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ABSTRACT

Timely and accurate information on crop production is important for planning food-related decisions at
both government and household level. However, acquiring such data is often a major challenge in most
countries in Sub-Saharan Africa. The crop fields in these countries are highly fragmented with fuzzy
boundaries and a complex cropping system. The use of coarse spatial resolution imagery (> 250 meters) in
such landscape is often limited by mixed pixel problem and mismatch between field boundaries and the
image pixel size. However, rapid technological development has seen improvement of remote sensing
technologies whereby acquisition of very fine spatial resolution imagery (< 1 meter) with improved revisit
time of less than a day, has been made possible at affordable cost. Such imagery include Unmanned Aerial
Vehicle (UAV) and satellite data such as WorldView (WV) provided by Digital Globe (DG). These high

quality remote sensing products have wide range of applications in many fields including agriculture.

This study was a proof-of concept to determine applicability of fine spatial resolution data in improving
maize yield estimation at field level. The study was conducted in Kilosa District, Tanzania. The main aim of
this study was to estimating maize yield at field-level using fine spatial resolution UAV, WorldView -2 and
WorldView-3 images. Vegetation index metrics (VI) were derived from these fine spatial resolution images
and together with field-level interview yield data, an empirical linear regression models were developed.
Availability of same date UAV and WV images provided an opportunity to test performance of VI derived
index by integrating the two datasets. Bootstrap statistical technique was applied in model validation. The
optimal model with high adjusted coefficient of determination (adjR?), low Root Mean Square Error (RMSE)
and low standard error (SE) was used to derive yield variability map. The resulting yield variability map was
correlated with field collected maize yield data using Spearman’s rank correlation in order determine the
relationship between spatial yield variability map and the actual yield status.

Results indicate that the Enhanced Vegetation Index (EVI) outperformed the popularly used Normalized
Difference Vegetation index. EVI explained 63% of maize yield variability. The optimal period was found
to be at fruit development stage of maize growth which occurs 60-75 days after sowing. The single-date VI
showed to be the best predictor, followed by cumulative VI (cumVI) while maximum VI (maxVI) explained
the least variability. In terms of the sensor performance, WorldView outperformed UAV as it had
consistently large R2 with maize yield. The correlation between same date UAV and WV showed a good
correlation of R?=0.51 using randomly selected averaged NDVI values. However, result of new WV NDVI
derived from UAV using the linear equation computed from same data UAV and WV gave an R? of 0.44
indicating good potential of fusing VI data acquired from UAV and WV data. The yield variability within
the fields had a coefficient of variation of 33%. In terms of the effect of field management factors on yield,
weeding and method of tilling showed to have a significant impact on yield. Although high correlation
coefficient was realized with the single-date imagery, most of the other metrics apart from cumulative
vegetation index showed a weak relationship with yield. Furthermore, a scatter plot derived from the maize
yield model showed an unusual trend where for high yield, it corresponded to low EVI. As a result of this,
it was noted that the study did not give convincing results as to the performance of fine spatial resolution
in estimating yield as it was limited by high differences in field management practices.

Keywords: Maize yield, UAV, WorldV iew, High resolution, spatial, variability and management factors
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1. INTRODUCTION

1.1. Introduction

Agriculture plays a significant role in achieving the World Bank Group agenda of ending poverty and hunger
by 2030 (Townsend, 2015). Globally, 805 million people are estimated to be chronically undernourished, of
which 23.8 % live in sub-Saharan Africa (FAO et al.,, 2014). To improve this situation, the World Bank
(2008) highlights the importance of agriculture and its related industries as a principal option for sputring
growth, overcoming poverty and enhancing food security in the Sub-Saharan Africa (SSA) region. In this
predominantly agriculture-based economy, small-scale farmers account for 75 % of the region’s agricultural
production and 75% of employment (Salami et al., 2010)

In East Africa, maize (Zea mays) is an important cereal food crop planted annually on approximately 7.3
million hectares corresponding to 21% of the arable area and 41% of the land under cereals (Erenstein et
al., 2011). It is typically rain-fed and is cultivated across a range of latitudes, altitudes, moisture regimes,
slopes and soil types (Livingston et al., 2011; Smale et al., 2003). Maize is primarily produced for home
consumption and for local markets by small-scale family farms (Erenstein et al., 2011). In Kenya and
Tanzania, maize consumption represents on average 40% of the daily dietary calorie requirement (Groote
et al., 2002).

Maize yield in the region shows a high spatial and temporal variability. Large-scale spatial variability can be
explained by differences in rainfall and soil characteristics (HarvestChoice, 2010; Marques da Silva et al.,
2008; Smale et al., 2011; Thornton et al., 2009; Yengoh, 2012) while small-scale variability is importantly
influenced by farm management decisions like sowing dates, weeding, pests, diseases, fertilizer application
and method of tilling applied. Furthermore, small-scale variability is attributed to biophysical factors such
as rainfall, soil properties, elevation and floods (Nathan, 2014; Sacks et al., 2010; Vyas et al,, 2013). An
important determinant of temporal variability of maize yields is the interannual variability of rainfall and
temperature, resulting in frequent droughts in the region (Funk et al., 2009; Magehema et al., 2014; Porter
et al., 2005). This large yield variability underlines the need to assess and monitor yields within the growing

season.

Maize yield can be obtained by dividing maize production by the cultivated (or harvested) area. Data on
maize production and area cultivated are often derived from area frame sampling and statistical farm register
(Everaers, 2010). Area frame sampling is the breakdown of a land area into relatively homogenous sampling
units commonly referred to as primary sampling units (PSU) (Willett, 1981). Aerial photographs and remote
sensing images such as Landsat has been used in dividing these areas upon which farmers interviews are
carried out. Although area frame sampling is a well-developed and efficient technique for collecting
agricultural data, it is limited by high cost and tedious implementation process. The second approach is the
use statistical farm registers. These refer to up-to-date agricultural registers kept by the government
ministries at a different administrative level which includes household demographics, market information,
business and tax registers. Upon compiling all these sources of data, detailed agricultural statistics at the
household level can be obtained at relatively low cost. However, one major challenge with farm registers is
linking registers with different variables can be tedious and also there is the issue of accuracy of information
provided in these records (Turtoi et al., 2012; Viisinen, 2009).
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Remote Sensing data has a wide range of applications in the field of agriculture. Some of these applications
include maize yield estimation (Claverie et al., 2012; Lewis et al., 1998; Nathan, 2014; Prasad et al., 20006),
crop mapping (Jain et al., 2013; Khan et al., 2010), source input data for crop models (Reynolds et al., 2000
Vintrou et al., 2014) and as an indirect indicator of crop yields (Van Wart et al., 2013). Indirect indicators
are usually obtained by evaluating the inter-seasonal variability of vegetation indices derived from coarse-
resolution (>100m) optical sensors, and empirically relating these to measured crop yield (Funk et al., 2009;
Rembold et al., 2013; Wu et al., 2013). This is based on the premise that crop yield strongly relates to the
green biomass which develops over the season and which is often estimated from spectral properties derived
from satellite observations (Meroni et al., 2013).Examples of such indices include Normalized Difference
Vegetation Index (NDVI) which is the widely used vegetation index, but many other indices exist that have
been used to better account for atmospheric and soil background effects (Henrich et al., 2012; Qi et al,,
1994). The availability of dense time series remote sensing data from coarse resolution images has been
exploited to derive time-related vegetation index metrics (VI) data and applied to crop yield estimation
(Bolton et al., 2013; Wang et al., 2014). These time-related VI metrics commonly referred to as phenology
metrics describes the timing of vegetation events using data derived from synoptic sensors (Brown et al.,
2008, 2010; de Beurs et al., 2005).

Although there are a number of vegetation metrics that has been applied in vegetation studies, this study
will focus on three specific VI metrics, single-date vegetation index, cumulative variable vegetation index
(cumVlI) and season’s maximum vegetation index (MaxVI). A key rationale for using coarse-resolution data
in most yield assessment studies is their short (daily) revisit time with global coverage, which permits to

precisely follow vegetation development even in the case of frequent overcast conditions and to reduce
atmospheric effects (Atzberger, 2013; Rembold et al., 2013).

Although coarse-resolution time series data provide relevant input for assessing crop production, a number
of limitations exist. Coarse spatial resolution measurements of spectral reflectance contain mixed
information from several surface types hence complicating signal interpretation. Moreover, with coarse
resolution data, it is difficult to classify specific crop types given most crop fields in SSA are small and
regularly multi-cropped (Lobell, 2013; Nathan, 2014; Rembold et al., 2013). Besides the small agricultural
parcels giving rise to mixed spectra, crop condition and yields can also vary widely between fields making it
difficult to directly relate a spectral or temporal signature to a specific crop occurrence or condition
(Hoefsloot et al., 2012). In order to avoid mixed pixels problem, Claverie et al. (2012) suggested the use of
fine spatial resolution data (<10 meters). However, finer spatial resolution mostly implies a lower
observation frequency and a high cost.

The recent development of sensors collecting fine spatial resolution data at shorter temporal intervals is
opening a new frontier in agricultural monitoring. The mixed pixel limitation from coatse spatial resolution
remote sensing data is being progressively reduced by the availability of fine spatial and temporal resolution
sensors (Johnson et al., 2012; Rembold et al., 2013). While one avenue could be to combine information
from fine and coarse resolution sensors using image fusion techniques (Gevaert et al., 2014; Stenger et al.,
2009; Laigang Wang et al., 2014; Zurita-Milla et al., 2011), new fine-resolution satellites are being launched
that directly provide shorter revisit capabilities. For example, the Sentinel-2A satellite launched on 23 June
2015 is capable of monitoring variability in land surface conditions due to its wide swath width, 13 multi-
spectral bands in visible, near infrared and shortwave spectrum coupled with a high revisit time of 5 days
once Sentinel-2B is in place 2016 (European Space Agency, 2015).
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In parallel to satellite developments, the use of airborne sensors such as those onboard Unmanned Aerial
Vehicles (UAV) is increasingly being adopted for crop monitoring and yield assessment (Geipel et al., 2014;
Lin et al., 2011; Palermo, 2015). UAV sensors provide very fine resolution data of up to 1 cm depending on
the flight height, camera type, and sensor resolution with flexible revisit time as determined by the user
(SenseFly Ltd., 2015). A good example is a study by Geipel et al., (2014) where they combined crop height
model with fine resolution VI derived from UAV RGB bands and which was able to explain 74% of maize
vield variability. Fine spatial resolution imagery is important for establishing better maize VI-yield
relationship at early stages of crop development, which gets less important as the crop grows to a point of
becoming disadvantageous (Geipel et al., 2014). This is attributed to high soil reflectance during early growth
stages which reduce progressively as the crop grows. The increasing use of fine spatial and temporal sensors
is driven by the need for accurate field level monitoring and the growing need for micro-level planning (de
By et al., 2015; Singh et al., 2002).

Despite the promise of satellite and UAV data of fine spatial and temporal resolution for crop yield
estimation, until the present, only a few studies have been carried out that reliably estimate yields. Particularly
for smallholders systems in East Africa, it is envisaged that important advances could be made in accurately
estimating maize yield at field-scale from very fine spatial resolution and multi-spectral imagery. An initial
approach to achieve this is to evaluate if VI-maize yield empirical relationships can accurately describe the
link between VI and field-level yield data at the different moment of the season. If feasible, such
relationships could potentially be extrapolated to obtain yield estimates for larger areas. The study, therefore,
aimed at establishing an optimal vegetation index (VI) and best period for estimating field-level maize yield
using fine resolution UAV and WorldView imagery and develop maize yield spatial variability map which
would be explained based on filed-level management information collected during the field work. This study
is carried out in the context of Spurring Transformation in Agriculture through use of Remote Sensing
(STARS), a project which is led by Faculty of ITC, University of Twente, in partnership with five other
leading research organizations, private companies, local research institutes and government ministries in
East Africa, West Africa and South East Asia.

The main research objective of this MSc thesis is to study maize yield variability from fine spatial resolution,
multi-temporal Unmanned Aerial Vehicle (UAV) and WorldView (WV) imagery and explain this variability
from differences in field management for two 1 x 1 km areas in Kilosa district, Tanzania.

To achieve this, the following specific objectives are defined:
1. To establish empirical relationships between field-level interview maize yield data and UAV/WV
derived vegetation indices (derived from single-date and multi-temporal images)
2. To apply the empirical relationship that explains most of the yield variability to the two 1x1 km
areas to visualize spatial differences in maize yield;
3. To determine in-field spatial yield variability using field interview data and explain the variability
based on differences in field management practices;
In order to achieve these objectives, the study was guided by the following research questions:-
a) Which vegetation index metrics and timing explain most of the yield variability as derived from
single-date, cumulative VI and maximum VI metrics?
b) What is the maize growing stage for the optimal maize yield assessment using VI metrics and
field interview data?
¢) To what extent does estimated maize yield vary within and between fields?
d) Can we discern maize fields that clearly show a high, average low maize yield variability
¢) To determine in-field spatial yield variability using field interview data and explain effect of
management factors on yield.
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2. STUDY AREA AND DATA

21. Study Area

The study was carried out in two 1 km by 1 km sites in Gongoni and Mbuyuni locations in Kilosa District,
Morogoro Region, Tanzania (37.122 E; 6.652 S and 37.142 E and 6.672 S) as shown in Figure 1. The
elevation ranges between 350 and 500 meters above sea level with a sloping rising of less than 10 percent.
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Figure 1: The location of the 1 km by 1 km field study sites: (a) Gongoni site imaged by a true-colour UAV of 19
April 2015; and (b) Mbuyuni site imaged by a false-colour UAV image of 19 April 2015. The black lines indicate
some of the sampled maize fields.
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Kilosa District has an average annual rainfall of 976mm per year divided by two rainfall seasons. The main
rainfall season starts in February to June with May being the wettest month. The district experiences an
average eight months of rainfall (October-May), with the highest levels between February and March. The
rainfall distribution is bimodal in good years, with short rains (October-January) followed by long rains (mid-
February-May). However, the year 2015 and the previous two years seem to show a different trend with
rainfall pattern indicating a single rainfall season based on agro-climatic condition monitor developed by
Group on Farth Observations Global Agricultural Monitoring (GEOGLAM). The rainfall data is based on
0.05 degree resolution 10-daily rainfall regional average estimates from Climate Hazards Group Infrared
Precipitation with Station data (CHIRPS) and NDVI composites from MODIS data (Moderate Resolution
Imaging Spectro-radiometer); which is an e-MODIS product of the United States Geological Survey (USGS)
acquired by the Terra satellite and consist of 8-day maximum value NDVI composites at 250 m resolution.

The mean annual temperature is 24.6 °C with a daily mean maximum temperature of 26.9°C during the
rainfall season in the month of May and lowest of 21.8°C during the dry months of July and August.

MODIS NDVI (Terra) (MODO9 8-day)

Kilosa

(www) -dizaug

u.am-‘f’f—r
Feb-19 Apr-10 May-30 Jul-19 Sep-7 Oct-27 Dec-16
Source: USDA/MNASA/UMD GLAM project M Mean W 2013
Region: Tanzania 2014 2015
Shape: Kilosa CHIRPS Dekad Data 2013 [l CHIRPS Dekad Data 2014

CHIRPS Dekad Data 2015

Figure 2: Kilosa District 10-day rainfall estimates and 8-day NDVI time series composites over the period
2013-2015 and mean NDVI for the year 2000-2015.

The soil in the area has varying proportions of sand, silt and clay as presented on the soil maps in Figure 3.
The map was derived from International Soil Reference and Information Centre (ISRIC) Soil Information
database. The soil data comprises 250 m global soil database with different characteristics modeled from
satellite-derived data and validated with more than 3000 ground sample points (ISRIC - World Soil
Information, 2015). The dominant soil texture in Gongoni is sandy clay while clay is dominant in Mbuyuni
(described using online soil texture pyramid developed by United States Department of Agriculture (USDA).
The difference in soil texture was evident within and between fields with varying color differences; sandy
soils having dominant bright colors while clay soil having dark in color (Figure 4).
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Figure 3: Spatial variation of percentage of soil texture in Gongoni (a) and Mbuyuni (b).The grey lines indicate the
sampled maize fields.
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More than 80 percent of the Kilosa population depends mainly on agriculture as a source of food and
income. A variety of crops is grown on the two study sites which include maize, rice, millet, cassava, beans,
and cowpeas. Apart from food crops, main cash crops include cashew nuts, coconuts, bananas and sugar
cane. Small scale farming where the average farmland is less than one hectare represents 90 per cent of
agriculture with large scale farming representing the remaining 10 percent (Kajembe et al., 2013). The small-
scale farm holders are mostly subsistence farmers who produce mainly for domestic use, selling only their
surplus to the nearby local markets. There is limited usage of inputs such as inorganic fertilizer, organic
fertilizer or improved seeds with almost 95 per cent using hand hoes for cultivation.

The land ownership in Gongoni is leasehold as it was initially state-owned sisal plantation until 2000 when
it was leased to the farmers, most who have cultivated for less than five years. In Mbuyuni, most land is
family owned mainly inherited from grandparents with farming having been practiced in these fields since
1960’s. The planting season coincides with the start of rainfall season in late February and early March. The
farming system includes intercropping, mixed and mono-cropping. In most cases, the planting dates for the
main crop and the intercrop has a span of two to three weeks which is different for mixed cropping system
in which all the crops are planted at the same time. Common crops mixed with maize include pigeon peas,
sesame, and cowpeas while intercrops include groundnuts and sunflower. Figure 5 indicates maize
development stages and different transition period as described by (Meier, 2001; Ransom, 2013). The blue
and red arrows indicate period in which WV and UAV imagery were acquired respectively.

! {1 1 111 1

9
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L ke

Maize L emergence, Flowering, . . Ripening/
Germination . X i Silking Fruit Development

development development Stem Elongation heading anthesis Senescence

[Meier, 2001) Stage O Stagel,2 Stage3,4 Stage5 Stage6a Stage6h Stage7 Stage®,9

Field dates 01-Mar 14-Mar 28-Mar 18-Apr 02-May 16-May 06-Jun 04-Jul

(Ransom, 2013) 7 days 14 days 28 days 49 days 63 days 75 days 98 days 126 days

Imagery 14-Feb(Wv2) 19-Apri(lUAV)  13-May(UAV) 13 June (UAV/WV) 26-Jun{UAV/WV3) 22JUL (WV2)

Figure 5: Maize development stages with corresponding remotely sensed images and transition dates from one stage
to another
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2.2 Unmanned Aerial Vehicle (UAV) Data

Three fine resolution multi-spectral UAV and four WorldView-2 and -3 images were used in this study. The

images were acquired on different dates during the maize growing season in the year 2015 as indicated in
Table 1.

Table 1: Aerial and satellite imagery acquisition periods

Source 14 Feb 15 19 April 15 13 May 15 13 Jun 15 26 Jun 15 227ul 15
Sensor WV-3 WV-2 WV-3 WV-3
UAl” RGB UAV-Gongoni  UAV-Mbuyuni  UAV-Gongoni

UAV NIR UAV-Mbuyuni  UAV-Gongoni UAV-Gongoni

UAV-Mbuyuni  UAV-Mbuyuni

The UAV images were acquired using two cameras, Red-Green-Blue (RGB) and Red-Green-Near infrared
(NIR) which were flown twice, each time with a different camera as shown in Figure 6. Both cameras had
different spectral ranges as indicated in Table 2. The UAV-NIR camera was a modification of the original
RGB camera using a band-pass filter to allow it detect radiation in NIR band (Lebourgeois et al., 2008).
During the modification, the blue band was replaced with NIR band. The UAV carried on board a Canon
S100NIR NIR camera with 12 megapixels controlled by the drone’s autopilot.

Canon Canon

7\

Figure 6: A fixed wing eBee UAV with different types of camera (Source: SenseFly, 2015)

The RGB and NIR wavelength response function for each the RGB and NIR sensors is indicated Figure 7

Response [%]
1
ponse [%]
1

Wavelength [nm] Wavelength [nm]

Figure 7: S100 RGB and NIR camera wavelength response function (Source: (Arellano, 2015)
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Table 2: WV and UAV spectral band wavelengths

Satellite Aerial
W avelength Spatial Wavelength range  Spatial
Sensor  Band range (nm) reso. (1) Image  Band (nm) reso. (1)
WV-2 eBee
B2: Blue 450-510 1.6 RGB B1l:Red 575-725nm 0.05
B3: Green 510-580 1.6 B2:Green 400-640nm 0.05
B5: Red 630-690 1.6 B3:Blue 390-510nm 0.05
B6: Red Edge 705-745 1.6
B7: NIR1 770-895 1.6
B8: NIR2 860-1040 1.6
WV-3  B2: Blue 450-510 1.2 eBee  B1:Red 575-675nm 0.05
B3: Green 510-580 1.2 NIR  B2.Green  450-650nm 0.05
B5: Red 630-690 1.2 B3:NIR 800-900nm 0.05
B6: Red Edge 705-745 1.2
B7: NIR1 770-895 1.2
B8: NIR2 860-1040 1.2

The UAV aerial imagery with a ground pixel resolution of 0.05 m per pixel at 114 meters above the ground
surface was acquired using eBee Unmanned Aerial Vehicle (UAV), manufactured by Sensefly Ltd
(Cheseaux-Lausanne, Switzerland). Field campaigns, flight planning, and actual imagery acquisition was
carried by University of Maryland (UMD), USA in collaboration with Sokoine University of Agriculture
(SUA) in Morogoro, Tanzania under the umbrella of STARS project. UAV imagery acquisition within the
two 1x1 km study site in Kilosa (Figure 1) was carried out once every month beginning from April to June,
which was the main maize farming season. Despite the initial idea of flying twice per month, it was decided
to fly once a month due to field logistic challenges. During data pre-processing, there was a failure in
generating RGB composites for Mbuyuni and NIR for Gongoni acquired on 19 March 2015. UAV image
pre-processing was carried out by STARS project partners at the University of Maryland (UMD). The eBee
has an inbuilt GPS unit that collects its position and an inertial navigation system that collects the camera
orientation and angular parameters that are both necessary for proper image projection (Sharma et al., 2014).
Orthorecfication was implemented automatically using eBee’s Postflight Terra 3D software package.
Radiometric calibration was carried out to convert digital numbers (DN) to the top of atmosphere (TOA)
reflectance values. In order to reduce the effect of sun angle, data collection was scheduled between 10 am
and 12 noon before the overhead sun and in a cloud-free atmosphere as suggested by Honkavaara et al,,
(2013). In addition, the atmospheric correction was not carried out as there was a minimal atmospheric
effect due to low flying height (110 meter above the ground surface).

2.3. WorldView Data

WorldView-2 and WorldView-3 imagery were acquired by the STARS project from Digital Globe Company,
an American commercial vendor of space imagery and geospatial content based in Longmont, Colorado,
United States. The WorldView-2 and World View-3 imagery spatial resolution was 1.6 meters and 1.2 meters
respectively. Total of 6 images were acquired between February 2015 and July 2015 which is the main maize
growing period. However, two images for May and July had clouds and were not used in the study. Although
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most farmers planted in March, there were few others who planted in February and, therefore, the 14
February image qualified to be used.

The sequence of correcting WV images was first radiometric calibration which involved the conversion of
digital numbers (DN) to the top of atmosphere reflectance using the physical gain parameters contained in
the satellite metadata file. Thereafter, the atmospheric correction was carried out using Second Simulation
of a Satellite Signal in a the Solar Spectrum Vector (6s) radiative transfer model specifically adjusted for the
Digital Globe data which includes WV imagery (Vermote et al., 2000). The algorithm uses external
information derived from MODIS for aerosol and atmospheric condition estimation on the day of image
acquisition to correct the effect of aerosol and a gaseous particle that might have had an effect on the

reflectance received by the sensors.

The last step was orthorectification process which was applied using satellite-derived geometric metadata.
The pre-processing procedure of WV images was carried out by STARS project team here in ITC. Although
the geometric correction was carried out with high precision using automated workflow for both datasets,
there was location shift between UAV and WV which was manually corrected by editing WV image header
file so as to shift X and Y pixel location to a point where features such as roads and buildings showed an
almost a perfect merge with UAV imagery. The location shift of the WV image pixels shifted results are
summarized in Table 3 and Figure 8 shows the flow chart describing the pre-processing steps used on WV
data.

Table 3: WorldView geometric shift to fit UAV imagery

Satellite_ Date Spatial X shift Y shift

Image ID Resolution (m) (pixels) (pixels)
54330600010 14-02-15 1.2 148 -54
54460880010 13-06-15 1.6 42 48
54487783010 26-06-15 1.2 -139.5 13
54551817010 22-07-15 1.6 48 -54

Field campaign

l

/ WV-2,3 / UAV-RGB,NIR
T
! a
- T ¥ —
1 1
! L I ;
Atmospheric Rad.lomejtrlc Orthorectification
correction calibration
| |
v ;
/ WV-2,3 / , Image | UAVRGB/NIR
co-registration

v

[ ]

Figure 8: Flowchart describing the WV and UAV pre-processing steps
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24. Integration of same date WorldView and UAV imagery

The availability of UAV and WV of the same date (13 June 2015) provided an opportunity for creating WV
VI of 13 May 2015 using a regression model to establish the relationship between reflectance of UAV and
WV imagery. Integration used in this context meant using relationship established from two remote sensing
data acquired by different sensors to generate a new image of a different date if imagery of one sensor is
available. This was carried out to determine if possible to integrate aerial and satellite data so as to fill data
availability gap due to limitation such as of cloud on WV images and in case there is a failure in acquiring
UAYV image, then an alternative approach is available. First a test was carried out by correlating the average
field-level NDVI between the two datasets which showed a good relationship with R? =0.77. The result
indicated that the two images responded almost similarly to vegetation reflectance and, therefore, an attempt
was made to integrate the images using simple linear regression model.

The first step was to compute the NDVI of the two images (WV and UAV) at their original spatial
resolutions. The second step was to resample both the WV and UAV to 8 m spatial resolution using nearest
neighbourhood technique. The reason for resampling to a coarser resolution was to ensure a complete
overlap of the pixels so that a linear relationship could be established between NDVI reflectance’s of the
two sensors. The regression equation would help in determining the reflectance bias within the two sensors
which would then be applied to an NDVI image of different date (either WV or UAV). The computation
of VI was to harmonize the differences in band reflectance from the two images. To compute regression
equation, pixel values were randomly selected from 780 points and coefficient of determination computed.
A square buffer of 0.8 meters was generated and mean NDVI values computed using zonal statistics for
each of the random points. The average NDVI within each of the 780 randomly selected points were
exported and coefficient of determination computed which gave an R? =0.51 (n=780). The reason field-
averaged NDVI was not used was to minimize pixel contamination and therefore choice of small area was
preferred. It was therefore assumed that there was minimal heterogeneity within the 0.8m squate buffer

Y=0.6577x + 0.1343 1)
Where Y is the VI values of the new WV generated; x is the UAV pixel values acquired on 13 May 2015 and
0.134 is the reflectance bias error. The regression equation was applied to the UAV imagery of 13 May 2015,
taking its pixels values as the independent variable and WV as the dependent variable so as to compute a
WorldView NDVI map of 13 May 2015 at 8 meter spatial resolution.

VWV-2 Compute UAV-NIR
(1.6m) NDVI (0.05m)
Correlation \‘

WV-2 NDVI (Field bound) UAV NDVI Random
(1.6m) R2=0.7 (0.05m) points 780
Resample / Area buffer ;7 Square buffer
(Nearest neighbor) (0.8 m) (0.8 m)

i T
WV-2 NDVI Regression UAV-2 NDVI Y 7
t (8 m) ’ R?=0.51 (n=780) (Bm) ' a:f=e‘55‘;-le ;

UAV 13 May Resample UAV 13 May Correlation
0.05m(NDVI) Nearest neigh. 8 m (NDVI) (yield) R?=0.41

Figure 9: Flow chart showing the steps taken when computing the integrated imagery NDVI from UAV
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Figure 10: Scatter plot of field level NDVI between same data UAV and WV imagery
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Figure 11: Equation applied to derived new WV NDVI imaged from same date UAV and WV NDVI VI imagery
2.5. Field-level interview data

The purpose of the fieldwork was to collect data on maize production, harvested area, and management
activities carried out at field-level during the maize growing period between February and July 2015. The
field work was conducted from 28* September and ended on 16® October 2015. The farmer interview was
carried at the location where maize was grown for two main reasons, first for the farmer to show the extent
of his field thus ensure accurate field delineation and secondly to collect field-based location data such as
the observed difference in yield within the field. Total of 54 farmers were selected using a purposive random
sampling approach in which twenty-eight (28) farmers drawn from Gongoni and twenty-six (26) from
Mbuyuni.
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Purposive and random selection of the interviewed farmers was carried out based on whether their fields
were part of the farm management units (FMU) monitored by the STARS project team during the entire
maize growing season, secondly the estimated maize production as perceived by the farmers on a scale of
high-average-low production. The reason for asking the farmer to identify high-average-low production
fields was to capture a large range of occurring yield levels which provide representativeness of the un-
sampled fields and help in explaining maize yield difference within and between fields. To further categorize
the fields in terms of high-medium-low production range, visual check on the UAV image acquired on 15%
May 2015 gave an idea of the maize status since it was possible to identify farms with green, pale green and
yellow colored section of the fields. Maize production was reported in a number of bags of maize cobs per
tield. To convert this to standard units, two bags of maize cobs contained in standard large sized gunny bags
were converted to a one-100kg bag of shelled maize. The approximation was reached upon after wide
consultation with farmers and local agriculture extension officer.

Additionally, field management practices such as date of sowing, harvesting, weed and pesticide control,
cropping system, land ownership, source of seeds, period of planting (whether before or after rains), tilling
method applied, fertilizer/manure applied shocks experienced during the growing season, The farmer
response during the interview was keyed into CSEntry Android programmed App downloaded from Google
Play Store using android phone. Every new entry was captured as record and automatically assigned an 1D
which was entered separately in the table with unique 1D and timestamp and the end of the day, it was
downloaded and errors checked and corrected before the leaving for the field the next day. The advantage
of CSEntry as compared to paper based interviewed is that it reduced data entry errors and time. In addition,
it allowed collection of geo-tagged photos which facilitated post-tfield data analysis.

The maize fields were digitized using the 13t May 2015 UAV-RGB imagery as the background layer. The
image was chosen given the difference between maize and non-maize fields was distinct. It is also important
to note that the GPS points collected around the field with the guidance of the farmer were overlaid on the
image so as to show the exact extent of the field section where maize was grown. To ensure the digitized
fields merge with field production and management interview data collected using the tablet, the same
unique identifier was used for each digitized field and the corresponding household interview data.
Considering the effect of trees and vegetation along the field boundaries edges on the computation of field-
level image band mean, the original field polygon was shrunk by 70% of the original area using QGIS vector
buffer by percentage plug-in to generate the boundaries shown in Figure 12. Maize field area was computed
using field calculator in ArcGIS software. The maize field area was computed based on the original digitized
boundary and not the 70% shrunk boundary.

Figure 12: Digitized maize field boundaries(red) with 70% shrunk field boundaries (yellow); (b) photo taken
during the field work showing the fuzzy boundary between two adjacent maize fields separated by a tree.
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3. METHODS

3.1 Spectral indices and metrics computation

Spectral vegetation indices were calculated based on the UAV-RGB, UAV-NIR, and WV images. The mean
spectral bands values were extracted for each of the UAV and WV image using zonal statistics in QGIS.
The shapefile with unique field identifier, farmers name, field area, maize production and computed maize
yield (ton/ha) were appended to the corresponding mean band value. This was performed separately for the
WV and UAV imagery. The computed vegetation indices are listed in Table 4. The choice of the vegetation
index was considered based on index that has been most applied in maize yield modelling, vegetation index
that considers the use of RGB band section of electromagnetic spectrum and which computation algorithm
applied includes either ratio or band difference.

Table 4: Vegetation Indices evaluated in the study

Vegetation Index

Equation

Author

Normalized difference
vegetation index
Modified soil adjusted
vegetation index
Enhanced vegetation
index

Visible atmospherically
resistant index
Difference Vegetation
Index

Transformed
chlorophyll absorption
reflectance index

Excess Green Index

Green Difference
Vegetation Index
Green Normalized
Difference
Vegetation Index
Ratio vegetation index
(also called simple
ratio)

Green leaf index
Green Atmospheric
Resistant Index
Green Ration

Vegetation Index

NDVI=(NIR-R )/(NIR+ R)
MSAVI=0.5{2*NIR+1-V[(2*NIR+1)2—8(NIR—R)]}
EVI=25NIR - R)/(NIR + G*R — 7.5*B + 1)
VARI=(G—R)/(G+ R—B)

DVI=NIR-R

TCARI=3[(Redge—R)— 0.2(Redge—G)(Redge/R)]

ExG=2*G-R-B
GDVI=NIR-G

GNDVI=(NIR-G)/NIR+G
RVI=NIR/R
GLI=(2*G - R - B)/(2:G + R + B)

GARI=NIR-[G-1(B-R)]/NIR+[G-1(B-R)] where

GRVI=NIR/G

(Rouse et al., 1974)

(Qi et al., 1994)

(Huete et al., 2002)

(Gitelson et al., 2002)

(Tucker, C. 1979)

(Haboudane et al.,
2002)

(Woebbecke et al.,

1995)

(Gitelson et al., 1996)

(Jordan C.F., 1969)

(Louhaichi et al. 2001)

(Gitelson et al., 1996)

(Sripada, R. et al 2006)
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3.2, Maize yields modeling approach

To estimate maize yield from the WV and UAV images, linear relationships were established between field-
level maize yield data obtained from the interviews and field-averaged vegetation indices. A variety of
vegetation indices were computed from each image and vegetation indices metrics were used to develop
different models. Adjusted coefficient of determination, Root means Square Error, bias-corrected and
accelerated confidence interval were the parameters used to assess model performance computing using the
bootstrap resampling technique in R. The following section will explain in detail step by step process that
was undertaken to derive maize yield relationships models and the criteria for selecting the optimal one.

Statistical analysis was carried out on the field-level yield interview data to determine if the data were
normally distributed. According to Shapiro-Wilk test (W=0.000, p=0.05) (Figure 13) the data were not
normally distributed. This has an effect in computing statistical analysis such as regression and analysis of
variance at it will lead to bias (the result being not be representative of the population). To overcome the
normality issues with the data, a simple linear regression model was used to calibrate the model and
bootstrap resampling technique applied for validating the model. Although there are many other available
statistical validation techniques which have been applied to validate VI-yield relationships such as cross-
validation and Jack-knife method, bootstrap resampling was preferred due to non-normal nature of the data
and the small sample (n=54) to allow application of ecither cross-validation or jack-knife method.
Furthermore, bootstrap method is less biased and with less coefficient of variation as compared to Jack-
knife and cross-validation methods (Efron et al., 1983). However it is limited in that it relies on a
representative sample and has got high variability as a result of finite replication commonly referred to as
Monte Catlo error (Koehler et al., 2009)

Histogram Normal Q-Q Plot of Maize yield 2015{toniha)
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Figure 13: Non-normal distributed maize yield data (a) bar graph fitted with normal line and (b) Q-Q plot which
shows the deviation of the distribution within the normal fit line.

The bootstrap, like cross-validation, is a data resampling approach (same data used several times) in order
to derive mean, standard error of prediction and bias-corrected and accelerated (BCa) interval. It is a
resampling method with replacement from the target population and this means the sample drawn may have
some of the data represented several times. As a rule of thumb, the sample should be more than the square
of the samples (in this case 54*54).

Yieldmodel < —lm(x~y,data = d) 2

Where yield model (Equation 2) is described as a function of x; which is the dependent variable (in this case
maize yield); y the independent variable (VI metrics) and d; sampled field-level yield data The model

21



ASSESSING FIELD-LEVEL MAIZE YIELD VARIABILITY IN TANZANIA USING MULTI-TEMPORAL DATA FROM AN UNMANNED AERIAL VEHICLE AND WORLDVIEW

summary statistics provides coefficient for the model (the constant and the slope) R2, Adjusted R? and level
of statistical significance (p-value). Once the model is derived, the next step is to validate the model using
the bootstrap resampling method (Equation 3).

Yieldmodel.boot < —lm.boot(Yieldmodel,R = N) 3)

In this case Yieldmodel. boot is a function of the relationship established in the liner equation (2) applied
with resampling (R) for a number of times N (approximately 54 * 54~3600). The summary of the model
provides the model coefficient and the validated R? which in this study, the model with the highest validated
R2 is selected as the optimal model. An example of the function as applied in R-software is presented in the
screen dump in (Figure 14) for the maxGARI derived from WV imagery.

#The rR-script fits the data into a simple linear regression equation

#ITt then computes the R-Squared and adjusted R-Squared of the model

#Computes model reliabilit by resampling n*n using Bootstrap resampling methods-method to validate the model
#Results are R-Squared, bias, standard error and bias-corrected and accelerated (Bca) interval(95%)

#5Cript source:steve Kibet @2016

#adapted from non-parametric Boostraping (http://www.statmethods. net/advstats/bootstrapping.html)

setwd("c:\\Rprogramming")

c<-read. csv("Maize yield VI wv.csv");
names (c)

Tibrary(simpleboot)
MaxGARI<-Tm (Maizeyield-MaxGARI, data= c)#(fits the x,y data into a simple linear regression model)

MaxXxGARI. boot <- Tm.boot(MaxGARI, R = 3600)#(Boostrap resample 3600 with replacement)

summary (MaxGARL)# ()
summary (MaxGARI. boot)

# function to obtain R-squared from the data
Tibrary(hoot)
rsq <- function(formula, data, indices) {
d <- datal[indices,] # allows boot to select sample
fit =- Im(formula, data=d)
return(summary(fit)fadj.r.squared)
1
# bootstrapping with 3600 replications (n=54; 54%54=2916~3600)
results <- boot(data=c, statistic=rsq,
R=3600, formula=Maizeyield-MaxGARI)

# view results

MaxGARI #(model coefficinets)

print(results) #(prints the results of Bootstrap statistics model, the R-Squared, bias, and standard error )
plot(results)#(plots the histogram of t-test to determine normality of the data, it includes the quartile plots)

# get 95% confidence interval-computes bias-corrected and accelerated (BCa)
boot. ci(results, type="hca")

Figure 14: Bootstrap scrip applied for validating VI-maize yield relationship

Besides evaluating the relationship between single-date VI and maize yield, a number of VI temporal
integration approaches were used that combine VI information from multiple dates. These included maxV1
and cumVI. These vegetation index metrics are important in studying vegetation development, for example,
looking at its phenological characteristics such as germination, leaf emergence and the start of senescence
(Vrieling et al., 2011). In addition, single-date VI would be incompatible with yield estimation equation since
the simple regression would neglect man-induced factors which have an eventual effect on yield increase
(Huang et al., 2013). Furthermore, longer VI integration periods minimizes variability in yield prediction as
results of variations in image acquisition dates, processing and difference in management factors such as
early or late planting. The VI metrics around period of maximum VI have shown to be strongly correlated
to maize yield (Mkhabela et al., 2011). In most of the crop yield studies, periods around flowering and fruit
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development has shown to have high yield-reflectance relationship (Laigang Wang et al., 2014). On the
other hand, VI changes outside this period (i.e. early and late in the season) have shown to have a poor
relationship with yield. Therefore, most studies have concluded that the period between mid-late growing
periods is a good indicator of yield. Considering the optimal period has been established around the period
of maximum VI, MaxVI metrics was tested to determine if season’s maximum VI can provide better yield
estimate.

Therefore, the first approach was to extract mean band surface reflectance values using zonal statistics from

the digitized field boundaries and exported to Microsoft excel for VI computation. The second step was to
compute the various single-date VI described in Table 4. Studies have shown that the longer the VI
integration, the minimal the variability in yield prediction (Laigang Wang et al., 2014). The maxVI was
derived from the highest VI value derived from each single-date image which was assumed to be equal to
the peak value of the seasonal VI. Data interpolation was not applied to single-date VI in order to determine
the value at each single period of crop growth. Summary of computed metrics is presented in Table 5.

Table 5: Vegetation index variables and the calculation formulas

Vegetation index variables Description of formulas

VIw 14th Feb. 2015 WV-VI index

VIw, 13t May. 2015 WV-VI index

Viws 26t Jun. 2015 WV-VI index

VIw, 22t Jul. 2015 WV-VI index

cumVIwiw, VIwi + VIw;

cumVIwi ws VIw; + VIw, + VIws

cumVIwi wy VIwi + VIw, + VIws; + VIwy

cumVIwzw3 VIw; + VlIws

cumVIw, wy VIw, + VIws + VIws

cumVIws.wy VIws; + VIwy

maxVIwi wy Max(VIw; ;VIwz ;VIws ;VIwy)

Viw 19t Apr. 2015 UAV-VIindex (RGB & NIR)
Viu, 13t May. 2015 UAV-VI index (RGB & NIR)

Vlu;

cumVIujuy
cumVIuj usz
cumVIu, usz
maxVIuiuy

13t Jun. 2015 UAV-VIindex (RGB & NIR)
VIul + VIu,

VIu; + VIu, + Vlus

VIuz + Vius

Max(VIuy; VIug; VIus)

The maize yield estimation model were evaluated using the following indicators:-

Root mean square error (RMSE):

RMSE =

Where, 7 1s the number of observation Y7 is the observed and Y is the predicted value

Adjusted coefficient of determination:
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02 _ 41 pz n—1 5
AdjR? =1 - (1 R)[ni_(kﬂ)

Where n = number of sample and k the number of independent variable in the regression

Apart from yield data collected, management factors such as tilling methods, cropping system source of
seeds planted, the frequency of weeding, sowing date, the level of pest and diseases infestation were analyzed
to determine if it had a significant difference in maize yield. One way analysis of variance (ANOVA)
approach was used to determine the influence of management factors on maize yield. The prediction
accuracy of the different modeling strategies was assessed by Root Mean Square Error (RMSE). The test
under the null hypothesis (H,) was that there was no significant differences (p> o > 0.05) between the
different management factors applied at field-level on maize yield and an alternative hypothesis (Hi) that
the management factors applied by the farmers had significant differences on maize yield (p< « < 0.05). In
the event the p < a (which indicates no difference between the groups) a further test between the
combination of different groups was performed using Fisher Least Significance Difference (LSD) method
using Equation 6 as described in (Williams et al., 2010). The rationale behind the LSD technique is that
when the null hypothesis is true, the value of (t) statistics evaluating the difference between group’s a; and
a2 is equal to zero.

|Ma1+ Mgz | > LSD = tva\/MSs(A)(ﬁ‘l'% 6
3.3. Field-level maize yields spatial variability

The field level yield variability map was derived based on the optimal index which gave the highest adjusted
correlation coefficient with actual maize yield with low RMSE and bias error. The selected model was
applied to the best performing VI imagery to derive yield variability map. Since the VI derived from the
different images was computed based on mean band values extracted, the optimal VI was computed so as
to derive VI of each pixel and the model equation applied. The result was a yield map in which each pixel
represent maize yield in that specific location in tons per hectare.

A further test on the effect of yield management factors influences on maize yield. Using the sample points
ranked in order of high-average-low yield was tested using Spearman's rank correlation. This was achieved
by first creating a square buffer of 4 meters around the sample points to gather for GPS errors and geometric
correction errors. Secondly zonal statistics was applied to extract yield values corresponding to the-the
farmer reported yield rank. This was then exported to Microsoft Excel and non-parametric Spearman's rank
correlation analysed to determine to what level of accuracy are the location the farmer reported high yield
correspond to high VI values. The Figure 15 shows some of the in-field sampled data with a 4-meter buffer
used to aggregate yield data within those pixels.

Figure 15: Field-level reported maize yield rank locations with the 4-meter buffer

auj. [!
IEui
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4. RESULTS

41. Correlation coefficients between maize yield and VI metrices tested

The coefficient of determination (R?) between maize yield and the VI variables derived from UAV-RGB,
UAV-NIR, and WV-NIR VI metrics are summarized in Figure 16.The colored cells indicate R? of maize
yield-VI relationship at a given date. The point at which the same dates converge in both X and Y axis
indicate R? derived from a single-date VI imagery while different date’s combination indicates cumVI
between the selected dates. The top section of the chart indicates the maximum VI-yield relatioship.

UAV-RGB vegetation indices UAV-NIR vegetation indices
GRVI (WV-RGB)* NDVI (UAV-NIR) GNDVI (UAV-NIR)
MaxGRVI 0.070 [Aa=NDVI 0312 MazGNDVI 0.293
13Jun-15 13-Jun-13 0.322  13Jun-13 0244
13-May-13 0072 13-May-13 “ 13-May-13 0117 0.300
19-Apz-13 0151 | 19.4ps15 0138 19-Ape-15 0142
19-Ape-13 13Mayp-13  13Jun-13 19-Ape-13 13-May-13 13-Jua-13 19-Ape-13 13-May-15 13-Jun-13
VARI (UAV-RGB)* RVI (UAV-NIR}) MSAVI (UAV-NIR)
MasVART 0.089 | MiawRWVI 0282\ [awMSAVI 0.313
13-Jun-135 13Jun-13 0305 15Jun13 0.322
13-May-15 0.088 13 Mav-15 a- 13 Mav-15 0.116
19-Apz-13 0134 f19.4ps15 0121 0195 19.4ps15 0138
19-Aps-13 13-May-153 13-Jun-13 19-Ape-13 13-May-13  13-Jun-15 19-Ap-13 13-May-13 13-Jun-13
ExG (UAV-RGB) ExG(UAV-NIR) DVI (UAV-NIR)
MasEsG 0031 | \asEsG 0057 AaxDVI
15-Jun-15 0519 [ 153Jun-15 13-Jun-13
13-May-15 0064  [13\fay-15 13- May-15 0.075 0.099
19-Apz-13 00681 [19.4ps15 0083 0.036 19-Aps-13 0074
19-Ape-13 13-May-15  13-Jun-13 19-Ape-15 13-May-13  13-Jua-15 19-Ap-13 13-May-15 13-Jun-135
GLI (UAV-RGB) GDVI (UAV-NIR) Strong
\axGLI MasGDVI
13-Jun-13 13-Jun-15
13-May-13 15-2ay-13 0.077 0.092
19-Apz-13 19-Ape-15 0080 _
19-Ape-13 13-May-13  13-Jun-13 19-Ape-13 13-May-13  13-Jun-135 Weak

Figure 16: Coefficient of determination of maize yield and temporal VI metrics derived from UAV-RGB and UAV-
NIR images. For the majority of the fields, the dates 19™ April 2015 correspond to inflorescence stage of maize
stage, 13™ May 2015 flowering, and 13% June 2015 silking stage. The R? was significant at the p < 0.001 except for

the lowest R2 < 0.02.
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NDVI [WV] DVI [WY) GNDVI [WV]
MaxNDVI 0.354 MaxDVI 0.432 MaxGNDVI 0.431
22-Jul-15 0.085 22-Jul-15 0.118 22-Jul-15 0.128
26-Jun-13 0.423 0.312 26-Jun-15 0.378 0.313 26-Jun-13 0.491 0.362
13-Jun-15 0.571 0513 0.453 13-Jun-15 0.474 0.447 0.427 13-Jun-18 0.582 0.570 0515
14-Feb-15 (0010 01583 0.301 0.333 14-Feb-15 [0.005 0.193 0.305 0.336 14-Feb-15 |0LO0F 0173 0.3 0.382
14-Feb-15 13-Jun-15 26-Jun-18 22-Jul-13 14-Feb-18 13-Jun-18 26-Jun-18 22-Jul-158 14-Feb-15 13-Jun-15 26-Jun-18 22-Jul-18 Suon.g
MSAVI (WV) WY-ExG TCARI [(WV)
MaxMSAVI 0.341 MaxE xG 0.055 MaxTCARI 0.248
22-Jul-15 0.071 22-Jul-15 0.034 22-Jul-15 0.087
26-Jun-13 0.425 0.282 26-Jun-15 0.m3 0.033 26-Jun-13 0.162 0147
13-Jun-15 0.568 0515 0.420 13-Jun-15 0143 0.077 0.070 13-Jun-18 0.433 0.365 0.342
14-Feb-15 (0013 0.113 0.2458 0.284 14-Feb-15 0000 0.062 0.053 0.060 14-Feb-15 [0.074 0.178 0.201 0.213
14-Feb-15 13-Jun-15 26-Jun-18 22-Jul-13 14-Feb-18 13-Jun-18 26-Jun-18 22-Jul-158 14-Feb-15 13-Jun-15 26-Jun-18 22-Jul-18
EW W)™ WwWh-GAR™ GDVI [WY)
MaxEVI 0.481 PG AR 0.514 MaxGDVI 0503
22-Jul-15 0107 22-Jul-15 011 22-Jul-15 0.140
26-Jun-13 0.416 0.337 26-Jun-15 0.469 0.316 26-Jun-13 0.387 0.334
13-Jun-15 0.613 0522 0.481 13-Jun-15 0.603 0.566 0.470 13-Jun-18 0.474 0.457 0.445
14-Feb-15 |0L004 0.104 0.303 0.360 14-Feb-15 |0.006 0163 0.323 0.363 14-Feb-15 |0.003 0.194 0.302 0.343
14-Feb-15 13-Jun-15 26-Jun-18 22-Jul-13 14-Feb-15 13-Jun-15 26-Jun-18 22-Jul-18
VAR (WV) GLI [W¥) RVI [(wWV)
MaxVARI 0.186 MaxGLI 0.351 MaxR¥I 0.369 Weak
22-Jul-15 0.048 22-Jul-15 0.047 22-Jul-15 0.155
26-Jun-13 0.303 0.245 26-Jun-15 0.239 0.180 26-Jun-13 0.425 0.360
13-Jun-15 0.445 0.360 0.322 13-Jun-15 0.465 0.352 0.245 13-Jun-18 0.560 0.514 0.439
14-Feb-15 (0013 0160 0.281 0.273 14-Feb-15 [0.00F 0.125 0.256 0.216 14-Feb-15 |0.003 0.344 0.450 0.470
14-Feb-15 13-Jun-15 26-Jun-18 22-Jul-13 14-Feb-18 13-Jun-18 26-Jun-18 22-Jul-158 14-Feb-15 13-Jun-15 26-Jun-18 22-Jul-18

Figure 17: Correlation coefficient of maize yield and WV-VI data and maize yield at different stages of maize
development. In most fields 14% February 2015 correspond to sowing period; 13™ June 2015-silking, 26" June 2015-
fruit development and 227 July 2015 senescence period. The R? has at p < 0.001 except for the lowest R? < 0.

The correlation coefficient between maize yield-VI metrics obtained from single-date images indicates a
weak maize yield-VI relationship at the beginning of the maize growing period, whereas the relationship
between for imagery during the silking stage is significant for both the UAV and WV vegetation indices.
The largest correlation coefficient derived from VI metrics and yield computed from UAV-RGB imagery
was GRVI (R?=0.5) and VARI (R?=0.508) while for UAV-NIR was NDVI (R?=0.322) and MSAVI
(R?=0.322) and with regard to WV-NIR, EVI (R?=0.613) and GARI (R?=0.603. The possible reason could
be that around this period active photosynthetic activity is taking place in the maize and, therefore, any
interference during this period such as insufficient water supply, nutrients, and disease or pest infestation
would have adverse effects on maize yield. One notable observation is the weak relationship of maize yield-
VI in the month of February whereby there was little vegetation including weeds considering the fields had
been sowed.

Furthermore, the maize-VI relationship seems to deteriorate after a period of maximum greenness which is
estimated around 13 May 2015 given most maize fields had consistently high VI values around this period.
This could be as a result of declining photosynthetic activity as a result of a reduction in chlorophyll content
which NIR vegetation index is most sensitive to. Therefore, the reflectance reaching the sensors is reduced
as the maize heads toward senescence period. However, the WV imagery acquired during the senescence
(22 July 2015) period had a stronger relationship with yield as compared to imagery acquired in the month
of February. This was expected considering there were fields with mixed crops such as pigeon peas,
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sunflower and also fields planted late were still green. Although at inflorescence stage the maize crop is fully
grown and characterized with maximum greenness, it still showed a small R? value (<0.1) with UAV imagery.
This can be attributed to differences in weeding whereby in some fields, weeding had been completed while
in some it was in progress. In addition, some fields though weeded had good maize crop but had lower VI
because of weed removal. Apart from this, other vegetation growing in the maize field (either intercropped
or mixed) contributed to high VI value considering they were almost same height as maize plant. Figure 18

provides insights on the status of the maize field during this period.

Figure 18: Very fine-resolution RGB image acquired on 13 May 2015 (flowering stage) showing maize field with (a)
mixed sunflower with same height as maize (b) half weeded maize field (c) mono-cropped maize yield at
inflorescence stage and (d) Mono cropped maize field with patches of weeds at flowering stage.

As maize crop grows towards silking stage (one month later), the relationship is seen to have improved with
VARI derived from UAV-RGB and EVI derived from WV-NIR large R2 Surprisingly, though, increased
yield (highlighted in red in scatter in Figure 19) shows to correspond to decreased VI. This is contrary to
what the model describes i.e. increase in VI corresponds to increased yield. A plausible argument for this
unusual pattern could be the accuracy of interview data collected. There is the possibility of farmers having
over reported maize production which leads to such inconsistencies whereby the yield does not correspond
to the VI values. Secondly, it could be variation in planting dates which leads to differences in stages of
maize development. The other reason could be related to single-date imagery VI which provides reflectance
of a single period which is varies from field to field.
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Figure 19: Scatter plot showing the relationship of maize yield with single-date (a) VARI (UAV-RGB) and
(b) WV-EVI during silking maize growth stage. The red points indicate unusual pattern of yield which
corresponds to low yield.

The cumulative UAV-RGB and UAV-NIR vegetation index results indicate weak VI-maize yield
relationship the largest being cumVARI (R?=0.455) during the flowering and fruit development as compared
to VI derived during silking and fruit development cumNDVI (R2=0.372). As compared to WV derived
index cumGNDVI (R2=0.570), showed better maize yield-VI relationship during silking and fruit
development. This shows that cumVI derived from WV performed better than UAV-RGB and UAV-NIR
cumVTI’s which could have been majorly contributed by the difference in image acquisition dates. As noted
in the results, the inclusion of a longer VI integration period result to the weak maize-VI relationship as
compared to shorter integration period from the flowering period. The other factor (though not directly
tested) could be as a result of narrow WV spectral range as compared to broader UAV spectral range which
might have resulted in a difference in sensor sensitivity to maize vegetation reflectance. The observed
variation is better explained by the scatter plots in Figure 20.
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Figure 20: Maize yield-cumVARI relationship derived from UAV-NIR during flowering-fruit development stage and
(b) WorldView Maize yield-cumNDVI relationship during silking-fruit
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Maximum VI showed consistently small R2 values in all the VIs tested in both the UAV-RGB and UAV-
NIR sensor. The best UAV-RGB result was derived from maxVARI (R2=0.089) while for UAV-NIR was
maxMSAVI (R?=0.313). In regard to WV, maxGARI (R?=0.514) gave the best relationship with maize yield.
One probable reason for the variable performance of maxVI is the confounding effect of weeds and other
crops (sunflower and pigeon peas) grown together with maize in the same field which gave a high VI value.
The performance of season’s maxVI derived from WV was higher than what was observed with RGB
derived VI’s and this could be as a result of the difference in dates of image acquisition.

Scatter plot of the yield-VI variation derived from maxMSAVI and maxGARI during the maize growing
season is indicated in Figure 21.
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Figure 21: (a) Maize yield relationship with maxMSAVI derived from UAV-NIR during the maize growing season
from sowing to senescence and (b) maxGARI derived from WV-NIR data

The results obtained from integrating WV and UAV indicate the coefficient of determination was 0.44,
which was derived using single-date NDVI imagery at fruit development stage. This indicates a good
potential for image integration in estimating maize yield at large scale by integrating very high spatial
resolution imagery with coarse resolution data. However, advanced image fusion algorithm is recommended
for enhancing the accuracy of the VI imagery integration, especially for multi-temporal imagery integration.

In summary, single-date WV vegetation index metrics performed better than UAV-RGB and NIR derived
metrics. Likewise, the performance of single-date UAV-RGB camera VI metrics was better than UAV-NIR
camera. However, cumulative UAV-NIR vegetation index data showed a better relationship than with
single-date imagery during flowering and fruit development stage. There was general agreement between the
three datasets on the best period for estimating maize yield to be during fruit development which occurs
approximately 60-70 days from the sowing date.
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Table 6: Summary of optimal VI indices and vegetation variables with corresponding R? and maize yield RMSE

Bands  Sensor VI Metrix Maize stage Index function R2 AdjR2 RMSE n

RGB  UAV  Single image.  Fruit dev VARI Y= 11.609x+ 1.06  0.508*** 0489 0483 28
NIR  UAV  Single image  Fruit dev NDVI Y=4.298x — 1.278 0.322+¥F 0307  0.600 50
NIR  UAV  Single image  Fruit dev MSAVI  Y=5.394x — 5.417 0.322+¥ 0308  0.600 54
NIR WV Single image  Fruit dev EVI Y =10.57x- 43502 0.613*** 0.626  0.460 54
RGB UAV  Variable Silking-Fruit-dev. VARI Y=7.647x + 0.253 0.455%F* 0434 0532 28
NIR  UAV  Variable Silking-Fruit-dev. NDVI Y=3.551x — 3.148 0.372%F% 0359 0577 50
NIR WV Variable Silking-Fruit-dev. GNDVI  Y=06.476x — 7.187 0.570%* 0.562  0.586 54
RGB UAV ~ MaxVARI Entire season VARI Y=0.00022 + 1.049  0.031* -0.006  0.750 28
NIR  UAV ~ MaxMSAVI  Entire season MSAVI  Y=12.28x—14.84 0.313%+ 0299  0.603 50
NIR WV MaxGARI Entire season GARI Y=9.116x — 3.711 0.514*¥* 0504  0.500 54

Level of statistical significance p***=0.01; p**=0.05; p*=0.1

n-number of sampled (varies depending on availability of NIR, RGB imagery)

4.2, Bootstrap model validation results

The bootstrap resampling validation computed using R-software was able to resample the data (n=54)
3600 times and generated normally distributed bootstrap sample using linear model derived from EVI
index data and maize yield relation as shown in Figure 22. The histogram and the quantile plots indicate
the sampled population distribution was normally sampled test.
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Figure 22: Normal distribution of the bootstrap sample population distribution shown in the histogram and the
quartile plots computed from Enhanced Vegetation Index (EVI).

The results indicate cleatly that EVI was the optimal index. The criteria used to select the optimal model
was the model with high AdjR2, RMSE, Standard Error (SE) and high lower and upper in bias-corrected
and accelerated (BCa) at 95% confidence intetval as summarized in Table 7. In addition, the model with a
small sample (n=28) considering the samples were drawn from only one study site.
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Table 7: Bootstrap result of maize yield-VI validation

VI metric Equation AdRz2  RMSE SD Bias SE BCa (95% CI
Lower Upper
bound bound
EVI Y =10.5706x - 0.601* 0.460  0.478 0.028 0.072 0.476 0.753
4.3502
cumGNDVI  Y=6.476x — 0.562* 0.586  0.654 0.003 0.079 0.399 0.707
7.187
MaxGARI Y=9.116x — 0.504* 0.500 0.093 0.006 0.092 0.290 0.664
3.711
Significant at p < 0.00
Results based on 3600 bootstrap samples

4.3. Field-level maize yields variability

The yield variability map in Figure 23 shows spatial variability within and between fields. The variability map
was computed using single-date WV-EVI equation during fruit development maize stage. The RMSE of the
actual and predicted yield was 0.45 ton/ha with a bias error of zero. For the validation test catried out using
Bootstrap (BCa, SDE, and SE) the model performed well. This indicates that the model is robust enough
and could be applied for to an independent maize yield datasets. The equation that best described maize
yield and VI relationship was Y = 10.576x - 4.35

Table 8 shows the model results in which at 95% contidence level, the actual and predicted maize yield has
similar mean confirming the model good performance. However, the model had substantial effect on both
the maximum and minimum maize yield whereby the model under predicted yield. This can be further
confirmed by the negative intercept (-4.35). These results are important when interpreting the computed
maize yield maps.

Table 8: Descriptive statistics of the actual and predicted maize yield (ton/ha)

Actual yield Predicted yield
Mean 1.201 1.201
Variance 0.526 0.333
Std. Deviation 0.725 0.576
Minimum 0.310 0.190
Maximum 3.370 2.590

95% confidence of the mean

The yield variability map (Figure 23) shows high spatial variability within and between the fields. The highest
maize yield (green) in most cases were fields with maize mixed with pigeon peas or sunflower. The green
patches in the fields do not represent yield, rather they are isolated trees within the fields. The reason for
such inaccuracies is the effect on non-maize vegetation growing in the maize yield which increases VI. The
other factor that contributed to difference in maize yield variability is that some of the maize in some fields
were already in senescence stage, especially those farmers who planted in late January or early February.
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Figure 23: Pixel based result from modeling maize yield variability using Enhanced Vegetation index (EVI) derived
from WorldView-2 imagery acquired during flowering maize stage. The sampled maize fields are indicated with black
boundaries.
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Figure 24: Fine spatial resolution UAV-RGB and UAV-NIR imagery (0.05m) acquired on 13 June 2015 showing
maize field during flowering stage in the two study sites (bright green polygons are the fields sampled)
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The graph shows that the model over-predicted maize yield especially the low which can be attributed to
non-maize vegetation growing in the maize yield and which had high reflectance values. This can be
observed with the maize yield scatter graph in which most of the predicted maize yield lie above the scatter
plot line. This is further supported by the descriptive statistics indicated previously in

Table 8 where the predicted and actual yield had same mean but the different standard deviation in which
predicted maize yield showed the least variation as compared to the actual maize yield. The scatter plot in
Figure 25 indicates the spread of the predicted maize yield as compared to the actual maize yield obtained
during the interview with the farmers.
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Figure 25: Comparison of reported yield with values predicted from WV-EVI at fruit development stage Effect of
management factors on maize yield

4.4, Effect of management factors on maize yield

A further test was carried out to determine if differences in management factors reported by the farmers
had a significant influence on yield. In this regard, Analysis of Variance (ANOVA) was computed based on
different management factors which include the method of tilling applied, cropping system, seeds planted,
the number of times weeding was carried out, difference in planting dates and level of pest and diseases
infestation on maize crops. The ANOVA results summarized in Table 9 shows the only observable
difference was the number of times weeding was carried out and the method of tilling applied. However the
ANOVA test does not show which factor had significant impact on yield. The hypothesis was it ANOVA
the computed p-value is less than alpha (¢=0.05) then the management factor would be statistically
significant at 95% (0.05) confidence level (i.e. p< o)

Table 9: ANOVA results of interview field management practices on maize yield

Management factor Interview results Grouping Conclusion
Tilling methods 0.03< 0.05 Tractor, oxen & hand hoe Different
Cropping system 0.34>0.05 Mono-cropping, mixed cropping No
&intercropping Difference
Seeds planted 0.59>0.05 Local & certified seeds
Weeding 0.04> 0.05 Once or twice Different
Planting date 0.16>0.05 Grouped in 10 days difference No difference
Pest 0.18 >0.05 High, Average and Low No difference
Diseases 0.34 > 0.05 High, average and low No difference
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Separately, Fisher's Least Significant Difference (LSD) test was carried out to determine which of the tilling
methods had a significant effect on yield. The results indicate the use of tractor and hand hoe had a
significant effect on yield (0.02<a >0.05), although the test does not indicate which gives a higher or low
yield. However averaging the yield of farmers who reported having used tractors as compared to those who
used handhoe, those who used tractor harvested more yield than those who used hand hoes or oxen.

Although it has been established in many studies that planting dates have a significant influence on yield,
the probable case in this as to why there was no significant difference in yield could be due to the fact that
most farmers planted around the same time which could not make much difference in maize yield. In
addition, other factors may have contributed to yield difference more than effects of planting. The few who
planted eatly or late may also have had other factors which influence maize yield much more than the
planting dates. In regard to weeding, the effect of weeding of competing for nutrients with maize plant
makes the maize crop weak. In addition, weeds attract pests and diseases which attack maize crops resulting
in low yield. However, it is interesting to note there was no much difference between the farming systems
against the expectation that mono-cropped fields would have a higher yield as compared to mixed or
intercropping. The probable reason could be in the mono-cropped fields other factors that affect yield
played significant role thereby reducing the maize yield. Pest and diseases effect as reported by many farmers
was not a major problem as compared to weeds and this is the reason why the effect of pests and diseases
had no significant effect on yield.

A further test to determine spatial field-level maize yield variability was tested using the high average-low
yvield location reported to test if it was corresponding to the results predicted by the VI-yield model. The
results of non-parametric Spearman’s correlation gave a result of R?=0.202 (n=920). Although this is
extremely low compared to the yield estimate, the information which can be deduced from these result is
that for most of the points reported by the farmers does not correlate with the VI obtained. The reason is
further justified by the box plot in Figure 22 which indicates the variation of the reported maize yield rank
in order of high medium and low yield by the farmer interviewed against the estimated maize yield. The
section of the fields reported having low yield seems to have the highest variation. This can be attributed to
the VI images predicting high yield in areas with trees and weeds while the actual yield is low. The box plot
showing high yield had the lowest variation meaning whatever location the farmer reported having harvested
high yield corresponded relatively well with what was observed in the imagery. Lastly, the average yield
variation was slightly higher than high yield variation which is due to some section reported having low yield
when compared to the predicted maize yield as shown with the high reported yield having the least variation.

41

Maize yield (ton/ha)
hd hd

-
1

Average High Low
Observed

Figure 26: Box plot showing differences in-field reported maize yield level in comparison to the yield at
derived yield variability map.

34



ASSESSING FIELD-LEVEL MAIZE YIELD VARIABILITY IN TANZANIA USING MULTI-TEMPORAL VERY HIGH RESOLUTION IMAGERY

5. DISCUSSION

5.1. Assesment of yield using fine spatial resolution data

Fine spatial resolution imagery captures fine structures of maize plant such as the leaves while coarse
resolution data cover canopy level. In their assessment of effect of spatial resolution on maize yield
relationship, Geipel et al., (2014) found that by varying spatial resolution from fine (0.02 m) to intermediate
(0.04 m) and fine resolution (0.06 m); the inter-intermediate and fine resolution ExG index relationship with
maize yield had a better R? than very fine spatial resolution data in which they attributed to high noise from
soil and non-maize vegetation. However, for coarse resolution data, the R? is degraded by the mismatch
between maize fields and the pixel sizes especially for the 250 meter resolution data when used in highly
fragmented fields (Duncan et al., 2015). Therefore, in determining this VI-maize yield relationship, it is
important to consider the stage of maize growth and the type of vegetation cover existing within the maize
yield.

In addition, fine spatial resolution RGB imagery is very useful for visualization and for accurate delineation
of maize harvested area as shown in the study. Fine spatial resolution helps in mitigating the challenge of
coarse resolution data which does provide sufficient resolution for delineating maize fields (Lobell, 2013).
However, automatically delineating boundaries would still be a challenge considering fuzzy maize yield
boundaries which are further complicated by farmers who change their land use in the middle of the season
due to such factors as poor performance of the maize. Furthermore, the effect of non-crop vegetation in
the crop field has been shown to have significant impact on coarse spatial resolution data and is still a
challenge for the fine spatial resolution imagery (Chen et al., 2008). This had a significant effect on the maize
yield relationship derived in this study. To mitigate this, there is a need to separate crop and non-crop
vegetation using such methods as of spectral thresholding as applied by Ridler et al, (1978) than
conventional classification approaches which is limited by the need of validation points (Rembold et al.,
2013). In their review of the use of remote sensing in yield gap analysis, Duncan et al.,, (2015) note the
challenge of effect of non-crop vegetation not only in regard with coarse resolution data, but also with fine
resolution imagery though the effect is not comparable to the coarse resolution data. Furthermore, there
using crop texture especially with multi-temporal images will provided a better method of detecting weeds
and other non-maize crops. In addition, other methods such as combining VI data crop height model which
is obtained by subtracting digital surface model (DSM) and digital elevation model (DEM) (Geipel et al.,
2014). Therefore, for accurate yield assessment fine-spatial resolution remote sensing data still holds the key
to achieving improve maize yield assessment at field level, only if non-maize crop are masked out.

The limitation with very-fine-resolution data is the temporal frequency of acquisition and allows monitoring
only at small scale. However, efforts have been made to fuse high resolution and coarse resolution so as to
generate high-resolution synthetic VI image which would allow monitoring of the large area (Boschetti et
al., 2015). The simple linear regression tested integration technique applied in this study show there is the
potential for integrating both WV and UAV images. However this calls for used of improved algorithms
such as Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) Gevaert et al., (2014) or such
algorithm described by (Zurita-Milla et al., 2011). The advantage with these methods is that it takes into
consideration high temporal and spatial variability in vegetation reflectance.

Accurate pre-processing of fine spatial resolution data is very important for accurate maize yield estimation
from fine spatial resolution data. Horizontal alignment errors in fine resolution imagery have a large impact
on the displacement of features considering its fine spatial resolution. In order to account for horizontal
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misalignment, Geipel et al., (2014) suggest the use of polygon containing field information for realigning all
the images acquired during the crop season. Combining digital terrain model (DTM) with an accuracy of
10-15 cm and ground control points (GCP) of the approximate accuracy of ~30 cm acquired automatically
during UAV flight has shown to substantially improve the accuracy of geometric and orthorectification of
UAYV imagery (Vallet et al., 2011). Furthermore, Geipel et al., (2014) suggest the use of DEM and DTM
than the use of dense point cloud which can be hardware demanding task. In regard to WV, the geometric
errors are large due to large area coverage by the sensor than UAV and considerable care has to be
considered when comparing results of these two datasets (or even integrating). This was noted in this study
since there was uniform shift between WV and UAV which was corrected by shifting pixel position. The
limitation with this approach is that it does not give the RMSE of the location shift which can be used to
evaluate the accuracy of geometric correction. Alternative to this would be to use GCP acquired from the
UAYV which was not readily available for use during this study. In regard to WV imagery, the effect of
atmospheric effect have an impact on the signal detected by the sensors. However, in as much as the effort
is made in correcting atmospheric and radiometric bias, errors due to the row-based cultivation of corn and
missing canopy, early stages require very high spatial resolution which gets less important as the maize
canopy cover increase (Geipel et al., 2014). Accurate estimation of maize yield at field level is dependent
among other variable spatial resolution, vegetation index and field management factors. The study showed
that while the use of fine spatial resolution vegetation metrics has the potential to improve maize yield
estimation, it is complicated by non-uniform field management practices.

5.2. Statistical emperical model use in yield assessment

There are several empirical models that have been applied in modeling VI-yield relationship. Of these
models, linear models have shown to be an optimal model. However, the performance of the model depends
on the quality of yield data used given there is the possibility of non-negligible errors in farmer reported data
which have an impact on model performance (Lobell, 2013). These errors might have contributed to the
model showing low EVI for high yield which is contrary to what the model was presenting. The distribution
of the sample should also be considered as this has an impact on model performance. Although a number
of techniques are available for validating empirical yield models, the conventional splitting of the data into
two sets (test and training) does not give a good indication of model performance considering large sample
is required for it to be split. In addition, the data has to be normally distributed otherwise the effect of
outliers would have a significant impact on model results. In order to overcome this cross-validation and
bootstrap resampling techniques are preferred in computing residual errors in the model. The advantage of
cross-validation is that validation data is different from the training data, however, it is limited in the fact
that the sample has to be substantially large for it to be divided into training and testing sample and
furthermore, the model has high variability which changes when a new sample is drawn. On the other hand,
bootstrap does not require data transformation in case the data is not normally distributed, however, the
pick one with replacement has been found that almost 30% of the samples drawn also form part of the
model (Koehler et al., 2009). In general, all regression models perform well, however, the linear model is
preferred in yield-VI modeling. In addition, normalizing data using statistical transformation changes the
original yield values and therefore resampling techniques such as bootstrapping and cross-validation is
preferred.

5.3. Fine spatial resolution vegetation metrics use in crop yield assessment

The remote sensing approach of using VI metrics is based on the fact that vegetation reflectance provides
a measure of amount and condition of greenness which in turn is applied which is a proxy used in estimating
yield (Duncan et al.,, 2015). In this regard, use of very-fine resolution detects any green vegetation in the
field which may lead to erroneous interpretation of yield variability maps. A good example of this study was
with sunflower and pigeon peas planted fields had significantly high VI even after maize senescence
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considering they were planted 2-4 weeks after maize. Using the current modeling approach, the VI of
sunflower or weeds will be considered and this leads to overestimation of yield.

The vegetation indices computed from RGB camera carries limited spectral information as compared to
NIR camera due to the high atmospheric effect on the visible band (Lebourgeois et al., 2008). In the study,
EVI showed a high predictive power in maize yield estimation as compared to other indices tested. In other
studies reviewed, EVI has shown high predictive in maize yield estimation (M. Wang et al., 2014; Zhang et
al., 2014). Considering EVI uses 3 bands as compared to NDV]I, this has been shown to have shown better
results since the blue band is known to provide atmospheric correction as compared to NDVI (Bolton et
al., 2013). EVI, in this case, had a higher R? (0.63) as compare to a study by M. Wang et al., (2014) which
they obtained R2 = 0.43, and lower than Bolton et al., (2013) in which they obtained R2=0.67. The difference
between this study and the studies highlighted is the geographical zones in which the study was carried out
where in the case of largest EVI was carried out in the United States of America while the lowest EVI results
were carried out in India. Furthermore, this study used field be attributed to the fact in this study, field
aggregated VI was used with fine spatial resolution imagery as compared to the two which used coarse
resolution data and classified crop map.

Maize yield is an end product but maize crop undergoes through a number of stages to produce yield.
Therefore, understanding when yield components can be determined is important in interpreting
management and environmental factors that influence maize yield (Darby et al., 2013). Determining the
optimal stages of maize growth upon which maize yield can be estimated using remotely sensed vegetation
indices metrics was one of the key focus of the study. As indicated in the results, an optimal period with
high maize yield relationship was found between 60-70 days of maize development. This corresponds to
silking and fruit development which is in agreement with a number of maize yield studies (Omoyo et al.,
2015; M. Wang et al., 2014). Although these studies was carried out in different geographic set up with
different datasets, there seemingly to be agreement on the optimal period to be during silking stage.

The regression-based model developed in this study was empirically derived using field-level interview data
and a test carried out on various very fine spatial resolution vegetation metrics. The use of single-date
imagery shows to be promising for maize yield estimation at field level. In order to accurately predict maize
yield using single date imagery, the timing of the maize stage is very important for optimal maize yield
estimation. There is a general consensus among researcher that the optimal period of predicting maize is
from flowering to fruit development which 60-70 days) (Bolton et al., 2013). The result of this study, is in
agreement with the period of maize yield estimation as established in literature cited. The challenge with
single-date images is the difficulty of getting a cloud-free imagery, especially in areas where cloud cover is a
problem. An alternative would be to use UAV around fruit development stage as this shows improved
relationship with yield. Since UAV images atre affected by shadows due to its high resolution, the timing
should be before mid-day and preferably using GLI index if RGB camera is to be used and GRVI with NIR
camera as these two indices seem to explain more than 47% of the maize yield variation. In terms of high
prediction power, WV imagery using EVI seems to be an optimal option.

Although the results of CumVI is almost same as for the single-date around the stage of anthesis and fruit
development, CumVI seems to give a lower RMSE as compared to single-date or MaxVI. This indicates
two observation, first, the cumulating of VI over the period between anthesis and fruit development
captures the events that occur during the critical stages of grain formation in maize plant(Vifa et al., 2004).
Secondly, the changes in cumV1 is a result of factors such as pests, diseases, and extreme weather conditions
will bring about changes in VI which make cumulative index give a low RMSE. Vegetation index (VI)
accumulation at the beginning of the maize growing season showed weak relationship for both the UAV
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and WV data and this suggests that for the optimal prediction using cumulative model, the inclusion of early
season affect model accuracy as compared to late season (Bakhsh et al., 2000; Basso et al., 2013). The use
of UAV RGB and NIR shows little difference although NIR is preferred as it gives alow RMSE in estimating
maize yield. The performance of MaxNDVI was poor especially with UAV RGB and NIR imagery. This
can be attributed to the effect of weeds which seems to be less detected with RGB camera than NIR. The
WV derived maximum indices performed better than UAV given most of the indices could explain 40% of
the variation.

The optimal spectral index based on this study is EVI which is similar to a maize yield study by Bolton et
al., (2013) in which EVI outperformed NDVI (R?=0.58 against NDVI (R?=0.53). Its performance was
constantly high in both UAV and WYV images. This indicates that different VI has different strengths in
predicting maize yield. The difference between the two indices (EVI and NDVI) is that EVI which is more
sensitive to canopy structure and variables such as leaf area index while NDVI is more sensitive to
chlorophyll content in plant leaves (Huete et al., 2002). Furthermore, it has been found in a number of
studies that NDVI saturates with dense canopy cover and maintains this high values throughout the
cropping season as compared to EVI (Wardlow et al., 2007) During maize development, the unfavourable
conditions in the grain filling period (anthesis and physical maturity) has been found to likely impair
pollination and reduce the fertilized kernels that are destined to be filled(Vifia et al., 2004). Maize phenology
is divided majorly into vegetative (emergence to tasselling according to a number of leaves) and reproductive
(silking to physiological maturity according to the degree of kernel development). Within these stages,
several transition is important in terms of management. During maize development, the maximum yield can
be realized if there is sufficient supply of nutrients under favorable condition (i.e. soil moisture, solar
radiation, and temperature).Unfavourable conditions at the beginning of the reproductive cycle (tasselling
and anthesis) are likely to impair pollination and reduce the number of fertilized kernels that are to be filled
(Vifia et al., 2004). Any adverse condition during the grain filling period (between anthesis and fruit
development) are likely to impair pollination. Detecting early onset of senescence is important because it
can have a direct influence on yield. The flowering and grain filling periods are the most critical for most
crops; any water stress during these crop growth stages may result in reduced grain yields (Mkhabela et al.,
2011).

5.4. Field level maize yields variability

The variation in date of planting is important in that maize planted early will be in different stages of
development as compared to those planted late. However, the spectral information captured by a single
image will be measuring spectral information from different stages of development and hence can influence
the model accuracy. Optimum maize production calls for the good timing of the planting dates. Postponing
planting dates has been found to have significant negative effect on maize yield (Azadbakht et al., 2012)

It is important to note the link between yield estimation and biomass. Weeds control has a significant effect
on weed density whereby if there is no weed control the density of weed tend to be high (Udom et al., 2010).
Weed management options have shown to have significant effects on weed suppression, maize height and
dry grain yield of maize (Joshua et al., 2008).This is because weeds indirectly affects maize cob length, cob
diameter, and number of grain per cob and dry grain yield in fields with a lot of weeds is attributed setrious
competition of weeds with maize plants for soil water nutrients resulting in reduced plant height and maize

yield.

Although the results from farmer’s interview indicate farming systems had no significant relationship with
maize yield, visual interpretation of the VI images and the resulting maize yield map indicates fields with
pigeon peas and sunflower had consistently high VI while comparing to the reported yield there was an
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indication of over prediction in the images. The second evidence is the results obtained from yield ranking
in which the R?=0.202 (p>0.01) which indicate most of the e evidenced by the cropping systems has a
significant impact on maize yield estimation. Although there was no direct test to determine the effect of
soil, visually comparing the soil map in Figure 4, with the maize yield variability map, there is some indication
that soil type may have contributed to yield difference considering that most farmers in both sites did not
use fertilizer. In summary, the fine-resolution imagery has shown areas of targeted intervention. This is
important for better management practices especially for areas where the yield level was low

5.5. Effect of management factors on maize yield

Maize growth stage has an effect on VI-maize yield relationship. However determining exact stage of maize
development is difficult considering the difference in planting dates, management factors such as weeding,
maize varieties. In this regard, the use of cumulative vegetation index would come in handy in reducing the
difference in maize growing stage. Best time for predicting maize yield using multi-temporal VI data has
been established to be between 50-70 days after planting date (M. Wang et al., 2014). Although the strongest
correlation between yield and NDVI has been found around maximum VI in a study by Tucker (1980),
Maximum VI in this case and a number of other studies has shown weak correlation with maize yield (M.
Wang et al., 2014). In other studies, MaxVI has been shown to have varying peak correlation with yield
during the season (M. Wang et al., 2014) and this could explain why the maxVI was inconsistent between
the UAV and WV data given the imagery used were acquired in different periods. It has been established
that yield-VI relationship varies as a function of time during the growing season.
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6. CONCLUSION AND RECOMMENDATION

The study demonstrated the potential of using fine resolution data in assessing maize yield at field level. In
this thesis, several vegetation indices metrics were tested to determine the optimal vegetating index which
was found to be EVI derived from WorldView imagery at the silking stage. Furthermore, the study found
that cumGNDVI outperformed maxGARI in estimating maize yield indicating that there are of factors that
affect maximum vegetation greenness relationship with maize yield. One of the observations made in the
study was the effect by non-maize vegetation grown in the maize field. The period before maximum
greenness showed the least maize yield relationship which was attributed to minimal vegetation cover.
During fruit development period, the VI-yield declined as the maize headed toward senescence which was
attributed to decrease in green biomass a result of a decrease in photosynthetic activity in the maize crop.
The study found out that WV derived indices performed better than UAV indices. The plausible explanation
was the difference in the image acquisition dates and (although not directly tested) differences in spectral
bandwidth in which WV had a narrow bandwidth as compared to UAV. An effort was made to integrate
same date UAV derived NDVI and WV NDVI during the flowering period. The result indicated a good
potential for integrating airborne UAV derived imagery with satellite-based WV images for local or regional
scale assessment of maize yield. However, use of an advanced algorithm which gathers for temporal
variation in VI is recommended in the case of different date’s image integration. The use of bootstrap
resampling technique applied in model validation resulted in the selection of an optimal model that was used
to derive yield variability map which further proves its ability to provide good statistical validation measures.
The yield variability map showed high yield variation between low yield and high yield fields. However, it
was noted that the variability was contributed by the difference in the dates the image was acquired
(considering single data image was used) and secondly, differences in stages of maize growth. Thirdly, it was
the confounding effect of non-maize vegetation growing in the maize field which overestimated yield. A
confirmation of the effect of non-maize vegetation on maize yield variability map was noted when
Spearman’s rank correlation test was applied in correlating field-level collected data and the actual output
yield which resulted to the very weak relationship (£2=0.2).In terms of the effect of management factors, the
number of times a maize field was weeded and method of tilling applied showed a significant relationship
with yield. Other management factors such as planting date, crop pests and diseases, cropping systems and
source of seeds planted showed no significant effect on yield.

However, the results obtained in the study is not all that good considering the model could not explain all
the maize yield distribution adequately. This was shown by the scatter plot in Figure 20 whereby high yield
corresponded to low EVI which was not the actual case of what the overall model was depicting. The reason
for such occurrence was the uncertainty in the quality of field collected production data and also the
difference in planting dates which contributed to differences in average spectral VI within the fields.
Although fine spatial resolution in yield estimation provides great potential for estimating maize yield at field
level, study could not establish clear difference based on the result obtained. This was largely affected by
heterogeneous vegetation cover in the field which affected yield estimation considering green biomass was
used as a proxy for yield estimation which does not have direct link with yield.

In order to improve crop yield assessment using fine spatial resolution imagery in the future it is
recommended that: - First, accurate maize production and delineated harvested area is used, preferably
destructive sampling rather than the interview data (2). There is need to accurately classify maize and non-
maize pixel using such methods as VI thresholding, use of texture and combining crop height model.
Thirdly, accurate alignment between UAV and WV imagery should be carried out to avoid pixel location
shift and fourthly, due consideration of planting dates as it reflectance values changes as crop grows.
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APPENDIX 1: QUESTIONNAIRE

Field level maize yield assessment in Kilosa, Tanzania‘
September, 2015

Cover sheet: Household information

D1: Introductory statement and consent: My name is Stephen Kibet, M3t Student in University of Tyepts, faculty of Geo
Information and Earth Observation, ITC tzking Maturzl Resource Management course, in the Netherlands. | am currently
conducting a study to assess maize yield varishility st farm level using sirborne imagery from Unmanned Aerial Vehicles
[UAV) commanly referred to a5 drones, thereafter explzin this variation based on farm management practices information
obtained from household interviews. The study is part of my MSc academic requirement and thersfore the results of the
survey is purely confidential and for academic purpases only. The study partly contributes to the Spurring a Transformation
for Agriculture through Remate Sensing (STARS) project study carried out at the beginning of this year in Kilosa

The study includes both survey questions and farm visit to assess where maize was grown and delinzate its boundaries.
The survey will take atmost twe hours.

s this is purely an academic study, there is no direct benefit you will get from the study, but the outcome of the research
being a praof of concept, will be helpful in understanding whether UAV data can be used together with field data to
sccurstaly sstimate maize yield st field leval

Your participation in this study is valuntary. The responses you give is ananymous and in no way will it be passible to link
it back to yau in the final report

If you have any questions now or during the study, plezse feel free to ask. Any other questions after the study you can
reach me through this email address s.kibet@student.utwente.nl

02.1 Do you have any questions sbout the study?

03: Do you 3gree to participate In this study?
1 Yes
2. No

04: Enter Household 1D (Household who owns farms within the two 1 by 1 km fields will be listed prior to duta collection
ond assigned 1D K1HHxx for household x in field 1 and K2HHox for household x in field 2)

05: Date of collection: DDMMYYYY

06: Time stamp for start of interview (time in which the interview started as recorded automatically in the tablet)

07: GFS coordinstes of the location of the household's residence (4utomatic location recording within the inbuilt GFS in
the tablet including manual/ and soving within the iPAQ) [UTM zone 375]

I Northing [ Easting |

Part A: Household farm level information

Al: Name of the interviewse:

A2 Age
3 <17
b} 1835
¢ 3650
d) 51-70
e =70

A3: Marital Status
2] Warried
b) Single
¢ Divorced

‘Ad:How many housshold members do you have in your family (household members refers o those who at togetner
under one roof]

AS: Wha are the members of your B
Member Humber
1. Husband
2. Wife
3._Children
4. Relatives
5 Laborers
AB: Does your housshold engage in any crop farming?
1 Yes
2. Mo

A7: |5 crop farming the main econamic activity of your

8) Yes
b] Mo [Specify)

AB: How many f2rms do yau awn in Kilosa within the 1km by 1 km field shown in the m=p? (Indicate to the farmer
boundary in the iPAQ supported by high resolution image printout map. Farm refers to separate pieces of lond with
separote title deed; digitize the boundaries with each hoving o unique 1D in the rable: KLIXXX for field 1 and KLZXXX

Jor field 2)
2) One
b} Two
) Three
d) Four
) Wore than four

A3 What is the size of 2ach farm (if mare than ane] in acres?

AL0: What is the type of ownership for each farm listed in A2 (Populate attribute tabie for each farm in the tablet)?

2) Inherited

b) Purchased

< Gift

d) Claared lznd

&) Le=sed

7| Squatted on land
) Caretzker

2.
398. Cther (Specify)

A11- How many years have you owned the specified piecs of lznd
3 =1
b) 12
o 23
d) 34
g 45
f) >5

A1Z: Who holds tenure of farm 04?
2) Household ownership
b) Leased/rented
2] Group owned land
d) Group leased land
) Stateland
998. Other (specify)

Part B: Plot level information

B. This section relstes to speciic information for each plots [subdivision) within the farm)

Plot number

Description TT2T3] o

BL: In each of the farms listed above (AZ) (if more thon one), hew many pIats G0 you have within
your farm {Plot are subdivision within the main form shown by physical boundories such as
different uegetation cover, trenches or fence, and shall be digitized within a specified farm with
gquidance of the farmer while field refers to the two 1 by 1 km study area: The I will be KLIF1Pxx
Jor fieid 1 farm 1 plot o and KL2F2Pscx for field 2 farm 1 plot xx. Apart from plot 10, it will have
Hausehold 0.

2] One
b Two
o Three
d} Four
2] Five

B2: What is the size of the plet (if more than 1) in acres? {The sum ocreage should add fo the farm
totals AS]

83: How would you describe this plot, from the following list?
=) Cropland
b] Fallow
<} Home garden
d] Livestock field
&) Woodlot
958 Other (Specify)

B3: Craps grown in this plot for the 2015 srowing season [Flag maize, If they are list2d, for which
there will be more detailed questions later] Value sets to be adapted to local context

) Beans
b) Broccoli
¢ Cabbage
d) Carrot
o) FKale
1 Maize
g) Onion
h) Pess

i| Potatoss
il Fice
k) Spinach

1| Sugercane
m} Tomatoes
n} Cassava
o) chili
pl Sisal
998 Others Spacify)
Bd: What had you plantad in this plot the previous season? (Value set B3; if F proceed to B5)
B5: When did you plant maize in this plot ddmpmyyy [calendar in the tablet]
B6: Whan did you harvest maize in this plot ddmmyyyycalendar in the tablet)
B7: What is the primary use of maize crop in this plot?
) Femily consumption

b} ForSale
] Exchange of goods/services
d} Animal fesd

BS: During the day of planting maize in this plot was there any other vegetation cover/crops?
a) Yes {If yes select from list B3
) No (farm planted immediztely after ploughing/harrowing)
958 Others (Specify)
B9: What is currently on this plot (tog a picture]
) Crops listedin (B3]
b} Very little vegetation caver
¢} Bare [ploughed/harrowed)
d} Crop residue
998 Others Specify)

B10: During the day of planting, had it rained? (If yes proceed to 83 and 10 otherwise anly yo,88)
2] Yes
b} Mo

B11: How long did you plant maize in this plot befors it started raining?

2 <1Week
b} 1Week

€ 2Weeks
d} 3Weeks

e] 1month

fl 1-2months

£) =2 months
B12: For how long did you wait ta plant after the rain started (value sst in BLL)
B 10: How would you describe the rainfall intensity then during planting? (date given in £5]

2 Low
b} Average
¢ High
d}_Veryhigh

B11: What did you consider when deciding the day to plant maize in your plot? (Ronk 1 mast
important and 5 less important]
[ Factor | Rank |

2] Availability of funds | |

a7
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b} _Other farmers
Rainfall availability
d}_Inputs availability
2] When you like

B12: Which househeld member has final say about the following decisions regarding this plot
(Value set AS)2

2) Acquiring or releasing the plot

b) Which crops to grow?

€] How to cultivate the crops? (e.z., cropping systems, management practices, timing, etc.)
d] What to do with the products? [e_g., own use, sale, giving awsy, etc.)

B13: Which household members provided the primary labor for this plot? | Multiple choice valus
sat A5)

4= How has Iand productivity (in terms of Maize yields] changed in the past
five years?

5. Decressed with incressed inputs
Decrezsed with same inputs
Decrezsed with decressed inputs
Increased with increased inputs
Increased with same inputs
Increasad with decreased inputs
Unchanged with increased inputs
Unchanged with same inputs
Unchznged with decreased inputs

~Fmepano

B14: What is the gradient of the majority of the plot? (Elevation map/physicol check)
5. Flat [<10°)
b. Gently sloping {10°-457)
c Steep [#45%)

Part D: Maize crop management

B15: What is the soil type (the most dominant soil type on the piot based on touch and feel]?
2 Mostlysand
b, Mostly clay
c Mostlysilt
d. Loam [composed mostly of sand and silt, and a smaller smaunt of clay)
e. Sandy-clay
f.

959. Don't knaw

D1: Did you adapt any of these cropping systems for maize during the growing season? (Oniy 1 option possible)
E {Maize was cultivated withaut mixing with other crops)
b) Intercropping (Maize was intercropped with other crops)
¢} Mixed cropping (Maize was mixed-cropped with other craps)

D2: For the answer in D select the crops intercrapped or mixed with maize from valus set B3

B1E: What is the sail fertility?
2 Paor
b} Fair -~
¢) Good
d} very zood

D3: How was the land prepared for maize before the start of the season? (select multiple)
2) Hznd hos
b} Oxen
] Machinery
d) Herbicide
&) Don't do any preparation
958 Other

D4: Which of these chemical fertilizers did you use on this crop in each growing seasan? [select Il that apply)

Part C: Maize production and management information

3) NPK 171717
b} CANZEOO
c] UREA4£00
d} DAF 18480
=] MOFOOSH

This refers to maize production and manage during the 2015 growing season.

Plot number = 1 2

C1: What types of strategies did you use to water (tick all thot apply) in each
growing season?
z) Rainfed
Drip irrigation
<) Flood irrigation
d) Barder irrigation
&) Furrow irrigation
) Sprinkler irrigation

D5: For each of the chemical fertilizers selzcted above, please answer the following for each growing season

Type Unit (it answered “bag", | Unit price Quantity applied
ask how much 2 bag
weighs)
3) NPK171717
b) CAN2600
<] UREAZE00

d] DAPI12460

=) MOPOODED

€2: How many maize bags did you harvest in this piat (specified by the 1]
during the 2015 growing season {Threshed maize bag, if not threshed estimate
how many bags will make one threshed bag?)

D10: Which of these organic fertilizers did you use on this maize field during the growing seasan? [select all that

C3: How many maize bags did you harvest ths previous season?

=pply)
a Animal manure
b. Compost

c._Crop residues or other dead plant

d. Other [specify]

DIL: For each of the chemical fertilizers selected above, kindly provide this information growing season:

i Westher [rainfall]
il Don'ttake any action
998 Other (Specify)

Disease

D15: Can you identify location within the farm where disease attacked your maize crops? [GPS locations within the
plot}

D20: What was the most significant plant disease for maize in this location during the growing seasan? (select one)
[ADAPT TO LOCAL CONTEXT]

Type Unit [if answered “bag”, | Unit price Quantity applied
please ask how much a
bag weighs)

2. _Animal manure

f. Compost

2. Crop residues or other dead plant

h._Cther (specify)

Insect pest

D12: Can you identify location within the farm where insect pest atacked your maize crops? (GPS locations within
the plot]

3] Maize Streak Virus
b] Maize lethal Necrasis

E13: What was the most significant insect pest for this crop in this location during the growing season? (select one)
[Adapted per field with photos to aid description)
2. Stalk borer

b, Cutworms
< Thies,
d. Aphids

e. Diamond moths
958 Other

D21: How would you describe the extent of crop damage fram this disease without control for maize during the
Zrowing season?

) Motz problem — little to na crop loss

b} Incenvenience — minar crop loss

¢} Mild problem— moderate crop loss

d} Large problem — large crop loss

e] Catastrophic — significant crop loss

D14: How would you describe the extent of maize damage from this insect pest without cantrol for maize in this
location of the plot?

2] Motz problem — little to no crop loss

b} Inconvenience — minor crop loss

<] Mild problem—mederate crop less

d] Large problem — lzrge crop loss

] Cstastraphic — significant crop loss

D15: To control this insect pest, what was the primary method you applied to control this insact pest for maize in this
section of the plot (select one)

a) Chemical insecticide application

b) Rely on predater insects

) Pest-resistant crop varieties

d) Cultural control (rotation, intercropping, planting times, etc.}

&) Field burning

1} M=ztural or plant-based repellents

g} Mechanical/manuzl control {hand picking}

b} Irrigation (washing off]

i} Weather (g2, rainfsll)

J) Don't take any zction

938 Other {specify)

D22: To control this plant disease, what was the primary methad you spplied to control this disezse for maize during
the growing season? (select one) [Adapt to local context]

1) Chemical disease application

2] Disease-resistant crop varieties

3] Cultural contral (sznitation, crop rotation, hast , impi of crop

4] Physical mathod (2.2, remaval of plants)

5) Establich barrier

6] Field burning

7} Irrigstion {washing off}

8] Weather (gg., rainfall]

9] Don'ttzke any action

958 Other [specify]

D16: In addition to the primary control method that you selected above, did you use any of the other control
methads to control this inzect pest for maize during the growing season? (select Il that zpply)

2} Chemical insecticide spplication

b) Rely on predator insects

¢} Pest/dissase-resistant varieties

d] Cultural contrel (crop rotation, intercropping, planting times etg)

&) Field burning

f)  Matural or plant-based repelients

g} Mechznical/manuzl control {hand picking

h] _Irrigztion {washing off]

D23: In addition to the primary control method that you selected above, did you use any of the ather control
methods to contral maize disease during the growing season? (select zll that zpply)

3] Chemical disease application

b} Pest/disease-resistant varieties

<] Cultural contrel (crop rotation, intercropping, planting times gtg)

d) Field burning

2] Natural or piant-bzsed repelients

] Mechanical/manuzl contrel [hand picking

2) Westher [rainfall]

h) Don'ttake zny action

9980ther [Specify)

D24: How effective did you find this methad in contralling this disease? (applying te whichever contral method
selected)

a} Mot effective [disease intensity reduction less than 10%)

b} Somewhst effective [disease intensity reducad by 11%- 30%)

c) Effective [disease intensity reduced by 21%- 80%)

d) Very effective (eliminats >50% of diszase)

D25: How many times did you repeat this method (i.2., total number of applications) during the maize growing
season? (apolying to control methods 1, 4, 6, 7, if selected)
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D26: On average, how much family labor was used far each application (person-days|? (applying to contral methods
4,6, 7,if sslected)

d) Very effective (eliminate »80% of weed)

D27: On average, how much hired labor was used for each application (person-days)? (spalying to control methods 1,
4,6, 7, if selected)

DAD: On average, how much family labor was used for each application (person-ays)? (applying to contral methods
d, 8, h, if selected)

D28: Which household member was mainly responsible for undertaking this piant disease contral activity (3pphying to
contral methods 1, 4, 6, 7, if selected)? [Select from value set B3]

D41: On average, how much hired labor was used for each application (person-days)? (spplying to control methods d,
2,8 h, if selected)

D29: If applying chemical pesticides (selected option 1 in question D23): What was the name of the primary pesticide
product you purchased to treat this plant disease in each growing season? (type names)

D42 Which household membar was mainly responsible for Undertzking this plant weeding contral (2 selected in
value set B3)

D30z What was the main equipment used to spray this pesticide?
1} Hand sprayer
2} Knapsack sprayer
3} Automatic sprayer
4) Boom sprayer
5} Don't know
6} Other

DA3: If applying chemical herbicide (seiected option d,  in question E31)- What was the name of the primary herbicide
product you purchased to control weed during the growing season? (type names)

D31: How much did this disease contral product cost per unit? (TSH per unit)

DAd: What was the main equipment used to spray this pesticide?
7} Hand sprayer
8) Knapsack sprayer
9} Automatic sprayer
10) Boom sprayer
11) Don't know
5980ther

D32: What was the purchased unit (g, kg, mlor I)?

E45: How much did this insecticide product cost per unit? (TSH per unit)

D33: When spraying against this maize dissase, did you mix this product with any insecticides?

3] Yes
b) No

E46: What was the purchased unit [z, kg, mi or []?

D34: When spraying against this maize disease, did you mix this ¢ product with any herbicides?

d. Yes
2. Mo

Weed management

D35: What was the primary weeding for maize during the growing season? (select all that spply)

z) Burning

b] Crop rotation

<) Did not weed

d) Herbicide (before planting)
2] Herbicide after planting)
Manual pulling

£)  Manual weeding with hoes
h] Weeding with oxen
Weeding does not matter
958) Other [please specify)

£

D36: What are the common weeds that was in your maize farm [type)

D37: How many times did you repeat this method [i.e., total number of applications) during the maize growing

season? (zpplying to contral methods d, &, g, h, if selected)

D38: During each of the weeding listed in D27 did you carry out for the:-
) Entire plot
b} Sections of the plot (GPS coordinates)

D33: How effective did you find this methad in contralling these weeds? (applying to whichever control methad
selected)

a) Mot effective (weed intensity reduction less than 10%)

b} Somewhat effective {weed intensity reduced by 11%- 40%)

<) Effective (wead intensity reduced by 41%- 80%

Part E: Shocks
Did you experience the fallowing shocks during the maize grawing sezson 20152 (Shocks are events that coused
significant maize losses to the household)

For the top three shocks only

Shack Seversly affected | Rankthethree | This [SHOCK] How long 2o did this
by this shock? most severe primarily shock accur?
shacks affected. Years Months
Drought/Fioods

Crop disease or crop pests

Large decrease in maize
prices

Largs increase in farm Input
prices (e.g., fertilizer)

Severs water shortage

Other
1 No Rank 13 1 OwnHHonly |Yesrs | Months
Code 2 Yes Imostsevere3 | 2. Somebutnot
less severe] sl HHin
village
3. AllHHIn
village
Part F: Conclusion:

Thank you so much for spending time with me to answer these questions.
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