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ABSTRACT 

Agriculture is vital to the food security and economic growth of most countries in the world, especially in 

developing countries. Accurate information on field boundaries has considerable importance in precision 

agriculture and greatly assists land administration systems. The information obtained from field 

boundaries can provide valuable input for agricultural applications like crop monitoring and yield 

predictions.  

 
Farm field information extraction is an important task and is highly related to food security. Farm field 

boundaries can be delineated by conventional field surveying methods or by digitizing satellite imagery 

manually. However, this approach is time consuming, costly and highly dependent on the operator‟s 

capability of digitization and interpretation. Low and medium resolution satellite images have limited 

capacity to offer accurate information for field level. But, very high resolution satellite images can provide 

farm field information accurately to sub-meter level, though extracting the required information from 

them is a big challenge due to the complex ground environment.  

 
In this research, the capability of the line segment detection (LSD) algorithm for extracting linear features 

is explored on two real applications in the agricultural sector: field boundary delineation and crop rows 

detection from very high resolution satellite images. The algorithm starts by calculating the level-line angle 

for each pixel based on pixel gradient As LSD is taking only a single band as an input, in order to 

concentrate all the available information, the gradient information in all bands is combined as a single 

band by taking the vector sum of image gradients in all bands. The level-line angle is used to form the  

line-support region, potential candidates for a segment, and is validated by Helmholtz principle based on 

NFA calculation. In addition to image bands, texture bands were explored. The effects of different second 

order GLCM texture measures on the results of LSD were examined.  

 

In this research, validation method was developed The optimum values of the three internal parameters of 

LSD for the purpose of field boundary delineation were S = 1.0,         and        Similarly, the 

optimum values these parameters for crop rows detection were S = 0.8, τ=22.5° and ε =1.0. These 

optimum parameter values agree with the ones proposed by Grompone von Gioi et al. (2012) except 

some difference on the scale parameter for the first application. 

 

Accuracy assessment was performed following the proposed method by defining the two error ratios: the 

ratio of missing detection and the ratio false detection. The results obtained for the first application (field 

boundary delineation) are RM=0.78 and RF= 0.73. The results for the second application (crop rows 

detection) are RM =0.17 and RF=0.48. 

 

In this research, the different approaches followed: extracting information from multiple bands, using 

texture bands or image bands in detecting field boundaries do not give good results. On the other hand, 

the results obtained from the crop rows detection show that the adopted methodology has a good 

potential in detecting crop rows as well as their dominant orientations. 
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1. INTRODUCTION 

1.1. Problem statement 

 

Agriculture is vital to the food security and economic growth of most countries in the world, especially in 

developing countries. African economies depend heavily on agriculture and the agriculture provides a large 

share of the gross domestic product (GDP) in some sub-Saharan African countries (AGRA, 2013). Most 

farming in Africa is carried out by smallholders using traditional techniques. These smallholders contribute 

up to 90% of the nations‟ staple food production (Jain et al., 2013) by using traditional farming practices. 

They do not have access to modern agriculture knowledge and techniques. Though agriculture contributes 

a large share to GDP, most African countries are self-insufficient in food. Alleviating food insecurity and 

ensuring sustainable development in the region is one of the top agenda that seeks attention. Proper 

management of land resources is the basis for sustainable development and is directly related to 

agricultural development and food security (Dekker, 2001). To manage land resources effectively, there is 

a need for reliable, accurate and up to date information system about land. The main aim of land 

administration systems is to improve tenure security and access to land (Lengoiboni et al., 2011). 

However, land administration systems and proper management policies remain a challenge to most 

African countries (Kurwakumire, 2014). Depending on development stage of the economy and land 

tenure (mode of holding or occupying land) arrangements, land administration faces many challenges 

(Bogaerts & Zevenbergen, 2001). The lack of transparent land tenure information systems severely limits 

the engagement of smallholders, communities and investors in sustainable investment in land resources 

and generates social instability through land disputes. Tenure security  provides community and investor 

confidence in development planning, land-based economic growth, natural resource management and 

environment sustainability and social stability (Donnelly, 2012). The core of land administration and 

tenure security is agreements on location of property boundaries. The interpretation of the location of 

these boundaries can be difficult and judgments may vary depending on the interpretation of the evidence 

of the location (Donnelly, 2012). Accurate information on field boundary has considerable importance in 

precision agriculture and greatly assists land administration systems. Therefore, it is important to find 

affordable technologies and efficient methods that assist decision making and effective use of land 

resources. Modern technologies, such as remote sensing and spatial information systems are 

revolutionizing agriculture. However, the use of these technologies is still far in Africa due to the 

heterogeneous nature of the agriculture, differences in crop cycles, the spatial heterogeneity of landscape, 

small and ill-defined farm fields, data accessibility issues, especially for high resolution data. This challenge 

has a negative impact on the proper planning, monitoring and effective utilization of land resources for 

sustainable development of the region. Thus, research based agricultural innovations, high precision and 

low cost technologies and suitable information extraction methods that can be easily applied in the region 

are essential to overcome challenges. To this end, The Spurring a Transformation for Agriculture through 

Remote Sensing (STARS) project, a research project looking for ways how remote sensing technology can 

help to improve agricultural practices and advance the livelihoods of smallholder in Sub-Saharan Africa 

and South Asia, is working to overcome the barriers and challenges of agricultural practices and land 

management related issues by finding evidence-based solutions sustainably so that smallholders, the 

farming community and decision makers can benefit out of it.  



AUTOMATED FARM FIELD DELINEATION AND CROP ROW DETECTION FROM SATELLITE IMAGES  

 

2 

 

Agricultural applications (like crop row identification, crop protection and yield estimation) of remote 

sensing technology require quantitative analysis of remotely sensed data with high accuracy and reliability 

(Ferencz et al., 2004) and these can be achieved better on a field level. But, the definitions of the the 

words „field‟ and „boundary‟ are context dependent. So, the fundamental unit of land that shares a certain 

property (parcel) need to be defined and identified. The parcel is described by its boundaries. Delineation 

of farm field boundaries is an important task to provide reliable information for monitoring farm fields 

and for yield prediction. Such predictions are crucial for field-level planning and site specific 

recommendations. Many information extraction techniques (surveys) have been used to delineate field 

boundaries. Generally, these methods can be grouped into three parts: ground based surveying, aerial 

surveys and satellite based surveying (Ali et al., 2012). Ground based surveying methods are conducted by 

surveyors using different surveying techniques and instruments like optical square, plane tabling etc. 

Nowadays, Global Positioning System (GPS) is broadly used to locate the position of points on the 

ground. Ground based survey is quite accurate, but labor intensive, sometimes requires an enormous 

amount of time and resources, including a number of skilled surveyors for large area application. On the 

other hand, aerial survey from aerial photogrammetry offers cost effective and time saving means of 

information extraction for land surveying and mapping. Moreover, aerial survey offers richer data than 

ground survey vector data (Barry & Coakley, 2013). Although the aerial survey is a better alternative to 

ground based survey, it is highly dependent on weather and climatic conditions (Ali et al., 2012). 

Sometimes, it is also impossible to undertake aerial surveys in some regions due restrictions for military 

security reasons. Satellite based surveying is the other method which offers many of the required spatial 

inputs for land surveying in digital form. As compared to aerial surveying, satellite based surveying covers 

a wide area more repeatedly and economically (Ali et al., 2012). Moreover, because of increasing spatial 

resolution satellite imagery is becoming more and more a viable alternative to aerial photographs.  

 

Linear features  extracted from remotely sensed data are important data sources for geospatial information 

analysis. Edges in the remote sensing image describe the structural information of linear ground  objects 

such as field boundaries and crop rows. Thus, linear feature extractgion( edge detection) is an important 

task for boundary delineation and crop row detection.  

 

Over the years, many methods have been proposed to delineate field boundaries using semi-automatic and 

automatic methods (Ji, 1996), (Reyberg et al., 2001), (Torre & Radeva, 2000), (Turker & Kok, 2013). 

Standard edge detection methods work reasonably well in Western Europe and North America. But these 

methods fail to detect field boundaries in the study area Mali (STARS project, personal communication). 

The main problems are vague field boundaries and spatial heterogeneity of the regions on the both sides 

of the boundary.  

 

Low and medium resolution satellite images have limited capacity to offer accurate information for field 

level. Moreover, they are not suitable for crop rows detection due to the small size of the elements to 

detect. On the other hand, very high resolution satellite images contain rich and detailed ground 

information, and they can reflect farm field information accurately to sub-meter level. But due to the 

complex ground environment, extracting the required information from very high resolution satellite 

images is a big challenge. Therefore, it is of importance to develop methodology that facilitates automatic 

extraction of linear features (edges) that represent field boundaries and crop rows from very high 

resolution satellite imagery.  
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1.2. Background 

This part gives background knowledge on different edge detection techniques including line segment 

detector. It also gives a general idea about image segmentation and related concepts like texture.  

 

Edge detection 

An edge is a part of the image where the brightness of the image changes abruptly. Edge detection is a 

process of detecting and locating sharp discontinuities in the grey values of an image (Ziou & Tabbone, 

1998). Many edge detection methods have been developed. The performance of an edge detection 

operator highly depends on lighting conditions and noise (Bhardwaj & Mittal, 2012). Most edge detection 

algorithms work well only in the images with sharp intensity transitions. They are also sensitive to noise. 

For this reason, smoothing operation is required to reduce noise in the image before the actual edge 

detection. This smoothing has a negative effect as it distorts the edge information. To keep balance 

between edge information and smoothing, the image is filtered with appropriate kernel such as Gaussian 

kernel. Due to the presence of noise the operators extract false edges. The operators also fail to find the 

boundaries of objects that have a small change in intensity values or change in intensity that  occurs over a 

long distance, that leads to both problems of detection and localization of edges (Bhardwaj & Mittal, 

2012). Therefore, problems of false edge detection, missing edges and poor localization of edges limit the 

applicability of the algorithms.  

 

Recently, a number of edge detection methods based on Gestalt theory and Helmholtz principle were 

presented. Gestalt theory describes the laws of human visual reconstruction and Helmholtz principle 

states that noticeable structures may be viewed as exceptions to randomness (Tepper et al., 2014). Moisan 

and Morel (2000) applied edge detection methods, without any a priori information, based on the Gestalt 

theory and the Helmholtz principle. According to a basic principle of perception due to Helmholtz, an 

observed geometric structure is “meaningful” if it has a low probability to appear in a randomly created 

image (Desolneux et al., 2003). This is called “a contrario” approach. In this approach, instead of 

characterizing the elements we wish to detect, on the contrary, we characterize the elements we wish to 

avoid detecting. When an element sufficiently deviates from the background model, it is considered as 

meaningful and hence, detected (Tepper et al., 2014). To any geometric event on an image there is number 

of false alarms (NFA) associated to it. The NFA of an event is defined as the expectation of the number 

of occurrences of the event in a pure noise image of the same size.  

 

Line Segment Detector 

Line segments provide expressive information about the geometric content of images. Many algorithms 

have been developed and implemented to extract line segments from images. Hough Transform (HT) is 

one well known method to detect lines from images (Nixon & Aguado, 2012). Other recent 

implementation is a line segment detector (LSD) algorithm presented by Grompone von Gioi et al. (2012) 

built on the method of Burns et al. (1986). It integrates line segment detection with the Helmholtz 

principle. The LSD algorithm is currently developed to detect straight line segments from images. It is 

only suitable to detect straight edges from images. Nevertheless, large parts of the edges (for example field 

boundaries) are not really straight, but curved.  

 

Image Segmentation 

Image segmentation is a division of an image into multiple sub-regions based on a desired feature. There  

are two main approaches to segment images: edge-based and region-based (Faruquzzaman et al., 2008). 

Edge-based segmentation partitions the image into sub-regions by looking for discontinuities in image 

intensity, whereas region-based segmentation methods partition the images into different sub-regions of 

closed boundaries with the assumption that pixels in the same category have certain homogeneity in 
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spectral values (Evans et al., 2002). Region based segmentation may be classified as the bottom-up 

approach which merges smaller region into larger ones, top-down approach which splits an image into 

smaller regions and the mixed approach which leads to splitting and merging regions (Faruquzzaman et al., 

2008). There are several measures that are used to decide whether regions should be merged or split. 

Texture measure is one of them. 

 

Texture  

Texture is an important spatial feature that is used for analysis and interpretation of digital images. 

According to Haralick (1979), texture is defined as the spatial variation in image intensities. It describes 

visual information that is related to local variation in orientation, color and intensity in an image (Min, 

2015). Texture analysis requires the identification of important features that differentiate the textures in 

the image for classification, segmentation and recognition (Arivazhagan & Ganesan, 2003). The gray level 

co-occurrence matrix (GLCM), introduced by Haralick et al. (1973) as “gray-tone spatial-dependence 

matrix”, shows different combinations of gray levels occurrence in an image. A number of statistical 

texture features can be computed from GLCM. Statistics are classified as  first order, second order or 

higher order statistics depending on the number of pixels in each combination. Homogeneity, dissimilarity, 

entropy, mean, standard deviation, contrast, energy and correlation are the most widely used second order 

statistics in the remote sensing imagery analysis. The construction of gray-level co-occurrence matrix 

depends on different parameters: the number of gray levels used in the matrix, the window size, the 

distance and the orientation. There are also other simple statistical texture measures that use edge density 

and direction to characterize the texture. 

 

This research focuses on one specific topic on the larger STARS frame, that is, automated  farm field 

delineation and crop row detection from satellite images. Conventional edge detection methods have been 

used for farm field boundary delineation. But, these methods are not efficient to detect field boundaries 

when fields have complex landscapes. The LSD algorithm is currently developed to detect straight line 

segments from images and is successful to automatically detect straight linear features from images. 

Therefore, modifying the LSD algorithm and using its capability for boundary delineation and crop row 

detection is an important task. The capabilities of very high resolution satellite imagery (both in spatial and 

spectral) with appropriate methodology gave opportunity to investigate the above mentioned problem and 

test in a test area in Mali.  

1.3. Research Identification 

1.3.1. Research Objective 

The main objective of this research is to develop a procedure and implement image analysis methods to 

adapt the line segment detection algorithm and make it applicable for farm field boundary delineation and  

crop rows detection from very high resolution satellite imagery. 

Research Sub- Objectives   

1. To identify the influence of the internal parameters of the algorithm on the quality of the results.  

2. To identify the appropriate band as an input for LSD algorithm. 

3. To compare and select textural features characterizing farm fields from satellite images. 

4. To accurately locate crop rows from satellite images.  

5. To develop validation methods for evaluation of the result. 

1.3.2. Research Questions 

1. What are the optimal values of the parameters for the proposed applications? 

2. How to incorporate multispectral information as an input to LSD algorithm? 
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3. Can texture help in the field boundary delineation? If so, which texture measure and distance in 

GLCM processing are appropriate? 

4. What is the dominant orientation of crop rows in a particular field? 

5. How successful is LSD in detecting field boundaries and crop rows? 

6. Do accuracy measures positional accuracy, correctness, completeness, false detection ratio and 

missing detection ratio fit for a particular purpose? 

1.4. Innovation aimed at 

The novelty in this study is to adapt the line segment detector (LSD) algorithm and make it applicable for 

automated agricultural farm field boundary delineation and crop row detection from satellite images. 

1.5. Method adopted 

 

The flow chart in Figure 1.1 shows an overview of the methodology followed to reach the objectives and 

answer research questions. The detail process is further explained in Chapter 4.  
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Figure 1.1: Flowchart of the methodology 
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1.6. Outline of the thesis 

Chapter 2 is a literature review on Boundary concepts, Gestalt theory and The Helmholtz Principle and 

texture information for image segmentation. 

Chapter 3 describes the study area and the data used in this research. 

Chapter 4 presents the methodology applied in this research. 

Chapter 5 discusses the results of the study. 

Chapter 6 describes general discussions. 

Chapter 7 gives summary of conclusions and recommendation. 
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2. LITERATURE REVIEW 

2.1. Boundary concepts 

 

Dale &McLaughlin (1988) define boundary in legal sense as “a vertical surface that defines where one land 

owner‟s territory ends and the next begins.”  Williamson et al. (2010) provided  a comprehensive 

definition of the term boundary as “either the physical objects that mark the limits of a parcel, property, or 

interest in land or an imaginary line or surface making or defining the division between two legal interests 

in land.” According to Oxford Dictionary, the words „field‟ and „boundary‟ are defined as: Field, “an area 

of open land, especially one planted with crops or pasture, typically bounded by hedges or fences”. 

Boundary, “line which marks the limits of an area; a dividing line.” A more specific definition of boundary 

is the one given by Jing et al. (2011), boundary as an imaginary line that marks the bounds of two 

adjoining parcels of land. There are two broad categories of boundaries: fixed boundaries and general 

boundaries (Dale &McLaughlin, 1988). Fixed boundaries are boundaries that can be surveyed accurately 

and expressed by bearings and distances, or by coordinates whereas general boundaries are boundaries 

where the precise line of boundary between adjacent parcels has not been determined, but, it is usually  

represented by either natural or man-made physical features like fences, hedges, roads etc. (Williamson et 

al., 2010). Different rules of interpretation and definition of boundaries apply depending on the nature and 

type of boundaries. Therefore, in this research field would be related to land use and crop type, whereas 

boundaries would be related to edge features where changes in these types take place. A similar conclusion 

is also drawn by Yan and Roy (2014) and Ji (1996).  

2.2. Gestalt theory  and The Helmholtz principle 

 

Gestalt theory is a branch of psychology which focuses on human visual perception of objects and tries to 

explain how human mind perceives and recognizes patterns (Chang et al., 2007), (Sarkar & Boyer, 1993). 

According to this theory, whenever points have common properties, they get grouped and form a new 

bigger visual object, a “Gestalt.” (Desolneux et al., 2003). Gestalt theory emphasizes holistic nature of 

objects rather than parts during human visual perception (Jiang et al., 2006). A set of Gestalt rules were 

formulated to describe the grouping mechanisms of how fundamental geometric elements are perceived as 

a whole, rather than an individual collection of parts by humans. Grouping characteristics can be any 

property of the points, such as proximity, colour, alignment, parallelism, common orientation or closure. 

The Helmholtz principle is a perception principle which introduces a method for computing geometric 

structure in a digital image by controlling both false negative and false positive (Grompone von Gioi et al., 

2008). If a particular configuration of points sharing common characteristics is observed in an image, the 

Helmholtz principle examines whether this common feature is occurring by chance or not by using an “a 

contrario‟‟ assumption. Following this assumption, if     is the probability that an object has a certain 

property, then the probability that at least    objects out of the observed    have this property is given by 

the tail of the binomial distribution, i.e.                                       

                                           ∑ (
 
 
)              

                                                     (2.1)                  
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If N  is the number of different point configurations of the event, then the Number of False Alarms 

(NFA) of the event is 

                                                                               (2.2) 

Meaningful events will then be events with a very low NFA. The event is called  -meaningful if NFA<  
under the uniform random assumption (Desolneux et al., 2003). This concept can be applied for linear 

segments. If   is a segment with length   that contains at least   points that have the same orientation as   

in an image of size    , then the Number of False Alarms (NFA) associated with the segment is  

                                    ∑ (
 
 
)              

                                                   (2.3) 

where 
4N is an approximate number of potential segments in     image (Desolneux et al., 2003).

           

2.3. Texture information for image segmentation and boundary mapping 

Texture measures have been used widely in remote sensing, particularly with high and very high resolution 

images and with panchromatic imagery (Epifanio & Soille, 2007). Texture features can be vital for image 

segmentation and can be used as the basis for classifying image parts (Davis et al., 1979). Several studies 

have shown that classification of high spatial resolution images can be improved by the use of texture 

(Ryherd & Woodcock, 1996), (Franklin et al., 200). When land covers exhibit similar spectral 

characteristics and make classification difficult, the use of texture information is a potential solution 

(Lloyd et al., 2004). Incorporating texture measures could enhance the discrimination between spectrally 

similar classes (Blaschke, 2010). 

2.4. Related works 

 

There are some considerable results achieved by previous researchers on the development of semi-

automatic and automatic field boundary delineation and crop rows detetection.  

 

Janssen and Molenaar (1995) developed a three-stage strategy for updating both the agricultural field 

boundaries and the crop type of the agricultural fields using a Landsat Thematic Mapper image. In the first 

stage, fixed geometric data already stored in the GIS is integrated with the output of the edge detection 

procedure applied to Landsat Thematic Mapper image. In the second stage, object based classification is 

used to determine crop type of fields. In the third stage, post processing (merging) is applied to solve 

problem of oversegmentation. The authors reported that there was 87% agreement between the resulting 

field geometry and the field geometry by the photo-interpreter. 

 

Ji (1996) tried to extract field boundaries from a single date Landsat Thematic Mapper imagery by 

adopting a dyadic wavelet transform method. It was reported that the majority of field boundaries were 

delineated by the adopted methodology. However, the use of a single date image failed to delineate 

boundaries between two fields when the fields have similar spectral properties. Manual editing was 

required to delineate the remaining boundaries. The use of multi-temporal data set with a fully automated 

algorithm were recommended to obtain a complete delineation. 

  

Torre & Radeva (2000) used a semi-automatic method to segment agricultural fields. They combined 

region growing and deformable models (snakes). They considered different aspects like parameterization, 

user interaction and convergence criteria to assure optimal image segmentation. The role of the operator 

was to give seed region to initialize the snake. The algorithm was tested for over 20 different aerial images, 

having 30 parcels per image on the average, and detected 70 % of the cases successfully.  
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Rydberg et al. (2001) presented a multispectral segmentation method for detecting agricultural field 

boundaries from remote sensing images. The method was applied in the southern part of Sweden using 

multispectral SPOT and Landsat TM images. The method was developed to integrate the segmentation 

algorithm with the edge information from gradient edge detector, where the information from all selected 

image bands is utilized in both procedures. In this way, information from several bands and from different 

dates can be used to delineate field boundaries with different characteristics. This is especially vital for 

agricultural applications, when multi-date information is required to differentiate crops, trees, shrubs and 

other objects like roads. The method identified 87% of the edges correctly as compared to the edges of 

the ground truth.  

 

Evans et al. (2002) proposed a method, called canonically- guided region growing (CGRG), for the 

automated segmentation of the agricultural area in Western Australia into field units from multispectral 

Landsat TM images. The procedure has the assumption that each field has only a single ground cover and 

that the width of the minimum field of interest is known. The method worked well for the majority of the 

sample images.  

 

Butenuth et al. (2004) described an automatic method to extract boundaries of fields from aerial images. 

First, watershed segmentation was carried out to segment field areas based on the gradients in the course 

scale of the imagery. Next, GIS knowledge on fixed field boundaries was introduced to support the 

segmentation. This provides a topologically correct framework of the field boundaries. Finally, snakes 

were used to improve the geometrical correctness by taking the topological constraints into consideration.  

The results showed the potential of the proposed method.  

 

Mueller et al. (2004) presented an object-oriented approach for the extraction of large, human-made 

objects, especially agricultural fields, from high resolution panchromatic satellite imagery focussing on 

shape analysis. Four different images from different sensors having different resolutions were used to test 

the proposed approach. Comparisons of the presented approach with standard methods revealed the 

advantages of the presented method. 

 

In the work of Ishida et al. (2004), a multi-resolution wavelet transform method was applied to detect the 

edges of submerged paddy fields. The method was applied on SPOT image to prepare a base map that 

defines sections (parcels) of fields. The results obtained were reported to be satisfactory in practice and the 

methodology could be applied to other paddy fields. 

 

Da Costa et al. (2007) proposed an algorithm to automate the delineation of vine parcels from 

WorldView-2 images using  an object-based classification model. They applied the method in the 

Bordeaux, wine producing area, in France. The approach uses texture attributes of vine parcels to identify 

vine and non-vine pixels and gives encouraging results. However, errors in the segmentation occasionally 

occur at the beginning of the season or in areas with young plants.  

 

In the work of Tiwari et al. (2009), semi-automatic extraction of field boundaries from high resolution 

satellite data was presented. The methodology was applied to a certain agricultural area in India using an 

IRS P-6 LISS IV dataset. Tonal and textural gradients were used to segment the regions and these regions 

were classified to derive preliminary field boundaries. Finally, snakes were used to refine the geometry of 

the preliminary field boundaries. Most of the extracted boundaries coincide with the reference which 

shows the potential of the proposed solution. 
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Sainz-Costa et al. (2011) presented a strategy for identifying crop rows by analyzing video sequences 

acquired from a camera mounted on top of an agricultural vehicle. They applied gray scale transformation 

(convert an RGB image into black and white image), and then the image is changed to a binary image by 

thresholding. To identify crops and rows, rectangular patches are drawn over the transformed binary  

image. The gravity centers of the patches are used as the points defining the crop rows and a line is 

adjusted by considering these points. 

 

Ali (2012) introduced the use of Very High Resolution satellite panchromatic/colour imageries and 

handheld GPS navigation receiver to develop a method for cadastral surveying by using on screen 

digitization techniques. The study showed that by using his newly developed technique more parcels can 

be surveyed in a shorter period of time as compared to the traditional cadastral parcel boundaries 

surveying method.   

 

Ursani et al. (2012) proposed a new procedure for agricultural land use mapping from a pair of very high 

resolution multispectral and panchromatic satellite images. Spectral and texture information were used to   

classify the images. Unsupervised classification was used to split a multispectral image into spectrally 

homogeneous non-contiguous segments. In parallel, texture-driven supervised classification was used to 

split the panchromatic image into a grid of square blocks. Finally, a land use map was generated by fusing 

both spectral and textural classification results. It was reported that both qualitative and quantitative 

evaluations of the results showed good results. Moreover, fusing the spectral and textural classification 

results improves the accuracy as compared to individual classification results. 

 

Turker and Kok (2013) used perceptual grouping of Gestalt theory for automatic extraction of dynamic 

sub-boundaries within agricultural fields of remote sensing imagery. The methodology was applied in the 

Marmara region of Turkey using SPOT4 XS and SPOT5 XS images. Field boundary data and satellite 

imagery were integrated to perform field-based analysis. Canny edge detector was used to detect the edge 

pixels. The overall matching percentages between the automatically extracted and the reference data were 

82.6% and 76.2% for SPOT5 and SPOT4 images respectively.  

 

Recently, Sidiropoulou Velidou et al. (2015) presented a Gestalt-based line segment method to detect 

geological lineaments automatically from remote sensing imagery. The study area was selected in Kenya 

and an ASTER image was used to apply the methodology. To assess the accuracy, false detection rate and 

missing detection rate were calculated and the values were both equal to 0.5. The method worked well to 

extract geological lineaments from remote sensing imagery. The algorithm could be extended to detect 

other features from remotely sensed data.  

2.5. Accuracy Assessment 

The automatically extracted farm field boundaries can be compared with the manually digitized boundaries 

of the reference data by adopting accuracy assessment methods proposed in literature. Heipke et al. (1997) 

proposed several quality measures to perform accuracy assessment of road extraction. Correctness and 

completeness are the most widely used. These quality measures can also be applied to assess the quality of 

automatically extracted buildings (Rutzinger et al., 2009) or line segments (Lin et al., 2015). The 

correctness represents the part of the extraction which matches the reference within a buffer around the 

reference. The completeness, also referred to as Detection Rate, is defined as the part of the reference that 

matches the extraction within a specific buffer around the extracted result. Another novel accuracy 

assessment method is the one developed by Sidiropoulou Velidou et al. (2015) to assess the accuracy of 

automatically detected geological lineaments. False detection rate and missing detection rate were used to 

assess the quality.  
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3. DATA 

This chapter explains the study area, the imagery and software used in this research. Section 3.1 provides 

details of the study area, section 3.2 describes the data characteristics and section 3.3 gives the list of 

software used.                             . 

3.1. Study area 

 

The study area for this research is located in the southern part of Mali, in Western Africa (Figure 3.1). Its 

location is 5  13 53.18   W, 12 13 1.83   N. It covers an area of approximately 67 square kilometers. The 

landscape in Mali is heterogeneous and is characterized by variable plant growth, small field sizes with 

trees inside in almost all fields, mixed cropping systems and variable cropping dates. Farming is the main 

source of income for most people of the region. The main crop types in the area are cotton, maize, millet, 

peanuts and sorghum. Most of the crops are sown between May and July and harvested from September 

to November. Precipitation in the area is around 800 mm per year.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: Study area  
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3.2. Imagery and Reference data  

3.2.1. Very High Resolution Satellite image  

The imagery used for this research is Very High Resolution satellite image of  WorldView-2 acquired on 

July 29, 2014. The spatial resolution for the panchromatic band is 0.46m with spectral range from 450 to 

800nm. The multispectral image has a spatial resolution of 2m and the image is composed of eight bands: 

Coastal Blue (400 to 450nm), Blue (450 to510nm), Green (510 to 580nm), Yellow (585 to 625nm), Red 

(630 to 690nm), Red Edge (705 to 745nm), Near Infrared-1 (770 to 895 mm), and Near Infrared-2 (860 to 

900nm). The specification of each band is given in Table 3.1. 

 

Table 3.1: WorldView-2 satellite image specifications. 

 

3.2.2. Reference data 

The reference datasets used for this research are  

 A manually delineated field boundary of the study area from WorldView-2 multispectral image 

acquired on July 29, 2014 and 

 Manually delineated crop rows from panchromatic image acquired on September 12, 2015. 

Different subsets are presented in the Appendix. 

3.3. Software 

 In this research, the following software were used.  

 ArcGIS version 10.3.1 was used for on screen digitization of reference data. 

 ENVI, which was used for texture GLCM computation 

 ERDAS Imagine 2015 which was used for subset selection and processing the data. 

 R version 3.3.2 which was used for statistical computing, graphics and data analysis. 

Moreover, the following R packages were used. 

 rgdal  

 raster  

 mmand 

 Rcpp 

 inline 

 sp 

 stats  

 circular 

 GSD Pan (m) GSD MS (m) Swath nadir 

(Km) 

Spectral Range  

Pan 

  

Spectral Range MS   

 

WorldView2 0.46 2.0 16.4 450-800nm 400-450nm(coastal) 

     450-510nm(blue) 

     510-580nm(green) 

     585-625nm(yellow) 

     630-690nm(red) 

     705-745nm(red edge) 

     770-895nm(near IR-1) 

     860-900nm(near IR-2) 
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4. METHODOLOGY 

This chapter describes the methodology followed to achieve the research objectives and answer research 

questions.  

4.1. Texture calculation 

 

The GLCM is one of the most popular methods to compute how often different pairs of grey levels of 

pixels occur in an image. The size of a GLCM is determined by the maximum grey value of the pixel. Pixel 

relationships in GLCM can be defined by varying distances and orientation. Since each pixel has eight 

neighboring pixels, there are eight choices for the orientation. However, taking the definition of GLCM 

into account, the possible ways of angle orientations are reduced to four, namely 0 , 45   90 and 135  as 

shown in Figure 4.1. Example of formation of GLCM for distance     in the horizontal direction (0 ) 

is shown in Figure 4.2. The occurrence of pixel intensity 0 with pixel intensity 1 as its neighbor at a 

distance     in the horizontal direction is 3. Thus, the GLCM matrix row 0, column 1 is given a value 

of 3. Similarly, GLCM matrix row 2 column 2 is also given a value of 5, because there are five occurrences 

of pixel intensity 2 as pixel intensity 2 as its neighbor (for     in the horizontal direction). As a result, 

the input image matrix (Figure 4.2a) can be transformed into GLCM (Figure 4.2b).   

 

 

 

 

 

 

 

 

 

 

 

 

 

           Figure 4.1: The four directions for calculating texture features. 

 

 

 

 

 

 

 

 

 

 

    (a)                                                               (b) 

 

Figure 4.2: (a) Example of input image with 4 grey levels (b) GLC M for distance d =1 and direction 0°. 
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Several texture measures can be computed from GLCM that provide texture information of an image. The eight 

second order statistics are listed below, where      is the normalized grey level in the cell        of the matrix,   is 
the number of rows or columns (Haralick et al. 1973). 

4.1.1. GLCM contrast 

GLCM contrast measures the amount of local variation of grey levels in the grey-level co-occurrence 

matrix. GLCM contrast can be computed as follows:  

 

         ∑              
                                                             (4.1) 

4.1.2. GLCM dissimilarity 

 

              ∑     
   
     |   |                                                 (4.2) 

4.1.3. GLCM homogeneity 

Homogeneity measures the closeness of the distribution of the grey level co-occurrence matrix. It ranges 

on the interval [0, 1] and is computed as follows: 

            ∑
    

        
   
                                                          (4.3) 

4.1.4. GLCM entropy 

GLCM entropy can be calculated as follows:  

        ∑              
   
                                                             (4.4) 

 

4.1.5. GLCM angular second moment (ASM) and energy 

GLCM angular second moment measures the local uniformity. Energy is the square root ASM 

                      ∑   
   

   
                                        (4.5) 

4.1.6. GLCM mean 

The GLCM mean is computed as follows: 

   ∑       
   
             ∑       

   
                                              (4.6) 

 

4.1.7. GLCM variance 

 

  
  ∑     

   
         

      
  ∑     

   
         

                    (4.7) 

  

4.1.8. GLCM correlation 

GLCM correlation measures the spatial linear dependency of the grey levels. It can be computed as 

follows: 

 

             ∑     
             

    

   
                                                             (4.8) 
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In this research, the effects of all the eight second order GLCM texture measures on detection of 

farm field boundary were examined. As neighboring pixels are more likely to be correlated than 

pixels far apart, three distance values           pixels in all four different orientations (0°, 45°, 90° and 

135°) were tested.  

4.2. Line Segment Detection Algorithm 

 

The LSD algorithm, a technique developed based on the method of Burns et al. (1986), integrates line 

segment detection with the Helmholtz principle. The algorithm starts by calculating the level-line angle for 

each pixel based on pixel gradient. Level-line angles are angles that show the direction of the dark to light 

transition (edge) and these angles are used to form line-support regions (group of neighboring pixels with 

similar level-line angles). Each line-support region is a potential candidate for a segment and is validated 

based on the calculation of a Number of False Alarms (NFA) of the corresponding geometrical event  

associated with it. If the NFA is very low, then the segment is meaningful and thus, considered as a true 

detection. The complete Pseudo code of the LSD algorithm is given below.   

 

 

 

Algorithm 1: LSD line segment detector 

   input: An image I 

  output: A list out of rectangles 

 

1                          

2    |   |                                 

3        {
                                       |   |   
                                                             

 

4                                       

5                                       

6                                          

7                                          

8                                                           

9                                                     

10                                                   

11                        

12                                                

13                                    

14                                    

15                                            

16                       

17               

18      

 

 The LSD algorithm has three parameters: scale ,s  angle tolerance   and detection threshold   .  

Scale parameter 

The scale parameter is one of the  main parameters of the LSD algorithm. It helps to get a better 

representation by emphasizing certain features and facilitates automatic detection of the required features. 
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LSD results are different when the algorithm is applied at different scales (Grompone von Gioi et al., 

2012). Some objects in an image only may exist as meaningful entities over a certain range of scales 

(Desolneux et al., 2003). Thus, the scale parameter used in the LSD algorithm makes a clear relation 

between structures at different scales.  

 

Angle tolerance              

The angle tolerance   in the LSD algorithm is used to combine pixels into line-support regions. It is 

calculated from 180 / , where the parameter   is the number of different orientations. This implies that 

for   = 16, 8, 4 the angle tolerance   = 11.25    22.5  and 45  respectively. The default value of   is 8. 

 

Detection threshold  

 

The detection threshold parameter explains the confidence limit for the region. It is related to the NFA 

value and is given by                . The NFA is used to decide whether the event is meaningful 

or not. The smaller the NFA, the more meaningful the detected event is (Desolneux et al., 2008). 

 

4.2.1. Multispectral analysis 

The image used in this research is a multispectral WorldView-2 image. The LSD algorithm takes only a 

single band as an input to detect line segments. However, information from all bands might be required to 

increase the capability of the LSD. Comparison of multi spectral information against single band 

information was performed. In order to concentrate all the available information, the gradient  

information in eight bands has to be combined as a single band to be as an input for LSD algorithm. This 

was done by taking  the vector sum of  gradients of all eight bands. 

 

4.2.2. Image scaling 

 The first step of LSD is image downscaling of the input image. This is performed to cope with some 

quantization problems and aliasing. A Gaussian filter is applied to keep balance between avoiding aliasing 

and avoiding image blurring (Grompone von Gioi et al., 2012). The standard deviation of the Gaussian 

kernel is given   
   

 
. 

 

4.2.3. Gradient computation 

 

The image gradient reveals a directional change of image intensity between neighboring pixels in an image. 

The gradient magnitude tells us how fast the image is changing, while the gradient direction tells us the 

direction in which the image changes most rapidly. The gradient computation at pixel       is performed 

using a     mask ( Figure 4.3). This mask was chosen to minimize the dependence of the computed 

gradient values so that pixel independence is preserved as much as possible (Moisan and Morel, 2000).   
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Figure 4.3: Gradient computation using 2×2 mask. 

 

Let        denote the gray level value at pixel     . The image gradient at       is calculated 

 

        
                                   

 
                       (4.9) 

        
                                   

 
                                 (4.10) 

The gradient magnitude is computed as  

       √  
         

                                                     (4.11) 

and the gradient orientation as   

              (
  

  
)                                                              (4.12) 

The level-line angle is orthogonal to the gradient orientation and shows the direction of the edge (Figure 

4.5). Figure 4.4 shows the image gradient in the horizontal and vertical directions. 

 
                                                   

                                              (a)                                                         (b) 

Figure 4.4: Image gradient. (a) Horizontal direction, (b) Vertical direction 
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 In this research, to make use of all the available information present in all eight bands, the changes in x 

and y direction in each band are calculated and then combined as a vector sum 

        ∑   [  ] 
                                                                (4.13) 

and  

         ∑   [  ] 
                                                              (4.14) 

 

where    [  ] and   [  ] denote the changes in x and y directions of band k respectively. The gradient 

magnitude of the vectors sum is computed as  

       √  
         

                                        (4.15) 

 

and gradient orientation is computed as  

              (
  

  
)                                                    (4.16) 

The gradient magnitude and orientation computed using Equations (4.15) and (4.16) are used for the next 

steps of the LSD algorithm. 

 
Figure 4.5: Edge orientation, reprinted from Meer and Georgescu (2001) 

4.2.4. Gradient ordering and threshold 

 

After calculating gradient magnitude and gradient orientation at each pixel, pixels are arranged in a 

decreasing order based on their gradient magnitude. Pixels with high gradient magnitude are expected to 

be edge pixels. So, it is reasonable to start at pixels with high gradient magnitude for region growing. But 

pixels with low gradient magnitude correspond to flat zones or smooth transitions. Thus, pixels with 

gradient magnitude less than a certain threshold value    are rejected and not considered in the 

construction of line-support regions. The threshold is set by the formula 

  
 

    
                                                                                (4.17) 

where the parameter   is the angle tolerance to be used in the region growing algorithm and the parameter 

  is a bound on the possible error in the value of the  gradient due to quantization noise and is set equal to 

2 (Grompone von Gioi et al., 2012).  

4.2.5. Region Growing 

 Having the magnitude and orientation of the image gradient, the next step is the formation of line- 

support regions. Pixels that share the same gradient orientation are grouped to form the line-support 

regions. The region growing algorithm starts from the first seed pixel from the ordered list and continues 



 AUTOMATED FARM FIELD DELINEATION AND CROP ROW DETECTION FROM SATELLITE IMAGES  

 

21 

to the second and so on to form a line-support region (Figure 4.6). The available neighboring pixels are 

tested recursively and the ones whose level-line angles are equal to the angle of the region up to a certain 

tolerance   are added to the region. An 8-connected neighborhood is used. The initial region angle  

        is set to the level-line angle of the seed pixel. Whenever a new pixel is added to the region, the 

region angle is updated by  

 

              (
∑       

∑       
)                                                                             (4.18) 

 

where    is the level-line angle of the newly added pixel and j runs over the region pixels. The process 

continues until no other pixel can join to the region.  

 

 

 

 

 

 

 

 

 

 

Figure 4.6: Regional growing process of aligned points, reprinted from Morel et al. (2010) 

 

4.2.6. Line segment localization 

 

Following the formation of a line-support region, the next step is determination of the location and 

orientation of the line segment (Figure 4.8). To do that, Burns et al. (1986) described  a method  to extract  

a straight line from the corresponding line-support region. In Burns‟ method, orientations of lines are 

estimated by fitting planes to pixel intensities over line-support regions. The locations of lines are obtained 

from the intersections of the horizontal plane and the fitted planes. The method provides accurate results, 

but it is computationally expensive (Yuan & Ridge, 2014). In this research, orientation of line is obtained 

by adopting Harris edge and corner detector method (Harris & Stephens, 1988). Let W be the line-support 

region. If pixel difference is taken by shifting the region W, the largest change occurs when the shift is 

orthogonal to the edge in the region, but the smallest change occurs when it is along the edge, that 

corresponds the line orientation. The shift vector resulting in the smallest change (that shows the line 

orientation) is the eigenvector corresponding to the smaller eigenvalue of the matrix  

                                 (
∑   

 
 ∑      

∑      ∑   
 

 

)                                                         (4.19) 

 

where    and    are the derivatives in horizontal and vertical directions  in the line-support region W. 

 

To locate the line segment that is best aligned with the edge in the line-support region, Hough transform 

is used. The overall gradient magnitude that a line passes is examined and the one that gives the maximum 

value is selected. The Hough transform parameterizes a straight line using two parameters:   and   by the 

equation  

                                                                                      (4.20) 
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where   denotes the distance from the origin to the closest point of the straight line, and   is the angle 

between the horizontal axis and the line that connects the origin with the closest point ( Figure 4.7). All 

points that lie along a straight line in the Cartesian space can be represented by a point       in the 

Hough space. Each point       in the Hough space can be transformed to a straight line in the Cartesian 

space by the inverse Hough transform. 

 

 

 
                                          Figure 4.7: Representation of a line by   and θ. 

Once we found the value of   from the orientation of the line, each pixel location (    ) in the line-

support region is substituted into equation (4.20) weighted by its gradient magnitude to obtain a value 

of  . The maximum value of   together with   define a unique line. And finally the line is drawn in the 

image plane. 

 

                                             
 

(a)  Line-support region.                               (b) Line segment extracted from line-support region. 

 

Figure 4.8: Example of a line-support region and its associated line segment. 

4.2.7. Rectangular approximation 

 

To validate whether a line-support region is meaningful or not, the geometrical event associated to it must 

be found. Here rectangles are used to approximate line-support regions. The gradient magnitude of each 

pixel is used as the pixel‟s “mass‟‟. And then, the center of mass of the region is used to select the center 

of the rectangle and the first inertia axis of the region to select the direction of the rectangle. The center of 

the rectangle         is computed as follows: 
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∑                  

∑             
                                                                                       (4.21) 

   
∑                  

∑             
                                                                                     (4.22) 

where,      is the gradient magnitude of pixel   in the region and   runs over all the pixels in the region. The 

direction of the rectangle is set to the eigenvector angle associated to the smallest eigenvalue of the matrix  

 

  (
      

      
) 

where  

    
∑                

 
        

∑             
                                                                        (4.23) 

    
∑                         

∑             
                                                                        (4.24) 

 

    
∑                             

∑             
                                                       (4.25) 

 

Then, the smallest values of length and width of the rectangle are chosen to cover the full line- support  

region (Figure 4.9). 

 

 

 

                         
                                    (a)                                                                       (b) 

Figure 4.9: The smallest rectangle that covers all pixels of the line-support region: (a) without line segment. (b) with 
line segment 

4.2.8. Number of False Alarms (NFA) computation 

 

The Number of False Alarms (NFA) associated with the geometrical event (rectangle) is calculated based 

on the tail of the binomial distribution taking into account the dimensions of the image after scaling. The 

NFA associated with a rectangle r  of the given image   with dimensions  and   is given by  

                                                           

             
 

                                  (4.26) 

       where     are the total number of pixels and the total number of aligned points in the rectangle  r

 respectively, and p

 

is the probability that a randomly selected pixel in the rectangle is an aligned pixel 

(Grompone von Gioi et al., 2008). Finally, the “a contrario” model is used to validate whether it is a valid 

detection or not. Here, the background model is a gradient field where the gradient orientations of each 

pixel are independent and identically distributed (i.i.d) random variables. The rectangles with       are 

considered as meaningful. The lower the value of  , the more meaningful the rectangle is. 
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4.3. Crop rows detection 

 

Since most crops are sown and cultivated in rows, detecting crop rows automatically is an important task. 

Agricultural practices like planting, plant protection, weeding, spraying and harvesting require high 

precision and these tasks are repeated several times, which are very demanding for humans. Detecting  

crop rows automatically facilitate the automation of many of the agricultural activities which intern 

increase efficiency and improve yield. In addition to the location of crop rows, knowing accurate  

information on their orientation (the direction in which the plots are done) and spacing between them 

greatly assist in the monitoring of crops. The developed algorithm reports the line that represents the crop 

row, with the orientation of the line. From the orientation of the detected line segments, dominant 

orientation of rows is calculated. To make automatically detected line segments parallel to the x-axis and 

find the spacing between them (Figure 4.10), end points       of each line segment are rotated about the 

center of the image         using the formula 

                                    (    )                                                                               (4.27) 

                                   (    )                                                                                (4.28)                         

where   is the negative of the dominant orientation of crop rows. The vertical distance between any 

consecutive parallel lines is the same as the distance between the points at which the lines intersect the y-

axis. Since there may not be one to one correspondence between the number of automatically detected 

line segments and the number of crop rows in the reference dataset due to missing and false detections , 

the spacing between automatically detected line segments may not directly reflect the spacing between the 

actual crop rows. Nevertheless, the crop rows in the reference dataset almost have constant spacing 

(usually follow certain periodic nature). Therefore, it is of importance to find a technique that detects the 

hidden period from the spacing of the automatically detected line segments. Once we have found all the 

points of intersections of the y-axis and the automatically detected lines (after rotating the lines), the 

following procedures were followed to find the hidden period from the distribution of the points. 

 

1. The Euclidean distance between every pair of points were calculated and a matrix with these 

distance values as entries was generated. That is, the matrix entries for pairs of points are the 

Euclidean distance between these pairs of points. These values are smaller when points are close 

and larger when points are far apart. 

2. For different lag values, probability distributions of distance values that fall in the given interval 

were calculated. This was done by dividing the number of distance values that fall in the given 

interval to the total number of pairs of points. 

3. The lag which yielded the highest probability (dominant frequency)  was selected as the period for 

the distribution. 

Finally, the period (lag), that was selected in step 3,  was considered as the average spacing between crop 

rows. 

 

 

 

 

 

 

 

 

 
 

Figure 4.10: Rotating the lines by angle   to make them  parallel to the x-axis, d is the spacing between the lines. 
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4.4. Parameter tuning and validation 

 

In this section, edge strength determination procedure and validation method for parameter tuning are 

presented. Contrast, width and steepness of line segments were used to determine the edge strength of 

segments. The validation method presented in this thesis assesses the correspondence between the 

reference and the detected datasets using two measures: ratio of missing detection(RM) and ratio of false 

detection (RF). To assess the positional accuracy of successful detections, mean and standard deviation of 

the distances of corresponding points were computed.  

4.4.1.   Edge Strength Determination 

There are some basic attributes of a line that can be calculated from the line-support region, which reflect 

the strength of an edge. These include: length, width, contrast and steepness. These terms are defined as 

below (Burns et al., 1986). 

 Length of the image line is the length of the segment of the line in its line-support region. 

 Width of the image edge is the size of the interval, across the profile, within which the 

majority of the intensity change occurs. It is the width of its line-support region. 

      
                               

      
                           (4.29) 

 Contrast of the edge is the difference of the average intensities of the two sides of the 

line in the line-support region. 

 Steepness of a straight edge is defined as  

 

          
        

     
                                                     (4.30) 

 

 

Figure 4.11: Line- support region W with its corresponding line that divides the region into     and   . 

 

Suppose   be a line-support region with corresponding line 

                                                                                                             (4.31) 

The line divides the line-support region   into two regions    and    (Figure 4.11): the region in one 

side of the line with  

                                                                                                                    (4.32)                                     
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and the region on the other side of the line with  

                                                                                                                    (4.33)                        

That is  

                              

                               . 

 

The average intensities on both regions are calculated by 

  ̅   
 

 
 ∑                   

                                                            (4.34) 

  ̅   
 

 
 ∑                   

                                                                                            (4.35) 

where          is the intensity value at pixel        ,   and   are the number of  pixels in    and    

respectively. Then contrast of   the edge is calculated by 

         

           ̅    ̅                                                                                        (4.36)  

and steepness of the  edge is computed as  

          
        

     
                                                                                     (4.37) 

The procedure of edge strength determination is summarized in Figure 4.12.   

 

 

                               

Given line support region with

 its line

Calculate average intensities for regions 

R1 and R2

Compute contrast

Compute steepness

Choose Threshold T

Is steepness >T ?

Strong EdgeWeak edge

N

Y

 
 
 Figure 4.12: Steps in edge strength determination. 
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4.4.2. Validation and  Accuracy Assessment 

 

The automatically extracted line segments can be compared with the manually digitized boundaries of the 

reference data by adopting accuracy assessment methods proposed in literature. The method presented in 

this research is based on the method developed by Sidiropoulou Velidou et al. (2015), which uses the 

distance and orientation difference between the reference dataset and automatically extracted dataset. 

Here, instead of taking the local orientation difference of a pair of corresponding points, the orientation 

difference between the line segments where the two corresponding points lie is considered. Let    

        be the detected line segments with orientations    ,           respectively. To assess the level 

of correspondence between these detected line segments with the reference dataset, the following steps 

are followed. 

Steps:  

1.  Set distance thresholds   ,    and angle threshold   . 

2. Approximate the reference polygons by a set of local straight line segments and label them  

           and compute their corresponding orientation               .  

3. For each line segment in step 2, take sample points at an interval equal to the pixel spacing over 

its entire extent. 

4. Determine corresponding points between reference line segments and detected line segments.   

Two points are considered to be corresponding points if they are close and the line segments 

where these points lie share similar orientation. These measures are applied starting from 

reference to detection and vice versa. Thus, two points are considered to be corresponding if the 

following conditions are satisfied.   

a.                                                                                                          (4.38) 

b. |   |                                                                                                 (4.39) 

where S is the Euclidean distance between the two points, and   is the orientation of the detected 

line segment where the first point lies and,   is the orientation of the reference line segment 

where the corresponding point lies. These orientation angles were transformed into the range  

[   ]and orientations with a difference of   were considered parallel. 

From reference to detection 

If there exists a corresponding point for the interval point of the reference line, then this is considered as 

successful detection. If not, such point is considered as a missing one. 

The ratio of missing (RM) and Ratio of successful detections(     are defined as follows: 

   
                                                         

                                
                                      (4.40) 

                                                                                                                  (4.41) 

Low RM value would imply that many points in the reference dataset have corresponding points in the 

detected dataset. That is, low value of RM implies high successful detection. RM and      measure the 

completeness of the result with respect to reference dataset. 
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From detection to reference 

The same procedures are repeated from detected points to the interval points of the reference lines. 

If there exists a corresponding interval point for the detected point, then this is considered as successful 

detection. If not, this detected point is false detection. The ratio of false detection (RF) and ratio of 

successful detections (     are given by: 

   
                                                        

                               
                      (4.42) 

                                                                                                      (4.43) 

High RF would imply a deviation in either the position or the orientation of the detected dataset from the 

reference dataset. The    and     measure the correctness of the result. 

Positional Accuracy  

To assess the positional accuracy of successful detections, mean and standard deviation of the distances of 

corresponding points were computed. These values show the positional shift between the reference and 

detected dataset in terms of distance. 

4.4.3. Parameter tuning 

 

In order to select the best set of data that have better extracted line segments using LSD algorithm, the 

four parameters: scale (S), gradient magnitude threshold (    angle tolerance (   and detection threshold 

(   were considered. The tuning process was performed individually by varying the values of one 

parameter over a certain range and keeping the other parameters fixed. The order of the tuning was based 

on their occurrence in the algorithm. The evaluation of the results was based on the minimization of the 

sum of RM and RF and giving balance between RM and RF as much as possible. First the parameter S 

was tuned by keeping the other three parameters fixed to their default values. After the tuning of  S, the 

second and third parameters tuned were   and   respectively. The tuning of   was performed at last. The 

tuning process was performed twice on two different datasets. The first was performed on a small subset 

of multispectral satellite imagery (acquired on 29 July 2014) from study area Mali for the purpose of field 

boundary delineation and the second was performed on a panchromatic image from Nigeria (acquired on 

12 September 2015) for the purpose of crop row detection. In the tuning process, for farm field 

delineation, the distance thresholds (Equation 4.38) were set to 3 m (which is close to 2.4 m, the minimum 

acceptable standard accuracy level in rural areas set by the International Association of Assessing Officers) 

(Officers, 2012) and angle threshold was set to    ⁄  . For crop row detection, the distance thresholds 

were set to 0.75 m and the angle threshold was set to     . The tuning results of these parameters are 

presented in chapter 5. 
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5. RESULTS  

5.1.  Farm field delineation 

5.1.1. Tuning of S  

 

By fixing the two parameters         and      (Grompone von Gioi et al., 2012), scale values in the 

range [0.2, 1.5] at an interval of 0.1 were tested to see the patterns of ratio of missing detection (RM) and 

ratio of false detection (RF). The second and third columns of Table1 show the patterns of RM and RF 

for varying scale. For these scale values, both RM and RF showed small variations in narrow ranges. RM 

varied from 0.78 to 0.94 whereas RF varied from 0.50 to 0.77. For S  [     ], RM followed a decreasing 

pattern (Figure 5.1a) except at S =0.8 but RF followed an increasing pattern from S = 0.2 to S =0. 4 and 

showed small variations between S = 0.5 and S=1.0. For S >1, RF generally followed an increasing 

pattern, but RF oscillated between values of 0.73 and 0.7. The minimum value of RM was observed at S = 

0.8 and S = 1.0. Both RM and RF are high for all scale values in the tested interval. It was observed that 

RM is slightly higher than RF for all scale values. Figure 5.1b shows the graph of RM + RF for varying 

scale parameter. The minimum RM+RF was observed at S =0.2, followed by S =1.0. Though the 

minimum sum was observed at S= 0.2, there was no balance between RM and RF. Only very few 

detections were observed at this S value (Figure 5.2a). Thus, the other S value that minimized the sum 

RM+RF was S = 1.0. There was relatively balance between RM=0.78 and RF=0.73 at S =1.0. Thus, S = 

1.0, which corresponds to the scale of the original image, was selected as an optimum value. The detection 

results for selected S values are presented in Figure 5.2. 
Table 5.1: RM and RF for varying  S for fixed     and        . 

S RM RF RM+RF Average distance 

between points 

    (m) 

 Standard deviation of distance 

    Det. toRef. Ref. to Det. Det. to Ref. Ref. to Det. 

0.2 0.94 0.5 1.44 1.7 1.69 0.82 0.83 

0.3 0.89 0.75 1.64 1.62 1.62 0.78 0.79 

0.4 0.84 0.77 1.61 1.59 1.58 0.77 0.77 

0.5 0.81 0.76 1.57 1.67 1.66 0.75 0.75 

0.6 0.8 0.77 1.57 1.61 1.61 0.76 0.76 

0.7 0.8 0.77 1.57 1.54 1.53 0.76 0.76 

0.8 0.78 0.75 1.53 1.49 1.48 0.8 0.79 

0.9 0.79 0.74 1.53 1.52 1.51 0.76 0.77 

1.0 0.78 0.73 1.51 1.49 1.48 0.72 0.73 

1.1 0.79 0.73 1.52 1.48 1.46 0.71 0.71 

1.2 0.80 0.76 1.56 1.48 1.48 0.73 0.73 

1.3 0.82 0.75 1.57 1.54 1.54 0.73 0.73 

1.4 0.84 0.77 1.61 1.56 1.54 0.76 0.77 

1.5 0.84 0.76 1.6 1.58 1.55 0.74 0.73 
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(a)                                                                           (b) 

Figure 5.1(a) Ratio of missing(RM) and ratio of false (RF) detections, (b) RM+RF for varying scale 

parameter S for fixed   =22.5° and   =1. The low S value would imply coarse spatial resolution and large 

S value would imply fine spatial resolution.  

             
                                    (a)                                                                      (b)     

                  
                                  (c)                                                                                (d)   

Figure 5.2: Detection results for different S values. (a) S = 0.2 , (b) S = 0.5 , (c) S = 0.8, (d) S = 1.0. Blue 

segments: reference segments, white: detected segments. For the image displayed: R= 7, G = 5, B = 3.  
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Mean distance and standard deviations between corresponding points 

 

The mean distance and standard deviation from points of the detected data set to the corresponding  

sample points of the reference dataset were calculated. These statistical measures were also computed in 

the opposite direction, from reference points to detected points. The results are presented in Table 5.1. 

These distance values and standard deviations reflect the positional accuracy of successful detections. That 

is the distance values show the positional shift between the reference and detected segments. Higher 

distance values indicate higher deviation of the detected line segments from the reference segments. As 

can  be seen from Figure 5.3, the distance values vary depending on the scale parameter. At lower values 

of S, the deviation is higher. Relatively lower distance values were observed between S=0.8 and S=1.2.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3: Distance between points for varying   the value of S 

Contrast and steepness of detected  line segments  

 

Figure 5.4 (a) -(d) show box plots of contrast and steepness of both successful detection and false 

detection of segments for S =1,         and    . Box plots (a) and (b) show the distribution of 

contrast for true detection and false detection respectively. In these box plots, it is observed that the mean 

contrast of segments for true detections is higher than the mean contrast of segments of that of false 

detections. Box plots (c) and (d) show the distribution of the steepness of segments of both successful 

detections and false detections respectively. From the box plots it is observed that the mean steepness of 

line segments of true detections is greater than the mean steepness of segments of false detections. Thus, 

these attributes (contrast and steepness) could help for further processing  as they  rank edges according 

to their strength.  
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                                (a)                                                                                 (b) 

 

 

 

             

 

         

 

 

 

 

                               (c)                                                                                  (d) 
Figure 5.4: Box plots showing distributions of contrast and steepness of true detections and false detections. (a) 
Contrast of successful detections, ( b) Contrast of false detections,  (c) Steepness of true detections, (d) Steepness of 
false detections. 

5.1.2. Tuning of gradient magnitude threshold   

To see the patterns of RM and RF on varying the values of  , the other parameters S,    and   were kept 

fixed at values 1.0, 22.5  and 1.0 respectively. The threshold    is determined by the formula given in 

Equation 4.17. Usually, the parameter  , a bound on the possible error in the gradient value due to 

quantization noise, was set to 2 (Grompone von Gioi et al., 2012). Different   values were tested to see 

the pattern of RM and RF. The results are presented in Table 5.2. For q < 2, there were almost no 

changes observed of the values of both RM and RF. But RF decreased rapidly when q increased to 4. 

However, there were only very few detections observed as the value of q increased. Thus, q = 2 is a good 

choice as suggested in the literature.  

 
Table 5.2:  RM and RF for varying gradient magnitude threshold for fixed S =1,   =22.5° and   =1. 

 

 

 

 

 

 

 

 

 

  RM RF RM+RF 

0.005 0.77 0.87 1.64 

0.05 0.77 0.87 1.64 

0.5 0.77 0.87 1.64 

1 0.77 0.83 1.60 

2 0.78 0.73 1.51 

3 0.82 0.62 1.44 

4 0.87 0.51 1.38 
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5.1.3. Tuning of angle tolerance 

The third parameter to be tuned was  . For this tuning,    and   were  both fixed at value of 1.0 and the 

quantization q for gradient threshold was set to 2. The values of   between     and     at an interval of 

     were tested. The results are presented in Table 5.3. For    between     and    , RM followed a 

decreasing pattern, reaching its minimum value 0.77 at        But it followed an increasing pattern for  

      (Figure 5.5a). On the other hand, RF generally followed an increasing pattern as   moves from  

lower to higher values. Figure 5.5b presents the graph of RM +RF for varying    The minimum value of   

 
Table 5.3: RM, RF, Average distance  and standard deviation between corresponding points for varying τ for fixed 
S=1. 0 and ε=1. 

  

(Degree) 

RM RF RM+RF Average distance 

between points (m) 

Standard deviation of 

distance 

    Det. to 

Ref. 

Ref to Det.  Det. to Ref. Ref. to Det. 

10 0.87 0.49 1.36 1.47 1.48 0.72 0.73 

12.5 0.83 0.56 1.39 1.46 1.47 0.71 0.72 

15 0.81 0.65 1.46 1.51 1.51 0.72 0.72 

17.5 0.80 0.68 1.48 1.48 1.48 0.73 0.73 

20 0.79 0.71 1.5 1.51 1.50 0.74 0.73 

22.5 0.78 0.73 1.51 1.49 1.48 0.72 0.73 

25 0.77 0.74 1.51 1.51 1.50 0.73 0.73 

27.5 0.78 0.76 1.54 1.50 1.50 0.72 0.73 

30 0.79 0.77 1.56 1.50 1.50 0.73 0.73 

32.5 0.80 0.76 1.56 1.51 1.51 0.73 0.74 

35 0.84 0.77 1.61 1.56 1.56 0.74 0.75 

 

 the sum was observed at        However, visual inspection showed that there were only few detections 

at this   value. RM+RF was almost stable between       and      . So one value from these three 

values could be selected. The value         was selected as optimum value(average distance between 

corresponding points is lower for this value than the other two). Detection results for different   values 

are presented in Figure 5.6. 

 

 

 

 

 

 

 

 

 

 

 

 

  

(a)                                                                               (b) 

Figure 5.5 (a) Ratio of missing (RM) and ratio of false (RF) detections, (b) RM+RF for varying    for  

fixed S = 1.0 and   =1.0.  
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             (a)                                                                                                    (b) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                     (c)                                                                                         (d)    
Figure 5.6: Detection results for different   values for  fixed values          .0 (a)      , (b)        , (c) 

       , (d)      . Blue segments are reference segments, white segments are detected segments. For image 
displayed  R=7, G=5, B=3. 
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5.1.4.  Tuning of detection threshold epsilon (   

 

The last parameter to be tuned was the detection threshold  . Usually the value of this detection threshold 

is set to 1 without any further experiment (Desolneux et al., 2003). In order to decide whether     is 

indeed the optimal value for this application and to check the stability of the results, different detection 

threshold values above and below 1.0 were tested.  The scale parameter was fixed to     and the angle 

tolerance was fixed to         . As can be seen from Table 5.4, generally, RM values are higher for 

    than RM values for      The opposite happens for RF. Low    values mean strict threshold, 

which allows only more meaningful segments to pass the NFA control. Both RM and RF are stable for  

values of   between 0.5 and 10. Any value in this interval can be selected as optimal value. However, in 

order not to accept many segments that could randomly occur in the image, the value of   is set to 1.0. 

 
Table 5.4: RM and RF for varying detection threshold   for fixed S = 1.0 and    22.5 . 

  RM RF RM+RF Average distance between 

points 

    (m) 

 Standard deviation of 

distance 

    Det. to Ref. Ref. to Det. Det. to Ref. Ref. to Det. 

      0.95 0.60 1.55 1.46 1.45 0.67 0.67 

      0.82 0.67 1.49 1.50 1.50 0.74 0.73 

0.1 0.79 0.71 1.50 1.51 1.50 0.74 0.73 

0.5 0.79 0.71 1.50 1.51 1.50 0.74 0.73 

1 0.78 0.73 1.51 1.51 1.50 0.74 0.73 

5 0.78 0.73 1.51 1.49 1.48 0.72 0.73 

10 0.78 0.73 1.51 1.49 1.48 0.72 0.73 

50 0.78 0.74 1.52 1.49 1.48 0.72 0.73 

     0.78 0.74 1.52 1.49 1.48 0.73 0.73 

 

Results after parameter tuning 

After tuning all the three parameters individually, the optimum values of the parameters selected were 

S=1,         and    . For these selected parameter values, the ratio of missing and the ratio of false 

detections obtained were RM = 0.78 and RF = 0.73 respectively. The resulting image, successful 

detections from reference to detection and detection to reference are shown in Figures 5.7- 5.9. 

 

 

 

 

 

 

 

 

 

 

 

 

 



AUTOMATED FARM FIELD DELINEATION AND CROP ROW DETECTION FROM SATELLITE IMAGES  

 

36 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
Figure 5.7: Detected line segments with reference dataset on image band( blue segments are reference segments, 
white segments are detected segments, R=7, G=5, B=3) for S=1, τ=22.5° and ε=1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 5.8: Successful detections from reference to detection for S=1,              Blue segments are reference 
segments, black segments are detected segments, green segments show successful detections.  
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Figure 5.9: Successful detections from detection  to reference for S=1, τ=22. 5°, ε=1. Blue segments are reference 
segments, red segments are detected segments, green segments show successful detections. 

Results of LSD on Texture Bands 

The eight second order texture measures were tested for three different spatial distance values (   1, 2, 3 

pixels) in four different directions (0 , 45 , 90 , 135 ). The window size used for GLCM calculation was 

   . Comparison of the results among these texture measures was performed in terms of RM and RF 

values. The three texture measures which yielded relatively better results are GLCM contrast, GLCM 

mean and GLCM variance. The RM and RF values of these three texture measures for three spatial 

distance  values in the horizontal direction are presented in Table 5.5. As can be seen from the Table, both 

RM and RF are very high for all three GLCM texture measures. For GLCM contrast, there are slight 

variations in the values of RM and RF for different distance values (Figure 5.10a). For GLCM mean and 

GLCM contrast, varying the spatial distance has almost no effect on the RM and RF (Figure 5.10 (b) & 

(c)). GLCM variance has low RM and RF values as compared to both GLCM mean and GLCM contrast. 

Detected results of LSD applied on GLCM contrast for   = 3 in the horizontal direction is shown in 

Figure 5.11 and detection results for GLCM mean and GLCM contrast results for   = 3 in the horizontal 

direction are presented in Appendix (B). For GLCM mean  RM > RF, but only a few line segments were 

detected. 
 

Table 5.5: RM and RF for three spatial distance values 

 

 

 

 

 

 

 

 

 

 

 

 

Texture Measure Distance 

(d) 

RM RF 

GLCM contrast 1 0.85 0.87 

2 0.83 0.90 

3 0.82 0.90 

GLCM mean 1 0.96 0.86 

2 0.96 0.86 

3 0.96 0.86 

GLCM variance 1 0.79 0.83 

2 0.79 0.83 

3 0.79 0.83 
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            (a)                                                                                          (b) 

 

 

 

                                            

 
 

 

                            (c) 

Figure 5.10: RM and RF for three spatial distance values in the horizontal direction. (a) GLCM contrast, (b) GLCM  
mean, (c) GLCM variance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.11: Detected line segments with reference dataset on texture band (GLCM contrast for     in 

the horizontal direction) for S=1,              Blue segments are reference segments, white 

segments are detected segments, R=7, G=5, B=3. 
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5.2. Parameter tuning for crop rows detection 

5.2.1. Tuning of S 

 

 As in section 5.1, the first parameter to be tuned was scale parameter S. Values of S between 0.2 and 1.5  

at an interval of 0.1 were experimented by fixing         and    . The results are presented in Table 

5.6. RM showed higher variation than RF. The range at which RM and RF varied were [0.17, 1] and [0.48, 

1] respectively. The maximum values of RM and RF were observed at S = 0.2 and S= 0.3. At these S 

values, visual inspection showed that the algorithm detected very few line segments. The minimum value 

of RM was 0.17 which was observed at S = 0.8 and the minimum value of RF was 0.48 which was 

observed at S = 0.8 and S =1.0. For S [       ], both RM and RF followed a decreasing pattern as can  

 
Table 5.6: RM and RF for varying S for fixed         and    . 

 

S RM RF RM+RF Average distance between 

points (m) 

 Standard deviation of distance 

    Det. to Ref. Ref. to Det. Det. to Ref. Ref. to Det. 

0.2 1.00 1.00 2.00 - - - - 

0.3 1.00 1.00 2.00 - - - - 

0.4 0.99 0.86 1.85 0.34 0.36 0.17 0.18 

0.5 0.75 0.57 1.32 0.41 0.41 0.18 0.18 

0.6 0.43 0.53 0.95 0.37 0.36 0.19 0.18 

0.7 0.23 0.49 0.72 0.37 0.34 0.19 0.18 

0.8 0.17 0.48 0.65 0.37 0.34 0.18 0.17 

0.9 0.23 0.50 0.72 0.38 0.35 0.18 0.17 

1.0 0.29 0.48 0.76 0.38 0.34 0.19 0.17 

1.1 0.27 0.49 0.75 0.40 0.36 0.18 0.17 

1.2 0.36 0.51 0.87 0.39 0.36 0.18 0.18 

1.3 0.39 0.51 0.91 0.41 0.38 0.19 0.19 

1.4 0.48 0.52 1.01 0.40 0.37 0.19 0.19 

1.5 0.57 0.54 1.11 0.41 0.39 0.19 0.19 

 

 

be seen in Figure 5.12a. But for S> 0.8, RM followed an increasing pattern with an exception at S=1.1. RF 

was relatively stable for S >0.8. Figure 5.12b shows RM+RF for S values between 0.2 and 1.5. At this 

interval, the minimum and maximum values of RM+RF were 0.65 and 2.0 respectively. This large range of  

RM+RF shows the sensitivity of the result to variation of parameter S. The value of S which yielded the 

minimal sum of error RM+RF=0.65 was 0.8 and this value was selected as an optimum value. The 

detection results for two different S values are shown in Figure 5.13. These two detection results show 

how the scale parameter is critical on detection results. 
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(a) 

     

 

 

 

 

 

 

 

 

 

 
(b) 

Figure 5.12 (a) Ratio of missing(RM) and ratio of false(RF) detections, (b) RM+RF for varying scale parameter S for 

fixed         and    . The low S value would imply coarse spatial resolution and large S value would imply fine 
spatial resolution. An optimum value is observed at S = 0.8                  
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(a)                                                                                                   ( b ) 

 

                               (a)                                                                                        (b) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                  (c)                                                                                                               (d)                                                                                      
Figure 5.13: Successful detections for two different S values. Green: successful detection. (a) Successful detections 
from reference to detection for S =0.5, (b) Successful detections from detection to reference for S =0.5, (c) 
Successful detections from reference to detection for S =0.8, (d) Successful detections from detection to reference  
for S =0.8. Detection results are better for (c) and (d) than (a) and (b). which shows the influence of scale parameter 
on detection results 
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5.2.2. Tuning of   

 

To see the patterns of RM and RF on varying the values of  , the values of S and   were kept fixed at 0.8 

and 1.0 respectively. Values of   between 10° and 35° at an interval of 2.5° were tested. The results are 

presented in Table 5.7. For    between     and      , RM followed a decreasing pattern  But it followed 

an increasing pattern for         except at         (Figure 5.14a). On the other hand, RF increased 

from 0.46 to 0.50 as   moved from     to     and became almost stable for higher values  . Figure 5.14b  

presents the graph of RM +RF for varying    The value of   that minimized the sum M+RF was   

     .and this value was selected as an optimum vlue. 
 

Table 5.7: RM and RF for varying angle tolerance   and for fixed values of S=0.8  and   1. 

  

(Degree) 

RM RF RM+RF Average distance 

between points (m) 

Standard deviation of 

distance 

    Det. to Ref. Ref to Det.  Det. to Ref. Ref. to Det. 

10 0.30 0.46 0.76 0.38 0.35 0.18 0.16 

12.5 0.24 0.48 0.72 0.38 0.35 0.18 0.16 

15 0.20 0.50 0.70 0.38 0.36 0.17 0.16 

17.5 0.17 0.49 0.66 0.37 0.34 0.18 0.17 

20 0.18 0.49 0.67 0.37 0.34 0.18 0.17 

22.5 0.17 0.48 0.65 0.37 0.34 0.18 0.17 

25 0.27 0.50 0.77 0.37 0.34 0.19 0.17 

27.5 0.28 0.50 0.77 0.37 0.34 0.18 0.17 

30 0.33 0.50 0.83 0.37 0.34 0.18 0.17 

32.5 0.34 0.49 0.83 0.37 0.34 0.18 0.17 

35 0.46 0.52 0.98 0.37 0.35 0.19 0.18 

 

 

 

  

 

 

 

 

 

 

 

 

 
 

 
          (a)                                                                                             (b) 

Figure 5.14: (a) Ratio of missing(RM) and ratio of false(RF) detections, (b) RM+RF for varying angle tolerance  . 

Low   values are more restrictive for region growing, which does not allow pixels  with large differences in gradient 
orientation to be included in the same line-support region. 



 AUTOMATED FARM FIELD DELINEATION AND CROP ROW DETECTION FROM SATELLITE IMAGES  

 

43 

5.2.3. Tuning of detection threshold   

The third parameter to be tuned was the detection threshold  . RM followed a decreasing pattern as   

moved to higher values as expected (Table 5.8). The highest value of RF=51 was observed at the highest  

value of  . Both RM and RF were stable between    0.1 and    100. Thus,     is an acceptable 

choice as an optimal value as suggested in the literature. 
 

Table 5.8: RM and RF for varying detection threshold   and for fixed values of S=0.8  and   22.5 . 

  RM RF RM+RF Average distance between 

points 

     (m) 

 Standard deviation of 

distance 

    Det. to Ref. Ref. to Det. Det. to Ref. Ref. to Det. 

      0.38 0.48 0.88 0.37 0.34 0.18 0.17 

      0.30 0.47 0.77 0.37 0.34 0.18 0.17 

0.001 0.24 0.49 0.72 0.37 0.34 0.18 0.17 

0.01 0.23 0.49 0.72 0.37 0.34 0.18 0.17 

0.1 0.21 0.49 0.70 0.37 0.35 0.18 0.17 

0.5 0.17 0.48 0.66 0.37 0.35 0.18 0.17 

1 0.17 0.48 0.65 0.37 0.34 0.18 0.17 

2 0.17 0.48 0.65 0.37 0.34 0.18 0.17 

10 0.17 0.48 0.65 0.37 0.34 0.18 0.17 

50 0.17 0.48 0.65 0.37 0.34 0.18 0.17 

100 0.17 0.48 0.65 0.37 0.34 0.18 0.17 

     0.13 0.51 0.64 0.37 0.33 0.18 0.17 

 

Results after parameter tuning 

After tuning all the three  internal parameters individually, the optimum values of the parameters selected 

were S=0.8,         and    . For these selected parameter values, the ratio of missing and the ratio 

of false detections are RM = 0.17 and RF = 0.48 respectively. The resulting image, successful detections 

from reference to detection and detection to reference are shown in Figures 5.15 - 5.17. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.15: Detected results for optimum parameter values S=0.8,         and    . 
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Figure 5.16: Successful detections from reference to detection for optimum parameter values S=0.8,  =22.5° and 

  =1. Green color shows successful detections, red color shows  missed detections, black lines are detected rows.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.17: Successful detections from detection to reference for optimum parameter values S = 0.8, 

        and    . Green line segments show successful detections, red line segments show false 

detections. 
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5.3. Validation of the results of crop rows detection 

 

After fixing all parameter values, four subsets of the image of varying crop row width were selected to test 

the algorithm using the obtained parameter values. The number of crop rows in the selected subsets,  

including the subset for parameter tuning, ranges from 17 to 26. One additional subset of the image which 

has no crop rows was selected to check whether the algorithm reports false detections or not. The error 

ratios (RM and RF) for each subset are presented in Table 5.9 and the detection results of of three subsets 

are presented in Figure 5.18-5.20. As can be seen from Table 5.9, ratios of missing detection (RM) of all 

subsets were higher than RM of the tuning subset. But ratios of false detections (RF) of two subsets (1 

and  3) were lower than that of the tuning subset. RM is less than RF for all subsets. For most wide crop 

rows, the algorithm detected more than one segment for a single row. This caused relatively higher value 

of RF. For the selected subset with no crop rows, the algorithm didn‟t report detection results.  
 

Table 5.9: RM and RF for different subsets for optimum parameter values S = 0.8,         and    . 

Subset Region RM RF Average distance 

between points (m) 

Standard deviation of 

distance 

    Det. to Ref. Ref. to Det.  Det. to Ref. Ref. to Det. 
1 roi_nig1 0.32 0.43 0.41 0.39 0.18 0.18 

2 roi_nig4 0.42 0.50 0.36 0.35 0.17 0.17 

3 roi_nig5 0.27 0.35 0.31 0.31 0.17 0.17 

4 roi_nig6 0.53 0.75 0.48 0.48 0.18 0.18 
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                         (b)                                                                                                    (c) 

 
Figure 5.18: Results of Subset 1 for optimum parameter values S=0.8, τ=22.5° and ε=1. (a) Detected results, (b) 
Successful detections from reference to detection, (c) Successful detections from detection to reference.  
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      (b)                                                                                                     (c) 

  

 
Figure 5.19: Results of Subset 4 for optimum parameter values S=0.8, τ=22.5° and ε=1. (a) Detected results, (b) 
Successful detections from reference to detection, (c) Successful detections from detection to reference . 
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  Figure 5.20: Detected results for optimum parameter values S=0.8, τ=22.5° and ε=1 of a field with no crop rows. 
No detection was reported in the field except near the boundaries of the field. 

5.4. Dominant  orientation of crop rows 

 Table 5.10 presents the number of crop rows and the dominant orientations for both  the reference and 

detected dataset. As can be observed from the Table, the number of rows in the detected dataset is more  

than the number of rows in the reference data set. The algorithm detected more than one segment for a 

single row. Regarding the dominant orientation of the rows, the algorithm identified the dominant 

orientation of rows of each subset accurately. From the tested four subsets the algorithm identified the 

dominant orientations crop rows of three subsets only within a deviation of 0.57° from the reference. The 

maximum dominant orientation difference between the reference and the detected crop rows was 2.87° 

(subset 2). Figure 5.21 shows the rose diagram of the dominant row orientations of both the reference and 

detected datasets of selected subsets.  
 

Table 5.10: Dominant orientation of crop rows and number of rows 

 

 

 

 

 

Subset  Number of rows  Dominant orientation 

of rows (rad) 

Dominant orientation difference  

between reference & detection 

 Reference Detection Reference Detection (In radians) (In degree) 

1 17 46 -1.15 -1.15 0 0 

2 22 57 -0.87 -0.92 0.05 2.87 

3 26 55 -1.09 -1.08 0.01 0.57 

4 21 59 -1.22 -1.21 0.01 0.57 
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(c)                                                                  (g) 

 

 

 

 

 

 

 

 

 

 

 

                                                              (d)                                                                      (h)                                                                                  
Figure 5.21: Rose diagram of dominant orientation of crop rows of both reference and detection for four validation 
subsets. (a-d) are the orientations of reference rows and (e-h) are the orientations of their corresponding detected 
rows of subsets 1-4 respectively. 
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5.5. Spacing of Crop rows 

Table 5.11 presents the average spacing of crop rows for both reference and automatically detected 

datasets of four subsets. From the Table it is observed that the spacing between crop rows obtained by the 

proposed method for all subsets are higher than the reference datasets. The maximum crop row spacing  

difference between the reference dataset and the automatically detected dataset was 0.93 m (Subset 3) and 

the minimum was 0.03 m (subset 1). Figure 5.22 shows the spacing of crop rows obtained by applying the 

proposed procedure. 

 
Table 5.11: Spacing of crop rows for four subsets.  
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                        (c)                                                                                                             (d) 

 
Figure 5.22: Row spacing of four subsets. (a) Subset 1, (b) tuning subset, (c) subset 3, (d) subset 4. The vertical lines 
indicate the lags at which dominant frequencies are found.                                                

Subset Average Crop rows spacing 

(m) 

Row spacing difference between 

reference and detected (m) 

 Reference Detected  

1 2.68 2.71 0.03 

Tuning 2.94 3.61 0.67 

3 4.48 5.41 0.93 

4 5.3 5.41 0.11 
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6. DISCUSSION  

This thesis explored two real applications of LSD algorithm on agricultural sector: field boundary 

delineation and crop rows detection from satellite images. The results on field boundary delineation and 

crop rows detection are discussed in section 6.1 and section 6.2 respectively. 

 

Linear features are extracted from remote sensing imagery using the LSD algorithm taking into account 

intensity differences between neighboring pixels. One of the most prominent advantages of remote 

sensing is the multispectral nature of the observations. However, the LSD algorithm takes only a single 

band as an input to detect linear segments. To make use of the advantage of the multispectral nature of 

the observations, the research proposes to combine all available information present in different bands as 

a single band before applying LSD algorithm. The LSD algorithm starts by calculating level-line angle for 

each pixel based on pixel gradient. Level-line angles are used to form line-support regions. Each line-

support region is a potential candidate for a segment and is validated based on the calculation of a 

Number of False Alarms (NFA) of the corresponding geometrical event (rectangle) associated with it. In 

this research, all the eight bands of WorldView-2 image were used for field boundary delineation. 

Multispectral information was explored by taking the vector sum of gradients of all eight bands. For crop 

row detection panchromatic image band  was used. 

 

The automatically extracted line segments needed to be compared with the line segments in the reference 

dataset to check the performance of the algorithm. The validation method presented in this research is 

based on the method developed by Sidiropoulou Velidou et al. (2015), which uses the distance and 

orientation difference between the reference dataset and automatically extracted dataset. To assess the 

level of correspondence (correctness, completeness and positional accuracy) between the automatically  

detected line segments with the reference dataset and to estimate optimal values of the internal parameters 

of the LSD algorithm in the process of parameter tuning, two error ratios: ratio of missing detection (RM) 

and ratio of false detection (RF) were defined.  

 

6.1. Field boundary delineation 

 

The parameters tuned were scale S, gradient threshold  , angle tolerance    and detection threshold    The 

optimal values of the three internal parameters obtained for this application were S = 1.0,         and 

       The values of the two parameters   and   agreed with the ones proposed by Grompone von Gioi 

et al. (2012). Some difference was observed on the scale parameter. For this application, the value of S that 

minimized the sum errors RM+RF with lower standard deviation is S = 1.0, whereas the one proposed by 

Grompone von Gioi et al. (2012) is S = 0.8. 

 

The ratio of missing detection (RM) and the ratio of false detection (RF), defined in this validation 

method, have shown the general pattern of the results for different parameter values by providing 

quantitative measures and have been used for optimum parameter value selection. However, sometimes 

these measures were misleading, especially for extreme values of parameters. Visual inspection of results  

was necessary to ascertain whether these measures indeed reflect the optimum values or not.   

 

The developed method is intended to detect all edges in an image by considering image intensity 

differences. To this end, even edges that do not represent field boundaries can be detected and give false 

detection for the purpose of this application. In the study area Mali, identifying edges that represent only 
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field boundaries from other features was a major problem. For example, the algorithm didn‟t make a 

distinction between edges that correspond to field boundaries and other edges formed due to the shadow 

of trees. Many line segments were extracted near trees in the field, which were actually not field 

boundaries. This led to an over detection of segments and in turn increased the number of false 

detections. Extracting trees from the image before detection could improve the detection results. On the 

other hand, the algorithm missed many edges. One possible cause for missing detection could be a weak 

contrast between neighboring fields. 

 

In this research, an edge strength criterion was proposed to rank edges according to their strength. Two 

basic attributes of line segments: contrast and steepness were calculated for this purpose. For the   

automatically detected segments, edge strength analysis was performed using the developed criterion for 

both successful and false detections. It was observed that both average contrast and steepness of  

successful detections are higher than the corresponding values of false detections.  

 

In this research, for the purpose of farm field boundary delineation, the LSD algorithm was tried on 

texture bands. Different second order GLCM texture measures were explored and results were analyzed. 

Studies have shown that incorporating texture measures could enhance the discrimination between 

spectrally similar classes (Blaschke, 2010). When land covers exhibit similar spectral characteristics and 

make classification difficult, the use of texture information is suggested as a potential solution (Lloyd et al., 

2004). In this study, however, the use of GLCM texture measures could not improve the results. 

6.2. Crop rows detection 

 

After the tuning process, the optimum values of the internal parameters obtained for this application  

were S = 0.8,          and      . These optimum parameter values agree with the ones proposed by 

Grompone von Gioi et al. (2012). For these selected parameter values, the ratio of missing and the ratio of 

false detections are RM = 0.17 and RF = 0.48 respectively. 

 

In this research, dominant orientation of crop rows was derived from the orientation of the automatically 

detected lines (or specifically from the gradient orientation of pixels) and comparison was made with the 

dominant orientations of reference dataset. The dominant orientations of crop rows of most of the 

subsets were identified correctly by the proposed method. The capability of the algorithm in detecting the 

spacing between the crop rows was also tested on four subsets of the image. The difference in row 

spacing between the reference and the automatically detected datasets ranged from 0.03 m to 0.93 m. One 

possible cause for this wide range could be the distribution of rows. Though most crop rows in a subset 

followed similar patterns and assumed to have the same spacing, there were some irregularities on the row 

spacing. This could have an effect on the automatically detected period (lag).  

 

Accuracy assessment was conducted using the developed methodology to four subsets of the image. The 

results showed the occurrence of both false and missing detections. The results also revealed that RF is 

relatively higher than RM. One main cause for the occurrence of missing detection was the presence of 

trees in the field. Visual observation of the results has shown that most missing detections were observed 

for crop rows near trees. There were also changes in orientation of detected line segments for crop rows 

that were occluded by trees. The cause for high RF was related to the width of crop rows. Each crop row 

was represented by a single center line in the reference dataset. However, in most cases, the algorithm 

extracted more than one segment for wider crop rows. This led an increase in the number of detected  

crop rows (false detections). This problem could be minimized by adjusting the scale parameter, but could 

not be totally avoided.   
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7. CONCLUSIONS AND RECOMMENDATIONS 

7.1. Optimal parameter setting 

 

Parameter setting of the algorithm has great effect on the quality of the results produced. That is proper 

choice of parameter combination can lead to successful results. On the contrary, poor parameter setting 

may lead to unsatisfactory results. Therefore, finding the optimum values of parameters of the LSD 

algorithm that lead to successful detection of segments was an essential component of this study. The 

choice of the best set of parameter setting was performed using the developed methodology by 

minimizing the sum of errors of false and missing detections. In addition, visual inspection was performed 

to ascertain whether these measures indeed reflect the optimum values or not. 

 
The three internal parameters of the algorithm involved in the tuning process were scale S, angle tolerance 

 , and detection threshold  . The scale parameter S involved in the algorithm helps to get a better  
representation of structure of certain features by controlling the spatial resolution of the image. The effect 
of the scale parameter on the detection results was very strong. Moreover, it controls the number of 
detected line segments. The number of detected line segments at low values of S was lower than the 
number at higher values of S for fixed values of other parameters. The second parameter tuned was angle 

tolerance  . This parameter was related to region growing. Low   values are more restrictive for region 
growing, which does not allow pixels  with large differences in gradient orientation to be included in the 
same line-support region. The third parameter tuned was detection threshold. This parameter was 

responsible to distinguish  -meaningful segments from all detected segments. 

7.2. Assessment of the detection results 

7.2.1. Field boundary delineation 

 

The developed method for detecting field boundaries in areas with heterogeneous landscape was not as 

successful as expected. The different approaches followed: extracting information from multiple bands, 

using texture bands or image bands in detecting field boundaries do not give good results. Accuracy 

assessment was performed following the proposed method by defining the two error ratios: the ratio of 

missing detection and the ratio false detection. The results obtained for RM and RF were 0.78 and 0.73 

respectively. The possible causes for these higher values of RM and RF were explored. The main cause for 

the high ratio of false detection was the presence of trees in the field. Many line segments were detected 

along the trees which didn‟t correspond to real field boundaries. One possible cause for missing detection 

could be a weak contrast between neighboring fields. Extracting trees and other irrelevant linear features 

like roads from the image before detection could improve the detection results. It is important to note that 

the algorithm was tested on a single scene of the study area. It may give different (better) results for less 

heterogeneous landscape.  

 

7.2.2. Crop rows detection 

Following the methodology for this application, the ratio of missing and the ratio of false detections on 

the image subset for which the parameter tuning was performed are 0.17 and 0.48 respectively. The 

capability of the algorithm in detecting the dominant orientation and the spacing between the crop rows  

was tested on four different subsets of the image. The algorithm identified the dominant orientation of 

crop rows correctly. From the tested four subsets, the maximum orientation difference between the 

reference and the detected crop rows was 2.87° which was observed on a single subset. But for the other 
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three subsets the orientation differences between the two datasets were within 0.57°, which shows the 

potential of the algorithm in detecting the dominant orientation of crop rows. The results of this research 

show that the adopted methodology has a good potential in detecting crop rows automatically from 

satellite images. However, it is important to note that the methodology was tested on different subsets of 

the same image but not on a different image. Moreover, it is better to compare the results of this 

algorithm to other standard  methods that are used for automatic crop rows detection for detail analysis of 

the results. 

7.3. Recommendations 

 

The quality of the reference dataset has great influence on the end results as well as on the conclusions 

drawn from the results. The reference datasets in this research were digitized manually. Manual digitization  

of field boundaries and crop rows is error prone. It could have its own influence on the results. Therefore, 

whatever method applied, it is recommended to have accurate reference datasets. Moreover, knowledge of 

the study area assists on the decisions to be made. In this research, parameter tuning was performed by  

varying one parameter and keeping the others fixed. In future studies, it is recommended to develop a 

procedure to find the optimum values of the parameters automatically. The procedures followed in 

detecting the spacing between crop rows yielded reasonable results. These results could be improved by 

combining the procedure with other techniques present in literature such as Fast Fourier Transform. The 

region growing algorithm of the LSD is developed to detect straight linear features and rectangles are used 

for validation. The algorithm can be modified and applied according to the required shape to be detected.   
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APPENDIX  

A.  LSD results 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

Snapshot of LSD results showing different attributes: length, width, angle, NFA, end points of lines, 

contrast and steepness. 

 

 

B. LSD results on texture bands 

 

 
  

(a) GLCM contrast  for  d=3              (b)  GLCM mean for d = 3. Only a few segments were 

detected.  
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 C. Reference dataset for crop rows of  different subsets. 

 

               
(a) Subset1 (b) subset 2 

                                
                                               (c)  Subset 3          (d)     Subset 4 

                         
 

                                            (e) Tuning subset 

  


