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ABSTRACT 
 

The problem I am trying to solve in this paper is to look for added value of SIF 

measurement data, and to analyze spatial variability feature of SIF at two peaks in 

HYPLANT. 

 

The approach I adopt to solve the problem is by comparing modelled and measured SIF 

at 680 nm and 760 nm for different spatial variability feature of SIF and multi-time in 

one day. There are two types of datasets representing spatial variability features in 

HYPLANT SIF data: different land covers and transient area inside one land cover 

which have obvious SIF variability. Multi-time in one day include local time at 11:56, 

13:50 and 16:05. For each dataset type, simulation and comparison steps are as follow: 

First vegetation parameters were retrieved by RTM model from reflectance spectra of 

HYPLANT; SIF spectra were simulated by SCOPE model with vegetation parameters 

as input data; then comparison were made between modelled and measured SIF at 680 

nm and 760 nm.  

 

The results obtained in this research include comparison between measured and 

modelled SIF for 5 land covers which are sugar beet, corn, potato, tree and grass at 680 

nm and 760 nm, comparison between measured and modelled SIF in transient area in 

sugar beet at 680 nm and 760 nm, comparison between measured and modelled SIF for 

multi time in one day at 680 nm and 760 nm,  SIF distribution at 680 nm and 760 nm 

for different land covers, SIF variability in transient area at 680 nm and 760 nm. 

 

The obtained results can show added value of SIF include: SIF are unique when 

compared with reflectance, because there are low relations between modelled and 

measured SIF, especially at 680 nm. And SIF can provide more additional value of 

plant than reflectance data, because variations of modelled SIF are lower that measured 

SIF for nearly all situations. Also, SIF variability for different land covers and transient 

area are shown. Land covers have certain and specific distribution in plot which SIF at 

680 versus SIF at 760. Changing trend of SIF at 680 are different from changing trend 

of SIF at 760 nm. When SIF at 760 nm have obvious decrease, SIF at 680 nm remain 

random fluctuations. 
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 INTRODUCTION 

1.1.  Background 

Plant produce sugars from carbon dioxide and water by harvesting sunlight. Sugar is 

the primary energy source for all life on earth (Luis Guanter, Zhang, Jung, Joiner, 

Voigt, et al., 2014). Hence growth of plants plays an important role on global carbon 

cycle and land surface ecosystem functioning. It is estimated that we must double world 

food production by 2050 to meet increasing demand. The quantity of photosynthesis 

places an upper limit on the supply of food and fuels in our agricultural systems 

(Tilman, Balzer, Hill, & Befort, 2011). Methods used to understand and model spatial 

global gross primary production (GPP, which means ecosystem gross photosynthesis) 

have limits of uncertainties because of complexity of the photosynthesis process. 

Remote sensing reflectance-based vegetation parameters can be used to monitor the 

vegetation condition, but estimation of GPP from vegetation parameters requires 

additional data and modeling steps, which both associated with considerable 

uncertainties (Luis Guanter, Zhang, Jung, Joiner, Voigt, et al., 2014).   
 

In recent years, chlorophyll fluorescence has been used as a new indicator of 

photosynthesis. It has been indicated that chlorophyll fluorescence data can help 

improve models to have more accurate projections of agriculture productivity and 

productivity variations due to climate change (Luis Guanter, Zhang, Jung, Joiner, 

Voigt, et al., 2014). Chlorophyll fluorescence is an energy flux in the red and far-red 

region (650-800 nm) of the electromagnetic spectrum, and it is emitted by the 

photosynthesis II (PSII) of the chlorophyll molecules. It consists information about 

light harvest and photo transport of photosynthesis process. The direct relation between 

chlorophyll fluorescence and status of photosynthesis makes chlorophyll fluorescence a 

reasonable indicator for photosynthesis process. 
 

Many ways to acquire chlorophyll fluorescence data exist. Chlorophyll fluorescence in 

algae and plants can be measured in controlled situations with artificial light instead of 

sunlight to evaluate PSII photochemistry (Baker, 2008). The results of this active 

method can be relatively accurate, but this method is costly, time consuming and it 

provides only point data. Due to geographical spatial distribution differences, spatially 

distributed data of solar induced chlorophyll fluorescence (SIF) are required to solve 

realistic regional or global issues.  
 

Remote sensing technology can retrieve SIF map data in certain spatial resolution and 

temporal resolution with Fraunhofer Line Depth method (Meroni et al., 2009). First 

global satellite maps of SIF were acquired by Japanese satellite GOSAT with resolution 

in 2° * 2° grids at 755 nm (Frankenberg et al., 2011). Later an improved method was 

developed to increase SIF results’ accuracy and precision from Global Ozone 

Monitoring Instrument 2 (GOME 2) (Joiner et al., 2013). This method contributes to 

improved accuracy of SIF results which can be retrieved from moderate spectral 

resolution measurements like satellite GOSAT or GOME 2. But both GOSAT and 

GOME 2 are not designed for measurement of fluorescence but for atmospheric trace 

gas, also the coarse spatial and temporal resolution limit the application and further 

research of SIF data.  
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Airborne based imaging spectrometers can observe SIF data in intermediate spatial 

resolution. Maps of SIF were made from imaging spectrometer HYPLANT in Germany 

(Rascher et al., 2015). HYPLANT was specifically designed to detect vegetation and 

retrieve fluorescence. It consists of two modules on a single rack. One module provides 

surface radiance from 380 to 2500 nm in spectrum, and the other module provides 

surface radiance in the red and far-red spectrum with spectral resolution of 0.25 nm. 

The second module is designed to retrieve SIF between 670 and 780 nm (Rascher et al., 

2015). The SIF data can be first acquired in physical units with about 10% error. It is 

not feasible to get global SIF data with airborne based spectrometers.  
 

The Fluorescence Explorer (FLEX) which proposed by European Space Agency is 

under development to retrieve chlorophyll fluorescence in O2 A- and B- bands (L. 

Guanter et al., 2010). This emission will improve spatial and temporal resolution of SIF 

map by carrying hyperspectral detecting instrument. 
 

Soil-Canopy Observation of Photosynthesis and Energy fluxes (SCOPE) is a model 

which is been used to simulate SIF recently, and to retrieve information from SIF. In 

this model, scattering and absorption of light by leaves are calculated, especially the 

emission, scattering and absorption of fluorescence. Because of uncertainties of 

common models and complexity of SCOPE, systematic errors and sensitive parameters 

are issues to be focused on. Irradiance, leaf composition, leaf area index and the 

carboxylation capacity Vcmo are the most sensitive parameters affecting signal of SIF 

(Verrelst, Rivera, et al., 2015).  

1.2. Problem definition  

 

Because of direct physical relation between photosynthesis process and SIF signal, SIF 

is regarded as a reasonable indicator of photosynthesis and GPP. It is found that 

monthly mean GPP at cropland flux tower sites and SIF have linear relations at US 

Corn Belt and grassland in Western Europe(Luis Guanter, Zhang, Jung, Joiner, & 

Voigt, 2014). But those relations were found by linear regression method which lack of 

physical process and base. Researches about SIF are relatively new, and it is not exactly 

known what the additional value of SIF is compared to reflectance data.  
 
 

1.3. Objectives  

 

According to the problems definition above, the corresponding objectives have been 

defined. 

 

Because the additional value of SIF compared to reflectance is not exactly known, 

therefore comparison between simulated SIF from reflectance and measured SIF will 

help to fill this knowledge gap. Vegetation parameters can be retrieved from reflectance 

by inversion of radiative transfer model (RTM), and then vegetation parameters will be 

used to simulate SIF spectrum with SCOPE model. If modelled SIF can reproduce the 

same data as measured SIF, then it means that reflectance data include vegetation 

information of SIF. If modelled SIF cannot reproduce the measured SIF, then 
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additional information can be understood by analyzing differences of two data sources, 

notably the measured and the simulated SIF. 

 

Thus the main objective is to test whether there is any added value of SIF compared to 

reflectance. 

 

To test whether simulated SIF is equal to measured SIF for different spatial variability 

features and for multi-time in one day. 

To analyze the differences between simulated and measured SIF for different spatial 

variability features and for multi-time in one day. 

To look for relations between simulated and measured SIF for different spatial 

variability features and for multi-time in one day. 

 

Secondly reflectance and SIF data with obvious spatial variability from HYPLANT 

will be used as main data source. Spatial variability feature of SIF and the 

corresponding modelling result will be analyzed. 

 

Thus the second objective is to analyze spatial variability of simulated and measured 

SIF. 

 

To analyze spatial variability feature of SIF data from HYPLANT. 

To analyze relation between SIF data at 680 nm and 760 nm for each variability 

feature.  

 

 

 

 
 

 LITERATURE  

This chapter reviews three topics: (1) the relationships between vegetation parameters 

and the growing cycle of the crop and relations between chlorophyll fluorescence and 

plant growing, (2) relations between vegetation parameters and reflectance and 

fluorescence, and (3), methods for model inversion.  

2.1. Vegetation parameters, chlorophyll fluorescence and vegetation growing 

condition 

One of the vital aspects of vegetation we are interested in is the growing condition, 

which includes plant structure, development, biochemistry and metabolism. Vegetation 

growing condition can help indicate agriculture production, carbon circulation and 

ecosystem function. Analysis of photosynthesis process and carbon exchanges between 

soil, vegetation and atmosphere can help us understand vegetation’s growing condition. 
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2.1.1. Relation between vegetation parameters and vegetation growing condition 

Vegetation parameters represent different levels of varies biophysical properties of 

vegetation. Common vegetation parameters include leaf area index, chlorophyll 

content, dry matter content, nitrogen content, leaf photosynthetic capacity and so on. 

Among many vegetation parameters, chlorophyll content, nitrogen and leaf area index 

have directly impacts on photosynthesis process (Gitelson, Peng, Arkebauer, & 

Schepers, 2014).  

 

The carbon exchange between the crop canopy and the atmosphere is mainly controlled 

by the amount of solar radiation absorbed, the incident photosynthetic active radiation 

(PAR) and the fraction of PAR absorbed by photosynthetic active vegetation (fAPAR), 

as well as the efficiency of plants in using this energy for photosynthesis, the light use 

efficiency (LUE). GPP can be expressed as (J. L. Monteith, 1997): 

 

 GPP= PAR× fAPAR× LUE (2-1) 

 

Chlorophylls are vital pigments for photosynthesis of plants, because the reaction 

centre of chlorophyll absorb light energy and transfer it to other parts of photosystem. It 

is found that canopy chlorophyll content is closely related to fAPAR when chlorophyll 

content less than 2 g m-2. However GPP remains sensitive to total canopy chlorophyll 

even when chlorophyll content is larger than 2 g m-2 (Peng, Gitelson, Keydan, 

Rundquist, & Moses, 2011). Variations in leaf chlorophyll are well correlated with 

temporal changes in LUE (Houborg, Anderson, Daughtry, Kustas, & Rodell, 2011). 

Therefore chlorophyll content can both influence fAPAR, LUE and of course GPP 

though Equation 2.1. Figure 1 indicates the relation between chlorophyll multiplied by 

PAR and GPP. 

 

 

Figure 1.Relationships between GPP and Chl ∗ PARin in rained and irrigated maize 

during vegetative stages from 2001 to 2010 (Gitelson et al., 2014). 
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Chlorophyll content also varies with the seasonal growing cycle of the plant. Figure 2 

indicates the changing trend of chlorophyll content of corn and soybean from May to 

August in USA in 2002. In this case, chlorophyll content of soybean reached the 

maximum in June, while corn reached the maximum in July. There are difference in 

chlorophyll trend between C3 and C4 plant, but both reached maximum value of 

chlorophyll content in summer which have maximum temperature and rainfall. 

Therefore information of chlorophyll content of vegetation can be used to indicate 

plants’ seasonal condition and other features. 

 

Leaf Nitrogen is also vital parameter to vegetation. It was indicated that leaf nitrogen 

and Vcmax have near-linear correlation (Kattge, Knorr, Raddatz, & Wirth, 2009). Vcmax 

(maximum rate of carboxylation) governs leaf photosynthetic efficiency and defines the 

biochemical capacity of leaves to assimilate CO2. This parameter plays a limiting role 

on actual GPP, therefore leaf nitrogen is constraint for vegetation photosynthesis 

process (Houborg, Cescatti, & Migliavacca, 2012). Meanwhile, chlorophyll content and 

nitrogen also have been proven to have strong relations (Sage & Pearcy, 1987). 

Therefore Vcmax can be acquired from chlorophyll content by relations of Chlorophyll, 

nitrogen and Vcmax. 

 

Leaf area index (LAI) is defined as the ratio of leaf surface area to unit ground surface 

area (Bréda, 2003). LAI describes the available surface area for leaf gas exchange 

between atmosphere and terrestrial biosphere (Cowling & Field, 2003). It is an 

important parameter controlling many biochemical and physical processes of 

vegetation, including transfer of both substance and energy. LAI can be separated into 

photosynthetic and non-photosynthetic components. The part of LAI composed of 

green leaf area is called Green LAI (Viña, Gitelson, Nguy-Robertson, & Peng, 2011). 

Figure 3 indicates that Green LAI and GPP have obvious relations in the vegetative 

stage. 

 

 

 

Figure 2. Time-series of satellite (Landsat 5 (L5) and Landsat 7 (L7)  retrieved Chl and associated Vcmax for a corn 

and soybean field in central Iowa, U.S.A. in 2002 (Houborg et al., 2012). 
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2.1.2. Relation between chlorophyll fluorescence and vegetation growing condition 

Chlorophyll molecules are excited when green leaves are illuminated. This excitation 

energy will be partly used for the process of photosynthesis while another part will be 

dissipated as heat and red light (chlorophyll fluorescence) (G.seaton & D.walker, 

1990). Because of the relation between chlorophyll fluorescence and photosynthetic 

electron transport, fluorescence emissions in photosynthetic organisms could be 

correlated to their photosynthetic rates. Therefore chlorophyll fluorescence 

measurement is applied to examine photosynthetic performance and stress in algae and 

plants, also to identify causes of changes in photosynthesis and plant performance. It 

was indicated that fluorescence can be a very powerful tool to study photosynthesis 

performance (Baker, 2008).  

 

However, the underlying theory of fluorescence change is complex, therefore the 

correct explanation for fluorescence change is difficult (Baker, 2008). According to the 

model for photosystem II (PSII) photochemistry (Butler, 1978), photosynthesis 

competes with processes of fluorescence emission and heat loss from excitation energy 

in the pigment antenna of PSII. Then the decline in fluorescence could both be caused 

by the electrons transfer from reaction center chlorophyll to PSII, and by increases in 

rate of heat loss. The decline of fluorescence because of increase in photosynthesis is 

named photochemical quenching. The decline of fluorescence because of increase in 

heat loss is named non-photochemical quenching (Baker, 2008). Research has indicated 

that there are large changes in the rate of heat loss from the antenna of PSII (Krause & 

Jahns, 2004). In order to estimate photosynthesis from fluorescence, it is important to 

distinguish and analyze fluorescence quenching which results from photochemical 

Figure 3.Relationships between GPP and GLAI ∗ PARin in rained and irrigated maize 

during vegetative stages from 2001 to 2010 (Gitelson et al., 2014). 
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quenching and non-photochemical quenching(Baker, 2008). Therefore the relation 

between fluorescence signal and photosynthesis is complex.  

2.2. The role of vegetation parameters on the reflectance spectrum 

Different vegetation parameters like leaf area index, chlorophyll content, water content 

and leaf structure can represent vegetation conditions generally. Leaf and canopy 

conditions will change the way of absorption, scattering and transmittance of solar 

radiance, therefore different values and combinations of vegetation parameters can 

result in different reflectance (R) of solar radiance. 

 

Radiative transfer model (RTM) includes specific mathematic equations of physical 

interaction processes between light, plant and soil. Among all the codes of RTM during 

the last recent years, the SAIL canopy reflectance model (Verhoef, 1984) and the 

PROSPECT leaf optical model are most popular (Stéphane Jacquemoud et al., 2009).  

 

In PROSPECT model, scattering of light is modelled by leaf structure parameter N and 

spectral refractive index. Absorption is simulated by chlorophyll pigment concentration 

(Ca+b), water content (Cw) and corresponding specific spectral absorption coefficients 

(Ka+b and Kw) (S. Jacquemoud & Baret, 1990a). The coefficients K are spectra for the 

absorption of different constituents of the leaf. For example, chlorophyll has absorption 

peaks at 679nm and 703nm (le Maire, François, & Dufrêne, 2004). 

 

The combined PROSPECT model and SAIL model is called PROSAIL model 

(Stéphane Jacquemoud et al., 2009). Sensitivity analyses of PROSAIL show the effects 

of vegetation parameters on the reflectance spectrum. Leaf chlorophyll and leaf area 

index were considered as the main contribution of spectral shifts in red and near-

Figure 4.Simple model of the possible fate of light energy absorbed by photosystem II (PSII)(Baker, 2008). 
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infrared (NIR) wavelength. Leaf chlorophyll absorbs light in red wavelength, but not in 

the NIR. Radiation in the NIR region is mostly scattered in the vegetation. The 

contribution of Leaf area index LAI to reflectance spectrum is presented in Figure 5 

which indicates the sensitivity of LAI from 0 (bail soil) to 10 (very dense vegetation) to 

reflectance spectrum. This figure shows that increase of LAI can result in decrease of 

reflectance in red wavelength and increase of reflectance in near-infrared. As shown in 

Figure 6, the average leaf angle also affects the reflectance in the NIR, and water 

content Cw has an average contribution of 50% to reflectance spectrum from 1450nm to 

2100nm in shortwave infrared (SWIR). The effect of vegetation parameter A may 

depend on the value of parameter B, and therefore parameter interactions effects to 

reflectance spectrum have to be considered (see Figure 7). In this case, Cab - LAI and 

Cab -ALA have the contribution of each 8% to visible reflectance spectrum. LAI - ALA 

have 7% contribution in NIR part. In SWIR part, dominate factors depend on 

wavelength of reflectance spectrum. 

 
 

 

Figure 5. Effect of LAI on canopy reflectance using PROSAIL (θs=20°, θv=0°, φsv=0°,  horizontal 

visibility=100 km, LIDF=spherical, sL=0.25, N=1.5, Cab=50 µg cm− 2, Cw=0.01 cm, and Cm=0.005 g 

cm−2) (Stéphane Jacquemoud et al., 2009).  
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Figure 6.Spectral variation of the contributions of the PROSAIL variables to the top-of canopy 
reflectance. Solar zenith angle θs=31.6°  (Stéphane Jacquemoud et al., 2009). 

Figure 7.Spectral variation of the contributions of interactions of the PROSAIL variables 

to the top-of canopy reflectance. Solar zenith angle θs=31.6° (Stéphane Jacquemoud et al., 

2009). 
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2.3. The role of vegetation parameters on chlorophyll fluorescence 

 

Although there is little literature about relations between vegetation parameters and 

chlorophyll fluorescence, physical theories which include relations between vegetation 

parameters and chlorophyll fluorescence are already used to simulate plant 

fluorescence. There are a few models that describe the relations between parameters 

and fluorescence, at leaf level and at canopy level. 

 

For simulation of leaf fluorescence, FluorMODleaf (Pedrós, Goulas, Jacquemoud, 

Louis, & Moya, 2010) which is a model of chlorophyll fluorescence was built based on 

PROSPECT model. Number of elementary plates N, the total chlorophyll content Cab, 

the total carotenoid content Ccx, the equivalent water thickness Cw , the dry matter 

content Cm, the σII/σI ratio and the fluorescence efficiency of PSI and PSII are as input 

data for modelling fluorescence. Relations between those parameters and fluorescence 

can be analyzed in Figure 8. Moreover, scattering will lengthen the optical pathway 

inside the leaf, causing an increase in the reabsorption in red. Relations between 

parameters and fluorescence are proved to be different when scattering happens (Pedrós 

et al., 2010).  
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Figure 8.Apparent spectral fluorescence yield (ASFY) computed by FluorMODleaf as a function of (a) 

chlorophyll a+b content, (b) leaf structure parameter, (c) dry matter content, (d) water content, (e) σII/σI 

ratio, and (f) PSII lifetime. Solid line: emission at 685 nm, dashed line: emission at 735 nm. (Pedrós et al., 
2010). 
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For simulations of canopy fluorescence, a recent version of the SCOPE model (van der 

Tol, Verhoef, Timmermans, Verhoef, & Su, 2009) which includes novel leaf 

physiological modules for modelling steady state fluorescence yield, has been used to 

analyze driving factors to canopy leaving sun-induced fluorescence (Verrelst, Rivera, et 

al., 2015). The results indicate that canopy SIF is driven largely by leaf chlorophyll 

content, vegetation structure, leaf area index and LIDFa, these four parameters can 

explain over 67% of the variability of the PAR part in SIF when considering only 

vegetation parameters. Vcmo, leaf photosynthetic capacity, explained for most up to 

22.5% of the variability of the SIF emission efficiency part in SIF at 676 nm. In 

addition, micrometeorological variables also drive simulated SIF (Verrelst, Rivera, et 

al., 2015). 

 

Airborne based imaging spectrometers can observe SIF data in intermediate spatial 

resolution. HYPLANT (Rascher et al., 2015) was specifically designed to detect 

vegetation and retrieve fluorescence. Data in HYPLANT consists of surface radiance 

from 380 to 2500 nm of spectrum, and surface radiance in the red and far-red spectrum 

with spectral resolution of 0.25 nm. These two data types can provide reflectance from 

380 to 2500 nm, and chlorophyll fluorescence at 680 and 760 nm. (Rascher et al., 

2015).  

 

In order to obtain vegetation parameters from reflectance and chlorophyll fluorescence 

from remote sensing data like HYPLANT, model inversion technique is needed to 

inverse the forward model. 

 

 

2.4. Mathematic methods of inversion 

 

There are different methods to establish the relation between vegetation properties and 

optical remote sensing. These methods include parametric regression, non-parametric 

regression and physically based models (Verrelst, Camps-Valls, et al., 2015). The 

techniques to invert remote sensing signals to obtain bio-physical parameters of 

vegetation are different accordingly. 

 

For the parametric method, because the forward relation is explicit, the inversion 

process is simple and easily calculated by directly rearranging the equations.  

 

For the non-parametric regression method, a learning phase based on training data is 

established instead of using an explicit relation. Thus the inversion techniques are more 

complex than for the parametric method. Decision tree learning and artificial neural 

networks (ANNs) are representative inversion methods. Decision tree learning is based 

on hierarchical connected nodes, and this method is more applied in classification than 

regression inversion. Random forest approach is a representative one of decision tree 

learning method (Mutanga, Adam, & Cho, 2012). Due to the complexity of artificial 

neural networks with layered structure of artificial neutrons, the performance of this 

method relies on its design. Too many or few of the layers and neutrons will reduce the 

accuracy (Mutanga et al., 2012). 
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For physically based method like RTM which has physical theory basis and 

mathematic relations, inversion techniques are also complex because of numerous 

unknown variables. This feature of the model may cause multiple solutions of the RTM 

inversion, which is called equifinality. Methods to do model inversion process include 

lookup table inversion, trust region optimization inversion and machine learning 

inversion. Lookup table method do inversion by comparing measured reflectance data 

with a table of model results. This table contains parameters and corresponding 

simulated reflectance. By looking for matching spectra one can obtain suitable 

vegetation parameter combinations. Trust region optimization method calculate 

vegetation parameters by iterations to look for satisfying minimum objective function 

value. Machine learning method do inversion process by seeking linear or nonlinear 

regression algorithms in semiautomatic and systematic manner (Caicedo, Verrelst, 

Munoz-Mari, Moreno, & Camps-Valls, 2014). Pros and cons of those inversion 

methods are listed in Table 1. 
 

Table 1.Pros and cons of three different inversion methods. 

Methods name pros cons 

Lookup table method Simple logic and short 

calculation times 

Inaccurate relatively; 

may have different parameter 

combinations for same accuracy 

 

Trust region optimization method Relatively accurate 

 

Time consuming for calculation;   

hard to operate with high-spatial 

resolution image 

 in large area  

 

Machine learning method Accurate, robust 

(Caicedo et al., 2014) 

Difficult to determine which 

regression algorithm to use 

 

 

 STUDY SITE, DATA AND MODEL 

3.1. Study area 

 

Study area is within Rur catchment in North Rhine-Westphalia, west of Germany, 

which dominated by agricultural land cover. Rur River originates from Belgium and 

then flows through Germany and Netherlands, and the majority parts of Rur River are 

in Germany. The study area is near the village of Selhausen (50°52’12.82’’N, 

6°26’59.59’’E). Crops in this area consist of sugar beet primarily, and also include 

potato and corn in few places. Other land covers in this area include trees, grass, soil 

and urban land use. 
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The recent research shows that maps of SIF indicate a large spatial variability between 

different vegetation types (Rascher et al., 2015), therefore different vegetation types of 

SIF data will be modeled. Because of time consuming problems in calculation of 

inversion processes, limited number of pixels are chosen in different land covers types 

in this research. Land cover types which are considered in this research are sugar beet, 

corn, potato, grass and trees. 

 

3.2. Reflectance data 

Reflectance data which are used in this study are remote sensing data from airborne 

based imaging spectrometer HYPLANT in Germany. Specific information are in Table 

2.  Figure 10 shows reflectance spectrum of various vegetation types. 

 
 

Figure 9. Study area representation with HYPLANT data. (a) Color composition in RGB of study area from 

airborne sensor measurements data near Selhausen. (b) Normalized Difference Vegetation Index (NDVI). (c) 
Enhanced Vegetation Index (EVI). (d) Fluorescence map at 760 nm. (Rascher et al., 2015) 
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Table 2. Information of reflectance data from HYPLANT in this study 

 Reflectance data from HYPLANT in this study 

Date of data 23/08/2012 
Local time  13:51 ~ 13:53 
Wavelength extent (nm) 372 ~ 2484 nm 

Spatial resolution  1m 
Solar zenith angle (degree) 39.4 
location Selhausen, Germany  

bands 622 

 
 

 
(1)                                                                       (2) 

 
 

(3)                                                                        (4)    

Figure 10.Representative Spectrum of grass (1), sugar beet (2), tree (3) and soil (4) (unit: 

fraction*10000) 

 
 
 

3.3. SIF data 

 

Solar induced fluorescence (SIF) data in this study are also from HYPLANT data in the 

same location as reflectance data. Because of technical limits in SIF retrieval methods, 

only SIF data at 680 nm and 760 nm are produced in HYPLANT SIF data. SIF data of 

3 flight times at same day were used. Specific information is shown in Table 3. 
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Table 3. Information of SIF data from HYPLANT in this study. 

 Reflectance data from HYPLANT in this study 

Date of data 23/08/2012 
Local time  11:56, 13:50, 16:05 
Wavelength extent (nm) 680 nm; 760 nm 

Spatial resolution 1m 
location Selhausen, Germany  
bands 2 

 

3.4. Meteorology data 

 

Meteorology data in this study are from flux tower in Selhausen, Germany in the same 

date as SIF data. Meteorology data include broadband incoming short wave radiation 

(W/m^2), broadband incoming longwave radiation (W/m^2), air temperature (Celcius), 

air pressure (hPa), atmosphere vapour pressure (hPa) and wind speed at height Z (m/s). 

Geographic coordinates of flux tower is 50.8658339 N / 6.4473888 E.  

 

3.5. Models 

3.5.1. RTM model in SCOPE and inversion 

 

RTM (Radiative Transfer Model) describe the path of radiation in a medium of air, 

water, vegetation and urban areas. 

 

SCOPE model is a radiative transfer and energy balance model which simulate spectral 

radiation and energy balance of a vegetated surface at the level of single leaves as well 

as at canopy level (van der Tol et al., 2009). SCOPE model has been through a period 

to develop its structure and components. The part to simulate interaction between 

radiation and plant leaves comes from Fluspect model, which is based on the 

PROSPECT model. PROSPECT is a radiative transfer model which describe leaf 

optical properties from 400 nm to 2500 nm with a minimum number of parameters in 

order to facilitate its inversion. Parameters include leaf mesophyll structure (N), 

pigment concentration, water content (Cw) (S. Jacquemoud & Baret, 1990b). 

Simulation of Interaction between incident light and vegetation canopies in SCOPE 

comes from SAIL (Scattering by arbitrarily inclined leaves) model. Extinction and 

scattering coefficients of a layer are calculated on the basis of a given leaf area index 

and a leaf inclination distribution in SAIL model (Verhoef, 1984).  

 

After the forward model from vegetation parameters to reflectance, the inversion of 

RTM model is required to convert reflectance to vegetation parameters 

 

A newly developed code to tune the SAIL model to reflectance in MATLAB are used 

to do RTM model inversion to get vegetation parameters. After iterating and 

minimizing differences between modeled reflectance with measured reflectance, 

vegetation parameters are obtained. This method belongs to the trust region 

optimization method which is time consuming, therefore this method cannot be applied 

to the whole image. 
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3.5.2. SVAT model in SCOPE  

SVAT (Soil-Vegetation-Atmosphere-Transfer model) describes the transport processes 

of energy, momentum, wind, and mass of water, carbon, nutrients (Van Der Tol, 

Rossini, Rascher, Verhoef, & Mohammed, 2016). SCOPE model obtain reflectance and 

fluorescence in the observation direction as a function of the solar zenith angle and leaf 

inclination distribution (Verrelst, Rivera, et al., 2015). In SCOPE model, after the 

absorbed radiation within canopy is calculated, the distribution of absorbed radiation is 

further used in a micrometeorological model of the canopy for the calculation of 

photosynthesis, fluorescence, latent and sensible heat. The fluorescence and thermal 

radiation emitted by individual leaves is finally propagated through the canopy (van der 

Tol et al., 2009). Fluspect was included to simulate SIF of the leaf. SIF can be 

modelled from vegetation parameters which include leaf parameters and canopy 

parameters. In addition, meteorology data are also needed here because parameters like 

air temperature and air pressure are considered to have effects on SIF. 

Vegetation parameters which will be used are as below:  

 

Chlorophyll content (Cab); 

Dry matter content (Cdm); 

Leaf water thickness equivalent (Cw); 

Senescent material (Cs); 

Leaf area index (LAI); 

Leaf inclination (LIDF);  

Leaf structure parameter (N); 
 

3.5.3. GSV model 

A separate model was used for the soil reflectance, notably the GSV (global soil 

vectors) (Jiang & Hongliang, 2012) model. GSV model can represent any dry soil 

spectrum with soil spectral vectors and 3 coefficients as equation below.   

 

 S′ = G× a  (3-1) 

Where S’ means the spectrum which are needed; G means soil spectral vectors; a 

means 3 coefficients.  

 

To get coefficients ‘a’, one way is to do with matrix calculation. Given soil spectrum 

need to be transformed and equation below are used (Verhoef, Tol, & Middleton, 2014) 

 

 a = (𝐺𝑇𝐺)−1𝐺𝑇𝑆  (3-2) 

 

Where GT means transformed G; G means soil spectral vectors; a means 3 coefficients, 

s means given soil spectrum.  



18 

 

 METHOD  

Introduction  

In this chapter, the methods which were performed during this research will be 

explained in detail. A flow chart is presented below in Figure 2. 

 

Chapter 3.1 explains the dataset selection criteria and dataset structure which were used 

in research. 

 

Chapter 3.2 discusses operation process of inversion with RTM model. Input data 

preparation, initial value select and parameters retrieval will be explained respectively. 

 

Chapter 3.3 explains process details of SIF simulation with the SCOPE (FLUSPECT) 

model.  

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.1. Dataset selection  

Airborne measured surface reflectance data and SIF data were used as data source to 

perform SIF variability analysis, SIF simulation and SIF comparison. Both reflectance 

and SIF datasets are airborne remote sensing image, therefore both of them have spatial 

distribution features. To Represent SIF variability needs relatively large amount of 

pixel samples. Because SIF modelling process is time consuming, it is not possible to 

simulate and compare too many pixels in the image. Then the datasets should be both 

operable in analysis process and representative in image spatial features. So the design 

of datasets are key part of data processing.  

 

Figure 11 .Flowchart about methods to be used in this research. 
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According to feature of data spatial variability, two type of datasets are classified: 

representing different land covers, representing variability of SIF in transient area 

inside one land cover.  Then for each of them, two subclasses are chosen: one relatively 

small area for modelling and comparison, one relatively large area for SIF variability 

analysis. 

4.1.1. Dataset 1: representing typical different land covers  

 
In extent of the data image, five plant species have been classified, notably sugar beet, 

corn, grass, potato and trees. Thus datasets should include the pixels which contain 

representative features of these plant species. These pixel samples should not be 

influenced by surrounding factors like road or cable (adjacency effect).  

 

In Subclass 1, 6 pixels per vegetation type are used to represent one plant species. This 

subclass data are used to SIF simulation and SIF comparison for different vegetation 

type. 

 

In Subclass 2, corn, tree, grass, sugar beet and potato have 418 pixels, 240 pixels, 504 

pixels, 672 pixels and 192 pixels respectively. This subclass data are used to analyze 

variability of SIF for different land cover. 

4.1.2. Dataset 2: representing areas inside one land cover which have obvious SIF 

variability of HYPLANT SIF data 

Because of obvious variability of SIF inside one plant species, it is necessary to choose 

representative SIF value changing area of same plant species and to check if model can 

simulate these relatively large changes. Because sugar beet have large cover area in the 

study area compared to other vegetation types, therefore SIF changing data in sugar 

beet has been used as example of transient phenomena.  

 

In Subclass 1, small area which include 18 pixels with obvious changing SIF inside 

sugar beet field were chosen. SIF simulation and SIF comparison were made with this 

subclass data for transient area. 

 

In Subclass 2, relatively large area with 348 pixels with obvious changing SIF inside 

sugar beet field were chosen. Variability of SIF were analyzed with this data for 

transient area. 

 

The locations of chosen area are approximately represented in Figure 12 and Figure 13.  
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Figure 12.Data location and RGB image of reflectance data in study area: R 859nm, G 550nm, B 

459 nm. 

 
Figure 13.Data location and SIF at 760 nm of study area. 

           

4.2. Simulation with RTM model 

4.2.1. Input data preparation  

After data selection, geographical locations and coordinates of these chosen pixels have 

been recorded. Canopy reflectance spectrum data of each pixel in 622 bands from 

371.84 nm to 2483.4 nm were been taken. In ENVI 5.1 version, image data can be 

saved as an ASCII file containing digital information for each line, row and band in 

image. These arrays with digital number can be processed in MATLAB. A simple code 

in MATLAB was used to convert 3 dimensional array to 2 dimensional array. After 

using this function, the original array of reflectance data can be processed and saved as 

expected format (.dat) in ASCII. Those reflectance data were supposed to be used as 

main source of input data for RTM model. 

 

Another type of input data for model is soil spectrum. In order to have more reliable 

results, a local soil spectrum was preferred instead of model default soil spectrum data. 

In this case, the local soil spectrum was chosen from bare soil reflectance data of the 
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same HYPLANT reflectance image as previous step.  According to input data 

requirements to soil spectrum in RTM model inversion, soil spectrum as input data 

should have integer wavelength expressed in nanometers. Because HYPLANT 

reflectance measurement data’s wavelength were non-integer, it was necessary to 

resample the soil reflectance with the function ‘interp1’ in MATLAB. The code ‘YI = 

INTERP1(X, Y, XI, METHOD)’ interpolates to find YI, the values of the underlying 

function Y at the points in the array XI (MATLAB 7.12.0 product help). So X and Y 

were replaced by original wavelength and original reflectance, and XI and YI were 

replaced by new integer wavelength and new reflectance here.  

After this, the local soil spectrum still had some noise, so a smoothing operation was 

required. The GSV (global soil vectors) (Jiang & Hongliang, 2012) model uses 3 basic 

soil vector components to fit any given dry soil reflectance spectrum. The equation is as 

follow:  

 
 S = 𝑎1𝑔1+ 𝑎2𝑔2+𝑎3𝑔3 (4-1) 

 

Where g1, g2, g3 are 3 basic soil vector, and a1, a2, a3 are 3 coefficients to approximate a 

given soil spectrum. S is modelled soil reflectance with least squared error statistical 

approach. 

 

‘Solver’ function in EXCEL was used to find the proper a1, a2, a3 to make squared error 

of differences between original soil reflectance and modelled soil reflectance minimum. 

By calculating a1, a2, a3, local soil spectrum with smooth curve was obtained.  

4.2.2. Initial value of vegetation parameters 

In order to have more reliable model results, vegetation parameters initial values’ 

effects to model results were examined. Vegetation parameters in this model include 

Chlorophyll content (Cab), Dry matter content (Cdm), Leaf water thickness equivalent 

(Cw), Senescent material (Cs), Leaf area index (LAI), Leaf inclination (LIDF), Leaf 

structure parameter (N).  

 

 

Ideally the retrieval does not rely on the initial values of vegetation parameters. To test 

whether this was the case, the retrieval results were been checked when vegetation 

parameters have different initial values. First each vegetation parameter’s initial value 

was changed individually to see the variations of model result. Then all vegetation 

parameters’ initial values were changed together to see the variations of model result. If 

the result maintain nearly the same in both changing approach, then the choice of initial 

values is not important for the result. If result change obviously, then the choice of 

initial values should be made carefully. 

 

4.2.3. Vegetation parameters’ retrieval  

After preparation of input data and observation of vegetation parameters’ initial value’s 

effect on the model result, parameters can be retrieved by RTM model. The model was 

set up such that the following parameters were tuned: Cab, Cdm, Cw, Cs, LAI, LIDF and 

Cca. The parameter N with its initial value of ’5’was not tuned.  
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4.3. Fluorescence simulation  

 

After getting vegetation parameters to describe plant condition, SIF spectrum from 640 

nm to 850 nm can be modelled in SCOPE with meteorological data from the weather 

station (the eddy covariance tower).  

 

Firstly filenames and locations of output file were defined. Secondly each parameters’ 

value (Cab, Cdm, Cw, Cs, LAI, LIDFa, LIDFb, N and Cca) needs to be defined, and 

these values come from the RTM model inversion results described in Section 4.2. The 

third part to be defined is the weather conditions, which include broadband incoming 

shortwave radiation (W m-2), broadband incoming longwave radiation (W m-2), air 

temperature (Celcius), air pressure (hPa), atmospheric vapour pressure (hPa), wind 

speed at height z (m s-1). These meteorology data come from flux tower logger in study 

area. Also time of measurement should fit the airborne flight time of HYPLANT data, 

which is used to calculate the solar angle. Carboxylation capacity Vcmo was kept at 

default values, because there are no measurements for this parameter.  
 

 RESULTS  

5.1. Result of simulation and comparison for different landcovers  

5.1.1. Vegetation parameters    

Vegetation parameters from different land covers (sugar beet, grass, tree, corn and 

potato) have been retrieved for 6 pixels per cover type. Representative vegetation 

parameters which are average value of 6 pixels per land cover are in Table 4. Corn had 

highest Cab of 65.36 ug cm-2, while grass had the lowest Cab of 17.32 ug cm-2.  Corn had 

highest Cw of 0.036 mg cm-2, and grass had lowest Cw of 0.007 mg cm-2. Trees had 

highest Cdm of 0.0056 mg cm-2, and sugar beet had lowest Cdm. Grass had highest Cs of 

0.39, and corn had lowest Cs of 0.11. Tree had highest Cca of 21.80 ug cm-2, and potato 

had lowest Cca of 7.32 ug cm-2. Corn had highest LAI of 4.70, and potato had lowest 

LAI of 1.79. Sugar beet had highest LIDFa of 0.589, and corn had lowest LIDFa of -

0.136.  
 
Table 4.Modelled representative vegetation parameters of sugar beet, corn, grass, potato and tree. 

(RMSE: root mean square error) 

 

Parameters Sugar beet Corn Grass Potato Tree 

Cab (ug cm-2) 26.23 65.36 17.32 21.96 60.15 

Cw (mg cm-2) 0.035 0.036 0.007 0.021 0.031 

Cdm (mg cm-2) 2.22E-14 0.0042 0.0022 1.19E-08 0.0056 

Cs (fraction) 0.13 0.11 0.39 0.19 0.14 

Cca (ug cm-2) 7.68 20.39 7.77 7.32 21.80 

N 

(dimensionless) 1.5 1.5 1.5 1.5 1.5 
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LAI 3.32 4.70 3.26 1.79 4.22 

LIDFa 0.589 -0.136 -0.035 0.211 0.030 

LIDFb -0.12 -0.57 -0.67 -0.45 -0.62 

RMSE (mod-

meas spectra)  0.015 0.017 0.029 0.020 0.021 

 

5.1.2. Modelled SIF spectrum and comparison at noon 

After having vegetation parameters of different vegetation covers and weather data 

from flux tower, SIF spectrum of different vegetation types can be modelled from 

SCOPE model for 6 pixel samples per vegetation type. Results were presented in 

Figure 14.  
  

 

Figure 14.SIF simulation of Tree, Sugar beet, Corn, Grass, Potato and from SCOPE model. 

 

For SIF at 680 nm, SIF value from highest to lowest are sugar beet, potato, grass, tree 

and corn. For SIF at 760 nm, SIF value from highest to lowest are sugar beet, corn, 
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tree, potato and grass. Tree and potato have relatively large variability in modelled SIF 

spectrum between each pixel, while corn, sugar beet and grass have relatively small 

variability in modelled SIF spectrum between each pixel. 

 

Comparison between measured and modelled SIF data can be made at 680 nm and 760 

nm. Figures below compare modelled and airborne measurement SIF data of five 

vegetation types at two wavelength respectively. 

 
 

 
Figure 15.Comparison between measured SIF data by HYPLANT and modelled  SIF data at 680 

nm. 

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.4 0.6 0.8 1 1.2 1.4 1.6

M
O

D
EL

LE
D

 S
IF

[M
W

 M
-2

 N
M

-1
 S

R
-1

]

MEASURED SIF[MW M-2 NM-1 SR-1]

Corn Grass Potato

Sugarbeet Tree Y=X



25 

 

    
Figure 16.Comparison between measured SIF data by HYPLANT and modelled SIF data at 760 

nm. 

 

For comparison at 680 nm in Figure 15, measurements data of sugar beet are from 0.85 

to 1.45 mW m-2 um-1 sr-1, while most modelled result of sugar beet are near 0.7 W m-2 

um-1 sr-1. Measurements data of potato are from 0.8 to 1.6 W m-2 um-1 sr-1, while 

modelled SIF of potato are near 0.65 W m-2 um-1 sr-1. Measurements data of grass are 

from 0.55 to 1.5 W m-2 um-1 sr-1, while modelled SIF of grass are near 0.6 W m-2 um-1 

sr-1. Measurements data of tree are from 0.45 to 0.9 W m-2 um-1 sr-1, while modelled 

SIF of tree are near 0.45 W m-2 um-1 sr-1. Measurements data of corn are from 0.7 to 

1.15, while modelled SIF of corn are near 0.45 W m-2 um-1 sr-1. Variations of measured 

SIF are wider than modelled SIF. 

 

In comparison at 760 nm in Figure 16, results plot at 760 nm have more obvious 

patterns to distinguish different vegetation types than at 680 nm. However, the 

variations of measured SIF are also wider than modelled SIF. Measurements data of 

sugar beet are from 1.17 to 1.67 W m-2 um-1 sr-1, while most modelled result of sugar 

beet are near 1.2 W m-2 um-1 sr-1. Measurements data of potato are from 0.67 to 1.17 W 

m-2 um-1 sr-1, while modelled SIF of potato are near 0.75 W m-2 um-1 sr-1. Measurements 

data of grass are from 0.7 to 1.2 W m-2 um-1 sr-1, while modelled SIF of grass are near 

0.75 W m-2 um-1 sr-1. Measurements data of tree are from -0.3 to 0.47 W m-2 um-1 sr-1, 

while modelled SIF of tree are near 1 W m-2 um-1 sr-1. Measurements data of corn are 

from 1.17 to 1.47, while modelled SIF of corn are near 1.2 W m-2 um-1 sr-1.    

 

For both wavelength and all vegetation types, variations of modelled SIF are smaller 

than measured SIF.  
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5.1.3. Modelled SIF spectrum and comparison at multi-time in one day 

SIF of different land covers at different time (local time: 11:56, 13:50, and 16:05) have 

been modelled. Figure 17 are the results of modelled SIF spectrum of different land 

covers. It shows that at time 2 (13:50), SIF values are highest, and at time3 (16:05) SIF 

values are lowest for all land cover types. The reason could be the differences of short 

wave irradiance for different local times.  

The high irradiance at 13:50 result in relatively high SIF at two peaks, while the low 

irradiance at 16:05 result in relatively low SIF at two peaks. 
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                                                                                     (e) 

Figure 17.SIF spectrum of 6 pixels in corn (a), grass (b), sugar beet (c), potato (d) and tree (e) at 

three local time (time1, 11:56 with black color; time2, 13:50 with green color and time3, 16:05 with 

blue color). 

                                                                    

 

Figure 18 shows SIF spectra of all five land covers together, one graph for each local 

time. It can be seen that the shape of the spectra are similar at different local times. 

Sugar beet have higher position, and peak ratio (F760/F685) of trees and corn is higher 

than that of grass and potato. 
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                                                                          (c) 

Figure 18.SIF spectrum of 6 pixels in 5 land cover at 3 local time: time1, 11:56 (a); time2, 13:50 (b) 

and time3, 16:05 (c).  

 

Linear relations between modelled SIF by SCOPE and HYPLANT measurement SIF at 

680, 760 nm were made for all 30 pixels (6 pixels per land cover type) at multiple times 

in one day, which are 11:56, 13:50 and 16:05 of local time.  

 

For SIF at 680 nm, linear relations between measurement SIF data and simulation SIF 

data were plotted at different time in Figure 19. Correlation coefficients of linear 

relations below are 0.0332, 0.2932 and 0.0695 for local time 11:56, 13:50 and 16:05 

respectively. Linear relations are not obvious in this case. 
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                                                                         (c) 

Figure 19.Linear relations between measured and modelled SIF at 680 nm at 3 times of the day: 

11:56 (a); 13:50 (b) and 16:05 (c). 

For comparisons of SIF at 760 nm, linear relations between measured SIF and 

simulated SIF data were also plotted at different time for 24 pixels (6 pixels per land 

cover type) in Figure 20. In this case, measured SIF data of trees were excluded, 

because of the occurrence of some (physically impossible) negative values for 

measured fluorescence. Correlation coefficients of linear relations are 0.63, 0.55 and 

0.82 for local time 11:56, 13:50 and 16:05 respectively. Linear correlation coefficients 

at 760 nm are larger than correlation coefficients at 680 nm. Linear relations are 

relatively obvious in this case, especially at local time 16:05 with correlation 

coefficient of 0.82. 

   
(a)                                                                 (b) 

y = 0.0896x + 0.6604
R² = 0.0695

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

-0.5 0 0.5 1 1.5m
o

d
le

d
 S

IF
 a

t 
6

8
0

 a
t 

1
6

:0
5

[m
W

 m
-2

 n
m

-1
 s

r-
1

]

MEASURED SIF [mW m-2 nm-1 sr-1]

y = 0.7554x + 0.5312
R² = 0.6299

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 0.5 1 1.5 2

M
O

D
EL

LE
D

 S
IF

 A
T 

7
6

0
 A

T 
1

1
:5

6
[M

W
 M

-2
 N

M
-1

 S
R

-1
]

MEASURED SIF11:56[MW M-2 NM-
1 SR-1]

y = 0.8801x + 0.2949
R² = 0.5464

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 0.5 1 1.5 2

M
O

D
EL

LE
D

 S
IF

 A
T 

7
6

0
 A

T 
1

3
:5

0
[M

W
 M

-2
 N

M
-1

 S
R

-1
]

MEASURED SIF13:50[MW M-2 NM-
1 SR-1]



30 

 

 
                                                                             (c) 

Figure 20.Linear relations between measured and modelled SIF at 760 nm except trees at 3 local 

time: time1, 11:56 (a); time2, 13:50 (b) and time3, 16:05 (c). 

 

 

 

5.2. Result of simulation and comparison for transient area 

A transient area of adjacent pixels which have relatively obvious trend of decrease of 
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compare with measurement to check if modelled SIF can represent the measured 

changing trend.  

5.2.1. Vegetation parameters  
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Figure 21. Vegetation parameter changing trend in transient area for Cab, Cw, Cs, Cdm, Cca and LAI. 

5.2.2. SIF spectrum simulation in transient area 

SIF spectra of these 18 pixels were modelled by SCOPE with different vegetation 

parameters group for each pixel. Spectra from modelling results are shown in Figure 

22. From pixel no.1 to no.18, SIF at 760 nm have a trend of small extent decrease. SIF 

at 680 nm remains nearly the same from pixel no.1 to no.18. 
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5.2.3. Contrast between modelled and measured SIF in transient area 

 

Figure 23 and Figure 24 show the modelled and measured SIF at two peaks versus 

pixel number for 18 pixels.   

 

Comparisons between modelled SIF by SCOPE model and HYPLANT measured SIF 

are plotted at 680 nm in Figure 23. From Figure 23, the extent of variation of 

measurement SIF at 680 nm are from 0.1 to1.9 W m-2 um-1 sr-1, while extent of 

variation of simulated SIF at 680 nm are from 0.86 to 0.94 W m-2 um-1 sr-1.  

 

 
 

Figure 23.Comparison of modelled and measured SIF of transient area at 680 nm. 
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Figure 22. Modelled SIF spectrum by SCOPE for 18 pixels in transient area. 
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Comparisons between modelled SIF by SCOPE model and HYPLANT measured SIF 

are plotted at 760 nm in Figure 24. From Figure 24, the extent of variation of 

measurement SIF at 680 nm are from 1.15 to 2.2 W m-2 um-1 sr-1, while extent of 

variation of simulated SIF at 680 nm are from 1.6 to 1.8 W m-2 um-1 sr-1.  

 

 

                                                                           

Figure 24.Comparison of modelled and measured SIF of transient area at 760 nm. 

 

 

 

 

 ANALYSIS  

6.1. Systematic error 

 There can be random errors and systematic errors for model results. If the model has 

some deficiencies, systematic errors may come to result. In this case, systematic error 

could appear in the simulated result of all vegetation types. During vegetation 

parameters retrieval process, calibration of model was done by minimize differences 

(Root mean square error, RMSE) between measured and modelled reflectance 

spectrum. Difference of simulated and measured spectrum of one pixel in sugar beet is 

in Figure 25. Normally, RMSE in result of each pixel was approximately 0.014.  
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Figure 25.Simulation result of one pixel of sugar beet. 

 

 

 

 

Figure 26.Spectral differences between measured and modelled reflectance of each 6 pixels in sugar 

beet, tree, grass, potato and corn. 
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pixel samples. The possible reason of this systematic error, could be either model 

deficiencies or uncertainties in the processing of measurements, such as atmosphere 

correction of reflectance. Obviously it is water vapor absorption band in the blue 

region. Then another possible explanation is that water vapor’s atmospheric correction 

has some uncertainty in this reflectance data. Further study is needed. 

6.2. SIF’s spatial variability feature in HYPLANT  

6.2.1. SIF’s variability feature in HYPLANT of different vegetation types 

SIF data in HYPLANT include two wavelength which are 680 and 760 nm. From the 

view of relatively large spatial scale, SIF data of image from HYPLANT have obvious 

variability with different vegetation types. In Figure 27, SIF data’s distribution for 

different vegetation types (grass, corn, potato and sugar beet) were made at 680 and 

760 nm with subclass2 of dataset 1. In Subclass 2, corn, tree, grass, sugar beet and 

potato have 418 pixels, 240 pixels, 504 pixels, 672 pixels and 192 pixels respectively. 

This subclass data are used to analyze variability of SIF for different land cover.  
 It can be concluded that SIF of these vegetation types have some specific distribution 

features in the plot, especially for sugar beet. 

 

Data of SIF from tree were included with other vegetation types together in Figure 28. 

It can be seen that SIF distributions of tree have some overlap with grass, corn and 

potato, especially with corn. 
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Figure 27.HYPLANT SIF data’s distribution for different vegetation types (grass, corn, potato 
and sugar beet) at 680 and 760 nm. 
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6.2.2. SIF’s variability feature in transient area in HYPLANT 

 

 

Measured SIF data at 760 nm show rather large spatial variability at small spatial scale 

(adjacent pixels of 1 m resolution). The corresponding changing trend of SIF at 680 can 

be shown by comparing SIF changing trend at 760 nm and at 680 nm. 

 

In Figure 29, SIF data at 760 nm and 680 nm were plotted, and pixel were sorted in 

descending order of SIF at 760 nm with subclass2 of dataset2. In Subclass 2, 348 pixels 

with relatively obvious changing SIF at 760 nm inside sugar beet field were chosen. 

After sorting, SIF at 760 nm have obvious drop from 2.8 to 1.6 mW m-2 um-1 sr-1, while 

SIF at 680 nm have frequent fluctuations and do not have obvious variation trend. It 

can be concluded that changing trend of SIF at 680nm are different from changing 

trend of SIF at 760nm. 

 

                                                                                                 

Figure 28.HYPLANT SIF data’s distribution for different vegetation types (grass, corn, potato, 
sugar beet and tree) at 680 and 760 nm. 
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6.3. Analysis of comparison results  

6.3.1. Analysis of comparison results for different vegetation types  

From results in Modelled SIF spectrum and comparison at noon5.1.2, it is clear that 

variations of modelled SIF are smaller than measured for general situation both at 680 

and 760 nm. Also, there are differences of modelling result for multiple vegetation 

types. 

For comparisons of SIF at 680 nm, linear relations were built for different vegetation 

types to check effects of simulation results. Linear correlation coefficients are 0.20, 

0.75, 0.61, 0.21 and 0.10 respectively for corn, grass, potato, sugar beet and tree.  

Relations for grass with relatively high coefficient were resented in Figure 30. It can 

also be seen that modelled SIF can present similar trend with measured SIF at 680 nm 

for samples of grass, but the variations of modelled SIF are much lower than measured. 

For comparisons of SIF at 760 nm, linear relations were also built for different 

vegetation types to check effects of simulation results. Linear coefficients are 0.87, 

0.31, 0.01, 0.02 and 0.97 respectively for corn, grass, potato, sugar beet and tree.  

Relations for tree with relatively high coefficient were resented in Figure 31. It can be 

seen that modelled SIF can present very similar trend with measured SIF at 760 for 

samples of tree, but again the variations of modelled SIF are also much lower than 

measured. 

 

0.0000

0.5000

1.0000

1.5000

2.0000

2.5000

3.0000

0 20 40 60 80 100 120 140

SI
F 

(m
W

 m
-2

 u
m

-1
 s

r-
1

)

Numble of pixels

SIF at 760nm(mW m-2 um-1 sr-1)

SIF at 680nm(mW m-2 um-1 sr-1)

Figure 29.HYPLANT SIF data’s distribution for transient area (sugar beet) at 680 and 760 nm. 



38 

 

 

 

Figure 30.Relation between modelled and measured SIF at 680 nm for grass. 

 

 

Figure 31.Relation between modelled and measured SIF at 760 nm for tree. 

 

6.3.2. Analysis of comparison results for transient area 

From results in Modelled SIF spectrum and comparison at noon5.2.3, variations of 

modelled SIF in transient area are smaller than measured both at 680 and 760 nm. 

However there are some similar trend between the curve of measured and curve of 

modelled SIF both at 680 nm and 760 nm with 18 samples from sugar beet. This can be 

seen when plotting the simulated and measured data over the transient each on a 

different y-axis. 

 

For comparisons of SIF at 680 nm in transient area, comparison was built for to check 

effects of simulation results. From Figure 32 and Figure 34, it can be concluded that the 

variations of modelled SIF are much lower than measured, and linear relation between 

measured and modelled SIF is low. 

 

For comparisons of SIF at 760 nm in transient area, comparison was also built for to 

check the effects of simulation results. In Figure 33 and Figure 34, it can be seen that 

modelled SIF can present some more obvious similar changes with measured SIF at 

760nm than modelling at 680 nm, also the linear relation is more obvious. But the 

variations of modelled SIF are still much lower than measured. 
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Figure 33.Relation between modelled and measured SIF of transient area at 760 nm. 
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(a)                                                                          (b) 

Figure 34. Correlations between measured and modelled SIF at 680 (a) and 760 nm (b). 

       

 CONCLUSION AND 

RECOMMENDATIONS 

7.1. The added value of fluorescence  

 

Nearly all the modelled SIF are different with HYPLANT measurements at 680 and 

760 nm. Correlation coefficients between modelled and measured SIF for general cases 

are lower than 0.7. Correlation coefficients at 680 nm are lower than Correlation 

coefficients at 760 nm for most situations. Generally, SIF modelling at 760 nm have 

better performance than SIF modelling at 680 nm. Still, it can be concluded that 

measured and modelled fluorescence have low linear relations, especially for SIF at 

680 nm.  

 

Variations of modelled SIF are smaller than measured for general situation both at 680 

and 760 nm. Only in some cases, modelled can represent similar changing trend with 

measured SIF. So measured SIF are more sensitive to plant than modelled SIF from 

reflectance. Variations of fluorescence signal can represent changes in vegetation 

growing condition, based on relation between fluorescence and GPP for example (Luis 

Guanter, Zhang, Jung, Joiner, Voigt, et al., 2014). Large variations of SIF may result 

relatively more variations in GPP. Then additional information in GPP can be indicated 

by using measured fluorescence in theory.   

 

Because of low relations between modelled and measured SIF, especially for SIF at 680 

nm, additional information of measured SIF are not easy to be obtained by modelled 

SIF from reflectance. 

 

Therefore the added value of SIF can be concluded as follow: 
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SIF are unique compared to reflectance data. 

SIF are more sensitive to plant than reflectance, and it can provide more additional 

information about Vegetation conditions, such as GPP of plant. 

 

7.2. Spatial variability feature of SIF in HYPLANT data 

For different vegetation types, there are certain and specific distribution features for 

different land covers in SIF plot (SIF at 680 nm versus SIF at 760 nm), especially for 

sugar beet. But tree’s SIF distributions in the plot have some overlap with grass, corn 

and potato. 
 

For transient area, SIF at 760 nm have big decrease after sorting while SIF at 680 nm 

remain frequent fluctuations in random way. It can be analyzed that SIF at 680nm and 

760nm do not have similar changing trend, in this case. 

 

7.3. Recommendations 

In this research, Systematic errors were found in vegetation parameter retrieval process 

which may bring errors to SIF simulation through vegetation parameters. The reason 

could be either model deficiencies or uncertainties in the processing of measurements, 

such as atmosphere correction of reflectance.   

 

Vcmo which can have influences in photosynthetic efficiency, were kept at default value 

in this research because of lack of measurements of Vcmo. This may reduce accuracy in 

SIF simulation results. 

 

So for further researches, there are two issues needed to pay attention which are 

possible ways to reduce systematic errors of vegetation parameters retrieval and 

parameter Vcmo’ effects to SIF simulation.  
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