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Abstract 
 
The Gross Primary Production GPP quantifies the amount of carbon entering an 
ecosystem. It is an ecosystem service since it is a source of energy for all organisms and 
it is estimated to reduce atmospheric CO2 in about 123 Pg C per year at the global scale. 
Therefore, the improvement of estimation methods at large spatial scales using tools such 
as remote sensing has gain relevance in the last years. 
 
The study evaluates two approaches of a Light Use Efficiency model with the aim to 
improve existing estimations of GPP in semi-arid areas. The tested inputs were the 
Fraction of Absorbed Photosynthetically Active Radiation (FAPAR) and the Enhanced 
Vegetation Index (EVI) used to represent the existent vegetation; coupled with the 
Evaporative Fraction as a term to represent moisture availability. The two approaches 
were tested trough a site level comparison between the GPP estimated from the records of 
the Eddy covariance flux tower located in Demokeya site in Sudan and the MODIS GPP 
product MOD17A2. 
 
The results show that the inclusion of the Evaporative Fraction increased the accuracy of 
the GPP estimations in the two approaches during the dry seasons but it underestimates of 
GPP during the rainy seasons. Both approaches performed significantly better compared 
to the existing MODIS GPP estimations (MOD17A2) and overall the use of FAPAR 
performed better than EVI for the case of Demokeya site. 
 
 
Keywords: Gross primary production, evaporative fraction, Light use efficiency models, 
semi arid regions. 
 
Link to final presentation: https://prezi.com/gthfuyimvbkd/gpp/



 
Table of contents 

 
Introduction ..................................................................................................................... 1 

Aim of the study.......................................................................................................... 1 
Hypothesis................................................................................................................... 2 

Background ..................................................................................................................... 2 
Study area........................................................................................................................ 5 
Methodology and materials............................................................................................. 7 

GPP estimation through light use efficiency model (LUE) ........................................ 7 
PAR ............................................................................................................................. 9 
FAPAR........................................................................................................................ 9 
APAR .......................................................................................................................... 9 
EVI ............................................................................................................................ 10 
Light conversion efficiency and maximum conversion efficiency (ε max) ............. 10 
Estimation of Evaporative Fraction (EF) .................................................................. 12 

Data ............................................................................................................................... 16 
GPP from Eddy covariance flux tower ..................................................................... 17 
Data process .............................................................................................................. 18 

Results ........................................................................................................................... 20 
Scater plots ................................................................................................................ 22 
Results summary ....................................................................................................... 24 

Discussion ..................................................................................................................... 25 
Conclusions ................................................................................................................... 26 
Acknowledgements ....................................................................................................... 26 
References ..................................................................................................................... 27 

 



Page 1 
 

Introduction 
 
Global estimation and monitoring of plant photosynthesis known as Gross Primary 
Production (GPP) is an important component of climate change research. GPP flux 
determines the quantity of carbon entering an ecosystem. The study of GPP at larger 
spatial and longer time scales is necessary to identify locations of potential sinks or 
sources of carbon(Kanniah et al., 2010) and contributes to our knowledge on vegetation 
dynamics and responses to perturbations due to increased CO2 levels and changing 
environmental conditions. Estimates are highly uncertain and there is more information 
required to fully understand the temporal and spatial dynamics of ecosystems 
productivity across the world (Sjöström et al., 2011). 
Africa has a recognized role in the global carbon cycle as it faces particular changes with 
respect to climate change and human pressure in all the different ecosystems (Hulme et 
al., 2001).  Understanding the relationship between  rangeland production and to water 
availability is of interest for the implementation of monitoring systems to support policies 
to reduce the socio-economic impacts of environmental stresses (Nutini et al., 2014).  
Improving the quantification of the atmospheric carbon exchange across the different 
vegetation types  provides fundamental information that can be used to evaluate the 
performance of current terrestrial carbon cycle models (Merbold et al., 2008). 
 
The main parameters affecting the variability of the GPP estimates in semi arid areas are 
water stress, radiation, fire, precipitation, vegetation composition, % vegetation cover and 
vegetation type. Since water availability is the main limiting factor for vegetation 
production in drier areas such as Sudan, especially where average annual rainfall is lower 
than 500/600 mm (Hein et al., 2011), the interest to estimate rainfall and soil moisture at 
the regional scale in relation to biomass production has earned a lot of attention (Nutini et 
al., 2014). 
The use of remote sensing facilitates the quantification and monitoring of the ecosystem 
carbon uptake via photosynthesis over large geographic extents and periodic time scales.  
It relies on the robust relationship between satellite estimated light interception and 
photosynthesis through the  use of Light Use Efficiency models (LUE) (Monteith, 1972) 
and their comparison to in situ measurements provided by flux towers (Krofcheck et al., 
2015).  
One of the primary sources of remote sensing based GPP estimates at the global scale is 
the MODIS product MOD17 (Running et al., 2004). It has some limitations coming from 
the use of coarse resolution meteorological data (Heinsch et al., 2006; Zhao et al., 2006) 
and the dependency on estimates of LUE taken from vegetation type look up tables that 
may contain errors in either the original estimates of maximum LUE for a particular 
vegetation type or when designating the vegetation types. 
 

Aim of the study 
 
This study employs a combination of remote sensing products and the inclusion of the 
evaporative fraction (EF) as limiting factor of a light use efficiency model (LUE) 
estimating GPP.
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The aim of this study is to evaluate two approaches to improve the existing estimation of 
GPP (ex. MOD17A2) in semi-arid areas; one using as input the Fraction of Absorbed 
Photosynthetically Active Radiation (FAPAR) and the second using the Enhanced 
Vegetation Index (EVI). The study period is from 01/May/2007 to 31/Dec/2009, allowing 
a site level comparison between the GPP estimated from Eddy covariance flux tower 
records from the Demokeya site in Sudan and the MODIS GPP product MOD17A2.  
 

Hypothesis 
 
The hypothesis is that the use of the evaporative fraction in a LUE model will derive 
more accurate estimates of GPP than the MODIS MOD17A2 product; such estimates 
being closer to the real GPP (estimated from Eddy covariance flux tower). 
H1: The inclusion of the evaporative fraction as a limiting factor of a LUE model derives 
more accurate estimates compared to the GPP measurements from the flux tower and 
MOD17A2 MODIS GPP product.  
H0:  There is no significant evidence of an improvement in the estimations when 
including EF. 
 
Background 
 
Primary production is the rate of biomass accumulation. GPP is the total amount of 
carbon produced by vegetation used for growth and maintenance and is an important 
variable defined as the overall photo-synthetic fixation of carbon per unit space and time 
(i.e. g C m-2 year-1). Net primary production represents the total available energy in an 
ecosystem as dry biomass (Abdi et al., 2014). Therefore, NPP is the annual sum of GPP 
minus the autotrophic respiration which is the energy used for maintenance.  
The study of GPP provides important information about the environment, as vegetation is 
a critical component of the global carbon cycle mainly due to photosynthesis, which 
regulates the flux of carbon between the biosphere and atmosphere. GPP is also important 
ecosystem service since it is estimated to reduce atmospheric CO2 in around 123 Pg per 
year at a global scale (Beer et al., 2010). The study of carbon flux variation over  time 
provide useful knowledge regarding possible factors influencing the carbon cycle and to 
make future estimates (Stagakis et al., 2007).   
Satellite remote sensing can provide consistent observations of land surface properties 
over large areas and has become an important input for GPP estimates (Wang & Mo, 
2015).  A number of remote sensing based GPP models have been proposed and widely 
used for GPP simulation at different scales, among which the temperature and greenness 
(TG), greenness and radiation (GR) and vegetation photosynthesis model (VPM) are 
characterized by the advantages of fewer parameters and high accuracy. The GR model 
applies remote estimation of chlorophyll content for retrieval of the GPP, which provides 
a robust estimation of midday GPP (Gitelson et al., 2006). The TG model combines EVI 
and LST and improves the correlation between the estimated and observed data. It 
performed well predicting GPP for several evergreen needle leaf and deciduous broadleaf 
forests in North America (Sims et al., 2008).  
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Kanniah et al., (2009)showed accurate estimates of input parameters such as 
photosynthetic active radiation (PAR), fraction of absorbed PAR (FAPAR), LUE, vapor 
pressure deficit (VPD) and minimum temperature (TMIN) scalars can produce reliable 
estimate of GPP even with a simple LUE model for single savanna sites in northern 
Australia. 
 
The eddy covariance (EC) technique provides net CO2 exchange estimates at high 
temporal resolution, which can be used for developing and validating GPP models (Wang 
& Mo, 2015). Unfortunately the number of stations is limited spatially, being about 16 
stations across the African continent (“European Fluxes Database Cluster - Sites List,” 
n.d.). 
Studies such as (Ma et al., 2014) seek to find an appropriate method to accurately up-
scale savanna GPP from local measurements from EC flux tower data to regional scales 
utilizing remote sensing observations.  They assessed the seasonal patterns of remote 
sensing products versus the seasonal EC tower GPP for four sites along an ecological 
rainfall gradient, where tropical wet and dry savannas are found. They concluded that 
EVI tracked the seasonal variations of GPP (EC flux tower) well at both site- and cross-
site levels (R2= 0.84). Additionally, the coupling of an ecosystem light-use-efficiency 
model (eLUE) strengthened the EVI - GPP EC flux tower relationship. 
 
Although the previously mentioned models performed well in terms of vegetation in 
specific areas, they have substantial variations and uncertainties and should be further 
readapted for different climatic regions. The seasonal variability of carbon uptake 
depends on structural and physiological constraints of the ecosystem functions such as 
moisture, temperature, nutrient availability, atmospheric CO2 concentrations and mix of 
plant functional types. Estimations of the seasonality of vegetation from leaf area or other 
parameters such as FAPAR or EVI depends on coupling the absorbed radiation 
seasonality and the efficiency of photosynthetic light use to the environmental constraints 
on plant growth (Bondeau, et al., 1999).  
 
In semi-arid regions as Sudan, vegetation function is constrained by water availability 
throughout the year, with periods of drought and heat followed by pulses of precipitation 
in the rainy season (Krofcheck et al., 2015). In biomes such as savanna, the 
parameterization of plant functioning is especially difficult due to the presence of varying 
mixtures of multiple plant functional types (i.e. trees and grasses) with distinct responses 
to environmental factors and different phenologies (Ma et al., 2014).  
 
To address this problem instead of using a simple LUE model, Ma et al, (2014) used an 
eLUE model which is a ratio of GPP against incoming photosynthetically active radiation 
(PAR). The model investigaes the top-of-canopy incident PAR (PARTOC) and top-of-
atmosphere incident PAR (PARTOA). Some of the advantages of the eLUE were the 
reduction of the seasonal hysteresis observed between the growing season and the drying 
season in GPP-EC and MODIS satellite product relationships, resulting in a consistent 
estimation of GPP across phenophases.  
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The eLUE model simplified the up-scaling of carbon fluxes from tower to regional scale, 
effectively integrating the effects of variations in canopy photosynthetic capacity and 
environmental stress on photosynthesis. 
 
The results from the study demonstrated that savanna GPP can be accurately estimated at 
regional scale entirely with remote sensing observations without dependency on ground 
meteorological data or the estimation of LUE parameters. 
 
Environmental stress related to temperature and water availability has shown to modify 
the light use efficiency at short time scales such as hours to days. (Russell et al., 1989).  
One of the main responses to leaf stress is the increase in the visible reflectance. This 
happens due to a combination of stressors which reduce the chloropyll a + b content  
leading to a reduction in the absorption of incident light (Carter & Knapp, 2001; Hendry 
et al., 1987). 
 
The Evaporative Fraction (EF) can represent moisture availability for plants. It is the ratio 
of the energy exported as evaporated water as latent heat (LE) to the LE and sensible heat 
(H). A lower EF is generally a characteristic of ecosystems with sparse vegetation cover 
and dry conditions (Li et al., 2006). Several studies have previously used EF as an 
indicator of water availability in ecosystems since it is strongly influenced by the soil 
moisture at the rooting-zone, which is the main limiting factor influencing latent heat flux 
(Kurc & Small, 2004). 
EF can be calculated from the EC data of water vapor and  heat transfer, and from remote 
sensing products using the albedo- land surface temperature (LST) relationship (Nutini et 
al., 2014).  
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Study area   
 
The study area is the country of Sudan (Figure 1), the climate ranges from arid in the 
north to tropical wet-and-dry in the far southwest. Temperatures are the highest at the end 
of the dry season, when cloudless skies and dry air allow them to rise.  In average 41°C 
with a maximum reported of 49°C.  The far south, however, with only a short dry season, 
has uniformly high temperatures throughout the year(Metz, 1991).   
 

 

 

Figure 1. Location of Sudan and Demokeya site. 

 
The most significant climatic variables are rainfall and the length of the dry season. The 
country's territory falls between the 100mm isohyets in the north and 800 mm isohyets in 
the southernmost areas (Ardö, 2013).  Variations in the length of the dry season depend 
on which of two air flows predominates dry northeasterly winds from the Arabian 
Peninsula or moist southwesterly winds from the Congo River basin (Metz, 1991). Sudan 
has one yearly rainy season, with majority of rainfall occurring in late July to October, 
initiating germination of annual species and the growing season onset.  In some years the 
arrival of rain in central Sudan can be delayed or may not come at all. When that 
happens, drought and famine follow as it happened the decades of the 1970s and 1980s 
with disastrous results for the Sudanese people and economy (Metz, 1991).  
The country's soil types are wide and diverse, with sandy soils found in the northern and 
west central areas, clay in the central regions and lateritic in the south. Alluvial soils are 
found along the lower reaches of the rivers and deltas. The most important soils for 

Scale 1:100,000,000 Scale 1:20,000,000 

Sudan Boundary Demokeya flux tower 



6 
 

agriculture are the clays in central Sudan that extend from west of Kassala through Al 
Awsat and southern Kordofan. The East of the Blue Nile is used for mechanized rain fed 
crops. To the west of the White Nile soils are used to grow sorghum, sesame, peanuts, 
and cotton as traditional agriculture. The southern part of the clay soil zone lies in the 
broad floodplain of the upper reaches of the White Nile and its tributaries are subject to 
heavy rainfall during the rainy season. The floodplain is then inundated for four to six 
months and adjacent areas are flooded for one or two months. Overall, this area is poorly 
suited to crop production, but the grasses during dry periods are used for grazing. Sandy 
soils in the semiarid areas south of the desert in northern Kordofan and northern Darfur 
states support vegetation also used for grazing. Livestock rising is this area's major 
activity, but a significant amount of crop cultivation, mainly of millet, also occurs. 
Peanuts and sesame are grown as cash crops. The laterite soils of the south cover most of 
western Al Istiwai and Bahr al Ghazal states. Those underlie the extensive moist 
woodlands found in these provinces. Crop production is scattered, and the soils when 
cultivated lose fertility relatively quickly; even the richer soils are usually returned to 
bush fallow within five years (Metz, 1991).  
The Sahelian landscape and semiarid region is composed with sparse savannah and 
millet fields, grasslands and open woody savanna. The herbaceous layer is dominated by 
annual and perennial grasses including the annuals Eragrostis tremula, Cenchrus biflorus 
and some herbs, and the perennial Aristida pallida. In Demokeya site, the dominating 
woody species are of the Acacia genus, including Acacia nilotica, Acacia tortilis, and 
Acacia Senegal and constitute 5%–10% of canopy cover (Ardö, 2013). 



7 
 

Methodology and materials 
 

GPP estimation through light use efficiency model (LUE) 
 
The LUE model stems from linear relationship that exists between the amount of 
photosynthetic active radiation (PAR) absorbed by vegetated canopies (APAR), and their 
net or gross primary productivity (Monteith, 1972). It represents the efficiency with 
which plants use solar energy to assimilate carbon. LUE differs across biomes, plant 
functional types, stages of succession, and species (Gower, Kucharik, & Norman, 1999), 
and is also temporally dynamic in response to environmental variations(Landsberg & 
Waring, 1997);(Nouvellon et al., 2000); (Turner et al., 2003).  
A conversion efficiency term (ε ) is used in the relationship, such that:  
 

GPP = ε * APAR 
GPP = ε *  PAR *fAPAR 

GPP = εmax * (EF) * PAR *fAPAR  (1) 
Where: 
 
GPP is the gross primary production (g C m-2day-1), 
PAR     is the photosynthetic active radiation incident on the canopy (MJ m-2d-1), 
fAPAR is the fraction of incident PAR that is absorbed by the canopy, 

ε   is the light use conversion efficiency (LUE) of the vegetation (g C MJ-1) and  is the 
amount of carbon a specific vegetation type can produce per unit of energy and is 
calculated as: 

 
ε=  εmax * (EF)       (2)  

Where: 
ε max is the biome-specific maximum conversion efficiency (g C MJ-1) the used values are 

according to the study by (Garbulsky et al., 2010), 
EF is the evaporative fraction, used as a water availability  multiplier that reduces the 

conversion efficiency when water availability becomes a limit for the plant function. 
EF is a measure of the portion of the available energy used for evapotranspiration 
and is calculated according to (Nutini et al., 2014) methodology.  EF can range from 
0 (total inhibition) to 1 (no inhibition). 
 

       (3) 

 
Where: 
λE is the latent heat [W m-2], which is the amount of energy released or absorbed by 

water during a change of state.  
H is the sensible heat flux [W m-2], both of which are measured at the EC towers and 

can be calculated from remote sensing (Nutini et al., 2014). 
 
 

A variation to the approach would be the use of EVI as a proxy for FPAR. 
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GPP can be estimated through a linear regression model with relatively high accuracy 
using only EVI as independent variable (Sjöström et al., 2008). They showed that EVI 
had the highest correlation among the three vegetation indices studied (EVI, the 
Normalized Difference Vegetation Index NDVI and the Shortwave Infrared Water Stress 
Index SIWSI) for an agricultural site and a semi-arid savanna shrub site. Their results 
suggests that EVI shows significant promise for efficient determination of primary 
production, and that a simple modeling approach, based solely on EVI, can be utilized to 
give reliable estimates of GPP at similar ecosystems.  
Considering EVI = fAPAR (Garbulsky, Peñuelas, Papale, & Filella, 2008) then,  

 
GPP = PAR * EVI * εmax * EF         (4) 

 
where: 
 

     (5) 

 
RRed, RNIR and RBlue  are the spectral reflectances in MODIS bands 1, 2 and 3 respectively. 
G, L, C1 and C2 are constants with values of  2.5, 1, 6.0 and 7.5 respectively. 
 
To be calculated from the 8-day MODIS surface reflectance data [MOD09A1 band 1 (620– 670 
nm), band 2 (841–876nm), band 3 (459–479 nm)]  
 
Another possible approach would be to use a temperature greenness model which 
combines EVI with land surface temperature (Sims et al., 2008). LST has shown to be 
closely related to the vapor pressure deficit (VPD) (Granger, 2000) and therefore may 
provide a measure of drought stress. The LST product from MODIS can be used both as 
a measure of temperature and VPD (Hashimoto et al., 2008). There is also a 
MSG/SEVIRI based LST product (Peres, 2005).  
The main limitations of the simple model are the lack of estimates of the timing of the 
photosynthetic active period for sites with evergreen vegetation and the poor estimations 
of GPP for active season in sites that present summer droughts or with predominant 
evergreen vegetation(Sims et al., 2008).  
By including LST in addition to EVI, the TG model avoids many of the limitations of the 
simple model that uses EVI alone. Since the inactive periods were mostly the result of 
summer drought characterized by high temperatures and VPD, it is clear that the 
inclusion of a measure of temperature and drought stress could improve the model  (Sims 
et al., 2008).  
 

GPP= PAR * EVI * εmax * VPD*(T)      (6) 
 

 
The LST method for predicting VPD for global and regional scales was revisited by 
Hashimoto et al., (2008) concluding that it overestimates VPD in areas within 50 km of 
coastlines and underestimates VPD in very arid and non-vegetated regions. The 
uncertainty increases when higher values of VPD are reported and cloud contamination 
limits the near real-time ecological monitoring. The advantage is that the VPD method 
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can be easily implemented and satellite observations can be translated to estimates of 
evapotranspiration by using ecosystem models, preferably, with the correction of biases 
using ground-observation data (Hashimoto et al., 2008). This approach was not included 
in the final results. 
 

PAR 
 
Photosynthetic active radiation corresponds to the spectral range of solar radiation from 
400 to 700 nanometers that photosynthetic organisms are able to use in the process 
of photosynthesis (McCree, 1981). The data used for PAR comes from the Meteosat 
Second Generation (MSG) Surface incoming shortwave radiation (SIS) and is the 
radiation flux density reaching a horizontal unit earth surface in the 0.2-4 µm wavelength 
range. It is usually also called global irradiance or solar surface irradiance. It is expressed 
in W m-2. The product comes from the MSG Spinning Enhanced Visible and Infrared 
Imager (SEVIRI) sensor which is in geostationary orbit over Africa and collects data 
every 15 minutes, which can then be integrated for longer time spans (Aminou, 2002). 
Some limitations of the SIS product for desert regions are the high clear sky reflection 
over bright surfaces which reduce the contrast between clear sky reflection and cloudy-
sky reflection leading  to higher uncertainties in effective cloud albedo and errors in the 
calculation of SIS (Acker et al., 2010). The accuracy of aerosol information is not well 
defined in several regions of the world due to missing ground measurements. 
Uncertainties in the aerosol information affects SIS accuracy, especially in predominantly 
clear sky regions (Acker et al., 2010) 
 

FAPAR  
 
FAPAR is the fraction of photosynthetically active radiation absorbed by the canopy.  
FAPAR results directly from the radiative transfer model in the canopy which is 
computed instantaneously (Baret et al., 2006). It depends on canopy structure, vegetation 
element optical properties and illumination conditions. FAPAR is widely used as input 
for primary productivity models based on simple efficiency considerations (Prince, 
1991). 
FAPAR is an important environmental variable that can be used as indicator of the state 
and development of the vegetation cover (Gobron & Verstraete, 2009). The algorithm 
that derives the FAPAR compares the observed canopy reflectance against modeled 
radiance for a suite of canopy structures and soil patterns using biome specific lookup 
tables (Myneni et al., 1999). 
 
 

APAR  
 
APAR is the absorbed photosynthetic active radiation and is the product of 
FAPAR*PAR. 
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EVI 
 
Major factors influencing empirical estimates of FAPAR using spectral vegetation 
indices are the leaf area index (LAI), vegetation spectral properties, pixel heterogeneity, 
background reflectance, solar zenith and view zenith angle, vegetation shadow fractions, 
atmospheric scattering and bidirectional reflectance effects (X. Li & Strahler, 1985); 
(Myneni & Williams, 1994). Some of these factors can be mitigated using advanced 
indexing techniques such as the enhanced vegetation index. 
Vegetation indexes are robust and seamless biophysical measures, which are computed in 
the same way across all pixels of a group of satellite images regardless of land cover 
condition, soil type or biome (Huete & Glenn, 2011). The enhanced vegetation index is 
widely used as a proxy of canopy greenness and chlorophyll content (Myneni & 
Williams, 1994). 
The computation of EVI quantifies the difference in visible red light reflection in 
situations where absorption is dominated by green leaves. It also quantifies the near 
infrared (NIR) wavelengths where light scattering is dominated by cell walls  (Tucker, 
1979) ,thus,  giving information about variations of vegetation in time and space while 
enhancing the vegetation signal by reducing the influences from the atmosphere and 
canopy background and to improve sensitivity in high biomass regions (Huete, Liu, 
Batchily, & Van Leeuwen, 1997);(Huete et al., 2002). EVI is estimated from surface 
reflectance in the red and NIR bands but it also uses reflectance in the blue band to 
correct for effects of aerosols. Using surface reflectance data from MODIS MOD09A1 
product, EVI is calculated as:     
 

         (7) 

 

Light conversion efficiency and maximum conversion efficiency (ε max)   
 
 
Vegetation type is assumed to be the main control of light use efficiency at the annual 
scale, but large variability among LUE occur within each vegetation type (Ruimy, et al., 
1994; Gower et al., 1999). Drivers of spatial and temporal variability of LUE are forest 
age, management practices and nutritional status (Mäkelä et al., 2007;Ollinger et al., 
2008). The maximum LUE is set as a constant and is subsequently downregulated by 
temperature and estimators of water stress in models that estimate GPP (Potter et al., 
1999;Running et al., 2004;Yuan et al., 2007; Mäkelä et al., 2007). There are different 
strategies to define the maximum LUE values and each of the coefficients that account 
for the stress effects are used to estimate the actual LUE.  Garbulsky et al., (2008) 
defined the maximum LUE (gC MJ APAR-1) from each FAPAR estimator and site type, 
as the maximum gross LUE that is attained by vegetation for the duration of the analysed 
growing seasons. 
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Figure 2. Variability of LUE copied from (Garbulsky et al., 2010). 

 
 
In this study εmax was assigned to the different land cover classes based on the values 
found in (Garbulsky et al., 2010). The maximal LUE for each land cover type is used. 
Different LUE max values have been used in the literature and (Figure 2) shows the 
variability of LUE according to a study by Garbulsky et al., (2010). (Table 1) shows the 
five LUE max values tested for the calculation of the 1x1 Km area surrounding the flux 
tower. The LUE max for grassland (2.2 g C MJ-1 APAR-1) provided the closest results to 
the estimations from the tower.  (Table 2) Shows the final LUE max values assigned to 
each land cover type used for the GPP calculations for the territory of Sudan. The table 
also compares the values suggested by (Garbulsky et al., 2010) and the LUE max used 
for the calculations of the MOD17A2 GPP product(Running & Zhao, 2015) 

 
Table 1. LUEmax values tested for calculations in the subset area   

 
 
 
 
 
 
 
 

 
 
 
 
 

 
 

 Cover type LUEmax  g C MJ-1 APAR-1  

1 Grassland (Garbulsky) 2.2 
2 Grassland (BPLUT MOD17) 0.86 
3 Savanna(Garbulsky) 1.5 
4 Woody savanna (BPLUT MOD17) 1.239 
5 Savanna (BPLUT MOD17) 1.206 
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Table 2. LUE max values. 
 

Class UMD classification Garbulsky LUEmax 
g C MJ-1 APAR-1 

MOD17 LUEmax 
g C MJ-1 APAR-1 

0 Water Water 0 Water 0 
1 Evergreen Needleleaf forest Evergreen Boreal fo rest 1.35 ENF 0.962 
2 Evergreen Broadleaf forest Evergreen Subtropical 1.6 EBF 1.268 
3 Deciduous Needleleaf forest / 1.3* DNF 1.086 
4 Deciduous Broadleaf forest Decid ious temperate forest 1.3 DBF 1.165 
5 Mixed forest Mixed forest 1.65 MF 1.051 
6 Closed shrublands Shrubland 1.4 CS 1.281 
7 Open shrublands / 0.9* OS 0.841 
8 Woody savannas / 1.55*  WS 1.239 
9 Savannas Savannas 1.5 S 1.206 
10 Grasslands Grasslands 2.2 G 0.86 
12 Croplands Annual crops 2.9 C 1.044 
13 Urban and built-up  x 0 U 0 
16 Barren or sparsely vegetated x 0 B 0 
  rain forest 2.4 /  

Values marked with * where designated by me. 
 

Estimation of Evaporative Fraction (EF) 
 
The estimation of evaporative fraction was obtained using the albedo-temperature method 
using MODIS albedo and land surface temperature (LST) products.  EF stems from the 
heat balance equation:  
 

Rn= λE + GO + H   (8) 
 

 
where: 
 

Rn is the net radiation arriving to the soil 
λE is the latent heat flux 
λ is the latent heat for the vaporization of water 
E is the evapotranspiration 
Go is the heat flux spread under the soil surface 
H is the sensible heat flux  

 
 

 
 Figure 3. Soil heat balance 

 
  
The evaporative fraction is the relationship between the latent heat flux and the total heat 
flux coming from the soil. 
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       (9) 

 
The methodology to carry out in this part follows  Nutini et al., (2014).  In their approach, 
EF is calculated for every pixel as the relative distance from two lines, which are the dry 
edge and wet edge. These lines are defined through a date-specific albedo-LST 
relationship. In (figure 4), the blue circles correspond to minimum temperature values for 
each albedo class, which are used to calculate the wet edge (lower limit of the graph) 
through a linear regression. The red circles correspond to the maximum temperature 
values for each albedo class, which are used to calculate the dry edge (upper limit) 
through linear regression. TH (maximum temperature) and TλE (minimum temperature) 
represent the values used in the calculation of the EF for pixel i. 
 

  
Figure 4. The scatterplot between surface albedo and LST is created for every image 

during the computation of EF (Nutini et al., 2014). 
  

For the EF estimation, albedo and LST data were extracted from the digital numbers of 
MCD43B3 layer 10 and MOD11A2 layer 1. Information on LST data quality was 
obtained from Layer 2. Pixels flagged as no-data or low quality were excluded from the 
analysis. 
 
To calculate EF, the albedo-LST scatterplot is derived for a single date and analyzed to 
extract minimum and maximum temperature values for all of the albedo classes. 
The series of maximum and minimum LST values were used to calculate the date-
specific dry and wet edge equation through linear regression: 
 
 

dry edge: TH = mdry 𝛼0 + qdry    (10) 
wet edge: TλE = mwet 𝛼0 + qwet    (11) 

 
where: 

m and q represent the slope and intercept of the two regression lines, 
𝛼0 represents the albedo, 
T is the land surface temperature [K]. 
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The dry edge was defined considering only pixels with albedo value above 0.2 
(Galleguillos et al., 2011). 
Using the dry and wet edge, the EF is calculated for every pixel i, dividing the difference 
between TH and the temperature pixel TS by the difference between TH and TλE: 
 

    (12) 
 

where: 
Tsi is the temperature value of the pixel i. 

THi and 
TλEi 

are respectively the maximum and minimum temperature value derived by 
the dry and wet edge functions for a given albedo value αi. 

 
Therefore the EF equation can be rewritten as: 
 

 (13) 
 
 

The formula for the calculation of the EF was applied to each pixel of the4 MODIS tiles 
covering the territory of Sudan; and on each date available.  It was implemented with an 
IDL code provided by dr. Nutini and dr. Candiani. EF maps where obtained and used for 
the GPP estimations. (Figure 5) shows the evaporative fraction in Sudan for the date with 
the highest EF value calculated for Demokeya site during the study period. Black regions 
correspond to no-data. 
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Evaporative fraction map for Sudan as September 3rd, 2008 
 
 
 

 
 
 
Figure 5. Evaporative fraction map for Sudan (September 3rd, 2008). Red colors denote very low 
EF while blue corresponds to high EF. This was the highest EF value at the Demokeya site in the 

studied period. 
 



16 
 

Data  
 
To cover the country of Sudan, six MODIS tiles h20v06, h20v07, h20v08, h21v06, 
h21v07 and h21v08 obtained through the online Data Pool at the NASA Land Processes 
Distributed Active Archive Centre (LP DAAC), USGS/Earth Resources Observation and 
Science (EROS) Centre, Sioux Falls, South Dakota (https://lpdaac. usgs.gov/data_access) 
for the period 15/05 2007 to 31/12/2009, summing up to 492 images for each of the 
MODIS product used; and one MSG subset covering  the territory of Sudan for each day 
of the study period. The characteristics of the data are summarized in the following 
products table.  
 

Table 3. Data characteristics 

 
 
The data for PAR comes from the MSG Surface incoming Shortwave (SIS) product; it 
has a spatial resolution of 3 km and is a daily average of the 15-minutes observations. For 
the current study PAR is calculated as 46% of the SIS. According  to (Iqbal, 1983)areas 
of low values likely correspond to clouds and/or aerosols (Aminou, 2002). 
The data for FAPAR comes from the MODIS sensor mounted on NASA's Terra and 
Aqua satellites. The product name is MOD15A2 and is an 8day composite at 1 km spatial 
resolution (Myneni et al., 1999). 
The data for EVI comes from the product MOD09A1 which provides surface reflectance 
in 8-day composites at a 500 m resolution. The data was radiometrically calibrated and 
atmospherically corrected to yield a surface reflectance product. Each pixel contains the 
optimal observation during an 8-day period. The data has been gridded to separate 
geolocation from compositing. The optimal coverage, observation, absence of clouds or 
shadow thereof, aerosol loading and low view angle was considered (Vermote, 2011). 
EVI time series were seasonally adjusted by an adaptive Savitzky-Golay filtering method 
using the TIMESAT program package (Jönsson & Eklundh, 2002, 2004). TIMESAT fits 
a function to the upper envelope of the satellite time series data, filtering out negatively 
biased noise due to atmospheric effects.(Eklundh & Olsson, 2003),(Olofsson et al., 
2008). The already processed data was obtained from Jonas Ardö (Ardö et al, 2016). 
The MODIS land cover type product MCD12Q1 describes land cover properties derived 
from observations spanning a year's input of Terra and Aqua- MODIS data. The product 
contains five classification schemes; it is a yearly product at 500m resolution. The layer 
used in this study is land cover type 2 University of Maryland (UMD) scheme which 
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corresponds to the one used in the MOD17A2 algorithm (Fallis, 2013). The LUE max 
values are assigned to each of the land cover classes of this product (Table 2). 
The Land Surface Temperature MOD11A2 is 8-day product composed from the daily 
1Km LST product MOD11A1 and stored as the average values of clear-sky LSTs during 
an 8-day period. The unit for the DN values is Kelvin degrees and it needs to be 
multiplied by a scale factor of 0.02 (Wan, 2006). 
The Albedo product MCD43B3 provides 1Km data describing directional hemispherical 
reflectance (black-sky albedo) at local solar noon. The albedo quantities are produced 
from the 16-day anisotropy models provided in MCD43B1 and represent averages of the 
underlying 500m values (Strahler & Muller, 1999). 
The MODIS Gross Primary productivity MOD17A2H (Collection 6) is a cumulative 8-
day composite of GPP, NPP and PSN with 500 meter pixel size.  GPP is calculated daily 
using a LUE based model where the maximum conversion efficiency of absorbed light 
energy (ε max) is modified by scalars of high daily vapor pressure deficit  and low daily 
minimum air temperature respectively. The algorithm uses 6-hourly National Center for 
Environmental Prediction- Department of Energy (NCEP-DOE) reanalysis II for daily 
Tair, VPD and PAR. GPP values are expressed as Kg C m-2. The product contains a 
Quality Control layer (Running & Zhao, 2015). The DN values where extracted as a 
subset and multiplied for a Scaling factor of 0.0001 to be evaluated against the study 
results and the EC GPP. 
 

GPP from Eddy covariance flux tower 
 
GPP was estimated from the Net Ecosystem Exchange (NEE) fluxes measured at the EC 
tower with using a standardized partitioning method for all the sites as described by 
(Reichstein et al., 2005) and (Papale et al., 2006).  GPP is calculated from NEE by adding 
RE  (Rossini et al., 2012). Flux measurements were collected at the eddy covariance 
tower situated in Demokeya experimental forest outside El Obeid, Kordofan, Sudan, 
coord: (13.2829, 30.4783) (http://fluxnet.ornl.gov/site/724) Meteorological data and soil 
data have been collected at a site in the central Sudan since 2002. In addition to basic 
meteorological variables, soil properties (temperature, water content, and heat flux) and 
radiation (global, net and photosynthetic active radiation) were measured. The dataset has 
a temporal resolution of 30 minutes and provides general data for calibration and 
validation of ecosystem models and remote-sensing-based assessments, and it is relevant 
for studies of ecosystem properties and processes (Ardö, 2013). 
This site presents the typical Sahelian landscape with sparse savannah and millet fields. It 
is characterized by a sparse Acacia savanna in the semiarid region of Sudan. It has a 
canopy cover of 5–10% and a ground cover composed mainly of grasses and some herbs. 
The maximum tree height is six meters and the major part of the tree canopy is located 
between three and five meters above the ground. Grasses and herbs reach a maximum 
height of one meter. Approximately 70% of the vegetation is assumed to be C4 plants and 
30% is assumed to be C3 plants (Ardö, 2013).  
The mean annual precipitation is 320 mm with most falling from June to October. The 
period from November to May is dry and the seasonality of the precipitation is strong. 

http://fluxnet.ornl.gov/site/724
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Data process 
 
The figure 6 illustrates the steps applied for each of the satellite products and the 
corresponding calculations for the entire study. 
 

 
Figure 6.  Process tree. 

 
The pre- processing of data started with creation of mosaics from the tiles corresponding 
to the study area, followed by the extraction of the relevant layers for each product and 
the re-projection from Sinusoidal to WGS84 using the MODIS MRT tool (Processes & 
Active, 2010).  
 
The values marked as low quality data (cloud contamination) or no data were masked out 
and excluded from the products MOD1A2, MOD09A1, MOD15A2 and MOD17A2H. 
 
The values of the relevant layers were multiplied by their respective scaling factor to 
obtain the desired units as found in their respective MODIS products description site. 
The evaporative fraction was calculated using the code provided by dr. Nutini and dr. 
Candiani taking as input mosaics of HDF files to produce EF maps for each MODIS date. 
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For EVI, the data corresponding to the area of interest, Demokeya tower, was obtained 
from Jonas Ardö (Ardö et al, 2016); being seasonally adjusted as previously explained. 
For country-scale calculations, the compilation of EVI time series was made from surface 
reflectance MOD09A1 bands 1, 2 and 3 but no further adjustments were made.  
The outputs were clipped with a shape file to exclude the areas out of the territory of 
Sudan and ε max values from the designed LUT were assigned for their corresponding 
land cover classes of the MCD12Q1 product. 
Small subsets corresponding EC tower footprint were extracted (for products at 500m 
resolution, 4 pixels to cover ~1Km2; and for products at 1km resolution, 2 pixels to cover 
2Km2). Figure 7 shows the choice of pixels that were included.  
 

 
Figure 7. EC tower Subset. Shows the selected pixels from the MODIS products that were 
considered to be equal as the EC tower footprint. Some products have 1km pixel size while 

others have 500 mts. The yellow point represents the position of the tower. 
 
Since MODIS data is given as the average of the 8-days observations and MSG and EC 
are found daily, the MODIS values for the corresponding 8 days were kept constant. 
There were gaps in the MSG-SIS data in the following dates and those were filled by 
averaging the values of the previous and subsequent dates. 6/9/2007, 3/12/2007 to 
11/12/2007, 1/3/2007, 14/3/2007 to 18/3/2007, 1/12/2008 to 9/12/2008, 18/5/2009 to 22 
/4 /2009, 15/8/2009 to 20/8/2009. 
 
For the case of MODIS subsets, the missing values were obtained as an average of the 
neighboring pixels.  
 
The two proposed formulas were calculated and plotted against EC tower measurements 
and the corresponding MODIS17A2 subset. 
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Results  
 
The study tested two formulas to estimate GPP using evaporative fraction as a water 
stress factor.  Figure 8 shows that MODIs MOD17A2 consistently underestimated GPP, 
followed by the formula using EF and EVI and the best estimation were obtained using 
the EF and FAPAR. Even though there is an underestimation during the rainy season for 
the three cases.  
 
The maximum GPP recorded in Demokeya by the EC tower was 8.41gC m-2d-1 (24-aug-
2008). The maximum GPP estimated by the formula using FAPAR was 3.83gC m-2d-1 (3-
sept-2008) followed by 2.45gC m-2d-1 (4-sep-2007) using EVI as surrogate of FAPAR. 
For the case of MODIS GPP the maximum value obtained was 1.89gC m-2d-1 
(23/aug/2007).  
 
On average GPP estimated using FAPAR and EF accounted for 57.34% of the GPP 
estimated by the EC tower, followed by 40.42% when EVI and EF was used as surrogate 
of FAPAR. While MODIS17A2 only estimated the 23.95% 
 
If the evaporative fraction coefficient was not included in the models the results would 
show an overestimation of values during the dry season but a better fit for the rainy 
season (figure 9). This suggests that a further adjustment to use of the EF would lead to 
better estimations.  
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Figure 8. GPP estimations comparison. The graph compares the attained grams of carbon per 
square meter at each time step of the study period.  In orange the GPP measured from the flux 
tower, purple and yellow for GPP estimated with the two models and blue for the values from 

MODIS GPP product. 
 
 
 
 

 
Figure 9. GPP estimation comparison (without EF). The graph compares the attained grams of 
carbon per square meter at each time step of the study period without including the evaporative 
fraction in any of the two models. If the evaporative fraction coefficient was not included in the 
models the results would show an overestimation of values during the dry season but a better fit 

for the rainy season (figure 9). This suggests that a further adjustment to use of the EF would lead 
to better estimations. 
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Scater plots 

 
Figure 10. Scatter plot of GPP tower vs GPP = εMax EF PAR FAPAR. There is a good 

correlation for GPP values lower than 1 g C m-2 day-1 (dry season), but in higher GPP values 
(wet season) the correlation worsens considerably. Still, with a RMSE of 1.58, this is the model 

that performed the best among the 5 models tested. 

 
Figure 12. Scatter plot of GPP tower vs GPP = εMax PAR FAPAR. The exclusion of the EF 

from the model resulted in a shift towards higher GPP values. It decreased the correlation of low 
GPP values (dry season) but increased the correlation of high GPP values (wet season).  
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RMSE: 1.42. 

 
Figure 12. Scatter plot of GPP tower vs GPP = εMax PAR FAPAR. The exclusion of the EF 

from the model resulted in a shift towards higher GPP values. It decreased the correlation of low 
GPP values (dry season) but increased the correlation of high GPP values (wet season). RMSE: 

1.42. 

 
Figure 13.  Scatter plot of GPP tower vs MODIS GPP. There is a very good correlation for very 

low values (dry season) but at higher values (wet season) the correlation is very poor. RMSE: 
2.11. 
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Figure 14. Scatter plot of GPP tower vs GPP = εMax  PAR EVI. The exclusion of the EF from 

the model resulted in a shift towards higher GPP values with a very poor correlation for low GPP 
values (dry season). RMSE: 1.70. 

 
 

Results summary 
 
 
Table 4 shows the comparison of the annual results obtained from the different GPP 
models against the EC flux tower estimations. The first gray row shows the annual GPP 
accumulation in the 1Km2 corresponding to the EC flux tower's footprint of Demokeya 
site. The second gray row shows the fraction obtained dividing the calculated GPP by the 
tower estimates.  
 
 

Table 4. Annual GPP comparison 

 
*Includes only the months from May to December 2007 
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Table 5 shows the comparison of results obtained from the different GPP models against 
the EC flux tower for the entire period. The first row displays the accumulated GPP, the 
second row shows the fraction obtained dividing the calculated GPP by the tower 
estimates, the third and fourth rows represent the coefficient of determination and root 
mean squared error respectively.  
 

Table 5. Comparison of estimated GPP for study period, R2 and RMSE. 

 
 
Observing the R2 and the RMSE from the tables 4 and 5 and Figures 10 to 14, the closest 
estimates are obtained from the model:  GPP = εmax * (EF) * PAR *FAPAR.  
 
Discussion 
 
The use of the evaporative fraction as a limiting factor in a LUE model has proven to 
increase the accuracy of the GPP estimations during the dry seasons, but at the same time 
increasing the underestimation during the rainy seasons. The accuracy of the study can 
only be tested against the EC flux tower in Sudan (Demokeya site) since is the only 
available tower in the country. Therefore additional flux towers would provide more 
ground measurements in order to test the performance of the models under different land 
cover types. 
Some of the discrepancies between the GPPEC and modeled GPP values might be caused 
due to issues from the remote sensing products such as frequent cloud cover in the wet 
season, the atmospheric influences (Kaufman et al., 1992), geolocation accuracy 
(Hashimoto et al., 2012), radiative contribution from the background especially in 
sparsely vegetated areas (Tian et al., 2000), differences in spatial and temporal resolution 
and maximum value compositing of some MODIS products (Sjöström et al., 2011). 
Additionally, EC tower measurements can present biases in the eddy covariance 
technique, Carvalhais, et al., (2009) explained that the standard approach for 
extrapolating night-time Reco does not consider the reduction in leaf respiration in day 
time in comparison to night time, leading to a possible overestimations of Reco and GPP. 
Other source of discrepancy may be also due to delays of greening productivity as a 
response to wetting (Fensholt,et al., ;Williams et al., 2009) 
Complementing the measurements of the tower with studies of dry matter samples would 
provide additional data to obtain better representation of reality. 
Several studies have previously used EF as an indicator of water availability since water 
is a limiting factor for vegetation in semi arid areas. However, Gentine et al.,(2007) states 
that sensible heat flux is generally high in areas with low LAI, as LAI increases, sensible 
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heath flux can become negative. This effect causes EF to exceed unity in areas with high 
soil moisture conditions and high LAI. 
Other options exist for calculating factors that limit photosynthesis in water-scarce 
conditions. For example, the ratio of actual evapotranspiration (AET) to potential (PET) 
is linearly related to water stress at semi arid perennial grasslands (Nouvellon et al 2000). 
Also, (Garbulsky et al., 2010) in their study concluded that the performance of the ratio 
AET/PET was better than EF over savanna ecosystems when determining the Radiation 
Use Efficiency.  
Promising approaches to improve GPP estimations have been explored. Kanniah, et al., 
(2010) obtained results of only 6% error compared to GPP from EC tower, carrying out 
an analysis based in vegetation maps in terms of spatial and temporal patterns of 
vegetation, classified in accordance to structural characteristics such as height and foliage 
projective cover, broad vegetation groups and spatial extent.  
Further research needs to be carried out and additional control points (EC towers) would 
be needed to be able to assess the accuracy of the models for the other land cover classes 
found in the study area. 
 
 
Conclusions 
 
The use of EF increases the accuracy of the GPP estimations during the dry seasons but 
increases the underestimation during the rainy seasons.  
 
The use of FAPAR in the LUE model derived more accurate estimations than using EVI 
for the 1km2 subset of the study area. 
 
In general the two models performed significantly better compared to the MOD17A2 
MODIS GPP product. 
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