.092 0.290 0.664 

Significant at p < 0.00 

Results based on 3600 bootstrap samples 

4.3. Field-level maize yields variability 

The yield variability map in Figure 23 shows spatial variability within and between fields. The variability map 

was computed using single-date WV-EVI equation during fruit development maize stage. The RMSE of the 

actual and predicted yield was 0.45 ton/ha with a bias error of zero. For the validation test carried out using 

Bootstrap (BCa, SDE, and SE) the model performed well. This indicates that the model is robust enough 

and could be applied for to an independent maize yield datasets. The equation that best described maize 

yield and VI relationship was Y = 10.576x - 4.35 

Table 8 shows the model results in which at 95% confidence level, the actual and predicted maize yield has 

similar mean confirming the model good performance. However, the model had substantial effect on both 

the maximum and minimum maize yield whereby the model under predicted yield. This can be further 

confirmed by the negative intercept (-4.35). These results are important when interpreting the computed 

maize yield maps.  

 

Table 8: Descriptive statistics of the actual and predicted maize yield (ton/ha) 

 Actual yield Predicted yield 

Mean 1.201 1.201 

Variance 0.526 0.333 

Std. Deviation 0.725 0.576 

Minimum 0.310 0.190 

Maximum 3.370 2.590 

95% confidence of the mean 

 

The yield variability map (Figure 23) shows high spatial variability within and between the fields. The highest 

maize yield (green) in most cases were fields with maize mixed with pigeon peas or sunflower. The green 

patches in the fields do not represent yield, rather they are isolated trees within the fields. The reason for 

such inaccuracies is the effect on non-maize vegetation growing in the maize yield which increases VI. The 

other factor that contributed to difference in maize yield variability is that some of the maize in some fields 

were already in senescence stage, especially those farmers who planted in late January or early February.  
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Figure 23: Pixel based result from modeling maize yield variability using Enhanced Vegetation index (EVI) derived 
from WorldView-2 imagery acquired during flowering maize stage. The sampled maize fields are indicated with black 
boundaries. 

Figure 24: Fine spatial resolution UAV-RGB and UAV-NIR imagery (0.05m) acquired on 13 June 2015 showing 
maize field during flowering stage in the two study sites (bright green polygons are the fields sampled) 
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The graph shows that the model over-predicted maize yield especially the low which can be attributed to 

non-maize vegetation growing in the maize yield and which had high reflectance values. This can be 

observed with the maize yield scatter graph in which most of the predicted maize yield lie above the scatter 

plot line. This is further supported by the descriptive statistics indicated previously in  

Table 8 where the predicted and actual yield had same mean but the different standard deviation in which 

predicted maize yield showed the least variation as compared to the actual maize yield. The scatter plot in 

Figure 25 indicates the spread of the predicted maize yield as compared to the actual maize yield obtained 

during the interview with the farmers.  

 
Figure 25: Comparison of reported yield with values predicted from WV-EVI at fruit development stage Effect of 
management factors on maize yield 

4.4. Effect of management factors on maize yield 

A further test was carried out to determine if differences in management factors reported by the farmers 

had a significant influence on yield. In this regard, Analysis of Variance (ANOVA) was computed based on 

different management factors which include the method of tilling applied, cropping system, seeds planted, 

the number of times weeding was carried out, difference in planting dates and level of pest and diseases 

infestation on maize crops. The ANOVA results summarized in Table 9 shows the only observable 

difference was the number of times weeding was carried out and the method of tilling applied. However the 

ANOVA test does not show which factor had significant impact on yield. The hypothesis was if ANOVA 

the computed p-value is less than alpha (α=0.05) then the management factor would be statistically 

significant at 95% (0.05) confidence level (i.e. p< α) 

 
Table 9: ANOVA results of interview field management practices on maize yield 

Management factor Interview results Grouping Conclusion 

Tilling methods 0.03< 0.05 Tractor, oxen & hand hoe Different 

Cropping system 0.34>0.05 Mono-cropping, mixed cropping 

&intercropping 

No 

Difference 

Seeds planted 0.59>0.05 Local & certified seeds  

Weeding 0.04> 0.05 Once or twice Different 

Planting date 0.16>0.05 Grouped in 10 days difference No difference 

Pest 0.18 >0.05 High, Average and Low  No difference 

Diseases 0.34 > 0.05 High, average and low No difference 

R² = 0.613
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Separately, Fisher's Least Significant Difference (LSD) test was carried out to determine which of the tilling 

methods had a significant effect on yield. The results indicate the use of tractor and hand hoe had a 

significant effect on yield (0.02<α >0.05), although the test does not indicate which gives a higher or low 

yield. However averaging the yield of farmers who reported having used tractors as compared to those who 

used handhoe, those who used tractor harvested more yield than those who used hand hoes or oxen.  

 

Although it has been established in many studies that planting dates have a significant influence on yield, 

the probable case in this as to why there was no significant difference in yield could be due to the fact that 

most farmers planted around the same time which could not make much difference in maize yield. In 

addition, other factors may have contributed to yield difference more than effects of planting. The few who 

planted early or late may also have had other factors which influence maize yield much more than the 

planting dates. In regard to weeding, the effect of weeding of competing for nutrients with maize plant 

makes the maize crop weak. In addition, weeds attract pests and diseases which attack maize crops resulting 

in low yield.  However, it is interesting to note there was no much difference between the farming systems 

against the expectation that mono-cropped fields would have a higher yield as compared to mixed or 

intercropping. The probable reason could be in the mono-cropped fields other factors that affect yield 

played significant role thereby reducing the maize yield. Pest and diseases effect as reported by many farmers 

was not a major problem as compared to weeds and this is the reason why the effect of pests and diseases 

had no significant effect on yield. 

 

A further test to determine spatial field-level maize yield variability was tested using the high average-low 

yield location reported to test if it was corresponding to the results predicted by the VI-yield model. The 

results of non-parametric Spearman’s correlation gave a result of R2=0.202 (n=920). Although this is 

extremely low compared to the yield estimate, the information which can be deduced from these result is 

that for most of the points reported by the farmers does not correlate with the VI obtained. The reason is 

further justified by the box plot in Figure 22 which indicates the variation of the reported maize yield rank 

in order of high medium and low yield by the farmer interviewed against the estimated maize yield. The 

section of the fields reported having low yield seems to have the highest variation. This can be attributed to 

the VI images predicting high yield in areas with trees and weeds while the actual yield is low. The box plot 

showing high yield had the lowest variation meaning whatever location the farmer reported having harvested 

high yield corresponded relatively well with what was observed in the imagery. Lastly, the average yield 

variation was slightly higher than high yield variation which is due to some section reported having low yield 

when compared to the predicted maize yield as shown with the high reported yield having the least variation. 

 
Figure 26: Box plot showing differences in-field reported maize yield level in comparison to the yield at 
derived yield variability map. 
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5. DISCUSSION 

5.1. Assesment of yield using fine spatial resolution data 

 

Fine spatial resolution imagery captures fine structures of maize plant such as the leaves while coarse 

resolution data cover canopy level. In their assessment of effect of spatial resolution on maize yield 

relationship, Geipel et al., (2014) found that by varying spatial resolution from fine (0.02 m) to intermediate 

(0.04 m) and fine resolution (0.06 m); the inter-intermediate and fine resolution ExG index relationship with 

maize yield had a better R2 than very fine spatial resolution data in which they attributed to high noise from 

soil and non-maize vegetation. However, for coarse resolution data, the R2 is degraded by the mismatch 

between maize fields and the pixel sizes especially for the 250 meter resolution data when used in highly 

fragmented fields (Duncan et al., 2015). Therefore, in determining this VI-maize yield relationship, it is 

important to consider the stage of maize growth and the type of vegetation cover existing within the maize 

yield. 

 

In addition, fine spatial resolution RGB imagery is very useful for visualization and for accurate delineation 

of maize harvested area as shown in the study. Fine spatial resolution helps in mitigating the  challenge of 

coarse resolution data which does provide sufficient  resolution for delineating maize fields (Lobell, 2013). 

However, automatically delineating boundaries would still be a challenge considering fuzzy maize yield 

boundaries which are further complicated by farmers who change their land use in the middle of the season 

due to such factors as poor performance of the maize. Furthermore, the effect of non-crop vegetation in 

the crop field has been shown to have significant impact on coarse spatial resolution data and is still a 

challenge for the fine spatial resolution imagery (Chen et al., 2008). This had a significant effect on the maize 

yield relationship derived in this study. To mitigate this, there is a need to separate crop and non-crop 

vegetation using such methods as of spectral thresholding as applied by Ridler et al., (1978) than 

conventional classification approaches which is limited by the need of validation points (Rembold et al., 

2013). In their review of the use of remote sensing in yield gap analysis, Duncan et al., (2015) note the 

challenge of effect of non-crop vegetation not only in regard with coarse resolution data, but also with fine 

resolution imagery though the effect is not comparable to the coarse resolution data. Furthermore, there 

using crop texture especially with multi-temporal images will provided a better method of detecting weeds 

and other non-maize crops. In addition, other methods such as combining VI data crop height model which 

is obtained by subtracting digital surface model (DSM) and digital elevation model (DEM) (Geipel et al., 

2014).Therefore, for accurate yield assessment fine-spatial resolution remote sensing data still holds the key 

to achieving improve maize yield assessment at field level, only if non-maize crop are masked out.  

 

The limitation with very-fine-resolution data is the temporal frequency of acquisition and allows monitoring 

only at small scale. However, efforts have been made to fuse high resolution and coarse resolution so as to 

generate high-resolution synthetic VI image which would allow monitoring of the large area (Boschetti et 

al., 2015). The simple linear regression tested integration technique applied in this study show there is the 

potential for integrating both WV and UAV images. However this calls for used of improved algorithms 

such as Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) Gevaert et al., (2014) or such 

algorithm described by (Zurita-Milla et al., 2011). The advantage with these methods is that it takes into 

consideration high temporal and spatial variability in vegetation reflectance.  

 

Accurate pre-processing of fine spatial resolution data is very important for accurate maize yield estimation 

from fine spatial resolution data. Horizontal alignment errors in fine resolution imagery have a large impact 

on the displacement of features considering its fine spatial resolution.  In order to account for horizontal 
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misalignment, Geipel et al., (2014) suggest the use of polygon containing field information for realigning all 

the images acquired during the crop season. Combining digital terrain model (DTM) with an accuracy of 

10-15 cm and ground control points (GCP) of the approximate accuracy of ~30 cm acquired automatically 

during UAV flight has shown to substantially improve the accuracy of geometric and orthorectification of 

UAV imagery (Vallet et al., 2011). Furthermore, Geipel et al., (2014) suggest the use of DEM and DTM 

than   the use of dense point cloud which can be hardware demanding task. In regard to WV, the geometric 

errors are large due to large area coverage by the sensor than UAV and considerable care has to be 

considered when comparing results of these two datasets (or even integrating). This was noted in this study 

since there was uniform shift between WV and UAV which was corrected by shifting pixel position. The 

limitation with this approach is that it does not give the RMSE of the location shift which can be used to 

evaluate the accuracy of geometric correction. Alternative to this would be to use GCP acquired from the 

UAV which was not readily available for use during this study.  In regard to WV imagery, the effect of 

atmospheric effect have an impact on the signal detected by the sensors. However, in as much as the effort 

is made in correcting atmospheric and radiometric bias, errors due to the row-based cultivation of corn and 

missing canopy, early stages require very high spatial resolution which gets less important as the maize 

canopy cover increase (Geipel et al., 2014). Accurate estimation of maize yield at field level is dependent 

among other variable spatial resolution, vegetation index and field management factors. The study showed 

that while the use of fine spatial resolution vegetation metrics has the potential to improve maize yield 

estimation, it is complicated by non-uniform field management practices.   

5.2. Statistical emperical model use in yield assessment 

There are several empirical models that have been applied in modeling VI-yield relationship. Of these 

models, linear models have shown to be an optimal model. However, the performance of the model depends 

on the quality of yield data used given there is the possibility of non-negligible errors in farmer reported data 

which have an impact on model performance (Lobell, 2013). These errors might have contributed to the 

model showing low EVI for high yield which is contrary to what the model was presenting. The distribution 

of the sample should also be considered as this has an impact on model performance. Although a number 

of techniques are available for validating empirical yield models, the conventional splitting of the data into 

two sets (test and training) does not give a good indication of model performance considering large sample 

is required for it to be split. In addition, the data has to be normally distributed otherwise the effect of 

outliers would have a significant impact on model results. In order to overcome this cross-validation and 

bootstrap resampling techniques are preferred in computing residual errors in the model. The advantage of 

cross-validation is that validation data is different from the training data, however, it is limited in the fact 

that the sample has to be substantially large for it to be divided into training and testing sample and 

furthermore, the model has high variability which changes when a new sample is drawn. On the other hand, 

bootstrap does not require data transformation in case the data is not normally distributed, however, the 

pick one with replacement has been found that almost 30% of the samples drawn also form part of the 

model (Koehler et al., 2009). In general, all regression models perform well, however, the linear model is 

preferred in yield-VI modeling. In addition, normalizing data using statistical transformation changes the 

original yield values and therefore resampling techniques such as bootstrapping and cross-validation is 

preferred. 

5.3. Fine spatial resolution vegetation metrics use in crop yield assessment 

The remote sensing approach of using VI metrics is based on the fact that vegetation reflectance provides 

a measure of amount and condition of greenness which in turn is applied which is a proxy used in estimating 

yield (Duncan et al., 2015). In this regard, use of very-fine resolution detects any green vegetation in the 

field which may lead to erroneous interpretation of yield variability maps. A good example of this study was 

with sunflower and pigeon peas planted fields had significantly high VI even after maize senescence 
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considering they were planted 2-4 weeks after maize. Using the current modeling approach, the VI of 

sunflower or weeds will be considered and this leads to overestimation of yield. 

 

The vegetation indices computed from RGB  camera carries limited spectral information as compared to 

NIR camera due to the high atmospheric effect on the visible band (Lebourgeois et al., 2008). In the study, 

EVI showed a high predictive power in maize yield estimation as compared to other indices tested. In other 

studies reviewed, EVI has shown high predictive in maize yield estimation (M. Wang et al., 2014; Zhang et 

al., 2014). Considering EVI uses 3 bands as compared to NDVI, this has been shown to have shown better 

results since the blue band is known to provide atmospheric correction as compared to NDVI (Bolton et 

al., 2013). EVI, in this case, had a higher R2 (0.63) as compare to a study by M. Wang et al., (2014) which 

they obtained R2 = 0.43, and lower than Bolton et al., (2013) in which they obtained R2=0.67. The difference 

between this study and the studies highlighted is the geographical zones in which the study was carried out 

where in the case of largest EVI was carried out in the United States of America while the lowest EVI results 

were carried out in India. Furthermore, this study used field be attributed to the fact in this study, field 

aggregated VI was used with fine spatial resolution imagery as compared to the two which used coarse 

resolution data and classified crop map. 

 

Maize yield is an end product but maize crop undergoes through a number of stages to produce yield. 

Therefore, understanding when yield components can be determined is important in interpreting 

management and environmental factors that influence maize yield (Darby et al., 2013). Determining the 

optimal stages of maize growth upon which maize yield can be estimated using remotely sensed vegetation 

indices metrics was one of the key focus of the study. As indicated in the results, an optimal period with 

high maize yield relationship was found between 60-70 days of maize development. This corresponds to 

silking and fruit development which is in agreement with a number of maize yield studies (Omoyo et al., 

2015; M. Wang et al., 2014). Although these studies was carried out in different geographic set up with 

different datasets, there seemingly to be agreement on the optimal period to be during silking stage.  

 

The regression-based model developed in this study was empirically derived using field-level interview data 

and a test carried out on various very fine spatial resolution vegetation metrics. The use of single-date 

imagery shows to be promising for maize yield estimation at field level. In order to accurately predict maize 

yield using single date imagery, the timing of the maize stage is very important for optimal maize yield 

estimation. There is a general consensus among researcher that the optimal period of predicting maize is 

from flowering to fruit development which 60-70 days) (Bolton et al., 2013). The result of this study, is in 

agreement with the period of maize yield estimation as established in literature cited. The challenge with 

single-date images is the difficulty of getting a cloud-free imagery, especially in areas where cloud cover is a 

problem. An alternative would be to use UAV around fruit development stage as this shows improved 

relationship with yield. Since UAV images are affected by shadows due to its high resolution, the timing 

should be before mid-day and preferably using GLI index if RGB camera is to be used and GRVI with NIR 

camera as these two indices seem to explain more than 47% of the maize yield variation. In terms of high 

prediction power, WV imagery using EVI seems to be an optimal option. 

 

Although the results of CumVI is almost same as for the single-date around the stage of anthesis and fruit 

development, CumVI seems to give a lower RMSE as compared to single-date or MaxVI. This indicates 

two observation, first, the cumulating of VI over the period between anthesis and fruit development 

captures the events that occur during the critical stages of grain formation in maize plant(Viña et al., 2004). 

Secondly, the changes in cumVI is a result of factors such as pests, diseases, and extreme weather conditions 

will bring about changes in VI which make cumulative index give a low RMSE. Vegetation index (VI) 

accumulation at the beginning of the maize growing season showed weak relationship for both the UAV 
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and WV data and this suggests that for the optimal prediction using cumulative model, the inclusion of early 

season affect model accuracy as compared to late season (Bakhsh et al., 2000; Basso et al., 2013). The use 

of UAV RGB and NIR shows little difference although NIR is preferred as it gives a low RMSE in estimating 

maize yield. The performance of MaxNDVI was poor especially with UAV RGB and NIR imagery. This 

can be attributed to the effect of weeds which seems to be less detected with RGB camera than NIR. The 

WV derived maximum indices performed better than UAV given most of the indices could explain 40% of 

the variation.  

 

The optimal spectral index based on this study is EVI which is similar to a maize yield study by Bolton et 

al., (2013) in which EVI outperformed NDVI (R2=0.58 against NDVI (R2=0.53). Its performance was 

constantly high in both UAV and WV images. This indicates that different VI has different strengths in 

predicting maize yield. The difference between the two indices (EVI and NDVI) is that EVI which is more 

sensitive to canopy structure and variables such as leaf area index while NDVI is more sensitive to 

chlorophyll content in plant leaves (Huete et al., 2002). Furthermore, it has been found in a number of 

studies that NDVI saturates with dense canopy cover and maintains this high values throughout the 

cropping season as compared to EVI (Wardlow et al., 2007) During maize development, the unfavourable 

conditions in the grain filling period (anthesis and physical maturity) has been found to likely impair 

pollination and reduce the fertilized kernels that are destined to be filled(Viña et al., 2004). Maize phenology 

is divided majorly into vegetative (emergence to tasselling according to a number of leaves) and reproductive 

(silking to physiological maturity according to the degree of kernel development). Within these stages, 

several transition is important in terms of management. During maize development, the maximum yield can 

be realized if there is sufficient supply of nutrients under favorable condition (i.e. soil moisture, solar 

radiation, and temperature).Unfavourable conditions at the beginning of the reproductive cycle (tasselling 

and anthesis) are likely to impair pollination and reduce the number of fertilized kernels that are to be filled 

(Viña et al., 2004). Any adverse condition during the grain filling period (between anthesis and fruit 

development) are likely to impair pollination. Detecting early onset of senescence is important because it 

can have a direct influence on yield. The flowering and grain filling periods are the most critical for most 

crops; any water stress during these crop growth stages may result in reduced grain yields (Mkhabela et al., 

2011).  

5.4. Field level maize yields variability 

The variation in date of planting is important in that maize planted early will be in different stages of 

development as compared to those planted late. However, the spectral information captured by a single 

image will be measuring spectral information from different stages of development and hence can influence 

the model accuracy. Optimum maize production calls for the good timing of the planting dates. Postponing 

planting dates has been found to have significant negative effect on maize yield (Azadbakht et al., 2012)  

It is important to note the link between yield estimation and biomass. Weeds control has a significant effect 

on weed density whereby if there is no weed control the density of weed tend to be high (Udom et al., 2010).  

Weed management options have shown to have significant effects on weed suppression, maize height and 

dry grain yield of maize (Joshua et al., 2008).This is because weeds indirectly affects maize cob length, cob 

diameter, and number of grain per cob and dry grain yield in fields with a lot of weeds is attributed serious 

competition of weeds with maize plants for soil water nutrients resulting in reduced plant height and maize 

yield.  

 

 

Although the results from farmer’s interview indicate farming systems had no significant relationship with 

maize yield, visual interpretation of the VI images and the resulting maize yield map indicates fields with 

pigeon peas and sunflower had consistently high VI while comparing to the reported yield there was an 
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indication of over prediction in the images. The second evidence is the results obtained from yield ranking 

in which the R2=0.202 (p>0.01) which indicate most of the e evidenced by the cropping systems has a 

significant impact on maize yield estimation. Although there was no direct test to determine the effect of 

soil, visually comparing the soil map in Figure 4, with the maize yield variability map, there is some indication 

that soil type may have contributed to yield difference considering that most farmers in both sites did not 

use fertilizer. In summary, the fine-resolution imagery has shown areas of targeted intervention. This is 

important for better management practices especially for areas where the yield level was low 

5.5. Effect of management factors on maize yield 

Maize growth stage has an effect on VI-maize yield relationship. However determining exact stage of maize 

development is difficult considering the difference in planting dates, management factors such as weeding, 

maize varieties. In this regard, the use of cumulative vegetation index would come in handy in reducing the 

difference in maize growing stage. Best time for predicting maize yield using multi-temporal VI data has 

been established to be between 50-70 days after planting date (M. Wang et al., 2014). Although the strongest 

correlation between yield and NDVI has been found around maximum VI in a study by Tucker (1980), 

Maximum VI in this case and a number of other studies has shown weak correlation with maize yield (M. 

Wang et al., 2014). In other studies, MaxVI has been shown to have varying peak correlation with yield 

during the season (M. Wang et al., 2014) and this could explain why the maxVI was inconsistent between 

the UAV and WV data given the imagery used were acquired in different periods.  It has been established 

that yield-VI relationship varies as a function of time during the growing season. 
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6. CONCLUSION AND RECOMMENDATION  

The study demonstrated the potential of using fine resolution data in assessing maize yield at field level. In 

this thesis, several vegetation indices metrics were tested to determine the optimal vegetating index which 

was found to be EVI derived from WorldView imagery at the silking stage. Furthermore, the study found 

that cumGNDVI outperformed maxGARI in estimating maize yield indicating that there are of factors that 

affect maximum vegetation greenness relationship with maize yield. One of the observations made in the 

study was the effect by non-maize vegetation grown in the maize field. The period before maximum 

greenness showed the least maize yield relationship which was attributed to minimal vegetation cover. 

During fruit development period, the VI-yield declined as the maize headed toward senescence which was 

attributed to decrease in green biomass a result of a decrease in photosynthetic activity in the maize crop. 

The study found out that WV derived indices performed better than UAV indices. The plausible explanation 

was the difference in the image acquisition dates and (although not directly tested) differences in spectral 

bandwidth in which WV had a narrow bandwidth as compared to UAV. An effort was made to integrate 

same date UAV derived NDVI and WV NDVI during the flowering period. The result indicated a good 

potential for integrating airborne UAV derived imagery with satellite-based WV images for local or regional 

scale assessment of maize yield. However, use of an advanced algorithm which gathers for temporal 

variation in VI is recommended in the case of different date’s image integration. The use of bootstrap 

resampling technique applied in model validation resulted in the selection of an optimal model that was used 

to derive yield variability map which further proves its ability to provide good statistical validation measures. 

The yield variability map showed high yield variation between low yield and high yield fields. However, it 

was noted that the variability was contributed by the difference in the dates the image was acquired 

(considering single data image was used) and secondly, differences in stages of maize growth. Thirdly, it was 

the confounding effect of non-maize vegetation growing in the maize field which overestimated yield. A 

confirmation of the effect of non-maize vegetation on maize yield variability map was noted when 

Spearman’s rank correlation test was applied in correlating field-level collected data and the actual output 

yield which resulted to the very weak relationship (r2=0.2).In terms of the effect of management factors, the 

number of times a maize field was weeded and method of tilling applied showed a significant relationship 

with yield. Other management factors such as planting date, crop pests and diseases,   cropping systems and 

source of seeds planted showed no significant effect on yield.  

 

However, the results obtained in the study is not all that good considering the model could not explain all 

the maize yield distribution adequately. This was shown by the scatter plot in Figure 20 whereby high yield 

corresponded to low EVI which was not the actual case of what the overall model was depicting. The reason 

for such occurrence was the uncertainty in the quality of field collected production data and also the 

difference in planting dates which contributed to differences in average spectral VI within the fields. 

Although fine spatial resolution in yield estimation provides great potential for estimating maize yield at field 

level, study could not establish clear difference based on the result obtained. This was largely affected by 

heterogeneous vegetation cover in the field which affected yield estimation considering green biomass was 

used as a proxy for yield estimation which does not have direct link with yield.  

 

In order to improve crop yield assessment using fine spatial resolution imagery in the future it is 

recommended that: - First, accurate maize production and delineated harvested area is used, preferably 

destructive sampling rather than the interview data (2). There is need to accurately classify maize and non-

maize pixel using such methods as VI thresholding, use of texture and combining crop height model. 

Thirdly, accurate alignment between UAV and WV imagery should be carried out to avoid pixel location 

shift and fourthly, due consideration of planting dates as it reflectance values changes as crop grows. 
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