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ABSTRACT 

Spatiotemporal characterization of ambient air quality in a city is an important issue from epidemiological 

and regulatory standpoint. Observations in form of air quality model predictions and ground based 

measurement networks can be integrated to model the space-time behaviour of pollutants such as particulate 

matter and facilitate predictions at unmeasured locations. Prior using model predictions, it is imperative to 

evaluate their performance against measurements while considering uncertainty levels associated in them. 

This study firstly, assesses the prediction performance of PM10 and PM2.5 from a downscaled city level 

dispersion model, URBIS against measurements from low cost sensor network ILM at different temporal 

aggregation. This comparison is asserted by means of model performance criteria that includes various 

statistical metrics and utilizes measurement uncertainty associated with the ILM network. Secondly, these 

observations were integrated in a Bayesian maximum entropy framework to generate prediction maps of 

PM10 and PM2.5 in Eindhoven at hourly and daily temporal resolutions. BME approach allowed 

incorporation of these observations characterized by their uncertainty. 

Results of performance evaluation shows that URBIS predictions were consistent with ILM measurements 

at daily levels of aggregations. Furthermore, these predictions were found accurate at locations proximal to 

traffic sources and were inconsistent at city background locations. These inconsistencies were attributed to 

inadequacy in estimation of background concentration levels of PM in the URBIS. Utilization of mean ILM 

measurements as background values led to substantial improvement in the prediction performance of 

URBIS. Spatiotemporal maps from the BME integration were able to show the variability in concentration 

levels in the city at different locations and time periods. Prediction accuracy of BME was evaluated using 

leave-one-out cross validation method and were found acceptable for PM2.5 maps and moderate for PM10. 

This research concludes that measurements from ILM can be integrated with URBIS for fine-scale mapping 

of pollutants in the city. 

 

Keywords: particulate matter, URBIS, ILM, BME 
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1. INTRODUCTION 

1.1. Background and significance 

Clean air is a key requirement for human health. As a consequence of numerous anthropogenic activities 

and physical processes, various pollutants are introduced in the atmosphere, altering the optimal 

composition of air. These pollutants in the form of gases and particulates of organic and inorganic origin 

lead to health effects and environmental deterioration. Epidemiological studies have explained the causality 

of human morbidity and mortality with exposure to polluted air (Brunekreef & Holgate, 2002). Similarly 

environmental degradation caused by eutrophication, acid rain, smog and climate change have been linked 

with air pollution (Colls & Tiwary, 2009; Lazaridis, 2011). This has led to an increased interest in 

understanding the process behind air pollution and developing strategies for its sustainable mitigation. 

 

Air pollutants of concern for human health can be classified into six classes (EEA, 2015c; EPA, 2015) These 

are oxides of nitrogen (NOx) formed as combination of nitrogen dioxide (NO2)and nitrous oxide (NO), 

ozone (O3), particulate matter (PM), carbon monoxide (CO), sulphur dioxide (SO2) and lead (Pb). Amongst 

these, health risks associated with exposure to particulate matter (PM) are of significant concern, especially 

given increases in cardiovascular and respiratory disease (Bernard et al., 2001; Kim et al., 2015; Murad, 2012; 

Shah et al., 2013). Exposure to PM poses a major immediate threat for pregnant women, resulting in 

increased chances of autism spectrum disorder in offspring (Raz et al., 2014). It also causes health risks in 

elderly (Liu et al., 2009) and young children (Yip et al., 2004). 

 

PM varies in chemical composition and size. These are composed of non-organic nitrate and sulphate rich 

secondary aerosols, organic carbon compounds like polycyclic aromatic hydrocarbons (PAH) and metal 

traces (WHO, 2013). These are generated primarily from transportation (vehicular exhaust, wear and tear of 

roads, brakes and tyres) and industrial combustion processes (Visser et al., 2001). Secondary sources of PM 

include those from agriculture (nitrogenous emissions, tillage operations, fertilizers and pesticides), 

construction (dust particles, paints) and mining (mineral dust, inorganic particulates) (Araujo et al., 2014; 

Arslan & Aybek, 2012; Juda-Rezler et al., 2011).  

 

PM it is categorized according to its aerodynamic diameter. This categorization is based on different factors 

such as correlation of size of PM with its gravimetric mass, ability to transport in the atmosphere and level 

of penetration into human respiratory system (Kim et al., 2015). Thus different categorizes of PM are coarse 

particulate matter (PM10) with aerodynamic diameter of less than 10 μg m-3, fine particulate matter (PM2.5) 

with aerodynamic diameter of less than 2.5 μg m-3 and ultra-fine particulate matter (UFPs) with aerodynamic 

diameter less than 0.1 μg m-3 (US-EPA, 2015).PM10, depending upon local meteorological conditions tend 

to stay in the atmosphere from few minutes to hours and has movement of few meters to kilometres from 

emission source to deposition. PM2.5 generally remain suspended in the atmosphere for few days and have 

movement in range of few to hundreds of kilometres. UFPs tend to remain in the atmosphere for few days 

to weeks in and are most susceptible to fluctuations in meteorological conditions (Cheung et al., 2011; 

Srimuruganandam & Shiva Nagendra, 2012). 

 

In recent years, there has been an increased focus for regulating emission levels to improve air quality. Air 

quality guidelines mandated by the World Health Organization (WHO, 2006) act as a global standard while 

these are also set by national bodies such as NAAQS (national ambient air quality standards ) for U.S.A. 
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(EPA, 2015), air quality directives for EU (European Union) member states (EU, 2008). In Europe, annual 

average for PM10 values should not exceed 40 μg m-3 and daily average should not exceed 50 μg m-3 with 35 

allowable exceedances cases per year. These values are set according to the guidelines of air quality directives 

and should be obtained by 2005 for all member states (EEA, 2014b; EU, 2008). Similarly, the allowable 

mean limit values for PM2.5 should be less than 25 μg m-3 achievable by 2015 (Matthijsen & ten Brink, 2007). 

 

Proper enforcement of these regulations require correct determination of PM (PM10 and PM2.5) values in 

space and time and are obtained by means of air quality measurements or as predictions from air quality 

models. Air quality modelling, in general involves combining information of atmospheric behaviour of 

pollutants with observations to model spatiotemporal characteristics of pollutant and provide predictions in 

space and time. Predictions from these models can be used to characterize emission sources, quantify their 

contributions and develop pollution reduction strategies. These models differ at various spatiotemporal 

scales and also on underlying principles of modelling. City-level air quality models are of particular 

importance as their predictions have substantial implications on local governance strategies such as 

monitoring adherence to defined emissions protocols, health studies and sustainable urban planning policies 

(Chang & Hanna, 2004). 

1.2. Motivation and problem statement 

The behaviour of PM is dynamic in the atmosphere. The concentration and chemical composition does not 

remain constant over a particular region at a particular time (Yadav et al., 2014). Concentration levels of PM 

in space and time are measured at ground based stations mainly by semi-continuous automated methods 

based on mass measurements (like beta attenuation monitors (BAM), filter based gravimetric samplers or 

tapered element oscillating microbalance (TEOM) or by continuous method such as optical sensors that 

correlate particle counts with gravimetric mass (EU, 2010; Williams & Bruckmann, 2002). It is only possible 

to take measurements at a limited number of locations. In order to obtain values at unmeasured locations, 

modelling is necessary. Air quality models facilitate low cost assessment of air quality by providing 

predictions for a continuous geographic region and can augment existing ground based measurement 

network.  

 

Air quality models simulate the behaviour of pollutants in space and time and thus their predictions may be 

imperfect (Borrego et al., 2008) and associated with a relevant amount of uncertainty. Uncertainties 

associated in modelling can be due to inadequate representation of sources, errors in modelling procedures, 

errors associated with input data such as instrument errors and the spatiotemporal variability of PM10 in 

atmosphere (Riccio et al., 2006) might lead to incorrect representation of pollutant. A near-ideal model 

would be that which represents adequately the spatiotemporal variability of a pollutant and predicts with a 

minimal amount of quantifiable uncertainty. Furthermore, formulation of air quality models are dependent 

on input data, their spatial resolution and temporal frequency. Models designed for predicting air quality 

such as at city-level require input data at a finer spatiotemporal scale and thus needs to overcome input data 

scarcity. 

 

Following developments in micro-electrical mechanical systems (MEMs), the availability of cost effective 

and reliable sensors have become increasingly popular in urban air quality monitoring (Kumar et al., 2015). 

These distributed system of sensor networks, relying on the state-of-the-art wireless transmission 

infrastructure can be used for pollutant measurements in near-real time and overcome the observational 

data scarcity. These measurements can be utilized to support real time assessment of exceedance levels and 

can be used as input data in air quality models for predicting concentration levels at unmeasured locations 

(Knox et al., 2013). In Eindhoven, AiREAS initiative (AiREAS, 2014; Close et al., 2016) has set up a low-

cost sensor network ILM (Innovatief Luchtmeetsysteem) since 2013. This network measures pollutants like 
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PM, UFPs, O3, oxides of nitrogen and meteorological information like temperature and relative humidity at 

35 locations (airboxes) spread across the city for every 10 minute interval and are made available in real-time 

in an online repository (Hamm et al., 2016). 

 

In the Netherlands, to predict pollutant levels in a city, an urban-scale air quality model- Urban Information 

System (URBIS) (Beelen et al., 2010; Duyzer et al., 2015; Fritz & Borst, 1999) is also used. It is developed 

and maintained by Nederlandese Organisatie voor Toegepast Natuurwetenschappelijk Onderzoek (TNO) 

translated as (Netherlands organisation for applied scientific research) (TNO, 2015). URBIS takes into 

account emissions from various stationary sources (like industries, residential areas and construction sites), 

non-stationary sources (like traffic in highways and street canyons) and uses an ensemble of dispersion 

models to provide mean predictions of pollutants like PM (PM10, PM2.5), O3, NOx at a yearly basis. In order 

to use these predictions for augmenting pollution reduction strategies through continuous monitoring, 

URBIS predictions are downscaled to finer temporal scales such as hourly values. 

 

Integration of predictions from downscaled URBIS model and continuous measurements from ILM 

network can facilitate an improved understanding of spatiotemporal variability of PM (PM10 and PM2.5) in 

Eindhoven. However, to use predictions from URBIS model with confidence, it is important to evaluate its 

performance accuracy. Measurements from the ILM network can be used to evaluate accuracy of URBIS 

model predictions and can give an overview its performance by employing a number of statistical indicators 

Statistical evaluation of air quality models is considered as one of the key methods to assess the accuracy of 

predictions relative to measured values. Multiple statistical indicators such as root mean square error 

(RMSE), bias, standard deviation, correlation coefficient have been recommended for evaluation of air 

quality models. (Borrego et al., 2008). Nonetheless, it is also imperative to consider the uncertainty associated 

with the PM measurements in the ILM network as the first step for an unbiased evaluation of model 

accuracy. Limits of measurement uncertainties of pollutants by instruments are generally standardized in the 

air quality directives with adherence to specific data quality objectives. (Pernigotti et al., 2013). For instance 

in Europe, relative uncertainty associated with PM is set at 25% around the mean daily values of 

measurement, whilst that for O3 is 15% around mean 8-hourly values and NO2 remains 15% for hourly 

values (EU, 2010; Thunis et al., 2012a). These are representative standards and actual values depends upon 

instrument used and on reference time period. Thus URBIS predictions can be evaluated against ILM 

measurements taking into consideration different statistical indicators standardized by measurement 

uncertainty of ILM network before its integration. 

 

Modern geostatistical methods like spatiotemporal kriging, can predict concentration levels in with 

associated prediction error variance that quantifies its uncertainty (Gräler et al., 2012; Knotters et al., 2010). 

Bayesian maximum entropy (BME) is one such hybrid approach which can be used to model pollutants in 

a stochastic space-time framework (Christakos & Serre, 2000; Christakos, 1990; Serre & Christakos, 1999). 

BME formulates on an epistemic knowledge synthesis, taking into account available information to 

characterize the space-time dependence structure of pollutant and integrates with data from multiple sources 

to predict concentration levels. It has the ability to incorporate soft data (data with quantified uncertainty in 

its value) with hard data (data with negligible amount of uncertainty associated with its values) as input and 

estimates the concentration levels for requisite geographical area and temporal range. Prediction at each 

location is associated with a probability distribution function which leads to better quantification of 

estimation uncertainty, in terms of error variances, occurrence probabilities, confidence levels (Pang et al., 

2009). Quantification of uncertainty in pollutant concentration estimates is of particular importance for 

decision makers for applications while assessing exceedance levels and human exposure. Predictions from 

URBIS can be integrated with ILM measurements in a BME framework to produce spatiotemporal maps 

of PM levels (PM10 and PM2.5) in Eindhoven that can facilitate continuous monitoring of air quality. 
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1.3. Research identification 

There are two aspects to this research. Firstly, to evaluate PM predictions (PM10 and PM2.5) of URBIS, by 

using a set of quantitative statistical indicators, against ILM measurements. Uncertainty associated with ILM 

measurements is utilized in these statistical indicators. This is to determine, given a threshold uncertainty 

level in ILM measurements how efficient is the URBIS model in constraining this uncertainty in its 

predictions. 

Secondly, to utilize BME to integrate ILM measurements and predictions from URBIS dispersion model to 

map spatiotemporal variability of PM in Eindhoven region. The motivation is to compare the prediction of 

the integrated model against independent measurements and assess the feasibility of using low cost sensor 

network to augment prediction. 

1.3.1. Research objectives 

Based on the domain of research identified, the following are the objectives of this research: 

1. Statistical evaluation of PM predictions (PM10 and PM2.5) from the URBIS model against PM 

measurements from the ILM network using allowable limits of measurement uncertainty. 

2. Integration of data from ILM network and URBIS model predictions in a BME framework to map 

spatiotemporal variability of PM (PM10 and PM2.5) in Eindhoven. 

1.3.2. Research questions 

Questions related to objective 1: 

a) What are the key statistical indicators that are needed to evaluate URBIS model? 

b) How to formulate and interpret model performance criteria (MPC) to evaluate URBIS model based 

on statistical indicators and measurement uncertainty of ILM network? 

c) What are suitable space-time scales for representing PM concentration levels? 

Questions related to objective 2: 

a) Which data should be considered as soft (data with uncertainty) and hard (certain data)? 

b) How to model the space-time dependence of PM? 

c) How to integrate space-time dependence of PM with available data from URBIS model and ILM 

measurements to generate prediction maps? 

d) How can the accuracy of BME process be assessed? 

1.3.3. Innovations aimed at 

1. Defining model evaluation criteria of PM predictions from the URBIS model against measurements 

from the ILM network at different temporal scales. 

2. Integration of ILM measurements with URBIS model predictions in a BME framework for 

spatiotemporal mapping of PM in Eindhoven. 

1.4. Thesis structure 

Chapter 1 gives the rationale of the study and details the research objectives and underlining research 

questions that are intended to be addressed in the thesis. Chapter 2 gives a detailed review of the literature 

pertaining to air quality model evaluation and application of BME in air quality modelling. Chapter 3 

describes the study area and the datasets used in the research and Chapter 4 gives a conceptual framework 

and workflow of methods involved. Results and analysis are presented in Chapter 5. Chapter 6 includes 

discussions of the results. Chapter 7 summarizes the study and deals with conclusions, limitations and 

recommendations. 
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2. LITERATURE REVIEW 

2.1. Air quality modelling 

Jerrett et al., (2005) reviewed and categorized six different classes of air quality models based on their 

underlining modelling procedure and assessed their credibility in measuring exposure levels in Hamilton, 

Canada. These were: proximity models, dispersion models, spatial interpolation models, land use regression 

models and integrated meteorological-emission models. Proximity based models generally predict 

concentration levels based on nearness to emission source. These predictions are reliable near pollution 

sources but tend to be uncertain at non-proximal locations. Land use regression models require an optimal 

selection of predictor variables for plausible predictions. Spatial interpolation models can be affected by 

sparse input observations and may produce erroneous results. Regional chemical transport models (CTMs), 

which take into consideration various meteorological factors and chemical composition of pollutants in 

atmosphere, tend to deliver predictions at rather coarser resolution that limits its credibility to predict subtle 

spatial variations such as in a city. Their studies concluded that improvisation in input data and combination 

of more than one modelling methods tend to increase accuracy of predictions 

 

Daly & Zannetti, (2007) discussed the effectiveness of dispersion models and photochemical models in 

simulating the behaviour of pollutants in the atmosphere. They explained the behaviour of a pollutant after 

its emissions in atmosphere is governed by processes of dispersion, transportation, chemical alteration and 

finally ground deposition. Dispersion models, which tend to model emissions to deposition of pollutant are 

categorized as Lagrangian models which and Eulerian models based on their interpretation of atmospheric 

interaction. Whilst Eulerian model divides atmosphere into grids and simulate the behaviour of pollutant at 

each grid, Lagrangian model consider trajectory of pollutant as an air parcel and simulate its behaviour in 

space and time.(Nielinger et al., 2004). Photochemical models take into consideration the physical and 

chemical transformation of a pollutant in the atmosphere and simulate its behaviour. Facilitating low-cost 

assessment of air quality, these models are preferred for larger geographical regions like national or global 

level. Nguyen, (2014) reviewed dispersion models, photochemical models and receptor models on the basis 

of their input data, modelling procedures and probable applications. Receptor models employ series of 

statistical and mathematical processes to elucidate contributions of different sources of pollution at receptor 

locations. 

 

Landuse regression models (LUR) have been used to link air quality modelling with human exposures. Ryan 

& LeMasters, (2007) mentioned four classes of predictor variables that were mostly influential for 

concentration levels. These were, type of road, traffic counts, elevation and land cover of which traffic 

count. Beelen et al., (2010) compared the performances of LUR to that of URBIS model in yearly predictions 

of NO2 in Rijnmond area in Rotterdam, the Netherlands. They concluded that predictions from URBIS 

model explained intra-urban small-scale variability better than that of LUR. Studies by de Hoogh et al., 

(2013); Hoek et al., (2008) gives an understanding about developments of LUR models and its applications 

in human exposure studies in European cities. Alam & McNabola, (2015) studied the usage of multiple 

linear regression models in predicting daily levels of PM10 at Vienna and Dublin and were able to 

demonstrate the effectiveness of LUR in providing consistency in model predictions over time. Wang et al., 

(2014) developed LURs for NO2 and PM at continental and regional scales and reported that these LURs 

provided reasonably good predictions where monitoring stations were absent.  

 

Spatiotemporal interpolation methods used widely in environmental modelling purposes (Li & Heap, 2011, 

2014) have also been implemented for air quality studies. Geostatistical methods such as spatiotemporal 
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kriging, take into account the correlation in space and time of pollutant observation and use it to model 

predictions at unknown locations. It relies on similarity in air pollutant characteristics governed by its 

spatiotemporal structure and can be explained by Tobler’s law of geography “everything is related to everything 

else, but near things are more related than distant things” (Miller, 2004; Tobler, 1970). Wong et al., (2004) utilized 

four different methods such as spatial averaging, nearest neighbourhood, IDW and spatial interpolation 

method of ordinary kriging to predict PM10 and O3 concentrations in the U.S. and explained the 

effectiveness of these methods in air quality predictions. Authors reported that kriging provided optimal 

results with relatively scarce monitoring data. Real-time modelling of air quality was done by Janssen et al., 

(2008) using measurements and landuse information from CORINE dataset by means of a de-trended 

kriging model for prediction of pollutants such as O3, PM10 and NO2 in Belgium. Jha et al., (2011) appraised 

various interpolation techniques for predicting suspended particulate matter (SPM), sulphur dioxide (SO2) 

and nitrogen dioxide (NO2) in Port Blair, India and reported that these methods are suitable for prediction 

when a scarce amount of input data is available.  

 

Hybrid models employ an integrated approach of using two or more modelling frameworks to improvise 

the prediction abilities by overcoming weakness of individual modelling techniques (Hamm et al 2015). 

Akita et al.,( 2014) demonstrated the effectiveness of discerning intra-urban exposure variability by 

integrating results of land use regression model and output of chemical transport model in a BME 

framework. The overall accuracy was higher as compared to individual accuracies of land use regression 

model or that of chemical transport model. Similar works by Beckerman et al., (2013); Li et al., (2013) also 

demonstrates the capability of hybrid air quality models for estimating concentration of pollutants with 

improved accuracy. Works by van de Kassteele et al., (2009); van de Kassteele & Stein, (2006) combined air 

quality measurements and output from dispersion model by means of external drift kriging (KED) in an 

Bayesian framework to predict NO2 in the Netherlands. They were successful in demonstrating the use of 

KED as a suitable interpolation method and ability to combine different data sources in improvising the 

predictions. Hamm et al., (2015) utilized a spatially varying coefficient geostatistical (SVC) model to map 

PM10 in central, south and eastern Europe using measurement data from Airbase network (EEA, 2014c) 

and regional CTM LOTOS-EUROS (Schaap et al., 2008). Authors concluded that SVC model predictions 

could be used for mapping exceedance levels of PM10 and also to evaluate the performance of LOTOS-

EUROS model. 

2.2. Particulate matter in the Netherlands 

Matthijsen & Koelemeijer, (2010) showed that anthropogenic sources contributing to PM10 and PM2.5 in the 

Netherlands compose of secondary aerosol formation (including sulphates, nitrates, ammonia, volatile 

organic compounds, and mineral dust). By implementation of proper policy measures of reducing emissions 

of secondary aerosols into the atmosphere, considerable amount of reduction in PM levels is expected. 

Additionally, contribution of sea salt to PM10 and PM2.5 levels are 12% and 5% respectively. Emissions from 

road traffic also account towards contribution to PM2.5 and elemental carbon (EC), however PM is majorly 

dominated by background concentrations. According to Matthijsen & ten Brink, (2007) current annual 

regional background concentrations of PM2.5 range between 12-16 μg m-3 while urban background 

concentration are in range of 16-18 μg m-3. Additional increments from the streets predominantly due to 

traffic lies between 2-6 μg m-3 while that for highways lies in range of 7-14 μg m-3. VROM, (2008) also 

reported that major contributions of PM10 in the Netherlands were results from non-anthropogenic sources 

and from transboundary anthropogenic emissions that dominated local level contributions to PM10. 

 

Even though with stringent European Union policy of using low exhaust vehicles (Euro Standards: light-

duty vehicles are Euro V/Euro VI and heavy-duty vehicles are Euro IV (EEA, 2015b)) has led to decrease 

in PM levels from exhaust emissions, but with increase in traffic count, contribution from non-exhaust 
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sources like brake wear and tear, tyres, road wears still contribute to the levels of PM. This has also been 

concluded by studies of Boogaard et al., (2011) wherein high contrasts were found in concentration levels 

of coarse PM components (Chromium, Copper and Iron), particle number concentrations (PNCs) and black 

carbon while comparing eight major roadways and nine sub-urban background stations. Keuken et al., 

(2011) conducted a health impact assessment of PM10 and elemental carbon (EC) in Rotterdam by studying 

the trends in concentration levels and life expectancies for 1985-2008 and concluded that increasing traffic 

count with efficient vehicular combustion have led to overall decrease emissions. Furthermore, decrease in 

industrial emissions by stricter regulations and stringent urban planning policies, air quality has improved 

with decrease of averaged urban PM10 background concentration from 43 μg m-3 (1985) to 25 μg m-3 (2008) 

and has resulted in considerable gain life expectancy (for PM10). 

 

Hoogerbrugge et al., (2010) reported that average annual concentration of PM10 resulting from 

anthropogenic sources have reduced considerably since 1990-2000. Approximately two thirds of the 

decrease was due to reduction in emissions of sulphates and nitrates from anthropogenic sources and 

remaining from primary vehicle exhausts and secondary aerosols. European Environmental Agency (EEA, 

2014a, 2015a) reported that there has been a reduction in the yearly average levels of PM10 and PM2.5 for the 

Netherlands. Estimate exposure levels to daily limiting values of PM10 (as set by European Union Air Quality 

Directives (EU, 2008) of 50 μg m-3) was 0.5% approximately for urban population in 2010 which had 

increased to 2.9% in 2011 and reduced to 0% by 2012. 

2.3. Performance evaluation of air quality models 

A detailed discussion on quantitative methods for assessing performance of model predictions to 

measurements was presented by Bencala & Seinfeld, (1979). Performance of an air quality model can be 

described broadly in terms of model validity, which refers to the ability of a model to replicate behaviour of 

a pollutant in atmosphere and model accuracy, which refers to the correctness of model outcome. These 

methods were based on analysis of residuals (difference in measured concentration and predicted 

concentration at a particular location and time), analysis of model-measurement agreements including 

correlation coefficient and linear least square fit and were part of a FORTRAN based performance 

assessment package called “AQMAAP”. 

 
Three major sources of uncertainties can be accounted while evaluating predictions of an air quality model 

to that of measurements. They are namely, comparison of volume average predictions, generally given by 

an air quality model to that of point measurements; instrument errors associated with measurements, wrong 

input parameters and incorrect modelling techniques. MacKay & Bornstein, (1982) presented both 

quantitative and qualitative methods of evaluating air quality simulation models. The quantitative methods 

were basic statistical indicators like model bias, gross errors, noise and correlation coefficient defined around 

pairs of model predictions and observations. Qualitatively, histograms and cumulative frequency plots were 

favoured by the authors to depict the residuals while isopleths and time-series plots were argued suitable for 

spatial correlation and temporal correlation respectively. Evaluating two or more air quality models by a 

composite performance indicator based on aggregating fractional bias and absolute fractional bias was 

recommended by Cox & Tikvart, (1990). 

 

Chang & Hanna, (2004), reviewed various qualitative and quantitative methods for model evaluation. The 

authors urge the use of multiple evaluation methods to assess the performance. Apart from discussing about 

statistical parameters like root mean square error, fractional bias, geometric mean bias, normalized mean 

square error, geometric variance, correlation coefficient and fraction of predictions within a factor of two 

of observations, they discussed on qualitative performance indices like Taylor’s nomogram method (which 
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combines normalized standard deviation, normalized root mean square error and correlation coefficient in 

a single plot), figure of merit in space (ratio of prediction and observation contour area based on a certain 

threshold) and cumulative distribution function method. 

 

Boylan & Russell, (2006) considered evaluation of air quality models by using model bias (measure of 

model’s over or under-prediction) and model error (measure of deviance of a model’s predictions to 

observations). Similar works have been carried out in Tessum et al., (2015); Thi et al., (2012) wherein 

evaluation of chemical transport model (CTM) predictions and dispersion model output against 

measurements based on statistical parameters has been done. Bennett et al., (2013) characterised 

environmental model performance and also explained various statistical, graphical and qualitative methods 

for evaluating model output which can be utilized in air quality domain. Borrego et al., (2008), studied 

different aspects of estimating uncertainty of model predictions and discussed several statistical metrics that 

can be used for evaluation of performance of air quality model predictions against measurement data. 

 
Air quality model evaluation can be differentiated into multiple components involving scientific evaluation 

(ability of model to incorporate different emission sources and behaviour of a pollutant in atmosphere), 

code verification (interpretation of processes as sound mathematical and physical expressions), model 

accuracy (ability of model to predict concentration levels which coincides with observations) and sensitivity 

analysis (checking the sub-models for their effectiveness) (Borrego et al., 2008; Chang & Hanna, 2004). 

Statistical evaluation plays an important role in concluding whether a model is able to replicate the 

concentration levels based on observed data. It can be considered as a crucial step to determine the 

effectiveness of a model for a particular application. 

 

Evaluating model predictions against reference data can give credible results if the reference data are error-

free. However, both model predictions and measurement data are associated with some degree of 

uncertainty. These uncertainties in modelling and measurements can be attributed to different sources, such 

as model might be wrongly formulated or has incorrect input parameters, while measurements may be 

uncertain due to instrument errors (Borrego et al., 2008; Chang & Hanna, 2004). Thus prior to statistical 

evaluation of model predictions against measurements, it is important to ascertain the uncertainty in 

measurement data. This can help in determining how well modelled predictions are against given 

measurement data and how accurately the model predicts pollutant value, whose actual value might lie 

between the intervals of measurement data uncertainty. Thunis et al., (2012), proposed a model performance 

criteria (MPC) that utilizes measurement data uncertainty in these statistical parameters for evaluating air 

quality model performance. Furthermore, by utilization of various graphical tools like target diagrams, a 

better insight into model performance can be achieved which can be used by decision makers to see explicitly 

in which geographical area and time period the model performed well or badly. In works of Pernigotti et al., 

(2013); Thunis et al., (2013) these aspects of model evaluation were addressed specifically for pollutants like 

ozone (O3), particulate matter (PM) and nitrogen dioxide (NO2). Riccio et al., (2006); Romanowicz et al., 

(2000) successfully demonstrated uncertainty evaluation for air quality models using a stochastic perspective 

in a Bayesian framework. 

 

2.4. Bayesian maximum entropy method 

Bayesian maximum entropy (BME), detailed by Christakos, (1998) is a spatiotemporal interpolation method 

that incorporates holistic information about any environmental phenomena (regarded as knowledge base) 

by considering all available information about it, be it from its physical or chemical behaviour, variations in 

space and time (regarded as general-knowledge base) and from available data from different sources such as 
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observations or modelled predictions (regarded as site specific-knowledge base). Author especially 

highlighted its applicability in cases where limited credible data (termed as hard data) is available, BME 

facilitates usage of quantified uncertain data (or soft data) in augmenting process of interpolation. In limiting 

cases BME can be considered similar to spatiotemporal kriging and is also flexible to operate in space-

only/time-only domains. Explanation about BME process is presented in details in works of Christakos, 

Bogaert, & Serre, (2002); Kanevski, (2010). Serre & Christakos, (1999) applied the context of BME to study 

the water-level elevations of “eqqus bed” aquifers in Kansas and concluded that incorporation of uncertain 

(soft) data as input with measurement observation (hard data) leads to better accuracy in estimation. 

 

Christakos & Serre, (2000) studied the spatiotemporal distribution of PM10 across North Carolina, United 

States using BME analysis and concluded that kriging can be considered as a limiting case of BME, and that 

BME framework facilitates increased flexibility in parameter estimation leading to improved characterization 

of spatiotemporal variability. Nazelle et al., (2010) used BME approach to predict the concentration of 8-

hour O3 in North Carolina with improved accuracy and precision. They also demonstrated the flexibility of 

BME method over other modern geostatistical interpolation methods like Bayesian melding. Similar results 

were presented by Lee et al., (2008) as a synthetic case study, wherein proportion of increased soft data input 

led to decrease in mean square error of the model predictions. The authors, by using BME were able to 

improve accuracy in mapping minimum temperature of an urban heat island and demonstrated ability of 

BME to incorporate soft data. Beckerman et al., (2013) utilized a hybrid model taking into consideration 

remote sensing data, LUR and Bayesian maximum entropy (BME) methodology to study the spatiotemporal 

variability of PM2.5 in the U.S. The employed BME interpolated predictions were more accurate than the 

LUR method or remote sensing predictions alone. Similar work by Akita et al., (2014) involved usage of a 

BME framework to integrate outputs from a dispersion model, LUR model and observation data for intra-

city exposure variability of NO2 half yearly concentration predictions and was able to evaluate that the hybrid 

model performs better than any individual methods alone Study done by Adam-poupart et al., (2014) on 

spatiotemporal modelling of O3 in Quebec, Canada investigated three methods of predictions namely, LUR 

modelling, kriging and integrated the output of LUR and kriging in a BME framework and reported that 

the predictions from the integrated method were the most accurate. 
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3. STUDY AREA AND DATA 

3.1. Study area 

The study area is the city of Eindhoven (Figure 1). It spans from (51.40° N, 5.40° E) to (51.49° N, 5.53° E) 

and is one of the major cities in the Netherlands. Figure 2 (left) is a bar chart showing the population 

distribution according to different age groups and Figure 2 (right) shows landuse categories in Eindhoven 

and their proportions (CBS, 2016b). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1 Municipality of Eindhoven and its constituent districts 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2 Population (left) and landuse (right) categorization in Eindhoven (CBS, 2016a) 
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Eindhoven houses 224,855 residents (November 2015) with average population density of 2.5 per km2. It 

consists of 7 districts and has total surface area of 8,887 hectares. Approximately one third area of 

Eindhoven comprises of residential units and other built up regions and has relatively lower area of greenery. 

Majority of population resides in district Wossel- Noord (64,405 inhabitants) and least number of 

inhabitants reside in Centrum district (6565 inhabitants). A distinct share of population belongs to age group 

of 25-44 and 15-24 and can be attributed to majorly students and working professionals. Majority of 

industries in Eindhoven are located in districts of Gestel and Strijp, with some of the industries located in 

northern regions of district Woensel-Noord. 

 

The A2 motorway passes through Eindhoven across the district of Strijp and along district Gestel. 

Furthermore, road N2 (randweg) forms a beltways around the western border of Eindhoven and consists 

of motorways A50 and A2. Motorway A270/N270, connects Helmond area with Tongelre district of 

Eindhoven. These three motorways have potential influence on the PM emissions. Eindhoven airport and 

aviation base are located in the western part of the municipality (district Strijp), and also contribute to the 

emission of PM. 

3.2. Datasets description 

3.2.1. AiREAS initiative- ILM 

During recent years, as a strive for clean air and healthy city, a low cost sensor network for measuring air 

quality has been set up called- ILM (Innovatief Luchtmeetsysteem) translated as “Innovative air 

measurement system” and operational (AiREAS, 2014; Close et al., 2016). It is a joint initiative of 

municipality of Eindhoven with University of Utrecht and University of Twente, ECN, Philips and 

Axians/Imtech ICT. There are currently 35 airboxes operating in and around Eindhoven which give 

information about local air quality (particulate matter- PM10, PM2.5, PM1, UFPs, O3, and NO2) and 

meteorology (relative humidity, temperature). This is the basis of ILM network. These data are obtained by 

respective pollutant sensors installed in the airboxes; transmitted to a central repository via GPRS/GSM. 

They are then processed and made available for use via an online portal with temporal resolution of 10 

minutes. 

3.2.1.1. Spatial representativeness of ILM network 

Hamm et al., (2016) distinguished four spatial representative classes of locations of the ILM based on two 

factors. First, it should properly address the emission sources spread across the city of Eindhoven. It should 

not only include major sources like industrial regions or major highways, but also other sources like street 

canyons, building sites, residential areas to name a few. Secondly, airbox locations should take into account 

regions where population is most vulnerable to pollutant exposure, like city centre, busy streets near 

residential area, schools and hospitals. This is of particular importance in linking studying the effects of air 

quality on human health. They are busy road which have high density traffic, city background which have 

least amount of traffic, residential areas including street canyons, regions around city centre, and public 

hospital. (Figure 3) and (Table 1). 

Table 1 PM10 and PM2.5 measurements from airboxes used in research 

Spatial representativeness of airboxes  

(Hamm et al., 2016)  

Airbox number used in the research 

Busy road 3, 4, 7, 11, 23, 25, 26, 34, 35, 36, 37, 39 

City background 1, 9, 13, 30, 31 

Residential area 2, 5, 6, 12, 14, 16, 17, 19, 20, 24, 27, 28, 32 

Public hospital 29 
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Figure 3 Spatial representativeness of ILM network in Eindhoven 

3.2.1.2. PM measurement sensor 

All the airboxes in the ILM network are installed with Shinyei PPD42 sensor (Shinyei Technologies, 2010) 

which is an low cost optical sensor for measuring particulate matter (Figure 4). It consists of a simple 

arrangement of infrared LED and a photo-transistor detector and air is allowed to pass through the 

arrangement. Based on light scattering method, the device counts the number of particles based on its 

aerodynamic diameter. These are classified into 3 types, PM10, PM2.5 and PM1. These values are then 

transferred to the central microcontroller present in the airboxes which are sent to the central repository. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4 Specifications of PPD42NS Optical sensor (AQICN, 2016) 
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3.2.1.3. ILM dataset  

Measurements at the airboxes are stored in an online repository that can be accessed by the universal 

resource locator (URL) http://82.201.127.232:80/. These are available as both real time data in form of java 

script object notation (JSON) via URL http://82.201.127.232:80/api/v1/?airboxid=#.cal (where # can be 

replaced by sensor number) while historic data is available in both hierarchical data format (HDF) and 

comma separated value format (CSV) via URL http://90.145.62.12:8080/. Whilst HDF format is indexed 

by date, that of CSV format is indexed by sensor locations. 

 

A single HDF file consists of all the observations for a particular date. It consists of 3 levels of data indexing 

(Figure 5). The preliminary indexing level is the date, and the second level is the airbox number and the 

third level consists of list of attributes for a particular airbox number. Pertaining to each airbox number are 

10 observation columns of which 9 are active and contain information about spatial position (latitude and 

longitude); pollutants measurements (O3, PM10, PM1, PM2.5); meteorological information (relative humidity, 

temperature) and time. The “Not Used” column contains UFP measurements and is currently available for 

some airboxes (airbox 10, 18, 38, 25, 36 and 15) where UFP sensor is functional. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5 Schematic representation of HDF storage format of ILM measurement data 

For this research, data from June, 2015 were used. It was because, downscaled URBIS predictions at hourly 

interval were available for June 2015. HDF files containing PM10 and PM2.5 measurement data were available 

for 1st- 4th June and from 8th- 30th June and were missing for 5th – 7th June in the online repository. These 

were made available in CSV formats after personal communications with AiREAS officials. Measurements 

were available for every 10 minutes for each airbox resulting in 144 observations for a single date. Utilizing 

R environment for statistical computing (v3.2.3) (R Core Team, 2014) it was imported and structured using 

library h5 (v 0.9.4) (Annau, 2015). 32 airboxes were considered for this research as these were present in the 

HDF files, corresponding to the above mentioned dates. Using the rollapply function used in zoo package 

(v 1.7-12) in R (Shah et al., 2005) temporal aggregation of 10 minute observation to hourly values were 

computed for all the observations at the airbox locations to match the temporal resolution of downscaled 

URBIS model. Thus utilizing data from both the sources, a completed dataset for June 2015 was created for 

analysis (Table 2)  

Table 2 Brief description of ILM dataset 

                        ILM dataset description 

Pollutant PM10 and PM2.5 

Locations 32 airboxes 

Timeperiod June 2015 (30 days) 

Temporal Resolution 10 minutes 

http://82.201.127.232/
http://82.201.127.232/api/v1/?airboxid=#.cal
http://90.145.62.12:8080/
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3.2.1.4. Quality of ILM dataset 

Before proceeding with the research, the dataset was evaluated qualitatively based on different aspects of 

geographic data quality presented in ISO/FDIS 19157 report on geographic data quality (ISO, 2013). These 

are completeness, logical consistency, positional accuracy, thematic accuracy, temporal quality and usability. 

Qualitative discussions on data quality aspects of ILM are tabulated in  

Table 3 
Table 3 Discussions on data quality of ILM measurements 

Data quality 

parameter 

Results for the ILM dataset (both PM10 and PM2.5) 

Completeness of 

data 

Observations were missing for prolonged timeperiods in 

airbox 6 (8th June 06:00 to 30th June 23:59), airbox 17 (7th 

June 12:43 to 8th June 12:33), airbox 23 (4th June 13:49 to 

11th June 12:37), airbox 25 (6th June 07:39 to 11th June 

10:53), airbox 36 (6th June 01:16 to 11th June 12:20) and 

airbox 39 (5th June 22:37 to 11th June 11:55). 

 

Coordinates of airboxes were present for all observations at 

all timestamps which were redundant as airboxes are 

stationary. 

Logical 

consistency 

Data stored in HDF and CSV formats were suitable to 

retrieve and structure for processing. 

Positional accuracy Coordinates of airboxes obtained from the dataset were 

checked against postcodes and locations provided in 

(Hamm et al., 2016) 

These were also matched with airbox location description 

from 

http://aireas.scapeler.com/index.php/Airbox_Open_Data 

and were found to be matching. 

Thematic accuracy Due to absence of reference data, this quality parameter 

could not be evaluated. Temporal quality 

Usability Timestamp of data collection in each sensor of ILM 

network was different which made it difficult to analyse the 

data at 10 minute interval. Aggregation to hourly values, 

however solved the purpose and was usable. 

3.2.2. URBIS 

URBIS (URBan Information System) (Figure 6)is a city level air quality model developed by TNO(Beelen 

et al., 2010; Keuken et al., 2011; TNO, 2015). It takes into account different categorizes of emission sources 

and predicts the concentrations of pollutants like (PM, O3, NO2) for user defined locations.  Generic URBIS 

model is an ensemble of three sub-dispersion models which cater specific to the type of emissions (Beelen 

et al., 2010; TNO, 2015). These are namely, contribution from traffic in the highways (modelled as line 

sources); contribution from traffic in street canyons (modelled as line sources) and contribution from 

industries, shipping yards and households (modelled as point and area sources). 

http://aireas.scapeler.com/index.php/Airbox_Open_Data
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Figure 6 Schematic representation of URBIS dispersion model and its prediction process 

Emissions from highway are modelled by a Gaussian line source model (Pluim-Snelweig model) which is a 

standard dispersion model for line sources (Vardoulakis et al., 2003; Wesseling et al., 1996). It takes buffer 

region up to 5000 meters across the highways as limit for modelling emissions (Beelen et al., 2010). In a 

similar manner, the CAR dispersion model (Calculation of Air pollution by Road traffic) (Den Boeft et al., 

1996; Eerens et al., 1993; Vardoulakis et al., 2003) is employed for modelling the contribution from road 

traffic in urban areas, especially city canyons. It takes into account the interaction of built-up area with 

exhausts and wind, which causes leeside waves. For the CAR model, a buffer up to 30 meters across road 

pavements is used. Finally to model point and area sources, like emissions from industries, households and 

other secondary sources, it employs a simplified Gaussian plume dispersion model. Based on user defined 

spatiotemporal grid, it predicts the concentration of pollutants. 

For PM, the calculation of predictions can be represented as, (Amato et al., 2015) 

 𝐶𝑠𝑙𝑐 = 𝐶𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 + 𝐶𝑓𝑜𝑟𝑒𝑔𝑟𝑜𝑢𝑛𝑑  (1) 

 𝐶𝑓𝑜𝑟𝑒𝑔𝑟𝑜𝑢𝑛𝑑 = ∆𝐶𝑆𝑛𝑒𝑙𝑤𝑒𝑖𝑔 + ∆𝐶𝑆𝑡𝑟𝑒𝑒𝑡 + ∆𝐶𝑝𝑜𝑖𝑛𝑡 𝑎𝑛𝑑 𝑎𝑟𝑒𝑎 𝑠𝑜𝑢𝑟𝑐𝑒𝑠 (2) 

 𝐶𝑠𝑙𝑐 = 𝐶𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 + ∆𝐶𝑆𝑛𝑒𝑙𝑤𝑒𝑖𝑔 + ∆𝐶𝑆𝑡𝑟𝑒𝑒𝑡 + ∆𝐶𝑝𝑜𝑖𝑛𝑡 𝑎𝑛𝑑 𝑎𝑟𝑒𝑎 𝑠𝑜𝑢𝑟𝑐𝑒𝑠 (3) 
 

Where,𝐶𝑠𝑙𝑐 is the total predicted PM concentration, (μg m-3)  

𝐶𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑  is the contribution of background PM concentration (μg m-3) 

∆𝐶𝑆𝑛𝑒𝑙𝑤𝑒𝑖𝑔 is the highways traffic contribution given by Gaussian pluim-snelweig line model (μg 

m-3) 

∆𝐶𝑆𝑡𝑟𝑒𝑒𝑡 is the contribution from road traffic in street canyons given by the CAR model (μg m-3) 

∆𝐶𝑝𝑜𝑖𝑛𝑡 𝑎𝑛𝑑 𝑎𝑟𝑒𝑎 𝑠𝑜𝑢𝑟𝑐𝑒𝑠 is the contribution from point and area sources modelled by the simplified 

Gaussian plume model. (μg m-3) 

 
The Gaussian pluim-snelweig model and CAR model are given by the following mathematical formula 

(Amato et al., 2015). 

 
∆𝐶𝑆𝑛𝑒𝑙𝑤𝑒𝑖𝑔 =

𝐸. 𝑑𝑤

√2𝜋. 𝜎𝑧 . 𝐶. 𝑢
.

1

𝜋.
𝑅𝐵
𝑛

. 𝑒
−(𝑧−ℎ)2

2.𝜎𝑧
2

 
(4) 

 
∆𝐶𝑆𝑡𝑟𝑒𝑒𝑡 = 𝐸. 𝜃. 𝐹𝑏 .

𝑈

𝑢𝑎𝑣𝑔
 

(5) 

Where,  𝐸 is emission strength per unit length (μg m-1 s-1) 

𝑑𝑤 is length of road segment (m) 

𝑅𝐵  is distance from source to receptor (m) 
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𝜎𝑧  is vertical diffusion coefficient (m) 

𝑧  is receptor height (m) 

𝐶  is roughness length depended correction factor 

𝑢  is wind speed (m s-2) 

ℎ is source height (m) 

𝜃 is dispersion equation depending on street type (s m-2) 

𝐹𝑏 is correction for trees in the street 

𝑈 is annual average reference wind speed (m s-1) 

𝑢𝑎𝑣𝑔 is annual averaged wind speed at specific height (m s-1) 
 
For this research a subset URBIS data was made available by TNO for the month of June 2015 (Table 4). 
This contained hourly particulate matter foreground predictions (PM10 and PM2.5) at 1226 locations in and 
around Eindhoven. 32 of these prediction locations corresponds to that of airbox locations (ILM 
measurement sites) and were used for its performance evaluation against ILM measurements while 
remaining 1194 locations were used along with ILM observations for integrating in a BME framework to 
produce spatiotemporal maps of PM in Eindhoven. 

Table 4 Brief description of URBIS dataset 

                          URBIS dataset description 

Pollutant PM10 and PM2.5 (foreground predictions) 

Locations 1226 Locations: (includes 32 airbox locations) 

Time period June 2015 (30 days) 

Temporal Resolution 1 hour 

3.2.2.1. Quality of URBIS dataset 

A qualitative check of data quality of URBIS dataset are tabulated in Table 5. These data quality parameters 

based on ISO definitions for geographic data quality (ISO, 2013). 
Table 5 Discussions on data quality of URBIS model predictions 

Data quality parameter Results for the URBIS dataset (both PM10 and PM2.5) 

Completeness of data There were no missing observations in the dataset. 

Logical consistency Data stored in CSV formats were suitable to retrieve and structure for 

processing. 

However, URBIS foreground predictions contained contributions 

from Gaussian plume-snelweig model and CAR model. Contributions 

from point and area sources (simplified Gaussian plume model) were 

not accounted in these predictions. 

Background values of PM were also not accounted for in the 

predictions. 

Positional accuracy Coordinates of URBIS foreground predictions were plotted against 

airboxes (32 locations). Other prediction locations were plotted which 

were found to be in and around Eindhoven 

Thematic accuracy PM10 and PM2.5 values of URBIS foreground predictions were very low 

(in ranges of few μg m-3). This was consistent with reports by 

(Matthijsen & ten Brink, 2007; VROM, 2008) that suggested that traffic 

contribution to PM levels are generally lower in the Netherlands.. 

Temporal quality Due to absence of reference data, this quality parameter could not be 

evaluated 

Usability Availability of data at hourly values were suitable for the purpose of 

research 
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3.2.3. PM background estimation 

PM is the combination of contributions from local emission sources and also from the background values 

(Amato et al., 2015; Lenschow, 2001). As discussed in Section 2.2 PM levels are often dominated by 

background concentrations as compared to the foreground values(Hoogerbrugge et al., 2010; VROM, 

2008). Background concentration levels of PM at a location arises from a number of anthropogenic and 

natural sources which may not be present in the immediate vicinity of the location. Furthermore, owing to 

transboundary movement and atmospheric mixing, PM from these sources remain stabilized in the 

atmosphere for a longer period and their movement depends on meteorological conditions. To account for 

background concentration of PM in the URBIS model predictions, (Equation 3), PM10 and PM2.5 hourly 

measurements were used from the nearby LML stations.  

3.2.3.1. LML monitoring network 

Landelijk Meetnet Luchtkwaliteit (LML) translated as Rural Air Quality Monitoring Network is the national 

air quality measurement network in the Netherlands and are maintained by Rijksinstituut voor 

Volksgezondheid en Milieu translated as Netherlands national institute for public health and the 

environment (RIVM) (RIVM, 2015). These stations provide air quality measurements for pollutants like 

PM10, PM2.5, O3 and NO2 to name a few. These values are validated and published on the LML website 

(http://www.lml.rivm.nl/gevalideerd/index.php) as CSV files and infographic maps. PM10 measurements 

are available as daily averaged values whilst PM2.5 measurements are available as hourly values. Since URBIS 

foreground predictions were hourly values, measurements from LML stations should correspond to hourly 

values for entire month of June 2015. Hourly PM2.5 measurements were obtained from the website and 

hourly PM10 measurements were obtained after personal communication with RIVM officials. 

3.2.3.2. LML stations near Eindhoven 

LML stations are distributed all over the Netherlands and five of these are located in and around Eindhoven 

(Figure 7). Table 6 tabulates the location and characteristics of these LML stations .Two of these stations 

are located inside the city (Eindhoven- Genovevalaan and Eindhoven- Noordbrabantlaan) are classified as 

street stations. Air quality at these stations are mostly dominated by road traffic emissions. Another LML 

stations, Veldhoven-Europalaan is located in the immediate vicinity of Eindhoven and is a designated urban 

background station. Air quality at this station is majorly influenced by emissions from street canyons, 

residential areas and other built up areas. To get a better estimation of background values of PM, two more 

LML stations (which are designated background stations), Vredepeel- Vredeweg and Biest Houtakker- 

Biestsestraat are also considered in the study. These are located approximately 20-30 kms away from 

Eindhoven. Thus in order to calculate background values of PM in Eindhoven, measurements from Station 

131, Station 230 and Station 247 were considered. These are classified as background stations and 

measurements from these stations are not influenced by road traffic emissions or emissions from industrial 

areas or other major sources.  

 

Background values for PM10 and PM2.5 are calculated as,  

 
𝐶𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑𝑖

=.
𝐶𝑖𝑠𝑡𝑎𝑡𝑖𝑜𝑛 131

+ 𝐶𝑖𝑠𝑡𝑎𝑡𝑖𝑜𝑛 230
+ 𝐶𝑖𝑠𝑡𝑎𝑡𝑖𝑜𝑛 247

3
 

 

(6) 

Where, 𝑖 refers to the species of pollutant- PM10 or PM2.5. 

𝐶𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑𝑖
 is the hourly averaged background values of PM10 or PM2.5. 

𝐶𝑖𝑠𝑡𝑎𝑡𝑖𝑜𝑛 131
 is the hourly measurements from LML station 131. 

𝐶𝑖𝑠𝑡𝑎𝑡𝑖𝑜𝑛 230
 is the hourly measurements from LML station 230. 

𝐶𝑖𝑠𝑡𝑎𝑡𝑖𝑜𝑛 247
 is the hourly measurements from LML station 247. 

http://www.lml.rivm.nl/gevalideerd/index.php
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Table 6 Description of LML stations near Eindhoven 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 7 Location of LML monitoring stations near Eindhoven 

The summary statistics of these background stations and the corresponding averaged PM concentrations 

are shown in tabular format in Table 7. The analysis is done for both PM10 and PM2.5. Prior to averaging 

these concentration values from background stations, there were some issues with the values. Some hourly 

measurements were negative values. These values might occur in the data due to calibration problems or 

sensor malfunction. Negative values of PM were replaced with NA. Furthermore, there were some missing 

observations in all stations and these were also taken into consideration before calculating the average. 

LML Stations near Eindhoven (centre assumed at 51.43 N, 5.48 E) 

Name Latitude 

(degrees) 

Longitude 

(degrees) 

Distance to 

Eindhoven 

approx(km) 

Classification 

Station 131 

Vredepeel- Vredeweg 

51.54N 5.85E 28 Background Station 

Station 236 

Eindhoven- Genevevolaan 

51.47N 5.47E 4 Street Station 

(inside city) 

Station 237 

Eindhoven- 

Noordbrabantlaan 

51.44N 5.44E 3 Street Station 

(inside city) 

Station 247 

Veldhoven- Europalaan 

51.41 N 5.39E 7 City Background 

Station 

Station 230 

Biest Houtakker- Biestsestraat 

51.52N 5.15E 25 Background Station 
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Table 7 Summary statistics of hourly PM values from LML stations 

PM10 (μg m-3) PM2.5 (μg m-3) 

 Station 
131 

Station 
230 

Station 
247 

Averaged 
Background 

Station 
131 

Station 
230 

Station 
247 

Averaged 
Background 

Mean 18.04 17.95 15.85 17.10 7.16 8.82 8.04 8.06 

NA 
values 

167 29 38 0 56 13 51 0 

 

From Table 7 it can be seen that the mean values of PM10 and PM2.5 at the three background stations tends 

to be similar. The difference of averaged value to that of the mean measurement of PM10 was largest for 

Station 247 and least for Station 131. Similarly, this difference was largest for Station 131 for PM2.5. To 

study the trend in concentration levels at these stations, boxplots of PM10 and PM2.5 measurements at these 

stations for June 2015 (Figure 8). From these boxplots, it can be seen that these measurements at these 

stations show similar trends in values averaged value can be considered as the background values of PM in 

Eindhoven.  

 

 
 

 
 

 
 

 
 

 
  

Figure 8 Boxplots of PM10 (above); PM2.5 concentrations (below) at background LML stations 

To further emphasize on the similar trends in particulate matter concentrations at these stations, timeseries 

plots were drawn for both PM10 (Figure 9) and PM2.5 (Figure 10).It was done using timeProp function in 

“openair” library (v 1.6.7) in R (Carslaw & Ropkins, 2012). These were plotted along with averaged 

background values that was calculated from these three stations. It can be seen that averaged background 

values (shown in violet) resembles approximately the trends of individual background stations in time. 

Smoothing line represented in each time series is lowess smooth line and uses locally weighted linear 

regression to smooth the data with 95% confidence interval. There were some time periods where there 

were missing observations and abrupt increases in concentration levels at individual stations, that might 

affect the averaging. 
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Figure 9 Time series of PM10 measurements from LML background stations and averaged background 

 

 
Figure 10 Time series of PM2.5 measurements from LML background stations and averaged background 
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Thus average concentration levels from these three stations were added to URBIS foreground predictions 

(contribution from traffic in highways and street canyons) to yield PM10 and PM2.5 concentration levels at 

URBIS prediction locations. The sum of URBIS foreground and averaged background concentration from 

LML stations are considered as URBIS predictions as a naming convention in the research. 
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4. METHODS 

4.1. Evaluation of URBIS predictions against ILM measurements 

4.1.1. Conceptual description 

Thunis et al., (2012) describes the usage of measurement uncertainty (𝑈) in evaluating model predictions 

against measurements. Uncertainty of measurement data depends on relative uncertainty associated with 

measurement of a pollutant species as per air quality directives (EU, 2010), dataset, reference time for 

averaging, measurement techniques and instrument used. It is generally estimated by experimental methods 

(Pernigotti et al., 2013; Thunis et al., 2013). Utilization of measurement uncertainty interval ±𝑈 in the 

measurements leads to a range of values where actual concentration value is assumed to lie. The process 

assumes that the model predictions, in order to perform accurately, should also lie in the same interval 

thereby concluding how well model predictions are against the measurement data around these limits. This 

can thus be utilized in comparing modelled predictions for an unbiased evaluation. Furthermore, by using 

statistical indicators around these uncertainty margins ±𝑈 a definitive model performance criteria (MPC) 

can be generated which describes the minimum level of quality that is sufficient for the modelling application 

with respect to measurement data. 

4.1.1.1. Measurement uncertainty 

Measurement uncertainty (𝑈) is defined as (Thunis et al., 2012a): 

 

𝑈 =  √
1

𝑁
∑(𝑈𝑟(𝑂𝑖) ∗ 𝑂𝑖)2

𝑁

𝑖=1

 

(7) 

Where, 𝑈𝑟(𝑂𝑖) refers to the total uncertainty in the measurement instrument for a particular pollutant, 

𝑈𝑟refers to the relative uncertainty of a given pollutant, 

𝑂𝑖 refers to the measurement values for time 𝑖 and 

𝑁 refers to the total number of observation instances. 

 

Based on European Union Air Quality directives (EU, 2008), the value of 𝑈𝑟 is set to 25% for mean daily 

values of PM10 and PM2.5 and should be noted that this 25% is a guideline that should not be exceeded. 

Since actual value of measurement uncertainty 𝑈𝑟(𝑂𝑖) was not available for the PM sensor in ILM network, 

the standardised value of 25% was used. Furthermore, this value is assigned for daily values of PM10 and 

PM2.5 as measurement uncertainty tends to increasingly fluctuate for lower temporal resolutions. Absence 

of information on these values for hourly, 6-hourly and 12-hourly scales lead to assumption of constant 

value of 25% of measurement uncertainty in this research. Similarly, predictions from the URBIS model, 

which are heavily dominated by background concentration obtained by averaging measurements from the 

LML stations, the model uncertainty for PM10 and PM2.5 was also assumed to be 25 %. Uncertainty 

associated with PM measurements at LML stations have been reported to be 16 % for daily values and tend 

to be increase drastically for increased temporal resolutions (Hoogerbrugge et al., 2010) Furthermore, 

uncertainties due to averaging of measurements from LML stations and those associated with URBIS model 
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formulations whose exact values could not be obtained also contribute to model uncertainty .Thus model 

uncertainty was also assumed to be 25% for all temporal resolutions. 

 

Measurement uncertainty is utilized to normalize key statistical indicators like root mean square error 

(RMSE), normalized mean bias (NMB), normalized mean standard deviation (NMSD) and correlation 

coefficient (R) to portray how effective model predictions are against measurements. Although literature 

review suggests several other statistical parameters that can be utilized for performance evaluation(Section 

2.3), based on recommendations of forum for air quality modelling in Europe (FAIRMODE) JRC, (2015); 

Thunis et al., (2015); Thunis et al., (2012b) Borrego et al., (2008) the following statistical parameters are 

considered for definition of model performance criteria (MPC). 

 

Root mean square error is defined as (Chang & Hanna, 2004; Thunis et al., 2012a): 

 

𝑅𝑀𝑆𝐸 =  √
1

𝑁
∑(𝑂𝑖 − 𝑀𝑖)2

𝑁

𝑖=1

 

(8) 

Where, 𝑂𝑖 refers to measurement for time 𝑖 

𝑀𝑖 refers to model predictions at time 𝑖 and 

𝑁 refers to the total number of observation instances. 

 

Normalized mean bias is defined as (Thunis et al., 2012a): 

 
𝑁𝑀𝐵 =  

𝑀̅ − 𝑂̅

𝑂̅
=  

𝐵𝑖𝑎𝑠

𝑂̅
 

(9) 

Where, 𝑀̅ refers to the mean of the predictions for a single location at all observation instances 

𝑂̅ refers to the mean of the measurements for a single location at all observation instances. 

 

Normalized mean standard deviation is defined as (Thunis et al., 2012a): 

 𝑁𝑀𝑆𝐷 =  
𝜎𝑀 − 𝜎𝑂

𝜎𝑂
 (10) 

Where, 𝜎𝑀 is the standard deviation of model predictions at a single location at all observation instances  

𝜎𝑂  refers to standard deviation of the measurements at a single location at all observation 

instances. 

 

Correlation coefficient is defined as (Thunis et al., 2012a): 

 
𝑅 =  

𝜎𝑀
2 +  𝜎𝑂

2 −  √𝑅𝑀𝑆𝐸2 + 𝑏𝑖𝑎𝑠2

2𝜎𝑀𝜎𝑂
 

(11) 

4.1.1.2. Derivation of model performance criteria for URBIS model 

Model performance criteria (MPC) for URBIS model predictions based on measurement uncertainty of PM 

values in ILM network were based on the method proposed by Thunis et al., (2012a) These criteria were 

defined for four statistical metrics, 𝑅𝑀𝑆𝐸, 𝑁𝑀𝐵, 𝑁𝑀𝑆𝐷 and 𝑅. 

 

For equal tolerance levels of uncertainty in model and measurement(±𝑈), 𝑅𝑀𝑆𝐸 is divided by 2U, and 

hence the MPC for 𝑅𝑀𝑆𝐸 is: 

 

𝑅𝑀𝑆𝐸𝑈 =  
𝑅𝑀𝑆𝐸

2𝑈
=  

√1
𝑁

∑ (𝑂𝑖 − 𝑀𝑖)2𝑁
𝑖=1

2𝑈
< 1 

 

(12) 
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Three cases can be concluded for the values of 𝑅𝑀𝑆𝐸𝑈  for a single location concerning all temporal 

episodes (Table 8): 

Table 8 Model performance criteria based on RMSE values (Thunis et al., 2012a) 

𝑅𝑀𝑆𝐸𝑈 Conclusion 

>1 Model predictions do not coincide with observations. The uncertainty levels (±𝑈) 
of model predictions and observations do not overlap. 

(0.5,1] Uncertainty levels (±𝑈) of model predictions and observations overlap partially 
and model predictions are in acceptable range to observations. 

< 0.5 Model predictions coincide with observations and the uncertainty levels (±𝑈) of 
model predictions and observations overlap. 

 

Similarly, the MPC for 𝑁𝑀𝐵 as described in (Thunis et al., 2012a) is: 

 
|𝑁𝑀𝐵| <

2𝑈

𝑂̅
 

(13) 

MPC for 𝑁𝑀𝑆𝐷 as described in (Thunis et al., 2012a) is:, 

 
|𝑁𝑀𝑆𝐷| <  

2𝑈

𝜎𝑂
 

(14) 

MPC is derived for 𝑅 as described in (Thunis et al., 2012a) 

 
𝑅 > 1 − 2 (

𝑈

𝜎𝑂
)

2

 
(15) 

 

Table 9 summarizes four definitions of MPC that are utilized to evaluate PM10 and PM2.5 predictions from 

URBIS model against ILM measurements. This evaluation is performed at different temporal scales so as 

to determine in which temporal resolution (hourly, 6-hourly, 12-hourly or daily) URBIS model predictions 

correspond optimum to those of ILM measurements. 

 
Table 9 Model performance criteria matrix for evaluation of URBIS predictions(Thunis et al., 2012a) 

MPC definitions for URBIS model evaluation 

Statistical 
Metric 

Model Performance Criteria Comments 

Root mean 
square error 

𝑅𝑀𝑆𝐸𝑈 < 1  

Normalized 
mean bias 

|𝑁𝑀𝐵| <  2𝑈
𝑂̅

⁄  2𝑈
𝑂̅

⁄  is considered as MPC NMB 

Normalized 
mean standard 
deviation 

|𝑁𝑀𝑆𝐷| <  2𝑈
𝜎𝑂

⁄  2𝑈
𝜎𝑂

⁄  is considered as MPC NMSD 

Correlation 
coefficient 

1 − 𝑅 < 2(𝑈
𝜎𝑂

⁄ )
2
 2(𝑈

𝜎𝑂
⁄ )

2
 is considered as MPC R 

4.1.2. Workflow 

The workflow for evaluating URBIS predictions against ILM measurements is depicted in Figure 11. ILM 

measurements (PM10 and PM2.5) obtained at 10 minute resolution at 32 airboxes for June 2015 are aggregated 

to different temporal resolutions. Similarly, hourly PM10 and PM2.5 predictions from URBIS model, available 

at these 32 airbox locations for June 2015 were also aggregated (Table 10). Evaluation were done at four 

different temporal scales. Whilst for URBIS model predictions, hourly values were aggregated to 6-hours, 

12- hours and 24 hours; for ILM measurements, data obtained at 10 minute interval were aggregated to 

hourly, 6-hour, 12- hours and 24 hours. 
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Table 10 Levels of aggregation of URBIS predictions and ILM measurements 

Temporal 

Aggregation 

Spatial 

locations 

Temporal 

Instances 

Comment on URBIS 

data (Model) 

Comments on ILM data 

(Measurement) 

Hourly 32 720 Default temporal 

resolution, no 

aggregation needed 

Measurements obtained at 10 

minute interval were 

aggregated to requisite levels. 

6-Hourly 120 Hourly observations 

were aggregated 12-Hourly 60 

Daily 

(24-Hourly) 

30 

 

Since the exact value of measurement uncertainty for PM sensor in ILM network was unknown, 

measurement uncertainty (𝑈) for the performance evaluation framework was considered to be 25% (for 

PM10 and PM2.5) based on EU- AQD (Denby & Larssen, 2010; EU, 2008). This value corresponds to the 

maximum allowable uncertainty of particulate matter for daily values and was assumed constant for all 

temporal aggregation levels. Based on the formula mentioned in Section4.1.1.2, measurement uncertainty 

(U) was calculated for different aggregation levels of ILM measurements and URBIS model values. This 

was used to generate MPC metrics for PM10 and PM2.5 for different temporal aggregations to assess at which 

optimal resolution URBIS predictions are similar to ILM measurements. . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 11 Methodology for performance evaluation of URBIS model against ILM measurements 



SPACE-TIME OBSERVATIONS FOR CITY LEVEL AIR QUALITY MODELLING AND MAPPING 

27 

4.2. Data integration by Bayesian Maximum Entropy method 

4.2.1. Conceptual description 

Bayesian Maximum Entropy uses an epistemic knowledge synthesis framework and considers 
spatiotemporal behaviour of a pollutant can be asserted by possessing knowledge about two concepts which 
are analogous as subjective (concepts and belief about any phenomenon) and objective (measured or actual 
evidence) paradigms of philosophy (Christakos et al., 2002; Yu et al., 2015). 
 
Available information about a pollutant in space and time corresponds to Total knowledge base (T) 
comprising of the following components: 

 General knowledge base (G-KB): This consists of information that describes the 
spatiotemporal dependence structure of a pollutant in space and time. It includes physical 
interaction laws, conceptual models, spatiotemporal mean trend and spatiotemporal covariance 
functions. This information can be ascertained from various sources such as previous 
knowledge about pollutant behaviour, experiments, statistical modelling to name a few. 

 Site-specific knowledge base (S-KB): It is a database containing observations of pollutant, 
their coordinates in space and time and associated uncertainty in their values. These 
observations can be obtained from various sources such as from measurement networks, model 
predictions. Observations are categorized based on their uncertainty levels in two categories. 
These are hard data and soft data.  

o Hard Data corresponds to observations that are obtained at satisfactory level of 
accuracy. Since their values are certain, these are represented as numerical values in the 
database. 

o Soft Data comprises of observations which have inherent uncertainty associated with 
their values. These observations are represented in probabilistic form or in intervals in 
the database. 

 
PM values in Eindhoven can be considered as a spatiotemporal random field model (S/TRF). A S/TRF is 
a spatiotemporal data structure comprising of locations in time and space (denoted as nodes) and its 
attributes (Christakos, 2000; Serre & Christakos, 1999). In this study, these correspond to PM values at 
spatial coordinates (locations) in Eindhoven for entire month of June 2015. This S/TRF is denoted 

as  𝑋(𝑝) .where, 𝑝 = (𝑠, 𝑡)  represents its location in space and time. 𝑠 = (𝑥, 𝑦) , where 𝑠  refers to the 

location in two-dimensional space and 𝑡 is time point. 
 

𝑋(𝑝)  refers to nodes where observations (hard and soft data) are present and also to nodes where 
interpolation is to be performed (locations without any attribute value). Locations of hard data are denoted 

as 𝑝ℎ𝑎𝑟𝑑 , locations of soft data points are denoted as 𝑝𝑠𝑜𝑓𝑡 and locations where predictions are to done can 

be considered as 𝑝𝑘 . Similarly, 𝑋𝑚𝑎𝑝(𝑝) consists of attribute values and includes 𝑋ℎ𝑎𝑟𝑑(𝑝), 𝑋𝑠𝑜𝑓𝑡(𝑝) and 

𝑋𝑘(𝑝). 
 
Thus attribute of the S/TRF can be considered as:  

 𝑋𝑚𝑎𝑝(𝑝) = [𝑋ℎ𝑎𝑟𝑑(𝑝), 𝑋𝑠𝑜𝑓𝑡(𝑝), 𝑋𝑘(𝑝)] (16) 

Where, 𝑋𝑑𝑎𝑡𝑎(𝑝) =  𝑋ℎ𝑎𝑟𝑑(𝑝)  ∪  𝑋𝑠𝑜𝑓𝑡(𝑝) and 𝑋𝑑𝑎𝑡𝑎(𝑝) ⊂  𝑋𝑚𝑎𝑝(𝑝) 

The total spatiotemporal range of S/TRF 𝑝𝑚𝑎𝑝 is represented as: 

 𝑝𝑚𝑎𝑝 = [𝑝ℎ𝑎𝑟𝑑 , 𝑝𝑠𝑜𝑓𝑡 , 𝑝𝑘] (17) 

Let, 𝜒𝑚𝑎𝑝  is a realization at points 𝑝𝑚𝑎𝑝  of the given S/TRF and is represented by the multivariate 

probability distribution function (PDF) given by: 

 𝑓𝑋(𝜒𝑚𝑎𝑝)𝑑𝜒𝑚𝑎𝑝 =  𝑃𝑟𝑜𝑏[𝜒𝑚𝑎𝑝 <  𝑋𝑝𝑚𝑎𝑝
<  𝜒𝑚𝑎𝑝 +  𝑑𝜒𝑚𝑎𝑝 ] (18) 

It consists of attributes of soft and hard data which are represented as: 

Hard Data: 𝑃𝑟𝑜𝑏[𝑋ℎ𝑎𝑟𝑑(𝑝) =   𝜒ℎ𝑎𝑟𝑑] = 1 

Soft Data: 𝑃𝑟𝑜𝑏[𝑋𝑠𝑜𝑓𝑡(𝑝) < 𝑞] = ∫ 𝑑𝜒𝑠𝑜𝑓𝑡  𝑓𝑆−𝐾𝐵(𝜒𝑠𝑜𝑓𝑡)
𝑞

−∞
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BME integrates G-KB (spatiotemporal dependence structure) and S-KB (attributes values) in three steps to 

model the spatiotemporal characteristics of PM (Hwa-Lung & Chih-Hsin, 2010; Lee et al., 2009; Rajasegarar 

et al., 2014).  

The steps can be described as: 

 

1. Prior Stage: The expected information contained in the S/TRF for 𝑋𝑚𝑎𝑝 is computed by the entropy 

function as 

 Ε[𝐼𝑛𝑓𝑜𝐺−𝐾𝐵(𝑋𝑚𝑎𝑝(𝑝)] =  − ∫ 𝑓𝐺−𝐾𝐵(𝑋𝑚𝑎𝑝(𝑝))𝑙𝑜𝑔[𝑓𝐺−𝐾𝐵(𝑋𝑚𝑎𝑝(𝑝))] 𝑑𝑋𝑚𝑎𝑝(𝑝) 

 

(19) 

Where, 𝑓𝐺−𝐾𝐵 constitutes a multivariate PDF model whose shape is determined by maximizing the expected 

prior information available based on G-KB (such as spatial covariance structure and temporal covariance 

structure, spatiotemporal mean) 

 

 Ε[𝑔𝛼(𝑋𝑚𝑎𝑝(𝑝))] =  ∫ 𝑔𝛼(𝑋𝑚𝑎𝑝(𝑝))𝑓𝐺−𝐾𝐵(𝑋𝑚𝑎𝑝(𝑝)) 𝑑𝑋𝑚𝑎𝑝(𝑝)for α = 0,1,2 

 

(20) 

a) α = 0, 𝑔0 = 1 ; 

b) α = 1, 𝑔1 =  Ε[(𝑋𝑚𝑎𝑝)] refers to mean trend describing spatiotemporal structure. 

c) α = 2, 𝑔2 =  Ε[{(𝑋𝑚𝑎𝑝(𝑝)) −   Ε[(𝑋𝑚𝑎𝑝(𝑝))]}{(𝑋𝑚𝑎𝑝(𝑝′)) −   Ε[(𝑋𝑚𝑎𝑝(𝑝′))]}] 

which refers to the covariance function that denotes spatiotemporal dependencies. 

By using Lagrange’s multiplier, optimization of 𝑔𝛼 is done and prior PDF is determined. The prior PDF 

can be written as: 

 𝑓𝐺−𝐾𝐵(𝑋𝑚𝑎𝑝(𝑝)) = 𝐽−1𝑒−𝜓𝐺−𝐾𝐵(𝑋𝑚𝑎𝑝(𝑝)) (21) 

Where, values of 𝐽 and 𝜓𝐺−𝐾𝐵(𝑋𝑚𝑎𝑝(𝑝)) are derived by equations below and 𝜇0, 𝜇𝛼  refer to Lagrange 

multipliers. 

 𝐽 =  𝑒−𝜇0 (22) 

 
𝜓𝐺−𝐾𝐵(𝑋𝑚𝑎𝑝(𝑝)) =  ∑ 𝜇𝛼

2

α = 1

𝑔𝛼(𝑋𝑚𝑎𝑝(𝑝)) 
(23) 

2. Meta-prior Stage: Site specific knowledge, in terms of hard and soft data are considered and the prior 

PDF is optimized by Bayesian conditionalization (Christakos, 2000). 

 

3. Integration Stage: The posterior PDF is generated based on the integration of G-KB and S-KB.  After 

incorporating the site-specific knowledge base (S-KB) in form of soft and hard data in the prior PDF 

(Equation 30), posterior PDF can be written as: 

 

            𝜓𝑆−𝐾𝐵(𝑋𝑚𝑎𝑝(𝑝))  =  𝐴−1  ∫ 𝑒𝜓𝐺−𝐾𝐵(𝑋𝑚𝑎𝑝(𝑝)) 𝑑𝑓𝑆−𝐾𝐵
𝑝𝑚𝑎𝑝

1
(𝑋𝑚𝑎𝑝(𝑝))  (24) 

 

Where, 𝑓𝑆−𝐾𝐵  (𝑋𝑚𝑎𝑝(𝑝)) refers to the cumulative distribution function (CDF) containing soft and hard 

data in S-KB.  𝐴 is the normalization constant and is given by the following equation (Rajasegarar et al., 

2014): 

 
𝐴 =  ∫ 𝑑𝑓𝑆−𝐾𝐵

𝑝𝑚𝑎𝑝

1

(𝑋𝑠𝑜𝑓𝑡(𝑝))𝑓𝐺−𝐾𝐵(𝑋𝑚𝑎𝑝(𝑝)) 
(25) 
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4.2.2. Workflow and processing 

The flowchart for integration of URBIS model predictions and ILM measurement data in the BME 

framework is depicted in Figure 12. BME processing was implemented in STAR-BME plugin (Yu et al., 

2015; Yu et al., 2012; Yu, 2014) in QGIS (v 2.10.1 Pisa) (QGIS Development Team, 2015). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 12 Workflow of integration of URBIS predictions with ILM measurement data in BME 

4.2.2.1. Categorization of soft and hard data 

Data pertaining to BME analysis consisted of hourly PM measurements from 32 ILM stations (airboxes) 

and a set of 500 URBIS prediction locations. The locations were randomly sampled from the URBIS dataset 

containing 1226 locations. These data were then categorized on their uncertainty levels as hard and soft data. 

By definition, soft data consists of those datum whose values are uncertain and are generally characterized 

stochastically. These can be represented by a probability distribution function (PDF). Hard data are data 

which can be considered as certain or have relatively low uncertainty associated with their values. 

 

Based on the guidelines of measurement uncertainty by European air quality directives (EU, 2008), 

uncertainty associated with PM measurements in the ILM network were assumed to be 25% for mean daily 

values This was the focal point in carrying out the first objective of this research (evaluating PM predictions 

from the URBIS model against ILM measurements). Similarly, PM values of URBIS predictions were also 

considered to have at least 25% uncertainty in their daily values. This attributes to two reasons, firstly since 

predictions from URBIS model consists of simulated output from an ensemble of dispersion models, 

inherent uncertainties associated with individual dispersion models also account as uncertainties in 

predictions of URBIS model. Furthermore, as mentioned in Section 4.1.1.1 URBIS predictions are affected 

by uncertainties in the background PM levels. In this research, background values of PM10 and PM2.5 were 
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averaged measurements from the LML stations. , uncertainty associated with PM measurements from LML 

stations is attributed to 16% for daily values and tend to increase drastically for hourly values. This 

uncertainty contributes to total uncertainty in PM predictions of URBIS model. Thus pertaining to this 

research PM values from URBIS predictions are considered as soft data as compared to ILM measurements. 

For this research, hard data, or ILM measurements were characterized by their numerical attribute, and their 

spatiotemporal location, whilst PM values of soft data or URBIS predictions were considered as interval 

data based on uncertainty range of 25%. Thus it was considered that, actual PM value any spatiotemporal 

location of URBIS prediction could be any value set by the bounds of ± 25% of the prediction made by the 

URBIS model. Thus, the input data characterized by the S-KB (site-specific knowledge base) in the BME 

process can be summarized in Table 11. 

 
Table 11 Site specific knowledge base (S-KB) for BME analysis 

 Attributes Spatial Range Temporal Range 

Input Data S-KB 

 Hard Data  PM10 and PM2.5 values from ILM 

measurements 

32 coordinates Hourly values for June 

2015 (720 time points) 

Soft Data ± 25% PM10 and ± 25% PM2.5 

values from URBIS predictions  

500 coordinates Hourly values for June 

2015 (720 time points) 

4.2.2.2. BME prediction grid 

Prediction maps of PM values (PM10 and PM2.5) in Eindhoven were generated at two temporal scales, daily 

and hourly predictions. Whilst daily predictions maps corresponded to full month of June, 2015 (30 maps 

for each pollutant), hourly predictions were obtained for one day – 4th of June (Wednesday), 2015 to reduce 

the computational efforts. The choice of choosing the date June 4th was based on time series analysis of PM 

values, as described in Section 5.1. PM values were relatively high during June 4th and showed abrupt changes 

in concentrations and motivated to obtain PM prediction maps at hourly time periods to study in detail the 

spatiotemporal variability. Output grid for prediction consisted on 100x100 spatial locations spread around 

Eindhoven and temporal extent was dependant on the temporal scale of prediction (daily or hourly).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13 Input data and prediction grid for BME analysis 
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Spatial extent of the grid was constrained according to the bounding box of the data coordinates and 

temporal extent of the grid was constrained to temporal range of the data. These were 24 time points for 

hourly temporal scale, corresponding to each hour from 00:00 hours to 23:59 hours of 4th June, 2015. 

Prediction scale for daily level comprised of 30 time points, each corresponding to a day of June 2015. 

4.2.2.3. Modelling spatiotemporal dependence structure 

G-KB (General Knowledge Base) involves modelling the stochastic behaviour of PM values in space and 

time. This includes characterizing the spatiotemporal dependence structure of PM values in Eindhoven for 

June 2015. It involves estimation of spatiotemporal mean trend and spatiotemporal covariance function. 

PM value at a space-time node in Eindhoven can be decomposed into two aspects, 

 𝑋̂(𝑝) = 𝑚(𝑝) + 𝜀(𝑝) (26) 

Where, 

𝑋̂(𝑝) refers to value of PM at any given space-time node 𝑝, and 𝑝 = (𝑠, 𝑡) 

𝑚(𝑠, 𝑡) refers to the spatiotemporal mean trend and 

𝜀(𝑠, 𝑡) refers to the auto correlated residuals in space-time. 

 

Spatiotemporal mean trend 𝑚(𝑝) are long range variations in the PM values and spatiotemporal auto 

correlated residuals 𝜀(𝑝)  characterize the actual space-time structure of PM. In order to estimate the 

autocorrelation in spatial and temporal domain accurately, it is imperative to remove any mean trends in the 

dataset. Data de-trending prior to the characterization of spatiotemporal autocorrelation is important as it 

removes spatial inhomogeneity and temporal non-stationarity in the observations (hard and soft data) (Lee 

et al., 2008).  

 

Data de-trending in STAR-BME is achieved by means of a smoothing kernel filter. Based on explanations 

provided in (Yu et al., 2009; Yu et al., 2015), mean trend 𝑚(𝑝) is estimated by the following equation, 

 

 
𝑚(𝑝𝑒𝑠𝑡) =  

∑ 𝐾(𝑝𝑒𝑠𝑡 , 𝑝𝑜𝑏𝑠)𝑋̂𝑜𝑏𝑠
𝑁
𝑖=1

∑ 𝐾(𝑝𝑒𝑠𝑡 , 𝑝𝑜𝑏𝑠)𝑁
𝑖=1

= ∑ 𝑤(𝑝𝑒𝑠𝑡 , 𝑝𝑜𝑏𝑠)𝑋̂𝑜𝑏𝑠

𝑁

𝑖=1

 
(27) 

Where, 

𝑝𝑒𝑠𝑡 , 𝑝𝑜𝑏𝑠 correspond to estimation node and observation node; 𝑝 = (𝑠, 𝑡) 

𝑚(𝑝𝑒𝑠𝑡) is the mean spatiotemporal trend at an estimation location 𝑝𝑒𝑠𝑡 

𝑋̂𝑜𝑏𝑠 refers to the attribute value at 𝑝𝑜𝑏𝑠 (in this case, PM values from hard and soft data) 

𝐾(𝑝𝑒𝑠𝑡 , 𝑝𝑜𝑏𝑠) is the kernel function that depends on spatiotemporal distance between 𝑝𝑒𝑠𝑡 , 𝑝𝑜𝑏𝑠 

𝑁 refers to the number of nodes. 

 

Kernel function 𝐾(𝑝𝑒𝑠𝑡 , 𝑝𝑜𝑏𝑠) is expressed as,  

 
𝐾(𝑝𝑒𝑠𝑡 , 𝑝𝑜𝑏𝑠) =  e

(
−(𝑠𝑒𝑠𝑡−𝑠𝑜𝑏𝑠)2

2𝜆𝑠
2 )+(

−(𝑡𝑒𝑠𝑡−𝑡𝑜𝑏𝑠)2

2𝜆𝑡
2 )

 
(28) 

Where, 

𝑝𝑒𝑠𝑡 = (𝑠𝑒𝑠𝑡 , 𝑡𝑒𝑠𝑡) and 𝑝𝑜𝑏𝑠 = (𝑠𝑜𝑏𝑠, 𝑡𝑜𝑏𝑠) refers to estimation node and observation node, 

𝜆𝑡 refers to the temporal bandwidth of the kernel and 

𝜆𝑠 refers to the spatial bandwidth of the kernel 
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Optimal values of 𝜆𝑠  and 𝜆𝑡  are obtained using adjusted generalized cross validation (GCV) method  

(Altman, (1990) cited in Yu et al., 2009) which takes into account correlation among residuals. Adjusted 

GCV around a given number of nodes 𝑛 is computed by the following equation, 

 
𝐺𝐶𝑉𝑎𝑑𝑗 =  𝑛 (

∑ (𝑋̂𝑖 − 𝑚(𝑝𝑖))
2𝑛

𝑖=1

𝑛 − 𝑡𝑟𝑎𝑐𝑒 (𝑊𝑖𝐶𝑛)
) 

(29) 

Where, 

𝑛 refers to the number of nodes of data 

𝑋̂𝑖 is the attribute value at node 𝑖  

𝐶𝑛 is the correlation among the data present in 𝑛 nodes of data 

𝑊𝑖 is the kernel function matrix 𝑤(𝑝𝑒𝑠𝑡 , 𝑝𝑜𝑏𝑠)  where (𝑝𝑒𝑠𝑡 , 𝑝𝑜𝑏𝑠) are any two nodes among 𝑛. 

 

After the step of data-detrending, estimation of empirical covariance functions in spatial and temporal 

domains were done. Residuals after removal of mean trend from the available data (hard and soft) were used 

for the process. Separate covariance functions autocorrelation in spatial and temporal domain were 

estimated using the following parameters. Spatial and temporal distance limits, which refer to the maximum 

range in spatial and temporal domains where correlation among data is assumed. Lag tolerance refers to the 

distance (spatial and temporal) at which covariance is calculated for data points and number of spatial and 

temporal lags refer to division of spatial and temporal distance limit based on lag tolerance. Based on 

different combination of values, empirical covariance function is estimated.  

 

Suitable separable space-time covariance model was then fitted to the empirical covariance function to 

characterize the spatiotemporal characteristics of PM values. STAR-BME facilitates the use of nested 

separable space-time covariance models (Yu et al., 2015, 2012). 

Nested separable covariance models in space and time can be defined by (Yu et al., 2009; Yu et al., 2012) 

 

 
𝑐𝑜𝑣𝑠𝑡(ℎ, 𝜏; Ɵ𝑠𝑡) =  ∑ 𝑏𝑙

𝐿

𝑙=1

𝑐𝑜𝑣𝑠(ℎ; Ɵ𝑠)𝑐𝑜𝑣𝑡(𝜏; Ɵ𝑡) 
(30) 

Where, 

ℎ, 𝜏 refer to the spatial lag and temporal lag respectively; 

𝐿 refers to total number of separable covariance function in space and time  

𝑐𝑜𝑣𝑠𝑡 refers to the covariance model in space and time with Ɵ𝑠𝑡 its parameters (sill, ranges) 

𝑐𝑜𝑣𝑠 refers to covariance model in spatial domain with Ɵ𝑠 its parameters (sill, ranges) 

𝑐𝑜𝑣𝑡is the covariance model in temporal domain with Ɵ𝑡 its parameters (sill, ranges) 

𝑏𝑙 is the joint sill (contribution of variance of an individual separable space-time covariance model 

to the variance of the nested separable covariance model) 

 

Fitting the empirical covariance model with a nested separable covariance model in STAR-BME was carried 

out using automated methods involving PSO (particle swarm optimization) (Yu et al., 2009) which is used 

to initialize parameters for 𝑏𝑙 , Ɵ𝑠 and Ɵ𝑡 and subsequently by using iterative method of BOBYQA (bound 

optimization by quadratic approximation), optimal values of parameters are determined by using a weighted 

least squares optimization of theoretical and empirical covariance (Cressie, (1985) cited in Yu et al., 2009; 

Yu et al., 2015). Assessment of these model fitting were done by comparing the AIC (Akaike Information 

Criteria) values. Then BME predictions were made at given spatiotemporal output grid and included mean 

value of a prediction and were associated with a distribution function characterised by its mean and variance. 

STAR-BME includes a leave-one-out cross validation tool and this was used to assess the prediction 

accuracy of BME. These results are described in Section 5.3 
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5. RESULTS AND ANALYSIS 

5.1. Exploratory analysis 

Prior proceeding with the research objectives, exploratory analysis of the data was performed. As described 

in Chapter 3, data used in this research can be categorized as modelled data and measurement values of 

PM10 and PM2.5 pertaining to June 2015. Measurement data consisted of hourly measurements at 32 airboxes 

of the ILM network and modelled data were hourly predictions from the URBIS model at 1226 locations. 

Modelled dataset included predictions at 32 airbox sites and 1189 other locations. Figure 14 shows the 

locations of ILM measurements and URBIS predictions. It can be seen that most of the URBIS predictions 

were located in the vicinity of roadways and street canyons as it tries to model PM values based on emissions 

from traffic sources (described in Section 3.2.2.).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 14 Airbox locations (ILM network) and corresponding URBIS prediction locations 

From Table 12 and Figure 15, it can be seen that mean values of PM10 and PM2.5 of URBIS predictions 

(URBIS total) are slightly higher than those for ILM measurements. Additionally, it can be seen that PM 

values for URBIS foreground predictions are quite small as compared to averaged LML background values 

(substantiated by boxplots in Figure 15). Matthijsen & ten Brink, (2007) that stated the averaged background 

values of PM2.5 in the Netherlands generally lie in the range of 12-16 μg m-3 for rural background, 16-18 μg 

m-3 for urban background while contribution of emissions from traffic in the streets lie in range of 2-6 μg 

m-3. Mean values of ILM measurements were lower than that of mean values of LML background. This is 

consistent for both PM10 and PM2.5 values. The distribution of the ILM data and URBIS total predictions 
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were right skewed as the difference of mean and maximum value is very high compared to difference of 

mean to minimum value as confirmed from the histogram of data (Figure 16and Figure 17). 

 
 

Figure 15 Comparison of PM values from ILM, background LML and URBIS foreground predictions 

Table 12 Summary statistics of PM values from ILM, background LML and URBIS foreground 

 PM10 (μg m-3)  PM2.5 (μg m-3)  

ILM  URBIS 

Foreground 

Averaged 

background 

LML 

URBIS 

total 

ILM  URBIS 

Foreground 

Averaged 

background 

LML 

URBIS 

total 

Median 13.24 0.52 15.95 17.32 5.83 0.24 6.67 7.3 

Mean 14.16 1.25 17.10 18.39 6.23 0.57 8.06 8.64 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 16 Exploratory analysis of PM10 values at airbox 
locations 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 17 Exploratory analysis of PM2.5 values at airbox locations 
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Airbox locations were categorized based on its spatial representativeness (Table 1) and boxplots of PM10 and 

PM2.5 values of measurements and modelled data were plotted (Figure 16and Figure 17). From these plots, 

it can be seen that concentration levels are almost similar and there is no variability in the categories. It can 

inferred that since mean values of PM tend to remain constant at these categories of airbox locations, mean 

ILM measurements can also be used as an alternative for estimating the background concentrations in 

Eindhoven. 

5.1.1. Temporal variability of PM2.5 and PM10 in June 2015 

Using mvtsplot library in R (v 1.0-1) (Peng, 2008), the temporal visualization of hourly PM10 (Figure 18 for 

ILM measurements and Figure 20 for URBIS predictions) and hourly PM2.5 (Figure 19 for ILM 

measurements and Figure 21 for URBIS predictions) values were plotted. This consisted of three sub-plots, 

the left plot shows the hourly concentration values of pollutant (at each airbox location. The values are 

categorized as tertiles (high values= red, medium values= orange, low values= yellow and white= no data). 

The right plot shows box plot distribution of concentration at each airbox location. The bottom plot shows 

the time series of averaged concentration values at all airbox locations for a particular time instance. 

 

 

 

Figure 18 Temporal visualization of ILM- PM10 values at 32 airbox locations for June 2015 
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Figure 19 Temporal visualization of ILM- PM2.5 values at 32 airbox locations for June 2015 

 

 
Figure 20 Temporal visualization of URBIS- PM10 values at 32 airbox locations for June 2015 
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Figure 21 Temporal visualization of URBIS- PM2.5 values at 32 airbox locations for June 2015 

From Figure 18 and Figure 19 it can be seen that data gaps in ILM dataset are present in airboxes 6, 17, 23, 

25, 36 and 39. From the time series (bottom plot), it can be noticed that PM values show clear temporal 

variability (values increase and decrease in pattern. PM values are relatively high around June 4th, 14th and 

24th. Comparing visualizations of PM values from URBIS model and ILM network, it can be seen that 

URBIS predictions shows smoother temporal variability than compared to ILM measurements. This is 

because URBIS model predictions are affected by heavier dominance of background values from three LML 

monitoring stations as compared to URBIS foreground predictions as discussed previously (Figure 15 and 

Table 12).  

5.2. Performance evaluation of URBIS Model  

Based on the methods described in Section 4.1, measurement uncertainty (U) were derived for PM10 and 

PM2.5 at all airbox locations. These values are presented in the appendix (Table 30). These were then used 

to calculate MPC for four different temporal aggregations (hourly, 6-hourly, 12-hourly and daily). Metrics 

for MPC are described in Table 9. 

 

For the purpose of representation of results, five representative airbox locations were chosen. These 

correspond to a different category of spatial representativeness and by comparison of MPC values at these 

locations, it can be evaluated at which locations, URBIS predictions conform to the ILM measurements. 

Furthermore, this can also be used to analyse at which temporal resolution these predictions are consistent 

with measurements. These were chosen according to their classification presented in (Close et al., 2016; 

Hamm et al., 2016) 
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Table 13 Representative airbox locations for analysis 

Airbox Location Spatial Representativeness Address (Hamm et al., 2016) 

1 City background Eij-erven 41, 5646 JM 

31 City background (outside Eindhoven) Vincent Cleeradinlaan Waalre 5582 EJ 

2 Residential area Lijmbeekstraat 190 5612 NJ 

3 Busy Road Keizersgracht 28 5611GD 

29 Public Hospital Ds. Fleidnerstaat 5631 BN 

 

 

5.2.1. MPC results for hourly aggregation 

Table 14 MPC results at five representative stations for hourly aggregations 

   RMSE NMB NMSD R 

Spatial 
Representativeness 

AirBox 
location 

U RMSEu NMB MPC 
NMB 

NMSD MPC 
NMSD 

1-R MPC 
R 

Hourly PM10 

City Background 1 3.21 1.39 0.42 0.52 3.54 1.65 0.70 1.35 

 31 2.73 1.90 0.68 0.53 3.68 1.23 0.82 0.76 

Residential Area 2 4.32 0.91 0.08 0.80 5.41 2.74 0.68 3.76 

Busy Road 3 4.60 0.85 0.04 0.89 4.34 3.02 0.67 4.55 

Public Hospital 29 4.18 0.95 0.14 0.69 3.84 2.35 0.67 2.76 

Hourly PM2.5 

City Background 1 1.43 1.86 0.52 0.53 2.90 1.49 0.66 1.11 

 31 1.37 2.08 0.60 0.54 2.86 1.29 0.82 0.83 

Residential Area 2 1.74 1.38 0.26 0.69 3.73 1.98 0.61 1.96 

Busy Road 3 1.94 1.20 0.16 0.72 2.94 2.11 0.61 2.23 

Public Hospital 29 1.70 1.47 0.33 0.58 2.69 1.62 0.63 1.31 

5.2.2. MPC results for 6-hourly aggregations 

Table 15 MPC results at five representative stations for 6-hourly aggregations 

Spatial 
Representativeness 

AirBox 
location 

U 
MPC 
RMSE 

NMB 
MPC 
NMB 

NMSD 
MPC 
NMSD 

1-R 
MPC 
R 

6-Hourly PM10 

City Background 1 3.17 1.15 0.42 0.52 1.99 1.90 0.65 1.80 

 31 2.70 1.66 0.68 0.52 2.29 1.46 0.79 1.07 

Residential Area 2 4.26 0.69 0.08 0.79 3.72 3.15 0.62 4.97 

Busy Road 3 4.54 0.62 0.04 0.87 2.51 3.30 0.61 5.44 

Public Hospital 29 4.13 0.70 0.14 0.68 2.23 2.70 0.58 3.66 

6-Hourly PM2.5 

City Background 1 1.42 1.70 0.52 0.52 3.13 1.66 0.66 1.37 

 31 1.36 1.91 0.60 0.53 3.79 1.43 0.83 1.02 

Residential Area 2 1.72 1.22 0.26 0.68 3.24 2.15 0.59 2.32 

Busy Road 3 1.92 1.05 0.16 0.71 3.12 2.23 0.59 2.49 

Public Hospital 29 1.68 1.32 0.33 0.57 2.88 1.76 0.63 1.56 



SPACE-TIME OBSERVATIONS FOR CITY LEVEL AIR QUALITY MODELLING AND MAPPING 

39 

5.2.3. MPC results for 12-hourly aggregations 

Table 16 MPC results at five representative stations for 12-hourly aggregations 

Spatial 
Representativeness 

AirBox 
location 

U MPC 
RMSE 

NMB MPC 
NMB 

NMSD MPC 
NMSD 

1-R MPC 
R 

12-Hourly PM10 

City Background 1 3.15 1.09 0.42 0.51 1.79 2.16 0.65 2.33 

 31 2.67 1.58 0.68 0.52 2.16 1.69 0.74 1.43 

Residential Area 2 4.23 0.62 0.08 0.79 3.46 3.49 0.63 6.10 

Busy Road 3 4.52 0.57 0.04 0.86 1.96 3.40 0.63 5.76 

Public Hospital 29 4.10 0.64 0.14 0.68 2.00 3.10 0.58 4.80 

12-Hourly PM2.5 

City Background 1 1.40 1.65 0.52 0.52 2.45 1.87 0.66 1.74 

 31 1.35 1.86 0.60 0.53 2.29 1.53 0.86 1.17 

Residential Area 2 1.70 1.15 0.26 0.67 3.07 2.38 0.56 2.83 

Busy Road 3 1.91 0.99 0.16 0.70 2.25 2.31 0.57 2.67 

Public Hospital 29 1.66 1.26 0.33 0.57 2.22 1.96 0.61 1.93 

5.2.4. MPC results for daily aggregations (24 Hour) 

 Table 17 MPC results at five representative stations for daily aggregations 

Spatial 
Representativeness 

AirBox 
location 

U MPC 
RMSE 

NMB MPC 
NMB 

NMSD MPC 
NMSD 

1-R MPC 
R 

24-Hourly PM10 

City Background 1 3.11 1.04 0.42 0.51 1.81 2.72 0.67 3.69 

 31 2.65 1.54 0.68 0.52 2.39 2.24 0.78 2.52 

Residential Area 2 4.18 0.53 0.08 0.78 3.34 4.29 0.63 9.22 

Busy Road 3 4.46 0.48 0.04 0.86 2.13 4.73 0.61 11.20 

Public Hospital 29 4.05 0.56 0.14 0.67 2.00 3.97 0.57 7.90 

24-Hourly PM2.5 

City Background 1 1.38 1.52 0.52 0.51 2.08 2.37 0.76 2.80 

 31 1.33 1.73 0.60 0.53 1.90 1.79 1.01 1.60 

Residential Area 2 1.68 1.03 0.26 0.66 2.71 2.92 0.63 4.27 

Busy Road 3 1.89 0.86 0.16 0.70 1.88 2.84 0.61 4.02 

Public Hospital 29 1.64 1.14 0.33 0.56 1.86 2.44 0.68 2.99 

 

From the results, it can be seen that measurement uncertainty denoted by U (Equation 7) is lower in case 

of PM2.5 as compared to PM10, owing to difference in concentration levels. There is almost no change in the 

value of U for different temporal aggregations. However a contrasting feature that can be noticed is the 

difference in values of U at airbox location 1 and airbox location 31 even though both are considered as city 

background locations. In case of busy road (airbox location 3), the value of U is highest for both PM10 and 

PM2.5 and at all temporal aggregation levels. This can be attributed to the fact that URBIS prediction values 

are relatively high in busy roads. However, the heavier dominance of background values (from averaged 

LML stations) may have resulted in increased values of U at all the representative airbox locations. 

 

MPC for RMSE denoted by RMSEu (Equation 12) is generally lower for PM10 values as compared to PM2.5. 

For URBIS predictions to conform with ILM measurements, RMSEu should be less than 1 The lowest 

values in each case is associated with airbox located at Busy Road (Airbox location 3) and the highest values 

in each case are associated with airbox location 31 and airbox location 1, which is are city background 

station. MPC for RMSEu is not adhered in almost all cases of PM2.5, except for 12-hourly and daily 

aggregation values at airbox location 3. RMSEu is always higher than 1 for city background station. 
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The MPC for NMB (Equation 13) generally remained violated at city background location 31 for PM10 and 

PM2.5 and remains fulfilled in all other cases. Considering the MPC for R (Equation 15), in all the cases the 

MPC is fulfilled. The MPC for NMSD (Equation 14) are violated in all cases for hourly and 6-hourly 

aggregations for both PM2.5 and PM10 at all airbox locations. However, for 12-hour aggregations, this is 

adhered only for airbox located at busy road (for PM2.5) and for busy road and public hospital (for PM10). 

In case of daily aggregations, these are only violated for city background (airbox location 31) for PM10 and 

airbox location 2 (residential area) for PM2.5. 

 
Comparison of these RMSEu values at different temporal aggregations suggest that predictions from URBIS 

model were poorly consistent with ILM measurements at hourly levels and were moderately consistent at 

daily values. Specifically for URBIS predictions at airbox 2, which is a spatial representative of busy roads 

showed the consistent results of adhering to all MPC. whilst prediction at airbox location 1showed least 

consistent results. Thus, it can be said that URBIS predictions are generally suited for locations which have 

busy roads in its vicinity, and since URBIS model is an ensemble of dispersion models it is justifiable. 

Furthermore, dominance of background values play a key role in the adherence of URBIS predictions to 

that of ILM measurements and consequently affect MPC metrics. 

5.2.5. Equal tolerance graphs (PM10) and (PM2.5) 

The following plots depict the principle for equal tolerance, i.e. uncertainty levels for both model and 

measurements are kept constant at 25% which is in accordance to EU Air Quality Directives (EU, 2008). 

The plots depict the comparison of modelled and measured concentration levels of hourly PM10 (μg m-3) 

and PM2.5 (μg m-3) for air boxes 1, 2, 3 and 31 (airbox 1 represent city background; airbox 3 represents busy 

road ,airbox 2 represents residential area and airbox 31 represents city background, but is located outside 

Eindhoven) those were taken as spatial representatives (Table 13). The tolerance limits of modelled and 

measured concentrations are fixed at ±𝑈. These graphs are plotted at two different temporal aggregations- 

daily values and hourly values for PM10 (Figure 23 and Figure 25) and PM2.5 (Figure 22 and Figure 24). Equal 

tolerance graphs (Thunis et al., 2012a) infers how well model predictions overlap measurements within the 

interval of measurement uncertainty. Overlap time periods are those when RMSEu values are less than 1 

and model adheres to MPC for RMSE (Table 8). Analysis of these plots with RMSEu values can lead to 

assessment on which temporal periods and locations, model predictions conformed to those of 

measurements. The analysis of these plots are depicted in subsequent sections. 

5.2.5.1. Equal tolerance graphs for hourly values 

Figure 22 and Figure 23 represents the equal tolerance graphs of hourly aggregated ILM measurements and 

URBIS predictions at airbox locations 1, 2, 3 and 31 for PM2.5.and PM10 respectively. It can be seen that 

hourly values tend to fluctuate and these fluctuations are prominent in case of PM2.5 than that of PM10. 

URBIS prediction values tend to be more than ILM measurements at all representative stations. Abrupt 

increase in URBIS prediction values can be seen on dates around June 04, June 25 and on these days amongst 

other, the MPC for RMSE is violated. On dates around June 07, June 19, predictions tend to overlap 

measurements. 

 

Considering airbox location 31, which is a city background station, it can be noticed that the trends in PM10 

and PM2.5 values are not the same for URBIS predictions and ILM measurements, and thus has led to 

increase value of RMSE violating MPCs (Table 14). Airbox locations 2 and 3 show prominent overlaps in 

the URBIS predictions and ILM measurements. Airbox location 3, (busy road) in particular shows relatively 

high temporal episodes of overlap and this is also seen from the MPC metrics, which is adhered to by this 

location. (Table 14). 
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5.2.5.2. Equal tolerance graphs for daily values 

Figure 24 and Figure 25 represents the equal tolerance graphs of daily aggregated ILM measurements 

and URBIS predictions at airbox locations 1, 2, 3 and 31 for PM2.5.and PM10 respectively. It can be seen 

that there is a similar trend in URBIS prediction values at all locations. Similarly, there is also a similar 

trend in ILM measurements at all locations. These trends overlap for some specific time periods, and 

this overlap is greater for PM10 values than PM2.5 values. Airbox locations 2 and location 3 show 

increased temporal periods of overlapping for PM10 while airbox locations 1 and 31 show fewer time 

periods of overlap. Particularly for airbox location 31, least overlap is seen for PM10. In general, there is 

no significant overlap of URBIS predictions and ILM measurements for PM2.5, signifying the violation 

of MPC at all airbox locations except location 3 (busy road) (Table 17).  

 

An interesting pattern can be seen from the trends of PM10 and PM2.5 at these airbox locations. For 

ILM measurements, all the airbox locations have a similar temporal trend. Similarly, URBIS predictions 

at all airbox locations have a similar temporal trend. This can lead to two conclusions. Firstly, URBIS 

predictions as seen are high as compared to ILM measurement, Due to heavier dominance of 

background concentration from averaged LML measurement stations and comparatively lower values 

of URBIS foreground predictions, it can be said that there is a difference in values of ILM measurements 

and that of averaged background concentration calculated from LML stations. Secondly, since ILM 

measurements at all these airbox locations show similar temporal trend, mean value of ILM 

measurements can be an alternative for considering background value of PM and can be used in URBIS 

predictions. 
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5.3. Spatiotemporal prediction of PM values using BME 

This section describes the intermediary steps and results of integration of PM predictions from URBIS 

model and ILM measurements that corresponds to second objective of the research. Conceptual description 

of BME framework and the methodology followed to generate spatiotemporal maps of PM values in 

Eindhoven for June 2015 are discussed in details in Section 4.2.  

5.3.1. Spatiotemporal Maps for daily predictions  

Soft and hard data which were initially available as hourly values were aggregated to daily levels. This was 

used in the BME prediction analysis. Results pertaining to PM10 predictions and PM2.5 predictions are 

presented in the subsequent section.  

5.3.1.1. Predictions for PM10 

After de-trending of the data, empirical marginal covariance functions in spatial (time lag =0) and temporal 

domain (distance lag = 0) were plotted (Figure 26 (left)). The units of empirical marginal covariance function 

in spatial domain was in meters and that of temporal domain was in days. Probable values of parameters of 

empirical covariance functions are tabulated in Table 18.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 26 Covariance analysis for BME predictions of daily PM10. 

Table 18 Estimates of empirical covariance functions- daily PM10 BME analysis 

Estimates for Empirical covariance function 

Spatial distance limit: 6000 Temporal distance limit: 6 

Number of spatial lags: 10 Number of temporal lags: 8 

Spatial lag tolerance: 606 Temporal lag tolerance: 0.6 

 

Covariance in spatial domain decreases to zero around 1000 meters while covariance in time domain reduces 

to zero approximately at 6 temporal units. The change in covariance is rather abrupt in spatial domain than 

in the temporal domain implying the large spatial variability as compared to temporal variability. Based on 

Equation (30), nested covariance model consisted of three space-time separable covariance models. After 

iterating with different combinations of nested separable covariance models the following nested covariance 

model was used for fitting the empirical variogram (Figure 26 (right)). 

 

 𝑐𝑜𝑣𝑠𝑡(ℎ, 𝜏; Ɵ𝑠𝑡) =  𝐶1𝑐𝑜𝑣𝑠1(ℎ; Ɵ𝑠1)𝑐𝑜𝑣𝑡1(𝜏; Ɵ𝑡1) +  𝐶2𝑐𝑜𝑣𝑠2(ℎ; Ɵ𝑠2)𝑐𝑜𝑣𝑡2(𝜏; Ɵ𝑡2)  
+  𝐶1𝑐𝑜𝑣𝑠3(ℎ; Ɵ𝑠3)𝑐𝑜𝑣𝑡3(𝜏; Ɵ𝑡3) 

 

(31) 
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Table 19 Parameters for fitting nested covariance model- daily PM10 BME analysis 

𝐶1=0.05 𝑐𝑜𝑣𝑠1= Exponential Ɵ𝑠1=4544.16 𝑐𝑜𝑣𝑡1=Exponential Ɵ𝑡1=4.32 

𝐶2=0.05 𝑐𝑜𝑣𝑠2= Exponential Ɵ𝑠2=600 𝑐𝑜𝑣𝑡2=Exponential Ɵ𝑡2 =18.8

4 
𝐶3=0.4 𝑐𝑜𝑣𝑠3= Exponential Ɵ𝑠3=600 𝑐𝑜𝑣𝑡3=Exponential Ɵ𝑡3=1.41 

BME prediction process then resulted in integration of G-KB (defined by the mean spatiotemporal 

trend and nested separable spatiotemporal covariance function) and S-KB (hard and soft data) to 

produce daily PM10 values in Eindhoven. Maps for four different days of the week are plotted to see 

the variability of PM10 (Figure 27). This included June 01, 2015 (Monday), June 04, 2015 (Thursday), 

June 20, 2015 (Saturday) and June 30, 2015 (Tuesday). June 4th was chosen as there was a sudden increase 

in PM values as compared to adjacent dates (as discussed in Section 5.1.1). Concentration maps for 

dates in June 2015 are presented in the appendix (Table 31). It can be seen that PM10 levels are 

comparatively high for June 04, 2015 as compared to other days. Additionally, PM10 levels are the lowest 

on June 20th. Locations where ILM measurements are present have relatively low values of PM10. This 

may be due to the difference in the PM10 values of ILM network and that of URBIS predictions. Since 

URBIS predictions are dominated by background values (averaged LML measurements), the difference 

in ILM measurements and LML background might be a probable cause. This difference is most 

prominent in June 30th. 

Daily PM10 maps in Eindhoven 

June 01, 2015 June 04, 2015 PM10 (μg m-3) 
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Figure 27 Daily PM10 prediction maps in Eindhoven 
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5.3.1.2. Predictions for PM2.5 

Similarly, BME analysis to generate spatiotemporal maps for daily values of PM2.5 were carried out. The 

empirical covariance functions in space and time domain were generated (Table 20) and by means of nested 

space-time separable covariance function (Equation 30), model fitting was done. Figure 28 represents the 

empirical covariance functions in space and time (left) and the fitted covariance model (right). The units for 

spatial lag is meters and temporal lag is days. It can be noticed that the effective range for the covariance in 

spatial domain is approximately 4000 meters whilst that for temporal domain is approximately 6 days. It can 

be noticed that the slope of both spatial and temporal covariance functions are smooth and give an 

indication that there is no sudden change in spatiotemporal variability. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 28 Covariance analysis for BME predictions of daily PM2.5 

Table 20 Estimates of empirical covariance functions- daily PM2.5 BME analysis 

Estimates for Empirical covariance function 

Spatial distance limit: 4000 Temporal distance limit: 6 

Number of spatial lags: 10 Number of temporal lags: 8 

Spatial lag tolerance: 450 Temporal lag tolerance: 0.8 

 

The modelled space-time covariance function consisted of three space time separable covariance functions 

and its parameters are depicted in Table 21. This was used to generate spatiotemporal maps of PM2.5 for 

daily values.  

 
Table 21 Parameters for fitting nested covariance model- daily PM2.5 BME analysis 

𝐶1=0.05 𝑐𝑜𝑣𝑠1= Exponential Ɵ𝑠1=5509.58 𝑐𝑜𝑣𝑡1=Exponential Ɵ𝑡1=2.28 

𝐶2=0.15 𝑐𝑜𝑣𝑠2= Exponential Ɵ𝑠2=975.63 𝑐𝑜𝑣𝑡2=Exponential Ɵ𝑡2=2.7 

𝐶3=0.1 𝑐𝑜𝑣𝑠3= Exponential Ɵ𝑠3=943.42 𝑐𝑜𝑣𝑡3=Exponential Ɵ𝑡3=0.6 

 

 𝑐𝑜𝑣𝑠𝑡(ℎ, 𝜏; Ɵ𝑠𝑡) =  𝐶1𝑐𝑜𝑣𝑠1(ℎ; Ɵ𝑠1)𝑐𝑜𝑣𝑡1(𝜏; Ɵ𝑡1) +  𝐶2𝑐𝑜𝑣𝑠2(ℎ; Ɵ𝑠2)𝑐𝑜𝑣𝑡2(𝜏; Ɵ𝑡2)  
+  𝐶1𝑐𝑜𝑣𝑠3(ℎ; Ɵ𝑠3)𝑐𝑜𝑣𝑡3(𝜏; Ɵ𝑡3) 

 

(32) 
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PM2.5 prediction maps are shown for four days of June 2015 (Figure 29). Concentration maps for dates in 

June 2015 are presented in the appendix (Table 32). The pattern corresponds in a similar manner to that of 

PM10 predictions (Figure 27). PM2.5 values tend to be high on June 04 and lowest for June 20. There is a 

decrease in PM2.5 level at locations near to ILM measurements and can be asserted to difference in URBIS 

predictions and ILM measurements. 

Daily PM2.5 maps in Eindhoven 

June 01, 2015 June 04, 2015 PM2.5 (μg m-3) 
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Figure 29 Daily PM2.5 prediction maps in Eindhoven 

5.3.1.3. Cross validation 

Cross validation of BME predictions were assessed by means of leave-one-out method employed in STAR-

BME. 2000 soft and hard data were chosen in random and predictions were obtained at those locations. 

RMSE value was low for PM2.5 predictions as compared to PM10. It might be due to the fact the spatial 

variability is high in PM10 as compared to PM2.5 (as seen from the empirical covariance function for spatial 

domain (Figure 26, Figure 28).  
Table 22 Cross validation results- daily predictions BME 

BME 

Prediction 

Data RMSE Residual 

Mean  

Residual Standard 

Deviation 

PM10 Daily 200 soft and 

hard 

1.48 0.24 1.46 

PM2.5 Daily 2000 soft and 

hard 

0.85 0.05 0.85 
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5.3.2. Spatiotemporal Maps for hourly predictions 

To understand about spatiotemporal variability of PM in a day, hourly prediction maps were generated. 

These were done for June 04, 2015, which showed an abrupt increase in PM values (as discussed in Section 

5.1.1). Hourly soft and hard data pertaining to June 4th were used in the BME analysis. Spatiotemporal maps 

of hourly values of PM10 predictions and PM2.5 predictions are presented in the subsequent section. 

5.3.2.1. Predictions for PM10 

Empirical space-time covariance functions were estimated from the given data (Table 23). Marginal 

covariance functions in space and time domain were plotted in Figure 30 Covariance analysis for BME 

predictions of hourly PM The unit for spatial lag is in meters and that for temporal lag is in hour. From the 

empirical covariance functions, it can be seen that the covariance value is relatively high as compared to 

daily values (Figure 26). There us a smooth decrease in the spatial and temporal covariance of PM10 values.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 30 Covariance analysis for BME predictions of hourly PM10 

Table 23 Estimates of empirical covariance functions- hourly PM10 BME analysis 

Estimates for Empirical covariance function  

Spatial distance limit: 4000 Temporal distance limit: 8. 

Number of spatial lags: 8 Number of temporal lags: 8 

Spatial lag tolerance: 800 Temporal lag tolerance: 0.6 

 

The modelled space-time covariance function consisted of three space time separable covariance functions 

and its parameters are depicted in Table 23. This was used to generate spatiotemporal maps of PM10 for 

hourly values.  

 

Table 24 Parameters for fitting nested covariance model– hourly PM10 BME analysis 

𝐶1=0.65 𝑐𝑜𝑣𝑠1= Exponential Ɵ𝑠1=953.85 𝑐𝑜𝑣𝑡1=Gaussian Ɵ𝑡1=1.1 

𝐶2=0.38 𝑐𝑜𝑣𝑠2= Exponential Ɵ𝑠2=5444.88 𝑐𝑜𝑣𝑡2= Gaussian Ɵ𝑡2=8.38 

𝐶3=0.36 𝑐𝑜𝑣𝑠3= Exponential Ɵ𝑠3=4599.87 𝑐𝑜𝑣𝑡3= Gaussian Ɵ𝑡3=0.8 

 

 𝑐𝑜𝑣𝑠𝑡(ℎ, 𝜏; Ɵ𝑠𝑡) =  𝐶1𝑐𝑜𝑣𝑠1(ℎ; Ɵ𝑠1)𝑐𝑜𝑣𝑡1(𝜏; Ɵ𝑡1) +  𝐶2𝑐𝑜𝑣𝑠2(ℎ; Ɵ𝑠2)𝑐𝑜𝑣𝑡2(𝜏; Ɵ𝑡2)  
+  𝐶1𝑐𝑜𝑣𝑠3(ℎ; Ɵ𝑠3)𝑐𝑜𝑣𝑡3(𝜏; Ɵ𝑡3) 

 

(33) 
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In June 04, 2015, four time periods were chosen at 6 hour intervals for representation purposes. 

Concentration maps for all hourly time periods in June 04 2015 are presented in the appendix (Table 33). 

These were 03:00 to 04:00, 09:00 to 10:00, 15:00 to 16:00 and 21:00-22:00 hours and corresponded to late 

night, post- morning rush hour, afternoon rush hours and before midnight. PM10 values tends to gradually 

increase through the day till afternoon rush hour after which it tends to recede. However, these values 

(21:00-22:00 hours) tend to remain high as compared to morning rush hour. Regions around ILM 

measurement stations have lower value of PM10 as compared to other locations and is prominent at all the 

cases. 

 

Hourly PM10 maps in Eindhoven 

03:00 to 04:00 hours 09:00-10:00 hours PM10 (μg m-3) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

15:00-16:00 hours 21:00-22:00 hours 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 31 Hourly PM10 prediction maps in Eindhoven 

5.3.2.2. Predictions for PM2.5 

BME analysis using hourly PM2.5 values of ILM measurement and URBIS predictions for June 04, 2015 

were done to generate hourly spatiotemporal maps. The empirical covariance functions in spatial and 

temporal domains are plotted (Figure 32) using estimates from the data (Table 25). The unit of empirical 

covariance functions in spatial domain is meters and temporal domain is hour. The spatial covariance 

function has an effective range of 4000 meters, beyond which it is considered that there is no correlation 

among the values. Similarly, the temporal covariance function has an effective range of approximately 6 

days. The decrease in covariance values are gradual in case of temporal covariance function while spatial 

covariance decreases abruptly up to 1000 meters. 
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Figure 32 Covariance analysis for BME predictions of hourly PM2.5 

Table 25 Estimates of empirical covariance functions- hourly PM2.5 BME analysis 

Estimates for Empirical covariance function 

Spatial distance limit: 4000 Temporal distance limit: 6 

Number of spatial lags: 10 Number of temporal lags: 8 

Spatial lag tolerance: 500 Temporal lag tolerance: 0.5 

 

The modelled space-time covariance function consisted of three space time separable covariance functions 

and its parameters are depicted in (Table 26). This was used to generate spatiotemporal maps of PM2.5 for 

hourly values on June 04, 2015. 

 
Table 26 Parameters for fitting nested covariance model- hourly PM2.5 BME analysis 

𝐶1=0.36 𝑐𝑜𝑣𝑠1= Exponential Ɵ𝑠1=662.63 𝑐𝑜𝑣𝑡1=Exponential Ɵ𝑡1=7.85 

𝐶2=0.05 𝑐𝑜𝑣𝑠2= Exponential Ɵ𝑠2=7132.61 𝑐𝑜𝑣𝑡2=Exponential Ɵ𝑡2=12.39 

𝐶3=0.06 𝑐𝑜𝑣𝑠3= Exponential Ɵ𝑠3=7411.57 𝑐𝑜𝑣𝑡3=Exponential Ɵ𝑡3=15.36 

 

Similar to hourly PM10 analysis, four time periods were chosen each at six hour intervals to see the 

spatiotemporal variability of PM2.5 values in Eindhoven (Figure 33). Concentration maps for all hourly time 

periods in June 04 2015 are presented in the appendix (Table 34). The values tend to be low during late 

night (03:00-04:00) hours and increase through the day. PM2.5 concentrations are the highest during 21:00-

22:00 hours. Unlike hourly PM10 predictions (Figure 31) which showed highest concentration levels during 

afternoon rush hour (15:00-16:00) hours and then stabilizes, PM2.5 shows an increasing trend in values. 

Furthermore, locations around ILM measurements have lower concentration that other regions, but in 

comparison with hourly PM10 predictions (Figure 31), these changes are not so prominent. 

 

 

 

 

 

 𝑐𝑜𝑣𝑠𝑡(ℎ, 𝜏; Ɵ𝑠𝑡) =  𝐶1𝑐𝑜𝑣𝑠1(ℎ; Ɵ𝑠1)𝑐𝑜𝑣𝑡1(𝜏; Ɵ𝑡1) +  𝐶2𝑐𝑜𝑣𝑠2(ℎ; Ɵ𝑠2)𝑐𝑜𝑣𝑡2(𝜏; Ɵ𝑡2)  
+  𝐶1𝑐𝑜𝑣𝑠3(ℎ; Ɵ𝑠3)𝑐𝑜𝑣𝑡3(𝜏; Ɵ𝑡3) 

 

(34) 
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Hourly PM2.5 maps in Eindhoven 

03:00 to 04:00 hours 09:00-10:00 hours PM2.5 (μg m-3) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

15:00-16:00 hours 21:00-22:00 hours 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 33 Hourly PM2.5 prediction maps in Eindhoven 

5.3.2.3. Cross Validation 

To assess the prediction accuracy of BME process, leave-one-out cross validation was carried out taking 

into consideration 2000 soft and hard data locations (Table 27).PM2.5 predictions had a lower RMSE and 

residual mean as compared to PM10 predictions. PM10 hourly predictions had extremely high value of RMSE 

and residual standard deviation. 

 
Table 27 Cross validation results- hourly predictions BME 

BME analysis Data RMSE Residual Mean  Residual 

Standard 

Deviation 

PM2.5 Hourly 2000 soft and 

hard 

0.95 0.13 0.94 

PM10 Hourly 2000 soft data 3.475 0.57 3.42 
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5.4. Comparison of mean ILM measurements with averaged LML for background PM 

As discussed in Section 5.1, relatively lower value of ILM mean measurements against that of LML 

background values (Table 12 and Figure 15) and no discernible differences in the mean PM values across 

the categorizes of airbox locations (Figure 16 and Figure 17) can suggest that mean values of ILM can also 

be assumed as the background value of PM in Eindhoven. Timeseries plot (Figure 34) shows that mean 

ILM PM2.5 values at a daily level tend to remain between 5- 10 μg m-3 and show less fluctuations as 

compared to averaged background from LML stations 

 
Figure 34 Timeseries of mean ILM values and averaged background from LML stations 

To compare the effect of PM background values on performance of URBIS predictions and on BME 

analysis, one special case was considered. Mean PM2.5 ILM measurements were used as background values 

for URBIS background predictions instead of averaged PM2.5 LML measurements. This was done for daily 

values of PM2.5 and the results were compared with corresponding results obtained by taking averaged LML 

measurements as background value (Section 5.3.1.2 and Section 5.2.5). 

 

5.4.1.1. Spatiotemporal predictions of daily PM2.5 using mean ILM as background 

Aggregated daily values of PM2.5 URBIS foreground predictions were added to averaged ILM measurements 

(PM2.5) at 32 airbox locations to obtain new URBIS predictions at 500 locations. Uncertainty in these URBIS 

predictions was kept constant at 25%, that corresponded to maximum allowable uncertainty in daily PM2.5 

measurements as set by air quality guidelines (EU, 2008). Soft data at these locations was thus generated by 

using the bounds of ± 25% of the URBIS prediction values. Hard data comprised of daily aggregated PM2.5 

ILM measurements at 32 locations. 

 

BME was then performed to generate spatiotemporal predictions of daily PM2.5 values in Eindhoven. The 

empirical covariance function in spatial domain and temporal domain were estimated from the data (Figure 

35 and Table 28). A high value of spatial covariance is seen for 3000 meters while the temporal covariance 

reduces to zero approximately at 1 day lag. The units of spatial lag is meters and that of temporal lag is days. 
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Figure 35 Covariance analysis for BME predictions of daily PM2.5 (using ILM as background) 

 
Table 28 Estimates of empirical covariance functions- Daily PM2.5 BME analysis (using ILM as background) 

Estimates for Empirical covariance function 

Spatial distance limit: 3000 Temporal distance limit: 8 

Number of spatial lags: 10 Number of temporal lags: 8 

Spatial lag tolerance: 200 Temporal lag tolerance: 0.7 

 

The modelled space-time covariance function consisted of three space time separable covariance functions 

and its parameters are depicted in Table 29. This was used to generate spatiotemporal maps of PM2.5 for 

daily values. 

 
Table 29 Parameters for fitting nested covariance model– Daily PM2.5 BME analysis (using ILM as background) 

𝐶1=0.28 𝑐𝑜𝑣𝑠1= Gaussian Ɵ𝑠1=300 𝑐𝑜𝑣𝑡1=Spherical Ɵ𝑡1=1.11 

𝐶2=1.17 𝑐𝑜𝑣𝑠2= Gaussian Ɵ𝑠2=15000 𝑐𝑜𝑣𝑡2=Spherical Ɵ𝑡2=0.87 

𝐶3=0.13 𝑐𝑜𝑣𝑠3= Gaussian Ɵ𝑠3=300 𝑐𝑜𝑣𝑡3=Spherical Ɵ𝑡3=0.8 

 

Spatiotemporal prediction maps for daily PM2.5 values in Eindhoven were plotted for four dates (June 01, 

June 04, June 20 and June 30, 2015). These dates were chosen for comparison with daily PM2.5 BME 

predictions that was previously done using LML measurements as background stations for URBIS 

predictions (Section 5.3.1.2). From the plots (Figure 36) it can be seen that PM2.5 values are comparatively 

high for June 04 and lowest for June 20. One striking feature that can be noticed while comparing these 

plots with corresponding plots in Figure 29, is that, there is no such distinguishable difference in PM2.5 

values around the airbox locations (shown as dots). This is in contrast with observations from Figure 29, 

where differences in PM2.5 values around airbox locations were prominent and can suggests that fluctuations 

in these values were mainly due to averaged LML measurements used as background concentrations. 

 

 

 𝑐𝑜𝑣𝑠𝑡(ℎ, 𝜏; Ɵ𝑠𝑡) =  𝐶1𝑐𝑜𝑣𝑠1(ℎ; Ɵ𝑠1)𝑐𝑜𝑣𝑡1(𝜏; Ɵ𝑡1) +  𝐶2𝑐𝑜𝑣𝑠2(ℎ; Ɵ𝑠2)𝑐𝑜𝑣𝑡2(𝜏; Ɵ𝑡2)  
+  𝐶1𝑐𝑜𝑣𝑠3(ℎ; Ɵ𝑠3)𝑐𝑜𝑣𝑡3(𝜏; Ɵ𝑡3) 

 

(35) 
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Daily PM2.5 maps in Eindhoven (Using mean ILM values as background) 

June 01, 2015 June 04, 2015 PM2.5 (μg m-3) 
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Figure 36 Daily PM2.5 prediction maps in Eindhoven (using ILM as background) 

Cross validation of the BME process was done using leave-one out method in the similar manner as 

described in Section 5.3.1.3 and it was found that RMSE associated with the prediction was 0.89, the residual 

mean was 0.16 and residual standard deviation was 0.87. This was found to be comparable with cross 

validation results of BME predictions where averaged LML measurements were used as background values, 

which had RMSE of 0.85, the residual mean as 0.05 and residual standard deviation as 0.85. 

 

Equal tolerance graphs, described in Section 5.2.5 were plotted to assess the conformance of daily PM2.5 

values of URBIS predictions against daily PM2.5 values of ILM measurements. Here uncertainty levels for 

both URBIS model predictions and ILM measurements are kept constant at 25%. These were plotted for 

four different locations (Figure 37)- airbox location 1 (City background), airbox location 2 (Busy road), 

airbox location 3 (Residential area) and airbox location 31 (City background –outside Eindhoven). These 

plots show that there is a high conformance in URBIS predictions and ILM measurements. Particularly at 

airbox location 2, URBIS predictions and ILM measurements are almost identical for all dates of June 2015. 

For airbox location 3, which corresponds to busy road, URBIS predictions are higher than that of ILM 

measurements and this can be attributed to URBIS foreground values. Thus it can be asserted that mean 

values of ILM measurements can be used as background values for PM2.5 in Eindhoven and facilitate 

integration of URBIS predictions with ILM measurements. 
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6. DISCUSSION 

This chapter discusses of some of the key findings of the research. It includes discussions in particular about 

the data quality of URBIS predictions and ILM measurements, estimation of background PM values, levels 

of uncertainty in PM measurements, interpretation of performance evaluation results and feasibility of BME 

method in integration of URBIS and ILM. 

6.1.1. Data quality of URBIS and ILM 

ILM dataset contained missing measurements for a prolonged time periods at some airboxes (Table 3; Figure 

18 and Figure 19) due to which evaluation of URBIS predictions at these time points was not possible. MPC 

values were calculated for only those time points at which ILM measurements and URBIS predictions were 

both available. Reduction in these modelled-concentration pairs thus influenced MPC results at those airbox 

locations. URBIS dataset only consisted of foreground predictions of PM which were mainly traffic 

contributions from highways and streets canyons (Table 4). It lacked contributions from emissions by point 

and area sources, such as industries, building construction sites, agricultural land which amongst other have 

substantial impact on PM values in a city. Thus it was deemed necessary to account for background PM 

values for adequate representation of URBIS predictions prior evaluating them against ILM measurements. 

6.1.2. Estimation of background values of PM 

To account for contribution of background levels in the PM values in Eindhoven, measurements from three 

LML stations were averaged and its mean value was considered. These stations were classified as background 

stations and were located in vicinity of Eindhoven (Section 3.2.3.2). By analysing the PM values at these 

stations (Figure 8, Figure 9 and Figure 10), it was noticed that average value can be the approximation of 

values at these three stations. This was also confirmed from Table 7 where averaged background showed 

almost similar values with individual LML stations. Averaged PM values from LML stations were high as 

compared to the URBIS foreground predictions. This is described in Section 5.1 (Table 12 and Figure 15). 

Low values of URBIS foreground predictions as compared to ILM measurements and averaged LML 

background were in accordance with Matthijsen & ten Brink, (2007) suggesting low contribution of local 

traffic sources to PM2.5 values in the Netherlands. Heavier dominance of this background concentration in 

URBIS predictions can also be seen in the temporal visualization of URBIS predictions at airbox locations 

(Figure 20 and Figure 21). 

 

From Table 12 and Figure 15, it can also be noticed that the averaged LML measurements (mean value) 

were also larger than mean of ILM measurements. It might lead to the following conclusions. Firstly, 

averaging measurements from these three available LML stations might not be adequate representation of 

background values in Eindhoven. Furthermore, abrupt hourly fluctuations in PM measurements at any 

individual LML station (Figure 9,Figure 10), missing values, discarding of negative values (Section 3.2.3.2) 

while averaging can lead to a biased estimation of average. Secondly, ILM instruments might record lower 

values of PM as compared to LML stations. Recent analysis performed by the AiREAS 

Calibration/Validation working group has shown that the ILM instruments often record lower values of 

PM relative to LML station located at Genovevalaan, Eindhoven (Otjes, 2016). It is early to say how 

widespread the problem is. However, it may explain why the background values recorded by the LML 

stations located outside Eindhoven contribute to URBIS predictions that are often larger than spatially 

coincident ILM measurements. Thirdly, relatively lower value of mean ILM measurements against averaged 
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LML background stations as discussed above and similarity in PM levels for different categorizes of airboxes 

(Figure 16 and Figure 17) might lead to the fact that mean ILM measurements can also be used as 

background values in place of averaged LML measurements in the URBIS model. Mean ILM measurements 

also showed less fluctuations in their values as compared to averaged LML measurements (Figure 34). 

6.1.3. Uncertainty levels in PM values 

Uncertainty associated with measurements of PM values were assumed to be 25%  of their values for ILM 

network at all temporal scales of aggregation (Section 4.1) due to inadequate information on its exact value. 

This was based on relative uncertainty of 25% in mean PM measurements (PM10 and PM2.5) which  is a 

reference value that stems from the European air quality directive and is considered for daily values (EU, 

2008). It is because PM values tend to fluctuate and other systematic and random errors associated with 

measurements which makes it difficult to impose a reference value of uncertainty for lower temporal scales. 

Changing the temporal scale to hourly or 6-hourly or 24-hourly may result in the increase of uncertainty but 

the exact value could not be ascertained. 

 

To elucidate principle of equal tolerance which assumes model to exhibit similar levels in uncertainty in PM 

values as compared to measurements, URBIS model predictions were also assumed to have 25 % uncertainty 

in their values. This assumption is justifiable owing to that fact that major contribution in URBIS prediction 

was from the background values which were from the LML stations. These measurements have 16% 

uncertainty associated with them and is explained in Section 3.2.3.2 and also established by reports of 

(Hoogerbrugge et al., 2010). Assumption of averaged LML measurements as background value also 

incorporate additional uncertainties in the PM values of URBIS. Inherent uncertainties associated in the 

dispersion modelling frameworks employed in the URBIS also account for additional uncertainties. 

Possibility of performing a sensitivity analysis on URBIS model could have led to discerning these 

uncertainties but outside the scope of the research. Thus, based on these factors led to the assumption of 

uncertainty of 25% in URBIS data. This value was kept constant for all temporal scales (hourly and daily 

level) for the analysis due to lack of information about exact levels of uncertainty of PM predictions in 

URBIS at these temporal aggregations. 

6.1.4. Performance evaluation of URBIS model 

Measurement uncertainty were calculated for each airbox, taking into consideration relative uncertainty of 

25% for measurement of PM values as set by air quality directives. These values were found to be high for 

PM10 and lower for PM2.5 values at all temporal scales of aggregation. From Section 5.2 , it can be seen that 

aggregation of ILM measurements and URBIS predictions from hourly to 24-hourly resulted in almost no 

change in measurement uncertainty values. This might be due to the fact that aggregation tends to smooth 

out variations and the mean value of observations remains approximately the same. Furthermore, 

assumption of 25% relative measurement uncertainty for PM values at all temporal scales might have 

resulted in no change in measurement uncertainty at these airboxes. Model performance criteria for RMSE 

was found to be consistently violated at all representative airbox locations for PM2.5 at all temporal 

aggregations, except in case of busy road (for 12-hourly and daily aggregations). The MPC for RMSE and 

NMB was violated only in city background locations for PM10. MPC for RMSE values remains low at 

locations which represent busy roads, owing to fact that URBIS predictions are generally better for locations 

near to traffic sources and these values were high for regions such as city background which have fewer 

traffic. Model performance criteria for R remains fulfilled at all locations whilst MPC for NMSD remains 

violated for all locations in hourly and 6-hourly aggregations. For 12 hourly and daily aggregations, these are 

only violated in city background (PM10) and only adhered in busy road locations.  
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The analysis finds that URBIS predictions are consistent with ILM measurements for locations that have 

substantial traffic contributions and is justifiable based on inherent modelling of URBIS It performs poorly 

at locations which are considered as city background. Thus, even though the background concentration 

dominates URBIS foreground predictions, it still does not conform to ILM measurements at locations which 

do not have heavy traffic. From the equal tolerance graphs, it can be deduced that increasing temporal 

resolutions tends to reduce the difference between ILM measurements and URBIS predictions, however 

due to fluctuations in the background values these do not overlap for all time periods. URBIS predictions 

for PM10 show more overlap to ILM measurements as compared to PM2.5 (discussed in Section 5.2.5). 

The amount of overlap is also highest for daily aggregations for locations near busy road and is least for 

background locations (Section 5.2.5.4).  

 

Using mean ILM PM2.5 measurements as an alternative for background values in the URBIS model led to 

more overlap at all the representative stations (Section 5.4-Figure 37). The temporal trend of PM2.5 

predictions from URBIS model were found to match the temporal trend of ILM measurements which were 

previously not found when averaged LML measurements were taken as background values for URBIS 

model (Figure 24). From this experiment, that mean ILM measurements can be considered as a better 

alternative to represent background values than averaged LML measurements and be used in the URBIS 

model. Although, this case was considered for daily values of PM2.5, it can be further extended to check 

the overlap patterns for PM10 and hourly values of PM10 and PM2.5, which could not be done due to 

limitations in resources. 

 

Thus employing multiple statistical indicators and using measurement uncertainty associated with ILM 

measurements, the study was able to distinguish which spatial locations URBIS predictions conformed to 

ILM measurements. Furthermore, usage these indicators at different temporal aggregations along with equal 

tolerance graphs, it can be assessed at which temporal instances and URBIS predictions overlap with ILM 

measurements. These two criteria were found comprehensively adequate for performance evaluation of 

URBIS predictions. 

6.1.5. BME predictions 

Bayesian maximum entropy framework was found a feasible method to integrate URBIS predictions and 

ILM measurements for spatiotemporal modelling of PM values in Eindhoven. It incorporated URBIS 

predictions as soft data, characterized by its uncertainty level of 25% and ILM measurements as hard data. 

Spatiotemporal maps obtained at hourly values and daily average values were able to depict the variability 

in space and time of PM values in Eindhoven. BME integrates data from multiple sources (such as URBIS 

predictions and ILM measurements) with their levels of uncertainty which is crucial in mapping applications 

like air quality for adequate representation of PM values. 

 

Two key aspects can be concluded from the BME predictions. Firstly, BME prediction maps were able to 

show the variation of PM values in space and time (depicted in Table 31 and Table 32). Variation of PM 

values were analysed for four dates (Figure 27 and Figure 29). Furthermore, time series analysis of PM values 

from ILM measurements showed abrupt increase of PM values on 4th June (Section 5.1.1), and using BME 

approach, these were validated to see patterns in PM values throughout the date of June 04 (Table 33 and 

Table 34). It was seen that there was a constant increase in PM10 values till afternoon and then it tends to 

remain stabilized resulting in overall increased values of PM for the next day (Figure 31). Similarly for PM2.5 

these value tend to gradually increase throughout the day (Figure 33) and this also explains the increased 

levels of PM2.5 in consecutive dates around June 04, 2015. 
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Secondly, BME was able to discern the local variability in PM values at regions near airboxes. This variation 

in PM values were prominent for both PM10 and PM2.5 at hourly and daily scales (Section 5.3). This is due 

to high values of URBIS predictions as compared to ILM measurements. These high values of URBIS 

predictions, as discussed in Section 6.1.2 is primarily due to averaged LML measurements that was 

considered as background values for URBIS model. This change in values is most prominent in hourly PM10 

predictions (Figure 31). Another possible reason behind this variability can be the use of kernel smoothing 

filter that is employed in STAR-BME to remove spatiotemporal mean trend. Modification of values for this 

kernel smoothing filter might have led to a low differences in PM values in the adjacent regions of airboxes. 

However, this modification was not possible currently and can be considered in future. The cross validation 

results for BME were seen to acceptable for PM2.5 (RMSE of 0.85 for daily predictions and 0.95 for hourly 

predictions but these RMSE values were comparatively high for PM10 predictions (Table 22 and Table 27). 

Specifically for hourly PM10 RMSE value was 3.7 which might raise a question on BME’s effectiveness for 

PM10 modelling. This can be addressed by comparing BME predictions with those obtained by other 

interpolation methods (such as regression kriging) and can be considered as future scope. 

 

In order to assess the effect of background value on BME predictions, mean ILM measurements were taken 

as background for URBIS predictions (Section 5.4) and used for daily predictions of PM2.5. From the 

results, (Figure 36), it can be seen that there were relatively less variations in PM2.5 values near airbox 

locations, as compared to the predictions where averaged LML measurements were taken as background 

values for URBIS (Figure 29). This further ascertains that mean ILM measurements can be used as an 

alternative to averaged LML measurements as background levels of PM2.5 in Eindhoven. The cross 

validation results for the case where mean ILM measurements were taken as background value was found 

to be comparable with daily PM2.5 predictions (RMSE value of 0.89). Although this was only one 

experimental case which was considered (for daily values of PM2.5 predictions), it could be further extended 

for daily PM10 predictions and hourly predictions. Based on these results, it can be concluded that ILM 

measurements can be incorporated with URBIS model predictions for spatiotemporal modelling and 

mapping of PM values in Eindhoven.  

 

 

 



SPACE-TIME OBSERVATIONS FOR CITY LEVEL AIR QUALITY MODELLING AND MAPPING 

63 

7. CONCLUSIONS 

Based on research identification outlined in Section 1.3, this research comprised firstly of evaluation of PM 

predictions (PM10 and PM2.5) from the downscaled URBIS against PM measurements (PM10 and PM2.5) 

from the ILM to assess at which temporal resolution URBIS predictions resembled ILM measurements. 

This was done by means of statistical metrics utilizing uncertainty levels associated with PM measurements 

in the ILM. Conceptual description of the methodologies for performance evaluation have been outlined in 

Section 4.1.1. Four recommended statistical metrics for air quality evaluation, namely, root mean square 

error (RMSE), normalized mean bias (NMB), normalized mean standard deviation (NMSD) and correlation 

co-efficient (R) were used with measurement uncertainty of PM (assumed to be 25% of the measured PM 

values), lead to formulation of model performance criteria (MPC). Assessment of URBIS predictions against 

ILM was carried out at 32 ILM measurement locations and at four different temporal scales were done at 

four different temporal scales- hourly, 6-hourly, 12-hourly and daily values for June 2015. These results are 

described in Section 5.2. 

 

Secondly, this study employed BME method to integrate URBIS predictions with ILM measurements for 

spatiotemporal mapping of PM values (PM10 and PM2.5) in Eindhoven. PM values from 500 URBIS 

prediction locations and 32 ILM locations for June 2015 were used for BME mapping. Predictions were 

done at two temporal scales - aggregated daily values (entire month of June, 2015) and hourly values (for 

June 4th, 2015). Conceptual description of BME method is described in Section 4.2.1. Intermediary process 

and spatiotemporal maps at these temporal scales are depicted in Section 5.3. 

7.1. Answer to research questions 

Questions related to objective 1: 

a) What are the key statistical indicators that are needed to evaluate URBIS model? 

After an extensive literature review focussing on evaluating air quality models (Section 2.3) and based 

on conceptual description (Section 4.1.1), it was found that application of multiple statistical indicators 

are required for evaluating URBIS model. These were root mean square error (RMSE), Normalized 

mean bias (NMB), Normalized mean standard deviation (NMSD) and correlation coefficient (R). These 

were considered as they can be used with measurement uncertainty of airboxes in the ILM network and 

can facilitate evaluation of URBIS model at different temporal aggregation scales. 

 

b) How to formulate and interpret model performance criteria (MPC) to evaluate URBIS model based on statistical 

indicators and measurement uncertainty of ILM network? 

This was based on the methodology proposed by (Pernigotti et al., 2013; Thunis et al., 2015, 2012a) 

which considers usage of measurement uncertainty in measurements to assess the predictions of air 

quality models. This has been the key point in my research and has been addressed in (Section 4.1.1). 

Based on the statistical indicators answered in question (a) were used with measurement uncertainty of 

PM in the ILM network to generate model performance criteria and the results have been described in 

(Section 5.2). 

 

c) What are suitable space-time scales for representing PM concentration levels? 

Four different temporal aggregations were chosen to represent PM values from URBIS predictions and 

ILM measurements. These were hourly, 6-hourly, 12-hourly and daily for data pertaining to June 2015. 
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To characterize the spatial representativeness of PM values, four different categories of airbox locations 

were used. These were based on (Hamm et al., 2016) and were city background, residential area, busy 

road and public hospital (described in Section 3.2.1.1). Performance of URBIS predictions were 

considered at an airbox location representing the above. URBIS predictions conformed to ILM 

measurements within the levels of uncertainty at daily aggregations of PM10 especially for locations 

near to traffic sources (airbox locations 2 and 3 -Figure 25). These overlaps were not so prominent for 

PM2.5 (Figure 24). However, by taking mean ILM measurements as background values instead of 

averaged LML measurements, these overlaps regions increased for PM2.5. Thus daily values can be 

considered as suitable space-time scales for representation of PM concentration levels. 

 

Questions related to objective 2: 

a) Which data should be considered as soft (data with uncertainty) and hard (certain data)? 

URBIS predictions were considered as soft data with uncertainty value of 25% associated with their 

values. ILM measurements were considered as hard data for BME analysis. This distinction in soft 

and hard data has been described in (Section 4.2.2.1). 

 

b) How to model the space-time dependence of PM? 

Space time dependence structure of PM was modelled by means of a nested space-time separable 

covariance model in STAR-BME. This has been discussed in (Section 4.2.2.3). Based on available 

data, empirical covariance functions were estimated. Then these were modelled by iterative method 

of PSO (particle swarm optimization) technique in BME to fit a nested space-time separable 

covariance model and the accuracy was assessed by means of AIC value. 

 

c) How to integrate space-time dependence of PM with available data from URBIS model and ILM measurements to 

generate prediction maps? 

Space-time covariance function is used to generate prior PDF. Then using available data, Bayesian 

conditionalization is done which integrates attribute values from available data (hard and soft) to 

generate posterior PDF. In this sense, every node in the output grid consists of a distribution 

function. Spatiotemporal prediction maps consists of mean values of these distribution functions. 

This has been described in (Section 4.2.1) and the results are presented in (Section 5.3). Prediction 

maps for daily PM values for June 2015 can be found in (Table 31 and Table 32) and those for 

hourly PM values for June 04 2015 can be found in (Table 33 and Table 34). 

 

d) How can the accuracy of BME process be assessed? 

Leave-one-out cross validation method is employed on set of 2000 hard and soft data locations to 

assess the prediction accuracy of BME process. The cross validation results in terms of RMSE, 

residual mean and residual standard deviation are used to compare the effectiveness of BME in 

prediction. Prediction accuracy were acceptable for PM2.5 predictions (RMSE value of 0.85 for 

daily predictions and 0.95 for hourly predictions) whilst these were comparatively higher for PM10 

(RMSE value of 1.48 for daily predictions and 3.47 for hourly predictions). Using mean ILM PM2.5 

measurements as background values for URBIS model, daily predictions yielded an RMSE of 0.89. 

Thus it can be said that BME predictions were better for PM2.5 as compared to PM10. This 

research did not consider any other interpolation method to compare the accuracy of BME 

predictions. These comparisons could ascertain whether predictions from BME process are 

accurate enough or not, and could essentially might help to explain the high RMSE value associated 

with daily PM10 BME predictions. 
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7.2. Limitations and Recommendations 

The following points can be considered as some limitations and recommendations of the research.  

a) Accurate representation of background levels of PM can lead to a better understanding of 

spatiotemporal variability of PM in Eindhoven. For this research, averaged measurements from 3 

LML stations were used. However, it was seen that these values were higher than mean ILM 

measurements, so this is important to ascertain which values can adequately represent background 

variability of PM. 

b) Information about measurement uncertainty of PM sensors in the ILM network at different 

temporal aggregation levels like hourly, 6-hourly, 12-hourly and daily values could help in proper 

evaluation of performance of URBIS model. For this research, it was considered constant at 25% 

which is only applicable at daily levels. 

c) Knowledge pertaining to uncertainties in URBIS model can be used to approximate its 

characterization as soft data for BME process. 

d) BME predictions were carried out at hourly values for one day and for daily values due to limitation 

in resources. This can be further developed for hourly values for all dates. 

e) Comparison of BME predictions with other interpolation techniques can further help in 

understanding the accuracy of BME predictions 

f) Downscaled URBIS model, whose data was initially available for June 2015, can be analysed for 

weekly, monthly and 6- monthly to check for its conformance with ILM predictions. 

g) Integration of ILM measurements, URBIS prediction output with other geographic predictor 

variables can be used for an improved modelling of spatiotemporal variability of PM values in 

Eindhoven. 
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APPENDICES 

Table 30 Appendix 1: Measurement uncertainty in the ILM 

 Measurement Uncertainty in ILM sensors 

 PM10 (ug/m3) PM2.5 (ug/m3) 

AirBox 
Location Hourly 6-Hourly 12-Hourly Daily Hourly 6-Hourly 12-Hourly Daily 

1 3.21 3.17 3.15 3.11 1.43 1.42 1.40 1.38 

2 4.32 4.26 4.23 4.18 1.74 1.72 1.70 1.68 

3 4.60 4.54 4.52 4.46 1.94 1.92 1.91 1.89 

4 3.73 3.69 3.66 3.63 1.57 1.55 1.54 1.52 

5 3.28 3.24 3.22 3.19 1.49 1.47 1.46 1.44 

6 2.30 2.29 2.27 2.31 0.90 0.90 0.88 0.90 

7 3.58 3.56 3.54 3.50 1.87 1.86 1.84 1.81 

8 4.00 3.96 3.94 3.90 1.69 1.68 1.66 1.65 

9 2.80 2.77 2.75 2.73 1.34 1.33 1.32 1.30 

11 3.11 3.07 3.05 3.03 1.50 1.49 1.48 1.46 

12 3.16 3.13 3.11 3.08 1.61 1.60 1.58 1.56 

13 3.81 3.77 3.74 3.70 1.76 1.74 1.72 1.70 

14 4.19 4.12 4.08 4.02 1.74 1.72 1.70 1.68 

16 5.32 5.25 5.21 5.15 2.03 2.01 1.99 1.96 

17 4.13 4.05 4.02 4.00 1.63 1.61 1.59 1.58 

19 4.31 4.23 4.18 4.13 1.77 1.75 1.73 1.70 

20 3.16 3.12 3.10 3.07 1.55 1.54 1.52 1.50 

23 2.37 2.38 2.41 2.37 1.25 1.25 1.27 1.24 

24 4.30 4.25 4.22 4.16 1.80 1.78 1.76 1.74 

25 2.54 2.52 2.48 2.42 1.26 1.25 1.24 1.21 

26 3.57 3.53 3.50 3.47 1.57 1.55 1.54 1.52 

27 3.53 3.46 3.43 3.39 1.51 1.49 1.47 1.45 

28 4.03 3.98 3.95 3.90 1.59 1.57 1.55 1.53 

29 4.18 4.13 4.10 4.05 1.70 1.68 1.66 1.64 

30 3.61 3.57 3.55 3.51 1.57 1.55 1.53 1.51 

31 2.73 2.70 2.67 2.65 1.37 1.36 1.35 1.33 

32 4.48 4.42 4.37 4.31 1.85 1.83 1.81 1.78 

34 4.05 4.00 3.96 3.92 1.69 1.68 1.66 1.64 

35 3.37 3.32 3.30 3.28 1.71 1.69 1.68 1.66 

36 3.53 3.54 3.60 3.75 1.64 1.63 1.63 1.63 

37 3.09 3.06 3.04 3.01 1.45 1.43 1.42 1.40 

39 3.59 3.60 3.61 3.71 1.85 1.87 1.92 2.02 
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