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ABSTRACT 

Hydrocarbon seepages are effective indicators of oil and gas presence in the underground. They may alter 

the rocks and cause mineral alterations at the surface. Through detecting the changes of minerals in the 

surface seeps can be identified by remote sensing technology. In this research Advance Spaceborne 

Thermal Emission and Reflection Radiometer (ASTER) and WorldView-2 (WV-2) data were used to 

detect gas-induced alteration in the marly limestone formation in the Dezful Embayment, southwest Iran.   

 

In this research, first a knowledge-based approach (band ratio and relative absorption band depth) was 

applied to detect alterations. Box plots were made for selecting mineral indexes that could be used for 

detecting alterations. The combination of laboratory and image-driven spectral analysis illustrates that the 

alterations are dominated by gypsum, clays, sulfur and ferrous minerals. Furthermore, false color 

composition images, composed by selected mineral indexes, could be used to identify the alteration zones. 

As gypsum was observed as an indicator for alterations, the SWIR bands in ASTER were most important. 

Thus, although WorldView-2 data improved the spatial resolution of ASTER data, it did not improve the 

classification result. 

 

In the second part of this work, a data driven approach was introduced to classify altered and unaltered 

areas. Three classifiers, the Supported Vector Machine (SVM), Random Forest (RF) and Gradient Boosted 

Regression Trees (GBRT), were trained by two training sets of different sizes. The training sets were 

selected by the spatial–spectral endmember extraction tool (SSEE) with the help of alteration maps 

produced by knowledge-based approach applied in the first part of the research. However, the altered 

areas are obviously bright in ASTER data. To eliminate the influence of image intensity, the ASTER data 

was transformed to Principle component analysis (PCA) image. The new imagery was converted back by 

PCA image without first component which contained the intensity information. The performance of these 

classifiers was compared by testing the two different training sets and images. With the significant learning 

ability using small training sets and a good stability, the SVM method is observed to be the most suitable 

classifier for detecting hydrocarbon seepage alteration.  

 

Finally, the trained SVM classifier was used to produce a regional gas-induced alteration map. Two 

previously unknown areas were interpreted as potential hydrocarbon seepage alterations. The geologic 

models were built to interpret the occurrences of the potential hydrocarbon seeps. In addition, this 

research was compared with Salati (2014)’ work and improved the classification accuracy. 

 

Keywords: hydrocarbon seepage, mineral alteration, ensemble classifier, classifier, remote sensing, 

Supported Vector Machine, Random Forest, Gradient Boosted Regression Trees 
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1. INTRODUCTION 

1.1. Background 

As petroleum is one of the most important energy sources, various methods are proposed constantly and 

applied for exploration, such as seismic prospecting, gravity prospecting, magnetic prospecting, electrical 

prospecting, geochemical exploration and remote sensing(Ceron et al., 2001). Nowadays, seismic 

prospecting is one of the most common and important methods. However, this method is expensive and 

time consuming. 

 

Near-surface hydrocarbon seepages are effective indicators of subsurface oil and gas. Liquid and gaseous 

hydrocarbons escape to the surface through imperfect and leaking seals or cap rocks to form natural 

springs, which are called oil and gas seepages. Oil and gas seepages have two phases: macro-seeps (visible 

seeps) and micro-seeps (invisible seeps) respectively(van der Meer et al., 2002). In about 75% basins of oil 

and gas, seepages were found(Etiope, 2015). Selley(1992) concluded that the most locations of 

hydrocarbon seepages in UK and Macgregor(1993) showed a relationship between seepages and 

subsurface petroleum reserves. Through fractures and faults, oil and gas escape to the surface and form 

hydrocarbon seepages(Macgregor, 1993). Six migration types of seepages are distinguished: unconformity 

related seepages, salt dome related seepages, anticline related seepages, mud volcano related seepages, 

normal fault, and thrust fault related seepages respectively. Therefore, seeps are associated with the source 

and structure of a basin at regional scale, but the near surface migration of seeps is usually more complex 

and controlled by fracture systems. Although there is quite a complicated relation between hydrocarbon 

seepages and subsurface petroleum(Abrams, 2005), seeps still have an obvious value for petroleum 

exploration (Pirkle & Jones, 2006). 

 

In the process of upward migration of oil and gas, hydrocarbons react with the surrounding rock, soil, and 

vegetation, and cause alterations of rock and soil. Many researchers studied the anomalous patterns in 

vegetation or changes in vegetation diversity and type to detect hydrocarbon seepages, but this is not a 

suitable method for sparsely vegetated areas, and seepages can only at the very near surface interact with 

vegetation. Whereas, at the surface, hydrocarbons oxidize and form a reducing and slight acid 

environment which is associated with red bed bleaching (the conversion of Fe3+ to Fe2+), clay minerals 

(the conversion of feldspar to clay minerals like kaolinite) and carbonates (the presence of Fe2+ rich 

carbonates like siderite) (Lammoglia & de Souza Filho, 2013). A variety of alterations could happen 

depending on the original rock composition, the type of gas, and the pressure-temperature conditions. For 

instance, mineral alterations in the evaporite formation in Zagros, which are affected by interaction of 

hydrocarbon and evaporite, contain jarosite, alunite, natroalunite and sulfur (Tangestani & Validabadi, 

2014). Salati (2014) confirmed that gypsum, jarosite and sulphur are associated with hydrocarbon seeps in 

Gath-e-tursh. Therefore, hydrocarbon seepages have a high correlation with mineral alterations. That 

means it is feasible to detect seeps depending on mineral alteration. 

 

Remote sensing is one of approaches of mineral exploration(Bedini, 2011; Sabins, 1999) and has 

advantages of low cost and saving time. Moreover, the shortages is that it cannot detect the depth and the 

quality of subsurface reservoir. The Advanced Spaceborne Thermal Emission and Reflection Radiometer 
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(ASTER) has 14 spectral bands, including 3 bands in the range of VNIR wavelength, 6 bands of SWIR, 5 

bands of TIR and a DEM, which is a very useful sensor for geology(Gomez et al., 2005). Most research 

focuses on lithologic mapping, economic minerals exploration and detecting vegetation changing caused 

by hydrocarbons by using ASTER. Moreover, ASTER images can be used to map iron oxides, clays, 

carbonates, quartz and chlorite, which makes it suitable to create mineral maps at regional scale(van der 

Meer et al., 2012). CSIRO(2013) show their ASTER geoscience maps on their website. To detect more 

details and improve reliability, a high-resolution sensor is better used to enhance the spatial and spectral 

resolution of ASTER. Since 1980’s, hyperspectral imagery has been a hot topic in mineral mapping(van 

der Meer et al., 2012).  

 

For mineral distribution, most classification methods are based on subpixel unmixing analysis (Mulder et 

al.2011), such as Successive Projection Algorithm (SPA), Linear Spectral Unmixing (LSU), Iterative 

Spectral Mixture Analysis (ISMA), Mixture-tuned matched filtering (MTMF), Matched filtering (MF) and 

Constrained Energy Minimization (CEM), Support Vector Machines (SVM) with sigmoid (Cui et al., 2015; 

McCarthy et al., 2015; Van der Meer & Jia, 2012; Vicente & de Souza Filho, 2011; Zhang & Li, 2014; Platt, 

1999). However, there are two restrictions in my research: the area of hydrocarbon alterations is relatively 

small and the amount of field data is limited in my study area. These limitations make it difficult for 

classifiers to get a reliable result. 

 

Ensemble classifiers were developed to combine multiple classifiers for supervised or unsupervised 

learning and aims at improving the accuracy and reliability of single classifiers (Mao et al., 2015). A 

supervised learning algorithm is used to find a good hypothesis. These hypotheses are joined up to 

produce a better hypothesis by the ensemble algorithm (Rokach, 2009). Delgado et al. (2014) used 121 

data sets to evaluated 17 families of 179 classifiers. According to this paper, the best families of classifiers 

are random forest, and support vector machines are second best. RF is an ensemble classifier that contains 

multiple decision trees. This method combines Bootstrap aggregating and a random subspace method to 

build an ensemble of decision trees (Walton, 2008). Lowe & Kulkarni (2015) compared the accuracy of 

RF, SVM, neural network and maximum likelihood for classification in multispectral imagery, and 

according to this paper RF performed best while SVM occupied second position. Salati et al.(2014) applied 

an ensemble classifier for hydrocarbon alteration detection. These authors chose the Boosted Regression 

Trees (BRT) classification method, which was successful in detecting seeps. There were four reasons for 

the authors to choose BRT (Salati et al., 2014): (1) the classification result is visualized; (2) the predictors 

can be various types; (3)  irrelevant predictors are avoided; (4) it is not sensitive to outliers. 

1.2. Research problem 

In this research projection, two main problem should be solved. First, selecting and comparing for 

hydrocarbon seeps detection. Second, applying optimal classifier compared in this research to detect 

potential hydrocarbon seep alterations in a regional scale 

 

In sparse vegetation areas, remote sensing can be used to detect hydrocarbon seepages based on the 

alteration minerals associated with such seepages. Good classifiers can improve the accuracy and reliability 

of mineral classification. Thus, the key point is how to choose the best classifier. In recent years, although 

the ensemble technology is applied successfully and performs better than single classifiers in many fields 

including remote sensing geology (Gao & Xu, 2015; Knudby et al., 2014; Merdith et al., 2015; Zhang et al., 

2015), only BRT used in hydrocarbon alteration detection(Salati et al., 2014). However, as far as we know 

other classifierswith outstanding performance haven’t been used, such as RF. Therefore, in this research 
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good classifiers will be chosen and applied to the test area. Moreover, depending on the performance of 

these classifiers and choosing the best classifier, we aim to produce a hydrocarbon alteration map at a 

regional scale, which has never been done before as far as we know. 

1.3. Scientific significance and innovative aspects 

The scientific significance and innovative aspects are shown following:  

 

For mineral mapping, airborne hyperspectral imagery is optimum. But we don’t have hyperspectral 

imagery in the study area. Hyperspectral imagery are expensive, and acquiring new airborne hyperspectral 

imagery is time-consuming. Instead, multispectral imagery is cost-saving. In this study, I will try to use 

multispectral and very high resolution data (ASTER & World View-2) to map hydrocarbon seeps related 

alteration. 

 

As ASTER has 14 bands and World View-2 only has VNIR bands, producing mineral map by multi-

spectral imagery is harder than hyperspectral imagery. It is very important to choose suitable classifiers 

which have good potential in mineral classification by using multispectral and very high resolution 

imagery. Based on amount of literatures and trial, I will choose classifiers and these classifiers will be 

compared in this research. After that, a more reliable way to classify hydrocarbon seeps related alterations 

based on multi-spectral data will be highlighted. 

1.4. Study area and datasets 

1.4.1. Study area 

The study area is located in the Dezful Embayment, central-southern Zagros fold thrust belt, in south-west Iran. The 

Zagros Basin, the second largest basin in middle East (Nairn & Alsharhan, 1997), is the largest structure controlled 

oil and gas field group (ZOU et al., 2015). Almost all the oil fields are located in the Dezful Embayment. 

Hydrocarbon seepages are very common here, but only a small number of studies have been carried out. There are 

three reasons: (1) this area is largest structure controlled basin; (2) hydrocarbon seepages are common; (3) it is arid. 

In Dezful Embayment, hydrocarbon seepages are mainly associated with limestone and evaporite formation. Salati et 

al. (2014) worked on a local scale area in the north of Dezful Embayment, which is sparsely vegetated, and chose 

Boosted Regression Trees (BRT) classification method, which was successful in detecting seeps.  

 

In the study area, Gachsaran cap rock underlies Mishan Formation so that hydrocarbon seepages and their 

alterations might occur in Mishan Formation. Gacharan formation is dominated by evaporite while Mishan 

Formation is dominated by marl and the marly limestone (Salati, 2014). Moreover, many oil beds in Zagros thrust 

belt have gas caps. Therefore, it is meaningful for oil and gas exploration to study gas seepages on the surface of the 

marly limestone in Zagros. In the study area (figure1.1), field work has been done and samples have been collected 

around active hydrocarbon seepages (Salati, 2014). Field samples and known seepages can be used to evaluate 

hydrocarbon alteration maps. 
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(a)                                                  (b) 

Figure1.1    Study area. (a)is used in chapter5, while (b) is the test area that is used in chapter 3 and 4. The 

red circle in (b) shows the location of field samples 

1.4.2. Datasets 

1.4.2.1. Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) 

ASTER has 14 spectral bands, and the wavelengths and the bandwidths of the bands make it a very useful 

sensor for geology (Gomez et al., 2005). VNIR and SWIR bands allow to map ferrous and ferric minerals, 

clays, carbonates and sulfur. These minerals are associated with hydrocarbon seepages(Shi et al., 2012). 

Table 1.1    ASTER bands information 

Band Label Wavelength(µm) Resolution(m) 

B1 

VNIR 

0.520–0.600 15 

B2 0.630–0.690 15 

B3 0.760–0.860 15 

B4 0.760–0.860 15 

B4 

SWIR 

1.600–1.700 30 

B5 2.145–2.185 30 

B6 2.185–2.225 30 

B7 2.235–2.285 30 

B8 2.295–2.365 30 

B9 2.360–2.430 30 

B10 

TIR 

8.125–8.475 90 

B11 8.475–8.825 90 

B12 8.925–9.275 90 

B13 10.250–10.950 90 

B14 10.950–11.650 90 
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1.4.2.2. WorldView-2 

WorldView-2 has a panchromatic imagery (resolution: 0.46 m; wavelength: 0.450-0.800µm), and eight-band 

multispectral imagery (resolution: 1.84 m). The size of Hydrocarbon seepages and their alteration is small, and World 

View-2 is a very high spatial resolution satellite. The eight VNIR bands is useful to detect iron and sulfur. 

Unfortunately, World View-2 doesn’t have SWIR bands for mapping some seepages related minerals like clays and 

carbonates. Consequently, World View-2 can improve the hydrocarbon alteration zones and accuracy of 

hydrocarbon alteration mapping (Salati, 2014). 

Table 1.2     WorldView-2 bands information 
Band Wavelength(µm) 

Coastal Blue 0.400 - 0.450 

Blue 0.450 - 0.510 

Green 0.510 - 0.580 

Yellow 0.585 - 0.625 

Red 0.630 - 0.690 

Red Edge 0.705 - 0.745 

Near Infrared (NIR1) 0.770 - 0.895 

Near Infrared (NIR2) 0.860 - 1.040 

 

1.5. Research objectives 

The main objective is to compare the performance of a number of classifiers and apply them to ASTER 

and WorldView-2 imagery for detecting hydrocarbon alteration in the Dezful Embayment. 

Sub-objectives: 

1. Spectral analysis of alteration associated with gas-induced seepages in the marly limestone 
formation in the Dezful Embayment. 

2. Map hydrocarbon seeps related alterations in local scale by Aster and World View imagery. 
3. Analyze and compare performance of a number of classifiers for hydrocarbon seepages detection. 
4. Extrapolate hydrocarbon alterations to map at regional scale using the classifier which has the 

best performance. 

1.6. Research questions 

1. Which minerals associated with hydrocarbon seepages should be chosen for target mineral 
mapping? 

2. How to select the best classifier? 
3. Do ensemble classifiers work better than single classifiers in the terms of hydrocarbon alteration 

detection? 
4. How do ensemble classifiers perform with a limited amount of field data? 
5. Which classifier has the best performance? Why does this classifier perform so well for 

hydrocarbon alteration detection? 
1. Comparing the accuracy of hydrocarbon seepages detection, could ASTER imagery be used to 

map hydrocarbon seeps related alterations if WorldView-2 imagery is not available?  

1.7. Methodology 

This research involves 6 main stages shown in figure 1.2: 

 

1. Pre-processing of the ASTER and WV-2 images. Operations such as cross-talk correction, 
rotation, layer stacking, geometric correction, FLAASH Model were performed in ENVI 5.2 and 
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CrossTalk3 software. For ASTER data, we resampled the six 30 m SWIR bands to 15 m VNIR 
spatial resolution. 

 

2. Analyze spectra of the altered and unaltered samples that were measured using the ASD 
instrument, in order to indicate which minerals are associated with gas-induced alterations. The 
laboratory spectra were resampled to the ASTER bands. Compare the spectra of field samples 
with the spectra picked from pixels of ASTER and World View-2 imagery that have same 
location as the field samples. Compare with the USGS spectral library; the spectra based on the 
range of absorption features, depth and pattern of spectral features were visually studied to 
identify minerals. This step should be very carefully done to decide which minerals would be 
chosen for classification. These minerals would influence the accuracy of hydrocarbon alteration 
detection. 

 

3. Based on the altered mineral assemblages, suitable band ratios, relative absorption band depth and 
false color composite of World View-2 and ASTER were selected and produced to give insight in 
altered minerals.  

 

4. To classify ASTER, World View-2. There are three problems: (1) this study will use multispectral 
data in which it is easy to make mistakes in endmember extraction beause of the low spectral 
resolution; (2) the amount of field data is limited in the study area; (3) the area of the hydrocarbon 
alterations is relatively small. Thus, the selection of the training sets and the classifiers should be 
done carefully. 

 

Meanwhile, the classifier selection is cumbersome. As the research time is limited, how to choose 
good classifiers from hundreds of classifiers is a big problem. Based on three problems mentioned 
in stage 4, there are three criteria for classifier selection: (1) these classifiers should be insensitive 
to outliers; (2) these classifiers should have good performance when the training sets are small; (3) 
these classifiers should be pixel-based or sub-pixel analysis; (4) overfitting should not be common 
in these classifiers. In this research, SVM, RF and GBRT were selected, and these classifiers were 
all available in the software R (version 3.2.0).  
 
Further, after testing the optimal parameters for each classifier, apply these classifiers and two 
training sets to ASTER imagery. Then hydrocarbon alteration maps were produced.  

 

5. To validate these classifiers (SVM, RF and GBRT) and measure the quality of the alteration map, 
a test set is used that consists of ground truth data. The evaluation involves two aspects: (1) the 
overall accuracy of confusion matrix that is calculated using the test set; (2) comparing the spatial 
alteration patterns of classification result with a false-color image produced in stage 3.  

 

6. According to the validation result in stage 5, advantages and disadvantages of these classifiers 
were concluded and the best classifier will be identified. Apply the best classifier to produce 
hydrocarbon alteration map at regional scale (figure 1.1a). 
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Figure 1.2    Flow chart of methodology 
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2. LABORATORY SPECTRAL ANALYSIS OF FIELD 
SAMPLES 

2.1. Laboratory spectral analysis of field samples 

Field samples and laboratory spectra were collected and acquired with the ASD instrument by Ms. Salati in 

2012 (Salati, 2014). In this study, 20 samples which were collected in the marly limestone in the Dezful 

Embayment are chosen and the locations are shown in figure 2.1. These samples contain both altered and 

unaltered rocks and show the upper boundary of gas-induced alteration. 

 
Figure 2.1    Locations of field samples in the Dezful Embayment (see red circle in figure 1.1(b)). Samples 

(3, 4, 5, 6, 7, 8, 9, 1v1, 1v2, 2v1, 2v2, 3v1 and 3v2) of red color are gas-induced altered while samples (1, 2, 

10, 4v1, 4v2, 5v1 and 5v2) of green color are in unaltered areas.  

 

When hydrocarbon escaped, sulfur minerals in the cap rock reduced to hydrogen sulfide. Hydrogen 

sulfide reacted with calcite of the limestone to produce gypsum and native sulfur (Salati, 2014). Based on 

the result of geochemical analysis, the altered samples have high concentration of sulfur and gypsum, but 

low concentrations of calcite. Meanwhile, the unaltered samples have high concentrations of calcite and 

lack gypsum and sulfur (Salati, 2014). 

 

Laboratory reflectance spectra of field samples were acquired with ASD FieldSpec and spectral library 

were created by Salati (2014). We will also use the USGS digital spectral library, which was assembled by 

Clark et al. (2007). As shown in figure 2.2, the USGS digital spectral library shows: (a) the absorption 

features of gypsum are at 1.45μm, 1.75μm, 1.94μm, 2.21μm and 2.42μm. (b) the absorption features of illite 
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are at 1.41μm, 1.91μm, 2.21μm, 2.34μm and 2.44μm. (c) the absorption features of smectite are at 1.41μm, 

1.91μm, 2.21μm. (d) the typical absorption feature of calcite is 2.34μm. 

 

 
Figure 2.2    Gypsum, calcite, illite and smectite spectra from USGS spectral library (Clark et al., 2007) 

 

Laboratory spectra are compared with the USGS digital spectral library, and the analysis of the absorption 

features of minerals is used to identify the mineralogy of laboratory spectra. Based on the geochemical 

result(Salati, 2014) and the USGS digital spectral library, the mineralogy of the field samples is shown as 

follow. 
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Figure 2.3    Laboratory spectra of selected samples after using continuum removed and the mineralogy of 

these spectra. Sample 4v2, 2 and 1 show the spectra of unaltered samples, while others show the spectra 

of altered samples. Two dotted orange lines draw the wavelength of 1.4μm and 1.9μm (absorption feature 

of water). The dotted purple line draws the wavelength of 2.2μm (absorption feature of AlOH) and dotted 
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red line highlight the wavelength of 2.35μm (absorption feature of calcite). The locations of these samples 

are shown in figure 2.1. 

 

Table 2.1   Mineralogy of field samples 

 Mineralogy Sample No. 

altered 

Gypsum 4,5,6,7,9,1v2,3v2 

gypsum+illite 3,8,2v1,3v1 

illite+gypsum 1v1 

Smectite 2v2 

unaltered 

smectite+calcite 1 

calcite+smectite 2,4v1,5v1 

smectite+calcite+illite 4v2,5v2,10 

 

For understanding of how the minerals changed when the rocks were altered by gas, we compare the 

absorption feature and mineralogy of both altered and unaltered samples. As figure 2.3 and table 2.1 

showed, unaltered samples contain calcite and clays. Meanwhile gas-induced altered samples contain 

gypsum and clays. Moreover, two water absorption features of unaltered samples, 1.4μm and 1.9μm, are 

shallower than altered samples. 

2.2. Conclusion  

This chapter utilized a laboratory spectra approach to analyze the absorption features and to identify 

mineral assemblages in altered and unaltered field samples respectively. The results of this chapter 

demonstrated that gypsum and clays are dominated in gas-induced altered samples, while unaltered 

samples contain calcite and clays predominately in the marly limestone formation. And the altered samples 

show a deeper absorption in the water absorption features of 1.4 and 1.9 micron.   
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3. ASTER AND WORLDVIEW-2 DATA PROCESSING 

Laboratory spectra of altered and unaltered samples were analyzed in chapter 2. Mineral assemblages were 

identified and gypsum was suggested as the indicator mineral in alterations. In this chapter, ASTER and 

worldview-2 data were processed. In order to identify the minerals in ASTER and WV-2, we resample the 

laboratory spectra to the ASTER and WV-2 scenes and compare these spectra with the spectra of pixels 

from ASTER and WV-2 respectively. Moreover, the result of chapter 2 is regarded as prior knowledge for 

selecting band ratios and relative absorption band depths. The method and result of satellite data 

processing are shown in the following sections. Based on the result of ASTER and WorldView-2, gas-

induced alterations in the study area are identified. Furthermore, the alteration map can be used to guide 

choosing the training set for classifiers. 

3.1. ASTER data processing 

3.1.1. ASTER data pre-processing  

For this research, the ASTER level 1B data was processed. The ENVI software contains a correction 

function for ASTER, and radiance calibration is automatically applied when ASTER level 1B data is 

opened in the ENVI software. Then, crosstalk, rotation, layer stacking, FLAASH MODEL, quick statistic, 

band math and dark subtraction were done in the ENVI software for atmospheric and geometric 

correction.  

 

Photons leak from one detector to another, and will cause a radiance offset. Because the solar output of 

band 4 is significantly higher than other bands and detectors of band 5 and band 9 are nearest to the 

detectors of band 4, this means that band 5 and band 9 are easier affected by crosstalk. However, the 

photons of band 4 may leak to all SWIR bands so that the crosstalk of ASTER affects the accuracy of 

SWIR bands(Alimohammadi, et al., 2015). Referring to the ASTER Mineral Index Processing 

Manual(Kalinowski, 2004), the ERSDAC Crosstalk software was used to correct crosstalk of all the 

ASTER SWIR bands used in this study. 

 

The FLAASH Model is an atmospheric correction method for VNIR and SWIR bands in ENVI. And it 

can be used in both hyperspectral and multispectral data. The FLAASH Model was developed based on 

MODTRAN4 calculations(Adler-Golden et al., 1999). Tian et al. (2008) indicated this model offered the 

best calibration for hyperspectral data radiometric calibration in their research. The input file should be a 

radiometrically calibrated radiance image. The sensor information, image acquired date, elevation and 

location must be filled in. For this purpose the elevation was obtained from google earth, and other 

information was obtained from the metadata. Moreover, an atmospheric aerosol model must be selected. 

As the tropospheric aerosol model is used for open ground with a small-particle component of the rural 

model, and the study area meets these conditions, the tropospheric aerosol model was chosen in this 

study(Visual & Solutions, 2009). The output is a reflectance image. Therefore, in this study, the FLAASH 

Model in ENVI software corrects ASTER imagery based on above steps.  
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3.1.2. Analyze field data and ASTER data co-located with field data 

To analyze the spectra information and compare the spectral difference between altered and unaltered 

samples in ASTER, laboratory spectra of field samples are resampled to the ASTER spectral resolution. 

Moreover, we pick spectra from ASTER pixels co-located with field samples. The newly constructed 

spectral library is created by using these ASTER spectra. 

 
             (a)                                                                        (b) 

 
      (c) 

Figure 3.1    (a) Mean laboratory reflectance spectra of both altered and unaltered field samples, (b) mean 

spectra resampled to ASTER and (c) mean spectra of pixels from ASTER co-located with field samples. 

 

As figure 3.1 shows, the unaltered spectrum has an absorption feature at 2.34µm which is a typical 

absorption feature of calcite, while the altered spectrum doesn’t have this absorption feature. Both altered 

mean spectrum and unaltered mean spectrum have an obvious AlOH absorption feature at 2.2µm. 

Moreover, the reflectance of the altered samples is higher than the unaltered samples in VNIR bands. 

Therefore, we conclude that the result of spectra derived from ASTER imagery agree with the result of 

laboratory spectra. 
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3.1.3. Band ratios and False Color Composition images 

ASTER has 14 spectral bands with wavelengths from 0.52µm to 11.65µm which means that ASTER 

doesn’t provide a blue band. Although ASTER cannot produce true color images, the 14 spectral bands 

are useful to calculate mineral indexes. As hydrocarbons escape to surface, hydrocarbons oxidize and form 

a reducing and slight acid environment at the surface, which is associated with red bed bleaching (the 

conversion of Fe3+ to Fe2+), clay minerals (the conversion of feldspar to clay minerals like kaolinite) and 

carbonates (the presence of Fe2+-rich carbonates like siderite) (Lammoglia & de Souza Filho, 2013). 

Moreover, geochemical analysis (Salati, 2014) and laboratory spectral of the field samples showed that the 

altered samples have a high concentration of sulfur and gypsum and low concentrations of calcite, while 

the unaltered samples have high concentrations of calcite and lack  gypsum and sulfur. Therefore, the 

band ratios (Territory, 2012) listed in table 1 were selected with which band ratio images were made using 

ENVI band math. As table 3.1 shows, the ratio b2/b1 is used to indicate ferric iron, b5/b4 is used to 

indicate ferrous iron, the band depth (b5+b7)/b6 is used to indicate clays, (b7+b9)/b8 is used to 

strengthen calcite, and the formula b4/(b9+b6) is used to indicate gypsum. 

 

Table 3.1    ASTER band ratios 

Code name Description  Ratio 

Ferric iron index Ferric oxide composition B2/B1 

Ferrous iron index Ferrous silicate or carbonate B5/B4 

Clays index Clays  (B5+B7)/B6 

Calcite index Calcite  (B7+B9)/B8 

Gypsum index Gypsum B4/(B9+B6) 

NDVI Vegetation  (B3-B2)/(B3+B2) 

Ferrous iron index* Ferrous oxide (Salati, 2014) B3/B1 

 

Box plots of above-mentioned indexes were calculated to compare ferric oxide index, ferrous index, clay 

index, calcite and gypsum between unaltered and altered field samples. As shown in figure 3.2, the value of 

the Ferric oxide index (b2/b1), Ferrous iron index (b5/b4) and Calcite ((b7+b9)/b8) in unaltered field 

samples are higher than altered field samples, while the value of AlOH group content ((b5+b7)/b6) and 

Gypsum (b4/(b9+b6)) in unaltered field samples are lower than altered field samples. From prior 

knowledge we knew that the altered area should have a high concentration of ferrous iron, clays and 

gypsum. But figure 3.2 shows that ferrous iron in altered samples have a lower index value than unaltered 

samples. This phenomenon is due to the limitation of these band ratios. Band5/band4 is used to identify 

ferrous iron in silicates and carbonates, and it is hard to use Band5/band4 to detect ferrous iron if it is 

associated with oxide and sulphate. The altered marly limestone formation contains less carbonates. This 

explains why the value of band5/band4 in altered samples is lower than in unaltered samples. 
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Figure 3.2    Box plots of band ratios show the comparison of the ferric oxide index, ferrous index, clay 

index, calcite index and gypsum index between unaltered and altered field samples. Plots show, generally, 

clays and gypsum indexes in the altered samples are higher than the unaltered samples, while ferric oxide, 

ferrous and calcite indexes in the altered samples are lower than the unaltered samples. 

 

Table 3.2    False color composite images 

Code name R G B 

FCC1 3N 2 1 

FCC2 gypsum index calcite index clay index 

FCC3 gypsum index calcite index ferric index 

 

Therefore, the altered area in our study area should contain high a concentration of gypsum and clays, and 

a low concentration of calcite and ferric iron. Next, three false color composition images (see table 3.2) 

were made to show difference between gas-induced alteration and unaltered areas in ASTER data. 
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Figure 3.3    FCC2 of gypsum index (red) - calcite index (green) - clay index (blue) obtained from the 

ASTER image. The yellow dot represents the position of field samples. Orange circles represent the gas-

induced alterations. 

 
Figure 3.4    FCC3 of gypsum index (red) - calcite index (green) – ferric iron index (blue) obtained from 

the ASTER image. The yellow dot represents the position of field samples. Orange circles represented the 

gas-induced alterations. 
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Figure 3.5    ASTER image in band3N (red) – band2 (green) – band1 (blue) false color composite 

(vegetation shows red color) 

 

 
Figure 3.6    NDVI image (vegetation shows white color) obtained from the ASTER image 
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False color composite (FCC) images were created using the index images. The FCCs can be used to 

indicate alteration zones. As figure 3.3 shows, a false color composite of gypsum index (red), calcite index 

(green) and clay index (blue) was created. Since altered areas in our study area should contain a high 

concentration of gypsum and clays and a low concentration of calcite and ferric iron, the purplish area(s) 

in the marly limestone formation in figure 3.3 might be gas-induced alteration. In figure 3.4, a false color 

composite of gypsum index (red), calcite index (green) and ferric index (blue) was created. The reddish 

area in the marly limestone formation in figure 3.4 might be gas-induced alterations. In figure 3.4, there are 

reddish areas along the border of the evaporite formation and the marly limestone formation. However, 

these reddish areas are not gas-induced alterations, because gypsum is a common mineral in evaporite 

formation (Tangestani & Validabadi, 2014). Thus, gypsum along the western boundary of the marly 

limestone formation might be transported from the evaporite formation. Moreover, since vegetation has 

high reflectance in wavelength of 0.8µm, vegetation should show red color in FCC1 (see figure 5). Figure 

3.5 and figure 3.6 illustrate the study area lacks vegetation which means that vegetation will not have a 

major effect on the image analysis. Hydrocarbon alteration zones were indicated by orange circles. 

3.2. WorldView-2 data processing 

3.2.1. WorldView-2 data preprocessing 

For this research, WorldView-2 data which was orthorectified image was acquired on 24 August 2011 

under cloud-free conditions, and was geometrically corrected by DigitalGlobe. Gains and offsets were 

applied and recorded in the metadata which was used to convert digital number to radiance by ENVI 

software (Robinson et al., 2016). The image was atmospherically corrected and radiometrically calibrated 

to reflectance using the FLAASH model (Mutanga, Adam, & Cho, 2012; Whiteside & Bartolo, 2015). 

3.2.2. Analyze field data and WorldView-2 data co-located with field data 

Here we resample the laboratory spectra of field samples to WorldView-2 spectral resolution, pick spectra 

from WorldView-2 pixels co-located with field samples and create a new spectral library by using image 

spectra. The mean spectra of altered and unaltered samples are shown in figure 3.7. 

 

As figure 3.7 shows the unaltered spectrum has a slightly deeper absorption feature in 0.48μm than altered 

spectrum. Moreover, the overall value of the altered spectrum is higher than the unaltered spectrum. 

Therefore, altered areas are brighter than unaltered areas. 

3.2.3. Band ratios and False Color Composition images 

When hydrocarbon escaped, sulfur minerals in cap rock reduced to hydrogen sulfide. Hydrogen sulfide 

reacted with calcite from the limestone to produce gypsum and native sulfur(Salati, et al., 2014). 

WorldView-2 has 8 spectral bands and the wavelengths range from 0.40µm to 1.04µm. Visible and near-

infrared bands can be used to detect sulfur and iron minerals (Horgan, et al., 2014). Sulfur has an 

absorption feature in about 0.4µm so that it can be enhanced by dividing the right shoulder (about 0.56 

µm) by the absorption feature. Thus, band2/band1 was used to indicate sulfur in this research. 

Band5/band3 (red band/ blue band) was used to indicate ferric iron (Kalinowski, 2004). 

Band3*band4/band2 (green*yellow/blue) was used to indicate iron. Therefore, the band ratios listed in 

table 3.3 were selected and using these band ratio images were made using ENVI band math. 
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(a)                                                                    (b) 

 
(c) 

Figure 3.7    (a) Mean laboratory reflectance spectra of both altered and unaltered field samples, (b) mean 

spectra resampled to WorldView-2 and (c) mean spectra of pixels from WorldView-2 co-located with field 

samples. 

 

 
Table 3.3    WorldView-2 band ratios 

Code name Description  Ratio 

Sulfur index Sulfur B2/B1 

Ferric iron index Ferric oxide composition B5/B3 

Iron index Iron oxide (B3*B4)/B2 

Ferrous iron index* Ferrous iron (Salati, 2014) (B3+B5)/B1 

Ferric iron index* Ferric iron (Salati, 2014) B4/B7 
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Figure 3.8    Box plots of band ratios showed comparison of sulfur, ferric index, iron oxides between 

unaltered and altered field samples. Plots show sulfur index are higher in the altered samples than the 

unaltered samples. 

 

Box plots of the above-mentioned band ratios were made to compare sulfur and iron between unaltered 

and altered field samples. As shown in figure 3.8, the value of the Ferric iron Index (b5/b3) in unaltered 

field samples is higher than in altered field samples, while the value of sulfur index (b2/b1) in unaltered 

field samples are lower than in altered field samples. From prior knowledge we knew that altered areas 

should have a high concentration of ferrous iron, clays and gypsum. But ferrous iron, clays and gypsum 

cannot be detected by WorldView-2. This is due is due to the restricted wavelength range of WorldView-2 

data. Ferrous minerals mainly have an absorption feature at 1µm, and the spectral characteristics of ferrous 

minerals have a strong relation with their composition and crystal structure. Moreover, clays and gypsum 

have obvious spectral characteristics in shortwave infrared bands. Thus, WorldView-2 data cannot be used 

to detect ferrous minerals, clays and gypsum. 

 

From the above, it is clear that the altered area in our study area should contain a higher concentration of 

sulfur, and less ferric iron. In addition to this, three false color composition images (see table 3.4) were 

made to show the difference between gas-induced alterations and unaltered areas in WorldView-2 data. 

Table 3.4    True and false color composite images 

Code name R G B 

TCC1 5 3 2 

FCC4 Sulfur index Iron index Ferric index 

 

Figure 3.7 illustrates that the reflectance of altered samples is higher than in unaltered samples so that the 

altered area in true color composite images are brighter than the unaltered area. Gas-induced alterations 

exist in the whitish areas (see figure 3.9) in the marly limestone formation. In figure 3.10, a false color 

composite of sulfur index (red), iron index (green) and ferric iron index (blue) was created. Gas-induced 

alterations exist in the brightly yellowish areas (see figure 3.10) in the marly limestone formation. 

Alteration zones were circled by red lines in this figure. 

Sulfur  Ferric iron  Iron oxides 
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Figure 3.9    True color composite WorldView-2 image. The black dot represents the position of the field 

samples. Red circles represent gas-induced alterations. 

 
Figure 3.10    FCC4 of sulfur index (red) - iron index (green) – ferric iron index (blue) obtained from 

WorldView-2 image. The black dot represents the position of field samples. Red circles represent gas-

induced alterations. 

 



COMPARING THREE CLASSIFIERS FOR DETECTING HADROCARBON SEEPAGE ALTERATION 

23 

3.3. Conclusion  

This chapter took advantage of the knowledge-based approach (band ratios and relatively absorption band 

depths) carried out earlier to detect gas-induced alterations in the study area. The results of this chapter 

indicated that the FLAASH model could successfully be used in ASTER and WV-2 pre-processing. 

Moreover, in the marly limestone formation, the altered areas are rich in sulfur, ferrous iron, gypsum and 

clays, while they have a low concentration of carbonates and ferric iron. The gas-induced alteration maps 

(figure 3.3, 3.4 and 3.10) were produced by using ASTER and WorldView-2 imagery. Since WorldView-2 

imagery can only detect sulfur and iron minerals instead of all the alteration indicator-minerals (gypsum 

and calcite), the alteration map produced by WorldView-2 data shows less details than the map obtained 

from the ASTER data. Thus we conclude that although WorldView-2 data has high spatial resolution and 

more VNIR bands, it cannot replace ASTER for mineral mapping and hydrocarbon seeps alteration 

detecting. 
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4. IMAGE CLASSIFICATION 

Gas-induced alteration maps have been produced by ASTER and WV-2 imagery in chapter 3. Although 

WV-2 data improves the spatial accuracy of ASTER data, it cannot replace ASTER in mineral mapping 

field due to the lack of SWIR bands. To test and improve the alteration maps produced in chapter 3, three 

classifiers will be used to do image classification for detecting hydrocarbon seepages alterations in this 

chapter.  

 

This chapter mainly describes training set extraction, and the SVM, RF, GBRT, classifiers validation and 

comparison. Two different sizes of training sets are selected to test the amount of samples needed for 

training the classifiers. Training data is selected by spectral and spatial analysis using the prior knowledge 

from chapter 2 and 3. Furthermore, the main parameters of each classifier are tested. With the optimal 

parameters, classification results are produced. To prevent classifiers focusing too much on imagery 

intensity value, an ASTER image without the PC1 component is constructed by deleting first component 

of PCA. By comparing the learning ability of the three classifiers for different training sets and images, 

results are validated regarding computational and pattern aspects. Results show that all these three 

classifiers are successful for this study. Of the three, SVM is the most stable classifier for detecting 

hydrocarbon seepages. SVM also works well with small training data sets. It is suggested to apply GBRT 

to test and improve the classification result of SVM. 

4.1. Training set extraction 

In this study, two training sets are extracted based on ASTER imagery. Endmembers of both training sets 

are chosen by ROIs from pixels of the ASTER imagery. And the two training sets belong to two classes 

respectively: the altered class and the unaltered class.  

 
There are three main steps for endmember extraction. Firstly, the spatial–spectral endmember extraction 

tool (SSEE) is used to choose endmembers with unique spectral information (Rogge et al., 2007). 

Secondly, we compare the location of endmembers extracted by SSEE with gas-induced alteration maps 

(figure 3.3, 3.4 and 3.10) shown in chapter 3. Only endmembers located in alteration zones of alteration 

maps have the chance to be selected to the altered class. Lastly, compare the spectra of endmembers with 

spectra of ASTER data co-located with altered field data. Endmembers with the similar spectra as figure 

4.1 are selected for the altered class, which is regarded as having altered minerals (gypsum, gypsum with 

clays and clays), while others are selected for the unaltered class.  

 

Based on the spectral and spatial relation of endmembers, similar endmembers are left out manually. 

Finally, 40 endmembers are selected for the first training set (small training set). And 100 endmembers are 

selected for the second training set (large training set). These two training sets are used training the 

classifiers for finding alterations and test sensitivity of classifiers for size of training sets. The location of 

the endmembers is shown in figure 4.2. 
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Figure 4.1    Comparison of the spectra of endmembers with spectra of ASTER data co-located with 

altered field data. Black lines show the spectra of ASTER data co-located with altered field data, while red 

lines show the spectra of endmembers. 
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(a) 

 

 
(b) 

Figure 4.2    (a) the location of small training set, (b) the location of large training set 
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4.2. Supported Vector Machine 

4.2.1. Introduction 

The Support Vector Machines (SVM), supervised machine learning method for classification, is based on 

the “Statistical Learning Theory”. SVM builds one or more high-dimensional hyperplanes to classify 

training data, and the hyperplane forms the classification margin. In the other words, the distance from 

the optimal classification margin to the training data should be as far as possible. Combine SVM and 

ensemble algorithm, the binary SVM classifier can be extended to multi-classes classifier. Based on the 

number of classes, this method builds N*(N-1)/2 machines. For each pixel, these machines will vote for a 

class and the pixel will be labelled by the class which has most votes (Huang et al., 2002). This method is 

called one against one, which has a good performance. Even the training set can have a small size (Pal & 

Mather, 2006). 

 

As a popular machine learning method, SVM is successfully applied in many disciplines, such as chemistry, 

economics and geology (Ali Sebtosheikh & Salehi, 2015). Moreover, this classifier has a good performance 

in both multispectral and hyperspectral image classification (Ma et al., 2016; Pal & Mather, 2006). There 

are advantages in the following points (Cortes & Vapnik, 1995; Ma et al., 2016; Pal & Mather, 2006). 

(1) Based on sound mathematics theory 

(2) Learning result is robust 

(3) Over-fitting is not common 

(4) Not trapped in local minima 

(5) Fewer parameters to consider  

(6) Works well with fewer training samples (number of support vectors do not matter much).). 

4.2.2. Software 

In this study, the support vector machines classifier is built by using the ‘kernlab’ package (version 0.9-22) 

in R (version 3.2.0). 

4.2.3. Major parameters 

The major parameter for the SVM classifier is the kernel function. In the ‘kernlab’ package, 8 kinds of 

kernels can be selected: (1) the Gaussian RBF kernel, (2) the Polynomial kernel, (3) the Linear kernel, (4) 

the Hyperbolic tangent kernel, (5) the Laplacian kernel, (6) the Bessel kernel, (7) the ANOVA RBF kernel, 

(8) the Spline kernel. To select kernel, the first step is to analyze whether the data is linearly separable or 

not. Figure 4.3 shows the feature space of training data. All feature spaces were produced and it is 

observed that any two bands do not have a linear relationship with each other. Thus, linear kernel is not 

considered. Among kernels which can process linearly inseparable problem, the most widely used kernel is 

Gaussian RBF kernel(He, Liu, Deng, & Shen, 2016). It can apply to both small and large training sets, and 

it is also suitable to both high-dimension and low-dimension. Compared with polynomial kernel, RBF 

need less parameter which can reduce the complexity of models. Therefore, in this study, RBF kernel is 

chosen. 
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Figure 4.3    band4-band5 feature space of training data shows the relation between band4 and band5 is 

not linearly separable. 

 

4.2.4. Principle component analysis method 

Through comparison between figure 3.4 and figure 3.5, it appears that the alteration areas are significantly 

brighter in VNIR bands of ASTER. To prevent classifiers only paying attention on VNIR bands instead 

of SWIR bands, a PCA method is used to normalize the data. Principle component analysis is a spectral 

transformation method, which is used to compress data, enhance image, reduce noise and fuse image 

(Shahdoosti & Ghassemian, 2016). After PCA transforming, correlated components in the data are 

transformed to uncorrelated components. The first principle component has the highest information 

content and usually contains the intensity information. The spectral information is then present in the 

other principle components.  
 

Gas-induced altered areas in our images are significantly brighter. However, shortwave infrared bands 

contain more information for distinguishing altered and unaltered areas. In case the classifiers pay only 

attention to the visible bands, the following three processing steps are carried out: 

(1) ASTER imagery is converted to PCA imagery. 

(2) The first principle component is deleted. 

(3) PCA imagery without first principle component is transformed back. This inverse PC transform 

imagery is called ASTER without PC1 in this thesis. 
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Figure 4.4    SVM classification result by using the original ASTER imagery and the small training set 

 
Figure 4.5    SVM classification result by using the ASTER without PC1 and the small training set 

 

The patterns in figure 4.4 and 4.5 are similar, but figure 4.4 is smoother than figure 4.5. Compared with 

figure 3.2, the SVM classification result by using ASTER and ASTER without PC1 it is shown that both 

can be used to identify the alterations. Thus, it is observed that SVM classifier can be used to discriminate 

the difference between altered and unaltered areas.  . 

4.2.5. Training sets test 

Figure 4.4 shows the classification result of using small training set, while figure 4.6 shows the 
classification result of using large training set. The pattern of figure 4.4 and figure 4.6 is similar. Both these 
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two results have a similar pattern when compared to the gas-induced alteration map (figure 3.3). This 
illustrates that SVM has a good performance even when the training set is small.   

 
Figure 4.6    SVM classification result by using the original ASTER imagery and the large training set 

 

 

 
Figure 4.7    SVM classification result by using the ASTER without PC1 and the large training set 
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4.3. Random forest 

4.3.1. Introduction 

Random forest is an ensemble machine learning method for classification and regression, which is built by 

a large number of decision trees. The feature combinations for each node are split randomly and 

independently. The most popular class of output is voted by each tree without weight (Breiman, 2001).  

 

The decision tree plays a major role in random forest. It is a decision model whose structure is like a 

structured tree, which is easy to distribute and understand. This algorithm, decision tree, can only split but 

not converge. Decision treein general have a big overfitting problem, and it is not sensitive enough for the 

use small training sets. It also lacks stability so that the result will be different if the training set changes a 

little (Etemad-Shahidi and Mahjoobi, 2009). 

 

Overfitting means the algorithm pays more attention to irrelevant features and creates an over-complex 

model to fit the training data. Although it can get a correct classification on training data, it will perform 

worse on test data. Especially, overfitting often happens when the training set is small. 

 

Random forest randomly produces a large number of decision trees (weak classifier) and uses a bagging 

method to ensemble them. Therefore, random forest reduces the instability of a single decision tree, which 

reduces the probability of overfitting and performs better when the training set is small. 

 

Assuming the number of trees in random forest is ‘s’ then ‘s’ datasets should be generated, and the 

number of endmenbers in each dataset is as same as original data. Datasets are chosen randomly with 

replacement. Therefore, when compared to the original data, each dataset has duplicate data and lacks 

some of the data. About 2/3 training of the data is used to train each tree. The remaining 1/3 data is 

called out of bag data, which is used to calculate the out of bag error rate (misclassification rate). Based on 

the error of each tree, the overall out of bag error rate, which is used to evaluate the model, is calculated. 

Lastly, each tree votes for one class. The classification result of each pixel is labelled by the class having 

the maximum number of votes. 

4.3.2. Software 

In this study, the random forest classifier is built by using the ‘randomForest’ package (version 4.8-12) in 

R (version 3.2.0). 

4.3.3. Major parameters 

Random forest has two important factors, the number of trees (ntree) and number of variables randomly 

distribute to each node (mtry). 

4.3.3.1. Number of trees selection 

Breiman (2001) states that the random forest classifier does not have the overfitting problem, in other 

words a large number of trees will not cause overfitting. But Mark R. Segal (2004) says that RF still can 

suffer from overfitting when the training set is a noisy dataset. Therefore, the optimal number of trees 

should be tested by using the out of bag error rate. 
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Figure 4.8    Relation between the number of trees and out of bag error rate 

 

As figure 4.8 shown, when the number of trees is equal to 33, the out of bag error rate is lowest. And after 

351 trees, the out of bag error rate does not vary any more. So the number of trees 33, 351 and 1000 are 

chosen to test for the optimal number of trees. 

 

The main patterns in figure 4.9 are similar, but figure 4.9(c) has less noise than (a) and (b). This illustrates 

that a large number of trees does not cause overfitting, but that a small number of trees can suffer from 

overfitting and instability like a single decision tree. Moreover, trees are built randomly so that the out of 

bag error rate always shows slight changes. The number of trees is chosen by two principles: (1) it cannot 

be too large, because this will make the training time too long, (2) it cannot too small, because this may 

cause overfitting and instability, (3) it should be selected behind the point where the out of bag error rate 

stabilizes. Since large number of trees would not cause overffing problem and figure 4.9(c) is smoother 

than figure 4.9(b), 1000 trees are chosen for this study. 

4.3.3.2. Predictor variables selection 

Some predictor variables (say, mtry) are selected at random out of all the possible predictor variables and 

the best split on these mtry is used to split the node. By default, mtry is taken to be the square root of the 

total number of all predictors for the classification.  Because the ASTER image has 9 bands, it has 9 

predictors. Therefore, by default, the mtry is set to 3.  
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Figure 4.9    RF classification result of different trees by using the ASTER without PC1 and the small 

training set 

 

(a) 33 trees 

(b) 351 trees 

(c) 1000 trees 
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The parameter, mtry, is sensitive and has an obvious effect for RF modelling. It has a close relation with 

forest error rate. The value of mtry is selected by calculating the relation between mtry and OOB error 

rate (Breiman, 2001).  

 
Figure 4.10    Relation between predictor variables (mtry) and out of bag error 

 

As figure 4.10 shows, after mtry is 3, the out of bag error does not reduce any longer. To avoid large trees 

building a complex model, which could lead to overfitting training data (Liaw & Wiener, 2002), the mtry is 

set as 3. 

4.3.4. Principle component analysis method 

Comparing the importance of each variable measured in RF between original ASTER imagery and 

ASTER without PC1. Figure 4.11 shows the importance of each variable of original ASTER imagery. The 

random forest classifier considers the visible bands to be more important than the shortwave infrared 

bands, which is contrary to the spectral analysis in chapter 2 and 3. However, figure 4.12 shows the 

importance of each variable of the ASTER without PC1, which gives an opposite answer when compared 

to figure 4.11. Moreover, the alteration area (in red) in figure 4.14 is much larger than alteration zones in 

gas-reduced alteration map (figure 3.3), while figure 4.9(c) has similar patterns when compared to figure 

3.3. Therefore, the ASTER without PC1 prevents classifiers from focusing too much on the intensity of 

the original imagery, which does improve the performance of classifiers. In general, random forest is 

insensitive to irrelative variables. But in this study, we can see the shortcoming of random forest regarding 

the selection of important information. At least when training set is small, random forest focus more on 

VNIR bands instead of SWIR bands. 
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        Importance 

 

Figure 4.11    The importance of each band of original ASTER imagery, which is calculated by RF model. 

 

         Importance 

 

Figure 4.12    The importance of each band of original ASTER imagery, as calculated by the RF classifier. 
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Figure 4.13    The importance of each band of ASTER without PC1, as calculated by the RF classifier 

4.3.5. Training sets test 

Figure 4.13 shows the classification result of using the small training set, while figure 4.15 shows the 

classification result of using the large training set. The patterns of figure 4.13 show more false alarms in 

the alteration class, but figure 4.15 has similar patterns with gas-induced alteration map (figure 3.3). Based 

on section 4.2.4, the random forest classifier focuses more on visible bands. However, the large training 

set can fix this problem and gives a good performance. 

 
Figure 4.14    RF classification result by using the ASTER without PC1 and the large training set 
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Figure 4.15    RF classification result by using the original ASTER imagery and the large training set 

4.4. Gradient boosted regression trees 

4.4.1. Introduction 

Gradient boosted regression trees is an ensemble classifier which applies a boosting method to a number 

of regression trees. To improve the performance of a single regression tree, the result of the BRT 

classification and regression is voted by all the trees. They have successfully been applied in many fields, 

such as geophysics (Parisien & Moritz, 2009), biology (Friedman & Meulman, 2003) and geosciences 

(Lawrence et al., 2004) 

 

In general, the gradient boosted algorithm is a process of iterations, and the new training step is to 

improve the result of the previous model. Every calculation is to reduce the previously obtained residual 

error. Therefore, the new model is built to eliminate residual in residual reduction gradient orientation. 

 

Gradient boosted regression trees combine most advantages of tree-like machine learning methods and 

improve the performance of single trees whose biggest problem is instability and a relatively bad 

performance. There are five significant benefits listed in the following points (Elith et al., 2008). 

(1) For predictors, they adapt to different variable types. 

(2) They can fit phenomena in which variables contain missing data. 

(3) They don't need to eliminate outliers. 

(4) They have the ability to build non-linear classifiers. 

(5) The interactions, of certain complexity, which are inbetween predictors, can be modeled. 

4.4.2. Software 

In this study, the GBRT classifier is built by using Generalized Boosted Regression Models, the ‘gbm’ 

package (version 2.1.1) in R (version 3.2.0). 
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4.4.3. Major parameters 

There are two major parameters in the ‘gbm’ package, shrinkage and the number of trees (ntree). The 

principle of shrinkage is to avoid overfitting. When shrinkage is small, the result is gradually approached. 

Using this method it is easier to avoid overfitting than when shrinkage is large. In other words, if 

shrinkage is set, this model does not fully trust every residual tree. It thinks each tree only learns part of 

truth. Therefore, it needs to build more trees to make up the model for the shortfall. But too small a 

shrinkage will add more processing time. Based on experience (Elith et al., 2008), shrinkage is set as 0.01. 

 

The number of trees (ntree) is a sensitive factor in boosted regression tree. The out of bag error rate is 

used to detect the optimal number of trees. 

 

 
Figure 4.16    Relation between the number of trees and the out of bag error rate. The dashed line, 

calculated by the ‘gbm.perf’ function in the ‘gbm’ package (version 2.1.1), shows the position of the 

optimal number of trees. 

 

As figure 4.16 shows, the dashed line shows the position of the optimal number of trees (227), where 

gradient is close to zero. In order to detect the overfitting problem of GBRT, 100, 227 and 1000 are 

chosen to test the relation between the number of trees and the classification result. 
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Figure 4.17    GBRT classification result of different trees by using the original ASTER and the small 

training set 

 

(a) 100 trees 

(c) 1000 trees 

(b) 227 trees 

GBRT classification 

GBRT classification 

GBRT classification 

(c) 1000 trees 
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As figure 4.17 shown, with the development of trees, the number of prospected altered areas increases. 

Figure 4.17(c) has much more noise than (a) and (b). This illustrates that a large number of trees will cause 

overfitting, but a small number of trees easily cause to underfitting and instability. The number of trees is 

chosen by two principles: (1) it cannot be too large, because this will cause overfitting in the result, (2) it 

cannot too small, becasue this will cause underfitting and instability. In the gbm package, the 

function ’gbm.perf’, is used to find the tradeoff between bias and variance (training error and model 

complexity). In this position, the gradient degree is close to zero. Therefore, the number of 227 trees are 

chosen for this study. 

4.4.4. Principle component analysis method 

Comparing the importance of each variable measured in GBRT between original ASTER imagery and 

ASTER without PC1. Figure 4.18 shows the importance of each variable of original ASTER imagery, 

GBRT model considers band8 as the most important variable, while band1, band4 and band3 occupy 

other important positions. This phenomenon illustrates GBRT model is not only sensitive to visible bands 

but also band8 in the process of modelling. Thus GBRT is more suitable than RF when variable 

combinations are complex. Figure 4.19 shows the importance of each variable of ASTER without PC1, 

and figure 4.21 shows clearer patterns of altered areas. Therefore, for GBRT, ASTER without PC1 also 

prevents classifiers from focusing too much on intensity of original imagery, which improve the 

performance of GBRT.  

 

 
Figure 4.18    The importance of each bands of original ASTER imagery, which is calculated by GBRT 

model. 
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Figure 4.19    The importance of all the bands of the ASTER without PC1, as calculated by the GBRT 

classifier 

 

 
Figure 4.20    BRT classification result of the original ASTER without PC1 and the small training set 

4.4.5. Training sets test 

Figure 4.20 shows the GBRT classification result of the using small training set, while figure 4.22 shows 

the GBRT classification result of using the large training set. The pattern of figure is overfitting, but figure 

4.22 has less noise. The large training set can show a better performance, but the result is not as obvious 

as in RF. Moreover, when the training set is small, the performance of GBRT is better than RF. 

0

5

10

15

20

25

30

35

40

45

50

band5 band9 band6 band8 band3 band7 band4 band1 band2

％

GBRT classification 



COMPARING THREE CLASSIFIERS FOR DETECTING HADROCARBON SEEPAGE ALTERATION 

42 

 
Figure 4.21    BRT classification result by using the ASTER without PC1 and the large training set 

 

 
Figure 4.22    GBRT classification result by using the original ASTER and the large training set 

 

4.5. Model validation and comparison 

4.5.1. Validation of models 

To validate the performance of SVM, RF and GBRT models, there are two aspects being considered: 

computational aspect and pattern aspect. The selection of the main parameters has been described in the 

sections above. This section mainly shows the validation of results by using different images and different 

GBRT classification 
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training sets. In the following we will validate models regarding computational and pattern aspects 

respectively.  

 

Table 4.1    Main parameters and result of SVM, RF and GBRT, showing the accuracy of each classifier 
for different training sets and images. 
 

 
Optimal major 

parameter 
Result 

SVM Kernel C Image 
Overall 

Accuracy 

Small 

training set 

Original 

ASTER 
RBF 20 see figure4.4 80% 

ASTER 

without PC1 
RBF 20 see figure4.5 80% 

Large 

training set 

Original 

ASTER 
RBF 15 see figure4.6 80% 

ASTER 

without PC1 
RBF 15 see figure4.7 80% 

RF ntree mtry Image 
Overall 

Accuracy 

Small 

training set 

Original 

ASTER 
1000 3 see figure4.13 75% 

ASTER 

without PC1 
1000 3 see figure4.9(C) 85% 

Large 

training set 

Original 

ASTER 
1000 3 see figure4.15 80% 

ASTER 

without PC1 
1000 3 see figure4.14 85% 

GBRT ntree shrinkage Image 
Overall 

Accuracy 

Small 

training set 

Original 

ASTER 
227 0.01 see figure4.17(b) 85% 

ASTER 

without PC1 
227 0.01 see figure4.20 90% 

Large 

training set 

Original 

ASTER 
346 0.01 see figure4.22 85% 

ASTER 

without PC1 
346 0.01 see figure4.21 90% 

 

Aiming at showing objectively the merits of the classifiers, the confusion matrix is a popular validation 

method for remote sensed data. It compares the classified data with reference data by calculating the 

percentage of similarity. The overall accuracy is calculated by using all the reference data. Only using the 

training set to evaluate models is less convincing, which is why here we choose ground truth as the test 

set. The Test set is composed of 20 samples, all from the field data, the locations are as shown in figure 

2.1. Among them, there are 7 unaltered samples and 13 altered samples. The overall accuracy of each 

classifier is shown in table 4.1. Purely from the point of view of numbers, we get the following results: 

 

1. For SVM, the overall accuracy of each training set and image is the same. In other words, the 
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SVM classifier works well with the small training set, and the large training set does not give a 
better result.  Moreover, compared to the original ASTER, the performance of the ASTER 
without PC1 also does not increase. 

 

2. For RF, the overall accuracy of the large training set applied in the original ASTER imagery is 5% 
higher than using the small training set. In terms of the small training set, the overall accuracy of 
the ASTER without PC1 is 10% higher than the original ASTER. However, for the ASTER 
without PC1 image, there is no improvement when we use large training set instead of small 
training set. 

 

3. For GBRT, the overall accuracy of the ASTER without PC1 imagery is 5% higher than the 
original ASTER imagery. And the large training set gives the same accuracy as the small training 
set. 

 

However, the ground truth of this research is only 20 samples and they are located in a small area. 

Therefore, we need to compare the patterns of the classification results to the gas-induced alteration map 

(figure 3.3). Combining the overall accuracy of the confusion matrix together with the visualization result 

of altered patterns, the following results are summarized: 

 

1. SVM has a good performance when the training set is small. And the learning ability for predictor 
variables is high. 

 

2. When the training set is small, the classification result of RF is not so accurate. RF is easily 
confused by the intensity information of the images, and it requires a relatively high-quality image 
and training data set. 

 

3. The result of GBRT classifier is sensitive to parameters, so we need to pay special attention to the 

parameter setting. However, it learns predictor variables accurately, and the accuracy of the 

resulting classification is high. 

4.5.2. Comparison of models 

As observed from the result of SVM, RF and GBRT, all these three classifiers have a relative good 

performance. In order to avoid unilateral evaluation of these classifiers, this section sums up both 

advantages and disadvantages of each in table 4.2. 

 

For producing hydrocarbon seepages maps, there are two significant difficulties: the training data is 

difficult to obtain and the seepage size is relatively small. Depending on the different characteristics of 

SVM, RF and GBRT, in chapter 4 we summarized a classification process to foster strengths and 

circumvent weaknesses of these classifiers. Firstly, as SVM works well with a small number of training 

data and have smooth patterns, we think that this classifier is best for this application. However, the 

smooth patterns n the classification results of SVM means that this method might be not sensitive to 

relatively small seepages. Thus, if we need a more detailed alteration map, GBRT, which has best overall 

accuracy, might be applied as the second step. Lastly, one could compare the classification results of SVM 

and GBRT. If the main patterns are similar, then the results may be more reliable. Although GBRT has 

best overall accuracy in this study, the number of parameters that need to be tested are higher than SVM 

and the stability of GBRT is not as good as SVM. RF is not considered because of its moderate and 

unstable performance for detecting seepage alterations in this study. Therefore, in our view, SVM occupies 
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the most important position among these three classifiers for producing a hydrocarbon seepage alteration 

map. 

 

Table 4.2    Comparison of SVM, RF and GBRT 

 SVM RF GBRT 

Size of  

training set 

Work well with 

small training set 

Work well with large 

training set 

Large training set is better 

than small training set, 

but result by using small 

training set is better than 

RF 

Attention of  

image 

intensity 

Low High Medium 

Overfitting or 

underfitting 
Not common Not common 

Overfit when ntree is 

more; underfit when 

ntree is less 

Complexity 

of  predictor 

variables 

Not as good as 

GBRT 

Can process high-

dimensional data, but not as 

good as GBRT when 

variables combination is 

complex. 

Work well with complex 

variables combination 

Bootstrap 

sampling  
No Yes No 

Time Slowest Fastest Medium 

Model 

stability 
Stable Randomly modeling Randomly modeling 

Importance 

of  each 

variables 

(bands) 

It is impossible 

to get the effect 

of  each bands 

Original ASTER:  

see figure 4.11 

ASTER without PC1: 

see figure 4.12 

Original ASTER:  

see figure 4.18 

ASTER without PC1: 

see figure 4.19 
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5. APPLYING SVM TO DETECT GAS-INDUCED 
ALTERATION AT REGIONAL SCALE 

Three classifiers, SVM, RF and GBRT, were compared in chapter 4. The SVM method was found to be 

the most stable and suitable classifier for detecting gas-induced alteration. In this chapter, the SVM 

classifier is applied to produce regional alteration maps in the marly limestone formation. Potential 

alterations can be detected and mapped. 

5.1. Methodology  

To identify additional hydrocarbon seepages and to give this research more practical significance, the 

study area is enlarged to a regional scale, with a total area of 46*70 km2. It mainly contains the Gachsaran 

formation, Mishan formation, Alluvium formation and Bakhtiari formation. The lithology mainly consists 

of evaporite, marl, limestone, shale, sandstone and alluvium (Salati, 2014). The classifier SVM, is used to 

distinguish altered and unaltered classes. In chapter 4, we saw that SVM has a good performance when the 

training set is small. And in a real-world situation the training data is difficult and costly to collect. The 

training set is a small training set (section 4.1.1) and the image is the original ASTER image whose pre-

processing is as same as test area (section 3.3.1). Similarly, the overall accuracy of the confusion matrix and 

pattern of classification result are used to validate the result. Because the training set is selected to identify 

alterations in the marly limestone, the geological map is used to mask out the other lithologies.  

5.2. Result 

Figure 5.1 shows the SVM classification result using the ASTER image. The locations of the Mishan 

formation are indicated (yellow polygons). TThis formation predominately consists of the marly 

limestone, while the  the Gachsaran formation (blue polygons)  is dominated by evaporite, marl and 

limestone. The most important altered mineral in the marly limestone is gypsum. However, gypsum is also 

a common mineral in evaporite. Figure 5.1 shows that altered minerals (red color class) are mainly the 

evaporite (blue polygons), which is consistent with the actual situation. Moreover, the overall accuracy is 

85% and the user’s accuracy of altered class is up to 91.7% (see table 5.1 and figure 5.3). In the following, 

each location of potential seepages (indicated by boxes in black) is described respectively. 

 

Table 5.1    SVM classification accuracy result 

Classes 

Observed 

 Altered Unaltered  Total Correct % 

Altered 11 1 12 91.7 

Unaltered  2 6 8 75 

Total 13 7 20  

Omission 15.4 14.3   

Overall accuracy 85% 
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Figure 5.1    SVM classification result at regional scale. The location is shown in figure 1.1. Boxes in black 

are indicating potential alterations. 

 

 
Figure 5.2    Box A, the purple circle shows the potential alteration. 
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(a) 

 
(b) 

Figure 5.3     (a) Box B, the purple circle indicates the alteration. (b) yellow circles show the altered field 

samples and pink circles show the unaltered field samples. Samples 3, 4 and 10 are incorrectly classified. 
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Figure 5.4    Box C, the purple circle shows the potential alteration. 

 
In figure 5.2, there are six marly limestone zones, but only one area is selected as potentially having a gas-

induced alteration. Most marly limestone formations in this figure are surrounded by the evaporite 

formations and gypsum is one of common evaporate minerals. Furthermore, the origin of the gypsum is 

unknown. It might be from alterations but it might also be transported from the evaporites into the areas 

having a limestone lithology. We suggest only one area in figure 5.2, which is drawn by purple circle, 

might be gas-induced alteration, because in this area the evaporite is far away and therefore the gypsum in 

this area might be from gas-induced alteration. In addition to that, the spectra of this area are indeed 

interpreted to be gypsum (see figure 5.7). Similarly, red areas in figure 5.3 and figure 5.5 are not considered 

to be alterations. 

 

Area B (see figure 5.1), indicated in figure 5.3 shows the location of the known alterations that were used 

for the training of the classifiers (see chapter 3 and 4). It is obvious that the patterns in figure 5.3 are as 

similar as SVM classification map at local scale (figure 4.4). Since WV-2 imagery has 2 meters spatial 

resolution, the ASTER image used in chapter 3 and 4 was resampled to 2 meters. Meanwhile, the spatial 

resolution of ASTER image used in this chapter is 15 meters. Thus, the patterns in 5.3 are not completely 

same as figure 4.4. Furthermore, the accuracy of SVM is independent of the size of the input data set. The 

potential alterations are in the purple circle. 

 

In figure 5.4 one area is found, of which the spectra are shown as gypsum (see figure 5.5). This suggests 

alteration, because it is away from the evaporite. We can see from the boundary between the evaporite and 

the marly limestone that some gypsum crosses the border and exists in the marly limestone. This suggests 

that the geological map we use may be inaccurate at some locations. 
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Figure 5.5    Gypsum spectra from alterations highlighted by purple circle in figure 5.2 and 5.4. Compared 

with gypsum spectrum of field sample 4 which was interpreted as gypsum in chapter 2, the spectrum from 

pixel of alteration with purple circle in figure 5.2 is interpreted as gypsum. 

 

5.3. Conclusion 

The SVM classifier is successfully applied on a regional scale by using small training set (see section 4.1). 

The overall accuracy is 85%. The gypsum boundary accurately fits the boundary of the evaporite. 

Therefore, we state that the SVM approach is also a good method for detecting lithology. Moreover, two 

new areas are suggested as potential alterations, besides the known alterations detected in test area 
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6. DISSCUSION 

In this thesis, SVM, RF and GBRT classifiers have been compared. This is done through using remote 

sensing data (ASTER, WorldView-2) as input to be classified for detecting hydrocarbon alterations and 

validation by limited field data. Moreover, a regional mapping of potential alteration areas is performed. In 

the  sections below, several findings on the contributions of remote sensing and machine learning for use 

in identifying hydrocarbon seepages will be discussed and compared to the results obtained by Salati et al. 

(2014). 

6.1. ASTER and WorldView-2 data processing 

In chapter 3 we confirmed that ASTER is useful for mineral mapping, and that WorldView-2 can improve 

the spatial resolution of ASTER. However, the improvement using WorldView-2 is observed to be 

minimal. Using WorldView-2 only it cannot discriminate the important minerals such as gypsum, and it 

also cannot distinguish ferric and ferrous minerals. However, the alterations show the high brightness in 

image, so we can see clear patterns in WorldView-2. Furthermore, we observed that there exist a shift of 

about 60 meters between ASTER and WorldView-2, which may not have been observed in Salati et al. 

(2014). In the following sections, the differences with the previous work by Salati are going to be 

discussed in two aspects, using ASTER and WorldView-2 respectively. 

6.1.1. ASTER data processing 

Compared with the result of Salati (2014), there are several differences. In the paper (Salati et al., 2014), 

the gas-induced alterations are said to have high concentration of ferrous iron and gypsum and low 

concentration of carbonates and clays. However, in this research it is observed that gas seepages in the 

marly limestone formation are rich in gypsum and clays, while they seem to contain less ferric iron and 

carbonates. There might be various reasons for these differences in observations. These will be discussed 

below. 

 

Firstly, the algorithms used for atmospheric correction are different. In this study, the FLAASH model 

was chosen instead of the logarithmic residuals correction. The logarithmic residuals method results in 

pseudo-reflectance (Tian et al., 2008), which makes it difficult to compare image spectra with field 

measurements or laboratory spectra. In addition, the log residuals correction is a conversion model based 

on the characteristics of the image itself, while FLAASH model is a calibration model based on the theory 

of atmospheric radiation. So from this perspective, the FLAASH model is the best approach in 

hyperspectral data radiometric calibration(Tian et al., 2008). 

 

Moreover, band5/band4 (ferrous index) was chosen to detect ferrous iron in this study, while 

band3/band1 (ferrous index*) was chosen by Salati (2014). As mentioned in section 3.1.3, band5/band4 is 

used to identify ferrous iron in silicates and carbonates, and it is impossible to use band5/band4 to detect 

ferrous iron if it is associated with oxide and sulphate. As shown in figure 6.1, with the ferrous index* 

(band3/band1) it is impossible to distinguish altered and unaltered samples. Therefore, neither ferrous 

index (band5/band4) nor ferrous index* (band3/band1) can be used for mapping ferrous iron in this 

study area. 
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Figure 6.1    Box plots of band ratios showed comparison of ferrous index* (band3/band1) between 

unaltered and altered field samples. The ferrous index* value in unaltered samples is in the range of altered 

samples. 

 

Finally, clay minerals have a high abundance in the entire area. According to the result of spectral analysis, 

clays exist in both altered and unaltered samples. Meanwhile, figure 3.2 illustrates that the concentration of 

clays in altered areas are higher than unaltered areas. This result does not replicate the finding, that 

unaltered areas contain more clays than altered areas, reported by Salati (2014).   

 

Thus it is concluded that the FLAASH model is successfully used to pre-process ASTER data, and that 

the ferrous iron & clay indexes are not good indicators for mapping hydrocarbon seepages in this study 

area.  

6.1.2. WorldView-2 data processing 

Salati et al. (2014) observed that the gas-induced alterations have high concentrations of ferric iron and 

sulphur. However, in this research it is observed that gas seepages in the marly limestone formation are 

rich in gypsum and clays, while they contain less ferric iron and carbonates. The following will discuss 

these differences. 

 

Firstly, the algorithms for atmospheric correction are different. As the previous section discussed, the 

FLAASH model was chosen in this research instead of log residuals correction in Salati's research. 

 
Moreover, ferrous minerals are not detected in this research, while band4/band7 was chosen by Salati et 

al. (2014). As above mentioned, WorldView-2 data does not have the spectral bands for detecting ferrous 

minerals. As figure 6.2 shows, using the ferrous iron index*(band4/band7) it is impossible to distinguish 

altered and unaltered samples. Therefore, the ferrous iron index* (band4/band7) cannot be used for 

mapping ferrous iron in this study area. 
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Figure 6.2    Box plots of band ratios showed comparison of ferric index* between unaltered and altered 

field samples. The ferric index* value in unaltered samples is in the range of altered samples. 

 

Finally, band5/band3 was chosen to detect ferric iron in this study, while band4/band7 was chosen by 

Salati et al. (2014). As figure 6.3 shows, the value of altered areas is lower than unaltered areas in ferric 

iron index (band5/band3) image. Meanwhile, ferric iron index*(band4/band7) have a higher value in 

altered areas than unaltered areas. According to the result of laboratory spectral analysis and ASTER data 

analysis, unaltered samples contain more ferric iron. Therefore, ferric iron index is more suitable than 

ferric iron index* to identify ferric minerals in this study area.  

 

Consequently, the FLAASH model is successfully used to pre-process WorldView-2 data, and altered 

areas are observed to be rich in sulphur, but they lack ferric minerals. In addition, although WorldView-2 

data has a high spatial resolution and has more VNIR bands than ASTER data, it cannot replace ASTER 

for mapping alteration areas because of the missing SWIR bands in WV-2. 
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(a)                                 (b) 
Figure 6.3    (a) Ferric iron index (band5/band3) image, (b) ferric iron index* (band4/band7) image. Ferric 

iron index is observed to be higher in altered area than unaltered areas, ferric iron index* is lower in 

altered area than unaltered areas. 

 

6.2. Image classification 

Our findings confirm that all these classifiers, SVM, RF and GBRT, perform well and have a similar 

overall accuracy in this study. Where the alteration area is known, the patterns of all classification maps 

produced by SVM, RF and GBRT are comparable, although the result of RF has an obvious overfitting 

problem. Nevertheless, one significant advantage of RF as claimed by Breiman (2001) would be that RF 

does not overfit. The result of this thesis indicates that the test error does not increase with the rise of 

model complexity (number of trees). In contrast, RF is significantly influenced by intensity values of the 

remote sensing image and it needs a large training set to decrease the problem of overfitting. 

 

Furthermore, the overall accuracy of GBRT is the highest among these classifiers. GBRT have an 

apparent underfitting and overfitting problem when the number of trees is not optimal. Salati et al. (2014) 

used 1000 trees, which may be suboptimal for this problem. However, we use an optimal number of trees 

obtained by the ‘gbm.perf’ function in the ‘gbm’ package (version 2.1.1) and therefore the result may have 

been improved compared to the result of Salati. 

 

Compared with the randomness of RF and GBRT, the result of SVM is very stable (see section 4.5). The 

patterns detected using SVM in ASTER data are extremely similar with the hydrocarbon alteration map 

produced by the knowledge-based approach (band ratio and relative absorption band depth) and much 

more smooth than RF and GBRT. In most data sets, GBRT has a better accuracy than SVM. However, 

we observe that SVM is more suitable for detecting mineralogy with limited field data.  

 

Since our classification maps only have two classes, the SVM method used in this research is not an 

ensemble classifier. These classifiers are only a selection of the available popular classifiers. This was done 

in order to minimize the complexity of selecting classifiers and coding time. 
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Table 6.1    Comparison between our work and Salati’ work 

 
 Salati’ work Our work 

Pre-processing method Logarithmic residuals 

The FLAASH Model; 

Geometric correct the bias 

between ASTER and WV-2 

Mineral indexes 
Ferrous iron index*: B3/B1 

Ferric iron index*: B4/B7 

Ferrous iron index: B5/B4 

Ferric iron index: B5/B3 

Clays 

Clay minerals were identified 

to be less in altered samples 

than unaltered samples  

Clay minerals were identified 

to be higher in altered 

samples than unaltered 

samples. 

Ferric iron 

Ferric iron minerals were 

identified to be higher in 

altered samples than unaltered 

samples 

Ferric iron minerals were 

identified to be less in 

altered samples than 

unaltered samples. 

GBRT Number of  trees is 1000 

Number of  trees was 

optimal and calculated by 

‘gbm.perf ’ function in ‘gbm’ 

package. 

The accuracy is higher than 

Salati’ work. 

 

6.3. Application to other area 

The strength of remote sensing and machine learning is that limited field data can already yield detailed 

information. In other words, as was demonstrated in this thesis, a well training SVM model can predict the 

alteration map for the entire extent of an ASTER image in the same lithology. Therefore the obtained 

method might decrease the amount of fieldwork by highlighting the most interesting areas.  

 

Next to the known alterations, our results point out two additional areas that might be altered by gas 

seeps. Hydrocarbon seepage alterations in this study area are spatially strongly associated with structures in 

the Gachsaran formation and the Mishan formation. Oil seeps are rare in the Gachsaran and Mishan 

formation. Nevertheless, there are some known gas seeps. Gas might be separated from oil underground. 

Afterwards, it could come out along the penetrable fractures, even in the case that seal is effective and 

there isn't an obvious fault crossing the seal. Gas might migrate along faults in NW-SE direction. Gas-

induced alterations have been observed in the Gachsaran formation and the Mishan formation (Salati, 

2014). 
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(a) 

 
(b) 

Figure 6.4     (a) Geological map of area C (see figure 5.4), (b) AB cross section through the center of 

potential seep. The location of the cross-section is shown in (a).  

 

Figure 6.4 shows a geological model explaning how gas might escape from the seal and enter the 

Gachsaran formation. Due to strong squeezing action a thrust fault was formed. Moreover, a fracture 

system was formed in Gachsaran formation. Gas migrated upward from these fractures to the permeable 

limestone formation (Mishan formation). Furthermore, gas seeps alterations were formed in the outcrop 

of Mishan formation. Thus, Area C is interpreted as potential alteration. 
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(a) 

 
(b) 

Figure 6.5     (a) Geological map of area A (see figure 5.4), (b) CD cross section through the center of 

potential seep, the location of section line is shown in (a). 

 

Area A has the same oil-gas migration system as area C. But the distance between potential seep and 

known fault is long. However, the SVM classification result (figure 5.1 and 5.4) and the spectrum 

information (figure 5.5) imply that area A might be gas-induced alteration. Probably, there might be 

unknown faults not indicated in the geological map, or the gypsum in area A might be transported from 

other formations. 
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6.4. Conclusion  

In this chapter, we compared our work with Salati (2014)’s work. We found there was a bias between 

ASTER and WV-2 imagery. For the atmospheric correction method, the FLAASH Model replaced 

logarithmic residuals method. Furthermore, altered samples contain clay minerals than unaltered samples 

in this research, which is opposite to the interpretation of Salati. In addition, the number of trees in GBRT 

were tested in this research so that the optimal trees were used to build GBRT model. Calculating the 

optimal trees would improve the classification accuracy. 

 

Moreover, two geologic models were built depending on geological map. That area C was observed to be 

potential alterations are supported by geologic model. However, the fault is far from area A so that area A 

need find new evidence to proof it is altered. 
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7. CONCLUSION 

In this research remote sensing data and machine learning methods were used to produce hydrocarbon 

seepages induced alterations maps. Based on the above chapters conclusions are listed below: 

 

Our laboratory analysis showed that the altered samples could be distinguished from the unaltered 

samples in two ways. First, gypsum and clays are two kinds of dominating minerals in altered field 

samples, while unaltered samples were identified as calcite with clays. Second, two water 

absorption features in altered samples, 1.4μm and 1.9μm, were observed to be deeper than in 

unaltered samples. 

 

Based on the result of both laboratory and image-driven spectral analysis (see chapter 3), 

alterations were observed to have high concentration of ferrous iron, gypsum and clays, and have 

low concentration of carbonates and ferric iron. Among these minerals, gypsum is a typical 

indicator of alteration. For ASTER data, through comparing the difference of each index between 

altered and unaltered field samples, the ferric oxide index, clay index, calcite index and gypsum 

index (see table 3.1) were found to be most suitable indicators to show the difference between 

altered and unaltered areas. For WorldView-2 data, the sulfur index, iron index and ferric iron 

index (see table 3.3) were selected with the same method with ASTER data. Through 

composition of these indexes, a number of colour composites (see table 3.2 and 3.4) were 

produced to show the alterations. The result confirms that ASTER and WorldView-2 can be used 

in a meaningful way for mapping alterations. The SWIR bands of ASTER contain the most useful 

wavelengths for distinguishing gypsum and carbonates. Although WorldView-2 data can be used 

to improve the spatial resolution and improve the result by comparing result with ASTER data, 

the classification maps produced by ASTER did not improve when combining with WV-2. 

Therefore, alteration maps could be produced by using ASTER imagery only, which is more 

economical. 

 

Furthermore, both the knowledge-based approach (band ratio and relative absorption band 

depth) and the data driven approach (SVM, RF and GBRT) used in this research proved to be 

successful in detecting alterations. The alteration maps (figure 4.4 and 4.5) produced by the 

knowledge-based approach were used to select endmembers for training the data driven models. 

Through comparing the overall accuracy and patterns of alterations, the SVM method was found 

to be the most suitable classifier we used for detecting hydrocarbon seepage alteration. SVM is 

especially suited for small training sets, and the classification result is stable, unlike RF and GBRT. 

Because our classification maps only have two classes, the SVM method used in this research is 

not an ensemble classifier. In other words, if the feature space is not complex, in the case of two 

classes, the performance of SVM is observed to be better than the ensemble classifiers RF and 

GBRT. Therefore, this research cannot confirm that ensemble classifiers perform better than a 

single classifier. 
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Comparing the results of this research with the work of Salati et al. (2014), the classification 

accuracy has improved considerably. In general four observation can be made. (1) The FLAASH 

model was successfully used to pre-process ASTER and WorldView-2 data and may be superior 

to the logarithmic residuals correction used by Salati. (2) There is an about 60 meters bias between 

ASTER and WorldView-2 data. This observed geometric shift may have led to misclassifications 

in the work of Salati. (3) The comparison of alteration maps produced by the knowledge-based 

approach used in this research with the alteration maps obtained by Salati et al. (2014) shows 

similar seepage locations, but different discrimination of minerals associated with the alterations. 

That clay minerals were identified to be higher in altered samples than unaltered samples in this 

research is opposite to the interpretation of Salati. This difference could lead to the selection of 

incorrect endmembers so that the accuracy of classification result may have been reduced in 

Salati's work. (4) Since the GBRT classifier has an overfitting problem, this classifier must be 

tested for the optimal number of trees instead of simply choosing a number of trees. The number 

of 1000 trees may have led to overfitting in Salati's work. We found that 227 trees gave an optimal 

classification result. 

 

In this research, regional gas-induced alteration map has been produced by SVM and ASTER data with an 

overall accuracy of 85 percent. Moreover, next to the known alterations, two new areas were interpreted as 

potential hydrocarbon seepage alterations. 
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APPENDIX 1 

The entire code contains variables and functions definition, legend drawing, image reading and displaying, 

training set and test set reading, svm, rf and gbrt modeling, image prediction and displaying and accuracy 

assessment. To show the parameters and functions in SVM, RF and GBRT, Pseudo-code of modelling 

part are shown in the following:  

Pseudo-code of SVM, RF and GBRT 

Classifier1: Supported Vector Machine 

Package: kernlab 

Input: 

ASTER image 

Traning set 

Test set 

Output: 

SVM classification result 

Confusion matrix 

Overall accuracy 

Parameters: 

class               # read from training set 

image               # read from ASTER image 

Features <- c(1:9)    # 9 bands of ASTER 

Features1 <- c(1:10)  # 9 bands of ASTER and class 

C_SVM <- 20       # complexity of model 

Formula <- TR$ class 

Kernel: Gaussian RBF kernel 

Feature space plotting: 

for(j in 1:9) { 

for(k in 2:9) { 

windows() 

Sel_Features2 <- c(j,k,10) 

svm_model <- ksvm(as.factor(class)~., data=TR[,Features1], type="C-svc", 

kernel="rbfdot", C=C_SVM, cross=3, prob.model=TRUE) 

# plot function in kernlab package used to display feature space in this research 

plot(svm_model, data=TR[,Sel_Features1]) } 

} 

 

SVM modeling: 

# ksvm function (formula, data, type, kernel, C, cross, prob.model = TRUE or FALSE) 

svm_model <- ksvm(class ~., data=TR[,Features1], type="C-svc", kernel=" rbfdot ", 

C=C_SVM, cross=3, prob.model=TRUE) 

 

SVM applying: 

# predict function (model, data, type) 

SVM <- predict(svm_model, image, type="probabilities") 
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Display and save SVM classification result 

Accuracy assessment: 

Confusion_matrix <- confusion_matrix(TS, Class_legend) 

END 

 

Classifier2: Random Forest 

Package: randomForest 

Input:  

ASTER image 

Training set 

Test set 

Output: 

RF classification result 

Confusion matrix 

Overall accuracy 

Parameters: 

class               # read from training set 

image                # read from ASTER image 

Features <- c(1:9)     # 9 bands of ASTER 

Features1 <- c(1:10)   # 9 bands of ASTER and class 

ntree               # number of trees 

mtry                  # predictor variables 

Formula <- as.factor (TR$ class) 

RF modelling: 

# randomForest function (formula, data, ntree, mtry, type, norm.votes =TRUE or FALSE, 

proximity= TRUE or FALSE) 

rf_model <- randomForest(as.factor(class)~., data = TR[,Features1], ntree=1000, mtry=3, 

type="classification", norm.votes=TRUE, proximity=TRUE) 

 

Major parameter testing: 

#plot the relation between out of bag error and number of trees 

plot(oob[], rf_model$err.rate[,1],type='l') 

# plot the relation between out of bag error and mtry 

tuneRF(TR, as.factor(TR$class_id), mtryStart= 3, stepFactor=1.5) 

# plot the variable importance 

varImpPlot(rf_model) 

 

RF applying: 

# predict function (model, data, type) 

RF <- predict(rf_model, image, type="response") 

 

Display and save SVM classification result 

Accuracy assessment: 

Confusion_matrix <- confusion_matrix(TS, Class_legend) 

END 
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Classifier3: Gradient Boosted Regression Tree 

Package: gbm 

Input:  

ASTER image 

Training set 

Test set 

Output: 

RF classification result 

Confusion matrix 

Overall accuracy 

Parameters: 

class              # read from training set 

image               # read from ASTER image 

Features <- c(1:9)    # 9 bands of ASTER 

n.tree              # number of trees 

y <- TR$ class 

RF modelling: 

# gbm.fit function (y, x, n.tree, distribution, interaction.depth, n.minobsinnode, shrinkage, 

bag.fraction) 

gbrt_model <- gbm.fit(y=y,x = TR[,Sel_Features], n.tree=2000, 

                     distribution = "multinomial", # classification type 

                     interaction.depth = 3,   # model with three interaction 

                     n.minobsinnode = 10,   # ten observations in each tree 

                     shrinkage = 0.01,       # learning rate 

                     bag.fraction = 0.5)      # randomly select half training set to build next tree 

Major parameter testing: 

# test the optimal number of trees 

best.iter <- gbm.perf(brt_model,plot.it= TRUE, method="OOB") 

print(best.iter) 

# print the variable importance 

Prob_train <- array(0,c(nrow(tmp_train),Ncl)) 

for(k in 1:Ncl)Prob_train[,k] <- tmp_train[,k,1] 

TR$classifier=max.col(Prob_train) 

summary(gbrt_model, n.trees=best.iter) 

 

RF applying: 

# predict function (model, data, n.trees, type) 

GBRT <- predict(gbrt_model, image ,n.trees = best.iter, type="response") 

 

Display and save SVM classification result 

Accuracy assessment: 

Confusion_matrix <- confusion_matrix(TS, Class_legend) 

END 

 


