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ABSTRACT 

The use of satellite remote sensing in monitoring chlorophyll-a pigments in all marine and fresh open inland 

water has been a significant issue in the past decades for preserving and monitoring ecological issues related 

to aquatic systems. 

Three small lakes in the Netherlands were used to study Chlorophyll-a (absorption coefficient of 

pigments/phytoplankton) estimation based on band ratio algorithms using concurrent in-situ on one hand, 

and Landsat-8 and SPOT6 data. This study identified, adapted and tested the performance of four (4) 

empirical models based on optimal bands using both satellite sensor data and field radiometric data for 

proper assessment of Chlorophyll-a. Each of the algorithms specifically requires an optimal band(s) and 

these bands differ among the algorithms. These algorithms includes Maximum Chlorophyll-a Index (MCI), 

the Three Band Model (TBS/3B), Normalized Differential Index Model (NDCI), and the Four Band Model 

(FBS). Ground sourced data including spectral reflectance data and absorption coefficient of chlorophyll-a 

pigments/phytoplankton were used for further analysis. The models were tuned and validated using the 

Geo-Cal/Val method.  

In-situ variations of absorption coefficient of chlorophyll-a were compared with modelled/estimated 

absorption coefficient of chlorophyll-a pigments/phytoplankton using four different band ratio algorithms. 

Good correlation was found when models were applied on in-situ data than concurrent Landsat-8 and 

SPOT6 data. The FBS/4B algorithm performed well with in-situ data, with an R2, of 0.83 respectively and 

a minimal percentage error of (rMAE) 12.35%. However, the MCI model performed better than the 

FBS/4B as well as the 3B and NDCI models when applied to both Landsat-8 and SPOT6 data.  

Only few images processed through FLAASH and was used to depict the distribution and variation of Chl-

a concentration (a_phy) over Lake Binnenschelde, Markiezaatsmeer and Hulsbeek retrieved via the 

application of the MCI band ratio-ing. It is also found that FLAASH is not suitable for atmospheric 

correction of SPOT6 images intended for this study. 

Comparison of sensors showed that Landsat-8 performed better that SPOT6 in the derivation of absorption 

coefficient of chlorophyll-a pigments/phytoplankton. The MCI model maintained its consistency in 

working well with all the various data set and was found better than all other models, hence it was chosen 

as the best model. It had an R2 of 0.69 when applied on in-situ data, and R2 of 0.75 for Landsat-8 data as 

well 0.58 for SPOT6 data. The MCI percentage error was comparatively low for Landsat-8 (21.29%) and 

in-situ data (18.34%) showing only 3% increase in error but error doubled when MCI was applied on SPOT6 

data. In all, most of the algorithms used in this study were sensitive to estimating absorption coefficients of 

Chl-a from both in-situ and Landsat-8 data.  

 

Keywords: Chlorophyll-a, absorption of chlorophyll-a, Landsat-8, SPOT6, remote sensing, 

FLAASH, algorithms, models 
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1. INTRODUCTION 

1.1. Background 

Inland water resources are becoming more prone to danger due to climate change and human activities 

(Majozi et al., 2014). Some deteriorating factors include rapid development as well as industrialization and 

urbanization which have occurred around many inland waters in the past few decades (Feng et al., 2014).  

Photosynthetic algae support healthy aquatic ecosystems by fixing carbon and producing oxygen which help 

in creating the base of the food web. However, under certain circumstances, some species can form high-

biomass and/or toxic productions of cells or blooms, thereby causing harm to aquatic ecosystems (plants 

species and animals) and to humans through direct exposure to water-borne toxins or seafood consumption 

(Kudela et al., 2015). Damage caused by high-biomass blooms to ecosystem may include, for example, food 

webs damage, fish-kills, or low oxygen dead-zones after bloom degradation. Some species also produce 

dominant natural chemicals (toxins) that can persist in the water or enter the food web, leading to illness or 

death of aquatic animals and even human though seafood consumers (Heisler et al., 2008; Kudela et al., 

2015). In addition, with the persistent reduction  in the availability of water resources due the impact of total 

algal biomass or simply put, eutrophication which is a major water quality problem affecting many shallow 

aquatic ecosystems, the protection and maintenance for supporting water quality has become a primary 

objective of most water resources management (Huang et al., 2010). 

Chlorophyll-a as an essential pigment of the algae family is normally used to determine the biomass and 

productivity status of phytoplankton in aquatic systems. Chlorophyll-a concentrations on the other hand, 

shows the degree of eutrophication in water (Tian et al, 2014). 

The presence of the overabundance of these phytoplankton blocks the direct sunlight from reaching the 

lower layer of waters, therefore depriving aquatic life the essential sunlight needed for its growth. This causes 

severe depletion of dissolved oxygen in waters and fatally affects aquatic life and causes many respiratory 

disease and skin disorders in human too (Teneva et al., 2010; Moreira et al., 2014). Therefore there is a 

paramount need for early detection, prediction and quantification of these algal bloom.  

There are lack of comprehensive methods for monitoring and estimating Chlorophyll-a concentration in 

small inland water bodies. This problem will be addressed by employing empirical models using Landsat-8 

and/or SPOT-6 Multi-Spectral data as well as concurrent in-situ measurements. In this research, we will 

inter-compare different algorithms or models and adapt the most accurate one to derive Chlorophyll-a (Chl-

a) from Landsat-8 Operational Land Imager (OLI) or SPOT-6. 
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1.2. Problem Definition 

Most existing techniques that are common for estimating the presence of Chlorophyll-a (Chl-a) as a proxy 

for total biomass blooms in small water bodies are in-situ sampling. This technique has its own 

disadvantages, that is, neither the spatial nor the temporal frequency is sufficient to detect the extent and 

intensity of algal blooms in water bodies. Therefore, field sampling is seen to be very laborious and time 

consuming and may come with inaccurate measurements and uninterpretable results (El-Alem et al., 2012). 

Inland waters are small water bodies that are not detected by current ocean color satellites, example, 

Moderate Resolution Imaging Instrument (MODIS) ~1000m. On the other hand, multispectral satellites, 

such as Landsat-8 and SPOT6, with a spatial resolution of approximately ~10m to ~30m and ~1.5m to 

~6m respectively will provide the required spatial resolution to detect these small water bodies.  

Traditionally, most Chlorophyll-a (Chl-a) models were developed for the clear ocean water and ocean color 

satellites. In this research, we will investigate the opportunities of Landsat-8 and SPOT6 to estimate 

Chlorophyll-a (Chl-a) in inland waters. The lack of comprehensive methods for monitoring and estimating 

inland waters eutrophication problem such as Chlorophyll-a concentration will be addressed by using inter-

comparisons of models/algorithms with respect to Landsat-8 or SPOT-6 Multi-Spectral sensor and 

concurrent field measurements.  

1.3. Research Objectives 

The objective of this research is to identify and adapt a model that is suitable for quantifying or estimating 

Chlorophyll-a (Chl-a) from inland waters from multi-spectral data in Lakes Binnenschelde, Markiezaatsmeer 

and Hulsbeek. 

1.4. Research Questions 

The research questions that will be answered in this research based on the following: 

a. How can we adapt a model such that it can use Landsat-8-OLI and SPOT-6 to estimate Chl-a 

(chlorophyll-a absorption) and produce validated Chl-a output maps? 

b. Which model (based on performance) is best for the quantification and detection of Chl-a in inland 

waters for the specific study areas?  

c. How much error do Landsat-8-OLI and SPOT-6-MSI multi-spectral setup introduces to the 

derivation of Chl-a? 

d. What is the gained knowledge of having high resolution maps from Landsat-8 and/or Landsat-8-

OLI and SPOT-6? 

1.5. Purpose of the Study  

Remote sensing is considered as one of the effective water quality monitoring techniques in the retrieval of 

Chlorophyll-a (Chl-a) for water bodies (Matsushita et al., 2015). By the end of this research, the relevance 

in the application of Landsat-8-OLI or Spot-6-MSI satellite in monitoring, estimating and quantification of 
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Chlorophyll-a (Chl-a) using different models (algorithms) will be realized. Hence executing and developing 

an efficient remote sensing method of quantifying the amount of Chl-a in Lakes Binnenschelde, 

Markiezaatsmeer and Hulsbeek. 

1.6. Structure of Research 

The structure of this research work include Chapter 1 which introduces the general description of the work. 

It also describes the problem definition, research objectives, research questions as well as added values. 

Chapter 2 outlines the literature review and explains some basic concepts of chlorophyll-a, remote sensing 

of environment and chlorophyll-a estimation algorithms. Chapter 3 outlines the study area and data 

collection procedure. In Chapter 4, the methodology is explained. Then in Chapter 5, the results of the field 

measurements and simulated/convolved data for estimating Chl-a in different scenarios with four models 

will be presented. This include the application and validation of the models. Chapter 6 will contain the 

discussion and analysis of the results while Chapter 7 make the conclusion and recommendations. Finally, 

Chapter 8 will end the research work with references and appendices. The elements of this research will take 

the form as illustrated below in figure 1-1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1-1: Structure of Research to be undertaken (Author Construct, Owusu, 2015). 
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2. LITERATURE REVIEW  

2.1. Chlorophyll-a caused through water eutrophication 

One of the major drivers of eutrophication and development of harmful algae (shown in figure 2a&2b) has 

been attributed to nutrient pollution (Lapointe et al, 2015). Chlorophyll-a is the green pigment responsible 

for  photosynthesis that exists in all phytoplankton classes (Watanabe et al., 2015). In recent years, 

eutrophication of water systems has become a problem worldwide and an in-depth understanding about 

water eutrophication will help reduce the phenomena of the growth of algae (Yang et al., 2008). Detecting 

and quantifying chlorophyll-a (Chl-a) is one of the most important indicator for evaluating the 

eutrophication status of a water body in time and space (Matsushita et al., 2015).  

 

 

 

 

 

 

 

 

 

Figure 2-1a & 2-1b: Schematic process of eutrophication and formation of algae in eutrophic case 2 
waters. 

 Photo source for Figure 2-1a & Figure 2-1b. (http://www.fondriest.com/environmental-

measurements/parameters/water-quality/algae-phytoplankton-chlorophyll/) & 

(http://www.ecy.wa.gov/programs/wq/plants/management/joysmanual/chlorophyll.html .  

 

Chlorophyll-a (Chl-a ) has been identified as one of the major ways of  knowing the phytoplankton biomass 

and bio-production in various water bodies (Kutser et al, 2005). Chlorophyll-a (Chl-a) which also a proxy 

of photosynthetic algae can be harmful to human health (Huang et al., 2010). Estimating chlorophyll-a in 

water will help in understanding the status: the physical and bio-chemical components of water are of keen 

interest to the researcher and policy makers respectively (Palmer et al., 2015).  

According to literature, for many decades, satellite remote sensing of water quality has been undertaken 

typically for open ocean and coastal waters which provide information of the status of water based on 

primary production, suspended particulate matter, non-algal particles, coloured dissolved matter (CDOM) 

and chlorophyll-a as an indicator of total phytoplankton biomass. (Cui et al., 2010). Normally, most 

phytoplankton (Photosynthetic algae) have smaller impact in multi-spectral remote sensing because most 

2a 
2b 

http://www.fondriest.com/environmental-measurements/parameters/water-quality/algae-phytoplankton-chlorophyll/
http://www.fondriest.com/environmental-measurements/parameters/water-quality/algae-phytoplankton-chlorophyll/
http://www.ecy.wa.gov/programs/wq/plants/management/joysmanual/chlorophyll.html
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phytoplankton are very small to see with the naked eye. However, some types of blooms may be noticeable 

due to the large presence of chlorophyll-a (Chl-a) as it appears as coloured pigments on water surface. The 

abundance and spatial distribution of phytoplankton in waters through the use of remote sensing techniques 

to estimate Chlorophyll-a (Chl-a) has relied mostly on algorithm (Kamerosky et al., 2015). However, remote 

sensing of water quality of small water bodies has been hindered by the course spatial resolution of available 

ocean colour sensors (Groetsch et al., 2014). This makes it unconducive in the application over small inland 

water bodies such as lakes, lagoons, rivers, reservoirs among others (Rantajärvi et al, 1998). Although, 

current multispectral sensors have the required spatial resolution to map small water bodies, they do not 

have the required spectral characteristics (resolution) for many water quality applications (Berni et al., 2009). 

2.2. Remote Sensing of Chlorophyll-a in Open Waters 

 

Using remote sensing  to precisely estimate Chl-a pigment (phytoplankton) in turbid productive waters is 

mostly difficult (Yi et al., 2013; Zimba & Gitelson, 2006). However, satellite remote sensing based on red 

and near-infrared wavelengths has proven to be very useful in observing chlorophyll-a concentrations (Chl-

a) in water bodies (Yu et al., 2014). Based on spectral characteristics of water, Chl-a concentrations can be 

mapped through remote sensing images by means of quantitative retrieval methods. Chlorophyll-a has an 

approximate absorbance maxima of around 430 nm and 662 nm. By measuring the absorption of light in 

the red and NIR regions, it is possible to estimate the concentration of chlorophyll-a.  

The ease of using remote sensing to quantify and estimate Chl-a in open waters depends primarily on the 

optical properties of the water body under study. Basically, high spatial and temporal resolution data can be 

derived from most multispectral satellite and airborne optical sensors for monitoring and estimating inland 

and coastal water ecosystems (Gitelson et al., 2008).  

In general, algorithms (empirical/semi-empirical) that uses the blue and green spectral channels can be used 

to derive comparatively accurate chlorophyll-a concentration in open case-1 waters. This is because open 

case-1 waters generally uses spectral responses in the blue and green channels and are influenced only by 

phytoplankton (O’Reilly et al., 1998). However, in case-2 waters, the application of the blue-green spectral 

channels is not reliable for the estimation of chlorophyll-a. This is because  reflectance (Rrs) in these spectral 

regions do not provide a clear and reasonable correlation between Chl-a and other water constituents 

including absorption by Coloured dissolved organic matter (CDOM), Total Suspended Material (TSM) and 

other non-algal particles in productive turbid waters (Darecki et al., 2004; Dall’Olmo et al., 2005). Remote 

sensing reflectance (Rrs) at these wavelengths are not only affected by phytoplankton but also affected by 

other water constituents such as CDOM, Non-Algae Particle (NAP), and Total Suspended Materials (TSM) 

which is attributed to the strong absorption properties of these particles in the visible spectral channels 

(Gitelson et al., 2008). 

Some previous studies suggested that, estimating chlorophyll--a in most turbid productive waters is 

necessary along the red and near-infrared spectra domain (Dall’Olmo et al., 2005). Such estimation in turbid 
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productive waters presents a number of challenges, largely due to the complexity of turbid waters. Also, it 

is difficult to obtain high quality satellite images for a specific time and locations because of the limitation 

of the satellite revisit period and atmospheric conditions(Tian et al., 2014). In the principles of band ratios, 

the most bands associated with Chlorophyll-a estimation (in both case I and case II) include the blue, green, 

red and near-infrared bands. Normally, two spectral bands are selected for the estimation of Chlorophyll-a 

(Gitelson et al., 2000). Consequently in the case of chlorophyll-a, one band corresponds directly to high 

reflectance and one band corresponds to high absorption. Hence, the use of remote sensing data is viable 

alternative for mapping Chl-a pigments (Watanabe et al., 2015). 

2.3. Algorithms for Estimation Chlorophyll-a  

 

Most empirical and semi-analytical models or algorithms have been developed to use coincident in-situ 

chlorophyll-a and remote sensing reflectance (Rrs) and are easy and straightforward to use for data 

processing (IOCCG, 2006). The development of many empirical algorithms for the estimation of 

chlorophyll-a were based on the spectral properties of inland turbid productive waters. The MCI, N3B, 

NDCI, and 4B empirical algorithms, shown in table 2-1 and originally developed and proposed by (Gower 

et al., 2008), (Gitelson et al., 2008), (Mishra & Mishra, 2012) and (Le et al., 2009), were employed in this 

studies for the estimation of chlorophyll-a which are mostly based on red and near-infrared (NIR) spectral 

channels. They have proven to be a good indicator for retrieving chlorophyll-a in most eutrophic inland 

waters (Watanabe et al., 2015). Most of the algorithms used in this study are have a direct one step empirical 

relationship with chlorophyll-a. However, the application of these algorithms on the dataset used in this 

study will prove whether the aforementioned bands/spectral channels are good in estimating Chl-a. 

Gower et al., (2008) suggested that the MCI model allows for the estimation of Chl-a inland productive 

waters using the red and infrared bands aiming at the red-edge signatures that are linked to Chl-a and its 

florescence line height. Binding et al ,(2013) also stated that MCI product has proven to be a versatile tool 

in the monitoring algal bloom in most turbid productive waters of chlorophyll-a >10 mg.m-3. In general, 

these algorithms were analyzed against laboratory measured absorption of pigments and Trios-Ramses-ACC 

derived reflectance as well as Landsat-8/SPOT-6 derived reflectance. 

The objective of this research is to identify and adapt a model that is suitable for estimating Chlorophyll-a 

(Chl-a) concentration in inland waters from multi-spectral data on Lake Binnenschelde, Markiezaatsmeer 

and Hulsbeek using least squared regression and statistical accuracy methods. However, the performance of 

models used in deriving Chl-a is subject to compatibility between the type of data used and the type of 

waters under study (IOCCG, 2006). 
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Table 2-1: An overview of algorithms to derive or estimate Chl-a. (Chl-a absorption coefficient) 

Model 

Abbreviation 

Algorithm Equations/Band Combination. Author 

 

MCI 
Cpigm = (𝑅𝑟𝑠λ1) − (𝑅𝑟𝑠λ2) ∗

(λ2−λ1)

(λ2−λ1)
∗ (𝑅𝑟𝑠λ3) − (𝑅𝑟𝑠λ1) 

 

where;  λ1=665, λ2=709, and λ3=753 

 

 

(Gower et al., 2008) 

 

3B 

 

Cpigm = [(𝑅𝑟𝑠−1(λ1) − (𝑅𝑟𝑠−1(λ2)] ∗ 𝑅𝑟𝑠(λ3) 

 

where;  λ1=665, λ2=709, and λ3=753 

 

 

(Gitelson et al., 2008) 

 

NDCI 

 

Cpigm =  
[(𝑅𝑟𝑠 (λ2)−(𝑅𝑟𝑠(λ1)]

[(𝑅𝑟𝑠 (λ2)+(𝑅𝑟𝑠(λ1)]
 

 

where; = λ1=665 and λ2=708 

 

 

(Mishra & Mishra, 

2012) 

 

4B (FBS) 

 

Cpigm = [(𝑅𝑟𝑠−1(λ1) − (𝑅𝑟𝑠−1(λ2)][(𝑅𝑟𝑠−1(λ1) −

(𝑅𝑟𝑠−1(λ2)]−1 

 

where;  λ1=663, λ2=693, λ3=709 and λ4=740 

 

 

(Le et al., 2009) 

   

where λ1, λ2, λ2, λ3 and λ4  are reflectance bands that the sensor receives at a specific wavelength. 
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3. DESCRIPTION OF STUDY AREAS AND DATA COLLECTION 

3.1. General Description 

The study areas for this research comprises of three (3) lakes namely; Lake Markiezaatsmeer, Lake 

Binnenschelde and Lake Hulsbeek, all located in The Netherlands. Water quality of these three (3) study 

areas are mainly endangered by agricultural runoff as well as pollutant point source from water treatment 

plants since the surrounding land is largely used for agricultural and water treatment purposes. Climatic 

impact and increased in the decomposition of sediments has led to internal eutrophication (van Dam & 

Mertens, 2013). Previous research indicated that there have been incidence of growth of algae bloom in 

such lakes in the Netherlands and this poses health risk on aquatic life and humans as well in relation to 

water quality. Hence, it was based on this that the study areas were specifically chosen for this research.  

3.1.1. Geographical Characteristics of study areas: Lakes Markiezaatsmeer, Binnenschelde and 

Hulsbeek. 

Lakes Markiezaatsmeer, and Binnenschelde are smaller inland lakes. Both lakes Markiezaatsmeer and 

Binnenschelde are located on same latitude 51°29´N and but different longitudes. Lake Binnenschelde lies 

on longitude 4°17´E while Lake Markiezaatsmeer also on 4°16´E respectively. However, Lake Hulsbeek lies 

on latitude 52°18´N and longitude 6°53´E. Descriptive characteristics of the three study areas are described 

in table 3-1 below. They serve as a major water reserves for drinking water and for agricultural purposes. 

These lakes are used for transportation, fishing, sand mining, wind energy generation and also for water 

sport. In addition, Lake Hulsbeek, which also a small inland lake is found in Hulsbeek area which is one of 

the top recreational area in the Province of Overijssel. It has a total area of about 250,000 hectares. The lake 

consist of a swimming pond and a fishing pond with some skate board ramps located in it. Map of locations 

of these study areas are presented in figures 3-1 to 3-3. 

Table 3-1: Summary of Location(s) and characteristics of the three (3) study areas. 

Study Area Latitude : 

Longitude 

Average 

Depth 

(m) 

Max. 

Depth 

(m) 

Surface 

Area 

(km²) 

Trophic 

Status 

 

Topography 

Lake 

Binnenschelde 

51°29´N : 4°17´E 1.5 3.5 1.78 Eutrophic Predominantly 

flat 

Lake 

Markiezaatsmeer 

51°29´N : 4°16´E 2.1 3.0 21.9 Eutrophic Predominantly 

flat 

Lake Hulsbeek 52°18´N : 6°53´E - 6 2.5 Eutrophic Predominantly 

flat 
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Figure 3-1: Landsat-8 image of Lake Binnenschelde displaying the locations and sample points from a 

Chl-a absorption map collected on 23rd of September, 2015.  

 

Figure 3-2: Landsat-8 image of Lake Markiezaatsmeer displaying the location and sample points from a 

Chl-a absorption map collected on 27th of September, 2015. 
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Figure 3-3: Landsat-8 image of Lake Hulsbeek displaying the location and sample points from a Chl-a 

absorption map collected on 26th of September, 2015. 

All images (figures 3-1 to 3-3) above, were showed in resulted chlorophyll-aabsorption maps with its 

surroundings in true colour and the black triangle symbols indicates the sampling points from each of the 

lakes. 

 

3.2. Datasets  
 

As discussed in section 3.1, three lakes in The Netherlands were considered in this study: Lake 

Markiezaatsmeer, Lake Binnenschelde and Lake Hulsbeek, with surface areas of 21.9 km², 1.78 km² and 2.5 

km² respectively (table 3-1: fifth column). Intensive field data collection protocols were observed for Lakes 

Markiezaatsmeer, Binnenschelde and Hulsbeek during a cruise using a boat. All data from these three (3) 

different sites were processed and used in this study. At these three sites, all in different basins, radiometric 

measurements were taken. Surface water samples were also collected and returned to the laboratory for 

processes and analysis of Chl-a concentrations, absorptions due to phytoplankton pigments and CDOM 

and among other concentrations. However, Landsat-8 and SPOT-6 images were also downloaded 

simultaneously for match up and further analysis.  
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3.2.1. Remote Sensing Data (Images) of the Study Area - Landsat-8-OLI/SPOT-6 

 

Different Landsat-8 and SPOT-6 scenes which comprises 11 and 4 bands were downloaded from 

USGS_Earth_Explorer center (USGS website) using this http protocol: (http://earthexplorer.usgs.gov/). 

The landsat-8 has a pixel size of 15/30/100 meters while SPOT-6 is also in 1.5/6 meters respectively and 

the bands for each sensor are acquired simultaneously. These multispectral imagery data were acquired 

between the dates of 1st April and 31st December, 2015 over Lakes Markiezaatsmeer, Binnenschelde and 

November to December, 2014 and 2015 for Lake Hulsbeek. The properties and characteristics of the level 

1T landsat-8 and SPOT6 products which are in HDF format are listed below: 

  LANDSAT-8 

 Launched Date – February 11, 2003 

 Sensor Accuracy - OLI - 12 m & TIRS - 41 m circular error (all with 90% confidence)  

 Data type and output format - 16 bit produced in GeoTiff format 

 Image Orientation and Projection – North-up with a UTM projection 

 Ellipsoid – WGS84 

 

The properties of the level 1T SPOT-6 product which are also in HDF format are listed below: 

  SPOT6 

 Launched Date – September 9, 2012 

 Sensor Accuracy - 35 m & 10 m circular error (all with 90% confidence)  

 Data type and output format - 12 bit also produced in GeoTiff format 

 Image Orientation and Projection – North-up with a UTM projection 

 Ellipsoid – WGS84 

(USGS, 2013). 

Table 3-2: Landsat-8 (MSI)-OLI + TIRS spectral bands designations.  

Spectral Ranges Wavelength 

(µm) 

Central 

Wavelength 

(nm) 

Resolution 

(m) 

Band 1 - Coastal aerosol (OLI) 0.433 - 0.453 443 30 

Band 2 – Blue (OLI) 0.450 - 0.515 482 30 

Band 3 – Green (OLI) 0.525 - 0.600 562 30 

Band 4 - Red 0.630 - 0.680 655 30 

Band 5 - Near Infrared (NIR) (OLI) 0.845 - 0.885 865 30 

Band 6 - SWIR 1 (OLI) 1.560 - 1.660 1610 30 

Band 7 - SWIR 2 (OLI) 2.100 - 2.300 2200 30 

Band 8 – Panchromatic (OLI) 0.500 - 0.680 590 15 

Band 9 – Cirrus (OLI) 1.360 - 1.390 13372 30 

 

( USGS, 2013; Survey, 2015 and Barsi et al., 2014).  

http://earthexplorer.usgs.gov/
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Table 3-3: Spot 6 spectral bands designations.  

Spectral Ranges Wavelength 

(µm) 

Resolution 

(m) 

Band 0 - Blue  0.430 - 0.550 6 

Band 1 – Green 0.530 - 0.590 6 

Band 2 – Red 0.600- 0.695 6 

Band 3 – Near Infrared 0.760 – 0.890 6 

 

Table 3-2 and 3-3 shows the spectral band properties of both Landsat-8 OLLI/TIRS and SPOT6. The 

spectral response properties of any sensor likewise landsat-8 and SPOT is vital to understand in terms of 

exploiting its data (Barsi et al., 2014). The shaded band designations were used in calculating Chl-a (Chl-a 

absorption) based on the four (4) models used. These bands, mostly the red-NIR, were chosen because of 

their sensitivity and high potential in estimating Chl-a (Yu et al., 2014). 

 

3.2.2. In-Situ Measurements 
 

Two datasets including ground truth radiometric reflectance data and Chl-a concentration (Chl-a) data were 

used in this study. These include radiometric data and water samples that were collected from each of the 

sites. Both radiometric measurements (above-water and in-water) were taken to estimate and analyse the 

spectral reflectance characteristics for each lake.  

However, radiometric measurements, both radiance and irradiance measurements, above and below water 

surface (in figure 4-2) were carried out on the site in the case of Markiezaatsmeer, Binnenschelde and 

Hulsbeek in September (23rd, 24th and 26th September, 2015 respectively) using the Trios RAMSESARC and 

RAMSESACC-VIS sensors. For minimal effect of clouds, measurements were taken between the hours of 

11am and 15:10pm CET. Table 4 below shows the number of radiometric measurements (bio-optical 

parameters), water samples and time for sampling. In all, the Trios RAMSES-ARC measured upwelling 

radiance signals Lu (λ0) and Trios RAMSES-ACC-VIS measured down-welling irradiance signals Ed (λ0+) 

between a wavelengths of 300 nm to 900 nm (in the case of this study).  

 

Table 3-4: Number of radiometric measurements and water samples taken and time for sampling. 

Sampling Area 

Location and Dates 

Sampling Time 

(All time in CET) 

Number of  points for 

Radiometric 

measurements (N) 

Number of 

water samples 

(n) 

Lake Binnenschelde 

(23rd September, 2015) 

From 11:50am -15:05pm 10 4 

Lake Markiezaatsmeer 

(24th September, 2015) 

From 12:05am -15:10pm 15 6 
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Lake Hulsbeek 

(26th September, 2015) 

From 12:05am -15:10pm 11 6 

Total - 36 16 

Source: (Author Construct, Owusu, 2016).                        

 

Table 3-4 above describes the date and time of sampling, number of radiometric measurements made and 

the number of water samples collected from each lake. The largest sample size was in Lake Markiezaatsmeer 

(N=15) while the smallest sample was in Lake Binnenschelde (N=10). It is important to note that laboratory 

analysis was done in addition to the radiometric measurements and used in evaluating the ability of the 

selected models in quantifying and estimating Chlorophyll-a by comparing true ground data (in-situ 

observations with derivatives of Chl-a by each models. Each study area location, measurements and 

sampling locations were geographically recorded using GPS mapping device. Table 3-5 shows the 

parameters measured on the field campaigns. A Chl-a absorption overlay on a true colour composite image 

of the study area is also shown in figures 3-1 to 3-3 above in section 3.1.1. The water status and measurement 

protocols followed in Lake Binnenschelde, Markiezaatsmeer and Hulsbeek are also shown in appendix c. 

 

In general, the colour observed in the lakes Binnenschelde, Markiezaatsmeer and Hulsbeek in the figure in 

appendix b, was mostly green. This give an indication that these lakes are eutrophic in nature. It also shows 

the radiometric set-up including micro-flu sensors for radiometric measurements using the Trios- RAMSES 

radiance and irradiance sensors.  

 

Table 3-5: Field Parameters and Measurement details. 

Parameters for Radiometric Measurements  Laboratory Water Samples 

Above Water SI Units  Laboratory Analysis  SI Units 

Upwelling Radiance Lu (λ) W mˉ ²srˉ ˡ  CDOM mˉ ˡ 

Downwelling Irradiance Ed+(λ) W mˉ ²  Chlorophyll-a concentration mg.m³ 

Below Water  Turbidity NTU 

Downwelling Scaler Irradiance Ed-(λ) W mˉ ²  Absorption coefficient of Chl-a 

pigments 

mˉ ˡ 

Sky Radiance Lsky (λ) W mˉ ²srˉ ˡ  Others:  Temperature °C 

 

Details of measurements and parameters measured on the field campaign with its symbols and units are 

presented in Table 3-5 above. The processes involved in data sampling during and after the data collection 

is also shown in the Methodology flow chart in appendix b. 
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3.2.2.1. Water Samples (Laboratory Measurements for deriving Chlorophyll-a concentrations). 

 

Water samples that were collected during the fieldwork at the same time the radiometric data were also 

acquired covered a wide range of biogeochemical and optical variabilities in these inland waters. Samples 

that were collected at each sampling site were stored in the fridge for some few days and then further 

analysed for their concentrations at the ITC - University of Twente laboratory. Analysis of water quality 

parameters included Chl-a concentration (mg.m-3) as well as spectral absorption coefficient for Chlorophyll-

a/phytoplankton pigments (m.-1). Moreover, absorptions coefficients of Suspended Particulate Matter 

(SPM) and Total Suspended Materials (SPM) and Coloured dissolved Organic Matter (CDOM) were also 

analysed at the laboratory with their units in m.-1. Simple filtration method was executed for the extraction 

of absorption coefficients Chl-a/phytoplankton pigments using 90% acetone and measuring its absorbance 

and transmittance in a VW-UV-VIS-3600-PC Spectrophotometer. This is practically discussed in section 

4.3.2 and 4.3.3 respectively.  

3.2.2.2. Sampling Sites 

Location and coordinates of sample sites are presented in Appendix a. The tables in appendix 1 shows 

accurate location of sample sites and their corresponding coordinates and time intervals in Lake 

Markiezaatsmeer and Binnenschelde as well as Hulsbeek. Sampled points codded as MK-S, BN-S and HL-

s means Markiezaatsmeer sample, Binnenschelde sample and Hulsbeek sample and this is presented in 

Appendix A.  
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4. METHODOLOGY AND DATA ANALYSIS  

This chapter discusses the various methods and acquisition of date that used to achieve the objectives of 

this study. Remote sensing and GIS are the major tools that were utilized and used to process images 

acquired from both Landsat-8 and SPOT6 satellites. Chapter 4 also discusses how data (water samples, 

radiometric measurements and images) were processed. The steps taken and the processes involved in the 

collection and analysis of the various datasets are explained in detail below. 

 

4.1. Introduction 
 

This study aim at using an empirical/semi empirical method/algorithms to estimate Chlorophyll-a 

concentrations (a_phy) in inland lakes in the Netherlands. The methodology used to achieve the objectives 

and answer the questions of this research is divided in three (3) parts. The first part is to know the spectral 

reflectance of the various water bodies which will help in validating the optimal wavelengths for each 

model/algorithm used in estimating chlorophyll-a as proposed by in table 2-1, and secondly to dispose 

Landsat- 8/SPOT-6 imagery with an approved and accurate atmospheric correction method to be able to 

apply the models and/or algorithms from spectral characteristics generated from the behaviour of the 

various lakes (water bodies) and also to determine how much error that Landsat-8/SPOT-6 introduce to 

the derivation of Chl-a and finally producing map of Chl-a. The overall methodology which is shown in the 

flowchart in appendix 4 below is to determine the best Chlorophyll-a estimation models/algorithms and 

then applying that best model to corrected Landsat-8/SPOT-6 maps (images).  In this study, convolution 

of data was done before application of the models to images. 

 

4.2. Proposed Approach                

 

Figure 4-1: General framework for proposed model/algorithm application approach.    
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4.3. Data Processing 
 

One of the major procedures in every scientific research focuses on the analysis and processing of various 

dataset acquired to achieve the objectives of its study. In the case of this study, three different data sets were 

used. The overall data type used and a schematic procedure of data processing is shown in table 4-1 below 

and figure 6-1 in Appendix 2 respectively. Further sub-headings will dealt more into how these various 

datasets were processed to achieve the aim of this study. 

 

Table 4-1: Data type, instrument for acquisition, and processing.  

Data type Data Description Instrument/Sensor Used  Type of Data Processing  

 

In-situ 

Radiometric 

Measurements 

RAMSES-Trios (ARC-VIS 

& ACC-VIS) 

Convolution and conversion 

of Spectral Measurements 

with Landsat-8 image 

 Water sample VW-UV-VIS-3600-PC 

Spectrophotometer 

Intensive Laboratory analysis 

of aCDOM, a_phy/pig etc. 

GPS Coordinates Garmin GPS System  

Landsat-

8/SPOT-6 

Images 

Remotely Sensed 

Image 

Landsat-8 OLI/TIRS 

SPOT-6 

Atmospheric Correction 

using FLAASH setup 

 

4.3.1 Derivation of Remote Sensing Reflectance (Rrs) from Radiometric Measurements. 

 

Radiometric data were measured using three (3) RAMSES spectro-radiometers; an irradiance sensor (ACC-

VIS) and the other two (2) were radiance sensors (ARC-VIS) with 7° field-of-view. The ARC-VIS and the 

ACC-VIS RAMSES spectro-radiometers works within a wavelength range of 320 nm to 950 nm with 

spectral sampling of approximately 3 nm. This 3nm interval was downscaled to 1nm with Landsat-8 spectral 

response bands. This made it easy to apply the appropriate wavelengths to each model calculation. 

Remote sensing of water relies on detecting the light signals that leaves the water surface and reaches a 

sensor on board a satellite (D’Sa, Miller, & Del Castillo, 2006). Remote sensing reflectance is related to 

backscattering and absorption. It can be also stated clearly that the obtained measurements of water-leaving 

radiance (Lu), and downwelling reflectance (Ed) was used to compute the above water surface remote sensing 

reflectance (Rrs) using equation 1, which could be similar to the normalized water-leaving reflectance of 

Landsat-8/SPOT-6 product after matchup. The empirical algorithms or models used in this study to 

quantify/estimate the Chlorophyll-a concentration all uses remote sensing reflectance as input for the 

retrieval of Chlorophyll-a. According to in-situ data collected for this research, we considered above water 

radiometric measurements and this was adapted for the determining the remote sensing reflectance (Rrs). 
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Hence, the remote sensing reflectance (Rrs) with a unit of inverse steradians (srˉ ˡ) was calculated using 

(Mobley, 1999; Montes-Hugo et al., 2008) equation below; 

 

Rrs (λ, θ, φ) =  
𝐿𝑢(λ)

E𝑑(λ)
[srˉ ˡ]……………………………………..…………………….… (Eq. 1)  

 

From equation (1), the ideal calculation of remote sensing reflectance (Rrs) will be computed by dividing 

the measurements of upwelling water leaving radiance Lu (λ) with the downwelling irradiance Ed (λ) just 

above the water surface measured in inverse steradians (srˉ ˡ) while λ is the wavelength. Apparently, the 

remote sensing reflectance as adapted from equation 1 will be applied to all the models used in this study. 

The Mobley’s equation for instance does not allow for any influence on the underwater measurement (Lu) 

hence its application in calculating for above water remote sensing reflectance (Rrs). The research will 

depend on the value of Rrs from the field measurements and that from image data after an accurate 

atmospheric correction has been performed. This will help to define the best fit algorithms for the 

estimation chlorophyll-a pigment or concentration in the respective lakes base on these reflectance values. 

 

4.3.2 Derivation of Chl-a Concentrations (mg.m-3) and Absorption Coefficients of Chl-a pigments (440 
nm) [m.-1] 

A secondary data from the laboratory analysis was used. A simple fluorescence technique for the extraction 

of Chlorophyll-a (Chl-a) from planktonic algal cells was performed on the water samples individually 

collected for Markiezaatsmeer, Binnenschelde, and Hulsbeek sites. The Chlorophyll-a concentrations 

extraction (Chl-aX) from the laboratory were calculated using the extraction by acetone method from 

absorbance data by adapting the Jeffrey and Humphrey's Trichromatic corrected Chl-a equations stated 

below in equation (2).  

Secondly, the amount of Chlorophyll-a is expressed as the absorption coefficient at wavelength between 

440nm, 630nm, 664nm and 647nm obtained from spectrophotometric of filtered water sampling with pores 

size of 0.2um or 0.4um depending on the amount of particles in each of the individual lakes.  

The concentration of chlorophyll a for each field sample (𝐶ℎ𝑙 𝑎𝑓) was calculated using equation (3). First, 

the absorbance value at 750 nm was subtracted from the selected wavelengths (664nm and 665 nm) of the 

Eq. (2). Similar subtraction was done all the specific absorbance used in this study including absorbance at 

440 nm. This was done to correct for the backscattering of any small particles or fine colloidal matter in the 

samples hence removing any background turbidity form water samples 

The absorption coefficient of Chl-a pigment/phytoplankton (440) was measured in the laboratory from 

equation 4 below; 

𝐶ℎ𝑙 − 𝑎𝑋 = 11.85 (𝑎𝑏𝑠 664)  −  1.54 (𝑎𝑏𝑠 647)  −  0.08 (𝑎𝑏𝑠 630) ………………..……... (Eq. 2) 

𝐶ℎ𝑙 − 𝑎𝑓 =
𝐶ℎ𝑙 𝑎𝐸×𝐸𝑥𝑡𝑟𝑎𝑐𝑡 𝑉𝑜𝑙𝑢𝑚𝑒 (𝐿)

𝑆𝑎𝑚𝑝𝑙𝑒 𝑉𝑜𝑙𝑢𝑚𝑒 (𝐿)×𝐶𝑒𝑙𝑙 𝐿𝑒𝑛𝑔𝑡ℎ (𝑚)
      ……………………….……………….….. ( Eq. 3) 
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Where; 

Chl-ax = concentration (mg/m-3) of chlorophyll a in the extract solution measured, 

Chl-af =concentration of chlorophyll a for each field sample,  

abs 664 = sample absorbance at 664 nm (minus absorbance at 750 nm), 

abs 647 = sample absorbance at 647 nm (minus absorbance at 750 nm), and 

abs 630 = sample absorbance at 630 nm (minus absorbance at 750 nm). 

 

The spectrophotometric analysis for the measured spectral absorbance at selected wavelengths (440 nm) 

was then converted to absorption coefficients of pigments/phytoplankton using equation (4) below; 

𝑎_𝑝𝑖𝑔(440) = 2.3 ∗ 𝑂𝐷𝑆(440) ∗
𝑆

𝑉
 …………………….……………..……………........….... (Eq. 4) 

 

This is similar to (Cleveland & Weidemann, 1993) equation. And this was done preceding to the application 

of the empirical algorithms.  

From equation 4, apig (λ) is the absorption coefficient of pigments- in the case of this study, apig (440 nm),  

2.3 is the correction factor that converts base 10 to natural log,  ODS is the measured of the sample filtered, 

S is the filter clearance area, V is the filtered volume (Mitchell et al, 2000). The absorption coefficient of 

non-algal particulate (aNAP) or tripton was determined similarly using equation 4. Hence, absorption of 

Chlorophyll-a pigment or phytoplankton absorption was derived from the difference between particle and 

non-particle approximations using equation 5 below (Huang et al., 2013 and Mitchell et al, 2000) 

𝑎𝑝𝑖𝑔(440) = 𝑎𝑝 −∗ 𝑎𝑁𝐴𝑃 …………………………………….……………………………..…… (Eq. 5) 

 

4.3.3 Derivation Absorption Coefficients of CDOM (m.-1) 

Based on this research, absorption coefficient of CDOM was analysed to determine the correlation between 

Chl-a and other water constituents (CDOM). Regression analysis was performed to confirm that the lakes 

being studied in this research are truly case 2 water – productive turbid waters. This analysis is discussed in 

section 5.2 under results and discussion. The CDOM absorption coefficients were calculated from 

laboratory for each site using (Bricaud et al., 1981) equation as follows:  

𝑎𝐶𝐷𝑂𝑀 = 2.3 ∗
𝐴𝐶𝐷𝑂𝑀(440 𝑛𝑚)

𝑟
  ……………….…………………………….……………… (Eq. 6) 

Where ACDOM is the optical density at wavelength 440nm and r is the cell length in meters. This values was 

corrected for backscattering using 700 nm as a referenced wavelength (Bricaud et al., 1981). This was used 

to analyse the status of water in relation to absorption of Chl-a pigments and chlorophyll-a concentration. 

In section 5.1.2., CDOM was regressed against both Chl-a concentration and absorption coefficient of Chl-

a to determine the status of the lakes under studies. 
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4.3.4 Landsat-8 OLI/SPOT-6 Image Processing 

 
High spatial and moderate resolution imagery is more important in mapping chlorophyll-a in inland lakes. 

For this reason, the use of Landsat-8 OLI and SPOT-6 images seem to be more adaptive in this study. 

Different landsat-8 and SPOT-6 images were downloaded from USGS Earth Explorer website. The images 

of the study area were in downloaded level 1GeoTiff products using GloVis (Global Visualization tool) tool. 

The images are in the following properties as shown in table 4-2. As shown in figure 4-2 below, data acquired 

from remote sensing requires that solar radiation passes through the atmosphere before it is collected by 

the sensors. For further processing and analysis to be done using such images, there is a need to do an 

accurate atmospheric correction in able to remove the effects and influences of the atmosphere on the final 

validated chlorophyll-a maps or images.  

 

Figure 4-2: A schematic illustration of sun sensor pathway. 

Figure 4-3 shows processes that contribute to the signal as measured by the sensor. It portrays the interaction 

of electro-magnetic radiation with the atmosphere and the Earth’s surface). Source: Author’s Construct 

(Owusu, 2016) and adapted from the ITC Core Book, 2013. 

 

4.3.5 Atmospheric Correction of Satellite Images using FLAASH setup. 

 

The necessity of monitoring water and deriving its optical properties requires a high atmospheric correction 

method and quantifying the contributions of aerosols and other atmospheric influences to TOA radiances 

(Vanhellemont & Ruddick, 2015). Similarly, Gordon et al., (1983) have indicated that the utmost step in 

estimating most water quality indicators is the derivation of water-leaving radiance (Lw) at their respective 

wavelengths (λ). Most atmospheric correction methods are image based and requires less or no external 

measurements (Vanhellemont & Ruddick, 2015). The derivation of radiances or reflectance information 
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from an image is only achieved through the application of an accurate atmospheric correction method. The 

effects of the atmosphere depends on the band or wavelength type and have distinct influence of the TOA 

reflectance (Bonansea et al., 2015). Most atmospheric correction method basically converts TOA radiance 

to water-leaving reflectance (TOA reflectance) and hence reducing errors or removing the effects of any 

atmospheric influences (Guanter et al., 2010). In this study, the fast line-of-sight atmospheric analysis of 

Spectral Hypercubes (FLAASH) atmospheric correction method which uses most Landsat-8 images as a 

case study, was applied on the two different satellite images: the first is Landsat-8 satellite images obtained 

on September 9th and 27th, 2015 and 3rd of August, 2015 for both Lakes Binnenschelde and Markiezaatsmeer 

as well as September 29th for Hulsbeek. The second set of images were  SPOT-6 images which were also 

obtained on 2nd November and 4th December, 2015 for lakes Binnenschelde and Markiezaatsmeer as well 

as 3rd August and 27th July, 2015 for lake Hulsbeek. This is clearly listed in table 4-2 and 4-3 below. Some of 

these images comprises of errors which include noise, surface reflectance, aerosols, water vapour, solar 

irradiance curve as well as scattering and absorption influences. This may be due to changes in illumination 

angle, topology and instrument response among others. However, radiometric calibration and atmospheric 

correction were performed on these images to achieve the purpose of retrieving Chl-a concentration. This 

process was conducted using the ENVI Software Version 5.3.3. After performing radiometric calibration 

and atmospheric correction, DN values were converted to radiances (top-of-atmosphere radiances (LTOA 

values) using the formula in equation 3. After obtaining the radiances from the image, a dimensionless top-

of-atmosphere reflectance was then calculated using equation 4 and 5 respectively. 

 

 𝐿𝑇𝑂𝐴 = 𝑀𝐿𝑄𝐶𝐴𝐿 +  𝐴𝐼 ……………………………………………….………………… (Eq. 7) 

 

where LTOA is the top-of atmosphere (TOA) spectral radiance, ML is the band specific multiplicative 

rescaling factor that is already in the image metadata of each of the study area, while Al is the band specific 

addictive rescaling factor.  

 

ρTOA =
𝜋∗𝐿𝑇𝑂𝐴∗𝑑2

𝐸𝑆𝑈𝑁𝜆∗𝑐𝑜𝑠𝜃𝑠
 …………………………………………………………….…..… (Eq. 8) 

From equation 8,  ρTOA is the dimensional top-of atmosphere reflectance, Lλ is the top-of atmosphere 

(TOA) spectral radiance at sensor, d is the Earth-sun distance in astronomical units, cosθ is solar angle zenith 

angle in degrees as well as ESUNλ is the mean solar exoatmosphere irradiance for each band. 

FLAASH setup was used as an atmospheric correction tool on the images acquired on Lakes Binnenschelde 

and Markiezaatsmeer. All the image data (Landsat-8 and SPOT-6) used in this study on which the 

atmospheric correction were processed using FLAASH setup. FLAASH setup corrects images for 

atmospheric interferences and simultaneously retrieves water quality variables without any tuning with field 
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measurements. Details of image data are specified below in table 4-2 and atmospheric correction processes 

are depicted in figure 4-4. 

Table 4-2: Downloaded images for Landsat-8 OLI-TIRR for matchup. 

Satellite Image 

Type and number of scenes  

Landsat-8  data ID Path- Row 

 

Binnenschelde Bergen op zoom (a) 

Markiezaatsmeer (b), and  

(51.4876 N, 4.2648 E) (a) 

(51.4751 N, 4.2469 E) (b) 

 

LC81980242015183LGN00.tar P198 - R024 

LC81980242015215LGN00.tar P198 - R024 

LC81990242015110LGN00.tar P198 - R024 

LC81990242015158LGN00.tar P198 - R024 

LC81990242015254LGN00.tar P198 - R024 

LC81990242015270LGN00.tar P198 - R024 

Hulsbeek - 52.18 N, 6.53 E (c) LC81970232015272LGN00.tar P197 -R023 

 

Table 4-3: Downloaded images for SPOT6-MSI for matchup. 

Satellite Image 

Type and number of scenes  

SPOT6  data ID 

 

Binnenschelde Bergen op zoom (a) 

Markiezaatsmeer (b), and  

(51.4876 N, 4.2648 E) (a) 

(51.4751 N, 4.2469 E) (b) 

 

MS_201512041016469_SEN_1608601101 

 

MS_201511011019559_SEN_1558406101 

Hulsbeek - 52.18 N, 6.53 E (c) MS_201508031011112_SEN_1403384101 

MS_201406061017019_SEN_944881101 

 

The accuracy of information obtained from each of the Landsat-8 and SPOT-6 images is dependent on the 

type of atmospheric correction method used. The in-situ reflectance spectra measurements taken for each 

lake were then with the corresponding derived Landsat-8 images reflectance after intensive atmospheric 

correction was performed. After atmospheric correction of images, only ROI’s of Lakes Markiezaatsmeer, 

Binnenschelde and Hulsbeek were clipped out from the whole scene image and subjected to further 

processing. Again, the land around the lakes were mask out for proper analysis of the water properties. 
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4.3.6. Assumptions on selected bands and wavelengths for model application 
 

The reflectance spectra is generally characterized by low reflectance at the blue and red region and high 

reflectance in the green, and in some cases the NIR regions. This study adapted four (4) algorithms including 

the Maximum Chlorophyll Index (MCI), New Three Band (N3B), Normalized Differential Index (NDCI), 

and the Four Band (FBS), which is mostly composed of ratios of red and near infra-red band as discussed 

in section 2.3.  

There have been many studies that shows a close relationship between chlorophyll-a concentration and the 

Red-NIR ratios that is used to estimate chlorophyll-a in lakes (Dall’Olmo et al., 2005). Evidence shows that 

the 3B model could be utilized to derive chlorophyll-a concentration in turbid productive waters (Dall’Olmo 

et al, 2003). The 3 band (3B) model relates chlorophyll-a pigments to reflectance in the three spectral bands 

where λ1 should be in the red range (670 nm), λ2 should be in the range between 700-710 nm and λ3 should 

be in the NIR around 700-750 nm (Dall’Olmo et al, 2003; Dall’Olmo & Gitelson, 2006).  

However, there were some modifications in the band/wavelength selection for the models used in this 

study. Band shifting for the 700-710 range and the 730-753 NIR was performed to select the optimal band 

for each of the sensors. For instance, band 3, 4 and 5 were used respectively for Landsat-8; where λ1 was 

maintained or fixed at 665nm in band 4, while the wavelengths λ2 and λ3 were tuned since they are not found 

in the Landsat-8 wavelength spectrum. In the case of this study, λ2 and λ3 were varied within the green band 

range and NIR band ranges respectively. Hence the Rrs at band 3 was selected for λ2 at 708 nm while band 

5 was selected for λ3 which is also at 753 nm. Finally three wavelengths/bands were selected; Rrs at band 4 

originally selected for λ1 at 665nm, Rrs at band 3 selected for λ2 at 708 nm and Rrs at band 5 selected for λ3 

at 753 nm respectively.  

On the other hand, band 1, 2, and 3 were used for SPOT6 concurrently; where λ1 was maintained or fixed 

at 665nm, λ2 and λ3 were selected from band 1 and band 3 respectively. Rrs at band 1 was selected for λ2 and 

Rrs at band 3 was also selected for λ3. This procedure was applied and repeated for all the models (MCI, 3B, 

4B) - (see table c in appendix D). It should be noted that, this method was applied only for simulated or 

convolved Landsat-8 and SPOT6 data to select the optimal bands for the calculation and estimation of Chl-

a (absorption of Chl-a). Direct wavelength application was however, used in relation to in-situ derived Rrs.  
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4.4. Simulation of Landsat-8 OLI and SPOT6 bands for Estimating absorption coefficients of Chl-a 

pigments. 
Although the above mentioned models (in table 4-3) worked directly with field measured Rrs and concurrent 

Landsat-8 data, it could not work with SPOT6 data directly. Data simulation was performed on both 

Landsat-8 and SPOT6 using field measured reflectance (Rrs) to derive reflectance (Rrs) bands from Landsat-

8 and SPOT6 data (Sun et al., 2015). Remote sensing reflectance (Rrs) from TRIOS RAMSES dataset was 

applied to spectral response of Landsat-8 OLI bands to simulate and resample bands to 1 nm spectral 

resolution.  

 

Figure 4-3: Landsat-8 OLI relative response functions.  

Source of figure 4-5: http://pubs.usgs.gov/fs/2012/3072/fs2012-3072.pdf  

The remote sensing reflectance (Rrs) of Landsat-8 OLI that were selected for estimating Chl-a from a model 

were convolved or simulated using Landsat-8 OLI spectral response (Barsi et al., 2014) and from landsat-8 

website (http://landsat.gsfc.nasa.gov/?p=5779). The band average and its standard deviation is shown in 

appendix e. This was performed using Matlab software.  

The optimal positions applied on field (in-situ) data is consistent with the finding of other researcher 

including the original authors of each model used in this study. However, different band tuning and selection 

was done for satellite data to find their optimal bands/wavelengths (see table 4-4 & appendix d). The 

selected bands for this research was based on the spectral characteristics of each lake discussed in section 

(5.3.) but a few band optimization was performed to adjust the traditional optimal bands to the type of 

sensor or data used. The MCI and 3B for instance, is sensitive and useful for the estimation of water 

chlorophyll. However, it requires three wavebands on 681, 709, and 753 nm (in some cases 665, 709, and 

753 nm) whereas 709 and 753 are not available in the Landsat 8 product. In this case applied band shifting 

or band translation was used to select the optimal band from Landsa-8 bands to do calculations and 

estimation of modeled Chlorophyll-a in this study. 
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Since there is no wavelength column around 700 nm to about 830 nm for landsat-8 wavelength spectrum, 

the band selection and combinations procedure stated in table 4-4 and discussed in section 4.3.7 were used. 

Quiet a range of selection was done to find the optimal band that fit each of the algorithms used.  

After simulation, the following bands combination in table 4-4 were chosen for the calculation of modelled 

chlorophyll-a. This was done after simulating Landsat-8 and SPOT6 spectral response function with field 

measured Rrs to derive Landsat-8 and SPOT6 derived Rrs. This help in selecting the right band for model 

application. 

 

Table 4-4: Band combination for simulated data for Landsat-8 and SPOT6. 

Model Band selection  Landsat-8 R2 Band selection SPOT6 R2 

MCI 3, 4, 5 0.741 1, 2, 3 0.57 

3B 3,4,5 0.64 1, 2, 3 0.08 

NDCI 4,5 0.48 2, 3 0.03 

4B/FBS 3,4,5 0.31 1,2,3 0.12 

 

From table 4-5 above, it realised that most of the band combination (NIR-Red-Green band ratios) applied 

on the simulated data worked well mostly with Landsat-8 simulated data, with MCI and 3B which yielded 

an R2 greater than 0.57 having a satisfactory result of an R2 of 0.74 and 0.64 respectively and NDCI and 4B 

having performed poorer when testing for their band combination. On the other hand, with SPOT 6 

simulated data only the MCI model had a good linear correlation with an R2 of 0.57. The results showed 

that Landsat-8 OLI bands were sensitive enough to detect chlorophyll-a concentration than SPOT 6 bands. 

4.5. Calibration and Validation 
 

In this research, two types of errors (type I and type II errors) was computed from the calibrated (Cal) and 

validated (Val) datasets respectively. The absorption coefficient of Chl-a (phytoplankton/pigment) at 440 

nm derived from laboratory analysis was divided into calibration and validation datasets and regressed 

against in-situ reflectance and Landsat-8 and SPOT6 reflectance bands to estimate chlorophyll-a in the 

selected lakes in this research.  

Models calibration was based on the GeoCalVal method by Salama et al., 2012. Eight (8) samples were 

randomly selected as odd numbers and used to calibrate the algorithm with a linear trend between model 

chlorophyll-a values and in-situ Chlorophyll-a concentrations (a_pig (440). The remaining eight samples 

were selected as evens and used to validate the models. Model retrieval or calibration was done using the 

equation below; 

 

𝑎_𝑐ℎ𝑙 (𝑎𝑝𝑖𝑔440)𝑐𝑎𝑙 =  𝛼 ∗ (𝑚𝑜𝑑𝑒𝑙𝑐𝑎𝑙) + 𝛽  …………………………………………… (Eq. 10) 
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where modelcal can be the calibrated MCI, 3B, NDCI and 4B models and α and β are the slope (beta) and 

intercept (alpha) derived from the calibrated data set and are constant coefficients that are dependent on 

a_phy/a_pig (440). 

Hence after obtaining these fitting coefficients from the calibrated data sets, we apply that same constants 

coefficients on the same equation using validated a_phy/a_pig(440) and validated MCI, 3B, NDCI and 4B 

a_phy/a_pig(440) respectively. This is used to estimate chlorophyll-a (a_phy/pig 440) from the dataset used.  

 

Where α and β were replaced with the coefficients (intercept and slope) derived from the calibrated data set. 

The resulting values of slope, intercept, R2, and rMAE were recorded for each model iteration like it was 

done for the calibration dataset. The error estimators used in this study from gives the probability 

distributions of the validation errors and were used to test the accuracy of each models.  

 

 

4.6. Adaptation of Empirical Algorithms used for Estimating Chl-a. 

A band ratio for each of the models was used to estimate Chl-a from the selected study areas as shown in 

table 4-3. 

4.6.1. New Three-Band (N3B) 

The development of the 3 band model by Gitelson was conceptualized by which originally uses three bands 

at 681, 708, 753 nm) to estimate Chl-a. the 3 band model has proven to be robustness to estimate Chl-a in 

turbid, productive waters (Dall’Olmo & Gitelson, 2006). The 3 band model is based on the relation between 

the detected reflectance and the total absorption and scattering coefficients respectively ( Gitelson et al., 

2008).  This model, also known as Gitelson model specifically uses three bands at 665, 708, 753 nm rather 

than the traditional 681, 708, 753 nm in the estimation of Chl-a pigments based on inverse reflectance (Rrs-

1) and Chl- absorption. The three band model is presented as: 

 

(𝑅𝑟𝑠−1(λ1) − (𝑅𝑟𝑠−1(λ2)] ∗ 𝑅𝑟𝑠(λ3) ……………………………………… (Eq. 12) 

 

Where Rrs-1(λ1), (Rrs-1(λ2), are the inverse of remote sensing reflectance at wavelength 1, 2 and Rrs (λ3) is 

the remote sensing reflectance at wavelength 3. The wavelength (λ1), (λ2) and (λ3) are the wavelengths of 

the three bands in increasing order.  

From equation 12, Chl-a is stated as function of inverse Rrs. Rrs-1(λ1) which belong to 660 nm- 690 nm 

band width and this band (λ1) must be strongly sensitive to absorption of phytoplankton/pigment while Rrs-

1(λ2) is least sensitive to Chl-a absorption found between 710 – 730 nm band width (Dall’Olmo & Gitelson, 

2006). In order to eliminate the influences of CDOM and TSS as well as NAP, the second band, that is (Rrs-

1(λ2)) is must be subtracted from Rrs-1(λ1). Mostly Rrs (λ3) is introduced to reduce the influence of any 

backscattering and must be practically less affected by water constituents such as CDOM, NAP and SPM. 
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The Rrs (λ3) is used in this case because it is assumed that absorption and backscattering is non-negligible. 

Hence absorption at λ3 can be solely attributed to the influence of pure water (Dall’Olmo & Gitelson, 2006). 

 

4.6.2. The Maximum Chlorophyll Index (MCI)  

This model was originally developed by (Gower et al., 2005; Gower et al., 2008) for MERIS sensor 

processing scheme and is used to investigate the seasonal dynamic, spatial distribution and coverage of 

blooms. The development of the MCI model was based on the concept of the Florescence Line Height 

(FLH) designed for MODIS sensor.  

Likewise the FLH algorithm, the Maximum Chlorophyll Index (MCI) algorithm is a measure of reflectance 

height or total water leaving radiance at 709 nm which is notably referenced against linear baseline of two 

neighbouring wavelengths of either 681 or 753 nm respectively.  The MCI band model is presented as: 

 

(𝑅𝑟𝑠λ1) − (𝑅𝑟𝑠λ2) ∗
(λ2 − λ1)

(λ2 − λ1)
∗ (𝑅𝑟𝑠λ3) − (𝑅𝑟𝑠λ1) 

 

This model use bands centered at 665, 708, 753, all of which belong to the red and the infrared (NIR) 

spectral bands respectively (Gower et al., 2008). The spectral response band above a linear baseline between 

a wavelengths of 681 and 753 (in some other cases 665, 753) indicates a high surface concentration of 

chlorophyll-a against a scattering background which means they are least affected by CDOM and TSM 

(Gower et al., 2005; Gower et al., 2008 and Blondeau-Patissier et al., 2014). Although detection of Chl-a 

using MCI might be unique to only the MERIS sensor, it could also be estimated with the use of other 

existing or new Multi-spectral sensors and it is therefore widely applicable to different remote sensing 

systems (Alikas et al., 2010).  

 

Figure 4-4: Schematic representation of the MCI model/algorithm. 
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4.6.3. Normalized Difference Chlorophyll Index (NDCI) 

The Normalized Difference Chlorophyll Index (NDCI) algorithm was developed by (Mishra & Mishra, 

2012) based on the concept of  Normalized Difference Vegetation Index (NDVI) to predict Chl-a 

concentration from satellite images. This is because of the complexity of the use of the NDVI model in 

estimating Chl-a in water bodies. This led to the development of the NDCI model as defined in equation 9, 

makes it easier in the estimation of Chl-a. This model is a straight forward one that uses bands at 665 nm - 

Rrs (665) and 708 nm - Rrs (708) and makes it possible for binding higher and lower index values ranging 

between -1 and 1. The NDCI band model is presented as: 

Cchla =  
[(𝑅𝑟𝑠 (λ2)−(𝑅𝑟𝑠(λ1)]

[(𝑅𝑟𝑠 (λ2)+(𝑅𝑟𝑠(λ1)]
 …………………………………………………………. (Eq. 13) 

Where Rrs (λ1) and Rrs (λ2), are remote sensing reflectance at wavelength 1 and 2 in the NIR and Red bands 

respectively. Likewise other algorithms, this model uses information based on the reflectance peak at 708 

nm which is maximally sensitive to differences in Chl-a concentrations in water. The bands at 665 and 708 

are normally used to eliminate the influences of other water leaving constituents such as CDOM, and NAP. 

The NDCI model was developed to take the spectral difference in the bands at 708 nm (NIR band) and 665 

nm (Red band) and normalizing it by the sum of their reflectance to eliminate influences and uncertainties 

(Mishra & Mishra, 2012). 

4.6.4. Four Band (TBS) 

Based on improving accuracy and performance of the 3 Band model, the four band algorithm was developed 

by (Le et al., 2009). The four band model was derived from equation 8 of the three band model in section 

4.4.2 by replacing the only Rrs (λ3) found in the three band model with [Rrs-1 (λ4) – Rrs-1 (λ3)]-1. Hence it 

takes the following form; 

 [(𝑅𝑟𝑠−1(λ1) − (𝑅𝑟𝑠−1(λ2)] × [(𝑅𝑟𝑠−1(λ4) − (𝑅𝑟𝑠−1(λ3)]−1 …………………………… (Eq. 14) 

 

The introduction of Rrs (λ4) in the four band model in equation 14 removes or minimizes the effects of high 

absorption of suspended particles and backscattering of over the R-NIR region. 

The similarities between these models or algorithms used could be that they all use similar spectral bands 

that normally is used to eliminate the effects and influences of water leaving constituents such as NAP, 

CDOM and TSM and among others. Differences in  
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4.7. Algorithm Evaluation and Assessment 
The accuracy of each model used was assessed using the validated datasets between estimated and ground 

truth values. Standard statistics were used to assess the accuracy of the models discussed in section 4.4.  The 

performance of each algorithm was weigh based on statistic metrics used in equations 8-10 including rMAE 

–(Relative Mean Average Error-Equation 10), and R2 (coefficient of determination).  

 

 

MAE=
1

𝑛
 ∑ (𝑥1−𝑥2) 𝑛

𝑖=1  ……………………………………………………………………… (Eq. 15) 

 

rMAE=
1

𝑛
 ∑ (

(𝑥1−𝑥2)

𝑥𝑖 
) 𝑛

𝑖=1  ……………………………………………………...………......… (Eq. 17); 

where n is the number of observations/samples, x1 is the Chl-a values actually observed from Landsat-8 or 

SPOT6 and x2 is the Chl-a values estimated from the field. However, these statistic metrics values will be 

used to distinguish model performance as well as to compare the individual model performance. 

 

4.8. Software packages 

 
Three software packages were used in this study. They include ENVI version 5.3 which was used for 

atmospheric correction, spectral resampling and band-math to create chlorophyll-a concentration maps. The 

Matlab software was also used to write codes for shaping model/algorithm application and producing 

probability distribution of least squares and lastly ArcGIS version 10.1 software was used to process, analyse 

and sharpen and chlorophyll-a images. 
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5 RESULTS  

5.1. Water Constituent Concentrations from the field 

Most European lakes bear the characteristics of a case 2 water which is not only affected by phytoplankton 

but by other water constituents such as CDOM, non-algal pigments (NAP), and total suspended materials 

(TSM). After analysis at the laboratory, many concentrations of water constituent were observed and they 

vary from one lake to another lake. The lakes studied indicates a typical case 2 lakes. This is more discussed 

in section 5.2 below.  

5.1.2. Relationship between Chl-a Concentration and Absorption Coefficient of CDOM at 440 nm. 

The data showed a wide range of constituent composition and varying optical properties. To determine 

whether the lakes are case 1 or case 2 water, a simple regression was analyzed for the lakes. The coefficient 

of determination (R2) for the linear relationship between Chl-a and CDOM shown in figure 5-1 was poor 

and lower than 0.1 m-1.   

 
Figure 5-1: Correlation between CDOM and Chl-a concentration. 

From figure 5-1, it can be seen that the lack of a significant relationship between Chl-a and CDOM indicates 

that the lakes (waters) was independently controlling optical properties of the lakes.  Chl-a and CDOM were 

not correlated. This rightly confirms that the lakes in question are all case-2 waters (Morel & Prieur, 1977). 

Concentrations of Chl-a, absorption coefficient of Chl-a (phytoplankton pigments at bands 440 nm and 665 

nm), absorption coefficient of CDOM also at 440 nm were measured at the laboratory from collected water 

samples from each of the sites. Chl-a concentrations for Lake Binnenschelde, Markiezaatsmeer and 

Hulsbeek varies from 3.81 mg.m-3 to 23.7 mg.m-3. The trophic state of each of the lakes were determined 

based on the Chl-a measurements (results) from the laboratory (Thiemann & Kaufmann, 2000). The 

concentrations level Chl-a in Lake Binnenschelde, Markiezaatsmeer and Hulsbeek indicates that the lakes 

are eutrophic in nature (Megard et al., 1980). 
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However, for Lake Binnenschelde, Markiezaatsmeer, and Hulsbeek, there were significant analyses of water 

quality variables mentioned above. The lowest absorption coefficients CDOM were recorded in Lake 

Hulsbeek with a value of 0.005 m-1 and the maximum absorption coefficients CDOM recorded in Lake 

Binnenschelde of a value of 0.30 m-1. Hence, the overall absorption coefficient of CDOM for these study 

sites were very low. This may be due the less presence of sediments and phytoplankton observed in the 

lakes. From the results provided in table 5-2, it can noted that Chl-a measurements were generally lowest in 

Lake Binnenschelde giving an indication that Lake Binnenschelde is the clearest lake was with mean of 5.22 

mg/m-3 and a standard deviation of 0.29 mg/m-3 with Lake Markiezaatsmeer recording the highest Chl-a 

concentration (a minimum of 6.01 mg/ m-3 and maximum of 12.5 mg/m-3) among the lakes used for this 

study. The absorption of phytoplankton at band 440 nm ranges from 0.06 m-1 to 0.20 m-1 for Lake 

Binnenschelde, 0.04 m-1 – 0.22 m-1 for Lake Binnenschelde and 0.30 m-1 to 0.68 m-1 for Lake Hulsbeek 

respectively.  

The minimum, maximum, mean and standard deviation of measured Chl-a (mg/ m-3), absorption of CDOM 

and absorption of Chl-a (m-1) at band 440 and 665 nm for the five (5) lakes is presented in table 5-1 below.  

 

Table 5-1: Statistical summary of water constituent concentrations for Lakes Markiezaatsmeer, 

Binnenschelde and Hulsbeek. 

Basin n Constituents Statistical Description 

Min Max Mean  SD 

Markiezaatsmeer  

 

6 

Chl-a (mg/m-3) 6.01 12.50 8.60 2.95 

aCDOM (440)(m-1) 0.250 0.456 0.375 0.686 

aph (440)(m-1) 0.108 0.198 0.163 0.029 

aph (665)(m-1) 0.065 0.101 0.089 0.013 

Binnenschelde  

4 

Chl-a (mg/m-3) 3.62 7.14 5.22 1.54 

aCDOM (440)(m-1) 0.304 0.684 0.445 0.167 

aph (440)(m-1) 0.132 0.297 0.193 0.072 

aph (665)(m-1) 0.080 0.168 0.110 0.039 

Hulsbeek  

6 

Chl-a (mg/m-3) 4.74 8.09 6.25 1.34 

aCDOM (440)(m-1) 0.005 1.03 0.34 0.48 

aph (440)(m-1) 0.323 0.559 0.427 0.097 

aph (665)(m-1) 0.153 0.264 0.202 0.043 
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5.1.3. Spectral Analysis for remote sensing reflectance and Absorption Coefficient of Chlorophyll-a 

The chlorophyll-a (phytoplankton pigment) absorption coefficient from laboratory measurement and the 

remote sensing reflectance were analyzed for Lakes Binnenschelde, Markiezaatsmeer and Hulsbeek. The 

retrieval were between the wavelength range of 300 nm and 900 nm. The wavelength range based on the 

limitation to the spectra ranges for this study. The relationship between the spectral responses and measured 

absorption of Chl-a pigments was determined based on the algorithms or models that was used in this study. 

This is to say that a model that proved a very strong relationship between index values derived from each 

algorithm against measured absorption coefficient of phytoplankton/pigment was used to generally map 

Chl-a concentration (absorption coefficient of phytoplankton) for each lakes. The minimum and maximum 

of the absorption spectra of phytoplankton/pigment is presented in table 5-2.  

5.2. Summary of Reflectance and absorption Spectra Characteristics from the study sites 

Basically, turbid water(s) were observed during the three (3) field campaigns for Lakes Markiezaatsmeer, 

Binnenschelde and Hulsbeek. According to the RAMSES radiometric data of Lake Markiezaatsmeer, 

Binnenschelde and Hulsbeek on 23rd, 24th and 26th September, 2015, the wavelength ranges from 300 nm 

to about 1000. But based on the limitation of spectral bands used for this research, only band width ranging 

from 400nm to 900nm were used. Reflectance spectra in Figure 5-2 (a- c) shows two relatively low peaks at 

440 nm and 650 which belong to the blue and the red regions respectively. The relatively low peaks at 440 

nm and around 650 were used in the retrieval of Chlorophyll-a against field observed Chlorophyll-a 

concentration. Remote sensing reflectance of each of the lake varies greatly over the visible and NIR spectral 

regions. These were all radiance and reflectance values obtained from above water measurements using 

RAMSES (ACC and ARC) -Trios sensors for Markiezaatsmeer, Binnenschelde and Hulsbeek respectively. 

The spectral characteristics of these four (4) lakes were similar in shape and their magnitude and peaks 

mostly ranging between 550 nm – 750 nm. The spectral reflectance curves of each lake is shown in figure 

5-2. Again, the minimum, maximum, mean and standard deviation of measured Spectral Remote Sensing 

Reflectance observed from the field  

Table 5-2: Summary statistics Spectral Remote Sensing Reflectance Values Observed in each 

study area. (sr-1). 

Basin Date Obtained n* Min Max Average Median St. Dev. 

Markiezaatsmeer 23 - 09 – 2015 20 0.0014 0.0509 0.0103 0.0091 0.0054 

Binnenschelde 24 - 09 - 2015 15 0.0086 0.0325 0.0101 0.0084 0.0051 

Hulsbeek 26 - 09 - 2015 10 0.0027 0.0171 0.0100 0.0103 0.0015 
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5.2.1. Reflectance and absorption Spectra Behaviour of selected Lakes 

Lake Markiezaatsmeer, Binnenschelde and Hulsbeek. 

 

 

 
Figure 5-2: TRIOS-RAMSES-Reflectance Spectra (Rrs) observed in (a) Markiezaatsmeer, (b) 

Binnenschelde and (c) Hulsbeek; and Laboratory measured absorption coefficient of 

phytoplankton/pigments for (d) Markiezaatsmeer, (e) Binnenschelde and (f) Hulsbeek. 
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The wavelengths between 300 and 900 nm was selected for analysis for both radiometric data. The 

reflectance spectra of samples form the four (4) field campaigns are shown in figure 5-2 (a-c) and these field 

spectra are similar in shape and magnitude and also similar to that of typical productive turbid water 

(Gitelson et al, 2007). From figure 5-2 (a-c), it can be noticed that there is a significant reflectance peak 

around the green range 500 -570 nm which decreases gradually and it is attributed to phytoplankton spectral 

behaviour. Subsequently, there is another trough near 685 and around 700 nm for figure 5-2 (a & b) 

demonstrating the dominance of both backscattering of Chlorophyll-a and minimal absorption of 

accountable water constituents including pure water in the three (3) lakes except for Lake Hulsbeek, hence 

there is maximum chlorophyll-a is located in the red band (Gurlin et al, 2011). It can also be noticed that 

there is a remarkably low reflectance in the blue region around (400-500) nm due increase in Chlorophyll-a 

pigment. This is due to an increase absorption of Chlorophyll-a pigment, NAP, and CDOM (Gitelson et al, 

2009). Theses reflectance spectra shows a low reflection and high absorption levels when wavelength is 

greater than 750 (700-750 nm) nm in the NIR region, comparably with that of the blue region (400-500 nm) 

and this is an attribute of all typical turbid water especially lakes. In this NIR region in particular, reflectance 

is mostly controlled by scattering of particulate matter. However,  increases in the water-leaving reflectance 

have been associated with the increase in backscattering, hence increase in absorption increases decreases 

the water leaving reflectance in a every part of the spectrum (Morel & Prieur, 1977). Another peak 

reflectance is observed around 810 nm attributed also to organic matter constituents and chlorophyll 

(Rundquist et al, 1996). Hence the variation in the level of the spectral curves observed in the study area of 

this research is due to the absorption and scattering of the presence of suspended, particulate and dissolved 

matter. On the other hand, the absorption of phytoplankton/pigments at 440 nm and 665 nm and CDOM 

at 440 nm, together with matter components have great spatial difference.  

On the other hand, the absorption spectra due to phytoplankton/pigments in figure 5-2 (d –f ) have two 

distinctive features; one is the absorption spectra location at near 440 nm in the blue spectral region and the 

other near 670 nm (Ma et al, 2006). The in-situ absorption of chlorophyll-a pigments/phytoplankton from 

the three lakes (Binnenschelde and Markiezaatsmeer) showed a wide variation in the red spectral absorption 

coefficient around 665 nm. However, Lake Hulsbeek showed a different variation in the red spectrum. This 

may be due to package effect and variation in pigment composition of phytoplankton cells and physiological 

feature of the lakes, including temperature, light availability and nutrients (Bricaud et al, 1995). The 

absorption coefficients of Chlorophyll-a pigments with peak around 440 nm varied from 0.108 to 0.198 m-

1 while the absorption coefficients of Chlorophyll-a pigments with peak around 665 nm varied from 0.065 

to 0.101 m-1 for Lake Markiezaatsmeer. With Lake Binnenschelde and Hulsbeek, the absorption coefficients 

of Chlorophyll-a pigments with peak around 440 nm varied from 0.132 to 0.297 m-1 and 0.323 to 0.559 m-

1 while near 665 nm 0.080 to 0.168 m-1 and 0.153 to 0.264 m-1respectively. 
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5.3. Accuracy of Atmospheric Correction Method 

After the application of the FLAASH atmospheric correction method on both landsat-8 and SPOT-6 

images, few observations were made. The remote sensing reflectance (Rrs) values for the Landsat-8 images 

and concurrent in-situ showed a good correlation than compared to SPOT-6. Comparing the averaged 

reflectance of the atmospherically corrected Landsat-8 image and in-situ reflectance measurements for Lake 

Markiezaatsmeer and Binnenschelde 27th September, 2015 showed a robust consistency and a good 

correlation. On the other hand, there was a good match between atmospherically corrected image Rrs and 

in-situ Rrs for Lake Hulsbeek on the 29th September, 2015. However, atmospheric correction (FLAASH) 

provided poorer results application on SPOT- 6 images, hence it was not displayed in my results. The results 

of SPOT 6 did not show much correlation against in-situ reflectance hence the results from SPOT6 

atmospheric correction was not presented. There were some poorer results from the atmospheric correction 

which were not displayed. This could be attributed to residual adjacency effects or wrong aerosol model 

parameterization which causes low reflectance in the NIR spectrum (Guanter et al., 2010). The accuracy of 

the results from this study is shown in figure 5-3 and these results follows similar results observed by (Collin 

& Hench, 2012; Guanter et al., 2010 and Song et al., 2012). Table 5-3 below shows the R2 and RMSE of 

two selected study areas from each image. 
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Figure 5-3: Comparison between in-situ reflectance and Landsat-8 reflectance spectra. 

 

Six samples, which include two samples for each lake were collected few days after the landsat-8 overpass 

on 27th and 29th September, 2015 for all lakes. These were used to evaluate the performance of the 

atmospheric correction as shown in figure 5-3. Only the best results of the outcome of the atmospheric 

correction method was showed. This is comparing in-situ remote sensing reflectance with Landsa-8 

reflectance spectra at selected sites, two for each study are respectively. Details of the results of the 

atmospheric correction is presented in table 4-4. 

 

Table 5-3: Results of the atmospheric correction method compared with in-situ reflectance for selected 

sites (at least two sample points) from each of the three study areas.  

Study Site Image Date  R2 RMSE 

Lake Binnenschelde  27th September, 2015 S2 0.998 0.000560 

S14 0.997 0.000918 

Lake Markiezaatsmeer 27th September, 2015 S16 0.911 0.002866 

S21 0.892 0.002056 

Lake Hulsbeek 29th September, 2015 S38 0.985 0.00108 

S43 0.955 0.002668 

 

5.4. Calibration and Validatiion of all Data Sets. 

 

In this study, all the calibration and validation values (in-situ a_chl and in-situ and simulated Rrs) from 

datasets were chosen based on a fair selection. Radiometric and laboratory datasets measure were divided 

into two: one for calibration as calibration dataset and one for validation as validation datasets. The 

GeoCalVal method was used as discussed in section 4.4.  Most of the algorithms adapted from table 4-3 
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worked well with both in-situ and satellite data when plotted against the in-situ absorption coefficients of 

phytoplankton/pigments. Only algorithms that uses mostly three (3) bands and four (4) band were tested 

on field data, and Landsat-8 bands as well as SPOT6 bands. The structure proposed for best fitting of an 

empirical model for retrieving Chl-a in this study are presented in equation 13/14; 

apig(440) = α * (Model) + β ……………………………………………………….…………… (Eq. 14) 

 

Where: α and β are the fitting coefficients and apig (440) is the absorption coefficient of chlorophyll-a 

pigment at 440 nm.  

 

The MCI, 3B, NDCI and 4B algorithms were tested to use both bands of maximum and minimum 

reflectance and absorption and wavelength band ranges respectively. Simply put, both single band values 

and band maximum and minimum reflectance and absorption were used to set the accuracy of each model. 

In all, after executing this exercise, single band ratio seem to perform better than band maximum and 

minimum reflectance based on the data from the study areas of this research. From this a regression plots 

(on probability curves) were performed in Matlab software to determine the fitting coefficients for the 

estimation or prediction of Chl-a absorption for the three (3) lakes under study. The MCI, 3B, NDCI and 

4B models were then weighted using these statistical indexes: R2 and rMAE. 

5.5. Calibration of In-Situ Data Sets 

In previous studies, single band, band ratio and one order derivatives methods were used to estimate Chl-a 

or chlorophyll-a absorption coefficient. However, in this study, more than two bands or at least 3 band 

reflectance models were used to estimate Chl-a(absorption coefficients of Chl-a) in this study. These models 

were tested and their accuracy and performance were assessed concurrently with both field in-situ data and 

satellite data (Landsat-8 and SPOT6).  Model calibration was done with half of the dataset that is 8 sample 

points out of 16 sample points used in this study. The MCI, 3B, NDCI, 4B and SCI algorithms were 

calibrated using the type I statistical least square regression method. All the models were calibrated using a 

linear function as in equation 14; Chl-a = α (model) + β, where α and β are fitting coefficients derived from 

calibrated data and model could be MCI, 3B, NDCI, 4B and SCI. Table 5-4 shows the coefficients obtained 

from calibrating in-situ chlorophyll-a absorption with in-situ model reflectance. This result are similar results 

by other researchers (Mishra & Mishra, 2012; Gurlin, Gitelson, & Moses, 2011). 

Table 5-4: Coefficients derived from model calibration applied to field data. 

Model Model Calibration (Cal set) Summary 

Slope (α) Intercept (β) 

MCI -12.755 0.257 

3B -0.436 0.214 

NDCI -0.491 0.211 

FBS -0.495 0.238 
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From table 5-4 shows the results of the calibration analysis. It is clear that only positive of intercept was 

found for the MCI, 3B, NDCI and 4B/FBS. A positive value of intercept could means that at a given 

concentration, a model might have no response to spectral signatures. But this is not a typical response of 

a Chl-a model (Augusto-Silva et al., 2014). See appendix for calibration results plotted with Matlab software.  

5.6. Validation of In-Situ Data Sets 

 

Validation of calibrated algorithms or models were done for the rest of the data sets using the linear best 

fitting coefficients α and β to derive from table 5-4. The performance of the four algorithms that was used 

to derived Chl-a concentration from in-situ data was tested by validating ground measured Chl-a and 

TRIOS-RAMSES (in-situ) reflectance. Regression plots of algorithm index reflectance values were plotted 

against absorption coefficient of phytoplankton (a_chl-a) for the various study sites. In totality, the 

algorithms or models were evaluated using the statistical metrics presented in equation 8, 9 and 10 in sub-

section 4.4. The coefficients of determination (R2) and the percentage error (rMAE) were calculated for each 

of the model respectively. The statistical summary of the results of validation of models from field (in-situ) 

data is presented in table 5-5 and figure 5-5 below. The model parameters were estimated from the 

calibration datasets. 

 
Table 5-5: Summary results of model validation process (model performance) for in-situ data. 

Model Model Validation/Performance on (Val set) for TRIOS RAMSES 

Slope 

 

Intercept 

 

R2 
 

rMAE (%) 

(m-1) 

MCI 0.922 0.013 0.69 18.34 

3B 0.867 0.021 0.54 23.30  

NDCI 0.952 0.006 0.45 21.33  

FBS 0.935 0.010 0.83 12.35 
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Figure 5-4: Probability distribution of validation process for MCI, 3B, NDCI and 4B models or 
algorithms using field data. 

 
Figure 5-4 which contains four scatter diagrams each for each model shows the results of Chl-a estimation 

using MCI, 3B, NDCI and 4B 

From table 5-5 and figure 5-5, it is observed that the 4B and MCI models performed well when applied on 

in-situ data. These models that come close to the 1:1 line. The relationship between the 4B and MCI 

estimated absorption of Chl-a and measured absorption of Chl-a were linear functions and had a strong 

relationship with R2 of 0.83 and 0.69 respectively (see table 5.5 & figure 5-6 a& d).  
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Figure 5-5: Scatterplots of the measured versus estimated a_pig (440 nm) using field data for the various 
models. 

5.7. Calibration of Simulated Landat-8 OLI And SPOT6 Data Sets 

 
The same methodology applied on the derivation of chlorophyll-a (a_pig (440)) from in-situ data was applied 

on both Landsat-8 OLI and SPOT data sets respectively. With these simulated bands, the same calibration 

and validation process was repeated both for landsat-8 and SPOT6. Table 5-6 and 5-7 shows the calibration 

results for Landsat-8 and SPOT6 simulated bands. After analysis and application of the model, it was realised 

that the models worked well with Landsat data likewise in-situ data and they both had a similar pattern of 

results with MCI, 3B, NDCI and FBS having negative slopes. The only model that had a negative intercept 

was SCI model. On the other hand, four out of the five models could not work well when applied to SPOT6 
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data apart from the MCI model. However, only the MCI model worked well with SPOT 6 after its 

application. Hence, it is clearly noted that model application worked well with Landsat-8 data more than 

SPOT6 as seen in tables 5-6 and 5-7.  

 

Table 5-6: Coefficients derived from model calibration applied to Landsat-8 datasets. 

 

Model 

Model Calibration (Cal set) for Landsat-8  

Slope  Intercept  

MCI -0.037 0.011 

3B -2.002 0.533 

NDCI -1.434 0.397 

FBS -2.838 1.308 

 

Table 5-7: Coefficients derived from model calibration applied to SPOT6 datasets. 

 

Model 

Model Calibration (Cal set) for SPOT6 

Slope Intercept 

  MCI 2.413 -0.234 

 

 

5.8. Validation of Simulated Landat-8 OLI and Spot6 Data Sets 

The equations in table 5-6 were validated for Landsat- 8 and the MCI model had the best validation 

performance with R2 of 0.753 and rMAE of 0.06 m-1 and 21.29% (table 5-7). This value is higher than the 

value found from the best validation performing model (FBS/4B) model using in-situ data of R2 of 0.753, 

and rMAE of 0.035 m-1 and 12.35%. The results for best performing model for in-situ data is lower could 

be associated with differences to band response (Augusto-Silva et al., 2014). This is to say that the positions 

of Chl-a features may shift and this could or may affect the results from both in-situ and Landsat- 8 dataset. 

When models were compared for both in-situ and Landsat-8 data, the NDCI model proposed by (Mishra 

& Mishra, 2012)seem to the worst performing model which did not have a good linear relationship with 

measured Chl-a. The NDCI model had the lowest performance when compared with other tested models 

(Watanabe et al., 2015). 

 

Table 5-8: Summary results of model validation process (model performance) for Landsat-8 dataset. 

 

 Model 

Model Validation/Performance on (Val set) for Landsat-8 

Slope Intercept R2 
 

rMAE (%) 

MCI 1.388 -0.055 0.75 21.29 

3B 1.408 -0.068 0.65 24.21 

NDCI 1.916 -0.147 0.50 32.68 

FBS 4.151 -0.544 0.37 59.64 
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Figure 5-6: Probability distribution of validation process for MCI, 3B, NDCI, and 4B models using 

simulated Landsat-8 data. 
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Figure 5-7: Scatterplots of the measured versus estimated a_pig (440 nm) using Landsat-8 data for the 

various models. 

In the application of the models on Landsat-8 data set generated greater error as compared to spot-6. The 

rMAE increased when model was applied to the simulated Landsat-8 dataset. This denotes that applying the 

same algorithm on different dataset can cause a growth in error of estimating Chl-a. Beside the growth of 

error, the MCI proved to work well with Landsat-8 data and had a better performance ahead of 3B, NDCI 

and 4B.  The scatterplot in figure 5-8 shows that all algorithms diverged from the 1:1 line, that’s why error 

became greater as compared to results from in-situ data. Hence, the MCI model proved to be more 
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compatible with Landsat-8 data likewise SPOT6 as shown in figure 5-9. However, despite the difficulties in 

tuning the MCI to estimate Chl-a from the various datasets used, the Maximum Chlorophyll Index with R2 

from the filed data, Landsat-8 data and SPOT6 data to be 0.69, 0.75 and 0.43 and rMAE to be 

18.34%,21.29% and 41.25% respectively emerged as the best  algorithm based on performance.  

 

Table 5-9: Summary results of model validation process (model performance) for SPOT6 data. 

 Model Validation/Performance on (Val set) for SPOT6 

Model  
 

Slope Intercept  R2 rMAE (%) 

  MCI 2.413 -0.234 0.58 41.258 

 
The 3B, NDCI, 4B and SCI models were not validated for SPOT 6 data due to the poor performance. 

Hence only MCI model showed a strong linear relationship. However, the results of only MCI was shown 

for analysis because other four models including, 3B, NDCI, 4B and SCI could not estimate absorption of 

chlorophyll0a pigments in all form the data set used. Although the linear relationship for MCI model was 

not that strong when directly applied on SPOT 6 data set, it can be seen that it worked with concurrent 

dataset for TRIOS RAMSES, Landsat-8 and SPOT6, henceforth the Maximum Chlorophyll Index was 

chosen to be the best model that can be used to quantify or estimate Chl-a in inland waters based on the 

study areas selected for this study.   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-8: Scatterplots of the measured versus estimated a_pig (440 nm) using SCI data for only the 

MCI model. 
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6. DISCUSSION 

This chapter expatiates the research questions and discusses the outcome of the methodology implemented 

in achieving the research questions and the objective of this study. 

In most cases, especially for the analysis of reflectance spectra in turbid productive water, as discussed in 

section 5.1.1., an increase in the water-leaving reflectance have been mostly associated with the increase in 

backscattering due to the absorption and scattering of the presence of suspended, particulate and dissolved 

matter. This lead to an increase in absorption thus decreases the water leaving reflectance in every part of 

the spectrum. (Morel & Prieur, 1977).  

Normally, the absorption spectra due to phytoplankton pigments have two distinctive features; one is the 

absorption spectra location at near 440 nm in the blue spectral region and the other near 670 nm (Ma et al, 

2006). The materialized in-situ absorption of chlorophyll-a pigments/phytoplankton from the three lakes 

(Binnenschelde, Markiezaatsmeer and Hulsbeek) showed a wide variation in the red spectral absorption 

coefficient around 440 nm. However, Lake Hulsbeek showed a different variation in the red spectrum and 

it should be noted that an absorption spectra at a peak near 665 nm is also predictable. The differences of 

absorption of phytoplankton/pigments in most part of the wavelength spectrum may be due to package 

effect and variation in pigment composition of phytoplankton cells and physiological feature of the lakes, 

including temperature, light availability and nutrients (Bricaud et al, 1995). The absorption coefficients of 

Chlorophyll-a pigments with peak around 440 nm varied from 0.108 to 0.198 m-1 while the absorption 

coefficients of Chlorophyll-a pigments with peak around 665 nm varied from 0.065 to 0.101 m-1 for Lake 

Markiezaatsmeer. With Lake Binnenschelde and Hulsbeek, the absorption coefficients of Chlorophyll-a 

pigments with peak around 440 nm varied from 0.132 to 0.297 m-1 and 0.323 to 0.559 m-1 while near 665 

nm 0.080 to 0.168 m-1 and 0.153 to 0.264 m-1respectively (see figure 5-2 for details).  

 
a. How can we adapt a model such that it can use Landsat-8 OLI and SPOT6 MSI to 

estimate Chlorophyll-a concentration (absorption coefficients of Chlorophyll-a 

pigments/phytoplankton) and produce validated Chl-a images? 

 

Based on the reflectance and absorption spectra characteristics of the study area, this study is able to adapt 

a model that can use Landsat-8 OLI and SPOT6 MSI to estimate Chlorophyll-a concentration (absorption 

coefficients of Chlorophyll-a pigments/phytoplankton). Four models were used and tested to estimate 

chlorophyll-a concentrations from both in-situ and satellite data (Landsat-8 and SPOT 6). These models 

had a direct relationship with Chl-a concentration. In the adaptation of the models both in-situ derived Rrs 

derived Rrs was applied directly with the models, however with Landsat-8 and SPOT 6, band simulation 

was performed to select the optimal bands for the application on the models since it does have some of the 

specified bands and wavelength required for the estimation of Chlorophyll-a. The actual bands used in this 
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study for the estimation of Chl-a using the specified models (MCI, 3B, NDCI and 4B) are presented in 

Appendix c. Hence based on band ratio-ing from this research using the band Rrs of Band 3, 4 and 5 for 

Landsat-8 and Bands 1, 2 and 3 for SPOT6, the MCI and 3B models had a good correlation with absorption 

of Chl-a pigments. They had an R2 of 0.74 and 0.64 for Landsat-8 and 0.57 for MCI with SPOT6 Rrs 

concurrently. 

 

b. Which model (based on performance) is best for the quantification and estimation of Chl-

a in inland waters for the area under study? 

The accuracy, performance and robustness of each of the four models were tested by validating the 

calibrated models, which was performed using TRIOS-RAMSES, Landsat-8 and SPOT6 reflectance (Rrs). 

The best fitting coefficients obtained from the calibrated equations was used to estimate/derive back the 

Chl-a absorption coefficient. This derived/estimated Chl-a absorption coefficients were regressed again 

against the measured in-situ chlorophyll-a absorption to see how they vary and to evaluate the performance 

and accuracy of each of the models using R2 and rMAE. 

From the adaptation of models, it was found that all the models worked well with both in-situ and Landsat-

8 data (Rrs) but did not worked too well with SPOT6 data (Rrs). The model results proved that the only the 

MCI model, compared to other models (3B, NDCI, and 4B), is more robust and efficient in estimating Chl-

a from inland lakes according this study. The MCI showed that it is very sensitive and accountable for any 

small variation between measured absorption Chl-a pigments and derived/estimated absorption Chl-a 

pigments. Although when the models were applied with in-situ data (Rrs), the four band model (4B/FBS) 

showed a stronger linear relationship with absorption Chl-a pigments with an R2 of 0.83, and relative root 

mean error of 12.35% respectively. It was also found that, the models (3B, NDCI and 4B) failed to validate 

when applied SPOT data; they had a poor performance against measured absorption of Chl-a pigments. 

Both their calibrated and validated results were not displayed of analysis. Mostly, according to this study, 

models or algorithms that uses at least three bands or more gives a higher accuracy in estimating for Chl-a 

than less than three bands. 

  

 

 

 

 

 

 

 

 

 

Figure 6-1: Model accuracy and performance based on application on different datasets. 
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Conceptualizing from the figure 6-1 above, it can be noted that with the application of the models on the 

various data sets (In-situ, Landsat-8 and SPOT6), the MCI model obtained a satisfactory results and came 

out to be the best when it was tuned using both satellite data. Although the 4B model was best model when 

applied to in-situ data with R2, of 0.83, , MCI still proves to have a also a good correlation with R2 and 

rMAE of 0.69 18.34 % with only 6 % increase in percentage between measured and derived/estimated 

absorption of Chl-a pigments.  

 

c. How much error do In-situ, Landsat-8 and SPOT6 Multi-Spectral setup introduces in the 

derivation of Chl-a? 

Before the launch of Landsat-8, many studies have utilized Landsat imagery for mapping water quality. 

However, the analysis of the spectro-radiometric sensitivity of landsat-8 OLI using the signal-to-noise ratio 

(SNR) as a guide gives a clue on the errors anticipated for the retrieval of biogeochemical properties such 

as Chl-a (Pahlevan et al., 2014). Signal-to-noise ratio (SNR) is a function of band location, band width and 

pixel size as well as the sensitivity of a sensor.  

Regardless of the broad spectral bands of Landsat-8, this study demonstrated that Landsat-8 OLI bands (in 

this case Red, Green and NIR) are sensitive to the estimation and derivation of water constituents such as 

Chl-a and the error that it introduced was less as compared to the spectral  bands of SPOT6. For example, 

when comparing the MCI model application on both the derived Rrs of  In-situ data and convolved data, 

the validation results showed that the error percentage that Landsat-8 introduced to spectral setup in 

deriving Chl-a was almost 3% (with rMAE of 21.29%) when compared to In-situ setup (with rMAE of 

18.34%). On the other hand, SPOT6 setup showed a much higher error in the derivation of absorption of 

Chl-a pigments with almost doubled percentage error of (with rMAE of 41.25%) than what Landsat-8 

introduced to the derivation of Chl-a. The poor performance of the 3B, NDCI and 4B models from SPOT6 

data for which results were not displayed may be due to a number of reasons; (a) the increment in error 

percentage between Landsat-8 and SPOT6 may be due to differences in SNR ratios of Landsat-8 and 

SPOT6; and (b) it can also be the inability of SPOT6 bands to optimally respond to absorption of Chl-a 

pigments. 

Concurrently, figure 5-8 indicate that most of the models applied on Landsat-8 data seem to over-estimate 

absorption coefficient of chlorophyll-a pigments in all the lakes and this accounted for the high percentage 

in error for all the models compared to the error that in-situ setup introduced in the derivation of absorption 

coefficient of chlorophyll-a pigments. MCI and 3B, had an rMAE of 21.29%, 24.21%, as well as 32.68% for 

NDCI and 52.64% for the 4B model which introduced the highest percentage error in the derivation of 

absorption coefficient of chlorophyll-a pigments. However, the accuracy of the calibration and validation 

model results of SPOT6 spectral setup in deriving absorption coefficient of chlorophyll-a pigments was 

comprised with errors affected by the degradation of absorption coefficient of chlorophyll-a pigments, 

which was introduced especially by the type of atmospheric correction used. 
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However, on the basis of satellite comparison, Landsat-8 proved to be more accurate and sensitive to 

changes to the derivation of Chl-a and has the potential for studying bio-optical properties in coastal and 

inland waters (Pahlevan et al., 2014).  This may be due to a number of factors including the enhancement 

of the Landsat-8 bands from 12 bits to 16 bits. 

 

d. What is the gained knowledge of having a high resolution maps from Landsat-8 and 

SPOT6. 

(Mapping of Chlorophyll-a (a_pig) from Landsat-8-OLI and SPOT6 MSI). 

 
Based on the best adjudged model, for quantifying Chl-a maps were created using values from B3, B4, and 

B5 for Landsat-8 and B1, B2 and B3 for SPOT6 in Envi and ArcGIS software. The application of the best 

performing model to landsat-8-OLI is shown below in figures 6-2 and 6-3. Although six images were 

downloaded for this study on Binnenschelde and Markiezaatsmeer, only four of these images were cloud 

free taken on 4th April, 7th June, 3rd August, and 27th September, 2015. These maps shows an overview of 

the general Chl-a distribution in the lakes under study and can be used as a supportive information in the 

identifying eutrophication affected areas. They show a variability in the ecological and trophic status of the 

lakes under study with some degree of knowledge and accuracy in relation to the floating of algae bloom. 

Baban, (1999), indicated that changes in absorption of Chl-a pigments may be due to the amount of water 

leaving reflectance in the photosynthetically active region of the electromagnetic spectrum. However, this 

can only be detected using optical remote sensors (Baban, 1999). Absorption of Chl-a pigments colour maps 

in Lake Binnenschelde, Markiezaatsmeer and Hulsbeek varies from red (high a_chl-a) to blue (low a_chl-a) 

Figure 5-9 and 5-10 shows time series of absorption coefficients of Chl-a pigments maps calculated using 

MCI. According to the visualised MCI maps shown in figure 6-2 and 6-3, absorption coefficients of Chl-a 

pigments were uniformly distributed over the individual lakes. For Lake Binnenschelde, relatively higher 

Chl-a concentration were recorded in April and August while September recorded a moderate Chl-a 

concentration. This may be due to higher temperatures and lack of precipitation between April and August 

and vice versa for September.  
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Figure 6-2: Absorption coefficients of Chlorophyll-a pigment maps created from Landsat-8 over Lake 

Binnenschelde on 4th April, 7th June, 3rd August, and 27th September, 2015. 

The absorption coefficients of chlorophyll-a pigment maps that were created by the MCI model in figure 6-

2 showed that the distribution and variation of absorption of chlorophyll-a pigments increases in the south-

eastern part of Lake Binnenschelde on 4th April, 7th June and 27th September, 2015 and changes its variation 

in the map of 3rd August, 2015 from the south eastern part of the map to the north-western part of this 

same lake concurrently. Also in figure 6-3, it can be seen that most of the distribution and variations flows 

from north-western to south-eastern part of the Lake Markiezaatsmeer. All this may also be due to sunlight 

penetration which lead to increase in temperature and causes floating algae to keep changing places due to 

changes in wind direction as well as lack of precipitation respectively. 
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Figure 6-3: Absorption of Chlorophyll-a pigment maps created from Landsat-8 over Lake Markiezaatsmeer 

on 20th April, 7th June, 3rd August, and 27th September, 2015. 

Moreover, the same approach was performed on atmospherically corrected SPOT6 images by applying MCI 

model. The variations in chlorophyll-a distribution depict differences in the sensor type. On the other hand, 

two SOPT6 images were downloaded for Binnenschelde and Markiezaatsmeer and one for Lake Hulsbeek, 

which were all cloud free taken on 2nd November and 4th December, 2015. They show a variability in the 

ecological and trophic status of the lakes under study with some degree of knowledge and accuracy in 

relation to the floating of algae bloom. The maps above indicates the distribution of absorption coefficients 

of Chl-a pigments for various days using MCI reflectance bands 3, 4 and 5 for Landsat-8 and bands 1, 2 and 

3 for SPOT6. The SPOT6 images in figure 5-11 were also retrieved on 2nd November and 4th December 

respectively. Unfortunately only one SPOT6 image (figure 5-12) of Hulsbeek was processed and used to 

map Chl-a concentration. Landsat-8 image of Hulsbeek were not clear enough to be used to map Chl-a 

concentration (absorption of Chl-a) using MCI. The map of 20th April, 7th June and 27th  September, 2015 

shows high concentration of Chl-a (a_pig) in the south eastern part of Lake Markiezaatsmeer attributed to 

more sunlight penetration as discussed in figure 6-2. 
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Figure 6-4: Absorption of Chlorophyll-a pigment maps created from SPOT6 over Lake Binnenschelde on 

2nd November, and 4th December, 2015. 

 

 

 

 
 

 

 

 

 

 

Figure 6-5: Absorption of Chlorophyll-a pigment maps created from SPOT6 over Lake Markiezaatsmeer 
on 2nd November, and 4th December, 2015. 
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Figure 6-6: Absorption of Chlorophyll-a pigment maps created from SPOT6 over Lake Hulsbeek and on 
2nd November, and 4th December, 2015. 

These maps indicates fair distribution of chlorophyll-a absorption also computed from the MCI model using 

reflectance in the Band 1, 2 and 3. The red colour indicates high values of Chl-a absorption while the lowest 

values of Chl-a absorption on the map are shown in blue. The image of 2nd November shows more of value 

of Chl-a distribution in Lake Markiezaatsmeer and Binnenschelde also of the same date. On the other hand 

images of 4th December depict moderate (mostly in green) distribution of Chl-a absorption. The maps shows 

some eutrophication trends during spring (2nd November, 2015) while seem to be relatively normal during 

winter (4th December, 2015). Figure 5-12 shows high Chl-a absorption values over Lake Hulsbeek. Hence, 

Chl-a pigments absorption maps produced indicates that the MCI model can be used to monitor the 

distribution and variation of phytoplankton or chlorophyll-a pigments.  
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7. CONCLUSION AND RECOMMENDATIONS 

7.2. CONCLUSION 

 
Remote sensing provides an effective means to traditional water sampling for monitoring changes in water 

systems. Remote sensing is capable to provide accurate water quality information for an area.  

However, from the above mentioned results, the following conclusions were made which form a basis in 

answering my research questions.  

Different band combination gave different results in the estimation of Chl-a in inland lakes over the derived 

TRIOS in-situ reflectance and derived multispectral satellite image reflectance (Baig et al., 2013; Watanabe 

et al., 2015). The models were evaluated using data from TRIOS-RAMSES radiometric data with in-situ 

Chl-a absorption, Landsat-8 and SPOT6 convolved data. Mostly using more than three (3) bands 

combination seem to give a higher accuracy than using only two band combinations. For instance, the four 

band model and the MCI proves to be better than all other band combination in the NIR-Red wavelength 

spectrum (Baig et al., 2013). NDCI and 3B were not sensitive enough to estimate Chl-a. 

On the other hand, when model/algorithm was applied on the various Landsat-8 and SPOT 6 data sets, 

results from Landsat-8 prove to be accurate for accurate estimation of Chl-a than the result from SPOT-6. 

The application of the model particularly on Landsat-8 data set showed quiet good results. It was indicated 

in tables 5-8 and 5-9 that  when comparing the assessment evaluation for model application on Landsat -8 

and SPOT 6, Maximum Chlorophyll Index model performed best in estimating Chl-a, although it could not 

produce same results when applied to the in-situ data. In all it was concluded that MCI model which worked 

with both Landsat-8 and SPOT6 when tested against in-situ derived chlorophyll-a and therefore was 

adjudged to be the best fitting model for estimating chlorophyll-a. In all, the 4B model performed well using 

TRIOS-RAMSES radiometric data with an R2 of 0.83 and the lowest rMAE 12.35% compared R2 of 0.75, 

and rMAE of 21.29% from the best chosen model MCI. However, the MCI model was chosen because of 

it compatibility in working across all data sets used in this study.  

The MCI algorithms, is not to be undermined in such that it is seen to be a “versatile tool” and can be used 

in connection with other satellites to estimate Chl-a and other image analysis (Binding et al., 2013). 

Secondly, FLAASH scheme seem to be more suitable for atmospheric correction of Landsat-8 images more 

than SPOT6 images hence the accuracy was very low for SPOT6 images.  Band selection after atmospheric 

correction were also tested and based on that band shifting or tuning was executed to see which of the bands 

is sensitive to the estimation of Chl-a using the model application. On our finding, it was revealed that since 
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there is no bands of 709 and 753 in the Landsat 8 product, we shifted the selection of 708,709, and 753 to 

the NIR in band 5. The results of shifting bands gave a higher accuracy and hence it can be stated clearly 

that since there is no band for 700 nm – 790 nm band shifting could be possibly used to estimate Chl-a 

based on the findings of this studies. Accordingly, it can also be stated that a special atmospheric correction 

schemes should be used for a study of this sort. However, it can noted that the selected wavelengths for the 

model application differed slightly from previous studies as suggested by the original authors of the 

algorithms used in estimating Chl-a (Dall’Olmo & Gitelson, 2006). This could be that the reflectance spectra 

of the study areas differs from the spectra characteristics of the proposed algorithm from literature by the 

aforementioned authors. 

Although band combination algorithms seem to be effective in estimation chlorophyll-a concentration using 

Landsat-8/SPOT6 product, it is still a challenge due to its limited spectral resolution.  

The distribution maps of Chl-a absorption (Chl-a concentration) acquired by the best model (MCI) could 

be useful in analysing the Chl-a source as well as transport processes. However, the results of those study 

are limited to the study areas under study. 

The study aimed at adapting and testing the performance of algorithms/models using Landsat-8-OLI and 

SPOT6 MSI with in-situ Chl-a absorption as well as determining the error each setup (in-situ, Landsat-8 

and SPOT6) introduces to the derivation of Chl-a. It was found that MCI showed almost similar pattern for 

the various datasets and also had a better results with the lowest rMAE of 18.34%, 21.29% and 41.258% 

respectively. In short, the model analysis has demonstrated the first five bands of Landsat-8 sensor, 

especially bands 3, 4 and 5 can be used to estimate absorption coefficient of chlorophyll-a pigments in small 

lakes with relatively high accuracy. Again, better spectral resolution can be used since the wavelength bands 

used to estimate absorption coefficient of chlorophyll-a pigments in this study yielded satisfactory results 

for Landsat-8, they are not optimal for the detection of absorption coefficient of chlorophyll-a pigments in 

other settings (case II waters). In all, it can be stated that the remote sensing method used in this study could 

be used to map the spatial pattern and distribution of Chl-a in lakes Binnenschelde, Markiezaatsmeer and 

Hulsbeek using Landsat-8 and SPOT6 data and we anticipate to test this experiments in other lakes in the 

near future. 

 

7.3. RECOMMENDATIONS 

 

Basically, using other approaches other than application of empirical models can be investigated better for 

the estimation of Chl-a especially on SPOT6 datasets. Since the error related to SPOT6 sensor could not be 

improved in this study, focus should be on the testing and improvement of the various atmospheric 

correction methods for SPOT-6.  
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Finally, it should be noted that, none of the models used in this study was perfect and each of them had its 

own strengths and weaknesses. Hence, more studies must be completed to improve models in the selected 

study sites for this research for accurate estimates of absorption coefficient of chlorophyll-a pigments. 
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8. APPENDICES 

Appendix A: Location and coordinates of Sample sites. 

 

Dates 

 

Sample points Latitude 

(Decimal Degrees) 

Longitude 

(Decimal Degrees) 

Time Interval 

(GMT) 

23-09-2015 

 

BN- S 1 51°29'05.8'' 4°16'34.5'' 

 

11:10 

BN-S 2 51°29'03.0'' 4°16'39.2'' 11:18 

BN-S 3 51°28'59.0'' 4°16'41.7'' 11:22 

BN-S 4 51°28'54.6'' 4°16'43.5'' 11:29 

BN-S 5 51°28'48.8'' 4°16'44.0'' 11:34 

BN-S 6 51°28'48.3'' 4°16'33.1'' 12:49 

BN-S 7 51°28'50.6'' 4°16'28.4'' 12:53 

BN-S 8 51°29'02.9'' 4°16'11.8'' 12:59 

BN-S 9 51°28'57.5'' 4°15'48.8'' 13:04 

BN-S 10 51°29'12.3'' 4°15'34.4'' 13:09 

BN-S 11 51°29'29.0'' 4°15'25.3'' 13:14 

BN-S 12 51°29'25.4'' 4°15'28.1'' 13:19 

BN-S 13 51°29'20.2'' 4°16'11.1'' 13:31 

BN-S 14 51°29'09.2'' 4°16'33.9'' 13:36 

BN-S 15 51°29'07.0'' 4°16'28.9'' 13:42 

 

 

 

Dates Sample points Latitude 

(Decimal Degrees) 

Longitude 

(Decimal Degrees) 

Time Interval 

(GMT) 

 

24-09-2015 

MK-S 16 51°28'52.6'' 4°13'50.3'' 10:09 

MK -S 17 51°28'51.4'' 4°14'13.5'' 10:20 

MK -S 18 51°28'42.5'' 4°14'45.7'' 10:31 

MK -S 19 51°28'34.5'' 4°15'17.0'' 10:44 

MK -S 20 51°28'12.5'' 4°16'15.7'' 10:57 

MK -S 21 51°27'54.8'' 4°16'35.0'' 11:14 

MK -S 22 51°27'51.8'' 4°16'22.9'' 11:23 

MK -S 23 51°27'34.3'' 4°16'35.5'' 11:33 

MK -S 24 51°27'33.4'' 4°16'37.4'' 11:48 
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MK -S 25 51°27'36.5'' 4°16'23.7'' 11:59 

MK -S 26 51°27'42.3'' 4°16'06.3'' 12:12 

MK -S 27 51°27'50.5'' 4°15'52.8'' 12:21 

MK -S 28 51°28'01.7'' 4°15'42.1'' 12:30 

MK -S 29 51°28'13.0'' 4°15'38.8'' 12:41 

MK -S 30 51°28'16.9'' 4°15'24.6'' 12:49 

MK -S 31 51°28'26.6'' 4°15'16.3'' 12:57 

MK -S 32 51°28'37.7'' 4°15'14.3'' 13:05 

MK -S 33 51°28'47.1'' 4°15'05.8'' 13:12 

MK -S 34 51°28'52.8'' 4°14'46.5'' 13:20 

MK -S 35 51°28'52.0'' 4°14'18.8'' 13:28 

 

 

Dates Sample points Latitude 

(Decimal Degrees) 

Longitude 

(Decimal Degrees) 

Time Interval 

(GMT) 

 

26-09-2015 

HL-S 36 52°18'02.1'' 6°52'58.9'' 11:42 

HL-S 37 52°18'05.3'' 6°52'59.2'' 11:48 

HL-S 38 52°18'05.5'' 6°52'58.9'' 11:53 

HL-S 40 52°18'09.3'' 6°52'53.3'' 12:02 

HL-S 41 52°18'09.5'' 6°52'56.8'' 12:10 

HL-S 42 52°18'14.5'' 6°53'00.2'' 12:16 

HL-S 43 52°18'13.5'' 6°53'05.8'' 12:21 

HL-S 44 52°18'13.4'' 6°53'17.2'' 12:26 

HL-S 45 52°18'18.3'' 6°53'16.1'' 12:34 

HL-S 46 52°18'20.2'' 6°53'23.9'' 12:41 

HL-S 47 52°18'20.6'' 6°53'30.2'' 12:46 
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APPENDIX B: Figures showing how field measurements were conducted in Lake Binnenschelde, 

Lake Markiezaatsmeer and Lake Hulsbeek. Also shows the colour of the lakes (study area).  
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APPENDIX C: Calibration Results. 

 
a. CALIBRATION RESULTS FROM IN-SITU DATA 

 

 

 

 

 

 

 

 

      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-4 shows calibration process and their probability distribution of fitting coefficients for MCI, 3B, 

NDCI, 4B and SCI models or algorithms using field data. 
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b. CALIBRATION RESULTS FROM LANDSAT-8  
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Appendix D. Band selection and combination from Satellite Data 

 
a. Landsat-8-OLI. 

 
 

Model 

Abbreviation 

Bands Combination 

 

MCI 

 

𝑅𝑟𝑠(𝐵4) − 𝑅𝑟𝑠(𝐵3) ∗ [
(𝐵3 − 𝐵4)

(𝐵5 − 𝐵4)
]  ∗ 𝑅𝑟𝑠(𝐵5) − 𝑅𝑟𝑠(𝐵4) 

 

N3B 

 

[𝑅𝑟𝑠−1(𝐵3) − 𝑅𝑟𝑠−1(𝐵4)] ∗ 𝑅𝑟𝑠(𝐵5) 

 

 

NDCI 

 

[
𝑅𝑟𝑠(𝐵5) − 𝑅𝑟𝑠(𝐵4)

𝑅𝑟𝑠(𝐵5) + 𝑅𝑟𝑠(𝐵4)
] 

 

4B 

 

[𝑅𝑟𝑠−1(𝐵4) − 𝑅𝑟𝑠−1(𝐵5)] ∗ [𝑅𝑟𝑠−1(𝐵4) − 𝑅𝑟𝑠−1(𝐵3)]−1 

 

 

b. SPOT6. 

 
Model 

Abbreviation 

Bands Combination 

 

MCI 

 

𝑅𝑟𝑠(𝐵2) − 𝑅𝑟𝑠(𝐵1) ∗ [
(𝐵1 − 𝐵2)

(𝐵3 − 𝐵2)
]  ∗ 𝑅𝑟𝑠(𝐵3) − 𝑅𝑟𝑠(𝐵2) 

 

N3B 

 

[𝑅𝑟𝑠−1(𝐵1) − 𝑅𝑟𝑠−1(𝐵2)] ∗ 𝑅𝑟𝑠(𝐵3) 

 

 

NDCI 

 

[
𝑅𝑟𝑠(𝐵3) − 𝑅𝑟𝑠(𝐵2)

𝑅𝑟𝑠(𝐵3) + 𝑅𝑟𝑠(𝐵2)
] 

 

4B 

 

[𝑅𝑟𝑠−1(𝐵2) − 𝑅𝑟𝑠−1(𝐵1)] ∗ [𝑅𝑟𝑠−1(𝐵3) − 𝑅𝑟𝑠−1(𝐵1)]−1 

 

 

 

 

 

 

 
 


