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ABSTRACT 

Estimating the influence of soil moisture on geothermal anomalies in remotely sensed thermal infrared data can be a 
worthwhile pursuit in reconnaissance stage of geothermal energy exploration. Such an activity can assist in making 
informed decisions while selecting suitable sites for preliminary survey. 
 
Previous studies have examined the effects of topographic slope, albedo, thermal inertia, altitude, sun's heating 
effects on geothermal anomaly detection. Ways have been found to minimize the number of false anomalies in order 
to highlight the radiation emitted from geothermal surfaces. However, the effects of soil moisture, especially the 
changes in emissivity due to variation in soil moisture in sub pixel geothermal anomalies have been poorly 
understood so far.  
 
This study focused on creating a synthetic model for sub-pixel and soil moisture related thermal anomaly detection 
using measured and remotely sensed soil information as input. Two types of soils were measured spectrally in dry 
and wet conditions in the laboratory using an FTIR to extract their emissivity values and later resampled to the 
ASTER TIR wavelength of 8 to 12µm range. The extreme cases of dry and wet soil emissivity values were used 
together with Planck's function in the Synthetic Model with a number of remote sensing techniques to generate 
surface temperature anomaly detection plots. In the model 16 combinations of dry and wet soils were tested 
associated with temperatures of anomalous and background areas. Additionally, remote sensing datasets of ASTER 
were correlated with soil moisture data from ASCAT Metop satellite to see whether there was relation between 
modelled and real-time soil moisture while detecting thermal anomalies. 
 
The lab measurements showed that in general emissivity of soils (sandy loam and loam) increases with moisture 
content. The variation is higher in the reststrahlen bands as compared to the 11-12µm. Moreover, loam soil showed 
slight increase in emissivity after further drying out, possibly due to formation of cracks on the surface of the soil.  
 
From the synthetic model investigations of the soil moisture related thermal anomalies, it was deduced that the best 
detection rates are achieved when the anomalous pixel (high temperature) is covered by saturated soils (high 
emissivity) and the background (low temperature) with dry soils (low emissivity). This is because surface emitted 
radiance contrast between the anomalous pixel and the background pixels are developed clearly in order to be 
detectable. The lowest thermal anomaly detection rates are expected with the reversal of scenario when the 
anomalous pixel is covered with dry state of soil and the background with wet soil. It was also found from the 
modelling results that night time conditions are clearly suitable for thermal anomaly detection compared to day time. 
The ASTER sensor noise had little effect on anomaly detection. 
 
By comparing remotely sensed soil states between known geothermal (anomalous) and non-geothermal (background) 
regions in Yellowstone Park (USA), helped in understanding modelled detection levels. Time series analysis of 7 
cloud free day and night ASTER scenes and ASCAT Metop soil moisture remote sensing data showed that the 
highest surface temperature anomalies are observed during the lowest relative soil moisture states in night time 
images. Relatively dry conditions over both geothermal and background area elevates the thermally emissive areas' 
emitted radiance with respect to not so emissive background area. However, when the background and anomalous 
pixels are equally wet, there is less emitted radiance contrast between the background and anomalous pixels 
compared to when the conditions are dry. The spectrally emitted surface radiance differences between anomalous 
and background area were found to be higher in night time than in day time, supporting the modelled result that 
night time images are better suited for detecting geothermal anomalies. The synthetic model results can be 
extrapolated to remote sensing results because the input parameters for the synthetic model are based on realistic 
temperatures and emissivities. The uncertainties are quite large with remote sensing data analysis as the time of 
acquisition of Soil Moisture and TIR data by ASCAT and ASTER have differences of more than 5 hours in addition 
to disparity in spatial resolutions of 25 km and 90 m respectively. Moreover, uncertainties are compounded due to 
the fact that soil moisture states are quite dynamic processes affected by subtle fluctuations in meteorological, 
hydrological as well as land processes such as geothermal activities, amongst others.  
 
This study showed that the best time to look for geothermal anomalies in remotely sensed ASTER TIR data is 
during clear cloud free night time skies with low soil moisture states. However, if there is possibility to identify 
separately the soil moisture conditions of anomalous and background area, then the best thermal anomaly detection 
rates are expected when the anomalous pixels are saturated with soil moisture with high temperature and the 
background pixels completely dry with low temperature. 
 
Key words: Geothermal Anomalies, Sub-pixel, Soil Moisture, Emissivity, Land Surface Temperature, Emitted Radiance, Thermal 
Infrared, Remote Sensing, Thermal Anomalies, FTIR, ASTER, ASCAT Metop, Synthetic data model   
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1. INTRODUCTION 

1.1. The Greater Context 

 

Geothermal energy stored within the earth can be considered a boon as well as a bane. A boon because 

the abundant geothermal heat energy can be used together with other renewable sources such as 

hydropower, solar, wind, biomass, tidal energy to meet the energy demands in various parts of the world. 

Additionally, many non-renewable energy resources are progressing towards exhaustion and due to that 

there is a compelling need to shift the focus on renewable sources of energy. More importantly, the need 

for renewables is pressing because polluting sources such as fossil fuels are one of the main factors for the 

alarming rise in green house gas emissions which in turn aggravates climate change. The Dec. 2015 

historic agreement among nations of the world in Paris Climate Conference – COP 21 (UNEP, 2015) is 

an example of how committed the world is in mitigating climate change. A bane because the same source 

of sub surface heat energy can sometimes cause disastrous consequences in the form of volcanic hazards 

(Abrams et al., 2015). Since most of the geothermal sources around the world are in some way associated 

with volcanic hot spots, therefore geothermal sources can also indirectly hint towards volcanic hazards. 

 

Geothermal energy exploration begins with pinpointing locations of geothermal anomalies. Identifying 

geothermal surface anomalies in remote sensing datasets could be a logical step towards geothermal 

resource exploration. Remote sensing provides a better overview for early stage of prospecting compared 

to a person on the ground with limited field of view. Particularly with remote sensing, temperature 

anomalies associated with geothermal features are the prime target for an energy explorer, in addition to 

classifying mineralogical anomalies. Based on thermal anomaly maps together with ancillary information, 

field teams can equip themselves to concentrate on a narrow zone of survey for further ground based 

exploration.    

 

Geothermal anomalies in remote sensing datasets can be influenced by external factors such as sun’s 

heating effects, atmospheric conditions and land surface states. Some external components such as sun’s 

heating effects have been studied in the past and ways have been found to minimize their undesirable 

effects. However, the effects of land surface states, particularly the effects of soil moisture on geothermal 

anomalies have not been clearly studied yet. Therefore this study scrutinizes the effects of soil moisture 

and its implication on geothermal surface anomalies with the aid of remote sensing techniques. This study 

also includes spectral measurements of dry and wet soils in the lab. The lab results are then integrated into 

a synthetic data model for analyzing the influence of soil moisture in anomaly detection. Remote sensing 

satellite datasets are also examined for possible clues to soil moisture affected geothermal anomalies.   

1.2. Geothermal Anomalies 

 

Definition of geothermal anomalies 

Geothermal surface anomalies have been described by various studies in different ways. In this study 

geothermal surface anomalies are described as temperature related anomalies which are associated with 

geothermal features such as hot springs, geysers, hot grounds and fumaroles on the surface of the earth 

following the description by Haselwimmer & Prakash (2013). Generally, the locations of these geothermal 

anomalies are characterized by higher temperature or heat emissions with respect to its surrounding.  
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Genesis of geothermal anomalies 

Geothermal surface anomalies are surface expressions of sub-surface heat energy of the earth. This heat 

energy finds its way through gaps in between plate boundaries; particularly near intra-plate hotspots, 

convergent, divergent (Heasler et al., 2009) and transform plate margins. Normally, geothermal 

temperature gradient is around 25-30°C/km on the Earth’s crust but in places near the plate margins they 

can be as high as 150°C/km (van der Meer et al., 2014). Heat energy from inside reaches the surface by a 

series of convection and conduction mechanisms. Moreover, there is a sub-surface interaction of heat, 

fluids and rock which ultimately manifests itself on the surface in the form of geothermal surface 

manifestations such as hot springs, geysers, steam vents, hot grounds and mud pots. These geothermal 

features exhibit gases as well as fluids in combination with heat (Haselwimmer & Prakash, 2013) on the 

surface which is recognized as characteristic features of geothermal systems. Some of the examples of 

geothermal locations around the world are Yellowstone National Park (YNP) in the United States, parts of 

Indonesia and East African rift. 
 

Applications of geothermal anomalies 

Apart from aesthetic reasons, there are two other rationales for studying these intriguing natural 

phenomena. Firstly, in geothermal prospecting, identifying geothermal surface anomalies with remote 

sensing techniques is a pragmatic step towards geothermal resource identification (Haselwimmer & 

Prakash, 2013; Reath & Ramsey, 2013). During preliminary phase of geothermal energy exploration, 

locating potential sites for further ground based surveys and exploration can save cost (Haselwimmer & 

Prakash, 2013), effort and time. 

The second reason for locating geothermal surface anomalies via space based remote sensing is for hazard 

monitoring. Monitoring geothermal surface anomalies can potentially hint towards abnormal sub-surface 

magmatic activities or impending hazards associated with volcanic-geothermal systems. In effect, 

geothermal anomalies have the potential of raising an early warning signal (Dehn et al., 2002; Pergola et al., 

2009; Pieri & Abrams, 2005; Vaughan & Hook, 2006; Wessels et al., 2013). 
 

Remote sensing of geothermal anomalies 

In order to map geothermal surface anomalies, remote sensing has been used widely for a number of 

decades. The primary advantage of using remote sensing techniques has been to lessen the cost and effort 

for ground based surveys in large and inaccessible locations for geothermal prospecting(Calvin et al., 

2005). Especially thermal infrared (TIR) remote sensing has been used for mapping geothermal surface 

temperature, heat flux and mineral anomalies (Coolbaugh et al., 2007; Haselwimmer & Prakash, 2013). 

The TIR range between 8-14 µm is particularly useful because of the following three reasons. 1) there is a 

good atmospheric window in this range for remote sensing of terrestrial features, 2) the peak radiation of 

terrestrial objects with temperatures between -66 °C to less than 100 °C occurs in this 8-14µm wavelength 

range, 3) many minerals such as quartz and feldspars with exception of clay minerals have diagnostic 

features in the 8-14µm wavelength region which helps to identify the kind of material a surface is made of 

(Gupta, 2003). A particularly well suited application of remote sensing has been to map surface thermal 

anomalies associated with finding geothermal resources for energy development. A lot of work has been 

done in the US using aerial photographs and satellite imagery for geologic and thermal anomaly mapping 

respectively for geothermal energy exploration (Moore et al., 2006).  

 
 

Applications of airborne remote sensing 

Pioneering studies were done in the 70’s with airborne remote sensing, notably thermal infrared (TIR) 

remote sensing. TIR remote sensing is uniquely applicable for geothermal surface anomaly mapping 

because it can help to detect surface temperature anomalies, heat flux anomalies and for mineral indicators 
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associated with geothermal systems (Haselwimmer & Prakash, 2013). Thermal anomaly mapping was used 

in selecting sites for further geothermal prospecting and exploration. The results of TIR remote sensing 

were coupled with conventional ground based methods such as magnetic, gravity and ground temperature 

measurements to validate the feasibility of airborne remote sensing. Costs for exploring potential 

geothermal resources were cut down as the number of possible sites for drilling was reduced after applying 

air borne TIR remote sensing (Hochstein & Dickinson, 1970; Hodder, 1970). Decades later after much 

advancements in sensor technologies, high resolution (3m) TIR remote sensing was used to map 

geothermal surface temperature anomalies within the wavelength range of 8.4 – 11.6 µm (Mongillo, 1994)  

This wavelength range is interesting because it used in sensing the surface emitted energy (Kuenzer & 

Dech, 2013). TIR remote sensing technique also successfully identified and mapped previously unknown 

geothermal hot spots. Results showed close match with ground measurements (Mongillo, 1994).  

 
Applications of satellite remote sensing  

High resolution (<5m) TIR airborne sensors are ideal for mapping and monitoring geothermal surface 

anomalies as the sizes of geothermal features are relatively small compared to the background. Moreover, 

the temperature differences may not be very high either (Haselwimmer & Prakash, 2013). However, due 

to constraints in cost, spatial extent and temporal coverage freely available satellite sensors with TIR 

capabilities are preferred.  

Satellite remote sensing has been used extensively in numerous studies for mapping geothermal resources 

and also for monitoring activities. Land Surface Temperature (LST) is a common indicator for many 

geothermal-volcanic studies (Li et al., 2013; Tianyu et al., 2012). In China a research was carried out using 

Landsat ETM+ TIR data to calculate the LST of a geothermal area using the single channel algorithm. 

The temperature of the background region was deducted from the temperature of the geothermal feature 

to analyze the temperature anomaly (Qin et al., 2011).  

 
Issues of false positives 

In spite of many studies with TIR remote sensing the identification of geothermal surface anomalies are 

not so straightforward. The main reason is the contamination of geothermal heat with other sources of 

heat energy, especially sun’s heating effects. In order to isolate the effects of sub-surface geothermal heat 

in remotely sensed satellite images external effects of non-geothermal sources otherwise called false 

positives have to be discarded (Coolbaugh et al., 2007). To quantitatively characterize geothermal surface 

anomalies, two indicators are generally used namely, geothermal heat flux (GHF) (Vaughan et al., 2012)  

and surface (skin) temperature (Coolbaugh et al., 2007). In using either of the indicators the intention is to 

eliminate the predominant effects of other sources of heat and focus on geothermal related anomalies. 

Although there have been a number of studies related to false positive elimination in the context of 

remote sensing of geothermal exploration and volcano-geothermal monitoring, only some of them are 

listed here for the sake of focusing on the most relevant false positives pertinent to this research.  

 

i) Topographic effects (Gutiérrez et al., 2012; Coolbaugh et al., 2007) 

ii) albedo effects (Coolbaugh et al., 2007), 

iii) thermal inertia effects (Coolbaugh et al., 2007), 

iv) soil moisture and vegetation effects (Coolbaugh et al., 2007). 
 

 

The following sections outline specific studies which tackled some of the false positives and the 

limitations of their study. 
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Studies related to surface temperature anomalies and their strengths 

In a study carried out in Nevada, US, Coolbaugh et al. (2007) used ASTER TIR (90m) satellite data to 

determine the surface temperature anomalies associated with geothermal features by minimizing a number 

of false positives. Specifically, the false temperature anomalies associated with day and night heating of the 

sun such as effects of albedo, thermal inertia, topographic slope, and emissivity were dealt with. A DEM 

was used to rectify the temperature effects caused due to topographic slope. For correcting the 

temperature effects produced due to albedo, they utilized the visible and near infrared bands of ASTER. 

Thermal Inertia is dependent on three factors, thermal conductivity, density and heat capacity of an object 

(Elachi & Zyl, 1987). Coolbaugh et al. (2007) minimized the effects of thermal inertia by taking the 

average temperature of day and night derived from the surface kinetic temperature product of ASTER and 

by calibrating it with the in situ temperature measurements taken on the ground. Emissivity does not 

depend on temperature but its value is affected by the properties of the material such as variations in soil 

moisture, changes in land cover. It is also dependent on wavelength (Kuenzer & Dech, 2013). In the study 

by Coolbaugh et al.(2007) temperature corrections were taken care by ordering the AST_08 surface kinetic 

temperature product and by comparing it with ground measurements of temperature to see whether the 

deviations were within the acceptable limits (Coolbaugh et al., 2007). AST_08 applies the Temperature 

Emissivity Separation (TES) algorithm which is based on 5 TIR bands of ASTER.  

A similar study (Gutiérrez et al., 2012) was carried out in Chile, South America in a geothermal area in the 

Andes mountain range which built on the methodology of Coolbaugh et al., (2007). In addition, they 

looked at the factor of temperature variations due to elevation as a false positive. Gutiérrez et al., (2012) 

came up with a modelling technique to account for the temperature changes by corrections involving 

ground measurements. 
Limitations of the study 

Although, the methodology followed by Coolbaugh et al. (2007) minimized the false positives and was 

able to highlight the contributions of geothermal surface anomalies, still the effects of soil moisture was 

ignored as it was a relatively dry area. This effect cannot be neglected in areas where the effects of soil 

moisture and vegetation are substantial (Haselwimmer & Prakash, 2013). As a consequence, important 

components from the energy balance equation such as sensible heat and latent heat were ignored and the 

equation was simplified in this study (Coolbaugh et al., 2007). In addition the soil moisture content was 

described as causing cooler temperature effects relatively without quantification.  

 
Study related to geothermal heat flux mapping and their strengths 

Researchers from USGS and Yellowstone National Park (Vaughan et al., 2012) worked with a 

combination of higher spatial resolution TIR satellite imagery of Advanced Spaceborne Thermal Emission 

and Reflection Radiometer (ASTER (90m)) and lower spatial but high temporal resolution of Moderate 

Resolution Imaging Spectroradiometer (MODIS (1km)) sensors. The specific purpose of using these 

sensors in Yellowstone was to monitor different kinds of geothermal areas by quantifying their geothermal 

heat flux and to determine any subtle thermal changes in their activity. MODIS time series data was used 

to visualize the seasonal thermal variations of background areas surrounding the geothermal features and 

ASTER data was used to estimate the geothermal heat flux of individual geothermal features and also of 

the whole area (Vaughan et al., 2012). This research made it possible to identify when a thermal anomaly is 

related to normal seasonal changes and when it can be related to geothermal activity, which is crucial 

information for long term geothermal and volcano monitoring studies.  
 

Limitations of the study 

Even though ASTER and MODIS were useful for this study the question of how long they would be 

operational is an urgent one; therefore new and alternative tools and sensors have to be utilized. Secondly, 

the decision of subjectively defining the background region with respect to the thermal region (Vaughan et 
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al., 2012) may have imported some biases while identifying geothermal anomalies. In this study visual 

comparison was the basis for defining the background region and was not based on any automated way.  
 

1.3. Research Problem 

This research focuses to understand the effects of soil moisture while detecting geothermal surface 

temperature anomalies with remote sensing techniques. It is not understood how soil moisture influences 

the emitted radiance in the 8 to 12 µm TIR range. Particularly, the effects of changes in emissivity caused 

due to variation in soil moisture have not been explored by previous studies in the context of geothermal 

surface anomaly detection. In the research mentioned earlier, the study areas were mostly situated in semi-

arid regions or the study was conducted in dry areas (Coolbaugh et al., 2007) where there was least effect 

of moisture. In a contrary situation when soil moisture has significant contribution, the essential sources 

of heat in the surface energy balance equation such as latent heat and sensible heat fluxes are active. 

Additionally, geothermal anomalies can usually be sub-pixel (Haselwimmer & Prakash, 2013) in size when 

compared to a 90m ASTER TIR pixel.  To deal with the issue of soil moisture impact, sub-pixel mixing 

and subjective background selection while detecting thermal anomalies associated with geothermal 

features, a synthetic data analysis is conducted with the support of remote sensing and modelling 

techniques. Additionally, this study also experimented with a sub-pixel linear spectral mixing analysis 

technique.  

 

By addressing the research problem, this study tried to find appropriate ways to detect geothermal surface 

anomalies with remote sensing techniques while taking into account emissivity effects caused due to soil 

moisture changes. The hypothesis is that soil moisture effects produces cooler anomalies (Coolbaugh et 

al., 2007). Effects of soil moisture could be fairly large in geothermal areas located in regions with 

prominent precipitation events. Therefore, one the overarching aims of this study was to examine 

geothermal anomalies with significant contributions of soil moisture in the top few centimetres of the 

surface.  
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1.4. General Objective:  

 
To examine and quantify the effects of  soil moisture in detecting geothermal surface temperature 

anomalies with remote sensing techniques 

 

 

 

 

 

1.4.1. Research Objectives and Research Questions 

 

1. To define a geothermal surface anomaly 

a) What are the typical sizes and temperature differences of  geothermal anomalies? 

 

2. To perform synthetic data analysis to simulate the effects of  soil moisture in detecting geothermal 

surface temperature anomalies 

a) Which parameters related to soil moisture can influence the geothermal anomaly detection? (e.g., 

emissivity, albedo, thermal inertia, latent heat flux etc.) 

b) What is the consequence of  satellite sensor noise levels on the detected results using synthetic 

data analysis? 

c) What are the differences in the day and night conditions? 
 

3. To analyze real remote sensing datasets to examine the effects of  soil moisture in detecting 

geothermal surface temperature anomalies 

a) What are the appropriate data sets and study areas for testing the results achieved from objective 

2)? 

b) What are the limitations and uncertainty level to the methods applied in the real data analysis? 

 

 

 

1.4.2. Outline and Structure of next chapters 

The structure and outline of chapters and sections are as follows. Chapter 2 begins with the data and study 

area description. Chapter 3 focuses on methods and results obtained from the thermal infrared 

measurements of dry and wet soils. Chapter 4 deals with the Synthetic data modelling. It is further broadly 

divided into two parts. Part A forms the core part of the model and Part B is an extension to the model. 

Chapter 4 finishes with the results associated with Part A and Part B. Chapter 5 includes methods and 

results of the time series analysis of remote sensing data to examine the effect of soil moisture in detecting 

geothermal anomalies. Chapter 6 focuses on discussion. The thesis ends with Chapter 7 and Chapter 8 

which are Conclusions of the study and Recommendations for further work respectively.
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2. STUDY AREA & DATA DESCRIPTION 

The aim of  the study area and data description is to collect relevant information for addressing the first 

research objective of  defining a geothermal surface anomaly and this chapter is about the study area and 

associated data descriptions. It is divided into two sub sections.  2.1 deals with the study area description 

and 2.2 explains the cataloged data for the study. 

 

2.1. Study Area: Yellowstone & Olkaria 

 

In order to quantify the sizes and temperatures of  thermal features and their surroundings two known 

geothermal locations namely Yellowstone (44°36′N, 110°30′W) in United States and Olkaria (0°46′ 6.70″S, 

36°21′2.32″E) in Kenya, East Africa were chosen. These two locations were chosen also based on the 

criteria that they represent two different climatic and geological settings. Yellowstone is part of  humid 

continental climate found within the temperate zone and Olkaria is situated along the equator within the 

tropics. Yellowstone geothermal areas are the result of  Intraplate Volcanism (Bergfeld et al., 2011) while 

the geothermal areas in Olkaria resulted from the East African Rift (Macgregor, 2015), an example of  a 

continental rift zone. The elevation near Yellowstone lake is 2399 m above sea level. Summer months in 

Yellowstone begin from June and last until September with the average high air temperature around 

19.1°C and the average low around 2.8°C. There are thunderstorms which occur around afternoon time 

during summer in Yellowstone (NPS, 2016). The average precipitation is 44 mm/day for the summer 

months (NOAA). The elevation near Lake Naivasha is 1884 m above sea level. The lake is close to Olkaria. 

Although Kenya falls within the tropical climate zone, the inland regions and higher altitudes make it more 

temperate type of  climate. January to March months are generally hot in Olkaria (Bank, 2016).   

To address the research objective of defining a geothermal surface anomaly, Airborne High Resolution 

Infrared data would have been ideal but due to inaccessibility of such data, information was collected from 

appropriate literature. Thermal areas present in Yellowstone National Park contain around 10,000 features 

whose temperatures range from a few tens of degrees Celsius to the boiling point temperatures ( ~ 94°C 

because boiling temperatures are lower at higher altitudes of Yellowstone). Their sizes range from some 

centimetres to 10’s of meters  (Vaughan et al., 2014). But typically in Yellowstone the thermal areas cluster 

together and form groups of thermal features. One of the examples is Upper Geyser Basin which is 

around 2.9 km2  formed by many smaller thermal features (Jaworowski et al., 2010). The surface 

temperature anomaly is the difference in temperature of anomalous thermal features to the background 

surrounding region associated with geothermal activity. Generally, geothermal areas are characterized by 

positive thermal anomalies. The temperature of an ASTER TIR pixel in Yellowstone show ranges above 

0°C to around 43°C in  the ASTER Satellite surface temperature image;  one of the hottest thermal areas 

are found in Sulfur Hills (Vaughan et al., 2014).  For areas in and around Olkaria Volcanic Complex in 

Kenya, the surface temperatures associated with hydrothermal activity was also found to be reaching 

around the boiling point of 94 °C at that altitude.  The sizes of geothermal anomalies here range in km., 

because these anomalies are found generally along faults or cracks or along volcanic rims which can be up 

to 10’s of km. Information regarding geothermal areas in the south part of the East Africa Rift Valley in 

Kenya was retrieved from Geothermal activity map of Olkaria and adjacent areas (Clarke et al.,1990). 
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Figure 1 Yellowstone National Park study area map. The map shows thermal areas in yellow colour overlaid on a hill 
shaded digital terrain model. The day and night common ASTER image boundary shown with a red polygon was 
used for background area delineation in Chapter4. The thermal area used in Chapter 5 for the times series analysis is 

demarcated by the blue coloured region with black outline. 

 
 

Figure 2 Olkaria Geothermal Region study area map. The map shows Olkaria Volcanic Complex outlined in orange 
square box overlaid on a hill shaded digital terrain model lying south of lake Naivasha. The thermal areas are marked 
in yellow colour. The area within the red polygon is the common boundary of day and night ASTER image. Olkaria 
Volcanic complex was used in Chapter 4 for background area digitization. 
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Yellowstone study area map in Figure 1 highlights the thermal areas in yellow colour. The source of 

thermal area is GIS data from Wyoming Sate Geological Survey (Ranz, 2015) website. The red outline in 

the map shows the overlapping areas of day and night ASTER satellite images. Within this overlapping 

boundary of ASTER image surface temperatures of thermal areas and their surrounding areas were 

analysed. Subsequently the background regions were digitized. The rationale for extracting surface 

temperatures from the surrounding background regions will be explained further in Chapter 4. 

For Olkaria, study area map shown in Figure 2, the thermal areas were digitized based on an old 

Geothermal map of Olkaria, Kenya from 1989 (Ledgard, 1989). This was the only reference map available 

for locating the thermal areas. However, it can be seen from recent satellite and Google Earth Imagery 

that most of the areas covered by thermal area on the 1989 map are now mostly occupied by geothermal 

power plants. Therefore the location of thermal features on the study area map in Figure 2 is uncertain.  

 

2.2. Data Description 

 

In order to assess the Land Surface Temperatures of the two geothermal areas in remotely sensed data in 

the thermal infrared wavelength range (8 to 12 µm) ASTER Satellite Images were chosen. ASTER stands 

out among all freely available space based sensors especially because of its 5 thermal (90m) bands 

including 4 visible-near infrared (15m) bands and 6 shortwave infrared (30m) bands (Abrams et al., 2015). 

With 5 thermal bands temperature and emissivity can be estimated using Temperature Emissivity 

Separation (TES) algorithm which provides information about thermal and compositional properties of an 

object on the ground (Gillespie et al., 1998). As a consequence, numerous studies were carried out to 

exploit ASTER’s unique capabilities and were successfully applied in geothermal exploration and a 

number of volcano monitoring studies (Abrams et al., 2015; Calvin et al., 2002; Davies et al., 2008; Eneva 

et al., 2007; Eneva et al., 2006; Eneva & Coolbaugh, 2009; Murphy et al., 2011; Vaughan et al., 2010; 

Vaughan et al., 2008).  

 

In this study three products of ASTER namely Surface Kinetic Temperature, Emissivity and Surface 

Radiance TIR were ordered from LPDAAC in order to quantify the surface temperature, emissivity and 

emitted radiance of surrounding background region and geothermal region. The In situ geothermal hot 

spot temperatures were also needed in order to quantify the sizes of geothermal surface temperature 

anomalies. GIS data of geothermal areas were useful in ascertaining the location of known thermal areas. 

Precipitation and relative soil moisture data were required to examine the relationship of soil moisture 

with thermal anomalies. In addition, emissivity measurements of dry and wet soil were also required for 

synthetic modelling purposes which will be described in detail in the next chapter. Table 1 shows the 

sources of Day and Night Satellite Land Surface Temperature, Land Surface Emissivity, Surface TIR 

Radiance, Daily Precipitation and Relative Soil Moisture Data. Table 1 also summarizes the source of 

information on In situ thermal area temperatures, Soil data and GIS data. For Yellowstone all the data 

types shown in Table 1 are applicable for the study but for Olkaria only Surface Kinetic Temperature and 

In situ hot spot temperatures were collected. The surface temperature and in situ hot spot temperatures 

for Olkaria were only used in Chapter 4 to extract background temperatures and anomaly detection 

respectively. Yellowstone data was used both in Chapter 4 and Chapter 5 for anomaly detection and time 

series data analysis respectively.  
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Table 1 Collected Data Summary associated with Yellowstone and Olkaria. Data Type is the column heading for 
name of the data, Data Code column stands for specific ASTER On demand product codes, Time Period column 
shows the time period of the data acquisition, the Location column shows the area of data acquisition, and the 
Service Provider column indicates the name of the agency which provided the data. 

Data Type Data Code Time Period Location Service Provider 

ASTER Surface 
Kinetic 

Temperature 
AST_08 

June 2012 - Sept 
2012 

Yellowstone, 
Olkaria 

LPDAAC, NASA, 
USGS 

ASTER Emissivity AST_05 
June 2012 - Sept 

2012 
Yellowstone 

LPDAAC, NASA, 
USGS 

ASTER Surface 
Radiance TIR 

AST_09T 
June 2012 - Sept 

2012 
Yellowstone 

LPDAAC, NASA, 
USGS 

In situ Hot Spot 
Temperatures 

- 2003-2012, 1989 
Yellowstone, 

Olkaria 

Montana State 
University, Olkaria 
Geothermal Map 

Sandy Loam & 
Loam Soils 

- 2015 Netherlands 
ITC, University of 

Twente 

Precipitation - 
Daily Summaries 

(June to Sept. 2012) 
Yellowstone NOAA 

Relative Soil 
Moisture - ASCAT 

Metop 
- 

Almost Daily (June 
to Sept. 2012) with 

time gaps 
Yellowstone TU Wien (Austria) 

GIS Data of 
thermal areas 

- - Yellowstone 
Wyoming State 

Geological Survey 
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3. THERMAL INFRARED MEASUREMENTS OF DRY AND 
WET SOIL 

The main aim of the thermal infrared measurements of dry and wet soil in the laboratory was to assess the 

impact of soil moisture on TIR. By subsequently using extreme cases of dry and wet soil emissivity in the 

synthetic data modelling analysis the experiment answers the research objective of soil moisture influenced 

anomalies. This section describes the methods and results of the emissivity measurements which were 

carried out in the Geoscience Laboratory using Fourier Transform Infrared Spectrometer (FTIR) for two 

types of soil. The application of the emissivity in the synthetic data model is further described in Chapter 

4.  

 

3.1. Methods 

 

The aim with the thermal infrared measurements of dry and wet soil is to extract emissivity values in the 

thermal infrared wavelength (8 to 12µm). Knowing the emissivity is crucial for correctly estimating the 

emitted radiance and for determining surface temperature from radiance data. Moreover, in case of 

geothermal anomalies, relative difference between the background and anomalous surface emissivity can 

provide useful clues on the type and condition of the surface material. Two soils were used for this study, 

namely Sandy Loam and Loam Soils. Table 2 provides the textural summaries of soil types used for the 

emissivity measurements. Sandy Loam is an example of a quartz dominated soil and loam is an example of 

a soil which has more clayey minerals. A pure clay sample was not available, therefore loam soil was 

chosen instead.  

 
 
Table 2 Soil textural information summary.This table shows the summary of the textures of two types of soil, Sandy 
Loam and Loam with their corresponding textures with Clay(%), Silt (%), Sand (%). Additionally the location of the 
soils are also included. 

Soil Type Clay (%) Silt (%) Sand (%) Location 

Sandy Loam 14.39 11.05 74.56 Deventer, NL 

Loam 16.75 44.16 39.09 Limburg, NL 

 
 
 
 

An experimental setup was created in the laboratory using an FTIR (Fourier Transform Infrared 

Spectrometer) (Hecker et al., 2011). The soils were fully saturated with distilled water. Two Petri dishes 

were then filled and packed with saturated sandy loam and loam soils to the brim by smearing them with a 

spatula. This was done to make sure that the saturated soils were equally and homogeneously spread 

without leaving any empty pores. Beginning with the saturated soils filled to the top of the Petri dishes 

spectral measurements from 1.4 µm to 16 µm range were taken for both soil types. After each 

measurement the soils were weighed and dried in a thermostatic oven at 105 °C for 40 minutes each, then 

left to cool to room temperatures and re-measured in the FTIR. The duration of each day’s measurements 

was approximately from 08:30 until 17:30 hrs. To prevent loss of moisture the Petri dishes containing soil 

samples were wrapped in a thin plastic foil until the measurements were taken the subsequent day and 

weighed before and after the measurements. It took three days to reach the dry state of each soil type 
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beginning from fully saturated states.  At the end of the procedure, the soil moisture content was 

gravimetrically calculated for each of the spectral measurements that were taken. 

 

 
 

3.2. Results  

The results section shows the table of the measured soil moisture content of sandy loam and loam soils. In 

addition the emissivity plots of sandy loam and loam soil are presented with their description. 

 

3.2.1. Soil Moisture Content Tabular Results 

 

The results of the soil moisture content measurements for sandy loam and loam soils are calculated after 

every measurement and were recorded in Table 3. The table shows gravimetric soil moisture content 

(SMC) measurement information from fully saturated states to dry state for both sandy loam and loam soil 

during the course of the experiment. SMC % column stands for the ratio of weight of water content by 

the weight of dry soil in %. The resulting emissivity graphs and descriptions are presented in Figure 3 for 

Sandy Loam and Figure 4 for Loam. 

 
 

 

Table 3  Dry and wet Soil Moisture Content (SMC). Summary table of Sandy Loam and Loam Soil. Time column 
represents time in minutes of drying the soils in the oven. Soil type column stands for the type of soil being 
measured. 

Sr. No. 
Drying 

Time(min) 
Soil Type 

Petri dish 
Wt. [g] 

Petri dish 
& Wet Soil 

Wt. [g] 

Petri dish 
& Dry Soil 

Wt. [g] 

Moisture 
Wt. [g] 

Dry Soil 
Wt. [g] 

SMC [%] 

1 Saturated Sandy Loam 22.06 77.61 62.07 15.54 40.01 38.84 

2 40 Sandy Loam 22.06 70.15 62.07 8.08 40.01 20.19 

3 80 Sandy Loam 22.06 62.15 62.07 0.08 40.01 0.20 

4 120 Sandy Loam 22.06 62.12 62.07 0.05 40.01 0.12 

5 160 Sandy Loam 22.06 62.10 62.07 0.03 40.01 0.07 

6 200 Sandy Loam 22.06 62.08 62.07 0.01 40.01 0.02 

7 240 Sandy Loam 22.06 62.07 62.07 0 40.01 0.00 

  
       

  

1 Saturated Loam 22.2 76.21 61.91 14.3 39.71 36.01 

2 40 Loam 22.2 68.17 61.91 6.26 39.71 15.76 

3 80 Loam 22.2 63.67 61.91 1.76 39.71 4.43 

4 120 Loam 22.2 62.04 61.91 0.13 39.71 0.33 

5 160 Loam 22.2 61.94 61.91 0.03 39.71 0.08 

6 200 Loam 22.2 61.95 61.91 0.04 39.71 0.10 

7 240 Loam 22.2 61.91 61.91 0 39.71 0.00 

  

 

3.2.2. Emissivity of Dry & Wet Soils 

 

Figure 3 and Figure 4  depict the emissivity plots corresponding to Soil Moisture Content (SMC) 

measurements of two different types of soil documented in Table 3. The grey shaded background regions 

in the plots indicate the positions of 5 ASTER (TIR) Bands (Band 10 to 14). The thick dark blue line in 
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each plot corresponds to the fully saturated state of soils and the thick red line corresponds to the 

completely dry state of soils. All other coloured lines show the intermediate soil moisture states of soil. 

The plots also include the emissivity spectra of distilled water taken from online JHU – JPL ASTER 

Spectral Library for reference shown with a dashed blue line. Both (Figure 3 and Figure 4) the plots show 

the changes in emissivity for a soil type.  
 
 
 

Sandy Loam  

The thick red line in Sandy Loam emissivity plots in Figure 3 shows the state of soil when it is dry. The 

dominant quartz reststrahlen feature can be clearly identified around 8 and 9 µm range covered by Band 

10 to 12 in ASTER TIR.  9.27 µm feature of K feldspar has overshadowed quartz a little bit.  The lowest 

emissivity values in Sandy Loam are found in ASTER TIR Band 10 and Band 12 at 0.88 and the highest 

values are found in Band 13 and Band 14 at 0.96. 

The dark blue line in Figure 3 represents the saturated sandy loam soil condition. The quartz reststrahlen 

feature is lost and can only be faintly identified. The dominance of moisture in the soil obscures the 

absorption features of mineral spectra when dry. The wet sandy loam soil has an emissivity of 0.99 in 

Band 14 of ASTER TIR and the lowest emissivity value of 0.95 in Band 10. 

The emissivity plot at 20% SMC shows an intermediate step between the fully saturated and fully dry 

states of soil. The highest variations are observed in Band 10 and Band 12.  

 

 
Figure 3 Sandy Loam Soil Emissivity Measurements with changing SMC corresponding to Table 3. The horizontal 
axis is the wavelength in micrometers (µm) from 7 to 13 µm. The vertical axis is the emissivity with the maximum 
value of 1. The grey shaded regions are the position of the 5 ASTER TIR bands. 

Loam Soil  

The thick red line in the Loam emissivity plots in Figure 4 shows the state of soil when it is dry. It is 

evident that the driest sample does not contain the lowest emissivity in this case. For the dry state at 0% 

SMC, the highest emissivity of 0.96 is found in Band 14 and the lowest emissivity value of 0.93 is found in 
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Band 10 in ASTER TIR. The spectral shape of the dry spectrum shows a combination of quartz features 

(lobe at 8.2 and peak at 8.62) as well as a mixture of clay mineral (probably montmorillonite) and 

muscovite. At fully saturated state (36% SMC dark blue line) Loam soil showed less variation in emissivity 

(0.97-0.98) in ASTER TIR. The intermediate plots show that the lowest emissivity values of 0.91 are 

observed with SMC at 4.43% (green line) in the 8-9µm range of Band 10  

 

 
 

Figure 4 Loam soil emissivity measurements with changing SMC corresponding to Table 3. The horizontal axis is the 
wavelength in micrometers (µm) from 7 to 13 µm. The vertical axis is the emissivity with the maximum value of 1. 
The grey shaded regions are the position of the 5 ASTER TIR bands. 

 

Lab measurements of saturated Loam showed less variation and higher emissivity values (0.97-0.98) than 

Sandy Loam (0.95-0.99) in the ASTER Wavelengths (8 - 12 µm). Even at dry state Loam emissivity values 

were higher (0.97) than Sandy Loam emissivity values (0.95-0.96) in B10 (8.2µm), B11 (8.6µm) and B12 

(9µm) of ASTER for fully saturated states. Sandy Loam emissivity values in B13 (10.6µm) and B14 

(11.3µm) were higher at 0.98-0.99 than Loam emissivity values (0.98) in the same bands for the wet 

conditions. Lowest emissivity values were observed in Sandy Loam for dry states in B10, B11 and B12 in 

the range 0.88-0.91 compared to Loam emissivity values (0.93-0.95) in the same bands. Emissivity value of 

0.96 were found in Sandy Loam in B13 and B14 compared to Loam soil emissivity values of 0.95-0.96 in 

dry conditions.   

 

Chapter 4 addresses the research objectives of soil moisture related anomaly detection by including the 

emissivity values of dry and wet soil in a Synthetic model. In order to test the anomaly detection rates 

extreme cases of dry and wet soils were chosen. For the wet conditions, Sandy Loam with 38% soil 

moisture content and Loam soil at 36% SMC were chosen as both the soils represent the highest soil 

moisture states. For the dry states 0% SMC was chosen for both soil types.  
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4. SYNTHETIC DATA MODELLING 

The main aim of the synthetic data modelling analysis is to simulate the effects of soil moisture and 

anomaly size in detecting geothermal surface temperature anomalies. The purpose of creating a synthetic 

data model is two-fold. Firstly, to see how large a sub-pixel geothermal temperature component needs to 

be in order to be detectable as an anomaly. Secondly, to test various combinations of dry and wet 

conditions of soil covering the anomalous pixels and the background pixels. The model provides a 

framework to visualize the influence of soil moisture (emissivity variation) and its influence on the 

detectability of a thermal anomaly. The emissivity results of Chapter 3 are used in the synthetic model to 

answer the research objective of simulating the effects of soil moisture on geothermal anomaly detection. 

 This chapter describes the methods and results of the synthetic data modelling analysis.  The chapter is 

divided into three parts. Part A pertains to the core segment of the model and Part B is the extension to 

the model, both under the Methods. The Results section describes the outcome of the methods applied.  

 

4.1. Methods: Part A 

 

This section describes the steps for creation of the Core part of the synthetic model as illustrated in Figure 

5. Since the thermal anomalies can be sub pixel in sizes therefore the pixel containing the anomaly is 

considered to be made of a background and hot spot geothermal temperature. Subsequently the fraction 

of the anomalous pixel is increased and the anomaly detection rates are checked. 

 

The Synthetic Model (Figure 5) was created in ENVI IDL and the associated steps for the creation are 

described as follows: 

 

1. Using the mean and standard deviation (Table 4) of typical background surface temperatures (Figure 

7) present in geothermal areas of Yellowstone and Olkaria, a synthetic temperature Image (11 by 11) 

was created by selecting random temperature samples out of the population. For every iteration of the 

model a new random sample set is selected out of the same population to create a synthetic 

background temperature image. 

2. The spectral radiance was calculated by applying the Planck function to the synthetic temperature in 

the wavelength range of 0.5 to 50µm multiplied with the emissivity. This resulted in a spectral radiance 

image.  

3. The central pixel is assumed to be consisting of two sub-pixel components. A fraction with the 

anomalous thermal temperature and the rest of the pixel containing the background temperature 

component. Therefore, an In situ hot spot geothermal temperature was added to the central pixel 

which was used as a reference location for thermal anomaly detection. Again using the Planck 

function multiplied with the emissivity values the total Pixel Integrated Radiance Image was 

calculated. Pixel Integrated Radiance is the linear sum of radiance of the fractions contributed by the 

hot spot temperature and the background temperature.  

4. Once the emitted radiance was calculated for the synthetic image,  it was resampled to ASTER 

satellite wavelength ranging between 8 -12 µm using the ASTER TIR response functions(JPL, 2003).  

5. Further, the temperature was estimated using the Emissivity Normalization tool in ENVI from the re-

sampled ASTER wavelength. This resulting temperature is known as the Pixel Integrated 

Temperature (PIT). Emissivity Normalization is the process of estimating the temperature by fitting a  

black body curve onto the emissivity (Kealy & Hook, 1993). 
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6. The central pixel of the PIT synthetic image was used as an anomaly detection location. The central 

pixel was checked whether it had a temperature value greater than Mean + 2 Standard Deviation of 

the background values.  For 1 hot spot temperature and 1 pixel fraction the anomaly detection 

process was iterated 100 times in order to check how many times the anomaly was detected. The only 

input parameters which change during the iteration process are the random sample of the background 

temperatures which is bound within the limits of the mean and standard deviation of the background 

temperature population. Thus, after 100 iterations if the anomaly was detected e.g., 6 times, the rate of 

success is simply calculated by taking the ratio of 6 by 100 which gives 0.06 as the anomaly detection 

rate. So for 1 pixel fraction and 1 hot spot temperature the result is a decimal number which ranges 

from 0 to 1 after running the model with 100 iterations.  

 

 

 

 
 
 
 

Figure 5 Work Flow showing the Core part of Synthetic Data Model: Part A  
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4.2. Realistic Temperature Ranges 

 

The input requirements for the synthetic model are background surface temperature statistics (mean and 

standard deviation), and In situ hot spot geothermal temperatures. Both background and in situ 

temperatures are retrieved from realistic temperature ranges. 

 

Two geothermal areas, Yellowstone and Olkaria were chosen for this study because one area represents a 

higher latitude (44°N) and the other a lower latitude (°0) location on earth respectively. For Yellowstone, 

cloud free satellite surface temperature data were chosen between June-Sept 2012 to avoid the effects of 

insulation due to snow during the winter months. For Olkaria, months of January and February were 

chosen because the images were relatively cloud free during these months of 2012. 

 

The background temperature statistics were collected from ASTER Surface Kinetic Temperature Satellite 

Image product (AST_08) because background temperatures vary gradually and satellite pixels of 90m can 

be used for this purpose. For the geothermal hotspot temperatures, ASTER data would not have been 

suitable since many data would be a mix of several surface temperatures at the ASTER pixel size. Instead, 

In situ hot spot temperatures were accessed from Yellowstone National Park Research Coordination 

Network from the Montana State University website (Sully et al., 2015) and the USGS Report (Bergfeld et 

al., 2011) for Yellowstone. Thermal temperatures ranged from 13°C to 94°C. Similarly, for retrieving 

geothermal hot spot temperatures for Olkaria, Geothermal Activity Map of Kenya was used (Ledgard, 

1989).  Temperatures ranged from around 30°C to 94°C. In situ hot spot temperatures are point 

measurements of temperatures collected from thermal areas on the ground.  

 

 

Both Day and Night ASTER Satellite temperature images from the same geothermal location were layer 

stacked together. This was useful in order to extract the statistics out of the same background area for all 

day and night temperature images for different dates. For Night time temperature images there was a need 

for geo-adjustment for correct alignment with Day time temperature images. The geo adjustment method 

followed by Vaughan et al. (2012) was used here for adjusting the night time ASTER images. The 

background areas were digitized using the ‘region of interest (ROI)’ tool in ENVI.  The process of 

defining a background region was based on visual inspection of ASTER Images, Google Earth Pro images 

and ancillary information associated with the area. First of all known thermal areas in Yellowstone and 

Olkaria were overlaid on ASTER Images. The area immediately surrounding the vicinity of thermal area 

was delineated in ASTER Images. The size of the background surfaces which were digitzed were 

considerably large compared to the thermal areas. Large background areas were digitized in order to 

extract a wide range of background temperatures covering different land covers surrounding the thermal 

area.  
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4.3. Methods: Part B 

 

Figure 6 shows extension to the core model created in Part A. The added components are the dry and wet 

soil emissivity measurements from Chapter 3 which can be used either with the background pixels in the 

11 by 11 synthetic image or it can be used with the anomalous pixels or both simultaneously. Further, the 

pixel fraction is also varied from 0 to 1 for the anomalous temperature. In addition, 10 hot spot 

temperatures are included in the model to test the anomaly detection on geothermal temperatures of 

Yellowstone and Olkaria ranging from 10°C to 94 °C. The 100 iteration procedure applied in Part A with 

1 hot spot temperature, 1 pixel fraction is now extended to 10 hot spot temperatures, 12 pixel fractions 

and different soil emissivities.  

 

 
 

Figure 6 Extension to the Synthetic Model: Part B 

 

The emissivity values of dry and wet soils can be used either with the 11 by 11 background image, or in 

the background of the central pixel or with the hot spot temperature in the central pixel. The emissivity 

values in this study were used in all the three locations of the synthetic image with various combinations 

of dry or wet soil generating 16 possible combinations. These combinations are presented in Table 5. 
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4.4. Results  

 

The result section is divided into five sub sections. The first section shows the background temperature 

statistics and spatial results. The second section illustrates how to read the plots generated from the 

synthetic data model. The third section is about the differences in day and night scenarios obtained by the 

synthetic data model. The fourth section describes sixteen dry and wet soil combinations of anomaly 

detection scenarios generated from the synthetic data model. The fifth section ends with the effect of 

sensor noise on anomaly detection 
 
 

4.4.1. Background Temperature Statistics & Spatial Results 

 

 

Figure 7 A & B  show the spatial results of the background areas which were digitized in ASTER satellite 

temperature data product (AST_08) for two different geothermal locations, Yellowstone, US and Olkaria 

in Kenya. The shape files of the background regions shown in brown color are overlaid on Google Earth 

Pro Images.The thermal areas are seen in yellow color in both the images.In addition the day and night 

common boundary of ASTER Images are also displayed with a black outline. The green line represents 

the Park boundary of Yellowstone and Olkaria Volcanic Complex. The background can be clearly seen as 

covering relatively larger area compared to the thermal areas. Moreover, the thermal areas shown in yellow 

are actually magnified three times their actual size for clarity at the scale of the image. 

 

The results of the background temperature statistics collected for Yellowstone and Olkaria are 

summarized in Table 4. The mean background surface temperatures in Yellowstone extracted from three 

night time images were found to be 9°C and 29°C for day time images with a standard deviation of 1.89°C 

and 4.72°C respectively. Similarly, for Olkaria the mean background surface temperatures were found to 

be 10°C for three night times images and 36°C for two day time images with a standard deviation of 

2.61°C and 4.03°C. Clearly, the day time background temperatures have higher mean background 

temepratures and standard deviation compared to the night time statistics. 
 

 

Table 4 Background Temperature Statistics Summary. Location column shows the geothermal area, YNP stands for 
Yellowstone. The Date column shows the dates of image acquistion. Background temperature mean µ column shows 
the mean background temperature for the corresponding row of day and night for a particular area. Like wise the 
standard deviation of the background temperature is in the last column. 

 

Location, 
SCENARIO 

Date (2012) 
Background 
Temperature 

Mean (µ) 

Background 
Temperature  

Standard 
Deviation (σ) 

YNP, Night 
Time 

12th July 27th July 28th August 9 °C 1.89°C 

YNP, Day Time 30th June 17th August 
18th 

September 
29°C 4.72°C 

      
Olkaria, Night 

Time 
7th 

January 
23rd January 24th February 10°C 2.61°C 

Olkaria, Day  
Time 

12th 
January 

22nd 
February 

-- 36°C 4.03°C 
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A.  

 

 
 

B. 

 
 
Figure 7 Background Area surrounding thermal region overlaid on Google Earth Pro Images. A shows the 
background regions digitized over Yellowstone. B shows the background area within Olkaria Volcanic Complex 
south of Lake Naivasha. 
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4.4.2. Synthetic Data Modelling Results – Understanding & Interpretation of Results 

 

Figure 8 shows the matrix plots generated from the synthetic data model beginning from the simplest case 

i to a complete matrix plot case shown in iv. All the four plots have the same background temperature 

statistics of  night time Yellowstone scenario of  mean Tbg µ =9 °C and std.dv Tbg σ =1.89°C. The results 

can be read as follows: 

 

i. When the anomalous temperature represented by the hot spot temperature of  10 °C covers 0 part 

of  the pixel, the anomaly detection rate is represented by the dark red coloured square. Here the 

background temperature statistics are mean Tbg µ =9 °C and std.dv Tbg σ =1.89°C. Dark red colour 

shows that the detection rate is almost 0 (Color scale bar in Figure 8 iv). The result was generated after 

running the synthetic model for 100 iterations with 0 pixel fraction when the hot spot temperature is 10°C. 

The ratio of  the number of  times the anomaly was detected to the total number of  iteration gives the 

detection rate. The detection rate is low when the anomalous temperature is close to the background 

temperature statistics.  

ii. Further, when the anomalous temperature represented by hot spot temperature of  10°C covers 0 

part to 1(completely covered) part of  the pixel, the detection rates are displayed as a single row of  

coloured squares for each pixel fraction. In this example (Figure 8 ii) the dark red color shows that 

detection rates of  still close to 0. Detection rate associated with each pixel fraction was generated after 

running the model for 100 iterations each. Even when the pixel is completely covered by the anomalous 

temperature (at 1 pixel fraction), the anomaly detection rates are low because the anomalous pixel 

temperature does not rise above the µ + 2σ of  the background criteria for the anomaly to be detected.  

iii. The plot shown in Figure 8 iii. shows two rows of  detection rates for two different hot spot 

temperatures namely 10°C and 20 °C respectively. The detection rates drastically improve after the 

anomalous temperature represented by 20°C covers 30% to 50% of  the pixel. The area is highlighted with 

a black dashed outline showing light brown to dark green coloured squares with detection rates from 0.3 

to 1 respectively. 

iv. The full fledged graphical matrix plot in Figure 8 iv. shows a complete set of  anomaly detection 

rates when the hot spot temperatures range from 10°C to 94°C covering the full range of  geothermal hot 

spot sub pixel temperatures in Yellowstone. Each horizontal row represents detection rates for one hot 

spot temperature with 12 pixel fractions ranging from 0, 0.05, 0.1, 0.2, and so on until 1. The background 

temperature statistics are the same as in i. Overall it can be seen that as the temperature and size of  the 

hotspot increases, the anomaly detection rates also increase. 

 

 

 

 

 

 
                         

i.      
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ii.  

 
 

 
iii.  

                 

 
iv.   

 

Figure 8 Simple to complete matrix plots generated from the Synthetic Model. From i. to iv. The background 
temperature statistics are the same, i.e., Tbg µ = 9°C, Tbg σ = 1.89°C. The horizontal axis shows the pixel fractions 
and the vertical axis shows the in situ hot spot temperatures. The colour bar shows the detection rates beginning at 0 
which is dark read to dark green colour at 1. 

 

4.4.3. Synthetic Data Modelling Results – Differences between Day and Night 

 

In order to see the differences between day and night through the synthetic data modelling analysis, 

Yellowstone and Olkaria background temperature statistics and in situ hot spot temperature ranges for the 

respective areas were used. Tbg µ mean background surface temperature and Tbg σ standard deviation 

values for Yellowstone and Olkaria were taken from Table 4.  

The differences between day and night in anomaly detection is very clear from the two plots (Figure 9, ii, 

iv) of night time scenarios in Yellowstone and Olkaria with overall mean detection rates of 0.741 and 0.81.  
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However, the mean detection rates of Yellowstone include 10 hot spot geothermal temperatures and for 

Olkaria there are 8 hot spot temperatures. Therefore, in order to compare both, Yellowstone mean 

detection rate with 8 hot spot temperature has to be included which comes out to be 0.85. The overall 

mean detection rates in Yellowstone (0.85) are higher as compared to Olkaria (0.81) for night time 

scenarios. Yellowstone and Olkaria represent two different climatic and geological settings. Yellowstone 

belongs to a more temperate kind of climate and Olkaria fits more towards the tropical kind of climate. 

Olkaria is also on a higher elevation but not as high as Yellowstone. From the synthetic data plots in 

Figure 9 (ii and iv) and Table 4 it can be seen that the background temperature standard deviation of night 

time Olkaria is higher at 2.61°C compared to Yellowstone background temperature standard deviation of 

1.89°C. The differences in standard deviations of background temperatures show that there might be 

variations due to climatic and geographic locations in both the areas.  

The day time scenarios have an overall mean detection rate of 0.438 and 0.507 (Figure 9, i, iii). However 

when the Yellowstone area is compared with Olkaria for 8 hot spot temperatures common to both it is 

found that the Yellowstone overall mean detection rates are better with a value of 0.54. The better 

detection rates in night time scenarios are represented by more number of dark green squares covering the 

plots as compared to day time scenario. 
 

 

        

                                    (i)                                                                              (ii) 

        

                                    (iii)                                                                              (iv)                                                                                                       

 

Figure 9 Day and Night Differences in Anomaly Detection. The horizontal axis consists of pixel fractions 
ranging from 0 to 1. The vertical axis consists of In situ Hot Spot temperatures ranging from 10 °C until 
94 °C stacked one above the other row wise for Yellowstone (i & ii) and 30°C to 94°C for Olkaria (iii & 
iv). The colour bar on the right shows the anomaly detection rate from 0 to 1. Overall Mean Detection 
Rate are (i) 0.438,0.54 (ii) 0.740 (iii) 0.507 (iv) 0.81 
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4.4.4. Synthetic Data Modelling Results – Combinations of Dry & Wet Soil Emissivity variation 

 

The results in this section describe the outputs generated from the synthetic model by taking into account 

the emissivity of dry and wet loam and sandy loam soils from Chapter 3. Dry and wet soil emissivity can 

be used either with the background pixels or the anomalous pixels or both the pixels together in order to 

see their influence on thermal anomaly detection. With two different kinds of soils and two different 

conditions of wet and dry there are all together 16 combinations possible when allocating the dry and wet 

soils to the background and anomalous pixels. From the previous section it was found out that night time 

scenarios are better suited for anomaly detection. Therefore for testing the emissivity variations due to soil 

moisture night time Yellowstone setting was chosen to test all sixteen combinations. The results of the 16 

combinations are presented in Figure 11 and corresponding Table 5. The serial numbers of the 

combinations in Table 5 correspond to the anomaly detection plots in Figure 11.  

 
Table 5 Anomaly Detection Summary for 16 scenarios. The first column of Sr. No. corresponds to the numbers of 
Anomaly detection matrix plots from Figure 8. The second column shows the emissivity of dry or wet soils covering 
the background pixels. The third column shows similarly the emissivity of dry and wet soils covered by the 
anomalous pixels.  Overall mean detection rate and standard deviation are present in fourth and fifth table column. 

Sr.No. Background Pixels Anomalous Pixel Overall Mean Detection Rate Std. Dv. 

i (A) Wet Loam Wet Loam 0.742 0.407 

i (B) Dry Loam Dry Loam 0.741 0.408 

ii (A) Wet Sandy Loam Wet Sandy Loam 0.74 0.408 

ii (B) Dry Sandy Loam Dry Sandy Loam 0.74 0.408 

iii (A) Dry Loam Wet Loam 0.752 0.403 

iii (B) Wet Loam Dry Loam 0.73 0.413 

iv (A) Dry Sandy Loam Wet Sandy Loam 0.748 0.404 

iv (B) Wet Sandy Loam Dry Sandy Loam 0.732 0.411 

v (A) Dry Loam Wet Sandy Loam 0.751 0.402 

v (B) Wet Sandy Loam Dry Loam 0.728 0.412 

vi (A) Dry Sandy Loam Wet Loam 0.747 0.404 

vi (B) Wet Loam Dry Sandy Loam 0.733 0.41 

vii (A) Dry Loam Dry Sandy Loam 0.745 0.405 

vii (B) Dry Sandy Loam Dry Loam 0.737 0.409 

viii (A) Wet Loam Wet Sandy Loam 0.742 0.406 

viii (B) Wet Sandy Loam Wet Loam 0.741 0.407 

 
 

 

       
                                       i(A)                                                                                 i(B) 
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                                       ii(A)                                                                               ii(B) 

        
                                        iii (A)                                                                          iii (B) 

       
                                       iv (A)                                                                           iv (B) 
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                                      v (A)                                                                             v (B) 

           
                                       vi (A)                                                                             vi (B) 

            
                                      vii (A)                                                                          vii (B) 

             
                                     viii (A)                                                                          viii (B) 

 

Figure 10 Anomaly Detection Plots associated with Table 5. The background temperature statistics are the same for 
all the plots Tbg µ = 9°C, Tbg σ = 1.89°C and they represent Yellowstone night time background temperature 
statistics. 

 

For easy interpretation a dotted box is added from iii (A) to vii (B) anomaly detection plots over 0.3 to 0.5 

pixel fractions corresponding to 20°C hot spot temperature where the changes in detection rates can be 

clearly differentiated. Overall the detection plots show a pattern beginning with low detection rates 

corresponding to lower hot spot temperatures such as 10°C. The lowest detection rates are associated with 

dark red colour and the highest detection rates are represented by dark green colour. The colour patterns 
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in detection rate changes more towards dark green colours with the increase in hot spot temperatures and 

pixel fractions.  

 

Figure 10 i(A), i(B) and ii(A), ii(B) Plots show fully saturated and completely dry Anomaly Detection 

matrix plots for Night time scenario in Yellowstone of Loam and Sandy Loam Soils respectively. The 

differences between Plot i(A) and i(B) in Loam Soils’ case are minute (From Table 5. i(A) and i(B) mean 

detection rates of 0.742 and 0.741 for fully saturated and dry loam soil respectively). In the Sandy Loam 

soils’ case ii(A) and ii(B) there is no difference between the mean anomaly detection rates when the pixels 

are covered with fully saturated and when the pixels are covered with completely dry sandy loam soil 

(From Table 5. ii(A) and ii(B) mean detection rates are the same 0.74 for fully saturated and dry sandy 

loam soil).  There are no differences in detection rates with neither soil type nor soil moisture conditions 

of soils as long as the central anomalous pixel is the same as surrounding background pixels (Figure 10 i & 

ii ).  

 

If the central anomalous pixel is wet and the surrounding is dry, the detection rate goes up. The soil type 

seems to be of little influence (Figure 10 iii(A), 11 iv(A), v(A), vi(A)). Figure 10 iii( A) shows when the 

background pixels are covered with dry loam and the anomalous pixel is covered with fully saturated loam 

the overall mean detection rate is 0.752 which is better compared to when the situation is reversed (From 

Table 5. iii(A) and iii(B) mean detection rates of 0.752 and 0.73 respectively)In the case of Sandy Loam 

Soils’ from Figure 10 iv(A) and iv(B) scenario it can be seen that the detection rates are better when the 

anomalous pixel is covered with fully saturated sandy loam soil and the background is covered with dry 

sandy loam (From Table 5. iv(A) and iv(B) mean detection rates of 0.748 and 0.732 respectively). From 

Figure 10 v(A) when the anomalous pixel is covered by fully saturated Sandy Loam and the background 

pixels are covered by dry loam soil the detection rates are better than when the conditions are reversed in 

v(B) (From Table 5. v(A) and v(B) mean detection rates of 0.751 and 0.728 respectively). Similarly, in 

Figure 10 vi (A), when the anomalous pixel is covered by wet loam and the background is covered by dry 

Sandy Loam the detection rates are better than when the conditions are reversed in vi(B) (From Table 5. 

vi(A) and vi(B) mean detection rates of 0.747 and 0.733 respectively).   

 

When the central anomalous pixel is dry and the surrounding background region is wet, then the detection 

rates is going down as compared to all the same emissivity (Figure 10 iii(B) and iv(B) 

 

From Figure 10 vii(A), when the anomalous pixel is covered by dry Sandy Loam and the background 

pixels are covered by dry Loam Soil the detection rates are better than when the conditions are reversed in 

vii(B) (From Table 5. vii(A) and vii(B) mean detection rates of 0.745 and 0.737 respectively).  From Figure 

10 viii(A), when the anomalous pixel is covered by fully saturated Sandy Loam  and the background pixels 

are covered by fully saturated Loam Soil the detection rates are almost similar when the conditions are 

reversed in viii(B) (From Table 5. viii(A) and viii(B) mean detection rates of 0.742 and 0.741 respectively).   

 

 

Out of all the detection plots in Figure 10 and Table 5, the best anomaly detection rates are achieved in 

iii(A), iv(A), v(A) and vi(A) when the Anomalous pixel is covered by wet soils and the background pixels 

are covered by dry soils. And the worst detection rates are observed in iii(B), iv(B), v(B) and vi(B) when 

the anomalous central pixel is covered by dry soils and the background is covered by wet soils. 
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4.4.5. Synthetic Data Modelling Results – Sensor Noise Effects 

 

The effect of ASTER TIR Subsystem sensor noise for all 5 TIR Bands are represented by the NEdT value 

which is ≤0.3 °K (Gillespie et al., 1998). Therefore to test the differences in anomaly detection between 

two scenarios, one without and one with sensor noise, Night Time Yellowstone setting was chosen. Figure 

11, A and B show two anomaly detection plots with and without sensors noise effects for night time 

Yellowstone setting.  The overall mean detection rate of the plot without sensor noise added to the 

anomaly detection was found to be 0.740 and when the sensor noise is added to the anomaly detection, 

the value showed 0.732. There is a difference in 0.08 in the overall detection rate when 0.3 °K is added to 

the anomaly definition of  µ + 2σ + 0.3 compared to without the addition of the NEdT value. The 

differences are insignificant. The NEdT is the Noise Equivalent difference in temperature of the ASTER 

TIR subsystem. In practical terms it means that ASTER TIR cannot detect temperature differences of less 

than 0.3°K at the reference temperature of 370°K. In the context of thermal anomaly detection it means 

that the temperature differences between the anomalous pixels and the background pixels must be greater 

than 0.3°K in order for ASTER TIR to detect the anomaly. Usually the temperature differences between 

the anomalous area and the background area are easily greater than 0.3°K, therefore NEdT value does not 

have a major effect on the anomaly detection rates which is also shown graphically by Figure 11 and by 

the small difference in overall mean detection rates. 

 

 

 
 

    

A.                                                                               B.  

Figure 11. Sensor Noise Effects on Anomaly Detection. The setting is Night time in Yellowstone. Tbg µ stands for 
mean background surface temperature, Tbg σ stands for background standard deviation. The horizontal axis consists 
of the pixel fractions ranging from 0 to 1. The vertical axis represents In situ Hot Spot temperatures ranging from 10 
°C until 94 °C stacked one above the other row wise. The colour scale bar on the right shows the anomaly detection 
rate from 0 to 1. The lowest detection rates (closer to 0) corresponds to dark red colour with the highest detection 
rates of 1 in dark green colour. (i) has an overall mean detection rate of 0.740 and (ii) has 0.732. 
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5. REMOTE SENSING TIME SERIES DATA ANALYSIS 

This chapter addresses the third research objective from section 1.4.1 which is to analyse remote sensing 

datasets to examine the effects of soil moisture in detecting geothermal surface temperature anomalies.  

By analysing ASTER surface temperature, emissivity and emitted radiance images the influence of soil 

moisture on thermal anomalies is examined. The methods of the time series data analysis are described in 

section 5.1 followed by the results in section 5.2. 

  

5.1. Methods 

 

 

The aim of this section is to analyse real remote sensing data for soil moisture related surface temperature 

anomalies for a thermal area in Yellowstone. Parameters that are assessed include Surface Temperature, 

Emissivity and Surface Emitted TIR Radiance data in relation to Precipitation and Soil Moisture data. 

 

Criteria for Data Collection 

 

In order to assess the surface temperature, emissivity, surface emitted TIR radiance in remotely sensed 

satellite images, ASTER satellite was chosen because it provided the best spectral (5 TIR bands), spatial 

(90m) and temporal (16 days) coverage. However, there is limited number of cloud free satellite images 

immediately after a precipitation event. It is rare to find day and night time ASTER image pairs for the 

same day for thermal inertia mapping. Therefore, the first requirement was to find cloud free, day and 

night images from summer time in Yellowstone. Summer time in Yellowstone is accompanied by 

thunderstorms in the afternoon. Winter time was avoided because of insulation effects due to snow. After 

searching the ASTER Images’ database from NASA Earth Science Data Search webpage, June to 

September 2012 summer months provided the best match for the study with relatively cloud free images. 

 

Remotely sensed soil moisture data is available from multiple satellites. SMAP satellite has the highest 

spatial resolution of soil moisture data of 3 /9/ 36 km and covers the time period from mid April 2015 

until 7th July 2015 with ongoing acquisitions. In this time period only 2 ASTER scenes were available for 

Yellowstone with 99 percent cloud cover and 6 percent cloud cover respectively, which are few to analyse 

in this study. Out of the other soil moisture retrieving satellites SMOS (30-50 km), ERS 1/2 

Scatterometers (25)/ 50 km), and ASCAT (25 km with grid spacing of 12.5 km), ASCAT provided the 

best coverage and spatial resolutions. The relative surface soil moisture data from ASCAT Metop satellite 

has a frequency of 1-2 days with some occasional data gaps. Therefore, to assess the soil moisture states of 

the ASTER Images, relative surface soil moisture from the same time period (June to September 2012) 

and from the same location were collected from ASCAT Metop satellite to relate to the ASTER Images. 

Precipitation data was collected from NOAA data that are daily summaries at the end of the day for the 

same time period from June to September 2012 in order to see how it relates to soil moisture data from 

ASCAT. The sources of Precipitation and Soil Moisture data are provided in Table 1. The acquisition time 

of ASTER scenes and acquisition time of Soil Moisture measuring ASCAT Metop satellite has some hours 

(>5hrs) of difference. Ideally it would be worthwhile to have an ASTER Image taken exactly at the 

moment when ASCAT Metop acquires Soil Moisture information. But this is not realistic as both the 

satellites have different orbit times.  Nevertheless, it was decided to analyse the existing data that were 

available for possible correlation.  
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Table 6 shows the summary of the remote sensing data collected for the time series data analysis. This 

table includes 4 Night time and 3 day time ASTER Images of Surface Temperature, Emissivity and 

Surface Radiance TIR that were collected. Day Time images of ASTER are acquired around 12:30 hrs 

noon and Night time ASTER Images are acquired around 23:30 hrs over Yellowstone. Precipitation and 

Relative soil moisture data summary from NOAA and ASCAT Metop are also included for the time 

period between June and September 2012. GIS data (shape file) of a thermal area known as Sulfur Hills in 

Yellowstone was used as the reference location for the remote sensing time series data analysis. 

 

Table 6 Summary of Data used in the Time Series Data Analysis 
Data Type Data Code Time Period Number of Images 

ASTER Surface Kinetic 
Temperature 

AST_08 June 2012 - Sept 2012 4 Nights, 3 Days 

ASTER Emissivity AST_05 June 2012 - Sept 2012 4 Nights, 3 Days 

ASTER Surface 
Radiance TIR 

AST_09T June 2012 - Sept 2012 4 Nights, 3 Days 

Precipitation - 
Daily Summaries (June to 

Sept. 2012) 
Tabular Data 

Relative Soil Moisture - 
ASCAT Metop 

- 
Almost Daily (June to Sept. 
2012) with some data gaps 

Tabular Data 

GIS Data of thermal area 
(Sulfur Hills) 

- - 1 

 

 

 
 

Figure 12. Remote Sensing Time Series Data Analysis Work Flow of Sulfur Hills Thermal Area in Yellowstone 
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Figure 12 shows the work flow of the remote sensing time series data analysis for Sulfur Hills, a thermal 

area in Yellowstone.  The numbers included in the figure from 1 to 4 correspond to the description of the 

work flow which are as follows: 

 

1. ASTER Geo-Adjustment: After collecting 4 night and 3 day time ASTER Images as summarized in Table 

6 for the time period between June to September 2012, the night time ASTER Surface Kinetic 

Temperature, Surface Emissivity and Surface TIR Radiance images were adjusted for correctly overlaying 

with Day Time ASTER Images. Figure 13 provides the images of Before (A) and After (B) adjustments 

for night time ASTER Image of Sulfur Hills in Yellowstone. All the night time ASTER surface 

temperature, emissivity and surface Radiance TIR Images were corrected manually based on the polygon 

boundary shape file of Sulfur Hills from GIS data of Wyoming State Geological Survey (Ranz, 2015). The 

night time ASTER images were adjusted by editing the tie points of x and y image coordinates in the 

header information associated with the image file. After adjustment of ASTER Images, the boundary of 

the shape file of Sulfur Hills matched with the boundary of elevated surface temperature pixels in the 

ASTER Image.  

 

2. Overlay & layer Stacking: After the night time ASTER images were geo-adjusted, Day and Night Surface 

Temperature, Emissivity and Surface Emitted Radiance Images were overlaid and layer stacked together in 

chronological order. Numerically, there were 12 (4 * 3 types) night time ASTER Images and 9 (3 * 3 

types) day time ASTER Images which were layer stacked together. All together there were 21 ASTER 

night and day images of the Sulfur hills and surrounding region. 

 

3. Thermal & Background Area Digitization: With the 21 layer stacked images the Region of Interest ‘ROI’ 

tool in ENVI was used to digitize the background area beside Sulfur Hills that had a ‘homogenous’ 

composition. The homogeneity was decided based on literature, maps, visual inspection and comparison 

with Google Earth Images. Similarly the anomalous area was also digitized based on the polygon 

boundary shape file of thermal area from GIS data. The statistics such as mean surface temperature, mean 

emissivity, mean emitted radiance of the anomalous area as well as background area were collected using 

the ROI tool for all the 21 day and night ASTER Images. The Background Area digitization is defined as 

in Figure 14. Both ASTER (A) as well as the corresponding Google Earth Pro (B) images are added for 

comparison. 

 

4. Time Series Analysis: To know the precipitation and relative surface soil moisture states of the Sulfur hills 

thermal area and the background area for the desired time period (June to September 2012), NOAA and 

ASCAT Metop data for the same area were obtained. The rainfall data are daily summaries collected from 

NOAA ground monitoring station near Yellowstone lake which is the closest rainfall station to the Sulfur 

hills thermal area. The values of precipitation collected from the rainfall station are assumed to be the 

same for the Sulfur Hills and the background area because the station and thermal areas are within a 

distance of a few kilometres. The relative surface soil moisture information is taken directly from METOP 

Advanced Scatterometer (ASCAT) Soil Moisture Data Viewer maintained by Department of Geodesy and 

Geo-information, TU Wien (Wien, 2015). The relative surface soil moisture data values range in degrees 

of saturation (%) with 0 meaning completely dry and 100% completely saturated. This information is 

applicable for 2 cm of the top surface (Wien, 2015). Time Series information was collected from 23rd June 

to 18th Sept. 2012 for the gridded point data which lay closest to the thermal area of interest. It is to be 

noted that the pixel size (25 km with grid spacing of 12.5 km) of the relative surface soil moisture data 

from ASCAT covers both the background as well as the Sulfur Hills thermal area easily because the 

thermal area and background region size put together is relatively much smaller than a single pixel size of 

ASCAT Metop Satellite. The data from all the sources namely, Precipitation (P), Relative Surface Soil 
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Moisture (SM), Land Surface Emissivity (LSE), Surface Emitted Radiance (SR) and Land Surface 

Temperature (LST) were collected and various time series plots were created. 

The aim of creating such a time series of P-SM-LSE-SR-LST for the Sulfur Hills thermal area in 

Yellowstone is to address the third research objective of examining the effects of soil moisture in detecting 

geothermal surface temperature anomalies with remote sensing datasets. Specifically, the aim is to 

investigate whether there is any relationship of soil moisture with three parameters namely, Surface 

Temperature, Surface Emissivity and Surface Radiance TIR of ASTER Images. In particular, to analyse 

whether high surface soil moisture states coincides with low surface temperature anomalies or high surface 

temperature anomalies or they have no effect whatsoever. The time series analysis also tests the hypothesis 

that soil moisture states lead to cooler thermal anomalies. 

 

              
A. Before Adjustment                                           B. After Adjustment  

 
Figure 13. ASTER Night Image Geo-adjustment. A and B show the before and after geo-adjustment status of a 
surface temperature image. The dark areas on the image show cooler temperatures and the white areas indicate hotter 
temperatures. The red polygon shows the shape file of Sulfur hills thermal area overlaid on the ASTER Image.  

 

 

     

                              A.                                                                                       B.       
Figure 14. Background Area Digitization in ASTER Image and overlaid on Google Earth Image for comparison. A . 
ASTER Background Area Digitization using ‘ROI’. B. Same Background Area Shape File overlaid on Google Earth 
Pro image. 
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5.2.  Results  

 

The Results are divided into four sub sections namely, (5.2.1) Overview of Time Series, (5.2.2) Time Series 

link to land surface temperature anomalies, (5.2.3) Time Series link to Emitted Radiance TIR and (5.2.4) 

Time Series link to Emissivity. The Results section ends with a short summary (5.2.5). 

 

5.2.1. Overview of Remote Sensing Time Series Data 

 

The results of the chronological order of ASTER Images, corresponding Precipitation summary of the 

day, Relative Soil Moisture amount (%) and acquisition time are summarized in Table 7. The Day time 

ASTER scenes are acquired after noon around 12:30 hrs and the Night time images are usually acquired 

around 23:30 hrs over Yellowstone. The precipitation and soil moisture columns in Table 7 are colour 

coded with blue shades. In addition to that, the last column of Table 7 summarizes the surface 

temperature anomalies which are the difference between the mean surface temperature of thermal areas 

and the background areas. 

 
 
Table 7. Chronological order of Precipitation, Soil Moisture amount (%), Soil Moisture acquisition time, ASTER 

acquisition time and date. The summary of the precipitation is in millimetre per day. The last column of ASTER Δ°C 
is the difference in mean anomalous thermal area surface temperature and background surrounding surface 
temperature. 
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From Table 7 it can be noted that there are some data gaps present with the relative soil moisture column 

of values. This is normal as ASCAT Metop satellite has a temporal frequency of 1-2 days. Another 

important factor which has to be taken into consideration is the size (25 km) of each pixel of ASCAT 

Metop which easily covers both the Sulfur Hills thermal area and the surrounding background area. 

Therefore, the soil moisture information provided in Table 7 is applicable to the complete area and not as 

separate for anomalous and background region of Sulfur hills which is being studied for soil moisture 

effects. It can be also seen that even though there is no precipitation (0 mm/d) for a day, still the soil 

moisture amount shows some values. These soil moisture values can be expected due to the fluctuations 

in ASCAT noises with each acquisition. 

 

Using the surface temperature anomaly values and soil moisture information associated with each date for 

Sulfur Hills and background area from Table 7 the next section (5.2.2) provides details of the analysis.  

Emitted Radiance anomalies (5.2.3) and Emissivity differences (5.2.4) follow in the subsequent sections. 
 
 

 

5.2.2. Time Series link to Land Surface Temperature Anomalies  

 

The aim with this section is to describe the results of the ASTER land surface temperature anomalies and 

their relationship with the relative soil moisture information. This section addresses the third research 

objective of the effect of soil moisture in detecting geothermal surface temperature anomalies. Land 

surface temperature anomaly is the mean surface temperature difference between the anomalous pixels 

and the surrounding background pixels of Sulfur Hills. Figure 15 shows graphically the difference in mean 

land surface temperature values between the anomalous pixels and the background pixels from Sulfur 

Hills. The black circular dots correspond to the night time surface temperature anomalies and the red 

squares correspond to the day time surface temperature anomalies. The anomaly values are in degree 

Celsius. Soil moisture information is shown with the blue coloured columns ranging from 0 to 100% 

degree of saturation with the scale provided on the left vertical axis. Data gaps in soil moisture can also be 

noticed clearly. The right vertical axis shows the scale of the temperature anomaly values. Focus is made 

on 28th August 2012 night time surface temperature anomaly of 12.85°C with a red dashed outline circle in 

addition to 27th July 2012 night time surface temperature anomaly of 10.96°C also highlighted with a red 

dashed circle. 12.85°C and 10.96°C are the highest temperature anomaly difference out of all the 7 night 

time and day time images. In general it can be noticed that night time (black circular dots) temperature 

anomaly values are greater than day time anomalies relatively.     
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Figure 15 Graphical Representation of Soil Moisture (%) and Mean Surface Temperature Anomalies associated with 
ASTER Land Surface Temperature data. The horizontal axis shows the dates from June to September 2012. The 
blue coloured vertical bars indicate the soil moisture (%) in degree of saturation from 0 to 100% scale on the left 
vertical axis. The secondary vertical axis on the right shows the scale of the mean surface temperature in degree 
Celsius. The black circular dots are the 4 night time mean surface temperature differences between the anomalous 
pixels and the background pixels of Sulfur Hills. The 3 red coloured squares are the day time mean surface 
temperature difference. The two highest night time temperature anomaly of 12.85°C and 10.96°C is highlighted with 
a red dashed circle. 

Once the surface temperature anomalies corresponding to each date are known it is crucial to examine 

closely the soil moisture conditions of each surface temperature anomaly. Therefore, Table 8 summarizes 

the results of all the 7 individual ASTER temperature anomaly dates and soil moisture information for the 

same associated dates. The colour codes of blue shades are added for clarity for the soil moisture column 

in Table 8. Similarly, ASTER temperature anomaly Δ°C column also is colour coded for clarity showing 

the red colour with the lowest temperature anomalies and the light green colour with the highest 

temperature anomalies. From the table it can be noticed that day and night are separated in first three and 

last four rows respectively. It is because day and night time temperature anomaly values cannot be 

interpreted in the same way. Night time soil moisture data values are all higher than the day time soil 

moisture values. For night time the highest temperature anomaly of 12.85 °C is found on 28th August 2012 

as mentioned earlier. However, there is a data gap present exactly on the same day. The second highest 

temperature anomaly of 10.96°C on 27th July 2012 night time has the least soil moisture value of 34.81% 

after comparing 3 night time images’ soil moisture value. Highest night time soil moisture condition on 

23rd June shows a value of 42.91% and corresponds to a temperature anomaly of 10.59°C. For the day 

time, it can be noted that the highest soil moisture information of 22.08 % corresponds to the lowest 

temperature anomaly of 5.00°C out of the three dates. 
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Table 8 Summary of surface temperature anomaly and soil moisture information corresponding to each ASTER 
image of Sulfur Hills. The soil moisture value column SMC (%) are colour coded in blue shades with the light blue 

corresponding to the lowest value and the dark blue shade corresponding to the highest value. The ASTER Δ °C 
column is also colour coded with red (lowest value) to light green (highest value). The first three rows correspond to 
day time and the last 4 rows correspond to night time. 28th Aug. soil moisture information has a data gap. 

 

 

 

 
 

 
 
 

Figure 16 Antecedent precipitation before 28th August for data gap interpolation. Light blue columns on the graph 
are the soil moisture values corresponding to each date. The left vertical axis scale corresponds to relative soil 
moisture information. The dark blue column is the precipitation value with the right vertical axis showing the scale of 
precipitation in mm/d. The red circular dot corresponds to the temperature anomaly of 12.85°C for 28th August.  

 
 

The highest surface temperature anomalies of 28th August correspond with a soil moisture data gap. But it 

is possible to interpolate the missing value by analyzing the antecedent precipitation information. Included 

in Figure 16 is a graph which shows the pattern of precipitation (dark blue column) and soil moisture 

(light blue column). The red circular dot stands above the 28th August date line. Since the time period 
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before 28th August was a long and dry period as can be seen from 0 mm/d precipitation, it can be 

assumed that the soil moisture value on 28th August falls somewhere between 15.36 % (27th August) and 

17.44 % (29th August). Therefore an average value is taken at 16.4 % relative soil moisture for 28th August 

night time.  This value of 16.4 % relative soil moisture can be filled in the data gap cell of Table 8 

corresponding to 28th August surface temperature anomaly of 12.85°C. After fitting the interpolated soil 

moisture information of 28th August it can be inferred that the lowest soil moisture out of the four night 

time temperature anomalies are found to be associated with the same interpolated 16.4% relative soil 

moisture value followed by the second highest temperature anomaly of 10.96°C on 27th July 

corresponding to the second lowest relative soil moisture of 34.81 %. 

 

With the surface temperature anomalies and soil moisture relationship established, it is equally important 

to understand how the soil moisture information corresponds to the Surface emitted radiance anomalies in 

the ASTER TIR. Therefore the next section (5.2.3) describes the emitted radiance anomalies and their 

relationship with soil moisture from the same time series data analysis. It is to be noted here that one of 

questions raised in the research problem in section 1.3 was to understand how soil moisture affects 

emitted radiance in the ASTER TIR (8 to 12 µm).  
 
 
 
 
 
 

5.2.3. Time Series link to Land Surface Emitted Radiance Anomalies  

 

The aim with this section is to present and explain the results of the ASTER land surface emitted radiance 

and their differences between the anomalous pixels and the background pixels and how they correlate 

with the soil moisture information for the Sulfur Hills thermal area.   

 

Figure 17 shows the time series data points of relative soil moisture and mean Surface Emitted Radiance 

in ASTER TIR of thermal areas (coloured circles) and the background areas (coloured squares). Clearly, 

the day time (30th June, 17th August and 18th September) Surface Emitted Radiances from both the 

thermal area as well as the background area is higher compared to the night time. From the four night 

time scenes, the focus is on one 28th August night time scene highlighted with a rectangular black dashed 

box. The Surface emitted radiance on 28th August night seems to be the highest out of all the four night 

time scenes. The striking feature from the graph of 28th August is the clear separation between the 

coloured circles (Surface Emitted Radiance of thermal area or anomalous area) and the coloured squares 

(Surface Emitted Radiance of background area). Although there is a separation corresponding to 23rd June 

scene also, this separation is smaller than 28th August. All other night and day scenes show overlap 

between the mean surface emitted radiance of background and anomalous pixels in ASTER TIR. In order 

to see the differences between the anomalous surface emitted radiance and the background surface 

emitted radiance in all ASTER TIR bands another graph has been created. Figure 18 is a combination of a 

table as well as a graph. The figure shows the mean surface emitted radiance differences for all day and 

night scenes in ASTER TIR. The mean surface emitted radiance differences are found by subtracting the 

mean surface emitted radiance value of background pixels by the mean surface emitted radiance of 

anomalous pixels in the same ASTER TIR Band for all the day and night scenes. Since the surface emitted 

radiance values of thermal pixels are higher than the background, all differences are positive as is shown in  
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Figure 17 Time Series of SM & Emitted TIR Radiance of Mean Background and Anomalous pixels. The horizontal 
axis shows the different dates of ASTER Day & Night of Image acquisition. The light blue columns show the 
relative soil moisture with the primary vertical axis on the left from 0 to 100%. The secondary vertical axis on the 
right shows the Spectral Emitted TIR radiance values in units of W/m2/µm/sr. The coloured squares represent the 
mean background Surface Emitted TIR radiance values from Band 10(B10) to Band 14 (B14) for Sulfur Hills. 
Similarly the coloured circles represent mean anomalous Surface Emitted TIR radiance values from Band 10(B10) to 
Band14 (B14) for the thermal anomalous area of Sulfur Hills. SR stands for Surface Emitted Radiance on the graph, 
BG stands for Background and AN stands for Anomalous area. The black dashed rectangle highlights the emitted 
radiance on 28th August. 

 
 
 
 

the table of Figure 18.  The figure shows the differences as coloured lines with coloured circular data 

points. Each circular coloured data point corresponds to the values in the table. The relative soil moisture 

information is also included in the graph with the blue column showing the value of each soil moisture 

state for the corresponding day and night scene. The right vertical axis shows the scale of relative soil 

moisture and the left vertical axis shows the units of difference in surface emitted radiance in 

W/m2/µm/sr. The black rectangular box is used to highlight the largest differences found in all the 

ASTER TIR bands for 28th August Night time scene. It is to be noted here that the relative soil moisture 

value for 28th August used in Figure 18 is 16.4% which was interpolated in the previous section. Out of all 

the day and night scenes, 28th August shows the highest differences in mean surface emitted radiance 

between the anomalous pixels of Sulfur Hills and background pixels in all the 5 ASTER TIR Bands. For 

Day Time Images, the differences are highest on 17th August from Figure 18. While Comparing Day and 

Night it is interesting to note that the highest Radiance difference for the Night time is higher than the 

highest Radiance difference for the day time. 



DETECTING THE EFFECTS OF SOIL MOISTURE AND HOT SPOT SIZE ON GEOTHERMAL ANOMALIES VIA REMOTE SENSING TECHNIQUES 

 

40 

 
 
Figure 18 Surface Emitted Radiance Difference for Day and Night Time in 5 ASTER TIR Bands for Sulfur Hills. 
The figure also contains an associated table for each date containing the relative soil moisture information and the 
difference in mean surface emitted radiance values between the anomalous pixels (thermal areas) and background 
pixels (background area) in each ASTER TIR Band (B10 to B14) shown with a coloured line with same coloured 
circles as data points. The blue column on the graph corresponds to the relative soil moisture value in % for each 
date. The right vertical axis shows the relative soil moisture scale. The left vertical axis is the mean surface emitted 
radiance difference values in W/m2/µm/sr. The black dashed rectangular box highlights the surface emitted radiance 
difference for 28th August. 

 

 

The highest parameter values of surface emitted radiance anomalies and surface temperature anomalies 

correspond to the lowest relative soil moisture state of 28th August night time scene out of all the four 

night time scene. To complete the picture, it is essential to scrutinize the emissivity conditions over the 

same set of ASTER Images. Therefore, the next section (5.2.4) deals with the results of land surface 

emissivity and soil moisture relation. 

 
 

 

 

 

5.2.4. Time Series link to Land Surface Emissivity 

 

The aim with this section is to present the results of the ASTER land surface emissivity and the 

differences between the emissivity of anomalous pixels and the background pixels and correlate them with 

the soil moisture information for the Sulfur Hills thermal area and background area surrounding the 

thermal region. 
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Figure 19 Time series graph of relative soil moisture, mean background and mean anomalous emissivity in ASTER 
Bands for 7 day and night scenes. The horizontal axis shows the different dates of ASTER Day & Night Image 
acquisition. The light blue columns show the relative soil moisture with the axis on the primary vertical axis on the 
left from 0 to 100%. The secondary vertical axis on the right shows emissivity. The coloured squares represent the 
mean background emissivity values from Band 10(B10) to Band 14 (B14) for Sulfur Hills. Similarly the coloured 
circles represent mean anomalous emissivity values from Band 10 (B10) to Band14 (B14) for Sulfur Hills. The black 
dashed rectangular box highlights the emissivity on 28th August Night. BG stands for background pixels and anomaly 
stands for anomalous pixels. EM stands for emissivity.  

 

Figure 19 shows the time series of mean emissivity, both for the background as well as for the anomalous 

pixels of Sulfur Hills in the 5 ASTER TIR bands. The horizontal axis shows the day and night time 

ASTER Image acquisition dates, vertical axis on the left is Relative Surface SM (%) and vertical axis on the 

right is Emissivity. The coloured circles correspond to Mean Anomalous pixels emissivity at ASTER 

wavelengths and the coloured squares correspond to Mean Background pixels’ emissivity. Overall the 

emissivity values found in day and night time in remotely sensing ASTER TIR are high (0.89-0.97). The 

clear difference which can be noticed from Figure 19 is day time emissivities are higher relative to night 

time emissivity.  It can be also noted from the graph that the mean emissivity values of anomalous pixels 

are relatively lower than the mean emissivity values of the background pixels in ASTER. In some cases 

(where the coloured squares and coloured circles overlap) the background and anomalous emissivity 

values are closer. The highlighted black dashed rectangle over 28th August night time scene is to show that 

the emissivity patterns are different to other day and night scenes. The difference is the clear separation of 

anomalous and background emissivity even though the differences are quite small. No mean emissivity 

values of the anomalous pixels overlap with the mean emissivity values of background pixels for 28th 

August night time scene. 
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Figure 20 Emissivity Difference for Day and Night Time in 5 ASTER TIR Bands for Sulfur Hills. The figure also 
contains an associated table for each date with the relative soil moisture information and the difference in mean 
emissivity values between the anomalous pixels (thermal areas) and background pixels (background area) in each 
ASTER TIR Band (B10 to B14) shown with coloured line with same coloured circles as data points. The blue 
column on the graph corresponds to the relative soil moisture value in % for each date. The right vertical axis shows 
the relative soil moisture scale. The left vertical axis is the mean emissivity difference. 

 
 

Figure 20 shows the difference in mean emissivity values for night and day ASTER TIR Bands for 

background and anomalous area of Sulfur Hills. There is also an associated table with the graph which is 

arranged date wise in each column and each row represents 5 ASTER TIR bands and a row containing the 

relative soil moisture values. The relative soil moisture values are also represented by a blue column. The 

right vertical axis is the unit for the relative soil moisture in %. The left vertical axis shows the emissivity 

difference. Although, in Figure 19 there was a clear separation of anomalous and background emissivity, 

the differences of emissivity in Figure 20 do not show any clear pattern for 28th August night time scene, 

although highest emissivity differences are found in Band 14 and Band 11.  
 

 

5.2.5. Summary of Time Series Results  

 

Time series data analysis of three parameters namely, surface temperature anomalies, surface emitted 

radiance anomalies and surface emissivity, provided with the following results: 

 

Highest surface temperature anomalies were found to be associated with lowest soil moisture conditions 

in night time. Lowest surface temperature anomalies were found in day time when the highest soil 

moisture conditions were present. Surface emitted radiance results showed that highest differences are 

found when the soil moisture conditions are low in night time images. The emissivity results showed that 

the mean emissivity values of background area is relatively higher than the mean emissivity value of 

thermal area. Moreover, the lowest soil moisture conditions in night time ASTER TIR showed that the 

emissivity values do not overlap with the background and thermal area. 
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6. DISCUSSION 

The discussion section is divided into six sub-sections which discusses the (6.1) thermal infrared 

measurements of dry and wet soil, (6.2) synthetic data model, (6.3) remote sensing time series data 

analysis, (6.4) Integration of synthetic data model and remote sensing results, (6.5) limitations and 

uncertainties applied in remote sensing analysis (6.6) geothermal surface anomaly definition 

 

 

6.1. Discussion on Thermal Infrared Measurements of Dry and Wet Soils 

 

This section is on the discussion of thermal infrared measurements of dry and wet soils used in this study 

in Chapter 3. It is divided into three paragraphs. The first paragraph discusses the justification, the second 

paragraph discusses the actual results and the third paragraph ends with the uncertainties. 

 

In this research the focus was on the effect of soil moisture on emissivity. Other parameters related to soil 

moisture that possibly influences geothermal anomaly detection such as albedo, land surface temperature, 

emissivity, thermal inertia, and latent heat flux were neglected. In the lab the relation between soil 

moisture and emissivity in the ASTER TIR bands were studied. An experimental setup for measuring 

emissivity of dry and wet soil was beneficial for addressing the research problem of the effect of soil 

moisture on emitted radiance. Therefore, it was not necessary to use the actual soil samples from the study 

area. Nevertheless, the soil samples, loam and especially sandy loam used in this study have similar 

mineralogical characteristics like the one found in Yellowstone Caldera which are dominated by minerals 

such as quartz and K-feldspars due to the presence of rhyolite and tuff (Parks, 2016). 

 

The experimental results showed that with increasing soil moisture the emissivity also increases which is in 

agreement with previous research (Wang et al., 2015; Sanchez et al., 2011; Hulley et al., 2010; Mira et al., 

2007; Salisbury & D’Aria, 1992).  Loam soil emissivity plots (Figure 4) show a slight increase after further 

drying out from 4.43% SMC state until it reaches 0.96 at 0% SMC in the 8-9µm range. This reversal in 

trend may be caused due to the formation of cracks in the soil as it was drying out. Similar phenomena 

have been reported in literature (Sanchez et al., 2011). With sandy loam emissivity plots (Figure 3), the 

same kind of reverse trend of increasing emissivity values with decreasing soil moisture conditions were 

not observed, although tiny cracks were also present here. The reason could be attributed to the difference 

in mineralogical composition of sandy loam soil which is dominated by quartz and k-feldspars as 

compared to loam soil which is more clay rich relatively.  

   

The uncertainties and errors in extracting emissivity values of dry and wet soils from lab measurements 

can be influenced by a number of circumstances. It is tricky to keep the top few micrometers of the soil 

surface wet homogeneously like the rest of the soil in the petridish and to take representative 

measurements, although the depth of the soil was limited to 2 cm of the petridish. The time difference 

between the spectral measurements and the gravimetric SMC % weight measurements can introduce 

uncertainties. Longer the time difference, greater will be the errors. Random errors in the FTIR 

instrument can introduce the largest errors in the result. 
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6.2. Discussion on Synthetic Data Modelling 

 

This section discusses the results of the synthetic data analysis to simulate the effects of soil moisture in 

detecting geothermal surface temperature anomalies. It is divided into three sub-sections namely, (6.2.1) 

Discussion on day and night differences, (6.2.2) Discussion on dry and wet soil combinations, (6.2.3) 

Discussion on sensor noise effects. The section ends with a short paragraph on uncertainties of synthetic 

data model. 

 

 

6.2.1. Discussion on day and night differences  

 

This discussion is about the differences between day and night for thermal anomaly detection. In this 

study two different geothermal areas representing different climatic and geological settings were chosen in 

order to see the differences in thermal anomaly detection both for day and night conditions in 

Yellowstone and Olkaria. The results of the synthetic data plots from Section 4.4.3, Figure 9 (ii, iv) show 

the differences between Yellowstone and Olkaria for night time conditions with an overall mean detection 

rate of 0.85 and 0.81 respectively. Figure 9 (i, iii) synthetic data plots show the differences for day time 

conditions in Yellowstone and Olkaria with an overall mean detection rate of 0.54 and 0.50 respectively.  

The mean background surface temperature and standard deviation (Table 4) for day time in Yellowstone 

and Olkaria extracted from ASTER satellite temperature images are higher than night time. Therefore, the 

reason for worse anomaly detection rates during day time is due to the addition of solar heating effects 

which does not allow sufficient contrast between the background and the anomalous thermal features to 

be developed. At night the conditions are more suitable for thermal anomaly detection because the 

background area cools down gradually from dusk until dawn while the thermally emissive areas remain 

warm and hot depending on the source of sub surface heat energy. The findings are in line with previous 

studies (Coolbaugh et al., 2007; Vaughan et al., 2010). Uncertainties can be mostly because of digitization 

on ASTER Images for extracting mean background surface temperature and standard deviation.  

 

 

6.2.2. Discussion on dry and wet soil combinations 

 

This discussion is about the dry and wet soil emissivity combinations used for thermal anomaly detection. 

The dry and wet soil emissivities are introduced in the background and anomalous pixels for thermal 

anomaly detection. 16 combinations of dry and wet soil were used in the background and anomalous 

pixels for thermal anomaly detection. The setting is for a night time condition in Yellowstone. In order to 

simulate the effects of soil moisture in detecting geothermal surface temperature anomalies, dry and wet 

soil emissivity measurements were used in the synthetic model. A new table (Table 9) is introduced to 

discuss the results in Table 5 from Chapter 4, Section 4.4.4. Table 9 summarizes the ranks of 16 

combinations of anomaly detection scenarios borrowed from Table 5. The first column corresponds to 

the numbers of anomaly detection plots in Figure 11. The overall mean detection rates are arranged from 

the best on the top row to the worst at the bottom row. The emissivity Δ difference column is the 

difference in emissivity values of Band 14 in ASTER TIR associated with the anomalous pixel and the 

background pixel. Each row represents a combination scenario of dry and wet soil emissivity used either 

with the background pixels or the anomalous pixel.  
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Table 9 Rank table of 16 Anomaly Detection Combinations. The Sr. No. column stands for the serial number of 
Table 5 and Figure 11 anomaly detection plots in Chapter 4, Section 4.4.4. The Ranks column is colour coded with 
the best detection rates corresponding to the green colour and the worst detection rates corresponding to the red 
colour. The column of Emissivity Δ stands for the emissivity value difference between the anomalous pixel and the 
background pixel in Band 14 of ASTER TIR at 11.3µm wavelength. The rows are divided into best, intermediate and 
worst detection rates. 

 

The rows in Table 9 are divided into three classes of best, intermediate and worst detection rates based on 

the criteria that the first 4 rows (Ranks 1 to 4) represent scenarios when the anomalous pixel is wet and 

the background is dry with the 4 highest overall mean detection rate. The last 4 rows (Ranks 10 to 13) in 

Table 9 are designated as worst class when the background pixels are wet and the anomalous pixel is dry 

with the lowest overall mean detection rates. Rest of the rows (Ranks 5 to 9) are included in the 

intermediate scale of detection rate. It can be also noticed that two scenarios share the same Ranks (Ranks 

6, 7&8) based on the same overall mean detection rate. 

 

Best Detection Rates: The best detection rates from Rank 1 to Rank 4 in Table 9 are achieved when the 

anomalous pixel is covered by wet soil and the background is covered by dry soil. The reason for these 

better detection rates from Ranks 1 to 4 is because, the emissivity values of wet soils are generally higher 

which tend towards a black body in comparison to a dry state of soil which is relatively at lower emissivity. 

Therefore the anomalous area with higher surface temperature and higher emissivity has an elevated 

emitted radiance. The higher emitted radiance produces better contrast compared to the background 

which is at a lower emitted radiance due to lower emissivity and lower surface temperature. The emissivity 

differences in the last column of Table 9 are taken from the lab measured dry and wet soils resampled to 

ASTER TIR Band 14 (11.3µm).  The highest emissivity values for all the ASTER TIR Bands for both dry 

and wet soils were found in Band 14. They also showed the least variation due to soil moisture in 11-12µm 

as described in Chapter 3. Therefore Band 14 emissivity value differences were used for this discussion. 

Emissivity Δ column in Table 9 shows that the patterns of positive emissivity differences between the 

anomalous and the background pixels consisting of dry and wet soils have some correlation corresponding 
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to top (1-4) ranks of best detection rates. It was expected that the highest emissivity difference for the 

combination scenario of the anomalous pixel and the background pixel consisting of Wet Sandy Loam 

and Dry Loam respectively would have given the best detection rate because of the largest emissivity 

difference in Band 14 of ASTER TIR. However, it is possible that due to rounding errors associated with 

the synthetic model simulation in IDL, Rank 1 and Rank 2 may fluctuate. 

 

Worst Detection Rates: The lowest detection rates (Ranks 10 to 13) in Table 9 are associated with the 

last 4 rows when the scenario is of the background pixels covered with wet soils and the anomalous pixel 

covered with dry soils. On the contrary to ranks 1 to 4 when the conditions are reversed in ranks 10 to 13 

when the background is wet and the anomalous area is dry, the detection rates are worse because the 

spectrally emitted radiance contrast between the background and anomalous area is reduced. This is due to 

the fact that the background pixels attains higher emissivity when they are covered with wet soil than the 

anomalous pixel which are at lower emissivity covered with dry soils even though the anomalous pixel is at 

a higher surface temperature. The worst ranks of anomaly detection rates from 10 to 13 are also supported 

by negative emissivity differences between the background pixels and the anomalous pixel. 

 

Intermediate Detection Rates: will be discussed in Section 6.4 while elaborating on integration of 

synthetic model and remote sensing results. 

 

The best (Ranks 1 to 4) and worst (Ranks 10 to 13) detection rates from Table 9 are in line with the 

expected Planck’s function calculation because the emitted radiance is dependent on temperature, 

emissivity and wavelength. Therefore if the anomalous pixel which anyway has a higher temperature gets 

high emissivity due to increased moisture content the emitted radiance will increase according Planck’s 

function in a given wavelength. On the other hand, the relatively low temperature and low emissivity 

background will achieve a lower emitted radiance in the same wavelength band. Similarly, when Planck’s 

function is applied to a wet background (high emissivity) with low temperature and dry (low emissivity) 

anomalous area (high temperature) the emitted radiance contrast between the anomalous area and 

background area is reduced. However, the synthetic model did not take into consideration the changes in 

land surface temperature when there are changes in soil moisture. This research only focused on changes 

in emissivity with variation in soil moisture. Coolbaugh et al.(2007) stated that cooling effects are observed 

in areas where there is higher moisture content because of loss of heat through latent heat fluxes. 

However, this study cannot be compared one-to-one with the study of Coolbaugh et al.(2007) because the 

latent heat fluxes were not considered in this research. 
 
 
 

6.2.3. Discussion on sensor noise effects on thermal anomaly detection 

 

This section shortly summarizes the discussion on the effects of sensor noise on thermal anomaly 

detection. From the results of anomaly detection plots as shown in Figure 11 (A – without sensor noise, 

B- with sensor noise), the overall difference in mean detection rate is 0.008 with the sensor noise added 

for a night time scenario in Yellowstone. This is due to the addition of the Noise Equivalent difference in 

Temperature (NEdT) value of 0.3°K (Gillespie et al., 1998) to the thermal anomaly criteria. The thermal 

anomaly detection criterion is based on a temperature higher than µ + 2σ of the background. Therefore, 

when the NEdT value is added to the criterion, the thermal anomaly detection threshold increases leading 

to overall lower detection rates. The uncertainties in thermal anomaly detection can arise when the NEdT 

value increases due to sensor deterioration. 
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6.3. Discussion on Remote Sensing Time Series Data Analysis  

 

This section is about the discussion of remote sensing data analysis results that were based on three 

parameters namely land surface temperature, surface emitted radiance and emissivity for examining soil 

moisture effects in detecting geothermal anomalies. The discussion is divided into four sections 

expounding on the three parameters and concluding with the uncertainties and limitations to the methods 

applied in real data analysis. 

 

 

6.3.1. Discussion on Land Surface Temperature Anomalies 

The difference between the mean surface temperature of anomalous pixels (geothermal area) and the 

mean surface temperature of background pixels (non geothermal area) in Yellowstone from a particular 

date were used for correlating with relative surface soil moisture information from the same date. The 

results in Figure 15, Table 8 and Figure 16 in Chapter 5, Section 5.2.2 show that the highest surface 

temperature anomalies of 12.85°C and 10.96°C are found in night time conditions when the least relative 

soil moisture of 16.4% and 34.81% are present out of 4 night time ASTER Images. The 16.4% relative 

soil moisture information is based on an interpolation. The same soil moisture information is applicable 

for both the background as well as the anomalous pixels because of the coarse resolution of ASCAT 

Metop covering both the area with a single pixel value. The reason for highest temperature anomalies to 

be associated with low soil moisture conditions is because with less soil moisture over the background and 

anomalous pixels the temperature contrast between the anomalous and background are better developed. 

But when the background and anomalous area is saturated with moisture both the areas have higher 

emitted radiance but the contrast is reduced leading to lower thermal anomaly detection. However when 

comparing with the study of Coolbaugh et al.(2007), it can understood that cooler anomalies are produced 

due to evaporative cooling when there is higher moisture content and when the moisture content is low 

the evaporative cooling is less leading to higher surface temperature anomalies. 

The uncertainties are mainly due to the differences in time of ASTER surface temperature and ASCAT 

Metop relative soil moisture information and background area digitization.  

 

6.3.2. Discussion on Surface Emitted Radiance Anomalies 

 

The difference between the mean emitted radiance of anomalous pixels (geothermal area) and the mean 

emitted radiance of background pixels (non geothermal area) in Yellowstone in ASTER TIR from a 

particular date, were used for correlating with relative surface soil moisture information from the same 

date. The results in Figure 17 and Figure 18 in Chapter 5, Section 5.2.3 show that the highest surface 

emitted radiance anomalies are found to be associated with the night time conditions when there was least 

relative soil moisture (28th August, 2012 – 16.4%).  The highest emitted radiance anomalies were found in 

all the ASTER TIR Bands for the same date. During least soil moisture states, the emitted radiance 

contrast between the anomalous pixels and the background pixels are developed clearly as compared to a 

state when the soil moisture is equally high for both anomalous and background area. The high soil 

moisture conditions can cause to have lesser emitted radiance contrast as well as cooling effects due to 

loss of heat because of evaporative cooling. The emitted radiance in TIR is a function of the emissivity 

and land surface temperature. Therefore, if there are large errors in emissivity and land surface 

temperature, it will directly affect the surface emitted radiance in ASTER TIR. Emitted radiance from 

Land surfaces are estimated by performing atmospheric corrections on raw ASTER TIR data. The 

products ordered from LPDAAC were already atmospherically corrected therefore it was not corrected 

for any other atmospheric  
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6.3.3. Discussion on Land Surface Emissivity 

 

The mean emissivity of anomalous pixels (geothermal area) and the mean emissivity of background pixels 

(non geothermal area) in Yellowstone from a particular date in ASTER TIR, were used for correlating 

with relative surface soil moisture information from the same date. The results in Figure 19 in Chapter 5, 

Section 5.2.4 show that the mean emissivities of background pixels are relatively higher than the mean 

emissivity of anomalous pixels in all ASTER TIR Bands. This could be due the type of surface material 

the thermal area and the background area is composed of. Due to the presence of quartz rich minerals in 

the thermal area the emissivity of the anomalous pixels are low. The background pixels composed of bare 

soil and a mix of vegetation which may be the reason for the higher emissivity as compared to anomalous 

pixels from Sulfur Hills thermal area. The highest variation in emissivity difference as shown in Figure 20, 

is associated with Band 10 of ASTER TIR at 8.2 µm (red line) and the least variation is in Band 14 at 

11.3µm (green line). The quartz reststrahlen bands show the largest variation with the presence of quartz 

rich minerals as seen in emissivity measurements of sandy loam soil in Chapter 3, Figure 3. From Figure 

19 it can be noticed that for the highest soil moisture conditions on 23rd June 2012 night time, the 

emissivity is higher in both background as well as anomalous areas compared to all other night time 

images. The reason could be because of the highest relative soil moisture of 42.91 % found on same 23rd 

June ASTER TIR which matches with understanding of high emissivity associated with high moisture 

content (Hulley et al., 2010). Overall the emissivity values for both background and anomalous pixels are 

above 0.89 and below 0.98. The reasons for the generally high emissivity values can be attributed to the 

algorithms which were used for creating the Surface emissivity products. The emissivity is derived from 

atmospherically corrected TIR Radiance products. However, the atmospheric correction algorithms could 

be based on approximations which lead to a general increase in emissivity in ASTER TIR as compared to 

laboratory based measurements (Ramsey, 1999). The higher emissivity values could also be attributed to a 

number of sub pixel components which may be made of different surfaces like bare soil, vegetation, etc. 

which cause an overall increase in emissivity values for the ASTER 90m TIR scene.  

 

 

6.4. Discussion on Integration of Synthetic Model & Remote Sensing Results  

 

The input parameters for the synthetic data model were all based on realistic temperature and emissivity 

sources. Background surface temperature statistics were derived from remotely sensed ASTER satellite 

images, In situ geothermal hot spot temperatures were collected from ground measurement sources and 

emissivity measurements were made on real soil types in the laboratory. Although the soil types were not 

from the study area, nevertheless two different kinds of soils were used as proxy to understand the effect 

of soil moisture on emitted radiance. Therefore the name ‘synthetic data model’ seems to be a misnomer. 

Moreover, sandy loam and loam soils are quite representative of Yellowstone soil types which cover the 

thermal areas that are rich in quartz and k feldspar minerals. Since the inputs were based on realistic 

values, the outputs resulting from the model could be compared and possibly even extrapolated to remote 

sensing results. 

 

The Intermediate Detection Rates from Table 9 from Section 6.2.2 is borrowed into a new Figure 21 

consisting of two tables that show the comparison of synthetic data model results (top table) and the 

remote sensing data results (bottom table) together. A new set of ranks have been assigned to the 

synthetic data model results based on the separate category of Intermediate detection rates already made in 
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Table 9. The focus is created on three rows, the top row result from the synthetic data model and the top 

two row results from the remote sensing results. The cells are pointed out with black arrows with a 

corresponding description of the scenarios. Such a comparison can only be made between the remote 

sensing results and the synthetic model results where the soil moisture conditions are uniform over both 

the background as well as the anomalous pixels. Therefore Figure 21 is a comparison of the most similar 

results derived from the synthetic model results and the remote sensing results. The top table includes a 

subset of 8 combinations out of all the 16 combination results from Table 9 from the synthetic model 

outputs which can be possibly compared with remote sensing results. Remote sensing results are 

comparable also due to the coarse resolution (25 km) of soil moisture remote sensing data pixel which 

covers both the thermal area of Sulfur Hills and the background surrounding region providing a single soil 

moisture condition for both areas as shown in Figure 21 bottom table with SMC % colour coded in blue 

shades against day and night conditions.  The best detection rate from the synthetic data model results in 

Figure 21 is achieved when the anomalous pixel is covered with dry sandy loam and the background is 

covered with dry loam (top table, 1st row). The emissivity difference is also shown to be the highest for the 

same Rank 1 scenario with a value of 0.008 in Band 14 of ASTER TIR in the synthetic model results table. 

Similarly for the bottom table in Figure 21, the first two rows represent the best surface temperature 

anomalies with the lowest soil moisture states out of 4 night time ASTER images over Sulfur hills and 

background area. Although the soil moisture is not 0% in the top two rows nevertheless those are only 

available for comparison.  

 

 
Figure 21 Comparison of Synthetic Data Model & Remote Sensing Results. The table on the top shows the synthetic 
data model results borrowed from Table 9 with only the Intermediate Detection Rates. The Sr. No. column stands 
for the serial number of Table 5 and Figure 11 anomaly detection plots in Chapter 4, Section 4.4.4. The Ranks 
column is colour coded with the best detection rates corresponding to the green colour and the worst detection rates 
corresponding to the red colour. The column of Emissivity Δ stands for the emissivity value difference between the 
anomalous pixel and the background pixel in Band 14 of ASTER TIR at 11.3µm wavelength. The bottom table is the 
same table from Table 8 which shows the summary of surface temperature anomalies and soil moisture information 
corresponding to each 7 day and night ASTER images of Sulfur Hills.  
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From the comparison of the best anomaly detection combination result in the synthetic model table in 

Figure 21 to the top two night time remote sensing surface temperature anomaly results indicate that when 

the conditions are dry over both the anomalous area and the background area (dry sandy loam and dry 

loam respectively) the emitted radiance contrast is better than the when the conditions are wet. This is also 

determined by the emissivity difference which is shown by the positive difference of emissivity in Band 14 

11.3 µm of ASTER TIR. Dry Sandy Loam has a higher emissivity in 11.3µm than Dry Loam at the same 

wavelength. Therefore, the anomalous pixel which is at higher temperature and higher emissivity shows a 

better elevated emitted radiance as compared to the dry loam with lower emissivity and lower surface 

temperature covering the background area. For the remote sensing results, the surface temperature 

anomalies 12.85°C and 10.96°C for two night time conditions show that when the relative surface soil 

moisture is low out of 4 night time scenes, the best thermal anomaly detection are achieved. This is 

possible because when the soil moisture conditions are low the emitted radiance contrast is better 

developed than when the conditions are wet over both the areas.  

Although other rows of results are included in the tables of Figure 21, they are not discussed in order to 

only focus on the highlighted results. The Day time images are not included for comparison.  

The areas of uncertainties in comparison of the synthetic data model results to the remote sensing results 

are the comparison between the high accuracy, high precision soil moisture data used for from synthetic 

data model results and the low accuracy, low precision soil moisture information from remote sensing 

results.  

 

6.5. Discussion on Limitations and Uncertainties Applied in Remote Sensing Analysis 

 

 

The source of Soil Moisture data is ASCAT (Advanced scatterometer) sensor on Metop-A satellite with a 

Spatial Resolution of 25km (spatial sampling 12.5 km) (Wien, 2015). Therefore the relative surface soil 

moisture information (0% dry and 100% wet) may not be uniformly distributed all throughout the pixel 

because there are errors associated with each retrieval. This is an approximation of the soil moisture data 

retrieval algorithm (Wien, 2015). The largest uncertainties exist due to the time gap between the 

acquisition of ASTER scene over Yellowstone during the night and the ASCAT Metop relative soil 

moisture retrievals. Since the time differences are of the order of 5 hrs to 18 hrs, there is some difficulty in 

assuming that the soil moisture states retrieved at the time of ASCAT is the same when the ASTER 

Images are acquired. But the amount of rainfall during the particular day can provide some clues whether 

soil moisture increased, decreased or remained constant. Precipitation is not the only source of soil 

moisture, as there can be other sources such as ground water, moisture brought out by geothermal 

activity. 

Background area digitization can be quite subjective when assuming that the land cover is made of similar 

composition because it is hard to figure out where the boundary of the area with uniform composition 

begins and ends given the 90 m pixel size of ASTER. In reality the land cover composition can be 

gradational. The background area delineation was visually made based on Google Earth Satellite Images 

and ancillary information. 

6.6. Discussion on Geothermal Anomaly Definition 

 

This is a discussion on the geothermal anomaly definition.  

Geothermal anomalies can be sub-pixel in sizes however, no direct high resolution (<3m) thermal infrared 

data was available to make a detailed assessment of typical sizes and temperature differences of geothermal 
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anomalies found in Olkaria and Yellowstone. The In situ hot spot geothermal surface temperatures for 

Olkaria and Yellowstone ranged from >10°C to ~94°C. The mean background surface temperature for 

Yellowstone was 9°C for night time images. From the 16 combinations of anomaly detection based on the 

dry and wet soil emissivity, the best detection rates and the worst detection rates are used as a reference 

for creating a graphical representation of the overall range of results in Figure 22. The Figure consists of a 

horizontal axis with the units in degree Celsius of the temperature difference between the background of 

9°C and the range of hot spot temperature from 20°C to 94°C. Therefore the first value on the horizontal 

axis shows a difference of 20°C-9°C = 11°C followed by 30-9=21°C and so on. The vertical axis shows 

the hot spot temperature pixel fraction. The area within the two red and blue regions on the graph shows 

the space for no detection. The bordering dashed red and blue lines are the minimum limits of thermal 

anomaly detection. The white space above the minimum detection limit is the area of successful anomaly 

detection region. The best and worst anomaly detection scenario are taken from the best and worst 

anomaly detection plots out of 16 combinations of dry and wet soils for Yellowstone night time. This 

graphical representation helps to explain the effect of hot spot size and pixel fraction on the detection 

limit of thermal anomalies. For example, if the hot spot temperature is 21°C above the background 

temperature, it will need at least 40% and above within a pixel shared by the rest 60% background in order 

to be detectable as a thermal anomaly in the worst detection scenario. Similarly, for a hot spot temperature 

which is 51°C above the background, it will need to cover at least 20% of the pixel and beyond, shared  

 

 
 
Figure 22 Geothermal anomaly detection limit based on the best and worst detection scenarios 

 

with 80% of the background within a pixel for successful thermal anomaly detection. The criterion for 

detection remains the same at two times the standard deviation added to the mean background 

temperature. The significance of this graphical representation is to illustrate that detection behaviour of 

thermal anomalies are quite non-linear which is in turn dependent on how hot and big a component is 

within a pixel in order to be detectable. In reality however a pixel may usually be found to be a mixture of 

several components like bare soil, vegetation and the thermal area. Depending on the properties such as 

emissivity and the surface temperature of individual components within a pixel, the Pixel integrated 

radiance will be a sum of average of individual emitted radiance which will influence thermal anomaly 

detection accordingly. It is useful to consider the aspects of homogeneity of soil moisture within a pixel in 

order to precisely and accurately detect the thermal anomaly. 
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7. CONCLUSIONS 

Recalling, the general objective of this research was to examine and quantify the effects of soil moisture on 

geothermal surface temperature anomalies. The research objectives were to define a geothermal surface 

anomaly, perform a synthetic data modelling and remote sensing data analysis to simulate and examine the 

effects of soil moisture in detecting geothermal surface temperature anomalies. Research questions 

included typical sizes and temperature differences of geothermal anomalies, parameters related to soil 

moisture that influence geothermal anomaly detection, effect of sensor noise, differences between day and 

night, appropriate datasets and study area for testing the results, limitations and uncertainties applied to 

the remote sensing data analysis. The following section is a summary of answers to the research questions 

and problems that in turn addresses the research objectives, which ultimately fulfills the general objective 

of this research.   

 

1. In order to better characterize typical sizes and temperature differences of geothermal anomalies, 

high resolution thermal infrared data would have been ideal as the anomalies can be sub-pixel in 

size in ASTER TIR. In the absence of such data, this study utilized a pixel fraction scale of zero 

to one by incorporating the full range of geothermal hot spot temperatures found in Yellowstone 

and Olkaria. Detection thresholds of thermal anomalies with respect to pixel fractions show a 

non-linear behaviour mostly influenced by the variation in emissivity and temperature as shown 

by the synthetic data model results. 

2. The synthetic data model was sufficiently capable of addressing the research objectives by 

simulating the effects of soil moisture in detecting geothermal surface temperature anomalies.  

Although there are a number of parameters related to soil moisture which can possibly influence 

geothermal anomaly detection such as albedo, land surface temperature, emissivity, thermal 

inertia, latent heat flux only emissivity was looked at in detail. With higher soil moisture content 

the emissivity increases and when the soil is dry the emissivity is at equilibrium. 

3. Night time TIR images are better suited for thermal anomaly detection than day time images as 

revealed by the synthetic data modelling and remote sensing results. In addition the conditions of  

the sky should be clear with least cloud cover percentage preferably with 0% cloud cover over the 

area of  interest while acquiring TIR Images. Soil moisture conditions associated with TIR Images 

can be extracted from soil moisture retrieving satellite data over the thermal and background area 

with close proximity to TIR data acquisition time. There are limitations to spatial resolution of  

soil moisture data used in this study in addition to data gaps. The data gaps could have been 

replaced by soil moisture information from other satellites instead of  interpolation.  

4. The ASTER TIR sensor noise had negligible effect on the anomaly detection rates. 

5. The synthetic modelling results showed that the best thermal anomalies can be expected in 

thermal infrared data in the 8 to 12 µm range when the thermal area and the background area is 

made of  two different kinds of  surface materials. Ideally, if  the thermal area has a higher surface 

temperature and higher emissivity (high moisture content) in comparison to the background area 

with lower surface temperature and lower emissivity (low moisture content), the best detection 

possibility can be expected. Greater the difference between the emitted radiance of  thermal area 

and background area, better will be the contrast developed leading to better detection rates. 

6. The worst thermal anomaly detection rates in ASTER TIR can be expected when the background 

has a surface temperature which is closer to the thermal surface temperature with higher 

emissivity than the emissivity of  thermal features. The emitted radiance contrast between the 

thermal area and the background area is not developed clearly in this case. 
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7. Intermediate thermal anomaly detection rates in ASTER TIR can be expected when both the 

background as well as the thermal area is made of same kind of surface material with the same 

emissivity (same soil moisture states) but different surface temperatures. 

8. The remote sensing time series results showed that when both the thermal and background area 

are covered by relatively dry conditions equally, the surface temperature anomalies are 

conspicuous. Individual soil moisture conditions prevailing over the background and thermal area 

cannot be determined separately from the current ASCAT Metop Soil moisture data with a 

resolution of 25km. Therefore, only those modelled results could be compared with the remote 

sensing results where the soil moisture condition of background and anomalous area are the same. 

There was some agreement between the modelled and remote sensing results when the 

anomalous and background pixels were dry.   

9. Uncertainties are mainly associated with the differences in time of remote sensing data retrieval 

from ASCAT Metop and ASTER, large difference in spatial resolutions of 25km and 90m, 

algorithm used for the estimation of surface temperature, atmospheric correction algorithms used 

for generating Surface Emitted Radiance ordered from LPDAAC for ASTER, background area 

digitization in ASTER Images, experimental setup for emissivity measurements and systematic 

errors related to FTIR. Limitations of the study include non-availability of high resolution thermal 

infrared data for geothermal area characterization. It is a rarity to find cloud free images 

immediately after a precipitation event, even rarer to find cloud free day and night image pairs for 

the same day over Yellowstone.  

10. The methods applied in this study can be applied to any other geothermal area on earth, provided 

there are cloud free TIR day and night images, in situ hot spot geothermal temperature 

information, availability of soil moisture data with highest spatial and temporal resolutions over 

the thermal and background area with close proximity to TIR data retrieval time.  It is not 

necessary to wait for acquiring an ASTER TIR image immediately after a precipitation event. Any 

cloud free ASTER TIR image acquired over a geothermal area can be analyzed for the soil 

moisture states over the top few micrometers or centimetres of the soil surface by comparing 

with a satellite soil moisture data. 
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8. RECOMMENDATIONS 

Following are some of the recommendations to improve this study and a perspective on future outlook: 

 

1. In order to choose realistic pixel fractions for thermal anomaly definition, high resolution thermal 

infrared data (<3m) over known geothermal areas can be examined.   

2. It would be beneficial to compare the results of thermal anomaly detection carried out during 

dawn and night, if such a possibility exists. Dawn time can show better results due to minimum 

insolation effects. 

3. The NEdT of ASTER TIR subsystem can be compared from a time period at the beginning of 

the mission (Year 2000) to the present time (Year 2016) to identify more precisely if the sensor 

noise has any adverse effect on the anomaly detection due the aging of the sensor.  

4. Emissivity Normalization is just one of the methods to estimate the surface temperature of a 

radiance image by making a reasonable assumption of an emissivity of 0.96. However, there are 

other methods which can be used to estimate the surface temperature such as Alpha Residuals, 

Reference Channel, Temperature Emissivity Separation method, etc. It would be interesting to 

find how different methods influence the results of the synthetic model. 

5. The Synthetic Model can be extended to examine the influence of other parameters such as land 

surface temperature, albedo, thermal inertia, latent heat fluxes due to variations in soil moisture. 

The synthetic data model can be used with the emissivity of any type of soil, measured In Situ or 

in the lab, disturbed or undisturbed, dry, wet or intermediate soil moisture conditions using a 

thermal infrared spectrometer and can thus be extended to test the actual soil types present in 

Yellowstone, Olkaria or any other geothermal area on the earth to precisely quantify the thermal 

anomalies influenced by soil moisture. The synthetic data analysis did not deal specifically with 

situations when false positives appear in the background area. Therefore this is another area 

which requires further attention and extension to the synthetic model. 

6. With the advent of the highest spatial resolution (3/9/36 km) soil moisture retrieving SMAP 

satellite, the influence of soil moisture on anomaly detection can be better constrained. Therefore 

it is highly recommended to utilize SMAP soil moisture data along with ASTER TIR for thermal 

anomaly detection.  

7. This study did not take into account geothermal heat fluxes and false anomaly removal from day 

time or night time images because the aim was to see the influence of soil moisture on anomaly 

detection. Future work can include these parameters. 

8. Extensive time series analysis could provide more information on change of LST due to different 

factors (solar angle, soil moisture, albedo, etc.), to improve understanding of geothermal areas in 

ASTER TIR Images. This study only used limited number of ASTER Images. 

9. The findings of this study have possible applications in the initial geothermal energy exploration 

stage. Specifically, to make decisions for selecting TIR data from appropriate time, by taking into 

consideration the soil moisture conditions prevailing over a potentially viable geothermal region. 

10. Multiple applications can be anticipated with the effect of soil moisture on thermal anomalies 

related to volcano monitoring, earthquake precursors, forest burns and environmental impacts. 
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