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ABSTRACT 

Chlorophyll is one of the main foliar biochemical components of plant playing a key role in controlling 

photosynthesis, plant health and physiological activities. Remote sensing methods of chlorophyll retrieval 

are non-destructive and can be applied for large-scale estimation of chlorophyll. In this study we evaluated 

the potential of high resolution multispectral satellite imagery and INFORM canopy radiative transfer 

model for retrieval of leaf chlorophyll content using Look Up Table (LUT) inversion. Beside this, the 

potential of red edge band in RapidEye image for leaf chlorophyll estimation was also evaluated.  

 

Leaf samples were collected from 40 plots in Bavaria Forest National Park (BFNP), Germany, in July 2015 

concurrent with the time of the RapidEye images. Leaf chlorophyll were obtained from the leaf samples 

using wet chemical analysis. Sensitivity analyses were performed to evaluate the importance of each input 

parameters included in the INORM model. Prior information from the field and sensitivity analysis were 

used to parameterize the INFORM model and to build different LUTs using systematic and random 

selections of input variables. Next, Top Of Atmosphere reflectance data were calculated from the satellite 

images and used as inputs during the inversion of LUTs. The model performance was checked based on 

the accuracy assessment criteria of RMSE & R2.  

 

The result of sensitivity analysis revealed that the forest parameters affecting reflectances in the studied 

wavelength region are Stand density, Leaf area index, canopy diameter, height, average leaf angle, and 

chlorophyll content. The relationship between the measured and estimated leaf chlorophyll using the 

randomly generated LUT had RMSE=8.07ug/cm2 and R2=34.53%. While, this relationship was weaker 

using the LUT generated systematically (RMSE=13.18ug/cm2, R2=25.48%).  An increment of 5.1ug/cm2 

error (RMSE) for leaf chlorophyll retrieval was found when the red edge band was excluded from the 

modelling. This result indicated the importance of the red edge band for estimating leaf chlorophyll. 

Furthermore, after removing the blue band which was apparently affected by the atmospheric errors an 

improvement was observed in the model accuracy (RMSE=6.66ug/cm2, R2=36.74%). This emphasized 

the importance of band selection during inversion. The simulated spectra from the randomly generated 

LUT showed a closer match to the measured reflectance compared to simulated spectra from 

systematically generated LUT which apparently enforced the ill posed problem.  Overall, in this study 

INFORM had shown moderate suitability  potential for estimating leaf chlorophyll content under 

heterogeneous forest condition using RapidEye satellite data. Further studies are required to assess the 

potential of INFORM model and multispectral satellite data for retrieval of leaf chlorophyll using different 

atmospherically corrected images. 
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1. INTRODUCTION 

1.1. Background and motivation  

The biochemical parameters of the plants are among the most influential components controlling the 

overall physiological and photosynthetic activities (Cornelissen et al., 2003). Leaf biochemical parameters 

such as chlorophyll, carotenoids, nitrogen and water content are among the main biochemical parameters 

of vegetation(Curran, 1989). The fact that, most plant biochemical parameters share similar function 

within the ecosystem has made these parameters to be useful for studying various ecological characteristics 

(Homolová et al., 2013). Ecologist have used these parameters to study the interaction between the 

ecosystem and biological inhabitants in a given ecosystem for example, for assessing changes in plant 

health associated with any environmental stress and disease (Garnier et al., 2007), assessing ecosystem 

productivity (Lavorel et al., 2011; Orwin et al., 2010), climate studies (Pereira et al., 2013), and assessing 

plant gross primary productivity ( Gitelson et al., 2006).  

Chlorophyll pigments are depicted as the most influential leaf biochemical parameters influencing the 

overall photosynthetic activities of the plant( Clevers & Kooistra, 2012; Cracknell et al., 2009; Gitelson et 

al., 2006). Chlorophyll is also recognised as one of the key essential biodiversity variables by the Group on 

Earth Observations Biodiversity Observations Network(GEO-BON) that can be monitored by remote 

sensing(Skidmore et al., 2015). 

 

Chlorophyll pigments in plants exhibit in the form of chlorophyll a and b  which have distinct spectral 

absorption properties(Lichtenthaler & Buschmann, 2001). Both forms of chlorophyll pigments are useful 

for facilitating energy conversion in plants system. The total leaf chlorophyll content expressed in mass 

per unit area of leaf is primarily accountable for any photosynthesis activity taking place in the leaf and 

plays a significant role in energy capturing and conversion process( Gitelson et al., 2006; Sims & Gamon, 

2002).Chlorophyll pigment in plants also plays a key role for detecting the status of plant growth, primary 

productivity, nutritional and environmental stresses (Pallardy, 2008; Pavlovic et al., 2014; Zarco-Tejadaet 

al., 2000). Previous studies have demonstrated the role of chlorophyll pigments for tree species 

identification and habitat quality assessment( Castro-Esau et al., 2006; Delegido et al., 2014), implementing 

precision farming like spotting the declining process of forest resources (Navarro-Cerrilloa et al., 2014) 

and studying crop net primary productivity( Haboudane et al., 2002). Chlorophyll  has a strong 

relationship with some of the plant biochemical properties such as  nitrogen, therefore, quantifying one of 

these parameters can indirectly tell us the concentration level of the other one in the leaf (Daughtry et al., 

2000; Filella et al., 1995; Schlemmer et al., 2005).   

 

Several laboratories (direct) and remote sensing (indirect) methods have been developed for estimating 

chlorophyll content of plants. The indirect methods, traditionally, destructive sampling is used for in situ 

collection of data from the field which is then analysed in the laboratory (Brix, 1987). This method is  

costly, labour intensive and destructive (Cortazar et al.,2015). Moreover, this method has been criticized 

for its very limited spatial coverage and also not applicable for large-scale estimation of chlorophyll. 

Alternatively, to overcome the problems associated with in situ based chlorophyll estimation, scientists 

have developed different remote sensing based (indirect) chlorophyll estimation techniques that are quick, 

non-destructive, efficient and have broader spatial and temporal coverage (Homolová et al., 2013). 

Remote sensing based chlorophyll estimation has been increased widely in the last decades(Hernández-

Clemente et al., 2012; Kokaly et al.,2009). Likewise, remote sensing allows a simple representation of 

objects through their unique spectral signature in their electromagnetic spectrum (EM), hence can give 



MODELLING LEAF CHLOROPHYLL CONTENT IN HETEROGENEOUS FOREST USING HIGH RESOLUTION MULTISPECTRAL IMAGE: A CASE 

STUDY OF BAVARIA FOREST NATIONAL PARK 

2 

accurate information about various vegetation variables being investigated (Liang, 2004).  The visible, near 

infrared, shortwave and thermal infrared regions are depicted as useful regions for studying vegetation 

parameters (i.e. at the canopy and leaf level) (Kokaly et al., 2009; Rivera et al., 2014; Ullah, 2013; Yoder & 

Pettigrew-Crosby, 1995). In this regard, many researchers have confirmed the usability of remote sensing 

data at visible and red edge region for chlorophyll estimation (Daughtry et al., 2000; Darvishazdeh et al., 

2008; Gitelson et al., 1996; Haboudane et al., 2002; Schlerf et al., 2010; Zarco-Tejada et al., 2002).  

 

The technological advancement in the last century has boosted the availability and the usability of various 

high resolution multispectral remote sensing data which are useful for vegetation studies including 

chlorophyll content (Thenkabail, 2015). Some of the commonly used multispectral broadband satellite 

imagery for vegetation mapping and monitoring are LANDSAT, MODIS, SPOT, IKONOS, RapidEye, 

QuickBird, Sentinel-2, Proba-CHRIS, and Worldview-2. These satellites are known for their high spatial 

and temporal resolutions and also have wider applicability for estimation vegetation biochemical 

parameters. For example, Govender et al.( 2008), reviewed Proba-CHRIS multispectral imagery for 

mapping and was able to differentiate different vegetation types using the reflectance data collected from 

vegetation surfaces. Similarly, Weber  et al.(2006) used a high-resolution multispectral sensor (SPOT) for 

vegetation study and proved the potential of multispectral imagery for obtaining information from 

vegetation surface as equal as hyperspectral data. Moreover, previous studies had shown the potential of 

several multispectral satellite data for estimating leaf biochemical parameters such as chlorophyll content ( 

Berni et al., 2009; Clevers & Gitelson, 2013; Croft et al., 2015; Darvishzadeh et al., 2012).  Recently 

developed multispectral satellites are designed with red edge channel useful for estimating chlorophyll 

content (Adelabu et al., 2014; Delegido et al., 2011). For instance, the red edge band in RapidEye and 

Sentinel -2 multispectral satellite sensors are situated without overlap with other bands which is useful for 

vegetation parameter estimation. Moreover, spectral data at Red edge  region are sensitive to vegetation 

densities and hence can be used for estimation of leaf and canopy chlorophyll concentration(Cho et 

al.,2008). 

 

The presence of variability in the canopy characteristics in the case of mixed forest can affect the spectral 

reflectance measured by using remote sensing. Forest stands characteristic such as plant density, plant 

architectures, leaf angle and leaf morphological features are among the most important factors hampering 

the reflectance measured from the vegetation surface( Ollinger, 2011). Furthermore, the level of 

chlorophyll in the leaf and canopy also influencing the reflectance measured by the sensor( Thenkabail et 

al., 2011).These changes in the vegetation reflectance can be detected mainly in the red, blue and green 

reflectance region (Zarco-Tejada et al., 2000). Hence, satellite sensors with high spatial and spectral 

characteristics are able to detect reflectance both at the canopy and leaf level more accurately. However, 

the selection of appropriate sensor types still remains a trade-off between the cost and the availability of 

the image data ( Darvishzadeh et al.,2012; Govender et al., 2008). For example currently, hyperspectral 

data are costly and are also scanty in their availability. Hyperspectral data are criticised for their large 

number of spectral bands and the multi- collinearity (band redundancy) and dimensionality problem  

(Govender et al., 2008).  Conversely, data from multispectral sensors are relatively easily available at 

considerable cost. In spite of selecting proper satellite imagery and data selection, there is also a need for 

selecting proper modelling approaches which are robust in handling the multitude factors affecting the 

spectral reflectance under complex ecosystem conditions. 

 

For retrieval of vegetation parameters from remote sensing data, generally, two types of modelling 

approaches have been employed. This include physical based radiative transfer models (RTM) and/ 

empirical models which are among the commonly applicable approaches for retrieving vegetation 

parameter (Liang, 2004). The radiative transfer models are  assumed to be powerful models in retrieving 
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vegetation parameters such as chlorophyll content ( Demarez & Gastellu-Etchegorry,2000; Iaquinta et 

al.,1997). These  models allow the establishment of a direct link between the vegetation parameters (leaf 

and canopy parameters), with the atmosphere and sensor through the principles of physical laws (Liang, 

2004). Moreover, the results obtained from physical based radiative transfer mode( RTM) can also be 

easily transferable to another area (Darvishzadeh, 2008; Demarez & Gastellu-Etchegorry, 2000). However, 

for the successful retrieval of vegetation parameters using the physically based models from remote 

sensing data, the models have to be inverted using different inversion algorisms (Liang,2004). One of the 

commonly used methods for inverting RTM is through the use of Lookup table (LUT). Therefore, 

considering the overall advantage of physical model this study has employed an invertible forest 

reflectance model (INFORM)( Atzberger, 2000), high resolution multispectral image(i.e. RapidEye)( 

Weichelt et al., 2009; Shang et al., 2015) and look up table inversion approach( Darvishzadeh et al., 2012) 

to model leaf chlorophyll in Bavaria Forest National Park.  
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1.2. Problem Statement 

 

The use of remote sensing technology in the last fifty years has been increasing for vegetation study and is 

also continuing in playing a paramount role in monitoring vegetation and land surfaces properties ( 

Thenkabail, 2015). Remote sensing based plant biochemical estimation such as chlorophyll content has 

become more operational and extensively been utilized as compared to the existing traditional methods i.e. 

in situ based vegetation parameter estimation. Remote sensing based measurements of chlorophyll content 

are assumed to be relatively stable and provide a repetitive collection of data at local and global scale 

(Cohen et al.,2003; Liang, 2005).  

 

Likewise, the recent development of new generation high resolution multispectral sensors such as 

RapidEye ( Schuster et  al., 2012; Zillmann et al., 2015) and Sentinel- 2 ( Drusch et al.,2012) which have 

red edge spectral bands have created the chance of monitoring biophysical and biochemical parameters 

from any vegetation surfaces at different spatial and temporal scales.  The red edge region available in 

these satellite shown to be sensitive to the different level of chlorophyll pigments and is useful for 

estimating chlorophyll content  

 

A review of the literature revealed that the previous studies on chlorophyll estimation are mainly 

implementing data derived from the hyperspectral sensors. Given the existing potential application of 

multispectral imagery for vegetation studies, yet, most of the existing modelling studies for chlorophyll 

estimation are focusing in utilizing hyperspectral data with the statistical approach and or use physical base 

model.  Indeed, broadband multispectral sensors are more frequently available and are less costly. Given 

this reality, limited research works were reviewed in this study that use of multispectral imagery for 

chlorophyll estimation applied to physically based model. Moreover, to our knowledge, the selected RTM 

model for this study (INFORM) is not well tested for retrieving chlorophyll content for heterogeneous 

ecosystem condition. Furthermore, limited research has been done on comparing different LUT 

generation approaches for retrieving plant biochemical components such as chlorophyll content. 

However, it has been suggested that the use of different LUT approaches have considerable impact on the 

accuracy of vegetation parameter retrieval. Therefore, this study aims to utilize high-resolution 

multispectral data with physically based INFORM RTM for modelling biochemical parameters in the 

forest (in this case foliar chlorophyll content) and look-up table (LUT) inversion approach. 
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1.3. Overall objective 

 

The main objective of this study is to evaluate the use of high-resolution multispectral data with INFORM 

radiative model for modelling leaf chlorophyll content in the heterogeneous forest of Bavarian Forest 

National Park (BFNP). 

1.3.1. Specific objectives 

 To estimate leaf chlorophyll content by inversion of INFORM radiative transfer model using 

Look up table approach (LUT) in BFNP 

 To evaluate the potential of high-resolution multispectral satellite imagery (RapidEye) for 

estimating leaf chlorophyll content using INFORM 

 To  identify the suitable bands in RapidEye image for leaf  chlorophyll estimation 

1.3.2. Research questions 

 Does the LUT generation approach affect the retrieval accuracy of leaf chlorophyll content in 

BFNP? Which approach of LUT generation, for inversion of INFORM, will provide a more 

accurate estimate of leaf chlorophyll content in BFNP? 

 What are the advantages and disadvantages of utilizing high-resolution multispectral imagery (in 

particular RapidEye) for estimating chlorophyll content? 

 Which bands are recognized suitable for higher retrieval accuracy of leaf chlorophyll in terms of 

RMSE and R2? 

1.3.3. Hypothesis  

 Inversion of the INFORM radiative transfer model using a randomly generated lookup table 

will provide an accurate estimate (In terms of R2 and RMSE) of leaf chlorophyll content (in 

comparison to systematically generated LUT). 

 Utilization of the red-edge band of (RapidEye imagery) during inversion of INFORM model 

will significantly increase the retrieval accuracy of leaf chlorophyll content in BFNP. 

 Using the combination of all bands will provide higher retrieval accuracy for leaf chlorophyll in 

BFNP. 
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2. LITERATURE REVIEW   

2.1. Overview of forest covers in the World and Europe 

 

Approximately over 4 billion acres of land in the world(31%) is covered  by the forest(accounting 0.6 ha 

of forest per capita), and these forests have great potential for storing a million tons of carbon (FAO, 

2010). It has been suggested that of these most primary forest distributed in the world are mainly situated 

in inside protected areas. Legally established national parks, game reserves and others biodiversity hotspot 

areas are among the mentioned protected areas accounted for protecting such a huge amount of forested 

areas (FAO, 2010). Worldwide those vast amounts of forest are also located in Europe (FAO, 2011). 

According to European Commission Environment( 2015), nearly 42% of the total  EU land is covered by 

forest and other wooded vegetation. Various economic, environmental and social services have been 

derived from this forest biome by the peoples living in and the surrounding.  The majority of the forests 

located in EU are characterised with mixed deciduous and conifers trees species typically dominated by 

beach, douglas, oak, maple, birch and spruce tree species( Perzanowski & Szwagrzyk, 2000). 

Bavarian Forest National Park is among the major protected forest ecosystem found in southeastern 

Germany characterised with mixed forest ecosystem (Rall et al., 2008). The forest is known for provision 

wider economic, social and environmental benefit. Several study done on this forest revealed that the 

forest condition of the Bavarian has been frequent been affected by the disease (bark beetle) (Fahse & 

Heurich, 2011; Lausch et al., 2013). Therefore, a detailed study on the different vegetation parameters of 

this forest is required for efficient monitoring and implementation of a more accurate forest management 

plan/strategy.  So far different research have been  done in  this forest and  most of the research were 

focusing on the estimation canopy structural parameters and leaf traits ( Ali et al., 2016; Ali et al.,  2015), 

and leaf nitrogen (Z. Wang et al., 2015). Given the importance of chlorophyll pigments for monitoring 

plant health and the fact that this forest ecosystem has been frequently affected by forest disease (bark 

beetle) less has been studied about the chlorophyll level of the area using remote sensing.   

2.2. Remote sensing of leaf biochemical  

 

Leaf foliar biochemical parameters made from both pigments and non-pigment components can be easily 

represented through optical satellite sensors( Kokaly et al.,2009). Hence, the influence of these parameters 

on the leaf reflectance properties can be easily represented using data derived from this satellite mainly in 

the visible and near infrared region (Daughtry et al., 2000; Schlemmer et al., 2005). Sims & Gamon( 2002) 

and Curran(1989) studied the concentration of different foliar biochemical components from the 

reflectance and transmittance data obtained at leaves and canopy level and able to predict their variability 

in space and time. Of those studied biochemical parameters chlorophyll (a + b), leaf structure, lignin, 

cellulose, nitrogen and water content are among some which can be easily detected by the optical sensor.  

 

Chlorophyll pigments absorb a tremendous amount of red and blue colour in the spectrum of light 

radiated from the sun particularly in the visible part of the electromagnetic spectrum. Chlorophyll a has an 

absorption peak mainly located at the wavelength of 430nm and 662nm while chlorophyll b absorption 

peak is located at 453nm and 642nm wavelength and their estimation of relatives concentration can be 
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done using reflectance mainly in this depicted region (Curran, 2001; Datt, 1999). Useful bands important 

for chlorophyll estimation were suggested(Carter & Spiering, 2000). Furthermore, Datt(1999) identified 

the reflectance around near 710nm (i.e. the red edge band region) as the most sensitive bands to a 

different level of chlorophyll pigments which is useful for estimation. Conversely, the wavelengths situated 

in the infrared regions are mainly affected by the water and other biochemical components and thereby 

identified as less useful wavelength regions for chlorophyll estimation. This difference was attributed due 

to the fact that in near infrared region the reflectance is mainly affected by the  leaf structure and density 

of the vegetation whereas in the visible region the main governing factors affecting the reflectance are 

mainly the pigment concentration like chlorophyll and carotenoids( Gitelson et al.,2003). Consequently, 

using remote sensing and earth observation data this unique leaf spectral property can possibly be 

quantified and used for supporting any vegetation studies such as for monitoring and detecting plant 

phenological and physiological changes at different spatial and temporal scale( Thenkabail, 2015).  

 

Figure 1shown below depict the wavelength range of reflectance spectrum from healthy plants which are 

categorised into three main regions visible (400-700nm) the dominant region were leaf chlorophyll effect 

can be visualized, near infra-red (NIR) (701-1300nm) and mid- infrared (1301 -2500nm). Indeed, any 

studies related to vegetation parameter reflectance be it  biochemical and/or biophysical parameters  are 

focused in those regions (Cracknell et al., 2009).  

 

 

 

Figure 1: Typical leaf reflectance spectrum derived from vegetation. 

Adapted from (Cracknell et al., 2009). 

2.3. The red edge bands  for chlorophyll estimation    

 

The use of Red Edge region in vegetation parameter studies was been explored by different remote 

sensing researcher for many years for forestry and agricultural purposes ( Weichelt et al.,2009). The Red 

edge region is the sharp slope between the visible (red absorbance)and Near -Infrared(NIR)  reflectance 

region located around a wavelength of 680-780nm in vegetation spectra(Dawson & Curran, 199). It is the 

region at which the first spectral difference reaches local maxima and able in providing additional 
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information for retrieving and detecting tree species, plant health condition, and density ( Weichelt et al., 

2009). The red edge region is more sensitive to leaf parameters such as chlorophyll content( Clevers et 

al.,2000).  The region of the red edge channel was identified as the most important region which can be 

utilized for leaf chlorophyll estimation( Delegido et al.,2011). Rock et al.(1988) and Filella & 

Penuelas.(1994) analyzed the shifting position in red edge bands and used for studying leaf chlorophyll 

variability in time and space. The nonresponsive nature of the red edge band channel to the variation in 

soil background reflectance and atmospheric conditions made this region useful for estimation chlorophyll 

content( Clevers et al.,2000). In RapidEye band setting this band region(channel) is located without 

overlap with other existing bands( Weichelt et al., 2009).  

 

 Many researchers, for example; Cho et al.( 2008b); Clevers & Gitelson.(2012,2013); Clevers et al. 

(2002,2001);  Curran et al. (1995); Dawson & Curran. (1998); Gitelson et al. (1996) and  Weichelt et al. 

(2009) investigated the importance of red edge bands and its derivative for estimating chlorophyll content.  

Delegido et al. (2011) have found chlorophyll estimation accuracy of r2=60% by utilizing the red edge 

bands in sentinel-2 satellite image.  In the same work estimation of chlorophyll done without red edge 

band was shown to be less accurate. Schuster et al.(2012) tested the use of red edge band for land use 

classification and found an improved accuracy when the red edge band information was added to the 

analysis particularly for the forested area. A direct strong relationship between red edge position and total 

leaf chlorophyll content was investigated by (Clevers, 1994; Curran et al., 1991; Lichtenthaler et al., 1996). 

Nevertheless, limited research works were done that use of red edge band found in high-resolution 

multispectral satellite imagery such as RapidEye data for chlorophyll estimation. Therefore, in this 

research, we evaluated the importance of red edge bands in RapidEye satellite image for estimating leaf 

chlorophyll content using a physically based  RTM model such as INFORM and LUT  inversion 

approach.  

2.4. Methods applied for vegetation parameter estimation: Empirical Vs Physical methods   

 

The commonly existing model types used for vegetation parameter estimation from remote sensing data 

employ physically based model and empirical (statistical) models or the combined form of these models. 

The empirical  model is commonly applied to large-scale forest inventories and also require a large set of 

collected data to establish a strong statistical relationship between parameters of interest and  remote 

sensing data (Stenberg et al., 2008). Empirical(statistical approaches)are characterized by high uncertainties 

and are not robust when they are applied to environmental situations different than they are being 

developed (Verrelst et al.,2010). Moreover, empirical models are also criticized during upscaling from leaf 

to canopy process. Furthermore, an empirical model is sensitive to any varying canopy features, 

atmospheric and solar viewing angle (Verrelst et al.,2008).Vegetation indices(VI) are one of the commonly 

used empirical (statistical) approaches. This method  is mainly dependent on species, sensor and sites and 

requires careful calibration (Zhang et al., 2008).  Conversely, physical base models are more capable in 

handling any problem associated with the empirical model and can be applied to wider scale and 

situations.  

 

Physically-based models are operating under the general principle of physical laws useful for retrieving 

vegetation biochemical parameter. This method allows an establishment strong linkage between vegetation 

variables(leaf and canopy variables) with remote sensing data through their spectral signal(Stenberg et al., 

2008). Physical base  models are robust in handling various environmental factors affecting the accuracy of 

vegetation parameters retrieval under a broader array of land covers types and sensor configurations( 

Iaquinta et al.,1997; Liang, 2004; Zheng & Moskal, 2009). The output from this model can be transferable 

to another study area with  different environmental conditions (Liang,2004). Physically based model has to 



MODELLING LEAF CHLOROPHYLL CONTENT IN HETEROGENEOUS FOREST USING HIGH RESOLUTION MULTISPECTRAL IMAGE: A CASE 

STUDY OF BAVARIA FOREST NATIONAL PARK 

10 

be inverted from simulated spectra generated for accurate vegetation biochemical parameters 

retrieval(Liang,2004).  Radiative transfer models (RTM) are the commonly existing physical base model 

used for vegetation parameter quantification.  

2.5. Radiative  transfer  model   

 

Plant canopy reflectance can be influenced by numerous factors like canopy structure, illumination 

geometry, and soil background. This variation is mainly aggravated by the presence of ecosystem 

heterogeneity hence hampering the interaction of incident radiation between the vegetation surface and 

remotely placed sensor (Ollinger, 2011). The variation in the leaf reflectance was linked with the change in 

species types, composition, and plant developmental stages( Gitelson & Merzlyak,1996).  Moreover, the 

difference in the background reflectance and LAI were also identified as main factors influencing canopy 

reflectance( Daughtry et al., 2000). However; these multitude factors influencing canopy reflectance can be 

resolved through the use of appropriate model type which is efficient in handling such complexities.  

 

Radiative transfers models functioning based on radiative transfer equation are among the commonly used 

physical based model used for simulating spectral reflectance from any vegetation surface(Liang, 2004). 

Demarez & Gastellu-Etchegorry(2000) , demonstrated the usefulness of 3D physically based RT model 

for accurately retrieving canopy parameters under complex forest stand.  Furthermore, coupled canopy 

model, as described in Daughtry et al. (2000) are another version of radiative transfer  model suitable for 

handling reflectance invariant related to vegetation heterogeneity. However, physical models are also 

criticized for their ill-posed nature in which the different input parameter combinations give the same 

output. Combal et al.(2003) proposed the integration of prior information collected from the field during 

model parameterization as a solution to solve problems associated with ill-posed nature of physical base 

RT model.  

 

Canopy RT model assume canopy as a turbid medium surface where the scattering and absorption by each 

individual leaf are assumed to be random. The major division of these model types as described by remote 

sensing researchers are categorized as , Monte-Carlo ray tracing models, Discrete Anisotropic Radiative 

Transfer(DART), hybrid model ( for forests or sparse canopies), and radiosity model, geometrical-optical 

model( used for heterogeneous canopies) are among some of the  RTM  applied  to simulate reflectance at 

canopy level (Dorigo et al., 2007; Widlowski et al., 2007). 

 

Several physical base radiative transfer models have been implemented for retrieving vegetation 

biochemical and biophysical including chlorophyll content using the reflectance measured from leaf or 

canopy surface.  For instance, Jacquemoud et al.(2000) evaluated the efficiency of four canopy and leaf 

level radiative transfer models for simulating corn and soybean canopy reflectance. SAIL canopy model 

(Verhoef, 1984) , PROSPECT a leaf optical model ( Jacquemoud & Baret, 1990) for retrieve vegetation 

parameter at leaf level, PROSAIL the combined form of PROSPECT+SAIL model developed by ( 

Jacquemoud et al., 2009) used for retrieving leaf and canopy parameters, LIBERTY model (Dawson et al., 

1998) applied to conifers leaves are among the few physical based radiative transfer model which can be 

used for retrieving plant traits like chlorophyll. Furthermore, N-K canopy reflectance model developed by 

(Kuusk, 1995) also designed to address variation attributed from the single leaf bidirectional reflectance 

scattering problem under complex canopy structures. Schlerf et al. (2007) evaluated three canopy 

reflectance models such as SLC, FRT and INFORM used to represent canopy reflectance from vegetation 

surface. All the mentioned models have the efficacy in linking reflectance and transmittances measured by 

the sensor from the vegetation surface and are able to retrieve chlorophyll content both at leaf and canopy 

level.  
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2.6. RT Model  inversion  

 

For an efficient and accurate retrieval of biochemical parameters different models were been utilizing 

various inversion algorithm.  Some of the most commonly used inversion algorithm applied to physical 

based models are Look up table approach(LUT) (Combal et al., 2003), artificial neural network (ANN) 

(Schlerf & Atzberger, 2006) and numerical optimization approaches (Kimes, et al., 2000). Likewise, these 

algorithms can be applied to pixel based retrieval of vegetation parameters including chlorophyll content. 

Besides the stated advantage, those mentioned methods have their own drawback. For instance, a 

numerical optimization approach is computationally intensive when applied to complex RTM and not 

appropriate for large data set hence optimal inversion might not be easily achieved. Furthermore, ANN 

requires proper training for fully establishing a strong relationship between the canopy variables and their 

respective reflectance. On the other side, LUT inversion algorism is assumed to be the simplest methods 

to construct and implement the inversion process. More interestingly, LUT method is also powerful in 

handling any arbitrary input set of parameters and also computationally fast as compared to numerical 

optimization approach for retrieving vegetation parameters from satellite data (Kimes et al., 2000). 

Furthermore, LUT approach allows the generation of  the database by running the model in the forward 

mode as many times as possible to generate canopy reflectance based on the predefined range of input 

parameters and then the best fit bidirectional reflectance data can be obtained during the inversion process 

(Dorigo et al., 2007).  He et al.( 2012) in their study investigated different LUT size and parameter 

distribution effect on vegetation parameter estimation and they found that the LUT size and parameter 

distribution are the main factors which affect the accuracy of parameter estimation which needs care 

during the LUT generation. Further research on LUT was done by Darvishzadeh et al.( 2012), considering 

different  solutions(cases) and LUT size for estimating chlorophyll on rice from multispectral data.  

2.7. Multispectral imagery for chlorophyll estimation 

 

For proper implementation of precision forest management strategy, remote sensing has unlimited 

services. For instance Hernández-Clemente et al.(2012)demonstrated the usefulness of high-resolution 

multispectral data for extracting leaf biochemical parameter in the heterogeneous forest for assessing 

vegetation health. Curran et al.( 2001) also suggested multispectral satellite images application for detecting 

and quantifying land surface information, particularly from vegetation canopy. Further research has also 

proved the usability of multispectral data for detection plant stress mainly using the reflectance collected 

from plant leaf and canopy hence be able to link with chlorophyll content( Trenholm et al.,2000). 

Similarly, many other research works have investigated the potential of multispectral imagery for 

quantitative estimation of vegetation biochemical at different spatial and temporal scale.  

 

The list of literature review in which multispectral data used mainly for chlorophyll estimation on different 

vegetation and ecosystem types are depicted as follow : on rice crop using AVNIR 2 ALOS data 

(Darvishzadeh et al, 2012), barely, wheat and maize using SPOT data (Houborg & Boegh, 2008), on 

winter wheat using RapidEye data( Zillmann et al., 2015), on different agricultural crops and landscapes 

using simulated Sentinel-2 (Delegido et al., 2011; Verrelst et al, 2013) ,on wheat field using ATM data( 

Kurz et al., 2002), on different landscape of crop and grassland  using SPOT data (Boegh et al., 2013), on 

cereal crop using RapidEye data(Perry et al., 2012) and on maize crops CIR image (Reum & Zhang, 2007), 

on field‐grown spinach plants using GreenSeeker(TM) sensor(Jones et al., 2007),  corn  using SPOT-5 

data (Houborg et al.,2009) and using Landsat Thematic Mapper (TM)( Daughtry et al., 2000), on 
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mangrove forest using  Landsat 8(Pastor-Guzman et al.,  2015) and on oats crop using AggieAir imagery( 

Elarab et al., 2015). Likewise, multispectral data has also been used for chlorophyll estimation in forest for 

instance; on different tree species using Landsat data and simulated Landsat bands(Croft et al., 2015), on 

different broadleaf and conifers trees using Terra and Aqua MODIS data (Houborg et al., 2007),on oaks, 

beech, pines trees using SPOT and IKONOS data (Gascon et al.,2004)are some of the reviewed literatures  

in this study which are  mainly focused on plant biochemical parameter retrieval using data derived from 

multispectral sensor and simulated data. Though a number of multispectral imagery are being used for 

estimation chlorophyll content still there are limited researches were done related to multispectral data 

application in estimating chlorophyll  in forest. This might be due to the complex nature of the forest 

ecosystem as compared to other types of ecosystem and this demand proper image choice which is 

capable of addressing such complexity.  
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3. RESEARCH MATERIALS AND METHODS  

3.1. Study area   

The study was conducted in the Bavarian Forest National Park (BFNP) situated at (49° 3′ 19″ N, 13° 12′ 

9″ E) of South -Eastern Germany along the border with the Czech Republic. The altitude of the area is 

ranging from 600m to 1473m above sea level, generally, the area is considered mountainous. The total area 

covered by the park is 24 218ha. The area is characterized by a temperate climate. The lowest average 

annual temperature of the study area was found 3 to 6 degree Celsius during the summer and heavy snow 

cover during the winter. The dominant soil types are Brown soil, loose brown soil and podzol brown soils 

and are widely distributed in different altitudinal ranges. Generally, these soils are characterized as acidic 

and low in nutrients content primarily consists of genesis and granite parent material (Ali et al., 2015; 

Heurich et al., 2010). 

 

The forest ecosystem is characterized as mixed mountain natural forest and varies with altitude in which 

alluvial spruce forests dominated in the valleys and spruce forests in the hillsides and mountain areas. The 

dominant trees species are Norway spruce (Picea abies) ~67%, Fir (Abies alba) ~2.6 and European beech 

trees (Fagus sylvatica) ~ 24.5% mainly in the sub-montane parts. Besides these trees species, there are also 

other tree species associated with such as mountain ash (Sorbusaucuparia)~ 3.1%, sycamore maple(Acer 

pseudoplatanus)~1.2%, Goat willow(Salix camera) and birches trees species found as mixed forest( Heurich 

et al., 2010; Kautz et al.,2011). 

 

 

Figure 2: Location of the study area in the Bavarian Forest National Park (BFNP), Germany. 

 The source of the shape file for Germany was obtained from (http://www.diva-gis.org/datadown). 

http://www.diva-gis.org/datadown


MODELLING LEAF CHLOROPHYLL CONTENT IN HETEROGENEOUS FOREST USING HIGH RESOLUTION MULTISPECTRAL IMAGE: A CASE 

STUDY OF BAVARIA FOREST NATIONAL PARK 

14 

The forest is characterized by having a long history of bark beetle attack (Ips typographus) and this has 

resulted in a massive proliferation of conifers species like spruce trees leading to a death of 6000ha 

(Lausch et al., 2013).  Figure 2 also show the area covered by the dead tree as a result of such catastrophe.  

 

3.2. Materials  

 

            Field measurements  

 

The main objective of collecting ground data was to obtain the most valuable information’s which are 

representative to the actual situation of the forest ecosystem being investigated and to use them during 

model parameterization. Chlorophyll ground data was also used for validation of the chlorophyll retrieved 

by the model. 

3.2.1. Sampling design and data collection 

 

The ground truth data on different forest structural variables were collected during the field campaign in 

July 2015 by staff and Ph.D. students of Natural Resource Department, Faculty of ITC, University of 

Twente. To facilitate the data collection, the study area was first stratified into the forested and none 

forested areas using the available land cover map. Following this, a total of 40 sample plots with the sizes 

of 30m x 30m were randomly established in the forested area. The distributions of sample plots are 

presented in Figure 3.  
 

 

Figure 3: The distribution of sample plots in the study area shown in red dots 

 

The central location of the sample plots were determined by using the Garmin Oregon 550T GPS with an 

accuracy of +/- 4 meter. In each sample plot different biophysical parameters such as tree height, canopy 

diameter, LAI, steam density, and average leaf angle were recorded. To obtain the biochemical properties 

such as chlorophyll, within each plot 4-5 trees were randomly selected and the leaf samples were collected 

using Excalibur Matrix 310 Crossbow from the top canopy layers. Then sampled leaves were instantly 
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sealed into zip-lock plastic bags and kept in a cooler with ice till they are transported to the laboratory for 

subsequent chemical analysis.  To increase the accuracy of chlorophyll extraction from the leaf and obtain 

a representative output, a multiple leaf samples were collected from each plot and then averaged to get the 

leaf chlorophyll content at the plot level.  The summary statistics of the measured forest structural 

variables are given in the Table 1. 
 
 

Table 1: summary statistics of field and laboratory measured forest biochemical and physical parameters 

Basic   statistics Height     CD ALA LAI Steam /ha 

Minimum  14 1.5 28.29 0.505 189 
Maximum  29 8 64.61 5.86 500 
Mean  19.93 4.12 47.28 3.414 307 
Std.dev  3.64 1.53 8.31 1.06 79 

 

3.2.2. Laboratory chlorophyll measurement 

 

The laboratory analysis was done at ITC geoscience laboratory. A sample of 0.5g leaf was prepared first 

and weighed using a digital measuring balance. Then the leaf were grounded about 5-minutes using mortar 

and pestle by adding 3ml of pure acetone(100%) which facilitate the process of maceration, until the pulp 

get turned into white colour and all the green pigments extracted. The extracted chlorophyll was 

transferred to test tubes and then to get the required amount of solution, 7ml of pure acetone was added 

to the extracted sample. To facilitate the mixing up of acetone with the extracted chlorophyll and finally to 

make the extract fully transparent during spectrophotometer reading the samples were placed in the 

centrifuge for 4-5 minutes at 4000rpm. The extraction was done based on the empirical formula given by( 

Lichtenthaler & Buschmann, 2001).  

 

The spectral absorption measurement of chlorophyll was done by using UV 6300pc spectrophotometer 

(VWR International, 2015). Before taking the actual chlorophyll measurement first, the UVs instrument 

was calibrated using the 100% pure acetone reference sample through the basic mode configuration. The 

calibration was done for the whole range of wavelength from 190 to 1100nm. This was done to avoid any 

measurement error while scanning the actual samples.  Then after immediately removing the samples from 

centrifuge a 2 ml sample of purely homogenized chlorophyll extract was prepared for measuring the 

chlorophyll absorptions. The absorption coefficients for Chl a and b measurement were done separately at 

selected chlorophyll sensitive wavelengths (λ) of 661.8nm and 644.8 at 0.1nm steps, respectively. To get 

the chlorophyll concentration of a and b in ug/ml, the equation by (Lichtenthaler & Buschmann, 2001) 

was adopted.  

The calculation was done accordingly: 

 
          [    ] [

  

  
]                          ---------------- (Eq.1) 

           [    ] [
  

  
]                          ---------------- (Eq.2) 

Total Chlorophyll concentration was calculated as the sum of Chl a and Chl b:  

               [         ] [
  

  
]  [    ]  [    ]-----------------------------(Eq.3) 

Where Chla= chlorophyll a; Chlb= chlorophyll b; A=absorbance (the unit is dimensionless)    
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Figure 4: Laboratory sample preparation in Geoscience laboratory, Faculty ITC, and the instrument UV 6300pc 
spectrophotometer used for the chlorophyll measurements. 

The laboratory measured chlorophyll concentration was converted into area based chlorophyll content 

(ug/cm2) for each sample plots. The conversion was done based on the 

(http://www.aquacalc.com/convert/surface-density/milligram-per-square-centimeter) 

 

3.2.2. Satellite Image  

 

High-resolution multispectral satellite images of RapidEye were acquired on July 2/2015 parallel to the 

field campaign. The satellite is a single sun-synchronous orbit plane with an attitude of 630km. The orbital 

period combined with the phasing makes the satellite view the earth at any points during 24 hour period 

off nadir and 5.5 days at nadir (Anderson et al.,2013). It is a constellation of five satellites providing 

multispectral imagery in 5 bands (Table2). The orthorectified pixel size of the image  is 5m (Anderson et 

al., 2013). The mosaicked image was prepared from four images covering the study area, since a single 

image was not able to cover the whole study area. 

 
Table 2: Characteristics of RapidEye spectral bands 

Nr. Name Start WL Middle WL End WL Sp.Rg Spat.Res 

1 Blue 440 475 510 70 5 

2 Green 520 555 590 70 5 

3 Red 630 657.5 685 55 5 

4 Red edge 690 710 730 40 5 

5 Near Infrared 760 805 850 90 5 

 

Source: http://blackbridge.com/rapideye/ 
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Angular characteristics obtained from the image Metadata acquired during acquisition period were 

calculated from the image.  Hence, during the INFORM model parameterization, these external 

parameters associated with the sensors were set to their average value based on the information provided 

in Table 3.  
 
Table 3: Sensor related information derived from the Metadata 

Descriptions  Value  Representation  

Average Scene  incident angle  3.8125 Degree  

Average illumination Azimuth angle  171 Degree  

Average illumination elevation angle  64.075 Degree  

Average space azimuth angle   102 Degree  

average spaceCraftViewAngle 3.18 Degree  

Projection type  na Transfer Mercator  

Coordinate system  na WGS-84 –UTM zone 33  

 

3.3. Methods  

3.3.2. Image pre-processing 

3.3.2.1. Image calibration to surface reflectance 

 

In order to increase the usability and quality of information retrieved from the image and to be able to 

extract information accurately surface reflectance was calculated.  The satellite images used for this study 

were obtained as level 3A product in which all the radiometric and geometric correction were applied by 

the provider 

To calculate the Top Of Atmospheric (TOA) reflectance measured by the sensor, band Maths algorism in 

ENVI-IDL5.2 were utilized. The equation implemented for TOA normalization was adopted from 

(RapidEye, 2011) and was given as follow: 
 

 

            ( )     ( )   (             ) (   ( )      (           ) )----------------- (Eq.4) 

Where  

 I: the number of spectral bands  

 REF: is the reflectance value at the TOA 

 RAD: is the radiance value to which the image is calibrated or scaled (it is the product of DN* 

radiometric scale factor of the image) 

 Sun Dist: Earth-Sun Distance at the day of acquisition in Astronomical Units (ranges between 

0.9832898912AU to 1.0167103335AU) 

 EAI: Exo- atmospheric irradiance  

 Solar Zenith: Solar Zenith angle in degree (90-Sun elevation angle) 
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3.3.2.2. Image spectral reflectance extraction 

 

Spectral reflectance was extracted from the pre-processed satellite images for the selected 40 sample plots. 

The GPS points collected during the field campaign were used as inputs in order to geo-locate the sample 

points properly hence facilitate the extraction. The spectral extraction was done in ENVI-IDL5.2 spectral 

analysis toolbox developed by the NRS.  This toolbox requires only sample points (GPS) converted into 

shapefiles and the pre-processed image normalized into TOA reflectance value. The average spectral 

reflectance of each sample plot was extracted by applying the window size of 5*5 pixels (i.e. 25mx25m) in 

NRS spectrum toolbox. This window size was selected to avoid the error of geo-location of sample 

points.  Furthermore, taking the value of the pixel located at the centre of the point (pixels) also allow us 

to avoid the plot border effects. Finally, the extracted image spectral reflectance of the plots, hereafter 

called measured reflectance, were used for further analysis and the lookup tables inversions. Figure5 

shows the extracted reflectance from the image (measured reflectance) of the 40 sample plots.  

 

Figure 5: Reflectance of sample plots extracted from the mosaicked image using 5x5 pixels window size 

 

3.4. INFORM radiative transfer model  

 

Since the selected study area is characterized by heterogeneous forest, therefore, this demands a proper 

model selection that accounts these complex structures of the forest. As described by Demarez & 

Gastellu-Etchegorry(2000) coupled canopy models are assumed to be robust in handling such a 

complexity raised from ecosystem heterogeneity. Therefore, for this study an invertible forest reflectance 

model (INFORM) which is a type of an integrated canopy reflectance model developed by (Atzberger, 

2000; Schlerf & Atzberger, 2006)was used for simulating canopy reflectance. The INFORM is a physically 

based canopy radiative transfer model, consisting of three sub models namely: forest light interaction 

FLIM model (Rosema et al., 1992), PROSPECT leaf model (Jacquemoud & Baret, 1990), and  SAIL 

canopy model (Verhoef, 1984). The model was developed to simulate the canopy spectral and 

bidirectional reflectance in complex structure forest stands (Atzberger, 2000), that cannot be achieved 
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through the use of  1D radiative transfer model. The INFORM was considered as suitable canopy model 

in linking the canopy variables with reflectance data. In INFORM, the forest is considered as 

discontinuous canopy layer with tree crown and gaps (Rosema et al., 1992).Therefore, in order to properly 

model the different input parameters first the INFORM submodels needs to be parameterized 

independently according to the input variables they are required.   

3.4.1. Model Parameterization 

 

 INFORM model can be parameterized by leaf parameters such as Cm, Cw, N, and chlorophyll (a+b), 

canopy parameters such as SD, LAI, canopy cover percentage (CC%), canopy diameter (CD) and H (tree 

height) and then external parameters: sun zenith (θs) and sun azimuth angle (ψ), hence be able to simulate 

the forest canopy reflectance in the wavelength region between 400-2500nm. In the model to calculate the 

reflectance at the forest canopy the crown transmittance with the sun and observation direction, the 

crown reflectance at infinite crown depth and the background reflectance was computed from the SAIL, 

PROSPECT and FLIM RTM models. Some of the mathematical algorithms used to fix the input 

parameters for the model were explained in the next subsection. 

 

Parameterizing the models with the inputs variables representing the local situations in which the model 

was being implemented is assumed to increase the success of parameters retrievals( Baret & Buis, 2008; 

Combal et al., 2002).  During model simulation, the input parameters that did not have a strong effect on 

the canopy reflectance in the selected wavelengths have been fixed to their reasonable value ranges using 

either data obtained from the field (Table4) or earlier studies. The range for chlorophyll was set 

approximately close to the actual range measured in the field. The fixing of parameter’s close to their 

actual measured values can also help in soliciting the ill-posed problem associated with the physical based 

radiative transfer models (Baret & Buis, 2008).  

  

3.4.1.1. Parameterising leaf optical model: The PROSPECT 

 

The PROSPECT leaf optical model is capable of simulating leaf hemispherical transmittance and 

reflectance (Jacquemoud & Baret, 1990). The modified version of leaf optical PROSPEC-4 was selected 

for this study. This model version is capable of simulating the leaf transmittance and reflectance properties 

in the range of 400-2500nm. PROSPECT-4 model input parameters are four including leaf structural and 

biochemical parameters such as leaf structure parameter (N) which is unit less, chlorophyll content (Cab)  

in ug/cm2, leaf dry matter content (Cm) in ug/cm2, and leaf water content (Cw) expressed in ug/cm2 

(Feret et al., 2008; Jacquemoud & Baret, 1990). The simulated leaf spectral transmittance (τleaf) and leaf 

spectral reflectance (ρleaf) of overstory and understory vegetation from PROSPECT leaf model can be 

used as input to the INFORM model were calculated based on Jacquemoud & Baret.( 1990)as:  
 

                   (   )           (           )----------------------------------------- (Eq.5) 

 

In this study the leaf structure parameter (N) which is difficult to measure in the field was fixed to the  

recommended range  value (1.5 ) in  literature for the conifers trees in Ali et al. ( 2015) and Malenovský  et 

al.( 2006). The output of spectral properties from the simulated leaf  by the PROSPECT model was used 

as input for the SAIL canopy model during the INFORM simulation (Atzberger, 2000). 
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3.4.1.2. Parameterizing canopy model: The SAIL and FLIM 

 

The Scattering by Arbitrarily Inclined Leaves (SAIL) canopy model which is an integral part of INFORM 

model was adapted to estimate the bidirectional transmittance from the vegetation canopy (Verhoef, 

1984).  SAIL is a turbid medium canopy model which assume forest canopy as horizontally uniform 

parallel plane with many layers and the soil as diffuse reflector object. The main input parameter for this  

model are: the average leaf inclination angle (ALA (deg)), leaf are index (LAI (m2m-2)) ;sung angle, 

(θs(deg)); observation angle (θo(deg)); the relative azimuth angle between sun(illumination) and sensor 

observation (ψ(deg)); the fraction of diffuse radiation (sky), soil parameters or background reflectance ( rsl)  

and the hot spot parameter ( hot(mm-1)).  

 

The crown transmittance in the observation To and sun direction Ts (for any leaf transmittance τ and leaf 

reflectance ρ) input used during INFORM model can be calculated from the SAIL model as follow: 

reference!   

 

                  (                         )----------------- (Eq.6) 

                   (                         )----------------- (Eq.7) 

 

The value of the skyl was fixed to the default value of 0.1 as suggested by Darvishzadeh et al. (2008) and 

Schlerf & Atzberger.(2006). Furthermore, Clevers & Verhoef.( 1993) suggested very limited or negligible 

overall influence of diffuse radiation (skyl) on the canopy reflectance is compared to other variables.  

 

The FLIM model ( Rosema et al.,1992)  is another submodel integrated with INFORM canopy model  

and is used to simulate the reflectance from the forest stand (Rλ ). Coupling this model in INFORM helps 

in resolving the shadow and transmittance effect originating from the forest structure( Schlerf & 

Atzberger, 2006).  In FLIM the forest is considered as non-continuous layer and the reflectance can be 

calculated as: 

 

                Rλ =RC.C+RG.G--------------------------------------------- (Eq.8) 

 

Where Rc is crown reflectance at infinite depth and RG is the background reflectance (i.e. reflectance 

from the forest floor). Variables C and G are the crown and ground factors, respectively(C+G≤1). The 

value of RG and RC were estimated using the SAIL model( Schlerf & Atzberger, 2006). Furthermore, 

external parameters (i.e. sensor related parameters) which are used as input to the model were calculated 

from the sensor Metadata. Finally, the simulation of reflectance from forest canopy was calculated in 

invertible forest canopy reflectance model (INFORM) taking all the output obtained from the three 

submodels. The forest canopy reflectance (R) in INFORM was calculated as:  

 

         (                                                   ) ----- (Eq.9) 
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3.4.2. Model sensitivity analysis  

 

Before running using the model and generation of LUTs, model sensitivity analysis was performed in 

order to understand the effect of different input parameters on the reflectance and also to investigate the 

robustness of the model to each parameter changes; hence fixing the less important parameters during the 

subsequent model simulations. Taking the recommendation from Bowyer et al.(2003), a local sensitivity 

analysis was performed to examine the influence of each input forest parameter on canopy reflectance in 

INFORM model. The local sensitivity analysis allows varying one parameter at a time during model 

simulation while other parameters are fixed at their average values. The analysis was done in Mathlab 

version 2015b.  Prior to performing sensitivity analysis, first the different range values of the key inputs 

parameters were fixed to their range of minimum and maximum value obtained from field measurement 

(Tabe4). Thereafter, the effect of each parameter on the reflectance was investigated by varying the 

parameter value systematically in the selected wavelength region.  For instance when sensitivity analysis is 

done for chlorophyll content (Cab), the value of chlorophyll is changing and all other parameters were 

kept constant at their average value. The range of wavelength in which the simulations were performed is 

based on the band configuration of RapidEye image ranging from 440nm to 850nm (Figure7).   

 

3.4.3. Look Up table Inversion 

 

The look-up table search was performed for retrieving chlorophyll content during INFORM simulation. 

Two types of look table namely randomly generated and systematically generated were built based on the 

input parameters set in Table4. During the parameter setting the prior information collected from field 

data were used to set the maximum and minimum values for each input parameter. The use of prior 

information was to avoid the ill-posed (Combal et al., 2003) and also was used to limit the size of the 

LUT.  

The size of the LUT is the main issue that needs consideration during synthetic database generation (He et 

al., 2012; Weiss et al., 2000). Generating too big LUT size requires long time for processing and also it 

demands big space for storing the simulated data. Likewise, small LUT size has its own disadvantage(He et 

al., 2012).  Small LUT have a nature of over generalization or smoothing and the output obtained for each 

inversion might not be the same or vary greatly especially for the randomly generated look-up table 

(Darvishzadeh et al., 2012; Weiss et al., 2000). Therefore, considering both the processing capacity of the 

computer and  time required to simulate the data the optimal size of LUT was set as suggested in ( 

Darvishzadeh et al., 2012; He et al., 2012). Finally, using the predetermined field and laboratory data the 

size of the LUT was set to be 150000 forest spectra for randomly generated LUT and 147744 forest 

spectra for systematically generated look-up table. The random LUT was generated only by fixing the 

upper and lower boundary of the input variables selected to vary during the simulation.  
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Table 4: Input parameters used for generating LUT during INFORM simulation 

 

Variables Symbol Unit   Min  Max  Constant  

Canopy parameters       

Crown diameter  CD m  1.5 10 * 

Steam density(stand density) SD n/ha  150 700 * 

Stand height  H m  13 30 * 

Single trees LAI  LAI  m2·m−2  0.5 7 * 

LAI understory  lAIu NA 0.1   0.1  

Average leaf angle of 

understory  

ALAu degree  40 80 * 

Leaf parameters        

Leaf structure parameter ) N  NA 1.5   1.5  

Chlorophyll content(a+b) Cab  µg·cm−2  20 60 * 

Leaf dry matter content Cm  g·cm−2  0.0102 0.037 * 

Equivalent water thickness  Cw  g•cm−2  0.006 0.035 * 

External / sensor parameters        

Fraction of diffuse radiation  skyl  fraction 0.1    0.1  

Scale  % 0.1    0.1 

Azimuth angle ψ  degree 171    171** 

Sun zenith angle θs  degree 26    26** 

Observation zenith angle θo  degree 0    Constant 

The * shown in the table is indicating the variables varying during the whole modelling process. The ** star shows 

information derived from the image Metadata. 

During the simulation, only eight parameters were allowed to vary and the other parameters were fixed at 

their mean value.  The parameter selected to vary during the LUT generation were chosen based on the 

result obtained from the sensitivity analysis and prior knowledge. 

 

To generate the systematic LUT, a forest canopy spectra with an approximate permutation of 3Cm x 3Cw 

x 16 Cab x 5LAI x 3 SD x 3H x 4CD x4ALA was used resulting in a LUT with the size of 147744 

simulated spectra. The simulated data were stored in the LUT used for inversion. Finally to get the 

estimated leaf chlorophyll content and the reflectance value the best LUT search was done. 

The best matched reflectance between the measured (Rmeas) and LUT simulated (Rlut) at each measured 

wavelength were obtained following the general principles of the cost function. This is basically used for 

finding the solution of the inverse problem obtained during LUT generation as described in (Atzberger et 

al., 2015; Darvishzadeh et al., 2012). The cost function allow us in calculating the RMSE with the least 

distance between the (Rlut) and (Rmeas) which later be used for chlorophyll estimation. The RMSE was 

calculated according to the equation 10. 
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      √∑
(                 )     

 

 

   
              -------------------------- (Eq.10)  

Where R measured is indicating the measured reflectance from the image at a given wavelength, Rlut 

represents the simulated reflectance in the INFORM model at given wavelength and n represent the 

number of bands used during the simulation. 

3.4.4. Model validation  

 

The leaf chlorophyll content retrieved using the INFORM model was validated against the laboratory 

measured chlorophyll content. The laboratory measured chlorophyll was used as reference data for 

validating every chlorophyll data simulated in INFORM model. The accuracy of the validation result were 

presented in terms of coefficient of determinations (R2), root mean square error (RMSE) and bias were 

calculated for each simulated canopy spectra and retrieved leaf chlorophyll content. Richter et al.( 2012) 

suggested the use of these statistical measures for measuring the performance efficiency applied to 

vegetation parameter estimation models (physical base model).  

3.4.5.  Software’s used  

 

In order to process and analyse the data different software’s were used in this research. Table 5 show the 

list of software’s employed during the whole period of the research.  Most of the chlorophyll retrieval and 

data analysis process were done in the Matlab Version 2015b software. The image analysis was done in 

ENVI 5.2, Arc Map 10.3.1, and ERDAS IMAGINE 2015. Besides this Microsoft excel also used for 

processing and analysis of the data.  And click chart for drawing a flow chart.  

 
Table 5: List of software’s used 

No  Type of instrument  Used  for  

1 ArcMap  mapping generating and GIS analysis   

2 ENVI 5.2  spectral extraction   

3 Matlab 2015b LUT inversion and modelling, statistical data 

analysis   

4 ERDAS IMAGINE 2015 Image analysis  

5 Mircosoft Excell and R-studio  data exploration, processing and making graphs    
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3.4.6. General flow chart for research methods 

 

The flow chart demonstrate  the different research steps followed for achieving each proposed research 

objectives and associated research question. The overall research process consisting of, remote sensing 

data analysis, model parameterizing, and laboratory data processing are the starting point of the research. 

The second stage of the process was obtaining reflectance from remote sensing data and building a 

database (synthetic database) in the LUT and which latter was used as input to the inversion. The third 

step is model validation and accuracy assessment using different statistical analysis.  
 

Simulated  Leaf Chlorophyll Content  and 

Reflectance:

(1) Systematic LUT with 5 bands

(2 )Random LUT with 5 bands

(3) Without red edge bands

(4.) With band combination(excluding blue band)

INPUT DATA

TOA Corrected 

Image

Preprocessed 

RapidEye Image

Laboratory Chlorophyll (ab) UVs 

Spectrophotometer reading 

Remote sensing 

data

Literatures(ranges of 

Input variables and 

sensors related data)

Filed Data(Leaf 

Samples, SD, H, 

CD,ALA, and LAI)

Apply Conversion Equation 

Leaf chlorophyll 

Concentration (Cab)

Chlorophyll Content 

Merged at Plot Level

TOA Reflectance 

Extraction (40plots)

SIMULATION OF 

INFORM RT CANOPY 

MODEL

LUT Generated 

Systematically 

LUT Generated 

Randomlly

LUT INVERSION

Model Validation and Accuracy 

assessment (RMSE and R2)

Best Estimated Leaf Chlorophyll 

Content and reflectance 

 

Figure 6: Methods flow chart. 

In the box abbreviations letters represented are defined as LUT (look-up table), TOA (top of atmosphere 
reflectance), Cab (Chlorophyll a and b).SD (stand density), H (height), LAI (leaf area index), ALA (leaf angle), and 
CD (canopy diameter) 
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4. RESULT   

4.1. Wet chemistry chlorophyll estimation  

 

The leaf chlorophyll content obtained from the laboratory analysis is presented in table 6. The range of the 

chlorophyll content expressed in ug/cm2 was found as 23.05 to 53.19ug/cm2. Measured chlorophyll 

demonstrated a relatively high variation (Std=6.81).The range of chlorophyll  obtained in this study  is also 

in agreement with the range of chlorophyll content reported by (Wang et al., 2015).   

 

 

Table 6  Summary statistics for leaf chlorophyll measurement obtained from wet chemistry analysis. 

Basic statistics Chlorophyll (ug/cm2) 

Minimum 23.05 

Maximum 53.19 

Average 38.99 

Standard dev. 6.81 

 

4.2. Parameter sensitivity analysis  

 

Sensitivity analyses (SA) were performed using INFORM in order to assess the importance of forest stand 

parameters influencing the canopy reflectance using the RapidEye wavelengths utilized in this study. 

Likewise, later throughout this study, the input parameters which were identified as the most influential 

during this step were varied during LUT inversion. Figure9 illustrate the influence of different forest stand 

structures and leaf parameters on the simulated canopy reflectance in RapidEye bands settings.  
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Figure 7: Sensitivity analysis using INFORM.  

The effects of chlorophyll content(cab), dry matter content(cm), stand height(h), crown diameter(cd), leaf area 

index(LAI), steam density(sd) and average leaf  angle(ala) on the simulated  forest canopy reflectance spectra in 440 

nm to 850 nm spectral region. 
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Chlorophyll a and b (Cab), dry matter content (Cm) and water content (Cw) were selected to vary during 

model simulation. These parameters were selected assuming that they have a significant impact on forest 

reflectance at canopy level. 

 

As can be observed from Figure 7 forest structural variables such as leaf area index (LAI), stem density 

(SD), canopy diameter (CD), tree height (H), average leaf angle (ALA), were among the most important 

parameters identified during the sensitivity analysis as they had shown a strong effect on the canopy 

reflectance in the selected wavelength region (i.e. RapidEye wavelength region). It seems that the effect of 

these parameter on canopy reflectance are becoming more pronounced beyond the selected wavelength 

region (Figure7). The effect of non-pigment leaf element such as dry matter content (Cm) was noticeable 

around the shoulder of near infrared region approximately beyond 720nm (Figure 7). Conversely, this 

parameter has no effect on the wavelength less than ~720nm (visible range). The influence of leaf water 

content on canopy reflectance was not observed for the wavelength region selected for this study (i.e.440-

850nm) (not shown). Finally, leaf chlorophyll (Cab) which is the focus of this study has shown significant 

impact on canopy reflectance in the wavelength region between 400-750nm. Furthermore, it was also 

observed that Cab has less/almost no effect on reflectance beyond the red edge region (~750nm 

wavelength range).  

 

Consequently, considering the overall contribution of each forest parameter on canopy reflectance which 

was examined during SA, the following parameters SD, CD, LAI, H, ALA and Cab were allowed to vary 

at finer step during the entire LUT generation. Likewise, parameters like cm and cw which have a minor 

effect on canopy reflectance for the selected wavelength region have kept varying at wider range for the 

LUT generations.    
 

4.3. The effect of LUT generation on leaf chlorophyll content retrieval   

4.3.1. Chlorophyll retrieval using systematically generated LUT  

 

The systematically generated LUT from INFORM radiative transfer model was utilized for the inversion 

process together with the measured reflectance in order to retrieve leaf chlorophyll content of the sample 

plots (N=40). The best match between the simulated reflectance (from LUT) and the measured 

reflectance was calculated using the LUT search algorithm based on the minimum RMSE criterion. The 

simulated reflectance which mostly resembled (with minimum RMSE) the measured reflectance of the 

plots were selected and the corresponding leaf chlorophyll contents were retrieved respectively. Finally to 

validate the model performance, the relationships between measured and retrieved leaf chlorophyll 

contents were evaluated using the RMSE and R2 value.  Based on this, the measured and estimated leaf 

chlorophyll content had a root means square error of (RMSE=13.18ug/cm2) and coefficient of 

determination (R2=25.48%). Likewise, the estimated relative root mean square error (rel. RMSE) and bias 

value were found to be 33.79% and 9.37, respectively. Figure 8 shows the scatter plot between the 

measured and estimated leaf chlorophyll contents obtained from systematically generated LUT. The range 

of leaf chlorophyll contents retrieved in this approach lie in the range of 20ug/cm2 to 48.6ug/cm2. The 

scatter plot shows the distribution of the points in 1:1 line. From the scatter plot, it was observed that the 

distributions of the sample points are concentrated to the lower boundary of the 1:1 line, indicating the 

underestimation of leaf chlorophyll content. This is particularly the case for the measured leaf chlorophyll 

values of 30 to 45ug/cm2. This underestimation might be explained by the ill-posed nature of the physical 

model in which different input parameters resulting similar outputs.  

 



MODELLING LEAF CHLOROPHYLL CONTENT IN HETEROGENEOUS FOREST USING HIGH RESOLUTION MULTISPECTRAL IMAGE: A CASE 

STUDY OF BAVARIA FOREST NATIONAL PARK 

28 

 

 

Figure 8: The relationships between the measured and retrieved leaf chlorophyll content using a systematically LUT 
generated by INFORM. 

4.3.2. Chlorophyll retrieval using randomly generated LUT  

 

The scatter plot in Figure 9 illustrate the relationship between the measured and estimated leaf chlorophyll 

content retrieved using the randomly generated LUT by INFORM. A relatively higher accuracy for leaf 

chlorophyll content was obtained when applying this method as compared to the result obtained using the 

systematic LUT in the previous section. The overall model accuracy obtained in this approach had root 

mean square errors of (RMSE=8.07ug/cm2) and coefficient of determination (R2=34.53%).  It was also 

observed that this approach has resulted in lower relative root mean square of errors (rel.RMSE=20.69%) 

and bias value of 0.979.  The higher accuracy obtained in this approach can be explained probably by the 

equal chance which exist for sample selection during LUT generation procedure. Similarly, the range of 

leaf chlorophyll content retrieved through this approach was found to be higher (i.e. 20.25-53.1ug/cm2) 

which was closer to the range of actual measurements.  A uniform distribution of points along the 1:1 line 

was observed from the scatter plot. The estimated leaf chlorophyll content has reached both the lower and 

upper boundary. 
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Figure 9  The relationship between the measured and estimated leaf chlorophyll content using the randomly 
generated LUT by INFORM. 

4.4. The effect of red edge band on leaf chlorophyll retrieval   

 

To investigate the importance of red edge band on leaf chlorophyll retrieval, the forward simulation of 

INFORM model was done without the inclusion of red edge spectral band and a new LUT was generated 

using the random approach.  As stated in the previous section the randomly generated LUT has yielded 

higher prediction accuracy for leaf chlorophyll content. Figure 10 demonstrate the relationship between 

the measured and estimated leaf chlorophyll content using LUT generated without the red edge band. The 

root mean square error (RMSE) and coefficient of determination (R2) were found to be 13.16ug/cm2 and 

25.13 %, respectively. It was also realized that removing the red edge band resulted in an increased relative 

root mean square of error (rel.RMSE=33.79) and bias value of 11.49. The scatterplot in figure 10 below 

shows the samples distribution in 1:1 line, in which most of the samples  were located in the  downside of 

the one to one line, indicating largely underestimation of the estimated leaf chlorophyll and occurrence of 

ill-posed problem. The range of the estimated leaf chlorophyll was between 20.21–41.17ug/cm2. 

Compared with the results obtained in the previous section, using all bands for LUT generation, the upper 

range of the estimated leaf chlorophyll was dropped sharply.  This has indicated the importance of the red 

edge band in leaf chlorophyll estimation.  
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Figure 10  The relationship between the measured and estimated leaf chlorophyll content, using the randomly 
generated LUT without the red edge band. 

4.5. Calculation of mean absolute error (MAE)  

 

The mean absolute error (MAE) for individual bands were calculated between the measured and simulated 

reflectance obtained from the LUT inversion. The equation in (Atzberger et al.,2013) was used for 

calculating the MAE  is shown  below; 

 
 

MAE(λ)  
 

 
 │∑          ( )            ( )

 

   
│-------------------(Eq.11) 

 

Figure11 depict the MAE value calculated for each band. The result shows that among the five spectral 

bands, the blue band has a MAE of greater than 0.04, whereas the remaining four bands have MAE less 

than 0.02. This large difference demonstrates the presence of higher noise level in the blue band which is 

attributed to the atmospheric effect. Therefore, in the subsequent LUT generation, by removing this band 

its effects on leaf chlorophyll retrieval accuracy was examined. Similarly, here a random generation for 

LUT was considered. 
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Figure 11: The mean absolute error (MAE) calculated from the best simulated reflectance and the RapiEye measured 
reflectance. 

In the histogram, the red colour represents the MAE calculated from the systematic LUT inversion and the blue 
colour represents the MAE calculated from the randomly generated LUT inversion. 

4.5.1. Chlorophyll estimation without the noisy band 

 

The scatter plot (Figure12) shows the distribution of samples along the one to one line for the measured 

and estimated leaf chlorophyll content after removing the blue band from the model. Most of the sample 

points are relatively well distributed along this line. The range of estimated leaf chlorophyll content was 

found between 26 to 50ug/cm2. This shows that the selected bands combination could relatively well 

predict the chlorophyll.  The model has a root mean square error (RMSE) of 6.66ug/cm2 and coefficient 

of determination (R2) value of 36.74%. The relative root mean square error and the bias estimated were 

17.07% and 2.85, respectively.   

 

Figure 12 The relationship between the measured and estimated leaf chlorophyll after exclusion of the blue band 
from the modeling.. 
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4.6. Model validation based on spectral match  

 

The best matched spectra, from the INFORM simulated LUTs, with the RapidEye measured spectra are 

plotted in figure 13. In the inversion, the best matched spectra were selected based on their minimum 

RMSE values with the measured reflectance. The plot in top of figure 13 shows that when all wavelengths 

were utilized in LUT generation and inversion procedure, there is a spectral miss-match for the 

wavelength range between 475 – 550nm. This might be due to the effect of atmosphere impact on the 

blue band.   Moreover, when the red edge band was excluded in the LUT generation and inversion, the 

miss-match were extended to other wavelengths, particularly those in visible region (middle plot in 

Figure13). In this case, the spectral miss matching was realized for the blue, green and partially in the red 

region (i.e. 475-660nm). However, when the blue band was excluded from the modelling, the simulated 

and measured reflectance was matched closely (last plot in Figure13). It seems that for the wavelength 

region after550nm, there exist better spectral match between the measured and simulated spectra.  This 

result also confirmed the existence of noise problem associated with the blue band as it was also calculated 

from the MAE.  
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Figure 13: Comparison between the measured and best matched simulated spectra from the randomly generated 
LUTs: top (using all bands), middle (red edge band excluded) and Bottom (blue band excluded). 

 

4.6.1. Plot wise root mean square error  

 

Table 7 shows the corresponding root means square error between the measured and simulated spectra of 

the entire plot considered in this study (N=40).  Larger descripancy between the measured and simulated 

spectra was seen when the simulation was done without red edge band. On the other hand, small variation 

was observed when the blue band was removed. Simulation done with all band had shown intermediate 

RMSE value. The detail of the plot specific RMSE value for each case was shown in Table 7 below.  
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Table 7: The Plot wise root mean square error between the measured and simulated reflectance 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Root mean square error(RMSE) in% 

Plot No. Random LUT Without Red edge band Without Blue band 

1 1.489 1.799 1.438 

2 1.249 1.668 1.108 

3 2.215 2.186 1.069 

4 2.302 2.271 1.187 

5 1.189 1.556 0.923 

6 1.382 1.697 0.888 

7 1.600 1.650 0.707 

8 2.191 2.273 1.422 

9 1.308 1.564 0.886 

10 1.393 1.652 0.944 

11 1.324 1.715 1.082 

12 1.235 1.671 1.068 

13 1.331 1.724 0.971 

14 1.471 1.620 0.829 

15 1.292 1.693 1.064 

16 1.240 1.681 0.988 

17 1.386 1.665 0.960 

18 1.545 1.613 0.808 

19 1.404 1.660 1.061 

20 1.152 1.640 1.093 

21 1.364 1.712 0.999 

22 1.317 1.721 1.015 

23 1.252 1.629 1.007 

24 1.253 1.584 0.918 

25 1.281 1.594 0.936 

26 1.281 1.594 0.936 

27 1.193 1.560 1.028 

28 1.222 1.623 0.966 

29 1.194 1.650 1.006 

30 1.228 1.530 0.929 

31 1.313 1.481 0.878 

32 1.313 1.481 0.878 

33 1.689 1.710 0.756 

34 1.258 1.729 1.148 

35 1.263 1.673 1.072 

36 1.505 1.646 0.876 

37 1.850 1.914 1.105 

38 1.607 1.723 0.904 

39 1.713 1.602 0.430 

40 1.752 1.621 0.412 
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5. DISCUSSION  

5.1. Overview  

Foliar chlorophyll content is one of the most important biochemical component used as an indicator of 

plant photosynthetic activities and health condition. Measuring chlorophyll content from remote sensing 

data can be challenging because chlorophyll has a strong relationship with other leaf foliar biochemical 

elements (Barry & Newnham, 2012). Therefore, in order to quantify this unique and complicated leaf trait, 

there is a need to select proper model that is capable and robust. Besides, the complicated nature of the 

variables being studied (leaf chlorophyll content), the level at which the estimation was done (using image 

reflectance) also constrained by several factors. Stand structures, species types, and background reflectance 

are among the main factors hampering canopy reflectance obtained from imagery. Therefore, considering 

all the  mentioned factors, INFORM canopy radiative transfer model and Look Up Table (LUT) inversion 

was applied to simulate the forest reflectance and the result were evaluated against the RapidEye measured 

reflectance based on the criteria of RMSE and R2.. The results obtained from this were discussed in the 

subsequent subsection.  

5.2. The effect of input parameters on simulated reflectance  

 

The result from INFORM model sensitivity analysis has indicated the most important vegetation 

parameters influencing forest canopy reflectance in  selected (RapidEye) wavelength region ranging 

between 475 – 805nm. It was observed that most of the canopy stand parameters have great variability in 

these wavelength regions.  This result agrees with earlier studies by  Yuan et al.(2015) ;Ali et al. (2015) and 

Ollinger(2011) who demonstrated that at canopy level, stand parameters are mainly effecting the 

reflectance.  

Further studies by, Verrelst et al. (2008) and Verrelst et al. (2010) investigated factors such as the woody 

elements as the main constraint factors affecting canopy spectra under heterogeneous forest condition. 

According to their finding this effect would be higher when the crown cover is less than 30%. This 

condition also applies to the case of Bavarian Forest National Park ecosystem, as there are many dead 

stand wood elements mixed with living trees, thereby influencing the reflectance measured by the sensor.  

 

The effect of leaf chlorophyll on canopy reflectance was mainly observed in the wavelength region 

between 440 to 750nm in this study (RapidEye spectral region) (Figure 7). The chlorophyll absorption 

bands sensitive to chlorophyll pigment levels are mainly situated in the visible to the shoulder of near 

infrared region ( Gitelson & Merzlyak, 1997;1998). Particularly the green and far red region high sensitivity 

to reflectance are linked to chlorophyll content (Datt, 1998). Further from sensitivity analysis of the 

simulated data, it was observed that the impact of dry matter content was minor for the visible region but 

its effect was significantly increased beyond 750 wavelengths toward the mid-infrared region. Earlier 

studies confirmed that water content and dry matter content have an impact on reflectance for the region 

beyond near infrared and only minor effect associated with dry matter had been observed in the shoulder 

of near infrared region( Ollinger, 2011).  
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5.3. Effect of LUT approaches on chlorophyll content 

 

The effect of different look-up table generation methods on chlorophyll estimation was evaluated using 

the INFORM radiative transfer model.  The study was performed by simulating two independent LUTs. 

The canopy reflectance data sets for the two LUTs in this study were randomly and systematically 

generated. It was found that the inversion performed using the randomly generated LUT has yielded 

relatively better prediction accuracy for chlorophyll retrieval (RMSE=8.07ug/cm2 and R2=34.53%) as 

compared to using the systematic generated LUT. The result obtained in this study was in agreement with 

that of  Maire et al. (2008) who used the PROSAIL  model and hyperspectral indices for estimating leaf  

chlorophyll and obtained RMSE of 8.2ug/cm2 which is  comparable to the result obtained in this study. 

The higher prediction accuracy obtained in the case of randomly generated LUT can be linked to the 

nature of sample selection while generating the LUT. The random nature of sample selection means that 

all the samples or the parameters have equal chance/probability of selection during the simulation of 

spectra; hence, better representation can be achieved. Consequently, this has impacted the model 

prediction accuracy obtained by applying this inversion approach. This is in agreement with the earlier 

study by Weiss et al.(2000) who suggested the importance of employing proper sampling of canopy 

variables included during the LUT generation in order to optimize the model efficiency hence better 

realization of actual ecosystem condition.  

 

The achievement of lower model accuracy in the case of utilizing systematic LUT might be explained by 

the reason that this method requires manually setting the ranges/steps of input parameters varying during 

the model parameterisation. However, the manual input parameter setting during the LUT 

parameterization is exposed to operator/programmer  error and consequently, this affects the  model 

performance( Dorigo et al., 2007). It was also observed from figure10 that less representation of data was 

obtained from the model. The ill-posed nature of the physical model as it was stated in Combal et al., 

(2003) was clearly observed for the systematic LUT generation approach employed in this study.   

 

It was noted that the accuracy of chlorophyll retrieved in this study was lower when compared to other 

studies for different ecosystem condition such as Zarco-Tejada et al.(2001) who estimated chlorophyll in 

the closed forest canopy ( RMSE= 3-5.5ug/cm2). Similarly, Moorthy  et al. (2008) estimated chlorophyll 

content for conifers forest with RMSE values equal to 5.3ug/cm2. Likewise, this result also lower than  

Croft et al., (2013) who evaluated different satellite for forest leaf chlorophyll estimation. Furthermore, the 

accuracy of leaf chlorophyll estimated in this study was also found to be lower when compared with 

chlorophyll estimated using multispectral data and different canopy models for other ecosystem such as 

for rice ( Darvishzadeh et al., 2012) and grassland (Yin et al, 2016). The poor relationship captured 

between the measured and estimated leaf chlorophyll for this study could be due to the presence of poor 

signal propagation from the leaf to canopy level affecting the reflectance detected by the sensor 

(Jacquemoud et al., 1996). However, the accuracy obtained in this study is higher than those obtained by 

Yang,et al.(2010) who used PROSPECT and SAIL canopy models for forest chlorophyll estimation using  

Hyperion data and  look up table inversion. Likewise, our result also outcast the result obtained by 

Malenovský et al.( 2006) who estimated leaf chlorophyll in forest using  3D Discrete Anisotropic 

Radioactive Transfer (DART) model and hyperspectral data.  
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5.4. Effect of inclusion and removing  red edge band on chlorophyll estimation  

 

The potential of red edge band was investigated for leaf chlorophyll estimation. The INFORM model was 

calibrated with and without red edge band and were used to generate both random and systematic LUTs.  

It was observed that a relatively higher retrieval accuracy for leaf chlorophyll was achieved when the red 

edge band was included in the INFORM model. A similar result was obtained by Delegido et al.(2011) 

who evaluated the red edge band available in Sentinel-2 for chlorophyll estimation. In their study, they 

found that the exclusion of red edge band from inversion canopy chlorophyll estimation had resulted in 

poor model prediction accuracy. Similarly, the inclusion of red edge band had greatly improved the 

retrieval of canopy chlorophyll content. In our study the relative contribution of red edge band inclusion 

in the LUT inversion resulted in an increment of 9.4% R2 and lowered the RMSE by 5.1ug/cm2. 

 

5.5. The effect of LUT approaches on reflectance  

 

The comparisons of the reflectance spectra simulated by INFORM using random and systematic 

approach against the RapidEye reflectance had shown a relatively better matching between the measured 

and simulated spectra, when the simulation was performed using randomly generated LUT (R2=98.4%). 

Spectral mismatch was seen for the wavelength region between 475-550 nm (Figure 13 top). On the other 

hand, the reflectance simulated without the inclusion of red edge band had shown a larger discrepancy 

from the actual reflectance measured by the sensor(R2 =96.36%). This reveals the importance of red edge 

band in characterising the vegetation reflectance (Delegido et al., 2011; Schuster et al., 2012). Furthermore, 

this could be explained by the inefficiency of the bands included in the modelling (i.e. due to the 

atmospheric noise). Particularly this mismatching was seen for the wavelength 475-700nm this represent 

blue-red band region. Furthermore, when the LUT were generated by excluding this region (blue band), 

the simulated reflectance had shown a higher match (R2=99.94%). The spectral matching between the 

measured and simulated reflectance after removing the blue band has proved the presence of noise in this 

band. This result indicates the necessity of atmospheric correction as well as band selection during LUT 

inversion. The correlation between the measured and simulated reflectance for the systematically 

generated look-up table was lower and a great mismatching was observed (not shown). 

5.6. The source of error and the way to improve       

 

Evaluating the overall performance of the INFORM canopy radiative model demonstrated that an R2of 

less than 0.5% and an RMSE=8.07ug/cm2 were obtained when leaf chlorophyll retrieval was examined. 

The reasons are summarized as following.  

As mentioned earlier, the low R2 and high RMSE  value obtained in this study can be justified due to the 

existence of poor signal propagation from the leaf to the canopy level leading to poor estimation of leaf 

chlorophyll content (Darvishzadeh et al., 2008; Jacquemoud et al., 1996). Furthermore, Weiss et al. (2000) 

suggested the reflectance in heterogeneous forest could have been be widely affected by the intrinsic 

nature of the forest. This also applies to our study area where the vegetation is characterized with 

heterogeneous. This tendency could be more aggravated if the selected sensor types have a higher spatial 

resolution capable of capturing the detail heterogeneity of the ecosystem which intern affects the canopy 

reflectance(Barton, 2001; Wang & Li, 2013; Weiss et al., 2000; Zarco-Tejada et al., 2013). Fourty & Baret.( 

1997)evaluated the efficiency of different spatial resolution (i.e. 10 and 20 m) for estimating canopy 

biochemical and biophysical elements and found that the lower spatial resolution yielded better-estimated 

result than the higher resolution sensor. A further justification could be due to less smoothening nature of 



MODELLING LEAF CHLOROPHYLL CONTENT IN HETEROGENEOUS FOREST USING HIGH RESOLUTION MULTISPECTRAL IMAGE: A CASE 

STUDY OF BAVARIA FOREST NATIONAL PARK 

38 

existing noise that possibly be captured by the sensor originating from the surface heterogeneity( Zarco-

Tejada et al., 2013). 

  

The ill-posed nature of the model inversion that was mainly observed during systematic LUT generation, 

could also lead to poor model performance (Combal et al., 2003). Likewise, the lower accuracy achieved in 

systematic LUT was linked to the level of precision made during the initial setting of model 

parameterization.  

 

The chosen models, in this case, INFORM could also be the case for obtaining low leaf chlorophyll 

retrieval accuracy. In INFORM the forest is represented as a full green area without any open space, as 

described in Atzberger(2000) and Schlerf & Atzberger(2006) therefore, the model simulate canopy 

reflectance by assuming this condition which by itself is liable to biases.  

This assumption might be pronounced if the vegetation being investigated is sparser/ less dense resulting 

in an increase in background reflectance( Garcia-Haro & Gilabert, 1999; Wang & Li, 2013). In this study, 

lower stand density was obtained with an average tree density of 307 per hectare which is  lower than 

density reported for the site by ( Ali et al., 2015). The lower density implies the presence of open space 

with higher effect of surface background thereby affects the reflectance captured by the sensor.  

 

Although the importance of performing atmospheric correction for retrieval of chlorophyll was suggested 

by (Dong et al.,2009), in our study the atmospheric corrections were neglected due to technical problems.  

However, the effects of the atmosphere were observed from the calculated mean absolute error for bands.  

Particularly this artefact was highly reflected in the blue band. Consequently, including the information 

acquired through this band during the inversion has resulted in lowering the model performance. The 

model accuracy was improved when this band was removed from the inversion. Meaning the acquired 

image has constraint by the atmospheric impact.  

 

In this study we have investigated the best band combinations from RapidEye image for estimating 

chlorophyll content. Consequently the best band combination was when the blue band was removed and 

red edges, red and green were included in the inversion. When the INFORM model inverted using these 

band combination the overall model accuracy was improved as compared to the whole bands base 

retrieval.  The  importance  of choosing optimal band combination was suggested earlier by Weiss et 

al.(2000),  hence, the selection of appropriate band needs care and has to be done systematically.  
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6. CONCLUSION AND RECOMMENDATIONS    

In this study, we evaluated the applicability of broadband multispectral satellite imagery and INFORM 

radiative transfer model for modelling leaf chlorophyll content in Bavarian Forest national Park. For 

successful retrieval of chlorophyll content, the study employed two looks up table (LUT) inversion 

approaches namely random and systematic generated. Furthermore, in this study the importance of red 

edge band for chlorophyll estimation was also evaluated. The overall result obtained in this study had 

shown the moderate suitability of INFORM model for simulating canopy reflectance for this selected 

study area. The model best overall accuracy obtained was RMSE =8.07ug/cm2 and R2= 34.53%.  The 

randomly generated look up table approach outperformed the systematic lookup table for retrieving leaf 

chlorophyll content. Furthermore, the exclusion of the red edge channel from the inversion had resulted 

in poor model prediction accuracy and this has indicated how red edge channel embedded in the 

RapidEye image is important for chlorophyll estimation. Removing the noisy band from the inversion 

increased the model accuracy and created a good spectral match between the modelled and measured 

spectra. The results indicated the potential of INFORM and RapidEye satellite sensor for estimating 

chlorophyll, particularly when modulated chlorophyll (chlorophyll*LAI) at the canopy level would be 

considered.   

6.1. Summary  for answering the proposed research questions 

 

 Research question: Does the LUT generation approach affect the retrieval accuracy of leaf 

chlorophyll content? Which approach of LUT generation, for inversion of INFORM will provide 

a more accurate estimate of leaf chlorophyll content? 

 

 Answer: Yes. The two LUT approaches employed for this study had shown a significant 

difference in their chlorophyll retrieval accuracy. Using the randomly generated look up table 

approach a higher chlorophyll retrieval accuracy was achieved (R2=34.53, RMSE=8.07ug/cm2, 

and relative RMSE=20.69%, Bias= 0.979)  

 

 Research question:  What are the advantages and disadvantages of utilizing high-resolution 

multispectral imagery (in particular RapidEye) for estimating leaf chlorophyll content? 

 

 Answer:  Based on the result in section (4.3.2) where chlorophyll retrieval was examined with the 

inclusion of red edge band, higher chlorophyll retrieval accuracy (RMSE=8.07ug/cm2) was 

obtained.  The exclusion of red edge channel from inversion had resulted in lower model retrieval 

accuracy of (RMSE=13.17ug/cm2). This has clearly indicated the importance of red edge band 

included in RapidEye image for chlorophyll retrieval hence considered as one advantage. On the 

other hand, when using broadband multispectral satellite imagery like RapidEye there could be 

over generalization of information that result in lower chlorophyll retrieval accuracy which is also 

the case in this study. 
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 Research question: Which band combinations give higher chlorophyll retrieval accuracy in 

terms of RMSE and R2? 

 

 Answer: Higher leaf chlorophyll retrieval accuracy was attained using four bands combination 

(i.e. band2, band3, band4, and band5) excluding the blue band from the inversion 

(RMSE=6.66ug/cm2 and R2=36.74%). 

6.2. Further recommendation for  the future studies  

 

Generally, in this study, we evaluated two look-up table approaches for  leaf chlorophyll retrieval  under 

heterogeneous forest condition using INFORM canopy radiative model and high-resolution multispectral 

satellite image(RapidEye).Therefore, taking all the challenges and opportunities we recommend further 

research investigation on the following topics: 

 Since the present study focused only on estimating chlorophyll at leaf level from canopy spectra, 

therefore, we recommend further research to consider retrieval of canopy chlorophyll content 

from image. 

 

 It was suggested that woody component has a significant impact on forest canopy reflectance. 

Similarlly in our study area, part of the forest is covered by dead standing trees and also there are 

situations in which dead trees are found mixed with living trees hence affecting the reflectance 

captured by the sensors. Therefore, future research has to take into consideration the effect of 

these factors for modelling forest chlorophyll. 

 

 In order to draw valid conclusion on the usability of RapidEye image and INFORM model for 

estimation chlorophyll content under heterogeneous forest ecosystem further modelling research 

has to be explored by stratifying the forest into single trees species base, based on age of leaf/ 

trees,  and single band base.  

 

 Other machine learning algorism likes SVM; MRF-VHR has to be evaluated beside the LUT and 

compare their efficacy for leaf chlorophyll retrieval. 

 

 To evaluate the high spatial resolution attribute of the RapidEye satellite image for chlorophyll 

estimation under heterogeneous forest condition further comparative analysis research with data 

derived from other satellite (Landsat 8, Semtinel2) needs further exploration. 

 

 The model assumptions on the parameters such as soil background reflectance and N structural 

parameters could be the main sources for lowering the model accuracy hence their relative 

effects on leaf chlorophyll retrieval needs further investigation through employing site specific 

information.   
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