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ABSTRACT 

Satellite precipitation estimates data are widely used for a variety of studies, including 

the hydrologic and climate modeling, weather forecasting, and agriculture 

management or extreme events prediction. However, satellite precipitation estimation 

is inevitably followed with errors which are caused by different factors, therefore it is 

essential to evaluate the relative errors of satellite precipitation data. A realizable 

method which can be used to quantify the relative errors in large-scale datasets is 

triple collocation. This method can objectively obtains the relative errors for at least 

three or more independent products. But before estimation of relative errors, the bias 

of the products relative to each other should be reduced or removed. This study tests 

the cumulative distribution function (CDF) matching approach which aims to reduce 

the bias among three precipitation products over the Netherlands. Afterwards, the 

triple collocation technique is applied to determine the relative errors of these 

precipitation products. The three precipitation datasets are, the Climate Prediction 

Center morphing method (CMORPH), the Precipitation Estimation from Remotely 

Sensed Information using Artificial Neural Networks (PERSIANN) and the gridded rain 

gauge data interpolated from in situ rain gauge measurement data provided by the 

Royal Netherlands Meteorological Institute (KNMI).  

 

The results suggest that CPMORPH product’s behavior is better than PERSIANN’s when 

they are correlated to the interpolation products. The cumulative distribution function 

(CDF) matching is a superior approach which can improve the correlation coefficient 

and reduce the root mean square error (RMSE) among precipitation products. For the 

relative errors among the three sets of precipitation data, it is found that the relative 

error of CMORPH is lower than the other two products’, interpolation is at the medium 

while PERSIANN is the highest one. 

 

Key words: precipitation products, bias correction, triple collocation, relative errors. 
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1. INTRODUCTION 

1.1. Background 

Precipitation is defined as any product of the condensation of atmospheric water vapour that falls 

under the gravity (“AMS Glossary,”) As the most important component in water cycles and land-

atmosphere interactions, precipitation plays an significant role in various hydrological models and 

studies (Tapiador et al., 2012). The study of surface precipitation is also important for society and 

people's livelihood, because inaccurate measurements and forecasts can mean risk to crops, livestock, 

property and even lives (Beek, 2013). Therefore, obtaining reliable and accurate precipitation data is 

crucial for local, regional and global agriculture management and hydrologic prediction, like urban 

flood early warning system. 

 

In addition, precipitation has a more direct impact on human life than other atmospheric phenomena 

have, such as heavy rain events and flash floods (Vincenzo Levizzani, Amorati, & Meneguzzo, 2002). 

A representative heavy rainfall event is, on 26 August of 2010, the eastern part of The Netherlands 

with the bordering part of Germany were flushed by a series of heavy rainfall events, which lasting 

for more than a day. Observed in 24 h, there was over an area of 740 km2 and more than 120 mm of 

rainfall. This extreme event caused local flooding at city centers, highways and agricultural fields, and 

also a considerable financial loss (Brauer et al., 2011). Figure1.1 shows the urban flooding in the 

Netherlands. In order to avoid such disaster, it is necessary not only to improve urban drainage 

systems, but also to estimate the precipitation in advanced, make an early warning system and 

extremely rapid response times. Therefore, the precipitation estimation plays an important role in 

the whole procedure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-1 The urban flooding in the Netherlands 

 

There are several ways to estimate precipitation, traditionally precipitation is usually measured with 

rain gauges, but variant instruments have been developed until now. Most representative 

instruments are satellites, ground-based radar, distrometers and microwave links. As the most 
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common measurement, the most important advantage for rain gauges is giving direct measurement 

of rain accumulation. However, there are several drawbacks of rain gauges, such as poor spatial 

coverage, suffered from wind effects and other resources of error (Beek, 2013). Besides, gauges are 

limited to land regions and islands, thus they are unable to verify oceanic rainfall estimations (Ebert 

& McBride, 2000) and (V. Levizzani, Bauer, & Turk, 2007).  

  

Satellite precipitation estimates are widely used to measure global rainfall on near real-time and 

monthly timescales, which can be used for hydrological and climatological studies, tropical rainfall 

potential studies, numerical weather prediction (NWP) data assimilation, now-casting and flash flood 

warning, and water resources monitoring. In addition, satellites provide insight into the synoptic scale 

precipitation and are able to obtain an estimate of precipitation in areas where are too remote for 

ground-based instruments. However, satellite estimates are often affected by instrument noise, 

semitransparent clouds, and uncertainty in surface emission modelling (Miralles, Crow, & Cosh, 2010). 

In addition, the images from satellites are lack of the details and also usually have larger quantitative 

errors than ground-based instruments (Beek, 2013). Therefore, similar to any observation data, it is 

crucial to investigate their accuracy, internal variability and error structures. This investigation can be 

done by verifying the satellite estimates against independent data from rain gauges data (V. Levizzani 

et al., 2007). 

1.2. Problem statement 

When applying the precipitation data in hydrologic and climate studies, agriculture management or 

extreme atmospheric events prediction, it is essential to evaluate the internal variability and changes 

of precipitation. Thus, a long-term precipitation data from multiple source is needed for study the 

internal characteristic of precipitation. However, as the availability of precipitation estimates is 

increasing with a various of instruments, inevitably, the errors always follow the precipitation 

estimations. The errors are caused from several factors depending on the measurement instruments. 

For example, the errors of rain gauge measurements are from the gauges’ spatial coverage, 

topography and environmental conditions such as wind and evaporation (Beek, 2013). For satellite 

retrievals (both radiometer and radar), the Larger quantitative errors are from the assumptions of the 

surface emissivity, neglecting evaporation below clouds, and empirical relationships (Alemohammad, 

McColl, Konings, Entekhabi, & Stoffelen, 2015). Therefore, validation of precipitation estimates from 

several products is always a problem which need to be solved urgently.  

 

In addition, for most hydrological and climatological studies and models, it is necessary to understand 

the relative error structures among different precipitation datasets. However, different precipitation 

data in different spatial and temporal resolution are variant among each other. To solve the problems 

mentioned above, it is required to find the methods which can quantify the independent errors of 

each datasets and estimate the relative errors among them.   

1.3. Research questions 

Based on the problems proposed above, hereby present the research questions as following.  



Determining Relative Errors of Satellite Precipitation Data over The Netherlands 

  

 
 3 

 

1. What are the statistic differences between the satellite precipitation products and the in-situ 

based products? 

2. Can the bias-correction method (e.g. CDF matching method) improve the correlation between 

multiple sources of data? 

3. How to quantify and estimate the relative errors among different precipitation products? 

   4．How do different temporal scales of datasets chosen will affect the results? 

1.4. Objectives  

1.4.1. Main objective 

The main objective of this research is to characterize the statistic differences and estimate the relative 

errors of multiple precipitation products from CMORPH and PERSIANN satellites, and interpolation 

rain gauges data from the year of 2003 to 2013 over the Netherlands.  

1.4.2. Sub objectives 

1. To get the satellite observation and in-situ interpolate data over the Netherlands; 

2. To estimate the statistic differences (e.g. correlation coefficient & root mean square error) among 

different precipitation products; 

3. To test the cumulative distribution function (CDF) matching approach to reduce the bias among 

these three precipitation product; 

4. To estimate the relative errors of each products using triple collocation technique; 

5. Change the temporal resolutions of the precipitation products to see whether different datasets 

chosen will affect the error structures. 
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2. Literature review 

2.1. Bias correction 

Bias correction techniques have been applied on several studies especially on climate models, 

weather forecast models, radar and satellite precipitation products.  

 

Early in 2007, When Leander, R. and Buishand were investigating the resampling of regional climate 

model output for the simulation of extreme river flows, they pay much attention to the bias correction 

of RACMO precipitation and found that a relatively simple nonlinear correction, not only adjusts both 

the biases in the mean and variability, but also leads to a better reproduction of observed extreme 

daily and multi-day precipitation amounts than the commonly used linear scaling correction (Leander 

& Buishand, 2007). 

 

Based on Leander, R. and Buishand’s study, W. Terink of Wageningen University applied bias 

correction on the forcing variables between downscaled ERA15 (ECMWF-reanalysis data) 

precipitation and temperature with observed precipitation and temperature over the Rhine basin. 

They corrected the precipitation by fitting the mean and coefficient of variation (CV) of the 

observations and the temperature by fitting the mean and standard deviation of the observations 

respectively. The results indicate that bias correction leads to a significant decrease of the 

precipitation and temperatures difference. (Terink, Hurkmans, Torfs, & Uijlenhoet, 2009) 

 

Later on, a simple mean correction and a least-square bias correction techniques were applied on 

decadal forecasts which are produced from a state-of-the-art coupled forecasting model. The 

objective is to explore the possibility of reducing large systematic biases in the North Pacific sea 

surface temperature anomalies. The results show that the bias corrected forecasts reduced root mean 

square errors and also significantly improve the anomaly correlations with observations. In addition, 

the bias corrected forecasts better predict the extreme weather events than before and the 

prediction skill is also improved from less than a year to five years (Narapusetty, Stan, & Kumar, 2012). 

 

Refer to the bias correction of precipitation products, different investigators proposed and developed 

several bias correction techniques to improve radar and satellite precipitation products. (Ahnert, 

Krajewski, & Johnson, 1986), (J. A. Smith & Krajewski, 1991) and (Anagnostou, Krajewski, Seo, & 

Johnson, 1998) implemented the mean field bias estimation and correction techniques to remove the 

biases of radar precipitation estimates based on rain gauges estimates. (Seo & Breidenbach, 2002) 

described a procedure for real-time correction of spatially nonuniform bias in radar precipitation data 

using rain gauge measurements, which was proved generally superior to mean field bias correction. 

 

For satellite precipitation estimates, McCollum and his group evaluated he biases of satellite 

precipitation estimation algorithms over the Continental United States. A bias-adjusted radar rainfall 

product was created in this study and used for evaluation of two satellite precipitation estimation 

algorithms (McCollum, Krajewski, Ferraro, & Ba, 2002). (Smith et al., 2006) compared two methods: 
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a direct method and an indirect method to evaluate and reduce the bias of satellite precipitation 

estimates (T. M. Smith, Arkin, Bates, & Huffman, 2006). While, (Tesfagiorgis, Mahani, Krakauer, & 

Khanbilvardi, 2011) tested an ensemble based method which aimed to estimate spatially varying 

multiplicative biases in satellite precipitation estimates using a radar-gauge precipitation product and 

compare it with three previous bias correction methods. 

 

Most of the above mentioned works assumed that appropriate bias correction method can effectively 

reduce or remove the bias of climate models, forecast models, radar and satellite precipitation 

products.  

2.2 Cumulative Distribution Functions (CDF) 

The cumulative distribution function (CDF) gives the cumulative probability of a distribution. 

Specifically, it gives the area under the probability density function, up to the value specified. The CDF 

can be used to determine the probability of a response being lower than a certain value, higher than 

a certain value, or between two values (“Using the cumulative distribution function (CDF),” n.d.). This 

method is widely used for the bias correction in climate models (“Cumulative Distribution Functions 

(CDFs) in detail,” n.d; Olsson et al., 2015), precipitation models (Duan, Selker, & Grant, 1998;  Asefa 

& Adams, 2013; Franses & Koning, 2003), temperature and precipitation forecast products (Luo, Zhu, 

& Springs, 2011; US Department of Commerce, n.d.). 

2.3. Triple collocation 

Nowadays, a widely used method -- triple collocation (TC), can be used to quantify the error structures 

in large-scale datasets (Roebeling, Wolters, Meirink, & Leijnse, 2012). It is a method which can 

objectively obtains the error estimates for at least three or more independent products. 

 

Firstly introduced by (Stoffelen, 1998) and (Caires, 2003), this method was applied to estimate near-

surface and ocean wind speed errors, but later applied more in many hydrological applications and 

models. For example, (K. Scipal, Holmes, de Jeu, Naeimi, & Wagner, 2008) used triple collocation to 

estimate the errors of passive microwave (TRMM radiometer) derived, active microwave (ERS-

2scatterometer) derived, and model-based (ERA-Interim reanalysis) soil moisture products. The 

results suggest that triple collocation provides realistic error estimates. Follow on, Klaus Scipal applied 

this powerful tool on other global soil moisture products, the scatterometer data, radiometer data 

and model data. The results show that triple collocation is robust and it allows to derive objective 

error estimates. (Klaus Scipal, Dorigo, & De Jeu, 2010)  

 

Miralles et al. (Miralles et al., 2010) estimated the errors of footprint-scale soil moisture products, 

which are acquired from passive microwave remote sensing, ground-based station, and land surface 

model-based soil moisture products. The results shown that triple collocation estimates point-to-

footprint soil moisture sampling errors to within 0.0059 m3 m-3 and improve the ability to validate 

satellite footprint-scale soil moisture products. 
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Cimini et al. (Cimini et al., 2012) investigated the atmospheric columnar integrated water vapor using 

triple collocation, aiming to account for errors inherently present in every integrated water vapor 

measurements. (Thao & Eymard, 2014) applied triple collocation to analysis the trend and variability 

of the atmospheric water vapor. 

 

Ratheesh et al. (Ratheesh, Mankad, Basu, Kumar, & Sharma, 2013) researched the performance of 

sea surface salinity (SSS) via taking triple collocation to account the error characteristics of the Soil 

Moisture and Ocean Salinity (SMOS) satellite, Argo floats, and model data sets. The results prove that 

SMOS data appears to be of very good quality in the equatorial Indian Ocean and southern Indian 

Ocean. 

 

VanDijk et al. (van Dijk, Renzullo, Wada, & Tregoning, 2014) estimated the error estimates for the 

sequential data assimilation scheme using triple collocation, when presenting a global water cycle 

reanalysis from several satellites. 

 

Roebeling et al. (Roebeling et al., 2012) applied triple collocation technique to precipitation products 

by estimating the spatial and temporal error characteristics of three different precipitation products 

--Retrievals from SEVIRI instrument, weather radar observation data and gridded rain gauge 

observations in Europe. The results suggest that the triple collocation method provides realistic error 

estimates.
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3. Dataset 

3.1. Study area 

The study area is selected as the Netherlands. The country covers an areas of 41543 square kilometers, 

the geographic coordinates is 5.45°E and 50.30°N. The geography of the Netherlands is specific 

because that about half of the surface of the Netherlands is less than 1 m above sea level, about 27% 

of the land lies below sea level and has been reclaimed and protected by the dikes. The topography 

of the Netherlands is relatively flat. Due to the proximity of the ocean and the effect of the north 

Atlantic Gulf Stream, it belongs to the temperature zone climate with small climatological variations. 

The mean annual rainfall changes from 725mm to 925mm. Because of the coastal effects, the amount 

of precipitation are smaller in the coastal zone in spring and larger in late autumn (Attema & Lenderink, 

2011). 

3.2. Precipitation data 

There are four kinds of precipitation data which have been used in the Netherlands. As we need a 

long-term (from 2003 to 2013) precipitation data and also with high spatial and temporal resolution, 

therefore, the precipitation products from CMORPH and PERSIANN are the appropriate choices. Table 

3-1 shows the detail information and characteristics of four different precipitation products. 

 

Variable 
Satellite-based 

product 

Temporal 

resolution 

Spatial 

resolution 
Start End Comments 

Precipitation 

CMORPH  

Weekly 

0.25 degrees 

1998 2013 - 

Daily 

3-hourly 

1-hurly 
8 km 

30 min 

PERSIANN  

 

3-hourly 0.25 degrees 
March 

2000 

10 months 

before present 

Spatial coverage is: 

60° to -60° lat 

0° to 360° long 

6-hourly 0.25 degrees 
March 

2000 

3 months 

before present 

Spatial coverage is: 

50° to -50° lat 

0° to 360° long 

MSG-CPP 15 minute 3 km 2012 Ongoing 

Spatial coverage is: 

50° to -50° lat 

80° to -80° long 

H-SAF PR-OBS-05 15 minute 

Average over 

Europe: 8 km 

intended as 

sampling, ~ 30 

km effective 

2009 

onwards 
Ongoing 

Spatial coverage is: 

25-75°N lat, 25°W-

45°E long 

Figure 3-1 Comparison of different precipitation products. 
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3.2.1. CMORPH precipitation data  

The Climate Prediction Center morphing method (CMORPH) is a technique which can produce global 

precipitation analyses at a very high spatial and temporal resolution. It uses the relatively high quality 

precipitation estimates obtained from low orbiter satellite microwave observations, whose features 

are propagated via spatial information that is obtained entirely from half-hourly interval 

geostationary satellite infrared imagery (Joyce, Janowiak, Arkin, & Xie, 2004). 

 

The COMRPH data used in this paper were downloaded from The National Oceanic and Atmosphere 

Administration (NOAA) Climate Prediction Center with 3-hourly temporal resolution and 25Km spatial 

resolution.  

 

In order to automatically import and pre-process the CMORPH 0.25DEG 3HLY RAW data in ILWIS, a 

work flow was built, which contains two bath files. Batch file 1 was built to import the raw data, 

rename them and sequentially import the data in ILWIS and pre-process. Batch file 2 was built to read 

raw binary data in IWLIS maplist, mirror rotate the maplist and recompose the global map. Finally, 

after setting the georeference, the long set of recomposed files were completely accomplished. Thus, 

the CMORPH data of the Netherlands from 2003 to 2013, with 3-hourly temporal resolution and 

25Km spatial resolution are available now. The complete batch files are added at the appendix of this 

paper. 

 

 

Figure 3-2 Global CMORPH 0.25 degree-3 hourly data of 20030101 at 0:00 UTC 

 

3.2.2. PERSIANN precipitation data  

The Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks 

(PERSIANN) system provides near real-time precipitation information, which started from March of 

2000 with 0.25° spatial resolution in a consistent long-term record of remotely sensed precipitation 

observations. It uses neural network function classification/approximation procedures to estimate 

the precipitation rates at each 0.25 °  x 0.25°  pixel of the long wave infrared brightness 

temperature image, which are provided by global geosynchronous satellites. The spatial coverage 
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differs from the temporal resolution, for 3-hourly temporal resolution, the spatial coverage is 60° 

to -60° lat and 0° to 360° long. For 6- hourly temporal resolution, the spatial coverage is 50° 

to -50° lat and 0° to 360° long (“Satellite Precipitation - CHRS,” n.d.). 

 

The PERSIANN precipitation data were download from Center for Hydrometeorology and Remote 

Sensing (CHRS) which is with 3-hourly temporal resolution and 25Km spatial resolution. The data was 

processed and recomposed using the same method with processing the COMRPH data. Thus, the 

PERSSIAN data of the Netherlands from 2003 to 2013, with 3-hourly temporal resolution and 25Km 

spatial resolution are available now. 

 

  

Figure 3-3 Global PERSSIAN 0.25 degree-3 hourly data of 20030101 at 0:00 UTC 

  

3.2.3. In situ rain gauge data 

The in situ rain gauge data is provided by The Royal Netherlands Meteorological Institute (KNMI) from 

the Klimaat Informatie Systeem (KIS) database. KNMI provides two independent rain gauge networks: 

the manual voluntary precipitation stations (approximately 325 gauges, ≈ 1 station per 100 km) 

and the automatic meteorological stations (approximately 37 gauges, ≈ 1 station per 1000 km2). 

The manual voluntary precipitation stations measure the precipitation once a day at 08:00 UTC, while 

the meteorological automatic stations provide daily data and hourly data. As the datasets needed for 

this study is 3 hourly, therefore, the in situ rain gauge data from 37 automatic meteorological stations 

are used, except that one new station (station number is 215) began from 2011, one station (station 

number is 265) stopped at 2008, and 3 stations (stations’ number are 225, 242, 340) do not have 

hourly data. Eventually, there are 32 stations’ data available for the study. The locations of the 32 

available automatic meteorological stations are shown in figure 3-4 
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Figure 3-4 Locations of 32 available automatic meteorological stations 



Determining Relative Errors of Satellite Precipitation Data over The Netherlands 

  

 
 7 

4. Methodology 

4.1. Flow chart 

 

Figure 4-1 Flow chart of methodology  
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4.2. Create sub maps 

Getting the Netherlands sub map from the global CMORPH precipitation map can be achieved by the 

ILWIS. Using the “File Menu”>“Create”>“Submap”>“Submap from Raster” to create a new sub map 

and give a new name to it. See figure 4-2 and figure 4-3 below. 

 

Figure 4-2 Create a sub map of the Netherlands 

 

 

 
Figure 4-3 New sub map of the Netherlands. 

 

As the CMORPH data needed for this study is 11 years from 2003 to 2013 and temporal resolution is 

3 hourly. So there is a super large number of maps need to be edited using the same method. To 

improve the efficiency, a script was written to create the sub maps for a whole month. Thus, all the 

maps over the Netherlands can be created month by month. The syntax is:  

 
Where the “Cmorph025d3hr_200301011.mpr” is the sub map name while 
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“cmorph025d3hr_200301011_recomposed” is the original global map. The parameter 24, 725, 15, 

30 are the first line, first column, number of lines, number of columns respectively.  

 

 
Figure 4-4 Create all sub maps using script batch file 

4.3. Create TIFF file 

For subsequently processing the raster map using Arc GIS, the map should be converted to raster 

type, which is the TIFF file. The syntax is: 

. 

Again, a script was created to process the batch file for each month then all the sub map will be 

exported to the TIFF file. 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 4-5 Create all TIFF files using script batch file 

4.4. Raster map 

Raster progress is processed to define the original coordinate system of the sub map, transform to 

the local coordinate system and extract the Netherlands out using the shape file. In this thesis, an 
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ArcGIS model is built to achieve this objective as the figure showing below.  

 

 
Figure 4-6 Flow chart of raster map 

 

The first step is to import the sub map and define the coordinate system information stored with the 

dataset. Then using the projection raster tool to transform the original coordinate system WGS 84 

(World Geodetic System 1984) to RD_New (Netherlands Projection). After that, extract the cells of a 

raster that corresponds to the areas defined by the Netherlands’ mask. Finally, convert the raster 

dataset to the ASCII text file representing raster data. The result was shown in the figure below. Run 

the model for all of the CMORPH dataset and arrange them as the time list. 

 

 
Figure 4-7 Raster datasets in TXT file 

The structure of the ASCII file consists of header information containing a set of keywords, followed 

by cell values in row-major order. NCOLS and NROWS are the number of columns and rows in the 

raster defined by the ASCII file. XLLCORNER and YLLCORNER are the coordinates of the lower left 

corner of the lower left cell. CELLSIZE is the cell size of the raster. NODATA_VALUE is the value that is 

to represent No Data cells.  
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4.5. Interpolation of rain gauge data 

4.5.1. Sum to 3 hourly data 

The rain gauge data downloaded from KNMI website include data of temperature, sun hours, clouds 

and visibility, barometric pressure, wind speed and precipitation. Select the hourly precipitation 

amount data (RH) of 32 stations and sum to 3 hourly using Excel.  

  
Figure 4-8 Select the hourly precipitation amount from rain gauge data 

 

Create a MATLAB model to integrate the complex data to clear 3 hourly data for everyday over 11 

years with 32 rain gauge stations’ number on the leftmost row and the stations’ name on the 

rightmost row. Here is an example of integrated 3 hourly precipitation showing below (Figure 4-9). 

The MATLAB syntax is attached to the appendix at the end of this thesis.  

 

Figure 4-9 Precipitation data for all 31 days of 200301(January) at 0:00 UTC 

# DEZE GEGEVENS MOGEN VRIJ WORDEN GEBRUIKT MITS DE VOLGENDE BRONVERMELDING WORDT GEGEVEN:

# KONINKLIJK NEDERLANDS METEOROLOGISCH INSTITUUT (KNMI)

# THESE DATA CAN BE USED FREELY PROVIDED THAT THE FOLLOWING SOURCE IS ACKNOWLEDGED:

# ROYAL NETHERLANDS METEOROLOGICAL INSTITUTE

# Dagelijkse stationsneerslag

# NR 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Locatie

210 0 0 0 0 0 1.9 0 0.1 0 0 0 0 0.6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.1 1.6 0.4 0 Valkenburg

235 0 0 0 0 0 0.4 0 0 0 0 0 0 1 0 0 0 0 0 0 0.1 0 0 0 0 0 0 0 0.3 0.3 1 0 DeKooy

240 0 0.4 0 0 0 0.2 0 0 0 0 0 0 1.6 0 0 0 0 0 0 0.4 0.2 0.5 0.1 0 0 0 0 0 0.5 0.9 0 Schiphol

249 0 0 0.1 0 0 0.3 0 0 0 0 0 0 2.2 0 0 0 0 0 0 0.3 0 0 0 0 0 0 0 0.1 0.2 0.2 0 Berkhout

251 0 0 2 0 0 0 0 0 0 0.1 0 0 0.9 0 0 0 0 0 0 0.1 0 0 0 0 0 0 0 0.1 0.4 0 0 Hoorn(Terschelling)

257 0 0 1.2 0 0 0 0 0 0 0 0 0 0.8 0 0 0 0 0 0 0.1 0.1 0 0.1 0 0 0 0 0 0.3 0.7 0 WijkaanZee

260 0 0.2 0 0 0 0.9 0 0 0 0 0 0 0.2 0 0 0 0 0.2 0 0.1 1.6 1.6 0 0 0 0 0 1.2 2 0.9 0 De Bilt

267 0 0 0.3 0 0 0 0 0.3 0 0.1 0 0 2.3 0 0 0 0 0 0 0.1 0.4 0 0 0 0 0 0 0.1 0 0 0 Stavoren

269 0 0 1.4 0 0 0 0 0.2 0 0 0 0 1.2 0 0 0 0 0.4 0 0.6 1.7 0.8 0.1 0 0 0 0 0.2 0.1 0.1 0 Lelystad

270 0 0 1.6 0 0 0 0 0.4 0 0 0 0 1.5 0 0 0 0 0.1 0 0.5 0.6 0 0 0 0 0 0 0.3 1.8 0 0 Leeuwarden

273 0 0 0.5 0 0 0 0 1.1 0 0 0 0 3.3 0 0 0 0 0.5 0 0 1.8 0.1 0 0 0 0 0 0.8 0.2 0 0 Marknesse

275 0 0.7 1.5 0 0 0 0 0.1 0 0 0 0 0 0 0 0 0 0.5 0 0.2 1.1 0.1 1.1 0 0 0 0 2.4 1.8 0 0 Deelen

277 0 0 1.5 0 0 0 0 0 0 0 0 0.4 2.2 0 0 0 0 0.3 0 0.1 0.4 0 0 0 0 0 0 0.2 1.1 0.4 0 Lauwersoog

278 0 0.1 1 0 0 0 0 0.3 0 0 0 0 0.7 0 0 0 0 0.2 0 0 0.4 0 0.2 0 0 0 0 2.2 1.1 0 0 Heino

279 0 0 1.4 0 0 0 0 0 0 0 0 0 1.8 0 0 0 0 0.2 0 0 0.2 0 0 0 0 0 0.1 4 0.4 0.1 0 Hoogeveen

280 0 0 1.9 0 0 0 0 0.6 0 0 0 0.3 3.7 0 0 0 0 0.3 0 0.1 0.8 0 0.2 0 0 0 0.1 0.1 1.6 0.1 0 Eelde

283 0 0.5 0.5 0 0 0.8 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0.8 0.1 0.1 0 0 0 0.3 4 4.2 0.1 0 Hupsel

286 0 0 3.7 0 0 0 0 0 0 0 0 0 3.4 0 0 0 0 0.1 0 0 0.4 0 0 0 0 0 0.4 0.5 0.2 0.1 0 NieuwBeerta

290 0 2.7 0.5 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0.1 0 0.7 0.5 0 0.1 0 0 0 0.2 2.9 1.5 1.1 0 Twenthe

310 0 0 0.2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.1 0.2 0 0.2 0.1 0 0 0 0 1.9 1.9 2.2 0 Vlissingen

319 0 0 2.2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.1 0 0.1 0.2 0 0 0 0 3.2 1.9 1.2 0 Westdorpe

323 0 0.1 2.1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0.4 0.3 0 0.2 0.4 0 0 0 0 2.3 0.9 1.9 0 Wilhelminadorp

330 0 0 0 0 0 0.3 0 0 0 0 0 0 1 0 0 0 0 0 0.1 0 0 0 0.5 0 0 0 0 2.5 0.2 0 0 HoekvanHolland

344 0 0 0 0 0 1.2 0 0 0 0 0 0 0.5 0 0 0 0 0 0 0.2 0 0 0.4 0 0 0 0 1.8 0.5 0.4 0 Rotterdam

348 0 0 0 0 0 0.1 0 0 0 0 0 0 0 0 0 0 0 0.1 0 0.3 0.6 0.9 0.1 0 0 0 0 1.5 1.2 1.1 0.1 Cabauw

350 0 1.4 0 0 0 0.5 0 0 0 0 0 0 0.3 0 0 0 0 0.1 0 0.5 0.4 1 0.3 0 0 0 0 5.6 1.7 0.8 0 GilzeRijen

356 0 0.2 0 0 0 0.2 0 0 0 0 0 0 0 0 0 0 0 0.1 0 0.1 0.7 1.6 0.3 0 0 0 0 2.9 1.8 1.1 0 Herwijnen

370 0 1.2 0 0 0 0.3 0 0 0 0 0 0 0.2 0 0 0 0 0.1 0 0.2 0 0.4 0 0 0 0 0.2 5 2.3 1.3 0 Eindhoven

375 0 1.4 0 0 0 0.3 0 0 0 0 0 0 0 0 0 0 0 0.1 0 0.4 0.2 0.3 0 0 0 0 0 3.7 3.3 0.6 0 Volkel

377 0 0.9 0.5 0 0 0 0 0 0 0 0 0 0.1 0.1 0 0 0 0 0 0 0 0 0 0 0 0 0 3.7 1.8 0 0 Ell

380 0 0.6 1.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.1 3.2 1.6 1.3 0 Maastricht

391 0 1.1 0 0 0 0.3 0 0 0 0 0 0 0.5 0 0 0 0 0 0 0.4 0.5 0 0 0 0 0 0 5 2 0.1 0 Arcen
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4.5.2. Interpolation 

Interpolation is defined as, estimation of a variable at an unmeasured location from observed values 

at surrounding locations (Bohling, 2005). As the data collected from in situ rain gauges is discrete and 

random, therefore spatial interpolation is necessary for creating a continuous dataset. Until now, 

there has been a number of studies on analysis of the difference between various interpolation 

methods. Goovaerts (Goovaerts, 2000) compared different interpolation techniques including 

Thiessen polygon, inverse distance weighting (IDW) and ordinary kriging using annual and monthly 

rainfall observations. Kao & Hung (Kao & Hung, 2004) evaluated over twelve interpolation methods 

using the 5 meter DTM as test data. Hofstra et al. (Hofstra, Haylock, New, Jones, & Frei, 2008) 

compared six interpolation methods for the interpolation of daily precipitation, mean, temperature 

and sea level pressure from station data over the Europe. Based on the extensive review of literatures, 

kriging interpolation method is regarded as the optimum one. Ordinary kriging is one of kriging 

interpolation approaches, which measures unknown values by linear combination of random 

variables, using semivariogram analysis to estimate the weight of data and describe the spatial 

correlation. In this thesis, the ordinary kriging is selected to interpolate the in situ rain gauge 

management data through R Scripts. 

 

R is a free software environment for statistical computing and graphics, which uses packages for 

geospatial analysis (R-Project). The interpolation is processed with R studio. Also the 25 km grid map 

is applied on R syntax to raster 1km grids to 25m. Mask map of the Netherlands is applied to extract 

the cells of a raster that correspond to the areas defined by the mask map. The R syntax is attached 

to the appendix at the end of this thesis. 

 

The result is showed on the figure below. It is the interpolation precipitation on 0:00 UTC of 1st January 

of 2003. 

 

Figure 4-10 The interpolation precipitation data of 1st January of 2003 at 0:00 UTC 
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The structure of the ASCII (txt) file consists of header information containing a set of keywords, 

followed by cell values in row-major order. NCOLS and NROWS are the number of columns and rows 

in the raster defined by the ASCII file. XLLCORNER and YLLCORNER are the coordinates of the lower 

left corner of the lower left cell. CELLSIZE is the cell size of the raster. NODATA_VALUE is the value that 

is to represent No Data cells. 

4.5.3 CDF Matching 

As precipitation data set derived from satellite is characterized by its specific value and dynamical 

range. Therefore, satellite data always require scaled before their actual use within hydrological or 

meteorological models (K Scipal, Drusch, and Wagner, 2008). Generally, the most widely used scaling 

technique is the cumulative distribution function (CDF) matching approach (Drusch, 2005). 

 

The cumulative distribution function (CDF) evaluated at “x”, which is the probability that a real-valued 

random variable X will take a value less than or equal to x. In another word, it means CDF(x) = Pr(X<=x), 

where Pr represents probability. In this paper, the CDF matching technique is used to adjust two 

satellite observations against the interpolation precipitation products and applied for each 25km pixel 

individually. 

4.6. Error estimation using triple collocation  

Triple collocation can be used to estimate the random error variance in three collocated datasets of 

the same geophysical variable (Stoffelen, 1998). Triple collocation assumes the following error model 

for each time series: 

 

R = α + βRt + ɛ 

 

Assume Rt is the true value of precipitation, α and β are additive and multiplicative biases of the data 

and ɛ is the relative errors which we want to estimate. In order to Estimate the relative error ɛ, it is 

necessary to scale or calibrate the datasets to the reference dataset (removing α and β) and 

calculating the relative error based on these datasets.  

 

Datasets from three precipitation products related to the truth are assumed as Rx, Ry, and Rz, based 

on the defined error model: 

 

Rx = α1 + βxRt + ɛx 

 

Ry = αy + βyRt + ɛy 

 

Rz = αz+ βzRt + ɛz 

 

Using mean-standard deviation scaling to bring the data to the same mean and standard deviation as 
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the reference dataset. When the three datasets have the same mean and standard deviation, the 

unknown true value of precipitation can be removed: 

 

Rx*-Ry* = ɛx*- ɛy* 

 

Rx*-Rz* = ɛx*- ɛz* 

 

Ry*-Rz* = ɛy*- ɛz* 

 

From these three scaled datasets, cross multiplying above equations, the mean variance of relative 

errors can be fully determined by three independent and calibrated precipitation estimates using the 

following equations: 

 

⟨(ɛx*)2 ⟩= ⟨(Rx*-Ry*)(Rx*-Ry*) ⟩ 

 

⟨(ɛy*)2 ⟩= ⟨(Ry*-Rx*)(Ry*-Rz*) ⟩ 

 

⟨(ɛz*)2 ⟩= ⟨(Rz*-Rx*)(Rz*-Ry*) ⟩ 

 

Among above equations, the ⟨⟩brackets mean the temporal mean, ɛx*, ɛy*, ɛz* are the relative errors.  



Determining Relative Errors of Satellite Precipitation Data over The Netherlands 

  

 
 15 

5. Result and discussion 

5.1 Statistic difference among different precipitation products 

The statistic difference will be investigated by calculating the correlation coefficient and the root 

mean square error (RMSE). The correlation coefficient is a coefficient that elucidates a quantitative 

measure of some type of correlation and dependence, it measures the statistical strength of 

association between two random variables or observed data values. The most common correlation 

coefficient, called the Pearson product-moment correlation coefficient, which measures the strength 

of the linear relationship between variables. (“Correlation coefficient - Wikipedia, the free 

encyclopedia,”). In this paper, the correlation coefficient between CMORPH precipitation products vs 

PERSIAAN precipitation products, CMORPH precipitation products vs Interpolation rain gauge 

products, PERSIANN precipitation products vs Interpolation rain gauge products are estimated 

respectively. The results are shown at the figure below. 

 

Figure 5-1 The correlation coefficient of each two precipitation products in 3 hourly temporal resolution 

 

Generally, the value of a correlation coefficient can range between -1 and 1 and the weakest linear 

relationship is indicated by a correlation coefficient equal to 0. The greater the absolute value of a 

correlation coefficient, the stronger the linear relationship between two variables. From the figure, it 

can be seen that the average correlation coefficient of CMORPH vs. PERSIANN is 0.352, the value of 

CMORPH vs. interpolation is 0.355, and of PERSIANN vs. interpolation is 0.185. The result proves that 

the correlation between CMORPH and interpolation datasets is higher than the other two pairs, while 

the correlation between PERSIANN and interpolation datasets is the weakest one.   

5.2 Root Mean Square Error 

The Root Mean Square Error is common used for the measurement of the difference between values 

predicted by a model or an estimation and the values actually observed. The RMSE represents the 

sample standard deviation of the differences between predicted values and observed values. It makes 

an excellent general purpose error metric for numerical predictions. In this thesis, RMSE will be 
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calculated by taking the root of the sum of all squares of the differences between each individual 

pixels, divided by the total number of pixels: 

 

 
Where i denotes for each individual pixel and n represents the total number of pixels. If the spatial 

distribution of the datasets is same, the values will be zero. The lower root-mean-squared error 

(RMSE) indicates the product is likely to give more reliable estimation values reference to the 

interpolation product. The results are shown at figure 5-2, the average root-mean-squared error of 

CMORPH vs. interpolation is 3.35, while for PERSIANN vs. interpolation the value is 4.13. Therefore, 

the CMORPH’s estimation is likely more reliable than PERSIANN’s.     

 
Figure 5-2 Root Mean Square Error of 3 hourly CMORPH and PERSIANN reference to interpolation. 

5.3 Data histogram  

In order to further observe the three precipitation products, a pixel which from row 5 and column 8 

from each products is selected out to do the analysis. Histogram is a kind of statistical graphical 

representation of the frequency distribution of data grouped into classes, which comes from a 

continuous probability distribution. It consists of a series of high longitudinal stripes or lines 

representing data distribution. As it is shown in histogram figure 5-3, for CMORPH data, the frequency 

of 0 to 5 mm precipitation close to 1700, for PERSIANN data the frequency is almost the same with 

CMORPH, but for interpolation data, the frequency is close to 14000. There appears a great difference 

between two satellite estimation and interpolation estimation because of the satellite’s unsuccessful 

retrievals of precipitation for the relatively low precipitation amount. In addition, the histogram also 

provides the information that in the Netherlands, the precipitation amount mostly concentrates on 

0-5mm for 3hourly products. 
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Figure 5-3 Histogram of one pixel from 3 hourly CMORPH, PERSIANN and interpolation precipitation products 

5.4 Cumulative Distribution Function (CDF) plot 

An empirical CDF plot is a graph that can be used to evaluate the fit of a distribution of the observation 

data, estimate percentiles, and compare different sample distributions. The CDF plot below clearly 

shows the fitness of CMMORPH, PERSIANN and interpolation products, with the precipitation value 

on the X-coordinate and the percentage of values on the Y-coordinate. Obviously, the two satellite 

products’ fitness is better than they each compares to interpolation products. 

 
Figure 5-4 CDF plot of 3 hourly CMMORPH, PERSIANN and interpolation products 

5.5 Bias correction (CDF matching) 

The figure 5-5 shows results of the correlation coefficient of CMORPH and PERSIANN products versus 

the interpolation product, after the cumulative distribution function (CDF) matching. From the figure 

we can see, the average correlation coefficient of CMORPH vs. interpolation is 0.386 and the value of 

PERSIANN vs. interpolation is 0.221. Compared with the values before CDF matching, the average 

correlation coefficient of CMORPH vs. interpolation improved from 0.352 to 0.386 and the value of 
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PERSIANN vs. interpolation is improved from 0.185 to 0.221. The improvement of average correlation 

coefficient is because the CDF matching approach reduced the systematic differences between the 

satellite datasets and interpolation datasets.  

 

Figure 5-5 The correlation coefficient of CDF matched 3 hourly CMORPH and PERSIANN products  

 

The figure 5-6 shows the lower root-mean-squared error (RMSE) of CDF matched CMORPH and 

PERSIANN versus interpolation. The average root-mean-squared error of CMORPH vs. interpolation 

is 3.14, while for PERSIANN vs. interpolation the value is 2.80. Both of them are lower than before 

CDF matching’ values, which proves that the CDF matching reduced the root-mean-squared error of 

these two precipitation products.    

 

Figure 5-6 Root Mean Square Error of CDF matched 3 hourly CMORPH and PERSIANN reference to interpolation 

 

The pixel from row 5 and column 8 was chosen from the two bias corrected products to draw the 

histogram, and shown in figure 5-7. According to the statistics, the frequency of precipitation amount 

range from 0-5mm, for CMORPH it is about 880, for PERSIANN is 910, while the frequency of 

precipitation amount range from 0-10mm, for CMORPH it is about 950, for PERSIANN is 930. The 

statistical result illustrates that the CDF Matching bias correction provided a much better correlation 

among these two satellite precipitation products. 
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Figure 5-7 Histogram of one pixel from CDF matched 3 hourly CMORPH, PERSIANN precipitation products 

 

The CDF plot of the CDF matched 3hourly CMMORPH, PERSIANN and interpolation products also 

proved the conclusion above, the two satellite products do match each other much better than 

before. It is to note that the CDF curve of the CDF matched satellite products were not approaching 

to that of the interpolation data, although themselves are much closer to each other when compared 

to before CDF matching. This is probably due to the fact that only the collocated precipitation data 

were implemented with CDF matching, while the CDF plot below was drawn considering the whole 

set of data. Nevertheless, we do see the improved correlation coefficient and the reduced RMSE. 

 

Figure 5-8 CDF plot of CDF matched 3hourly CMMORPH, PERSIANN and interpolation products 

5.6 Rescale to daily data 

Rescale the temporal scale of these three precipitation products to daily for further investigation. The 

correlation coefficient figure of each pairs is shown at the figure 5-9. It can be seen from the figure 

that, the average correlation coefficient of CMORPH vs. PERSIANN is 0.303, the value of CMORPH vs. 

interpolation is 0.476, and of PERSIANN vs. interpolation is 0.229. The results illustrate that the 

correlation of CMORPH versus interpolation is stronger, CMORPH versus PERSIANN is the middle one, 
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while PERSIANN versus interpolation is weaker. 

 
Figure 5-9 The correlation coefficient of each two precipitation products in daily temporal resolution 

 

The Root Mean Square Error figure of daily scale precipitation products are shown on figure 5-10 

below. The average root-mean-squared error of CMORPH vs. interpolation is 3.50, while for PERSIANN 

vs. interpolation the value is 5.99. Based on the average RMSE value, it seems the CMORPH’s 

estimation is more reliable than PERSIANN’s. 

 

Figure 5-10 Root Mean Square Error of daily CMORPH and PERSIANN reference to interpolation   
 

The histogram of each daily precipitation products from pixel row 5 and column 8 is drawn in the 

figure 5-11. For the CMORPH precipitation product, the frequency of 0 to 5 mm precipitation is close 

to 1000, for the PERSIANN is around 780, while interpolation is 2400. As for the frequency of 5 to 10 

mm precipitation, CMORPH is 100, PERSIANN is around 130 and interpolation is 330 approximately. 

The result illustrates that for the precipitation less than 5mm, the two satellite precipitation product 

are inferior to the interpolation precipitation product because of the satellite’s weak estimation to a 

small amount of precipitation.   
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Figure 5-11 Histogram of one pixel from daily CMORPH, PERSIANN and interpolation precipitation products 

 

The CDF plot showing on figure 5-12 shows the distribution of each three precipitation products. From 

the figure 5-12 we can see that the stepped line of two satellite precipitation products are very close 

to the interpolation products curve, which illustrates that the two satellite precipitation products 

distribution fit well with interpolation products. 

 

Figure 5-12 CDF plot of daily CMMORPH, PERSIANN and interpolation products 

 

The CDF matching approach has been applied on the two pairs of precipitation products, using the 

interpolation product as the reference. From the figure 5-13 we can see, the average correlation 

coefficient of CMORPH vs. interpolation is 0.569 and the value of PERSIANN vs. interpolation is 0.419. 

Compared with the values before CDF matching, the average correlation coefficient of CMORPH vs. 

interpolation improved from 0.476 to 0.569 and the value of PERSIANN vs. interpolation is improved 

from 0.229 to 0.419. Obviously, the correlation coefficient between two datasets improved markedly 

after CDF matching reducing the bias of them. 
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Figure 5-13 The correlation coefficient of CDF matched daily CMORPH and PERSIANN products 

 

After CDF matching, calculate the Root Mean Square Error again to see the difference. The average 

root-mean-squared error of CMORPH vs. interpolation is 3.45, while for PERSIANN vs. interpolation 

the value is 3.65. Compared with the value before CDF matching, it is found that for CMORPH, the 

value shows a slight reduction only 0.05 less, but for PERSIANN, the value drops from 5.99 to 3.65. 

Anyhow, the CDF matching do reduce the root-mean-squared error of these precipitation products.     

 

Figure 5-14 Root Mean Square Error of daily CMORPH and PERSIANN reference to interpolation 

  

 

The figure 5-15 showing below indicates distribution of each CDF matched daily precipitation 

products from pixel row 5 and column 8. From the histogram we can get the information that for the 

CDF matched CMORPH precipitation product, the frequency of 5 to 10 mm precipitation is close to 

530, for the PERSIANN is around 400, while the frequency of 10 to 15 mm precipitation, CMORPH is 

60, PERSIANN is around 30.  
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Figure 5-15 Histogram of one pixel from CDF matched daily CMORPH, PERSIANN and interpolation precipitation products 

 

Finally, the empirical CDF plot which shows the fitness of the distribution of each three CDF matched 

daily precipitation products is given below (figure 5-16). As the figure shows, the two satellite 

products matched each other much better than before CDF matching. However, they depart from the 

interpolation CDF curve for the precipitation data between 0-10mm, while much closer to 

interpolation CDF curve for precipitation > 10mm. This is again due to the selection of only collocated 

data for implementing CDF matching, which also leads to the shift of satellite’s estimation of low 

precipitation amount to slightly higher precipitation amount after the bias-correction. 

 

Figure 5-16 CDF plot of CDF matched daily CMMORPH, PERSIANN and interpolation products 

 

In conclusion, CDF Matching bias correction provided a much better correlation among these three 

precipitation products. Although one can see the improved correlation coefficients for the daily 

products is obvious for CMORPH, it is interesting to see that from the RMSE results the PERSIAAN 

shows better improvement. 
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5.7 Triple collocation  

In this section, we present the results of triple collocation analysis. The data used for this analysis are 

the CMORPH, PERSIANN and interpolation precipitation products, the time scale is 3 hourly and daily 

respectively.   

5.7.1 Triplet number 

Firstly, the 3 hourly and daily scale’s triplet number were respectively shown in the figure 5-17 below. 

The triplet number in this paper is defined as the number of estimations who are collocated to each 

other among these three precipitation datasets. From the figure we can see, the daily datasets have 

much greater triplet numbers than 3hourly. This indicates that at high temporal resolution (e.g. 3hrly 

in this study) satellite data cannot accurately predict the occurrences of precipitation. It seems that 

the daily datasets are preferable to be processed using triple collocation technique. 

 

Figure 5-17 Triplet number of 3 hourly and daily scale respectively 

5.7.2 P-Value 

In statistics, the p-value is a function of the observed sample results (expressed as a test statistic) that 

is used for testing a statistical hypothesis. That means when we perform a hypothesis test in statistics, 

a p-value can help to weigh the strength of the evidence and determine the significance of the results. 

The p-value indicates how extreme is the value found for the test statistic in the distribution under 

the null hypothesis. The smaller the p-value, the more extreme the outcome. (“p-value - Wikipedia,”) 

In this section, we apply the p-value to determine the significance of the correlation of these three 

products in 3 hourly and daily respectively. The results are showing at the figure 5-18, in order to 

demonstrate the result more clearly, we show the 1 minus p-value. From the figure we can get that, 

overall, the p value of the daily scale result is smaller than that of 3 hourly result.    
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Figure 5-18 The p-value of three products in 3 hourly and daily scale 

5.7.3 Min and Max correlation coefficient 

Figure 5-19a and Figure 5-19b show the minimum and maxima correlation coefficient of 3 hourly and 

daily scale respectively. For every pixel, selecting the minimum value and maxima value from the 

three pairs products’ correlation coefficient, and draw the result as the figure below.  

 
Figure 5-19a Min and Max correlation coefficient of 3 hourly scale 

 

 

Figure 5-19b Min and Max correlation coefficient of daily scale 
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5.7.4 Relative errors 

The results of triple collocation process is showed below as figure 5-20a and 5-20b for the 3 hourly 

and daily scale respectively. Compare these figures carefully, it is not difficult to find that, for 3 hourly 

scale, the average relative error of CMORPH is 0.58, PERSIANN is 3.64 while interpolation is 2.68. For 

daily scale, the average relative error of CMORPH is 1.93, PERSIANN is 5.47 while interpolation 4.31. 

Therefore, the conclusion can be summarized that the relative error of CMORPH is the lowest among 

these three products and interpolation is at the medium while PERSIANN is the highest one.  

 
Figure 5-20a Relative errors of CMORPH, PERSIANN and interpolation products in 3hourly scale 

 

 

Figure 5-20b Relative errors of CMORPH, PERSIANN and interpolation products in daily scale 
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6. Conclusion and prospect 
Based on the research above, the following conclusions can be drawn: 

1. The correlation between CMORPH and interpolation rain gauge data is the strongest, two satellite 

precipitation products (CMORPH and PERSIANN) is medium while PERSIANN and interpolation 

rain gauge data is the weakest one.  

2. CPMORPH product’s behavior is better than PERSIANN’s when they are correlated to the 

interpolation products.  

3. For the low precipitation amount like 0-5mm, the two satellites provide a relatively weak retrieval. 

4. Cumulative distribution functions (CDF) matching is a superior approach which can reduce the 

bias among several datasets, improve the correlation coefficient and reduce the RMSE among 

them. 

5. The relative error of CMORPH is lower than the other two products’, interpolation is the medium 

while PERSIANN is the highest one. 

The research can be referenced to the bias correction and triple collocation of the precipitation 

products over the Netherlands. The results of this paper can be useful for further determination 

of the relative weights of these precipitation products and obtain a merged precipitation product.    
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APPENDIX 

1. Syntax of batch file 1 to import the raw CMORPH precipitation data of 200301. 
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2. Syntax of batch file 2 to read, mirror rotate and recompose the maplist. 
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3. R script code of ordinary kriging interpolation for the month of 200301. 
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4. Matlab code for integrating the complex data to clear 3 hourly data for everyday over 11 years 

according to 32 stations order. 
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