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Abstract
Geographic Information Systems have gradually acquired greater relevance as tools to support
decision-making processes, and during the last decades they have been used in conjunction
with Multi-Criteria Decision Analysis  techniques (GIS-MCDA) to solve real-world spatial
problems.

GIS-MCDA can be generally divided in two main approaches: Multi-Attribute and Multi-
Objective techniques. Until now most of the applications of GIS-MCDA have been focused
only on using the multi-attribute approach, and less than 10% of the research has been related
to a specific type of multi-objective technique: the use of heuristic/meta-heuristic algorithms.

The present study explores how different heuristic/meta-heuristic methods perform on solving
a spatial multi-objective optimisation problem. To achieve this, four algorithms representing
different types of heuristics methods were implemented, and applied to solve the same spatial
multi-objective  optimisation  problem  related  with  an  evacuation  planning  situation.  The
implemented algorithms were Standard Particle Swarm Optimisation (SPSO), Non-dominated
Sorting  Genetic  Algorithm II  (NSGA-II),  Archived  Multi-Objective  Simulated  Annealing
(AMOSA) and Multi-Objective Grey Wolf Optimiser (MOGWO).

The  results  show  that  the  four  algorithms  were  effective  on  solving  the  given  problem,
although  in  general  AMOSA and  MOGWO had  a  higher  performance  for  the  evaluated
aspects (number of solutions, effectiveness of the optimisation, diversity, execution time and
repeatability). However, the differences in the results obtained from each algorithm were not
clear enough to state that one type of heuristic is superior than others. Since AMOSA and
MOGWO are the most recent algorithms among the implemented ones, they include several
improvements  achieved  by  the  latest  research,  and  their  superior  performance  could  be
connected to these improvements more than to the specific type of algorithms they belong to.

Further research is suggested to explore the suitability of these methods for many-objectives
spatial problems, to consider the temporal variability and dynamism of real-world situations,
to create a standard set of algorithms to be used for benchmarking, and to integrate them with
the  currently  available  GIS-MCDA tools.  Despite  this,  from the  performed  research  it  is
possible  to  conclude  that  heuristics  methods  are  reliable  techniques  for  solving  spatial
problems  with  multiple  and  conflictive  objectives,  and  future  research  and  practical
implementations in this field can strengthen the capacities of GIS as a multi-criteria decision-
making support tool.

KEYWORDS: GIS, multi-criteria, multi-objective, optimisation, decision, analysis, decision-
making, algorithm, SPSO, NSGA-II, AMOSA, MOGWO.
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Chapter 1

Introduction

1.1 Background

Geographic Information Systems (GIS) have gradually acquired greater relevance as tools to
support decision-making processes. Their capacities to store, manipulate and analyse spatial
data have provided valuable information for decision-making in diverse areas, such as natural
resources management, hazard control, regional and urban planning (Jankowski 1995). From
one perspective, the final aim of GIS is to provide support for making decisions, not only for
experts  in  geographical  and  environmental  sciences,  but  also  to  decision-makers  and
stakeholders from different domains and interests (Jankowski and Nyerges 2003; Malczewski
and Rinner 2015).

For  its  part,  Multi-Criteria  Decision  Analysis  (MCDA)  is  a  branch  of  the  Operational
Research domain which seeks to support decision-making when problems consider multiple
variables, which often could be conflicting with each other (Carver 1991; Malczewski 2006).
Normally, in these cases there is no a single solution that can be identified as "the best", but
there is a set of "good" alternatives which meet the defined objectives in different proportions.
Thus, the general objective of MCDA is to assist the decision-makers in selecting the "best"
alternative  from  that  set  of  good  solutions  when  there  are  multiple  choice  criteria  and
priorities (Jankowski 1995).

Although usually we do not notice it, multi-criteria analyses are part of our daily lives. The
purchase of goods and services is a simple example of this, where we want to get the highest
possible benefit paying the lowest price (two objectives). However, likely the best TV set or
the best vacation plan will not be the cheapest options, and there will be a range of price-
quality combinations to choose from (the set of good solutions). Then, the final decision will
be done by applying one or more personal preference (the constraints), such as "I am willing
to pay a little more to buy this model with a better design" or "This is the best product I can
buy with the money I am willing to spend".

In the same way, real-world problems with spatial characteristics also have to deal with these
multiple criteria and potentially conflicting objectives. For instance, the promoters of a water
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dam want to maximise the storage capacity but, at the same time, minimise construction cost
and  water  loss  due  to  evaporation  (or  infiltration).  The  set  of  possible  dam  designs
(alternatives)  allows  many  different  choices.  The  criteria  are  functions  of  the  decision
variables to be maximised or minimised,  and they are clearly in conflict: a dam with big
storage capacity will certainly not involve small construction cost (Ehrgott 2005), or a bigger
capacity of the lake will imply a higher loss of water.

Analysing the optimal routes to a certain destination or assessing the environmental impact of
an activity are also examples of spatial problems involving multiple decision criteria (Huang
et  al.  2011).  In  these  real-world  situations  there  is  no  a  single  “best”  solution  that
accomplishes all  the objectives  in the best  way, and it  is  for trying to  solve this  type of
problems that GIS and MCDA intersect their domains, generating a positive synergy as tools
to support decision-making (Malczewski and Rinner 2015).

Since the decade of 1980 several MCDA techniques have been applied to GIS (GIS-MCDA)
although the way to classify them widely varies in the literature depending on the point of
view. Because of this variety of classification (often overlapped among them), for this study
the techniques of GIS-MCDA have been grouped into two main types of methods: Multi-
Attribute  Decision  Analysis  (MADA)  and  Multi-Objective  Decision  Analysis  (MODA)
(Ehrgott et al. 2010).

In general terms, MADA methods are those involving a limited number of known attributes
(for instance, vegetation cover, slope or population density). Then, the solutions are found
applying several constraints and assessing the relative relevance of each attribute. By doing
this an overall "quality" value for the solution is obtained, which can be compared to the
quality of other solutions to finally select the best ones. 

MADA methods are the most widely implemented type of GIS-MCDA so far and nowadays
there is a wide variety of available tools to implement them, both proprietary and free/open
source software  (University of Redlands and SDS Consortium 2009). The Weighted Linear
Combination  approach  (WLC),  also  called  “Weighted  summation”,  “Weighted  linear
average”, “Simple additive weighting” or “Weighted overlay” is the best example of this type
of techniques (Malczewski 2006).

MODA methods are those techniques that use a set of objective functions (also called cost
functions) and a set of constraints defined for each decision variable, in order to evaluate the
quality of the candidate solutions (also called "the fitness")  (Coello et  al.  2007).  In these
methods the set of good solutions is generated following the principles of Pareto optimality
theory (Ehrgott 2005).

Once  again,  the  MODA methods  can  be  subdivided  according  to  their  way  of  solving
problems. The first subgroup corresponds to the deterministic methods and are based on the
principles of mathematical programming. Most of the current implementations of MODA in
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GIS-MCDA correspond to this  subgroup, which have in common that  the multi-objective
problem is  transformed into a  scalar  function,  and then it  is  solved as  a  single-objective
optimisation  problem  (Malczewski  2006).  However,  this  deterministic  approach  is  not
efficient in solving complex spatial multi-objective problems, and in some cases it is not even
possible to search for every candidate solution using the classic mathematical programming
methods (Carver 1991; Malczewski and Rinner 2015).

The second subgroup of MODA methods corresponds to the stochastic ones, which consider
the  use  of  algorithms  to  overcome  the  intrinsic  limitations  of  deterministic  methods
(Malczewski 2006; Coello et al. 2007; Coello 2009; Ehrgott et al. 2010). Using a trial and
error  approach,  these  algorithms  utilise  several  techniques  to  refine  each  solution  and to
optimise  the objective  functions  (minimising or  maximising  them).  They also incorporate
different levels of randomness to ensure a proper exploration of the search space and to avoid
local  maxima  or  minima  (Deb  et  al.  2002;  Bandyopadhyay  et  al.  2008;  Bonyadi  and
Michalewicz 2014; Mirjalili et al. 2014).

1.2 Problem statement

According to  the literature,  the subgroup of  stochastic  MODA methods is  so far  the less
studied branch of GIS-MCDA. Although since the decade of 2000 the research on this subject
has been increased,  there is still  a lack of studies about using heuristics/meta-heuristics to
solve spatial optimisation problems and the available studies represent less than 10% of the
total research on GIS-MCDA (Ehrgott et al. 2010; Malczewski and Rinner 2015). Moreover,
most of this research has been focused only in a few type of heuristics, with the “evolutionary
algorithms” being the most studied type until now.

This lack of studies  would be, indeed, one of the main challenges to face by GIS-MCDA
researchers,  in  order  to  convince  sceptical  decision-makers  about  the  feasibility  of  this
approach  to  produce  trustworthy  results  (Zheng  et  al.  2015).  If  stochastic  methods  are
properly defined and implemented they can decrease computational times and solve more
complex spatial multi-objective optimisation problems, generating more interactive decision-
making contexts (Church et al.  2003 and Duh and Brown 2005, cited in  Malczewski and
Rinner 2015).

The  general  approach  used  in  previous  MODA studies  has  considered  the  use  of  one
heuristic/meta-heuristic algorithm to solve a given spatial problem and then the analysis of its
performance  (Ngamchai  and  Lovell  2003;  Saadatseresht  et  al.  2009;  Sasaki  et  al.  2010;
Demetriou et al. 2014; Shaygan et al. 2014; Son 2014). However, there has not been extensive
research  on  analysing  if  some types  of  algorithms are  better  than  others  to  solve  spatial
problems.
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Therefore,  there  is  a  gap  in  the  existent  research  about  using  heuristic/meta-heuristic
algorithms to solve spatial multi-objective optimisation problems, and researching in this field
is an opportunity to strengthen the role of GIS as a decision-making support tool.

1.3 Objectives

Based on the  previous  studies  in  this  field  and the  identified  gap,  the  objectives  of  this
research are:

• To explore how four different types of heuristic/meta-heuristic methods perform in

solving a spatial multi-objective optimisation problem.

• To analyse if the quality of the obtained solutions depends on the type of algorithm

being used and if a specific type of heuristic is more suitable than others to solve the
given problem.

• To compare the optimised solutions against the solutions for a base case, in which no

multi-objective optimisation is applied.

To achieve this, several heuristics algorithms have been implemented and applied to solve the
same spatial multi-objective optimisation problem, which is related with a real-world situation
of evacuation planning.

1.4 Outline

This  document is  organised in  six chapters,  being Chapter  1  this  Introduction.  Chapter  2
presents the theoretical background of the research, introducing some general aspects of the
MCDA domain and more specific details about the state-of-the-art in the GIS-MCDA research
field. Chapter 3 describes the methods and the heuristics that were implemented, as well as
the evacuation planning optimisation problem used as a case study. Chapter 4 presents the
results and solutions obtained using each method. In Chapter 5 the results are analysed and
discussed regarding the declared aims of this research. Chapter 6 summarises the conclusions
yielded from the previous analysis, and finally a list  of bibliographical references used to
support this research and one Appendix with complementary data are also presented.
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Chapter 2

Theoretical background

2.1 Definitions

In order to develop an understanding of Multi-Objective Optimisation Problems (MOP or
MOPs) a series of formal non-ambiguous definitions are required (Coello et al. 2007). Several
definitions can be found in the literature, some of them slightly different but conceptually
equivalent. The following list of definitions does not intend to be an extensive vocabulary but
just to introduce the reader to some basic terminology frequently used in MCDA, adjusted to
the context of this research.

• Multi-Objective optimisation problem: in words, a MOP can be defined as the problem

of finding a vector of decision variables which satisfies constraints and optimises a
vector  function,  whose elements  represent  the objective functions.  These functions
form a mathematical description of performance criteria, which are usually in conflict
with each other.  Hence,  the term “optimise” means finding such a  solution which
would give the values of all the objective functions acceptable to the decision maker
(Coello et al. 2007). This statement can be mathematically expressed as follows:

minimise (or maximise) F( x)={f 1(x ) , f 2(x) , .... , f n(x )} (2.1)

subject to: x∈ X

where F(x) is the n-dimensional objective function, fk (x) is an objective function (k =
1, 2, ...,  n),  X is the set of feasible alternatives and  x = (x1,  x2, ...,  xm) is a vector of
decision variables, xi ≥ 0, for i = 1, 2, ..., m (Coello et al. 2007; Malczewski and Rinner
2015).

• Decision variables: are the numerical quantities for which values are to be chosen in

an optimisation problem. These quantities are denoted as  xj,  where  j = 1, 2, ….,  n
(Coello et al. 2007).  For example, a spatial problem like location/allocation can be
used for defining a set of spatial options. The locational alternatives could be defined
as binary vectors,  x = (x1,  x2, ...,  xm), where a decision variable xj receives a value of
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“1” if an activity is located at the ith site (health service, supermarkets, etc.) or a value
of “0” otherwise. Also, a vector of allocation variables associated with the jth location
can be defined in terms of a binary variable xij receiving a value of “1” if an activity
(demand for health services) at the  ith location is allocated to the  jth location, or a
value “0” otherwise (Malczewski and Rinner 2015).

• Solution: in a broad sense it means any well-formed answer to the problem that maps

to a cost through the function f. The objective is not to find a solution, but to find a
minimum cost one. Therefore, it is meaningful to talk about an approximate solution
to the problem, i.e., one that is close to optimal (Knowles et al. 2008).

• Constraints: in most optimisation problems there are always restrictions imposed by

the particular characteristics of the environment or available resources (for instance,
physical limitations or time restrictions). These restrictions must be satisfied in order
to consider a certain solution acceptable. All these restrictions in general are called
constraints, and they describe dependences among decision variables and constants (or
parameters) involved in the problem (Coello et al. 2007).

• Objective function and fitness: The objective function is the statement of the goal of an

optimisation  problem  (Kennedy  et  al.  2001),  the  mathematical  expression  to  be
evaluated.  The  fitness  is  a  measure  of  the  degree  to  which  a  candidate  solution
successfully solves the problem being addressed (Kennedy et al. 2001). In MOPs, it is
a vector obtained after evaluating the solution for all the objectives functions.

• Search space: also called “objective space” or “objective function space” is used to

denote the coordinate space within which vectors resulting from evaluating an MOP’s
solutions are plotted (Coello et al. 2007).

• Pareto  Optimality:  having  several  objective  functions  the  notion  of  “optimum”  is

different  to  a  single-objective  problem, because in  MOPs the aim is  to  find good
compromises (or “trade-offs”) rather than a single solution as in global optimisation.
The notion of “optimum” most commonly adopted was generalised by Vilfredo Pareto
(Coello et al. 2007), which, in words, says that x∗ is Pareto optimal if there exists no
feasible vector x which would decrease some criterion without causing a simultaneous
increase in at least one other criterion (assuming minimisation)(Coello et al. 2007).

• Dominance:  Since in  a MOP the quality of a candidate solution is  now no longer

measured as a scalar but as a vector, a different way to assess whether or not some
solution x is better than a solution y is used: i) It is said that “x and y are equally fit” if
their decision vectors (their fitnesses) are identical; ii) It is said that “x is better than y”
if x’s fitness is better than y’s in at least one objective and no worse in all the others.
This is called dominance and in such case it is said that “x dominates  y”; iii) It is
possible a case in which x is better than y on some objectives, but y is better than x on
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other  objectives  (none of  them is  better  than  the  other  in  all  the  aspects).  In  this
situation it is said that “x and y are non-dominated solutions” (Knowles et al. 2008).

• Pareto set and Pareto front: given a set of multi-objective solutions, some of them will

be dominated by others in the set. Those that are not dominated by any others in that
set (which may be a single solution, or the whole set) form what is called the Pareto
set  (Knowles  et  al.  2008).  When  plotted  in  the  objective  space,  the  Pareto  set  is
collectively known as the Pareto front (Coello et al. 2007). 

2.2 Methods classification

As mentioned previously, several schema exist to classify techniques and methods applied in
GIS-MCDA. Most  of  these procedures  have been taken from the general  decision theory
(Malczewski 1999) and therefore,  some of those schema have also been ported from this
theory. One way of organising them, which is the way to be applied in this report, is taking
into account the criteria used during the decision processes to search for the solutions, which
can be Attributes (MADA) or Objectives (MODA) (Hwang and Yoon 1981, cited in Ehrgott et
al. 2010; Malczewski and Rinner 2015) as shown in Table 2.1.

This research is specifically focused in the stochastic subset of the MODA methods, although
next section briefly presents a summary of the relevant studies using both MADA and MODA
approaches, in order to give an overview about the GIS-MCDA practices so far which can be
later extended by reading specific literature.

Table 2.1: Multi-Attribute and multi-objective decision analysis approaches

Condition
Multi-Attribute Decision

Analysis (MADA)
Multi-Objective Decision

Analysis (MODA)

Criteria defined by Attributes Objectives

Objectives defined Implicitly Explicitly

Attributes defined Explicitly Implicitly

Constrains defined Implicitly Explicitly

Alternatives defined Explicitly Implicitly

Decision modelling paradigm Outcome-oriented evaluation/choice Process-oriented design/search

Source: Modified from Hwang and Yoon 1981 and Malczewski 1999, cited in Malczewski and Rinner 2015.

2.3 Previous research in GIS-MCDA

Malczewski  (2006) performed  an  extensive  literature  review  on  GIS-MCDA  initially
including more than 300 articles published in refereed journals between 1990 and 2004. The
list  was  later  expanded  by  Malczewski  and  Rinner  (2015) in  order  to  include  articles
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published between 2005 and 2010 yielding a total of 805 articles, which progression in time is
showed in Figure 2.1.

Figure 2.1: GIS-MCDA articles published between 1990 and 2010
(from Malczewski 2006, updated by Malczewski and Rinner 2015).

As can be seen in the figure, the accumulated research on GIS-MCDA has constantly grown
since the beginning of the 1990 decade, when it was almost null. The number of articles has
also  increased  almost  every  year  of  the  period,  being  the  period  since  2005  the  most
productive in terms of publications, accumulating around of 70% of the total.

According to  Malczewski and Rinner  (2015) this  increase can be explained by two main
reasons: i) The increase in the computational capacities of personal computers as well as the
refinement,  development  and implementation of more sophisticated and user-oriented GIS
and decision analysis software; ii) A general recognition within the GIS community about the
relevance of GIS as a tool to support decision analysis.

However, in terms of approaches the studies have been unequally distributed so far. Ehrgott et
al. (2010) presented a summary of the published literature differentiating between MADA and
MODA methods (based on Malczewski’s original survey) which showed that around 71% of
the total research belonged to the MADA approach and only about 29% was done about the
MODA type.  Moreover,  only  8% of  the  total  was  about  heuristic/meta-heuristic  methods
(which is the main subject of this research), as is shown in Table 2.2.
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Table 2.2: Percentage of GIS-MCDA research by type of method

Type Decision rule %

MADA Weighted summation/overlay 39.4

Ideal/reference point 9.6

Analytical Hierarchy Process (AHP) 9.4

Outranking methods (ELECTRE, PROMETHEE) 4.7

Other 8.3

Subtotal 71.3

MODA Multi-Objective programming algorithms (linear-integer programming) 15.7

Heuristic search/evolutionary/genetic algorithms 8.0

Goal programming/reference point algorithms 2.5

Other 2.5

Subtotal 28.7

Total 100.0

Source: Adapted from Ehrgott et al. 2010.

2.3.1 Main aspects of MADA methods

Despite that a large number of multi-attribute decision-making methods have been described
in  the  literature,  from  Table  2.2 it  is  clear  that  just  a  few  of  them  have  actually  been
implemented or studied in a GIS context. According to  Malczewski and Rinner (2015) the
Weighted Linear Combination (WLC) model and related methods are the most widely used
techniques, not only for MADA but in general for GIS-MCDA. Even more, if we consider
that Analytical Hierarchy Process methods are a particular case of WLC, almost 50% of the
total research in GIS-MCDA has been performed only for this class of multi-criteria analysis
technique. Because of this, most of the so-called “GIS-based Multi-Criteria analysis tools”
currently available are actually using this specific approach.

In simple terms, WLC-related techniques are composed by a set of criterion weights (wk) and
value functions (v(aik)). Then each ith decision alternative is associated with a set of criterion
weights and subsequently combined with the attribute values ai1, ai2, … , ain (with i = 1, 2, … ,
m)(Malczewski and Rinner 2015). The mathematical expression to summarise this method
would be in the following form:

V (Ai)=∑
k=1

n

wk v (aik) (2.2)

where in spatial  terms  V(Ai)  would be the overall  value of the  ith alternative at  a certain
location i, and v(aik) would be the value of the ith alternative with respect to the kth attribute
(evaluated using the value functions). The alternative with the highest value of V(Ai) would be
the best one among the assessed options (Malczewski and Rinner 2015).
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The main advantage of WLC and the reason behind its extensive use is that WLC-related
techniques  can  easily  be  implemented  in  GIS  environments,  just  by  using  map  algebra
operations and cartographic modelling (Tomlin 1990 cited in Malczewski 2000). This method
is also easy-to-understand to decision makers (Hwang and Yoon 1981, Massam 1988, cited in
Malczewski 2000).

Several  software  alternatives  performing  MADA and WLC-related  analyses  are  available
nowadays in the market, including both commercial and open/free licenses. Most of modern
GIS desktop software (for instance Quantum GIS or ArcGIS) have native capacities to work
with these methods. There are also several add-ons that extend these inherit capacities and
other GIS software, like IDRISI or ILWIS, have also developed specific modules to handle
these types  of  analyses.   On the other  hand projects  like DSMCE  (Boerboom 2012) and
similar  have ported the MADA methods and the WLC model to the web, facilitating the
general access to it.

Further  details  about  available  software  options  to  support  decision-making  using  these
techniques can be found in the literature (Jankowski 1995; Malczewski 1999; Jankowski and
Nyerges 2003; Malczewski 2006; Greene et al. 2011; Malczewski and Rinner 2015) or in the
web (University of Redlands and SDS Consortium 2009). 

2.3.2 Main aspects of MODA methods

From  Table  2.2 it  is  possible  to  observe  that  over  50%  of  the  research  about  MODA
corresponds to linear-programming related methods, which combine the objectives of a multi-
objective problem with a set of weights provided by decision-makers (that defines the relative
importance  of  each  objective).  Doing  so  a  single-objective  model  is  created  and  then  a
conventional  mathematical  programming  algorithm  can  be  used  to  solve  the  problem
(Mirjalili et al. 2016).

As  can  be  inferred,  using  the  previous  approach  requires  to  know in  advance  the  set  of
weights provided by the decision-makers. Also, if the optimisation process delivers only  a
single  solution  it  will  be  necessary  to  repeat  it  as  many  times  as  solutions  are  needed,
changing the weights configurations before each run.  The use of weights could also introduce
certain  degree  of  bias  in  the  final  set  of  solutions,  since  they  are  defined  based  on  the
expertise or particular interests of the decision-makers.

On the  other  hand,  by  using  stochastic  algorithms the  multi-objective  formulation  of  the
original problem is kept, allowing to explore the behaviour of the problems across the whole
range of design parameters and operating conditions. By doing this the output of the algorithm
will be a set of traded-off solutions, from which the decision-makers will eventually choose
one according to their needs (Mirjalili et al. 2016). 
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In general there are two types of stochastic algorithms: heuristic and meta-heuristic, though
their difference is small. Heuristic means “to find” or “to discover by trial and error”. Quality
solutions can be found in a reasonable amount of time, but there is no guarantee that optimal
solutions will be reached. This is good when the best solutions are not needed, but rather good
solutions  which are easily  reachable  (Yang 2010).  A further  development  of the heuristic
algorithms are the so-called meta-heuristic ones (where “meta” means “beyond” or “higher
level”),  and they generally perform better than simple heuristics using certain trade-off of
randomization and local search (Yang 2010).

Although the recent trend tends to name all  stochastic algorithms with randomisation and
local search as meta-heuristic, no agreed definitions exist in the literature and both terms are
often  used  interchangeably  (Yang  2010).  This  interchangeable  use  between  heuristic  and
meta-heuristic terms is also used in this research.

Even if the heuristic methods do not guarantee that an optimal solution will be ever found, its
approach along with several techniques to iteratively improve the candidate solutions give
them good chances of finding a set of good-enough alternatives (Ehrgott 2005; Coello et al.
2007; Malczewski and Rinner 2015). Additionally, since all the objectives are equally treated
during the optimisation process (no preference) the decisions are taken assessing an actual set
of traded-off alternatives where no previous bias was applied.

In  addition,  since  a  set  of  potential  solutions  can  be  obtained  after  a  single  run  of  the
algorithms, these options can be useful for solving complex or large spatial problems where
the  linear-programming  approaches  are  not  efficient,  for  example,  because  of  its
computational complexity (Ehrgott et al. 2010; Malczewski and Rinner 2015).

2.3.3 Choosing between MADA and MODA methods

There is no a rule of thumb that can be applied to decide about the most adequate method to
handle certain spatial  problem, and because of the high amount  of available  methods the
selection depends much on the context. However, some clues can help on the selection of the
most suitable method for a given problem.

As a first filter, a separation can be done whether or not there are multiple objectives. If the
decision-makers determine that the multiple objectives are either complementary or can be
prioritised, then MADA methods can be applied for solving it (Greene et al. 2011).

On  the  contrary,  if  the  multiple  objectives  are  in  conflict  MODA methods  are  therefore
required,  and the choice could be based on the complexity of the problem or the desired
output (mathematical programming for locating an optimal solution or heuristic methods for
locating a set of satisfactory solutions close to the optimum) (Greene et al. 2011).
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Unfortunately  the  available  literature  does  not  provide  a  definition  of  what  could  be
considered as a complex or large problem, as it also depends on the computational capacity of
the software or algorithms being used. However, these methods should not be considered as
mutually exclusive, and could be separately applied to different stages of the same decision
process (Greene et al. 2011). Multiple techniques can also be applied in parallel as part of a
strategy to validate the robustness of the recommendations (Carver 1991 and Roy 2005, cited
in Greene et al. 2011).

2.4 Nature-inspired algorithms

2.4.1 Overview

Nature-inspired algorithms try to solve a given problem mimicking the behaviour of natural
species  or  the  rules  of  natural  phenomena.  Although not  all  of  them are  efficient,  a  few
algorithms have  proved their  capacities  for  solving real-world  problems.  Thus,  they have
become  popular  within  the  communities  of  optimisation,  computational  intelligence  and
computer sciences, and they are now among the most widely used algorithms for optimisation
and computational intelligence (Yang 2014). For example, Fister Jr. et al. (2013) performed a
review of nature-inspired algorithms for solving optimisation problems, finding more than 70
alternatives shown in the Figure 2.2.

Figure 2.2:  Nature-inspired algorithms included in the review of (Fister Jr. et al. 2013).
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The classification of these algorithms varies depending on the criteria, and the literature does
not provide an easy guideline to set it out. However, one approach for doing this is to consider
its source of inspiration  (Fister Jr. et al. 2013). Based on this criterion, the nature-inspired
algorithms can be grouped as:

• Swarm-intelligence-based:  these  algorithms  are  related  to  the  collective,  emerging

behaviour of multiple and interacting agents, who follow some simple rules. While
each single agent may be considered as unintelligent, the whole system may show
some self-organization behaviour and thus, can behave like some sort of collective
intelligence. This type is among the most popular and widely used algorithms, and
many have been developed by drawing inspiration from the collective behaviour of
social insects (ants, termites, bees and wasps), as well as from other animal societies
like flocks of birds or fish (Fister Jr. et al. 2013).

Usually, in this type of algorithms the solutions are called “particles” and a specific
solution value is known as its “position”, which during the optimisation process is
continuously improved to get closer to the optimal position.

• Bio-inspired-based: are those algorithms inspired by biological phenomena or species,

but without using collective swarm intelligence principles. This group represents the
vast majority of all nature-inspired algorithms, being the Genetic Algorithms (GAs)
the most relevant type. These GAs are an abstraction of biological evolution based on
Charles  Darwin’s  theory  of  natural  selection,  which  use  genetic  operators  as  their
problem-solving strategy. Many variants of genetic algorithms have been developed so
far and they have been applied to a wide range of optimisation problems (Yang 2014).

The basic  work-flow of  GAs considers:  (1)  encoding the  objectives  functions;  (2)
defining  a  fitness  function  or  selection  criterion;  (3)  creating  a  population  of
individuals  (here  called  “chromosomes”);  (4)  carrying  out  the  evolution  cycle  by
evaluating  the  fitness  of  all  the  chromosomes  in  the  population,  creating  a  new
population (called “generation”) by performing genetic operators, and replacing the
old population and iterating again using the new one; (5) decoding the results to obtain
the solution of the problem (Yang 2014).  The main genetic operators used in GAs are:

◦ Crossover: is the main operator and is carried out by swapping one segment of one

chromosome  with  the  corresponding  segment  on  another  chromosome  (the
parents) at a random position (called single-point crossover). It can also occurs at
multiple sites, which essentially swap the multiple segments with those on their
corresponding chromosomes. Its main role is to provide mixing of the solutions
and convergence in a subspace (Yang 2014).
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◦ Mutation:  it  is  achieved  by  flopping  a  randomly  selected  segment  of  the

chromosomes, given certain probability. Its main role is to increase the diversity of
the population and to provide a mechanism for escaping from a local optimum
(Yang 2014).

◦ Selection of the fittest (elitism): it is carried out by the evaluation of its fitness,

which allows an individual to remain in the new generation if a certain threshold
of  the  fitness  is  reached.  Selection  can  also  be  fitness-based  so  that  the
reproduction  of  a  population  is  fitness-proportionate,  i.e.,  the  individuals  with
higher fitness are more likely to reproduce (Fister Jr. et al. 2013).

In  actual  algorithms  the  interactions  between  these  genetic  operators  can  be  very
complex. However,  the role of the individual components remains the same  (Yang
2014).

• Physics/Chemistry-based:  as  their  names  suggest,  these  type  of  algorithms  mimic

certain physical and/or chemical phenomena, including for instance electrical charges,
temperature changes,  gravity or river  systems.  Within this  group the most  popular
algorithm  is  Simulated  Annealing  (SA),  which  mimics  the  annealing  process  of
metals, cooling and freezing it into a crystalline state with the minimum energy and
larger crystal sizes, which reduces the defects in metallic structures  (Fister Jr. et al.
2013;  Yang  2014).  The  annealing  optimisation  process  involves  the  control  of
temperature and its cooling rate (called the annealing schedule).

As can be seen in Figure 2.2 there are several proposed algorithms for solving optimisation
problems,  and  the  list  is  continuously  increasing  with  newer  proposals.  However,  this
collection  of  alternatives  is  not  always  useful,  since  there  may  be  some  confusion  and
distraction  in  the  research  of  meta-heuristic  algorithms.  On  one  hand,  researchers  have
focused on important novel ideas for solving difficult  problems. On the other hand, some
researchers  artificially  invent  new  algorithms  for  the  sake  of  publications,  with  little
improvement and no novelty (Fister Jr. et al. 2013).

This  research  considers  the  implementation  and  testing  of  several  nature-inspired  meta-
heuristic algorithms.  The selection took into account:

• To include one algorithm of each main group, choosing the most representative type

within the group (i.e. the most cited type in the literature).

• The capacity of the algorithm to handle multi-objective optimisation problems.

Based  on  the  previous,  a  Particle  Swarm  Optimisation algorithm  was  selected  as
representative of the swarm-intelligence-based group; a  Genetic Algorithm was selected as
representative  of  the  bio-inspired-based group;  and a  Simulated  Annealing algorithm was
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selected  as  the  representative  of  the  Physics/Chemistry-based  group.  In  addition,  a  very
recently  published  algorithm  was  also  selected,  in  order  to  include  in  the  research  a
representative of the these “brand-new” algorithms, which somehow are a manifestation of
the dynamism that this research field has shown during the last years.

Sections  2.4.2 to  2.4.5 present a summarised description for these four selected algorithm,
based on the articles on which they were originally published. Because of this and in order to
avoid excessive and redundant references to the same authors, unless a different citation is
explicitly included in the text, all the information must be considered as coming from those
original articles.

2.4.2 Standard Particle Swarm Optimisation

The Particle Swarm Optimisation (PSO) algorithm  (Eberhart and Kennedy 1995; Kennedy
and Eberhart 1995) is a population-based global optimisation technique inspired by the social
behaviour of bird flocks looking for corn (therefore, it belongs to the Swarm Intelligence class
of algorithms). Since its publication is has received a surge of attention in the literature, given
its  flexibility,  easy  computational  implementation  (programming),  low  computational
requirements, low number of adjustable parameters and efficiency.

Numerous variants of the original PSO algorithm have been proposed in the literature, aimed
at  improving performance or  tackling  specific  optimisation  problems.  Usually  researchers
claim to have compared their “improved” version of PSO to the “standard” PSO algorithm,
but the standard itself seems to differ between different studies.

Standard PSO (SPSO) was proposed in order to establish a common benchmark and reference
point  to  assess the performance of the numerous PSO variants appearing in the literature
(Clerc 2006; Clerc 2012). Until now there have been three version of SPSO, the last one being
from 2011 (SPSO-2011).

Despite  closely  following  the  original  PSO  algorithm,  SPSO-2011  includes  several
improvements  based  on  recent  theoretical  developments.  However,  SPSO-2011  is  not
intended to be the best PSO variant on the market but only be considered as the reference
level to be outperformed by newer PSO improvements.

The  algorithm  starts  by  creating  a  random  population  (called  the  swarm)  where  each
candidate solution (called particles) stores its position (the actual value of the solution), its
fitness value at  that  position,  an initially random “velocity” vector which will  be used to
compute its next position, a “memory” vector that contains the best position found so far by
the particle (called the previous best) and the fitness value of that previous best.

The particles in the swarm are related to each other using a topology, which defines the links
between the particles or “who informs who”. When a particle is “informed” by another ones,
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it  means that the particle knows the previous best of the "informing" particles (called the
neighbourhood) and that information will be used later in the process.

Then, at each iteration the velocity of each particle is re-calculated using a set of equations
which combine: i) the particle’s current position; ii) the particle’s current velocity; iii) the
particle’s previous best;  iv)  the best  “previous  best”  in the neighbourhood.  Thereafter the
particle is “moved” to a new position by applying the new velocity to it.

A confinement method is also applied to ensure that the new position is still inside the search
space and finally the new fitness is calculated based on the new position. If the new fitness is
better  than  the  fitness  of  the  “previous  best”  then  the  “previous  best”  and its  fitness  are
replaced by a copy of this new particle and its new fitness. The algorithm can be stopped by
applying one of the following criteria:

• If the fitness value on the optimum point is known, a maximum admissible error is

defined.  As  soon  as  the  absolute  difference  between  this  known  fitness  on  the
optimum point and the best one that has been found is smaller than this error, the
algorithm stops.

• A maximum number of fitness evaluations is given in advance. As in Standard PSO

the swarm size is constant, this is equivalent to a maximum number of iterations.

Figure  2.3 presents  the  pseudo  code  for  the  SPSO-2011  algorithm.  Further  details  for
understanding the PSO and SPSO algorithms can be found in the studies “Standard Particle
Swarm Optimisation”  (Clerc 2006; Clerc 2012), “Particle Swarm Optimization”  (Kennedy
and Eberhart 1995), “A new optimizer using particle swarm theory” (Eberhart and Kennedy
1995),  and  also  by  analysing  the  source  code  available  in  the  online  repository  of  this
research.

Figure 2.3: Pseudo code for the SPSO-2011 algorithm
(from Zambrano-Bigiarini et al. 2013).
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2.4.3 Non-dominated Sorting Genetic Algorithm II

The Non-dominated Sorting Genetic Algorithm II (NSGA-II) (Deb et al. 2002) was proposed
to  improve  the  previous  version  of  this  heuristic,  which  over  the  years  received  some
criticisms focused on its: i) high computational complexity of non-dominated sorting; ii) lack
of elitism; and iii) the necessity for specifying the sharing parameter σshare to ensure diversity
(which according to the author was difficult of properly set). By contrast, NSGA-II uses a fast
non-dominated sorting procedure, an elitist-preserving approach and a parameterless niching
operator which ensures diversity of the candidate solutions.

Initially, a random parent population P0 of size N is created and then it is sorted based on the
non-domination. Each solution receives a fitness (or rank) equal to its non-domination level
(where 1 is the best level, 2 is the next-best level, and so on). Thus, minimization of fitness is
assumed. At first, a binary tournament selection, recombination and mutation operators are
applied over P0 to create an offspring population Q0 of size N. From the parent and offspring
populations  a  new  combined  population  Rt of  size  2N is  formed,  which  is  also  sorted
according to non-domination. Since all previous and current population members are included
in Rt elitism is ensured.

After this the solutions belonging to the best non-dominated set F1 are the best solutions in the
combined population and must be emphasized more than any other solution. If the size of F1

is smaller than  N all its members are selected for the new population  Pt+1.  The remaining
members of the population Pt+1 are chosen from subsequent non-dominated fronts in the order
of their ranking. Thus, solutions from the set F2 are chosen next, followed by solutions from
the set F3 and so on until no more sets can be accommodated.

The new population Pt+1 of size N is now used for selection, crossover and mutation to create
a new population Qt+1  of size N. Both populations are combined to create a new set with 2N
solutions and the non-dominated sorting procedure is repeated again to obtain a population
Pt+2 of size N. This main loop is then repeated as many times as needed until the satisfaction
of an end criterion (for example, number of iterations). The pseudo code of the main loop of
NSGA-II is shown in Figure 2.4.

The basic operations of NSGA-II and their worst-case complexities are as follows: 1) Non-
dominated sorting is O(M(2N)2); 2) Crowding-distance assignment is O(M(2N) log (2N)); 3)
Sorting on crowded-comparison is  O(2N log (2N)).   Therefore,  the overall  complexity of
NSGA-II is O(M(2N)2) where N is the size of the population, and it is governed by the non-
dominated sorting part of the algorithm.
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Figure 2.4: Pseudo code of the main loop of NSGA-II algorithm
(Deb et al. 2002).

Further details for understanding the NSGA-II algorithm can be found in the study “A Fast
and  Elitist  Multiobjective  Genetic  Algorithm:  NSGA-II”  (Deb  et  al.  2002) and  also  by
analysing the source code available in the online repository of this research.

2.4.4 Archived Multi-Objective Simulated Annealing

The Archived Multi-Objective Simulated Annealing algorithm (AMOSA) (Bandyopadhyay et
al. 2008) was proposed to improve the existing multi-objective implementations of simulated
annealing technique, which in general do not consider Pareto dominance for accepting a new
candidate  solution  as  part  of  the  final  set.  The  algorithm has  several  stages  that  can  be
summarised as follows:

a) Archive initialisation: the algorithm begins initialising a random set of solutions which
are  refined  by  using  a  hill-climbing  technique.  A solution  is  accepted  only  if  it
dominates the previous one and the non-dominated candidates that were obtained are
stored in the archive up to a Hard Limit (HL). In case the number of non-dominated
solutions exceeds HL clustering is applied to restrict the size to that value.  During this
phase it is possible to get an archive of size one.

b) Clustering solutions in the archive: used to explicitly enforce the diversity of the non-
dominated solutions. In general, the size of the archive is allowed to increase up to a
Soft Limit (SL) higher than HL after which the solutions are clustered for grouping the
solutions into HL clusters. For clustering the Single Linkage Algorithm is used (Jain
and Dubes 1988). After clusters are obtained, the member within each cluster whose
average  distance  to  the  other  members  is  the  minimum  is  considered  as  the
representative member of the cluster. A tie is resolved arbitrarily. The representative
points of all the clusters are thereafter stored in the archive.
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c) Amount of domination: this concept is used by AMOSA to compute the acceptance
probability of a new solution, depending on its fitnesses and the range of fitnesses of
the solutions in the archive.

d) Main AMOSA process:  one of the points (solutions), called  current-pt,  is randomly
selected from the archive as the initial solution at temperature Tmax. The current-pt is
then “perturbed” (i.e.  slightly modified by a random procedure) to generate a new
solution called new-pt. The domination status of new-pt is checked with respect to the
current-pt and  the  solutions  in  the  archive.  Then,  based  on the  domination  status
between current-pt and new-pt three different cases may arise:

◦ Case 1: current-pt dominates the  new-pt and k points from the archive dominate

the new-pt. In this situation the new-pt is not accepted in the archive but it can be
selected as current-pt with a given probability.

◦ Case 2: current-pt and new-pt are non-dominating with respect to each other. Now,

based  on  the  domination  status  of  new-pt and  members  of  the  archive  the
following three situations may arise:

1) new-pt is dominated by k points in the archive. Here the new-pt is not accepted
in the archive but  it  can be selected as  current-pt with a  given probability
(different to probability in Case 1).

2) new-pt is non-dominating with respect to the points in the archive. In this case
the  new-pt is selected as the  current-pt and also added to the archive. If the
archive becomes overfull (SL is exceeded) clustering is performed to reduce
the archive size to HL.

3) new-pt dominates k points of the archive. In this case the new-pt is selected as
current-pt and added to the archive. All the  k dominated points are removed
from the archive.

◦ Case 3:  new-pt dominates  current-pt. Based on the domination status of  new-pt

and the members of the archive three situations may arise:

1) new-pt is dominated by  k points in the archive.  Here, the minimum of the
difference of domination amounts between the  new-pt and the  points of the
archive is  computed.  The point  from the archive which  corresponds to  the
minimum  difference  is  selected  as  the  current-pt with  certain  probability
(different  to  the  previous  cases).  Otherwise,  the  new-pt is  selected  as  the
current-pt but not included in the archive.

2) new-pt is non-dominating with respect to the points in the archive. In this case
new-pt is accepted in the archive and also as the  current-pt. If the previous
current-pt was  part  of  the  archive  it  is  removed.   If  the  archive  becomes
overfull clustering is performed to reduce its size to HL.
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3) new-pt dominates  k points of the archive. Here the  new-pt is selected as the
current-pt and also added to the archive, while all the k dominated points in the
archive are removed.

The process is  repeated  NumIter times for each temperature,  which is  reduced to  at  each
iteration using the cooling rate α (α x temp), until the minimum temperature (tmin) is reached.
The  process  thereafter  stops,  and  the  resulting  archive  contains  the  final  non-dominated
solutions. Figure 2.5 presents the pseudo code for the AMOSA algorithm.

Figure 2.5: Pseudo code of the AMOSA algorithm
(Bandyopadhyay et al. 2008).

The total complexity of AMOSA is defined by: 

(SL + M + M x SL) x (TotalIter) + (TotalIter / (SL – HL)) x SL2 x log(SL)
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where M is the number of objectives. Further details for understanding the AMOSA algorithm
can  be  found  in  the  study  “A  Simulated  Annealing-Based  Multiobjective  Optimization
Algorithm: AMOSA”  (Bandyopadhyay et  al.  2008) and also by analysing the source code
available in the online repository of this research.

2.4.5 Multi-Objective Grey Wolf Optimiser

The  Grey  Wolf  Optimizer  (GWO)  was  proposed  as  a  new  nature-inspired  algorithm
mimicking  the  leadership  hierarchy  and  hunting  mechanism  of  grey  wolves  in  nature
(Mirjalili et al. 2014). The initial proposal was a single-objective optimiser but later it was
adapted to create the Multi-Objective version (MOGWO)(Mirjalili et al. 2016).

In order to model the social hierarchy of wolves the fittest solution is considered as the alpha
(α)  wolf,  the  second  and  third  best  solutions  are  named  beta  (β)  and  delta  (δ)  wolves
respectively, who lead the pack (omega (ω) wolves) toward promising regions of the search
space, in order to find solutions close to the global optimum.

In MOGWO the “hunting” (i.e. the optimisation) is guided by α, β and δ, while the ω wolves
“follow” these three wolves in the search for the global optimum (maximum or minimum).
This means that at each iteration the “position” (i.e. the actual value of that solution at that
moment) of each ω wolf is modified using a set of equations which take into account the
“positions” of α, β and δ. Therefore, the new “position” of a ω wolf will be a consequence of
its previous value, a random factor and the value (position) of the three pack leaders (three of
the non-dominated solutions found so far).

The algorithm starts creating a set of random solutions (the first pack) and the three best
obtained solutions  are  considered as the leaders.  Then,  for each omega wolf  the position
updating formulas are triggered. To perform multi-objective optimisation  MOGWO utilises a
simple storage unit called “archive” for storing the non-dominated Pareto optimal solutions.
Figure 2.6 presents the pseudo code for the MOGWO algorithm.

During the course of  iteration  the  non-dominated  solutions  obtained so far  are  compared
against the archive residents and three possible cases can arise:

• Case 1:  The  new wolf  is  dominated by at  least  one of  the  wolves  in  the  archive

(including the leaders). In this case the solution is not accepted to enter to the archive.

• Case 2: The new wolf dominates one or more solutions in the archive. In this case the

dominated solution(s) in the archive should be deleted from it and the new solution
will be able to enter the archive. 

• Case 3: If neither the new solution nor archive members dominate each other, the new

solution should be added to the archive. If the archive is full a “grid mechanism” must
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be first run to re-arrange the segmentation of the objective space and find the most
crowded segment to omit one of its solutions. Then, the new solution is inserted to the
least crowded segment, in order to improve the diversity of the final approximated
Pareto optimal front.

Figure 2.6: Pseudo code for the MOGWO algorithm
(Mirjalili et al. 2016).

The computational complexity of MOGWO is O(MN2) where N is the number of wolves in
the pack and M is the number of objectives, which is is equal to the complexity of other well-
known algorithms like NSGA-II.

Further details for understanding the MOGWO algorithm can be found in the study “Multi-
Objective grey wolf optimizer: A novel algorithm for multi-criterion optimization” (Mirjalili et
al.  2016) and also by analysing the source code available in the online repository of this
research.
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Initialize the grey wolf population Xi (i = 1, 2, ..., n)
Initialize a, A, and C
Calculate the objective values for each search agent
Find the non-dominated solutions and initialized the archive with them
Xα=SelectLeader(archive)
Exclude alpha from the archive temporarily to avoid selecting the same leader
Xβ= SelectLeader(archive)
Exclude beta from the archive temporarily to avoid selecting the same leader
Xδ= SelectLeader(archive)
Add back alpha and beta to the archive
t=1;
while (t < Max number of iterations)

for each search agent
Update the position of the current search agent

end for
Update a, A, and C
Calculate the objective values of all search agents
Find the non-dominated solutions
Update the archive with respect to the obtained non-dominated solutions
If the archive is full

Run the grid mechanism to omit one of the current archive members
Add the new solution to the archive

end if
If any of the new added solutions to the archive is located outside the hypercubes

Update the grids to cover the new solution(s)
end if
Xα=SelectLeader(archive)
Exclude alpha from the archive temporarily to avoid selecting the same leader
Xβ= SelectLeader(archive)
Exclude beta from the archive temporarily to avoid selecting the same leader
Xδ= SelectLeader(archive)
Add back alpha and beta to the archive
t=t+1

end while
return archive



Chapter 3

Methods

3.1 Problem definition

Given an urban settlement, it is necessary to design an evacuation plan for its population in
order to keep it safe in an emergency situation. Thus, the plan requires to allocate people from
the locations where they are (working places or residential zones) to a limited number of safe
areas,  which  have  a  total  carrying  capacity  lower  than  the  population  that  needs  to  be
evacuated.

A possible first approach to handle this problem would be to allocate inhabitants to the closest
available safe area. However, these places are not evenly distributed in the settlement and
their capacity for accepting people also varies from one to another. Therefore, following this
approach could lead to undesirable situations like overcrowding or even conflicts between
people for getting a safe place to stay.

An alternative approach is to assign the population to the safe areas as equally as possible, in
order to reduce the overcrowding and to ensure a better distribution for the whole community.
Nevertheless, this approach implies that in some cases, certain people will move more than
others even if they have a safe area close to them.

From the decision-makers’ point of view there are two main objectives to deal with: on one
hand, to optimise how people is distributed into the safe places; on the other hand, to optimise
the total displacement (meters per person) required to evacuate the dangerous areas, since the
lower the displacement the faster is the evacuation.

As  can  be  deducted,  these  two  objectives  are  conflicting  with  each  other  and  must  be
optimised simultaneously to obtain a traded off solution for the problem. Also, these two
objectives have spatial characteristics and hence the problem can be defined as a spatial multi-
objective optimisation problem.
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Consequently, the problem can be re-phrased as: the search for the best possible allocation
scheme for an evacuated population into several safe areas, minimising the overcrowding on
such areas as well as minimising the total displacement of the evacuated people.

3.2 Objectives functions

The identified objectives must be expressed in a mathematical way in order to be evaluated
during  the  optimisation  process.  Despite  the  given problem is  related  with  living  entities
(people) from an abstract point of view it can also be seen as a traditional transport-allocation
case.

The formal expressions that were used in this research for each objective function are:

• Accumulated Distance (minimise): f distance = ∑
j=1

n

∑
i=1

m

dij p ij (3.1)

• Capacity Overload (minimise): f capacity = ∑
j=1

n | ∑
i=1

m

pij

c j

−1 | (3.2)

where  m is the number of “points of origin” of people (working places or houses);  n is the
number of safe areas; dij is the distance between the ith point of origin and the jth safe area; pij

is the population in the ith point of origin being evacuated to the jth safe area; and cj is the
capacity of the jth safe area for receiving people.

The Operational Research literature provides several models to handle this type of problems,
and some of them have been previously applied to emergency management or evacuation
situations (Gen et al. 2008; Saadatseresht et al. 2009; Zheng et al. 2015).

3.3 Study area

In February 2010 an earthquake of magnitude 8.8 on the Richter scale struck central Chile,
followed by the biggest tsunami since 1960. As a consequence several cities in the coastal
zones were affected producing human losses and material damage. One of the most impacted
areas was Constitución,  a small  city  in the Maule region with around 37,000 inhabitants,
where the tsunami wave was estimated in 15 meters high.

During the last years the National Emergency Office (ONEMI) has been implementing risk
maps  and  evacuation  plans  for  coastal  areas,  but  in  many  cases  they  only  consider  the
delimitation of dangerous zones, without including yet the location of safe areas or analysing
different allocation alternatives for the evacuated population.
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In the  case of  Constitución  most  of  the city  is  located  in  areas  which  would  need to  be
evacuated if a new tsunami occurs, as can be seen in Figure 3.1 where the yellowed areas are
the zones under risk of inundation by the tsunami and the coloured polygons are the blocks
that need to be evacuated.

Figure 3.1: General view of the Constitución city (Maule region, Chile).

Constitución city is a good case study to test the proposed optimisation approach, since it
presents the following critical aspects: i) A large population to be evacuated; and ii) Scarce
and unevenly distributed safe areas, also very limited in their capacity for receiving people.

3.4 Performed tasks

In order to solve the given problem the following main stages were executed: i) Input data
preparation, ii) Multi-Objective optimisation process, and iii) Visualisation of results, which
are described in the following sections.

3.4.1 Input data preparation

The algorithms require two types of data to work. In the first case, related to the points of
origin of the population, a table is needed to store, for each point of origin, a unique identifier,
its coordinates, the population to be evacuated and the distance to each safe area following the
shortest path. In the second case, related to the safe areas, a table is needed to store, for each
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safe area, a unique identifier, its coordinates and its capacity for accepting people. The road
network is also needed to calculate the shortest paths between the previous points.

The population data from the Chilean National Statistics Institute (INE) was aggregated to the
level of census blocks, and therefore there was only one population value for each block. In
order  to  represent  a  more realistic  situation,  the  population of  the  blocks  was divided in
groups from six up to ten people (proportional to the whole population) and then these groups
were randomly distributed within the blocks, like the actual houses (see Figure 3.2).

Figure 3.2: Distribution of points of origin at each block within the evacuation area.

Since the current evacuation plan developed by ONEMI only included “meeting points” but
not clearly delimited areas, six polygons were created by using satellite imagery to delimit the
open areas next to these “meeting points”.  These polygons were considered as the actual safe
areas and their  capacity  was estimated by calculating the area of the polygon and a safe
standing crowd density of one people by square meter (Still 2014).

Finally, the shortest path from each point of origin to each safe area was calculated by using
the  Mapzen  Public  Routing  API,  utilising  as  input  the  street  network  provided  by  the
OpenStreetMap project. All the previous tasks were executed using QGIS and Python scripts.

3.4.2 Multi-Objective optimisation process

After the input data was generated in the required format it was linked to a set of scripts in
order  to  carry  out  the  optimisation.  The  four  selected  algorithms  were  coded  in  Python
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language from scratch, although for some specific functions complementary libraries were
also used. These external modules were:

• Distributed Evolutionary Algorithms in Python (DEAP) (Fortin et al. 2012), used for

creating  the  initial  populations  of  candidate  solutions  and  for  Pareto  dominance
comparisons.

• Numpy & SciPy (Van Der Walt et al. 2011), used for clustering functions and arrays

manipulation.

The link between the input data and the scripts can be done in two different ways (adjustable
by changing only one parameter in the main script) and without any effect in the optimisation
process:

• Remote option: the data can be read from a remotely hosted PostGIS database, which

can also provide routing information.
• Local option: the data can be read from CSV and GeoJSON files locally hosted.

The multi-objective optimisation problem can also be solved considering two main situations:
unconstrained (Case 1) or constrained (Case 2). In the first case the population of any point of
origin can be allocated to any safe area. In the second case a limitation can be defined to
restrict the search, in terms of a maximum distance (Case 2a) or a maximum number of safe
areas (Case 2b).

For instance, a run of the algorithms constrained by a distance α produced solutions where the
population at the ith point of origin was allocated only to safe areas within a distance lower or
equal than α (by following the shortest path). On the other hand,  a run constrained by β
number of safe areas produced candidates solutions where the population at the ith point of
origin  was  only  allocated  to  the  β  closest  safe  areas  (by  following  the  shortest  path).  A
particular case of the latter situation is when β has a value of 1, which indeed represents the
simple approach of assigning people to the closest safe area, without taking into account the
optimisation of both objective functions. 

Each algorithm relies its operation on a set of tailor-made parameters which define the way
they  produce  and  optimise  the  candidate  solutions.  Although  the  proper  setting  of  these
algorithm-specific parameters is a matter of several studies and is not part of this research,
each algorithm was configured taking into account:

• The parameters setting used in the original study of each algorithm.

• To  produce  an  equivalent  number  of  iterations  and  evaluations  of  the  objective

functions.

Since heuristics algorithms use randomness to create the initial set of candidate solutions and
for exploring the search space, their output is always different in respect to the previous run.
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In order to assess their average performance, reliability and repeatability, each algorithm was
run five times, for the case that showed the best trade-off between the objective functions.

3.4.3 Visualisation of results

This  stage  considered  two  main  goals:  a)  to  visualise  the  population  allocation  scheme
obtained as a result, and b) to visualise how the optimisation process was performed.

For the visualisation of the allocation scheme several KML files were created, showing the
point of origin of the population and the safe area assigned to it. An external Python library
(SimpleKML,  http://www.simplekml.com) was used to create the KML files. This task was
performed for each run and then the results were visualised in QGIS. 

In order to analyse the optimisation process several data were collected from the output of
each algorithm, considering: 

• amount of solutions in the final 1st Pareto front

• optimisation of fcapacity

• optimisation of fdistance

• final Pareto fronts (fcapacity vs. fdistance).

• execution time.

3.5 Software used and legal considerations

The  present  research  has  been  developed  only  using  Open  Source  and  Free  Software,
identified as follows:

• Operative system: 64-bit GNU/Linux (Kernel 4.5.2) 

• Desktop GIS: QGIS 2.14.2 (Essen)

• Routing engine: Mapzen Public Routing API (based on Valhalla project)

• Streets network: OpenStreetMap project (updated to May 2016)

• Python interpreter: Python 2.7.10

• IDE: PyCharm Community Edition 2016.1.2

• Office suite: LibreOffice 5.1.3.1

All the runs were executed using the same hardware (Intel Core i7-3630QM @2.40 GHz, 8
GiB of RAM). The source code for each algorithm can be downloaded from the Git repository
of the research, available in  https://gitlab.com/felino/mooa-gis under the terms of the GNU
Lesser General Public License (version 2.1).
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The population data  was obtained from  INE on response to a formal  request,  and it  was
aggregated to the census blocks level and therefore specific individuals cannot be identified.

3.6 Assumptions

Some assumptions were done before executing the spatial optimisation:

• The  points  of  origin  of  population  were  treated  as  equals,  without  differentiating

between commercial, residential or working areas.
• The population at each point origin was assumed as invariable between day and night

and therefore the obtained results do not consider these potential variations.

3.7 Conceptual diagram

The conceptual diagram in Figure 3.3 shows the summary of methods applied in this research.

Figure 3.3: Conceptual diagram of methods applied for the research.
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Chapter 4

Results

4.1 Overview

As mentioned earlier in the Methods chapter, the given multi-objective optimisation problem
can be solved by using two main approaches, whether constraints  are applied or not.  For
comparison purposes there is also a base case, in which people are allocated to the closest safe
area without considering its capacity and therefore no actual multi-objective optimisation is
applied.

The description of these cases is summarised in Table 4.1 and the results of the optimisation
are presented in sections 4.4 to 4.7. Additionally, the whole output of the optimisation for each
algorithm is given as charts in the Appendix of this report.

Table 4.1: Situations that may arise for solving the given spatial MOP.

Situation Description

Case 0 Allocation to the closest safe area: corresponds to the base case and likely the first 
approach analysed when trying to solve this type of spatial problems. Only 
minimising the distance is taken into account and therefore, this case is equivalent to 
solve a single-objective problem

Case 1 Unconstrained allocation: people at any point of origin can be allocated to any safe 
area, no matter how far those areas are

Case 2a Constrained allocation by distance: people at any point of origin can be allocated 
only to those safe areas within a given buffer. This constraint was set in 2,000 meters 
as maximum, based on the average distance between points of origins and safe areas

Case 2b Constrained allocation by number of safe areas: people at any point of origin can 
be allocated only into the n closest safe areas. This constraint was set in n=3, which is 
half of the available safe areas in study area
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4.2 Metrics

Two main metrics were defined in order to assess the performance of each algorithm:

• 1st Pareto front size: considers the amount of non-dominated solutions yielded by a

single run of the algorithm. Since these solutions represent the trade-off between the
objective functions, a higher amount will give to the decision maker a bigger set of
good options to select from.

• Effectiveness of the optimisation: consists on how much each algorithm minimises the

objective  functions.  The  lower  the  values  of  the  objective  function  the  better  the
algorithm performs1.

Additionally, the execution time, the diversity of the final 1st Pareto front and the repeatability
of  the  algorithms were also  analysed,  although these  aspects  must  be  considered only  as
qualitative results. A higher diversity is valued, since a big set of solutions with low diversity
will give the decision maker only a small set of actual options to select from. This, because
even if  the solutions are numerically different they are very similar to each other,  and in
practice they are not real alternatives for decision.

4.3 Parameters setting

As mentioned earlier,  each algorithm have a  set  of  parameters  that  defines  the way they
perform  the  optimisation.  However,  to  test  these  parameters  is  out  of  the  scope  of  this
research and therefore their values were set based on the literature. Nonetheless, since each
algorithm works  in  a  different  way,  several  pre-runs  were  executed  in  order  to  look  for
comparable conditions for them. From this exercise three common parameters were defined
and their initial values are shown in Table 4.2.

Table 4.2: Initial values for three parameters set before running each algorithm.

Parameter SPSO NSGA-II AMOSA MOGWO

Search agents 50 200 120 50

Iterations 500 500 100 500

Storage size n/a n/a 50/60 50

The “search agents” is the amount of candidate solutions that are constantly being improved
by each algorithm and it is a very algorithm-specific aspect.  The “iterations” considers how
many times the whole improvement cycle is executed. This value was lower for AMOSA
since it works with nested loops that also depend on a “cooling rate”, resulting in less global
iterations  needed  to  reach  comparable  values.  The  “storage  size”  is  the  capacity  of  the

1 fcapacity values are unitless, while the unit for fdistance values is 107 (meters x person).
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algorithm to collect the best solutions found so far, but it is only applicable to AMOSA and
MOGWO since SPSO and NSGA-II do not consider this feature.

4.4 Allocation to the closest safe area

Table 4.3 presents the obtained results for the optimisation process considering Case 0.

Table 4.3: Results obtained from each algorithm for the Case 0 situation.

Case 0 1st front size Minimum fcapacity Minimum fdistance Execution time

SPSO 1 2.7077323 0.9061308 00:03:44

NSGA-II 1 2.7077323 0.9061308 00:11:05

AMOSA 1 2.7077323 0.9061308 00:30:42

MOGWO 1 2.7077323 0.9061308 00:19:23

As can be seen, all the algorithms yielded a single solution with the same values, because in
this case each point of origin only has one available safe area (the closest one, following the
available pedestrian routes). Therefore, there is only one possible solution to be evaluated.
Since the distribution of population is not considered in this case, the value of  fdistance is the
optimal for the given problem, and the value for fcapacity is the maximum for that function (the
worst scenario of overcrowding, although not the theoretical worst scenario).  The latter  is
produced because in Case 0 some safe areas are not used at all, as seen in Figure 4.1.

Figure 4.1: Allocation of population to the safe areas for Case 0
(safe areas 3 and 4 were not used at all, producing the worst scenario for fcapacity).
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4.5 Unconstrained allocation

Figures 4.2 and 4.3 present the results obtained from each algorithm in terms of size of  final
1st Pareto front and Effectiveness for Case 1.
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Figure 4.2: Solutions in the final 1st Pareto front of each algorithm for Case 1.
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Figure 4.3: Effectiveness of optimisation for the Case 1.

AMOSA was the algorithm that delivered the highest amount of solutions and also the best
one  optimising  both  objective  functions.  In  terms  of  diversity,  the  solutions  yielded  by
AMOSA were evenly distributed along both axes, as can be seen in Figure 4.4.

It must be mentioned that in Case 1 the overall value of  fdistance is increased but the value of
fcapacity is highly optimised. Indeed, Case 1 is the best scenario for  fcapacity (although not the
theoretical optimal) and also it is the worst scenario for fdistance. Because of this the allocation
graphs look very crowded, since fdistance was barely optimised (see Figure 4.5).
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Figure 4.4: Final 1st Pareto front of AMOSA for Case 1.

Figure 4.5: Allocations for Case 1, produced by the AMOSA algorithm.

Table 4.4 presents the summarised results of each algorithm for Case 1.
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Table 4.4: Results produced by each algorithm for Case 1.

Case 1 1st front size Minimum fcapacity Minimum fdistance Execution time

SPSO 7 0.5636374 1.4856007 00:12:11

NSGA-II 25 0.4804984 1.4064144 00:14:15

AMOSA 54 0.2162739 1.2582230 00:13:42

MOGWO 31 0.4498859 1.2769266 00:14:53

4.6 Constrained allocation by distance

Figures 4.6 and 4.7 present the results produced by each algorithm in terms of size of  final 1st

Pareto front and Effectiveness for Case 2a.  AMOSA was again the best ranked algorithm
although its results were very close to the values produced by the MOGWO algorithm.

AMOSA can store a variable number of non-dominated solutions (in this case study between
50 and 60) but MOGWO, instead, has a fixed limit of non-dominated solutions (in this case a
maximum of 50). Therefore, even if it found more non-dominated solutions they were stored
in the archive only after deleting another solution from it. Thus, the difference between both
algorithms in relation to the size of the final 1st Pareto (54 vs. 50) can be considered as non-
existing.

In terms of diversity, the final Pareto front of AMOSA was again evenly distributed with a
high diversity.  On the other hand MOGWO was adequately spread along the x axis (fcapacity)
but its diversity was low for the y axis (fdistance), as can be seen in Figure 4.8.
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Figure 4.6: Solutions in the final 1st Pareto front of each algorithm for Case 2a.
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Figure 4.7: Effectiveness of optimisation for the Case 2a.

Figure 4.8: Final 1st Pareto front of MOGWO for Case 2a.

Because Case 2 is restricted by closeness, not all the points of origin have the same number of
alternatives for allocation.  Some points have only one or two potential  destinations while
others have five or six possible safe areas. This variability of solutions can be seen in figures
4.9 and 4.10. Even if AMOSA and MOGWO produced very similar optimised values, their
allocation schema show several differences, as for example the allocation of people to safe
areas 3 and 6.
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Figure 4.9: Allocations for Case 2a, produced by the AMOSA algorithm.

Figure 4.10: Allocations for Case 2a, produced by the MOGWO algorithm.

Table 4.5 presents the summarised results given by each algorithm for Case 2a.  It can be
noticed that the results show an increased level of trade-off between the objective functions,
since fcapacity is increased and fdistance is decreased, in comparison with Case 1.
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Table 4.5: Results produced by each algorithm for Case 2a.

Case 2a 1st front size Minimum fcapacity Minimum fdistance Execution time

SPSO 6 0.8691519 1.1279685 00:12:41

NSGA-II 41 0.6098614 1.1217910 00:15:04

AMOSA 54 0.5148120 1.0346177 00:14:09

MOGWO 50 0.5795702 1.0657294 00:14:41

4.7 Constrained allocation by number of safe areas

Figures 4.11 and 4.12 present the results yielded by each algorithm in terms of size of  final 1st

Pareto front and Effectiveness for the Case 2b.
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Figure 4.11: Solutions in the final 1st Pareto front of each algorithm for Case 2b.

In general terms AMOSA and MOGWO were once again the two best ranked algorithms for
all  the  evaluated  aspects,  but  this  time  NSGA-II  and  SPSO  also  produced  comparable
optimised values for fdistance. 

As is shown in Figure 4.12, MOGWO got the best results on optimising fcapacity and AMOSA
got  the  best  results  on  optimising  fdistance.  NSGA-II  delivered  almost  similar  values  of
optimisation for both objectives functions.

The  number  of  solutions  in  the  final  1st Pareto  front  is  almost  equal  for  AMOSA and
MOGWO, and the diversity of their solutions is also well spread along both axes, as in cases 1
and 2a.  However, the good results obtained by NSGA-II for fdistance are impacted by a lack of
diversity for this objective function, because a wide space in the y axis did not produced any
solution, as can be seen in Figure 4.13.
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Figure 4.12: Effectiveness of optimisation for the Case 2b.

Figure 4.13: Final 1st Pareto front of NSGA-II for Case 2b.

In Case 2b every point of origin has the same number of alternatives to be allocated to a safe
area, and consequently there is a high variability of potential solutions, and also this potential
variability is shared by every point of origin. This circumstance produces a better distribution
of population among the safe areas and also a reduction in the total distance. This can be
observed in figures 4.14 and 4.15 where the lines connecting safe areas and points of origin
look less crowded than the corresponding figures for previous cases.

Table  4.6 presents  the  summarised  results  given  by  each  algorithm  for  Case  2b,  which
produced the most  balanced set  of solution so far (both objectives  functions were highly
optimised).
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Figure 4.14: Allocations for Case 2b, produced by the AMOSA algorithm.

Figure 4.15: Allocations for Case 2b, produced by the MOGWO algorithm.

Table 4.6: Results produced by each algorithm for Case 2b.

Case 2b 1st front size Minimum fcapacity Minimum fdistance Execution time

SPSO 7 1.1365114 0.9993371 00:15:17

NSGA-II 20 0.9919347 0.9967724 00:20:24

AMOSA 53 0.8190338 0.9709484 00:28:01

MOGWO 50 0.8077061 0.9991736 00:17:24
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4.8 Repeatability test

The average performance and reliability of the algorithms were tested by running them five
times for Case 2b, since this case showed the best trade-off between the objective functions.
Due to the randomness of the algorithms the truncated mean was calculated (removing the
highest and lowest values) to eliminate potential outliers. The results are shown in tables 4.7
to 4.10.

Table 4.7: Results of the repeatability test for SPSO algorithm in Case 2b.
SPSO 1st front size Minimum fcapacity Minimum fdistance Execution time

Run 1 7 1.1365114 0.9993371 00:15:17

Run 2 3 1.1081282 1.0014307 00:07:48

Run 3 4 1.0920146 0.9994478 00:07:51

Run 4 7 1.1305858 0.9991321 00:08:01

Run 5 8 1.0876462 0.9971309 00:08:09

Truncated mean 6 1.1102429 0.9993057 00:08:00

 

Table 4.8: Results of the repeatability test for NSGA-II algorithm in Case 2b.
NSGA-II 1st front size Minimum fcapacity Minimum fdistance Execution time

Run 1 20 0.9919347 0.9967724 00:20:24

Run 2 20 0.9772875 0.9979001 00:15:16

Run 3 20 0.9842009 0.9985792 00:15:15

Run 4 31 0.9949040 0.9979325 00:18:47

Run 5 21 1.0106955 0.9991129 00:15:36

Truncated mean 20 0.9903465 0.9981373 00:16:33

 

Table 4.9: Results of the repeatability test for AMOSA algorithm in Case 2b.
AMOSA 1st front size Minimum fcapacity Minimum fdistance Execution time

Run 1 53 0.8190338 0.9709484 00:28:01

Run 2 58 0.8234791 0.9678276 00:20:29

Run 3 54 0.8369365 0.9690385 00:20:28

Run 4 58 0.8287831 0.9693966 00:22:45

Run 5 57 0.8227421 0.9662024 00:22:51

Truncated mean 56 0.8250014 0.9687542 00:22:02

 

Table 4.10: Results of the repeatability test for NSGA-II algorithm in Case 2b.
MOGWO 1st front size Minimum fcapacity Minimum fdistance Execution time

Run 1 50 0.8077061 0.9991736 00:17:24

Run 2 31 0.8068500 0.9978106 00:12:53

Run 3 50 0.8220926 0.9960669 00:12:03

Run 4 49 0.8801099 0.9965750 00:12:24

Run 5 28 0.8347703 0.9987754 00:13:05

Truncated mean 43 0.8215230 0.9977203 00:12:47
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All the algorithms showed good repeatability in terms of amount of solutions and execution
time. If equations (1) and (2) in section 3.2 are applied to the dataset used for this research,
the actual range of each function can be calculated, as shown in  Table 4.11. Compared to
these  ranges,  the  maximum variations  in  the  optimisation  values  between runs  were  also
small, and even in the worst cases these variations were only 2.76% for fcapacity (MOGWO) and
0.27% for fdistance (AMOSA), as shown in Table 4.12.

Table 4.11: Actual range of values for each objective functions.
Objective function Actual minimum Actual maximum

fcapacity 0.0501289 2.7077323

fdistance 0.9061308 2.6857035

 

Table 4.12: Variations in the optimisation values between runs.

Algorithm Variation fcapacity Variation fdistance

SPSO 1.84% 0.24%

NSGA-II 1.26% 0.13%

AMOSA 0.67% 0.27%

MOGWO 2.76% 0.17%

4.9 Comparison against the extreme values

Finally, in order to know the net optimisation rate provided by each algorithm, a comparison
was done between their average results (tables 4.7 to 4.10) and the minimum and maximum
values potentially reachable (Table 4.11).  Table 4.13 shows the average optimisation of each
algorithm,  where  the  “Actual  maximum”  was  considered  as  0% of  optimisation  and  the
“Actual minimum” was the 100% optimised situation.

Table 4.13: Percentage of optimisation of the objective functions by each algorithm.

Algorithm fcapacity Optimisation fcapacity fdistance Optimisation fdistance

SPSO 1.1102429 60.11% 0.9993057 94.76%

NSGA-II 0.9903465 64.62% 0.9981373 94.83%

AMOSA 0.8250014 70.84% 0.9687542 96.48%

MOGWO 0.8215230 70.97% 0.9977203 94.85%

For fcapacity the best net optimisation rate was obtained once again by MOGWO and AMOSA,
with NSGA-II and SPSO optimising around 5% and 10% less this objective, respectively.
However, for fdistance the net performance of all the algorithms was very similar (with a slightly
higher performance for AMOSA) and could be considered as equally good.
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Chapter 5

Discussion

5.1 Overview

As presented in Chapter 1, the objectives of this research were focused on three main aspects:
1) the algorithms’ performance on optimising the given multi-objective spatial problem, 2) the
potential  relation  between  the  type  of  algorithm  and  the  obtained  results,  and  3)  the
comparison between the results yielded by the algorithms and a raw base case without multi-
objective optimisation.  Consequently,  the  following discussion is  presented  in  such order,
along with a section proposing further developments and research opportunities.  

5.2 Algorithm performance

In terms of effectiveness, it can be said that all the algorithms performed the optimisation in a
consistent way, and no results were obtained that could suggest that some of them was trapped
in a local minimum. While for some cases the differences were minor (like Case 2b), the
overall results indicate that AMOSA and MOGWO were the most effective ones, consistently
ahead of SPSO and NSGA-II.

In  general,  the  worst  results  were  achieved  by  SPSO,  but  even  for  this  algorithm  the
optimisation rates were around 60% for fcapacity and about 95% for fdistance, if compared against
the base case. At a first sight these results could be contradictory with the extended opinion
available  in  the  literature  about  the  flexibility  and  efficiency  of  PSO-based  algorithms.
However, this lower performance could be explained by the definition of the algorithm itself,
which is not intended to be the best available PSO variant but a  common benchmark and
reference point to assess the performance of the numerous PSO variants  (Clerc 2006; Clerc
2012).

Regarding  the  amount  of  non-dominated  solution  delivered  by  each  algorithm,  which  in
practice  represents  how many good alternatives  the decision-makers  will  have  to  make a
selection from, AMOSA and MOGWO had the best performance if compared with SPSO and
NSGA-II.  This  superior performance is  also seen when analysing the size of the final  1st
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Pareto fronts, since AMOSA and MOGWO showed continuous and well spread solutions for
all the cases that were analysed.

Based on the comparison of the results between the different cases, it can be inferred that the
performance of the algorithms is highly influenced by the constraints definition, and that the
best multi-objective optimisation is achieved when such constraints are less restrictive and,
therefore, all the points of origin have equivalent chances to be allocated to a safe area.

Case 2b was considered as the most representative situation since it showed the best trade-off
relation  between the  objective  functions.  But  despite  this,  different  scenarios  can  also  be
analysed and even selected by the decision-makers as more realistic cases, if their particular
interests and context demand it.

The repeatability test  (tables  4.7 to  4.10) showed consistency between the results of each
algorithm  for  several  runs  in  all  the  proposed  metrics  (1st  front  size,  Minimum  fcapacity,
Minimum fdistance and Execution time). This consistency is coherent with the description of the
algorithms given by their authors (Deb et al. 2002; Bandyopadhyay et al. 2008; Clerc 2012;
Mirjalili  et  al.  2016),  and  could  be  considered  as  evidence  of  the  reliability  of  these
techniques.

5.3 Relation between type of algorithm and solutions quality

As indicated in Chapter 2 (section 2.4.1), the algorithms used in this research were selected
considering  the  main  types  of  nature-inspired  heuristics,  as  well  as  the  most  recently
published  ones.  The  representatives  of  the  groups  were:  a)  Swarm-intelligence-based
algorithms: SPSO; b) Bio-inspired-based algorithms: NSGA-II; c)  Physics/Chemistry-based
algorithms: AMOSA; and d) Recently published algorithms: MOGWO (April 2016).

A comparison between them reveals that for the given problem some algorithms consistently
performed better than another for the defined metrics and data. However, these quantitative
results should be treated carefully since the magnitude of such differences is not significant
enough to claim that one type of heuristic is clearly superior than other. If compared against
the base case, it  could be said that all the applied heuristics optimised the problem in an
acceptable manner. SPSO, which delivered the “worst” overall results, obtained a very high
optimisation  rate  for  fdistance which  is  even  numerically  higher  than  the  one  obtained  by
AMOSA, the overall “best” optimiser. The biggest differences are related to fcapacity but even in
this case, the results of SPSO and NSGA-II cannot be consider as deficient from a qualitative
point of view.

This lack of clear differences rises the question if the quality of solutions depends on the type
of algorithm used (for example swarm intelligence vs. simulated annealing) or if what defines
the performance is how a specific implementation of an algorithm handles the critical aspects

44



of the optimisation process. Coincidently, AMOSA and MOGWO explicitly include new ways
for ensuring diversity (clustering and hypercube segments density), storing the best solutions
found so far (archives) and properly exploring the search space. This characteristics are not
present in SPSO and NSGA-II and the superior performance of AMOSA and MOGWO could
be connected to these implementation improvements, more than to the type of algorithms they
belong to. In other words, from the obtained results it is not possible to state that one of the
studied types of algorithm is the best for solving spatial problems in a GIS-MCDA context.

This perception is somehow supported by the “No free lunch” theorem, which in simple terms
states  that any two algorithms are equivalent when their performance is averaged across all
possible  problems,  and  that  matching  algorithms  to  problems  gives  higher  average
performance than  applying a  fixed  algorithm to all  the problems  (Wolpert  and Macready
1997).

This situation rises the inconvenience of assuming a specific type of algorithm as a “flagship”
for solving spatial multi-objective optimisation problems, which however seems to be the way
followed so far in the GIS-MODA field when reviewing the literature (most of the available
research  has  been  focused  on  genetic  algorithms,  specifically  NSGA-II).  Instead,  an
alternative strategy for the future could be to have an extensible set of algorithms, ready to be
applied to different spatial multi-objective optimisation problems. By doing so the GIS tasks
could  be  focused  on  the  selection  and  interpretation  of  the  results  more  than  on  the
comparison of the heuristics.

5.4 Comparison against the base case

As presented in Chapter 4, the base case for the given spatial problem would be to allocate
each  point  of  origin  to  the  closest  safe  area,  without  considering  a  multi-objective
optimisation. In such case, the distribution of population among the safe areas would produce
a highly crowded situation in some of those areas and not all them would be properly used.

The results of the research and particularly Table 4.13 show a high optimisation rate for both
objectives, mainly for fdistance with all the results around 95% of effectiveness. Regarding the
optimisation  of  fcapacity,  even  if  the  optimisation  rates  were  lower  than  for  the  previous
objective function they are still high (around 65% in average and more than 70% for the best
cases), and for the study area used in this research these values can be limited by the specific
location of the safe areas. In this sense, for an evacuation planning analysis these heuristic
techniques could be used not only for assessing different allocations schema, but also for
designing and selecting better safe areas, by comparing the overall optimisation rates against
different safe areas availability.

An alternative  approach  to  deal  with  this  type  of  spatial  problems,  without  using  multi-
objective  optimisation,  could  be  to  allocate  the  population  only  considering  the  spatial
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distribution of the safe areas and points of origin, for example, by using GIS analysis tools
like  Voronoi  diagrams.  However,  this  approach  could  yield  distorted  results,  since  the
evacuation plan should consider feasible evacuation routes and the Voronoi approach does not
take this aspect into account, but only the Euclidean distance between the points.

To overcome these limitations several corrections can be applied, like manually modifying a
particular  allocation  when  a  safe  area  is  not  actually  reachable  from  a  point  of  origin.
Nevertheless, these corrections could introduce a certain degree of bias into the analysis (they
require to detect each allocation problem), and for complex situations (like large cities with
complex streets networks) this task could be very time consuming and the amount of final
alternatives given to the decision maker could be reduced.

By using heuristics the bias probability can be limited and reduced mostly to the definition of
the  constraints needed for running the optimisation (like the ones applied in this research),
and based on the obtained results a good-enough set of solutions can be presented to the
decision-makers.  In  other  words,  the  use  of  these  multi-objective  optimisation  techniques
helps to transform the analysis from an ex-ante to an ex-post situation, focusing the decision
process on actual alternatives where the trade-off between the objectives is known in advance,
and therefore the decisions can be made in a more transparent and objective way.

The optimisations were done in an average execution time of about 15 minutes, which can be
considered as  very good and promising,  if  compared with the time potentially  needed to
perform similar analyses by using non-heuristic GIS-MCDA approaches.

5.5 Suggestions for future development

Some aspects may be proposed as future development and study opportunities, based on the
literature review, the obtained results and some learned lesson from this research. The main
aspect is related to the standardisation of the GIS-MCDA studies, in both the terminology
used and the methods. On the available literature it is possible to find several ways to refer to
different techniques under similar “umbrella” terms, as well as different terms to name the
same technique, which may be confusing.

Also,  the  definition  of  a  standard  set  of  spatial  problems to  test  the  performance of  the
heuristics techniques in a GIS context would be desirable. This practice is commonly done in
the evolutionary computation domain (for example, the set of benchmark functions designed
for  the  annual  IEEE  Congress  on  Evolutionary  Computation  (http://www.ieee.org)),  and
would allow to verify if the algorithms have an average performance or if their efficiency is
problem specific.

Another  development  area could  be to  consider  the dynamic characteristics  of  real-world
spatial  problems  during  the  multi-criteria  analysis.  Specifically  for  evacuation  planning
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situations, examples of this dynamism could be the variations in the distribution of population
between day and night, working days and weekends, commercial and residential areas, and
maybe most importantly, the uncertainty of human behaviour during emergency situations.

Further studies could also be done to increase the available research on optimising spatial
problems with three or more simultaneous objectives, as well as more types of constraints
which usually are inherent to real-world problems. To consider the dynamic update of the
allocation scheme is another research opportunity (for example, what if one of the safe areas
is not accessible due to emergency itself?), what could be addressed by using crowd-sourced
data and mobile technologies. 

Finally,  most of the current implementations of GIS-MCDA are only based on the multi-
attribute approach and therefore integration between these systems and the heuristic approach
could lead to more robust GIS-based applications, able to handle a wider range of spatial
problems and strengthening the role of GIS as decision-making support tools. The use of open
standards as well as open software should be considered as a base concept, since they favour
interoperability and can be implemented in situations where the access to proprietary software
could be a de facto restriction (for example, for developing economies).
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Chapter 6

Conclusions

From the performed research it is possible to conclude that the four selected algorithms were
effective  on  solving  the  given spatial  multi-objective  optimisation  problem,  related  to  an
evacuation  planning  situation  for  the  Constitución  city  in  the  Maule  region,  Chile.  The
algorithms yielded high rates of optimisation for both objective functions, and for the best
cases  they also delivered a  good and constant  number  of  non-dominated solutions.  Their
average performance was consistent across several runs, which can be understood as a sign of
maturity and reliability of these techniques. Generally AMOSA and MOGWO performed best,
but the differences in the results  are not considered as significant, and therefore, it  is not
possible to state that one type of algorithm is clearly superior than others for solving the given
spatial multi-objective problem.

Alternative approaches to deal with this type of spatial multi-objective optimisation problems
without using heuristics can be executed by using traditional GIS analysis tools. However
these  methods  could  face  several  limitation  in  terms  of  time  consumption,  amount  of
equivalent  solutions  given  to  the  decision-makers  and  bias  introduction.  The  use  of
optimisation heuristics could help to reduce these limitations, focusing the decision-making
on actual, transparent and more diverse alternatives.

Several suggestions for further development are given regarding the standardisation of GIS-
MCDA terminology;  the  standardisation  of  how  heuristic  are  applied  to  optimise  spatial
multi-objective  problems;  the  inclusion  of  temporal  and  dynamic  aspects  of  real-world
problems during  the  optimisation process;  the  use of  these  techniques  to  optimise many-
objectives spatial  problems and the integration of this  heuristic  approach with the current
implementations of GIS-MCDA, in order to build more robust GIS-based applications.

Finally, it is considered that multi-objective optimisation algorithms are a reliable method for
handling and solving spatial problems with multiple and conflictive objectives, and that future
and more practical implementations in this field will strengthen the capacities of GIS as a
multi-criteria decision-making support tool.
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Appendix

In  the  Results  chapter  of  this  report  only a  summarised  set  of  graphs was presented  for
specific cases, in order to keep the main text as brief as possible. In this appendix several
charts are presented, showing the full output of the optimisation process of each algorithm.
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SPSO: Optimisation of Case 0

Number of solutions in 1st Pareto front (upper); Optimisation of fcapacity (middle); 
and Optimisation of fdistance for SPSO (Case 0).

Evolution of the optimisation for the whole swarm in SPSO (Case 0).

Final 1st Pareto front for SPSO (Case 0).
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SPSO: Optimisation of Case 1

Number of solutions in 1st Pareto front (upper); Optimisation of fcapacity (middle); 
and Optimisation of fdistance for SPSO (Case 1).

Evolution of the optimisation for the whole swarm in SPSO (Case 1).

Final 1st Pareto front for SPSO (Case 1).
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SPSO: Optimisation of Case 2a

Number of solutions in 1st Pareto front (upper); Optimisation of fcapacity (middle); 
and Optimisation of fdistance for SPSO (Case 2a).

Evolution of the optimisation for the whole swarm in SPSO (Case 2a).

Final 1st Pareto front for SPSO (Case 2a).
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SPSO: Optimisation of Case 2b

Number of solutions in 1st Pareto front (upper); Optimisation of fcapacity (middle); 
and Optimisation of fdistance for SPSO (Case 2b).

Evolution of the optimisation for the whole swarm in SPSO (Case 2b).

Final 1st Pareto front for SPSO (Case 2b).
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NSGA-II: Optimisation of Case 0

Number of solutions in 1st Pareto front (upper); Optimisation of fcapacity (middle); 
and Optimisation of fdistance for NSGA-II (Case 0).

Evolution of the optimisation for the whole population in NSGA-II (Case 0).

Final 1st Pareto front for NSGA-II (Case 0).
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NSGA-II: Optimisation of Case 1

Number of solutions in 1st Pareto front (upper); Optimisation of fcapacity (middle); 
and Optimisation of fdistance for NSGA-II (Case 1).

Evolution of the optimisation for the whole population in NSGA-II (Case 1).

Final 1st Pareto front for NSGA-II (Case 1).
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NSGA-II: Optimisation of Case 2a

Number of solutions in 1st Pareto front (upper); Optimisation of fcapacity (middle); 
and Optimisation of fdistance for NSGA-II (Case 2a).

Evolution of the optimisation for the whole population in NSGA-II (Case 2a).

Final 1st Pareto front for NSGA-II (Case 2a).
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NSGA-II: Optimisation of Case 2b

Number of solutions in 1st Pareto front (upper); Optimisation of fcapacity (middle); 
and Optimisation of fdistance for NSGA-II (Case 2b).

Evolution of the optimisation for the whole population in NSGA-II (Case 2b).

Final 1st Pareto front for NSGA-II (Case 2b).
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AMOSA: Optimisation of Case 0

Number of solutions in 1st Pareto front (upper); Optimisation of fcapacity (middle); 
and Optimisation of fdistance for AMOSA (Case 0).

Evolution of the optimisation for the whole archive in AMOSA (Case 0).

Final 1st Pareto front for AMOSA (Case 0).
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AMOSA: Optimisation of Case 1

Number of solutions in 1st Pareto front (upper); Optimisation of fcapacity (middle); 
and Optimisation of fdistance for AMOSA (Case 1).

Evolution of the optimisation for the whole archive in AMOSA (Case 1).

Final 1st Pareto front for AMOSA (Case 1).
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AMOSA: Optimisation of Case 2a

Number of solutions in 1st Pareto front (upper); Optimisation of fcapacity (middle); 
and Optimisation of fdistance for AMOSA (Case 2a).

Evolution of the optimisation for the whole archive in AMOSA (Case 2a).

Final 1st Pareto front for AMOSA (Case 2a).
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AMOSA: Optimisation of Case 2b

Number of solutions in 1st Pareto front (upper); Optimisation of fcapacity (middle); 
and Optimisation of fdistance for AMOSA (Case 2b).

Evolution of the optimisation for the whole archive in AMOSA (Case 2b).

Final 1st Pareto front for AMOSA (Case 2b).
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MOGWO: Optimisation of Case 0

Number of solutions in 1st Pareto front (upper); Optimisation of fcapacity (middle); 
and Optimisation of fdistance for MOGWO (Case 0).

Evolution of the optimisation for the whole pack in MOGWO (Case 0).

Final 1st Pareto front for MOGWO (Case 0).
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MOGWO: Optimisation of Case 1

Number of solutions in 1st Pareto front (upper); Optimisation of fcapacity (middle); 
and Optimisation of fdistance for MOGWO (Case 1).

Evolution of the optimisation for the whole pack in MOGWO (Case 1).

Final 1st Pareto front for MOGWO (Case 1).

66



MOGWO: Optimisation of Case 2a

Number of solutions in 1st Pareto front (upper); Optimisation of fcapacity (middle); 
and Optimisation of fdistance for MOGWO (Case 2a).

Evolution of the optimisation for the whole pack in MOGWO (Case 2a).

Final 1st Pareto front for MOGWO (Case 2a).
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MOGWO: Optimisation of Case 2b

Number of solutions in 1st Pareto front (upper); Optimisation of fcapacity (middle); 
and Optimisation of fdistance for MOGWO (Case 2b).

Evolution of the optimisation for the whole pack in MOGWO (Case 2b).

Final 1st Pareto front for MOGWO (Case 2b).
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