
COMPOSITION OF SEMANTICALLY
ENABLED GEOSPATIAL WEB
SERVICES

FELIPE DE CARVALHO DINIZ
February, 2016

SUPERVISORS:

Dr. ir. R. A. de By
Dr. J. M. Morales
Dr. ir. R. L. G. Lemmens

COMPOSITION OF SEMANTICALLY
ENABLED GEOSPATIAL WEB
SERVICES

FELIPE DE CARVALHO DINIZ
Enschede, The Netherlands, February, 2016

Thesis submitted to the Faculty of Geo-information Science and Earth
Observation of the University of Twente in partial fulfilment of the requirements
for the degree of Master of Science in Geo-information Science and Earth
Observation.
Specialization: Geoinformatics

SUPERVISORS:

Dr. ir. R. A. de By
Dr. J. M. Morales
Dr. ir. R. L. G. Lemmens

THESIS ASSESSMENT BOARD:

Prof. Dr. M.J. Kraak (chair)
Prof. Dr. A. Wytzisk (Bochum University of Applied Sciences)

Disclaimer
This document describes work undertaken as part of a programme of study at the Faculty of Geo-information Science and Earth
Observation of the University of Twente. All views and opinions expressed therein remain the sole responsibility of the author, and
do not necessarily represent those of the Faculty.

ABSTRACT

Applications such as disaster and emergency management require near-instant access to data from
different sources to make decisions and take actions rapidly. Although previous experiences have
shown that the geospatial data availability in many scenarios is not a problem, this data is usually
provided from multiple heterogeneous data sources distributed over the web, requiring the data
to be discovered and integrated. Also, the data not necessarily is ready to be used, requiring pre-
processing steps to turn it into actionable information.

Although OGC standards have made significant progress towards syntactic interoperability
of services and feature-level data access, they do not solve semantic heterogeneity problems. At
the same time, Semantic Web Technology can provide semantic interoperability but has had a
slow uptake, since it is complex and does not follow current trends for data formats and access,
thereby heading in an opposite direction of what developers and users expect. Even for services
that provide semantically enabled data, service discovery and manual composition in a distributed
environment are still time-consuming and error-prone. Typically, one must select multiple data
provision services, and apply the processes with the need to understand their functionality and in-
put/output restrictions. As a consequence of these difficulties, there is a lack of tools and methods
to facilitate the construction, verification and execution of composition of geospatial web services.

This research project aims to address limitations on service composition verification, execu-
tion, and sharing. We develop a theoretically founded environment in which geospatial service
composition can be verified. The theory formally defines what composability of semantically en-
abled geospatial web services is, providing a base for the development of an algorithm for verifying
the composability of services, which grants compile-time protection against a class of errors. This
protection allows not to run an invalid composition that could lead to unnecessary long running
time as well high usage of the server processing capabilities. This thesis also provides guidelines
for defining lightweight services for sharing, processing geospatial data and for cataloguing geospa-
tial data and services based on OGC Standards, and on current trends in web technology, such as
REST architecture, WebSockets, and JSON-LD. We expect that the proposed services will facili-
tate the implementation of OGC standards and lower the need for third-party software. We also
extend the OGC services to be semantically enabled, providing service functionality descriptions
by using the Hydra Core Vocabulary. These descriptions allow applications to discover and use
web services without being specifically programmed for each service, lowering human interaction,
and allowing the implementation of a generic client. Lastly, we develop JSON-W, a notation to de-
scribe and share compositions which allow a lossless roundtrip to RDF serialization. This makes
the compositions interoperable and at the same time maintain the ease to use and transfer to the
Web of the JSON format.

Keywords

Web service composition, Orchestration, Geoprocessing workflow, Web Processing Service, RESTful
API, Semantic description

i

ACKNOWLEDGEMENTS

I would like to thank the Brazilian Army and the Board of Geographic Service (DSG), who had
faith in me, giving me the opportunity of pursuing a Master of Science degree.

Also, I want to express my sincere gratitude to my first supervisor Dr. Ir. Rolf de By for his
guidance, pieces of advice, and for the time spent reviewing endless drafts. The discussions and
constructive criticisms throughout this thesis made me a better engineer and researcher.

ii

TABLE OF CONTENTS

Abstract i

Acknowledgements ii

1 Introduction 1
1.1 Background and Motivation . 1
1.2 Research Objectives . 3
1.3 Research Approach . 4
1.4 Research Relevance . 5
1.5 Thesis Outline . 6

2 RESTful OGC Services 7
2.1 Introduction . 7
2.2 OGC Architecture . 7

2.2.1 Current Web Technology Trends . 8
2.2.2 Previous Approaches . 9

2.3 REST Architectural Style . 10
2.4 RESTful OGC Services . 11

2.4.1 Web Feature Service . 12
2.4.2 Web Processing Service . 14
2.4.3 Catalogue Service of the Web . 15

2.5 WebSockets . 16
2.6 JSON in OGC Standards . 17

2.6.1 GeoJSON . 18
2.6.2 JSON Serialization for Filter Encoding 18
2.6.3 JSON Schema . 19

2.7 Summary . 20

3 Theory of Composability 21
3.1 Introduction . 21
3.2 Previous Approaches . 21
3.3 Levels of Composability . 22
3.4 Structural Composability . 24

3.4.1 Composition Well-formedness . 25
3.4.2 Conditional Nodes . 27
3.4.3 Loop Nodes . 28

3.5 Summary . 33

4 Static Syntactic Composability 35
4.1 Introduction . 35
4.2 Type System . 35
4.3 Type Definition . 37
4.4 Subtyping . 41
4.5 Type Propagation . 45

iii

4.6 Conditional and Loop Type Checking . 51
4.7 Summary . 54

5 Dynamic Syntactic and Semantic Composability 55
5.1 Introduction . 55
5.2 Dynamic Syntactic Composability . 55

5.2.1 Hoare Logic . 55
5.2.2 Relaxed Conditions . 60
5.2.3 Inputs and Outputs . 62
5.2.4 Conditional, Subgraph, and Loop . 71

5.3 Semantic Composability . 73
5.4 Summary . 76

6 Semantic Descriptions 77
6.1 Introduction . 77
6.2 Semantic Enablement . 78

6.2.1 Previous Approaches . 78
6.2.2 JSON-LD . 79
6.2.3 GeoJSON Extension . 80

6.3 Hydra Core Vocabulary . 82
6.4 Metadata Propagation . 84
6.5 JSON-W . 86
6.6 Summary . 91

7 Implementation 93
7.1 Introduction . 93
7.2 Services Implementation . 93

7.2.1 Web Feature Service . 94
7.2.2 Web Processing Service . 96
7.2.3 Catalogue Service for the Web . 99

7.3 Generic Client . 100
7.4 Specialized Services . 101

7.4.1 Orchestration WPS . 101
7.4.2 Composition Verification WPS . 105
7.4.3 Workflow CSW . 107

7.5 Orchestration Client . 107
7.6 Summary . 109

8 Conclusions and Recommendations 111
8.1 Conclusions . 111
8.2 Limitations . 115
8.3 Suggestions for OGC Standards . 116
8.4 Recommendations For Future Work . 117

A JSON Serialization for Filter Encoding 129

B Algorithms for Structural Composability 133

C JSON Serialization for Types and Conditions 137

iv

D JSON Workflow Representation 139

v

LIST OF FIGURES

1.1 Trend of SOAP and REST in Google searches 2

2.1 Trends of XML and JSON API in Google searches 8
2.2 Internet API relative frequency by data format 8
2.3 Internet API relative frequency by technology 9

3.1 Levels of Composability . 23
3.2 Comparison of graph representations . 25
3.3 Examples of structural errors . 28
3.4 Simple graph representation with two conditionals and the possible scenarios . . 29
3.5 Subgraph in simple graph representation . 30
3.6 Example of Iterate Set . 31
3.7 Example of Iterate Multivalue . 32
3.8 Example of Iterate Input . 33

4.1 Example of composition . 44
4.2 Example of composition with conditional . 51
4.3 Example of subgraph type inference . 52
4.4 Example of loop type inference . 54

5.1 Simple relation between inputs and outputs of two services 63
5.2 Composition case with a conjunction of two services 64
5.3 Composition case where a postcondition copy is needed 66
5.4 Composition case where postcondition projection is needed 67
5.5 Composition case with an optional input . 69
5.6 Composition case where a precondition copy is needed 70

6.1 Graph of a composition . 88

7.1 Content negotiation in the browser returning visual representation 96
7.2 Sequence diagram for WPS execution . 99
7.3 WPS result in the browser . 100
7.4 Generic Client user interface . 101
7.5 Example of orchestration execution . 103
7.6 Comparison of data passing by value and reference 105
7.7 General flowchart for composition verification 106
7.8 Orchestration Client user interface . 108
7.9 Orchestration Client error highlight . 108

vi

LIST OF TABLES

2.1 Example of resource URL for WFS . 13
2.2 Example of resource URL for WPS . 14
2.3 Comparison between OGC Filter Encoding and JSON Serialization 19

4.1 Judgments for FS<: . 36
4.2 Basic rules . 37
4.3 Geometry types . 37
4.4 Temporal types . 38
4.5 Coverage types . 39
4.6 Record type . 39
4.7 Union type . 40
4.8 Function type . 40
4.9 Service type . 41
4.10 Basic rules for subtyping in FS<: . 41
4.11 Rules for type Top . 42
4.12 Subtype rules for Record type . 42
4.13 Subtype rules for Set and Union types . 43
4.14 Subtype rule for Service type . 45

5.1 BNF for preconditions and postconditions . 57

6.1 Examples of measurement values . 81
6.2 Evaluation of workflow languages . 90

A.1 BNF for JSFE . 129
A.2 JSFE operators . 130

C.1 BNF for type declarations . 137
C.2 BNF for JSON serialization of pre- and postconditions 138

vii

TABLE OF ABBREVIATIONS

API Application Program Interface
BBOX Bounding Box
BPEL Business Process Execution Language

CORS Cross-Origin Resource Sharing
CRS Coordinate Reference System
CSW Catalogue Service for the Web

EWKB Extended Well-Known Binary
EWKT Extended Well-Known Text

ExtGeoJSON Extended GeoJSON
GML Geography Markup Language
GPX GPS Exchange Format

HATEOAS Hypermedia As The Engine Of Application State
HTTP Hypertext Transfer Protocol

ISO International Organization for Standardization
JSFE JSON Serialization for Filter Encoding

JSON JavaScript Object Notation
JSON-LD JavaScript Object Notation for Linked Data

JSON-P JSON with Padding
JSON-W JavaScript Object Notation for Workflows

KVP Key-Value Pair
OC Orchestration Client

ODATA Open Data Protocol
OE Orchestration Engine

OGC Open Geospatial Consortium
OWL Web Ontology Language

OWL-S Web Ontology Language for Services
OWS OGC Web Services

QUDT Quantities, Units, Dimensions and Types Ontologies
RDF Resource Description Framework

REST Representational State Transfer
RPC Remote Procedure Call

SOAP Simple Object Access Protocol
SOS Sensor Observation Service

SPARQL SPARQL Protocol and RDF Query Language
SWRL Semantic Web Rule Language

TRS Temporal Reference System
TWKB Tiny Well-known Binary

URL Uniform Resource Locator
UTC Coordinated Universal Time

UUID Universally Unique Identifier
W3C World Wide Web Consortium
WCS Web Coverage Service
WFS Web Feature Service

viii

WKB Well-known Binary
WKT Well-known Text
WPS Web Processing Service

WSDL Web Service Definition Language
XML Extensible Markup Language

ix

x

COMPOSITION OF SEMANTICALLY ENABLED GEOSPATIAL WEB SERVICES

Chapter 1

Introduction

1.1 BACKGROUND AND MOTIVATION

Applications such as disaster and emergency management require near-instant access to data from
different sources to make decisions and take actions rapidly. Geospatial data such as road net-
work, land use, demographic data, and satellite images play a significant role to improve situational
awareness for decision makers. Although previous experiences have shown that the geospatial data
availability in many scenarios is not a problem [1], this data is usually provided from multiple
heterogeneous data sources distributed over the web, requiring the data to be discovered and inte-
grated. Also, the data not necessarily is ready to be used, requiring pre-processing steps to turn it
into actionable information. Several studies report that data integration is one of the most imme-
diate and limiting challenges [2, 3], stating that data discovery and integration in heterogeneous
environments can take up to 50% of user time [4, 5]. The user needs to put a considerable effort
in integrating spatial data formats and schemas, based on concepts typically from different fields
of study and natural languages.

The Open Geospatial Consortium (OGC) Standards provide service definition guidelines,
solving problems of syntactic and structural heterogeneity among different data sources by pro-
viding services with homogeneous access points and data formats [6]. For the scope of this thesis,
three types of web service are considered: Web Feature Service (WFS), Web Processing Service
(WPS), and Catalogue Service for the Web (CSW). The WFS standard provides feature-level data
access, saving the users from downloading the entire dataset and then selecting the subset that is
required for analysis. The data is usually encoded in the Geographic Markup Language (GML),
an Extensible Markup Language (XML) grammar capable of expressing geospatial features. The
WPS standard provides means of wrapping any computational process, specifying the interface
for input and output, and indicating how users can execute the process [7]. The CSW standard
defines the implementation rules of a catalogue of geospatial records in XML, which provides the
means of discovery metadata about geospatial data and services [8].

Although OGC standards have made significant progress towards syntactic interoperability
of services and feature-level data access, they do not solve semantic heterogeneity problems [9].
The standards do not provide machine-interpretable descriptions, which in turn does do not al-
low applications to decide autonomously in which actions to participate. This lack of semantics
in the data and service descriptions is considered a primary limitation for achieving semantic in-
teroperability, i.e., the exchange of information in an unambiguous way, with the appropriate
understanding of the meaning of the data [10]. Semantic interoperability allows the use of the
data in contexts that it was not originally created and also be used by autonomous clients, that, for
example, can reason over multiple service descriptions and assist a user in finding which service
best fits its requirements.

To achieve semantic interoperability, alternatives in Semantic Web Technology have been pro-
posed. The Semantic Web is an extension of the Web based on World Wide Web Consortium
(W3C) standards that facilitate data sharing and reuse across applications by providing accurate and

1

COMPOSITION OF SEMANTICALLY ENABLED GEOSPATIAL WEB SERVICES

unambiguous definitions with data schemas. One way of achieving the vision of the Semantic Web
is Linked Data, a group of best practices to publish and interlink structured machine-readable data
on the web [11]. In summary, best practices include standard identification of resources (URI); use
of the Resource Description Framework (RDF) graph-based data model to structure and interlink
data; and use of the SPARQL Protocol and RDF Query Language (SPARQL), the standard query
language for RDF. Linked Data gives a well-defined machine-readable meaning to resources, which
allows the representation and inference of relationships in the data, the resolution of ambiguities,
and enabling of data interoperability at a semantic level [12].

In contrast to what one would expect, interest in Semantic Web technology appears wan-
ing [13] and is known of only a small number of enterprise applications that make use of RD-
F/XML serialization, the encoding of RDF data in XML [14, 15, 16]. Several factors can be
attributed to this low uptake, such as SPARQL syntax being complex and requiring specialized
knowledge, SPARQL endpoints being costly in computational cost at the server side and create
server availability issues when facing multiple concurrent users. Although the Semantic Web was
conceptualized for querying data from multiple sources, federated query processing is still slow,
and this state of affairs is aggravated by the low availability of endpoints. In 2012, OGC standard-
ized GeoSPARQL, an extension of SPARQL for querying spatial data encoded in RDF [17], which
encouraged sharing spatial data in this format. However, triple stores, the specialized storage form
for RDF data, are not so well-developed compared to relational databases to handle spatial data.

One factor that explains the low uptake of OGC Standards, and also applicable to the Semantic
Web Technology, is the fact that they do not follow the current trends of technology for data
formats and data access. Both heavily use XML technology for data encoding and descriptions,
ignoring formats such as JSON, and for data access, they are mostly based on Remote Procedure
Call (RPC) and the Simple Object Access Protocol (SOAP) [6]. Figure 1.1 presents the use of
search terms SOAP compared to Representational State Transfer (REST), a more modern approach
for data access, in the last ten years [18].

Figure 1.1: Trend of SOAP and REST in Google searches

Even for services that provide semantically enabled data, service discovery and manual integra-
tion of sources in a distributed environment is still time-consuming and error-prone. Typically, a
data provision service must be manually selected, the required data must be downloaded, and the
process must be applied, with the need to understand their functionality and input/output restric-
tions. These tasks can be minimized by composing web services. Service composition refers to
the process of selecting and assembling a meaningful combination of services to solve a specified

2

COMPOSITION OF SEMANTICALLY ENABLED GEOSPATIAL WEB SERVICES

problem. Different services are pipelined in such a way that the output of one service can serve
as input to another service. Ideally, this composition should be assembled and verified automat-
ically, however, in present state-of-the-art, this procedure is done mostly with intensive human
interaction.

To address the limitations on service composition, this research proposes modifications to the
definition of OGC services for sharing, cataloguing and processing geospatial data. The goal is
to enhance the capabilities of verifying, executing, and sharing the composition of those services.
The modified services are defined on the basis of contemporary web technology, aligned with cur-
rent standards, and are capable of providing machine-readable descriptions of their functionality.
The vision is that applications should autonomously be able to discover, use and compose multiple
services without the need for creating a specialized routine for each service. The here proposed
service type is semantically enabled, meaning that it provides data with explicit semantics for the
feature types, feature instances, and service functionality. The proposed services have five advan-
tages compared to current implementations:

1. By using contemporary and accessible web technology, we facilitate the implementation of
OGC standards and lower the need for third-party software.

2. By using semantically enabled descriptions, the functionality of the service can be discovered
and invoked without human interaction.

3. Service composability is supported by a formal theory, providing means of unambiguously
defining and verifying the validity of service compositions, and possibly, over time, leading
to more robust service design practices.

4. Composition execution is based on the WPS asynchronous execution model, which allows
workflow bandwidth usage optimization by using the mechanism of data transfer by refer-
ence.

5. By using the mechanism of metadata propagation and the proposed JSON Workflow repre-
sentation the compositions can be shared in an interoperable manner.

As proof of concept, an application that allows geospatial service composition based on the
proposed services was implemented. The application let the user discover available services and
assemble them in the desired combination, share the composition in an interoperable manner, and
orchestrate the service execution in an asynchronous way. The system assists the user by providing
compile-time protection against errors originating from invalid composition between services.

1.2 RESEARCH OBJECTIVES

The main objective of this research project is to develop a theoretically founded environment in
which geospatial service composition can be verified, executed, and shared. The services aim to
provide geospatial data sharing, cataloguing and processing capabilities in support of applications
that have rapid decision-making processes. The theory formally defines what composability of
semantically enabled geospatial web services is, providing a base for the development of an algo-
rithm for verifying the composability of services, which grants compile-time protection against
errors.

The main objective can be divided into the following sub-objectives:

1. Propose lightweight, syntactically interoperable services for sharing, cataloguing and pro-
cessing geospatial data using contemporary web technology, and align these with current
OGC and ISO standards.

2. Propose a theoretical foundation for verification of composability of geospatial web services.

3

COMPOSITION OF SEMANTICALLY ENABLED GEOSPATIAL WEB SERVICES

3. Define how the proposed services can be made self-describable with machine-readable, se-
mantically enabled annotations.

4. Define mechanisms for describing, sharing and executing geospatial service compositions.

Questions related with sub-objective 1:
1. How can current standards be modified to align with contemporary web technology?

Questions related with sub-objective 2:
2. Which forms of composition can be recognized, and for each of these, to what extent

can we decide on their validity?

3. How to verify the validity of the composition of services?
Questions related with sub-objective 3:

4. How can OGC services be extended to be semantically interoperable?

5. How can geospatial web services functionality be described in a machine-readable and
machine-interpretable way?

Questions related with sub-objective 4:
6. How can the metadata of individual services be combined and propagated to generate

descriptions for a composite service?

7. How can geospatial service composition be described and shared in an interoperable
way?

8. How can bandwidth usage in the execution of a composition be minimized?

1.3 RESEARCH APPROACH

This project has been divided into three activities: proposal of lightweight semantically enabled
geospatial web services, the definition of a theory for verifying the composability of web services,
and definition of mechanisms to describe, share and execute composition of geospatial web ser-
vices.

The first activity deals mainly with requirements analysis for web services based on standards
for data encoding, sharing, processing and cataloguing. The current trend of using web technology
is also considered, in an attempt to avoid outdated solutions. The outcome of this activity is the
identification of the required functionality for WFS, WPS, and CSW, and a proposal for changes
in the way in which the services are semantically enabled, in the sense that they are capable of
providing semantically enabled spatiotemporal data and descriptions. The new functionality is
added to the OGC services, so they follow the REST architecture, use WebSockets, and use JSON-
LD as the main format for sharing data and metadata.

The second activity focuses on the creation a formal theory for composability of services. The
goal of this theory is to define what composability of semantically enabled geospatial web services
is, describe how the validity of composition is verified and how the result of the composition of
services can be inferred. The composability verification is divided into levels of composability
based on the expressiveness of the verification mechanism:

1. Structural Composability, which abstracts the service composition as a graph, where the
nodes are services and edges connections between inputs and outputs, and evaluates the gen-
eral interactions between the inputs and outputs of services without taking into account
specifics of each them. The goal to verify invalid interactions such as cycles, duplicates,
verify the existence of all required connections, and validity of loops.

4

COMPOSITION OF SEMANTICALLY ENABLED GEOSPATIAL WEB SERVICES

2. Static Syntactic Composability, in which Geospatial web services and their service compo-
sition are seen as a domain of typed functions, in a way that the output of a component
service can only become the input of the next service if their data types are identical or the
output data can be automatically coerced to the data type of the input parameter.

3. Dynamic Syntactic Composability, which refers to verify restrictions in the data being trans-
ferred that are not covered by Static Syntactic Composition, such as interactions between
inputs, coordinate systems, and time zones. This verification is done based on precondition
checking of Hoare logic [19].

4. Semantic Composability addresses the meaning of the data and computational processes,
verifying whether the combination of processes can derive a meaningful result, or it pro-
duces the intended result of the user.

5. Qualitative Composability, which evaluates the composition against user requirements re-
lated to non-functional characteristics, such as response time, service availability, cost, secu-
rity, legal rights, and quality of operations.

The last activity addresses the definition of mechanisms for describing, sharing and executing
service composition. For descriptions of service compositions, we define a mechanism for deriv-
ing metadata from a composition based on the description of individual services. This mechanism
allows opaque compositions that are indistinguishable from WPS implementations. For sharing,
we develop a workflow notation inspired by the Business Process and Model Notation (BPMN)
specification [20]. It uses concepts of Semantic Web Technology such as RDF and ontologies to
ensure the workflows can be shared in an interoperable manner, and JSON-LD framing to en-
sure the simplicity of use and sharing in a Web environment without losing the expressiveness
of RDF. Regarding execution, we propose and implement a mechanism for executing the com-
position of the asynchronous execution model of the WPS standard. This mechanism leverages
the modifications proposed in the WPS standard that an asynchronous execution returns a result
that is indistinguishable from a WFS resource, harmonizing the passing of data between OGC
web services. The proposed execution mechanism allows bandwidth usage optimization by using
mechanisms of data transfer by reference, instead of by value.

1.4 RESEARCH RELEVANCE

OGC standards such as WFS and WPS are considered complex and developers need to rely on
third-party software implementation. The standards are based on XML encodings and the RPC/-
SOAP protocols, a web technology that has largely been replaced in the last few years. This thesis
provides guidelines for defining lightweight services for sharing, processing geospatial data and for
cataloguing geospatial data and services based on OGC Standards, and on current trends in web
technology, such as REST architecture, WebSockets and JSON as main data transfer format. In
this way, the potential adoption of the proposed services is maximized. Also, the OGC Standards
aim to solve syntactic interoperability, not semantic. This thesis provides ways to extend OGC
services to provide semantically enabled data and also to provide semantically enabled descriptions
of the service functionality. These descriptions allow applications to discover and use web services
without being specifically programmed for each service, lowering human interaction.

For Geospatial Web Service Composition several advancements are made in the fields of work-
flow verification, metadata generation, metadata sharing and execution. For workflow verifica-
tion, four theoretically founded levels of composability are developed and discussed. The focus of
the theory of composability is compile-time verification, which prevents to run an invalid compo-
sition that could lead to unnecessary long running time as well high usage of the server processing

5

COMPOSITION OF SEMANTICALLY ENABLED GEOSPATIAL WEB SERVICES

capabilities. The composability theory covers metadata propagation, which allows the generation
of the specification of composite services. For sharing, we develop a JSON-LD workflow rep-
resentation capable of describing the interaction between web services, as well as that it covers
the use cases of subgraph, conditional and loop, and capable of being stored and shared using the
CSW specification. The developed notation for describing and sharing workflows allows a lossless
roundtrip to RDF serialization, making the workflows interoperable and at the same time main-
taining the ease to use and transfer to the Web of the JSON format. To assist the use of the JSON
Workflow notation, a graphical interface is implemented that allows the user to build the compo-
sition visually. For execution, we develop an orchestration engine, implemented as a WPS, and
capable of executing WPS processes in the asynchronous model, which reduces bandwidth usage
by not requiring the orchestration service to handle the data between services.

1.5 THESIS OUTLINE

This thesis adopts the following structure:

Chapter 1 provides a general introduction to this thesis through a background and motivation
and stating the research objectives and research approach.

Chapter 2 discusses how OGC web services can be modified to be based on contemporary web
technology such as REST, WebSockets, JSON and aligned to current standards. The follow-
ing services are considered: WFS, WPS, and CSW.

Chapter 3 discusses the possible forms of service composition that can be recognized and intro-
duces theoretically founded methods to verify its validity. Also, the first level of compos-
ability is discussed, Structural Composability.

Chapter 4 discusses the next level of composability, Static Syntactic Composability, which ab-
stracts geospatial web services and service composition as a domain of typed functions, pro-
viding a mechanism for type checking and type propagation.

Chapter 5 discusses Dynamic Syntactic Composability and Semantic Composability.

Chapter 6 provides the definition of the metadata that allows applications to use web services
without being specifically being programmed for each service, which allows the creation of
generic clients. Also, services are extended to serve JSON-LD for data and metadata, turning
OGC Services into semantically interoperable services. It also introduces the mechanism of
metadata propagation, used to generate dynamically metadata for WPS results. Moreover,
based on the previous concepts, it introduces a Workflow notation that allows the compo-
sition to be described and shared in an interoperable matter.

Chapter 7 discusses the implementation of the proposed services and a generic client which is
capable of processing those services metadata allowing seamless interaction with different
OGC services. Also is discussed the implementation of a graphical user interface to assist
users to build, verify, and execute service compositions.

Chapter 8 gives a summary of the thesis, answering the research questions, also reflecting on the
limitations and providing recommendations for future work.

6

COMPOSITION OF SEMANTICALLY ENABLED GEOSPATIAL WEB SERVICES

Chapter 2

RESTful OGC Services

2.1 INTRODUCTION

The OGC Reference Model [21] states that the standards should reflect the best engineering prac-
tices, however, the OGC services are still heavily based on RPC/SOAP/XML, the most com-
monly used technology in the year that the first versions of the standards were developed. Cur-
rently, OGC standards are heading in the opposite direction of what developers and users expect,
not yet incorporating de-facto standard technology such as JSON, WebSockets, and REST, which
could extend the use cases and adoption of the services.

The complexity of the OGC standards forces developers to rely on third-party implementa-
tions. Even when the application requires simple functionality, any full implementation of the
standard will lead to a heavy and complex service. Also, as geospatial information is used in many
domains, it is impossible to predict and prepare for every possible user requirement. This creates
the need for flexible and extensible services, in which developers can choose the desired functional-
ity and extend it to fulfil OGC requirements. This conceptualized service can be implemented in
an incremental way, and be documented with flexible metadata that can express the functionality
of the service with the required granularity by the developer. Also, the mechanism for passing
data between OGC web services such as WFS and WPS is not harmonized, causing difficulties in
the composition of such services. In this chapter, we propose a modification of the WPS standard
so that asynchronous service execution returns a result that is indistinguishable from a WFS layer,
which allows composition bandwidth usage optimization by using mechanisms of data transfer by
reference, instead of by value.

In this chapter, is discussed how the OGC services can be modified to be scalable, flexible,
and lightweight, following current web technology. Section 2.2 introduces the architecture cur-
rently used in OGC services, and compares it with current web technology trends. Section 2.3
gives a brief description of the REST architectural style, while in Section 2.4 we propose RESTFul
bindings for the Web Feature Service, Web Processing Service and Catalogue Service of the Web.
Section 2.5 discusses the use of WebSockets in OGC standards, complementing use cases in which
the application of REST architecture leads to inefficient implementation. Lastly, Section 2.6 ad-
dresses the use of JSON in OGC standards, both for data encoding and metadata.

2.2 OGC ARCHITECTURE

The OGC services follow a Service-Oriented Architecture (SOA), meaning that they are loosely
coupled, self-contained, have a uniform means to interact with and discover its capabilities. The
OGC specification standardizes the interaction with the web services by usually providing three
different binding styles: HTTP GET, HTTP POST, and SOAP, where SOAP also uses the HTTP
POST as a communication protocol. The requests are made in a Remote Procedure Call (RPC)
style, where the service has one entry point URL, and different interactions are realized with
parameters provided with the base URL. RPC uses the HTTP protocol for communication, how-

7

COMPOSITION OF SEMANTICALLY ENABLED GEOSPATIAL WEB SERVICES

ever, does not respect the semantics defined in the standard. The OGC specification also standard-
izes data formats, being XML, and one of its grammars, GML; together these are the most used
formats for both metadata and data distribution. By providing homogeneous access points and
data formats, OGC services are syntactically interoperable.

2.2.1 Current Web Technology Trends

The general trend of web technology is to simplify both utilization and development of applica-
tions to ensure wider adoption. By using outdated technology, the number of users and develop-
ers is effectively limited, and this lowers the applicability of the standard. The first factor that we
consider is the trend in data formats. OGC standards are mostly based on XML, a format that
presents a constant decline in usage in recent years. Figure 2.1 illustrates the trends of use of the
search term “XML Application Program Interface” (API) compared to “JSON API” in the last
decade [18]. Obviously, there is increasing use of JSON, and the continuously decreasing use of
XML. Figure 2.2 illustrates the relative frequency of use of data formats in Internet APIs. The in-
formation was extracted from the website ProgrammableWeb [22], and it refers to the distribution
in January 2016.

Figure 2.1: Trends of XML and JSON API in Google searches

Figure 2.2: Internet API relative frequency by data format

8

COMPOSITION OF SEMANTICALLY ENABLED GEOSPATIAL WEB SERVICES

It is not only important to look at trends in data formats, but also at those in data access. The
OGC Standards interfaces are implemented through Remote Procedure Call (RPC) and the Sim-
ple Object Access Protocol (SOAP) [6]. Recently, several companies, including Google, Facebook
and Yahoo, have deprecated the use of their SOAP-based interfaces, and migrated to Representa-
tional State Transfer (REST) architecture, which facilitates both the use and the development of
applications [23]. Figure 2.3 presents the relative frequency of the use of Internet APIs by tech-
nology. The information was extracted from the website ProgrammableWeb [22], and it refers to
the distribution in January 2016.

Figure 2.3: Internet API relative frequency by technology

This change can be attributed to the ease of implementation and use of REST, as it is intended
to be lightweight, and it does not cover all functionality of SOAP. The learning curve to work with
REST is less steep, as, for less complex applications, it requires a shorter chain of tools compared
to SOAP.

Other advantages of REST architecture are performance; allowance to use the HTTP Cache;
flexibility, by the use of hypermedia controls the URLs can change without breaking clients; and
the possibility of working with any data format, as opposed to SOAP, which is restricted to XML.
This is desirable as JSON is the primary data format used for asynchronous communication be-
tween server and browser. JSON is easier to parse in a browser, and XML is of greater complexity
and typically has a larger payload. Section 2.3 addresses more in-depth the REST architectural
style, and in Section 2.6 we address the use of JSON in OGC standards.

2.2.2 Previous Approaches

Based on the above-discussed limitations it appears desirable that a profile of the OGC Standards
be developed that addresses the use of JSON as an exchange format and the creation of RESTful
bindings. Currently, there is momentum within the OGC community to address this issue. For
instance, in Testbed 11 [24] and Testbed 10 [25] discussions are ongoing on how JSON and Geo-
JSON can be adopted across different OGC services. In 2011, OGC formed the RESTful Service
Policy Standard Working Group for the purpose of deriving requirements and recommendations
for RESTFul OGC Services [26], lately adopting REST as one part of the Web Map Tiling Service
(WMTS) specification [27]. Also, three best practices documents were released involving REST
bindings: the RESTful Encoding of OGC Sensor Planning Service for Earth Observation Satellite
Tasking [28]; RESTful Encoding of Ordering Services Framework for Earth Observation Prod-
ucts [29]; and OGC Download Service for Earth Observation Products [30]. Currently, OGC is
developing the OGC SensorThings API standard [31] that will also be based on the REST archi-
tecture. Also worth to mention is that the WPS specification states that a REST-oriented interface

9

COMPOSITION OF SEMANTICALLY ENABLED GEOSPATIAL WEB SERVICES

should be considered in case OGC specifications progress towards REST [7].
Another attempt outside OGC that can be cited is the proposal by Esri to adopt the GeoSer-

vices REST Specification [32] as an OGC standard, however, the request was eventually with-
drawn [33]. Also, there is a submission to OGC of change requests to add REST bindings for
WFS 2.0, however, this request is pending [34]. The proposal has several drawbacks that are ad-
dressed in this thesis. We discuss these in the next paragraph.

The following drawbacks can be identified. Standardization of URL syntax breaks the flexibility
of the REST architecture: in this thesis, we propose to include at server-side a series of hypermedia
descriptions that the client can discover at run-time, so as to understand the possible interactions
with the service. The use of HTTP PUT causes the need to pass the entire resource representation
in an update request: we propose to use HTTP PATCH instead. The use of OPTIONS to discover
available methods and representations is not recommended, since OPTIONS cannot be cached by
the client in the standard HTTP caching specification. Lastly, and typically, transactions are speci-
fied in a non-RESTFul way: we propose in this thesis a compliant specification based on ODATA
Batch Processing.

In Testbed 11 [35], another RESTful architecture is presented focusing mostly on the upcom-
ing WFS 2.5 standard. In this document URLs are not treated as opaque, providing best practices
of how to design URL paths and defining URL templates. In this thesis URLs are seen as opaque,
not having any special meaning associated, the documentation is responsible for expressing what
are the contents of the resource, not needing any standardization in the URLs. Also, the docu-
ment is limited in three aspects: the canonical representation of features is still GML 3.2, not being
flexible to accept JSON; the discussion is limited only to simple queries, not discussing how to deal
with complex queries; and it just discusses simple transactions, not discussing how to do multiple
transactions in an atomic way. In this thesis, all these subjects were discussed.

We identified six research papers relevant to this discussion. Granell et al. [36] compare the
OGC Web Processing Services with REST constraints, however, the authors do not propose
RESTful bindings. Foerster et al. [37] proposed RESTful bindings for WPS, however, they do
not provide an explanation for all WPS interactions, they also standardize the possible URLs,
breaking the flexibility of REST, and they provide redundant URLs for interaction with inputs
and outputs. Jiang et al. [38] propose RESTful bindings for CSW, which uses a middleware to
convert the legacy catalogue to a RESTful architecture. This middleware requires that all URLs
be standardized and creates an overhead in the communication to and from the service, also was
not discussed how complex queries that involve Filter Encoding can be handled in the REST ar-
chitecture. Mazzetti et al. [39] propose REST bindings for WCS, and Janowicz et al. [40], and
Page et al. [41] propose REST bindings for SOS. However, we will not consider WCS and SOS in
this thesis. Also, there are available implementations of REST bindings for OGC services, such as
52oNorth SOS RESTFul Extension [42] and the Sensor Web REST API [43].

2.3 REST ARCHITECTURAL STYLE

Representational State Transfer (REST) is an architectural style described by a series of constraints
applied to interactions between components and data elements [44]. It uses the Hypertext Trans-
fer Protocol (HTTP) [45] as an application protocol, which defines the semantics of the actions
available to manipulate the resources. The goals of the REST architecture are performance, scala-
bility, simplicity, modifiability, visibility, portability, reliability of the web service.

REST uses a Resource-Oriented Architecture (ROA), which works in a different granularity
than Service-Oriented Architecture (SOA). In ROA, the concern is request addressing for resource
instances, and in SOA, it is the creation of request payloads for service instances. Also, in SOA,

10

COMPOSITION OF SEMANTICALLY ENABLED GEOSPATIAL WEB SERVICES

there is one endpoint address per service, in comparison to one address per resource in ROA.
The REST constraints defined in Fielding, 2000 [44] are summarized below. A service that

fulfils all constraints is considered RESTful.

• Client-server: The idea is a separation of concerns between the clients and the server, where
the server handles data storage and processing, and the client handles the user interface func-
tionality, increasing the portability. This allows the server to evolve independently from the
client as long as their interface is not altered.

• Stateless: The client-server communication is restricted in such a way that no session state
is stored on the server side between requests. This forces all the necessary information to a
request be stored in its contents, and the client to hold the session state. Since servers are
not concerned with the client state, the server implementation is simpler and more easily
scalable.

• Cacheable: The response to a request must be implicitly or explicitly defined as cacheable or
non-cacheable. This allows clients to reuse static information, partially, or completely elim-
inating some interactions between the client and the server, which further improves scala-
bility and performance. HTTP provides a cache mechanism by means of standard headers.

• Layered system: Servers and clients cannot distinguish whether there are intermediary lay-
ers between themselves.

• Code on demand (optional): Client functionality may be extended by transferring code to
be executed on the client side.

• Uniform interface:

– Identification of Resources: Individual resources are uniquely identifiable by a URI.

– Manipulation through representation: Exists a conceptual separation between resources
of the service and the representation of the data returned to the client. The same
resource can have multiple representations such as JSON, XML, and others. In the
HTTP standard, the mechanism to serve the resource in different representations is
called Content Negotiation.

– Self-descriptive messages: The message data and metadata should include enough in-
formation for the resource to be understood syntactically and semantically.

– Hypermedia as the engine of application state (HATEOAS): Except for the entry point
of the service, the client does not assume any action/resource available in the server.
All the available operations are discovered at run-time.

2.4 RESTFUL OGC SERVICES

This section discusses the possibility of RESTFul bindings for OGC Services, focussing on the
WFS, WPS, and CSW standards. The reader should bear in mind that no URLs for interactions
with the services are specified in this thesis. Instead, they can be discovered by the client at run-
time using resource representations (hypermedia links) returned by the service. This approach is
known as the HATEOAS principle, which will be described in Chapter 6.

11

COMPOSITION OF SEMANTICALLY ENABLED GEOSPATIAL WEB SERVICES

2.4.1 Web Feature Service

The Web Feature Service (WFS) offers methods to retrieve, create and update geospatial data in-
dependently of the underlying data source [6]. This service also contains elements of a projection
service and a format conversion service. The WFS service complies with some of the constraints
defined in the REST Architectural Style. WFS, and, in fact, all OGC Services, are Client-Server
and Stateless.

The WFS service basically behaves like a mediator between the client and the underlying data
source, in this way we can consider that it follows a Layered Approach. The Cache and Code-
on-demand constraints are not followed. The lack of caching in all bindings of OGC Services
greatly reduces the performance and scalability of the service. Regarding Code-on-demand, it is
an optional constraint in REST, and it is not applicable in the WFS context.

One of the most important constraints on the REST architecture is the Uniform Interface. As
OGC is based on RPC and SOAP, it does not comply with this constraint. All the requests are
tunnelled from a unique URL instead of having separate URLs for each resource, which in turn
reduces caching possibilities. Additionally, no hypermedia controls are provided, and there is no
notion of manipulation through representation. The WFS specification provides self-descriptive
messages. However, they are limited and mostly rely on standardized URL parameters.

The WFS uses a Service-Oriented Architecture while REST services follow the Resource-
Oriented Architecture. In this way, it is not appropriate to just implement REST bindings: the
WFS specification is required to be seen through the lens of ROA. The WFS specification defines
three conformance classes regarding the binding styles: HTTP GET, HTTP POST, and SOAP.
All requests are made in RPC style, having a central URL where all requests are made, and pa-
rameters used to distinguish the actions being performed. Request parameters can be passed using
two types of encodings, Key Value Pair (KVP) and XML. The KVP encoding is used in conjunc-
tion with HTTP GET bindings while XML is used with HTTP POST and SOAP. In the case of
SOAP, the POST method is also used, the only difference is that the payload of the request is a
SOAP XML.

In the HTTP specification, GET is defined as a safe and idempotent method [45], meaning that
it guarantees no state change on the server and several requests have the same effect as a single one.
In the WFS specification, this is not followed, as one can use a GET request to create, delete and
update features. Also, in the HTTP specification, POST is neither safe nor idempotent method,
meaning that it cannot be used for retrieving features. Also, the semantics of each operation should
be considered; the GET operation has the semantics of retrieving a resource while POST has the
semantic of creating a resource. This is not followed by the WFS specification. To fulfil a REST
architectural style, the WFS specification should correctly follow the HTTP specification, which
currently is used only as a transport protocol. The RESTful bindings for WFS is based on 4 HTTP
methods:

• GET, used to retrieve features from one layer, and to retrieve metadata.

• POST, used to insert one or more features into one layer.

• DELETE, used to remove a single feature of one layer.

• PATCH, used to update a single feature from one layer.

The method PATCH is used instead of PUT due to its extended semantics, where PUT can
only be used to update an entire representation while PATCH can be used to update the representa-
tion partially. The developer can choose based on his needs which method best fits his application.

12

COMPOSITION OF SEMANTICALLY ENABLED GEOSPATIAL WEB SERVICES

For transactions that require interaction with more than one resource, one uses Batch Processing
as specified in the ODATA protocol.

The Open Data Protocol (ODATA) is an OASIS standard defining best practices for consum-
ing and building REST services [46]. In ODATA, Batch Processing is defined, in which multiple
operations can be performed on a single HTTP request by encoding the series of operations as
a Multipart MIME message [47], and submitting it to the server with a POST operation. The
ODATA Batch Processing is particularly interesting due to its capabilities of providing atomic
transactions [48]. The idea of applying ODATA Batch Processing in OGC Standards to handle
multiple operations over a single HTTP request was first introduced in the SensorThings API
Standard [31].

Aside from following the HTTP specification, the services should also adhere to the notion of
resources. In the WFS, all requests are tunnelled from a single URL, and parameters are used to
differentiate between actions and feature layers that are being manipulated. In ROA, each resource
requires having a specific URL, with which the client can interact. Also, there is a notion of rep-
resentation of a resource, so that the same resource can be retrieved in different formats through
the same URL. In the WFS, each available feature layer is a resource. Table 2.1 exemplifies a com-
parison between the KVP bindings in WFS specification, and a request in REST architecture. In
this case, lakes is a resource that has a specific URL in the REST bindings, and content negotiation
is used to retrieve the representation of the resource in GeoJSON format.

Table 2.1: Example of resource URL for WFS

OGC KVP

http://www.example.com/wfs.cgi?SERVICE=WFS&

VERSION=2.0.0&

REQUEST= GetFeature&

TYPENAME=Lakes&

OUTPUTFORMAT=GEOJSON

REST
GET http://www.example.com/wfs/2.0.0/lakes/

Accept: application/vnd.geo+json

Possible methods and parameters can be defined individually for each layer, providing the de-
veloper with a flexible granularity for the application according to his needs. Also, to enhance
flexibility, URLs should not be standardized in any way, the service metadata should inform the
client about server capabilities. This enhancement in the self-descriptive messages based on hyper-
media controls is presented in Chapter 6.

The important disadvantage of the proposed RESTful bindings is that, as REST is a simple
architecture compared to RPC/SOAP, it cannot handle all the use cases described in the standard,
especially concerning complex queries within one resource and queries that involve more than
one resource. For the cases of complex queries within one resource, the service can be extended
with an additional resource for Stored Queries. The client will then make a POST request to this
resource with the payload containing the query in a standard language such as Filter Encoding (or
the JSON serialization presented in Section 2.6.2), and the server will return the Location Header
with a URL where the client can access the result of the query. The drawback of this approach
is that the client requires executing two requests to perform the query instead of one as in the
OGC standard. Also, there is an overhead to the server for creating one URL representation for
each query executed against the server. For queries involving more than one resource, the same
approach can be used. However, the proposed JSON serialization for Filter Encoding will have to
be extended, being left as a recommendation for future work.

13

COMPOSITION OF SEMANTICALLY ENABLED GEOSPATIAL WEB SERVICES

2.4.2 Web Processing Service

The WPS standard provides an interoperable protocol for wrapping any computational process
(spatial and non-spatial), specifying the interface for input and output, and indicating how clients
can execute the process [7]. In this thesis, we focus on WPS asynchronous execution, in which the
client executes the process by a POST operation, the server creates a job, and the client can keep
track of the status of the process. Whenever the job is completed, the server returns a URL through
which the client can access the results. The advantages of asynchronous execution are that it allows
long-running executions without locking the request of the client, it allows the server to manage
its resources by starting the process whenever it is most suitable, and (as discussed in Chapter 7)
the use of the asynchronous execution can reduce the bandwidth usage in a service composition
scenario. As a disadvantage, the client requires more requests to access the results of the process,
requiring one POST request to create the job, at least, one GET request to verify whether the
job is completed, and the last GET request to retrieve the actual result of the process. Also, the
monitoring of the job status may require several requests if the server is not able to provide an
accurate ETA of the process; this problem is addressed by the use of WebSockets, as we discuss in
Section 2.5.

The RESTful bindings for WPS follow the same principle as described for WFS. It uses three
HTTP methods:

• GET, for retrieving information about a job status, requests the results, and to access meta-
data

• POST, to execute a process

• DELETE, to dismiss a job, as described in the WPS Dismiss Extension.

The resources of WPS are the processes, the jobs, and the outputs of the processes. These
resources can be defined in a hierarchical structure as exemplified in Table 2.2.

Table 2.2: Example of resource URL for WPS

OGC KVP

http://www.example.com/wps.cgi?SERVICE=WPS&

VERSION=2.0.0&

REQUEST= GetResult&

jobId =286e8cbd-7d51-48c5-ad72-b0fcbe7cfbdb

REST
GET http://www.example.com/wps/2.0.0/processes/buffer/jobs/286e8cbd-7d51-48c5-

ad72-b0fcbe7cfbdb/outputs/buffered

The Code-on-Demand constraint can also be applied to RESTful WPS bindings. With Code-
on-Demand, a process can be executed on the client side instead of on the server. In many sit-
uations, this will increase the performance and the efficiency of the process by not requiring to
transfer input data to the server and requesting the output data. Also, it can be applied to reduce
the bandwidth usage in a composition of services. This idea was originally introduced for spatial
applications in [49] and is out of the scope of this thesis, being left as recommended work.

To harmonize passing data between OGC Web Services, it is desirable that the result of an
asynchronous execution of a WPS process behave in the same way as that by a WFS, indistinguish-
able to the client. This requires that each output of the process be a resource, that has a unique
URL and that its metadata is dynamically generated based on the metadata of the process and the

14

COMPOSITION OF SEMANTICALLY ENABLED GEOSPATIAL WEB SERVICES

inputs. To identify outputs as resources, we develop the hierarchical structures exemplified in Ta-
ble 2.2, such that a specific process can be accessed by its unique identifier within the service, in this
case, buffer, and then the specific job can be accessed by the unique job identifier, and each output
has a unique identifier within the process. This resource should be implemented as a WFS, which
allows parameters and operations as the application requires. Methods for metadata propagation
are discussed in Chapter 6.

2.4.3 Catalogue Service of the Web

The CSW standard defines implementation rules of a catalogue of geospatial records, which pro-
vides the means of discovery, browse, and query of metadata about geospatial data and services [8].
The RESTful bindings shall follow the same principle as presented in the previous sections. It uses
five HTTP methods:

• GET is used to retrieve one or more records, and to retrieve metadata.

• DELETE is used to delete a specific record.

• PATCH/PUT is used to update a specific record.

• POST is used to insert one or more records, and also to execute the Harvest Operation.

In the Harvest Operation, the user requires providing to the CSW a series of entry point URLs
for other OGC services, which the CSW requests the metadata of those services, inserting or up-
dating its records. The records, information that is catalogued, are the only resource defined for
this service type. Also, in this thesis, we extend the concept of CSW to allow storage of informa-
tion other than service metadata. In Chapter 7, CSW is used to store the description of composi-
tions.

To retrieve records effectively, it is necessary that the service can handle complex queries. Since
the CSW has only one resource, the query processing is simpler than in WFS. The WCS standard
states that the minimum filter capability that should be implemented in the server comprises:

• Logical Operators: and, or, not.

• Comparison Operators, namely property is: equal to, not equal to, less than, greater than,
less than or equal to, greater than or equal to, like.

• Spatial Operators: bbox.

Those operators are serialized in XML according to the Filter Encoding Specification [50].
Section 2.6.2 presents a JSON serialization for Filter Encoding that is used in the RESTful services
implementation. In the REST architecture, the JSON-serialized query should be sent to the server
with a POST operation in the auxiliary resource Stored Queries, and the server shall respond
with a Location Header pointing to the URL to obtain the results of the query. Stored Queries
are not part of the CSW standard, and are proposed here to enable complex queries compliant
to REST architecture. A drawback of this architecture is that the client is required to perform
two requests to execute the query (one POST to query, one GET to retrieve the results), and also
creates overhead in the server of maintaining unique identifiers for each query that is performed.
An advantage of this procedure is that the query result since it has a unique URL, can be reused
by the client without submitting a new Filter Encoding payload to the server, or even be cached
in case that repetitive use is needed.

15

COMPOSITION OF SEMANTICALLY ENABLED GEOSPATIAL WEB SERVICES

Another concern for CSW is to keep the records up-to-date. The OGC standard does not
recommend any approach other than indicating that the Harvest operation can be scheduled and
executed periodically. In the REST architecture, it would solely involve the CSW to perform mul-
tiple requests to the catalogued services to verify if there was any change in metadata. A solution
to this problem is presented in the next section.

2.5 WEBSOCKETS

WebSockets is a communication protocol that provides bidirectional communication over a single
TCP (Transmission Control Protocol) connection [51]. WebSockets presents a different paradigm
compared to the HTTP protocol. HTTP uses the idea of a request, for which the client opens a
connection, the data it requested is transferred, and then the connection is closed. Websockets, on
the other hand, uses an open and persistent connection, which takes away the overhead created
by opening and closing connections. The second paradigm difference is that a bidirectional con-
nection does not only allow browsers to request (pull) data but also allows the server to push data
to the browser. This functionality is particularly interesting when a client needs to keep track of
things changing on the server. By the HTTP specification, such would require the client to poll
the server repeatedly, creating an overhead both on the client and the server. Another advantage of
this protocol is that is implemented in all major browsers, such as Chrome, Firefox, and Internet
Explorer.

In this thesis, the idea of WebSockets is applied in two different situations. The first is in the
communication between the client and the WPS server when tracking the status of a job. When
an asynchronous processing is created in WPS, a job URL is created by the server, and the client
needs to keep track of whether the job succeeded. The approach recommended in the specification
is that the server should estimate the completion of the job (ETA) and inform the client, which
will only request again for the status of the job at or after the indicated time. This method reduces
the overhead of communication between client and server, however, not all servers can provide an
accurate estimate of completion, or can even estimate the process at all. To overcome this problem,
the WebSockets protocol can be used. When a job is created, it returns a WebSocket identifier to
which the client can open a connection and make use of the bidirectional connection provided by
the protocol, which allows the server to inform the client of job status changes.

The second idea is to create a communication between a CSW and other services, to ensure that
updates in metadata reach the catalogue. The OGC Specification currently does not recommend
any approach to managing the harvesting of metadata to keep the catalogue up-to-date. This can
potentially be solved by using WebSockets connections, with a socket for each service to which
a client can connect and receive information about updates in the metadata. This socket can be
utilized by a CSW, which can monitor all changes to the metadata and request a harvest operation
accordingly, and ensure that it has the most up-to-date information. The overhead of keeping
open multiple long socket connections is balanced by the low amount of data transferred since the
updates in metadata are usually not frequent. This can also be used to verify whether a service
becomes unavailable.

Both ideas were implemented in the services and used in the Orchestration Client discussed
in Chapter 7. WebSockets can also be potentially used to enable WPS to process stream data,
however, this idea is left as recommended work.

16

COMPOSITION OF SEMANTICALLY ENABLED GEOSPATIAL WEB SERVICES

2.6 JSON IN OGC STANDARDS

JavaScript Object Notation (JSON) is an open, lightweight, text-based data interchange format [52].
It has six types: String, Number, Boolean, Null, Object, and Array. The JSON format is currently
the most used format to exchange data between client and server in the Web, and this is because
non-complex (without a high number of nesting) JSON files have a lower payload compared to
XML. Also, the browser can parse JSON quicker, being easily integrated with JavaScript code
(since JSON object is a JavaScript Object). Lanthaler, 2012 [53] states that the main reason that
JSON replaced XML as the most used data format for Web APIs is the X/O impedance mismatch,
which is the difficulty of processing XML in an Object Oriented paradigm [54]. Currently, XM-
L/GML is the main data format in OGC services, requiring any server to respond to requests
in this format. The OGC services allow other formats to be delivered. However, they do not
standardize the requests and responses in those formats. The use of JSON potentially increases
the adoption of OGC Standards. This is especially true when using RESTful APIs when the user
expects that the application can serve JSON.

Since JSON is simpler than XML, it has several limitations. The first is that JSON does not
support complex data types, restricting the use of classes as in GML, which harms interoperability.
The second is the lack of a mechanism to define namespaces as in XML, which is used to identify the
context in which a property or class is used in XML, and which also resolve naming ambiguities.
The third is the lack of a standardized mechanism for JSON validation, such as XML Schema
Definition (XSD) for XML, which is a fundamental part of the OGC standards. The fourth is
the lack of a query language for JSON such as XPath for XML. This is especially a limitation in
OGC standards since many of the operations are based on XPath to reference elements. The fifth
disadvantage is the lack of a mechanism to link concepts in JSON, such as provided by XLink in
XML.

Two approaches can be cited regarding the use of JSON in OGC Standards. The first is JSON
Interfaces for XML (JSONIX), a JavaScript library capable of performing marshalling (JSON to
XML conversion) and unmarshalling (XML to JSON conversion). The approach consists of using
JSONIX as a middleware between the server and the client that performs the XML conversion.
The advantage is that no modification is necessary for the OGC Services. As a disadvantage, this
creates an overhead of marshalling every client request with a JSON payload and of unmarshalling
every server response, which can be time-consuming for large geometric objects. The second ap-
proach turns JSON into a primary data format for OGC services as described in Testbed 11 [24].
This document discusses the challenges of using JSON in the OGC standards and provides a se-
ries of recommendations. It is used as the basis for this thesis in applying JSON to the proposed
RESTful OGC services both for data encoding and metadata, and our work complements that of
Testbed 11 in the following areas:

• Definition of JSON serialization for Filter Encoding.

• Validation of JSON objects using JSON-Schema.

• Alternative for XLink using JSON-LD.

• Use of JSON-LD to handle namespace definitions such as in XML.

• Use of JSON-LD to define complex data types.

• Standard way of representing spatial features with an extension of GeoJSON to JSON-LD.

In the next sections, we introduce GeoJSON as a format for sharing spatial data within the
proposed services, discuss the proposed JSON Serialization for Filter Encoding, and discuss the

17

COMPOSITION OF SEMANTICALLY ENABLED GEOSPATIAL WEB SERVICES

use of JSON-Schema for validation of the JSON file. The extension of JSON to JSON-LD is
addressed in Chapter 6.

2.6.1 GeoJSON

GeoJSON is a JSON-based open format, currently in the standardization process by the Inter-
net Engineering Task Force (IETF), designed to represent geometries, features, and collection of
features. GeoJSON supports the following geometry types: Point, LineString, Polygon, Mul-
tiPoint, MultiLineString, MultiPolygon, and GeometryCollection. For each GeoJSON feature,
one can associate a geometry, a group of properties, a coordinate reference system, and a bounding
box [55].

GeoJSON adoption in the Web is increasing, especially due to the ease of use combined with
mapping libraries such as Leaflet and OpenLayers. OGC already developed standards based on
GeoJSON encoding such as the proposed standard OWS Context with GeoJSON Encoding [56].
Since GeoJSON is the natural way of encoding geospatial features in JSON, we are adopting it in
this thesis.

The disadvantages of GeoJSON are: the JSON format is not as efficient as binary encodings
such as Shapefile or WKB; it can only have one geometry associated with the feature, as opposed to
GML, which can have multiple geometries; properties are restricted to JSON data types; it cannot
represent all geometries of the Simple Features Access Standard [57], such as curves; there is no
mechanism to restrict geometry types in a Feature Collection, meaning that it can be a heteroge-
neous collection of geometries, adding an extra overhead in the validation; and lastly, GeoJSON
features and geometries have no semantics associated, meaning, for example, that one has no means
of identify what a feature represents a road or that the geometry represents the center of the road
or the margins. To be consistent for use in WFS, it is at least required a modification of GeoJSON
in such a way that each feature can provide a property which specified the feature type.

In this thesis, GeoJSON is used both for providing spatial data and also in metadata fragments
that contain a geospatial object. In Chapter 6, GeoJSON is extended with JSON-LD principles
that allow providing semantically enabled geospatial data. Also, some of the disadvantages of
GeoJSON are addressed, which allows a more consistent implementation of GeoJSON in the
OGC Standards.

2.6.2 JSON Serialization for Filter Encoding

Filter Encoding is necessary for the definition of Catalogue Services for the Web (CSW) and op-
tional in the use of Web Feature Services (WFS). It is standardized in OGC Filter Encoding 2.0
Standard and ISO 19143 Filter Encoding. In this section, we describe a JSON Serialization for
Filter Encoding (JSFE) operations with a notation based on MongoDB [58] query parameters. It
uses GeoJSON geometry encoding, in contrast to OGC Filter Encoding that uses GML geome-
tries. In Appendix A, we describe with more details the JSON Serialization for Filter Encoding
(JSFE).

JSFE presents three types of operators: Logical Operators, Comparison Operators, and Spa-
tial Operators. Each operator is defined as a key in a JSON object with a prefix $ and is written in
lowerCamelCase, as opposed to the Filter Encoding standard that specifies the names of the oper-
ators in UpperCamelCase. JSFE is expected to have a lower payload compared to Filter Encoding,
is easier to parse, it allows validation by JSON-Schema (discussed in the next section), and to fol-
low JSON format, having a consistent format across applications. Currently, JSFE is not able to
express Temporal Operators, to encode queries that involve more than one feature layer, and it
also does not provide ad-hoc query capabilities. The extension to involve more than one feature

18

COMPOSITION OF SEMANTICALLY ENABLED GEOSPATIAL WEB SERVICES

layer is not trivial since OGC Filter Encoding relies on XPath expressions, for which a standard
alternative for JSON is hard to define.

Table 2.3 presents a comparison between XML and JSON serialization for the Filter Encoding
of an operation to find buildings of type Police Station or Fire Brigade within 2000 meters of a
point.

Table 2.3: Comparison between OGC Filter Encoding and JSON Serialization

Filter Encoding JSON Serialization
<And>

<Or>

<PropertyIsEqualTo>

<PropertyName>type </PropertyName>

<Literal>Police Station </Literal>

</PropertyIsEqualTo>

<PropertyIsEqualTo>

<PropertyName>type </PropertyName>

<Literal>Fire Brigade </Literal>

</PropertyIsEqualTo>

</Or>

<DWithin>

<PropertyName>geom </PropertyName>

<gml:Point>

<gml:coordinates>125.6 10.1

</gml:coordinates>

</gml:Point>

<Distance>2000</Distance>

</DWithin>

</And>

{

$and: [

{$or: [

{type: {$eq: “Police Station” }},

{type: {$eq: “Fire Brigade” }}

]},

{geom: {$dWithin:

{geometry: {type: “Point”,

coordinates: [125.6, 10.1]},

$distance: 2000}}}

]

}

2.6.3 JSON Schema

Schema validation is an important part of the OGC standards and so in our approach, we need a
mechanism that mimics XSD validation when using JSON. JSON Schema is a JSON-based, hu-
man and machine-readable description of a JSON file [59]. It aims to validate the expected JSON
keys and corresponding types, which allows the verification and documentation of the data model.
As opposed to the information stated in Testbed 11 [24], even with the fact that JSON objects are
extensible by default, JSON Schema still provides means of restricting additional attributes that
are not described in the Schema, which allows a verification as strict as XSD on this criterion. One
point in which validation differs is that the property order in a JSON object cannot be validated,
which in the OGC standards’ scope is not a problem since no restrictions are imposed regarding
this matter.

As advantages of JSON Schema, we should mention that it can be extended, which allows
the verification of constructed types other than the basic JSON types. Also, JSON Schema uses
JSON syntax, so can be parsed and validated quickly by the browser. As a disadvantage of JSON
Schema, we should mention that it is not an official standard, and the IETF Draft expired in
2013, meaning that enforceability of this specification is low. In the case of adoption by OGC, it
requires continuation of the standardization process. Another disadvantage is that the validation

19

COMPOSITION OF SEMANTICALLY ENABLED GEOSPATIAL WEB SERVICES

of JSON-LD by JSON-Schema restricts the flexibility of JSON-LD since one can represent the
same information using different structures. This can be solved by the user receiving the payload
first to apply JSON-LD Framing to bring the object into an expected structure and then applying
a JSON-Schema verification. This solution needs to be compared to a more natural solution of
converting JSON-LD to RDF, validate the RDF graph, and serialize back RDF to JSON-LD.

In this thesis, we adopt JSON-Schema as the means of validating JSON in the proposed OGC
services. The validation occurs when parsing payloads of POST requests, verifying if the feature
being inserted/updated, or the process being submitted is valid. Schemas used to validate GeoJ-
SON are adapted from [60]. They are also modified to validate properties from JSON-LD and are
reorganized so that specific validations, such as restricting one geometry type, can be performed.

2.7 SUMMARY

In this chapter, we discuss how OGC services can be modified following current web technology
and the trade-off of applying this change to the architecture. We propose a modification of the
standards so that RESTFul bindings can be implemented, providing a simpler alternative to the
KVP and SOAP bindings. The use of REST architecture provides scalability to the server, and
also renders the services lightweight compared to RPC/SOAP/XML implementations, especially
when combined with JSON as the main data format. The proposed services are flexible since they
allow an individual definition of methods and parameters for each resource, and as the application
needs. One notable change in the WPS service is that the result of an asynchronous execution is
indistinguishable from a WFS layer, which harmonizes data passing between WFS and WPS.

We provided two scenarios in which the WebSockets protocol is applied in the OGC Specifica-
tions, complementing the cases where REST architecture leads to an inefficient implementation.
WebSockets can be used to enhance the capabilities of a CSW to keep metadata up-to-date, and low-
ers the overhead of communication when tracking the progress status of a job in an asynchronous
execution of WPS. Lastly, we discussed the use of JSON as a data format for sharing metadata and
spatial data in OGC services. We addressed the limitations of GeoJSON for sharing spatial data
compared to GML and proposed solutions with JSON Schema and JSON-LD.

From here on in the thesis, whenever OGC services are mentioned the reader should consider
that these are the OGC Services modified in the way described in this chapter. Chapter 3 dis-
cusses how those services can be composed, which possible forms of service composition can be
recognized, and it provides theoretically founded methods to verify its validity.

20

COMPOSITION OF SEMANTICALLY ENABLED GEOSPATIAL WEB SERVICES

Chapter 3

Theory of Composability

3.1 INTRODUCTION

In Chapter 2, we defined the web services of interest in this thesis: WFS, WPS, and CSW. In this
chapter, the focus will be on how data providing services (such as WFS) and data processing services
(such as WPS) can be composed in a valid and meaningful way. ISO 19119 [61] defines web service
composition as a sequence of web services in which the results of one service are necessary for the
execution of a second service. In this thesis, service composition refers to the process of selecting
and assembling a meaningful combination of services to solve a specified problem that cannot
be solved by individual services. Composability is the characteristic of a particular composition
not result in execution errors. An execution error can be defined as an incorrect step that causes a
service to behave in an unintended or not anticipated manner. Two types of execution error can be
distinguished: trapped errors, which makes the execution stop immediately; and untrapped errors,
which are not caught by the service, later causing arbitrary behavior in the output. Theoretically
founded service composability allows describing precisely in which cases a number of web services
can be composed as sequential processes, producing valid information.

The verification of composability can be performed at compile-time, before the execution of
the composition, or at run-time, while the composition is executing. In this thesis, the focus is
compile-time verification. Nevertheless, all the proposed mechanisms can be applied at run-time.
Compile-time verification is especially important in the composition of geospatial web services
due to the computational complexity of spatial functions that can lead to long running times in
each operation, as well taxing use of the server processing capabilities. In this way, an early identifi-
cation of errors and prevention of composition execution can save time, processing capabilities, as
well as lead to a more robust composition. Also, since the composition is executed in a distributed
environment over the Web, the verification before execution can remove unnecessary data trans-
fer. The drawback is that not all errors can be verified at compile-time, as we further discuss in
Chapters 4 and 5.

In this chapter, we discuss which forms of composition can be recognized, and for each form
how far we can decide on its validity. Section 3.2 exposes the previous approaches in verifying the
validity of service composition. Section 3.3 divides the composability problem into levels, which
are verified in a sequential manner. Finally, Section 3.4 presents the first level of composability,
which abstracts the composition as a graph, defining invalid interactions in a composition, as well
as mechanisms to identify those cases.

3.2 PREVIOUS APPROACHES

There is a lack of literature specific to geospatial service composition verification [62]. All the
approaches found are based on the W3C WS-* family of web services, which are based on technol-
ogy such as Web Service Description Language (WSDL), and Business Process Execution Language
(BPEL).

21

COMPOSITION OF SEMANTICALLY ENABLED GEOSPATIAL WEB SERVICES

Rusli et al. [63] conducted a systematic literature review in the field of testing web services com-
position. In this literature review were used 42 papers, which identified that all approaches used
BPEL or Web Ontology Language for Services (OWL-S) for describing the web service composi-
tion. Also, 26 of the 42 papers focused on test generation for verifying web service composition.
In this thesis, a formal theory is introduced to describe the valid interaction between web services,
not requiring the generation of test cases.

Milanovic, 2005 [64] recognizes the need for a formal approach to verify composition cor-
rectness and it defined a Contract Definition Language based on Abstract Machines which allows
the description of preconditions, postconditions, and invariants of web services. The motivation
for the development of this language is that approaches based on BPEL and OWL-S lack means
of verifying composability. The drawback of this work is that the specified preconditions and
postconditions are not sufficient to ensure correctness of the composition, still needing to cover
semantic and structural aspects. Also, the work does not discuss how the different patterns of
input and output interactions interfere in the verification of pre and postconditions.

Baryannis et al. [65] provides a mechanism for deriving specifications for composite web ser-
vices based on descriptions of their components. The resulting specification formally describes
in First Order Logic the composition based on inputs, outputs, preconditions, and effects. The
following interactions between services are discussed: sequential composition, AND-split, OR-
split, XOR-split, and loop. The drawback of this work is that the approach does not take into
account input/output interaction, just service interaction. Also, this work did not implement the
proposed mechanism, creating doubt about its applicability.

Chen et al. [66] uses a method based on a Type Theory with the goal of achieving automatic
service composition. It is based on Martin-Löf type theory, and a subtyping mechanism is used
if an output of a service can become the input of the next. The drawback of the approach is that
is not discussed parametric types, and consequently, the output types are static, not depending on
the type of the provided input; this reduces considerably the expressiveness of the check. In this
thesis, a mechanism for type propagation is developed to define outputs types based on the input
types.

Kim et al. [67] proposes a framework for automatic service composition. It divides the com-
position process into five phases: specification, planning, validation, discovery, and execution. In
the validation phase is divided into syntactic validation, which verifies the structure of the compo-
sition, restricting deadlocks, infinite cycles, and others; and semantic validation, that verifies the
composition against the user requirements. However, this work does not describe methods for
the verification of a composition.

Medjahed and Bouguettaya [68] proposes the verification of composability based on rules.
Those rules are organized into four different levels: syntactic, static semantic, dynamic semantic,
and qualitative. The goal of the framework is to calculate a composability degree, which pro-
vides a quantitative measure of how well composed are the services. In this thesis, this measure is
nonsensical, since the concept of composability is tightly coupled with the idea of the absence of
execution errors (trapped or untrapped). In this way, compositions that are not valid under the
rules presented in this thesis should not be executed, since it produces an execution error.

3.3 LEVELS OF COMPOSABILITY

Following the ideas of [67] and [68], in this thesis the verification of composition is divided into
five levels of composability based on the expressiveness of the checking, namely: Structural, Static
Syntactic, Dynamic Syntactic, Semantic, and Qualitative. Each of the levels gives a definition to
service and service composition and specifies which type of errors can be identified, and how to

22

COMPOSITION OF SEMANTICALLY ENABLED GEOSPATIAL WEB SERVICES

verify the existence of those errors. Figure 3.1 exposes the defined levels of composability.

Figure 3.1: Levels of Composability

Structural Composability abstracts the composition as a directed graph, and defines in which
conditions this graph is well-formed. In this graph services are represented as nodes and edges as the
passing of data between an output and input. This verification does not take into account specifics
of each service, the goal being to test for invalid connections such as cycles, duplicates, verify the
existence of required connections, and validity of loop. We discuss this level in Section 3.4.

Static Syntactic Composability states that the output of a component service can only become
the input of the next service if their data types are identical or the output data can be automat-
ically coerced to the data type of the input parameter. We desire to verify this characteristic at
compile-time with the goal of preventing a class of execution errors. At this level, we only verify
whether the data type of the input data matches the signature of the service input. In this the-
sis, geospatial web services and service composition are seen as governed by the rules of typed
functions, in which spatial data types play a fundamental role to characterize inputs and outputs,
and consequently service types. A type checking algorithm is developed to verify the existence of
invalid interactions. We discussed the type check rules in Chapter 4 and the implementation in
Chapter 7.

Dynamic Syntactic Composability complements Static Syntactic Composability by covering
restrictions related to data values that cannot be expressed in the type system. These include inter-
action between inputs, coordinate systems, geometry dimensions, time zones, and pixel size. In
this thesis, the restrictions in the data are formalized as preconditions in Hoare Logic, which was
extended to handle explicitly inputs and outputs. Also, since the focus of this thesis is compile-time
verification, the information for the verification of this level of composability is not based on the
data, but on the service metadata, which provides an abstraction of the possible outcome of the ser-
vice. It is provided a formalization about how a service can access this metadata information, and
how the pre- and postcondition can be chained, allowing the evaluation of a composition. During
run-time, the verification can be executed based on the data. We discuss this level in Chapter 5.

Semantic Composability addresses the meaning of data and processes, verifying if the combina-
tion of processes can derive a meaningful result, or if it produces the intended result of the user.
Services are considered to be semantically enabled, having semantic metadata associated with in-
puts, outputs, and with the service functionality in general. In this thesis, we developed a mecha-
nism to identify attributes which represent the same relationship and normalize their names based
on the context provided by the service. Also, we discuss the use of geooperators thesaurus to clas-
sify web services, which allows the development of a mechanism for service substitutability, and
potentially the suggestion of services. We discuss this level in Chapter 5.

The last level is Qualitative Composability, the evaluation of the composition against user re-
quirements related to non-functional characteristics such as response time, service availability,
cost, security, legal rights, and quality of operations. This level of composability is not discussed in
this thesis since it fundamentally is not related to protection against errors, but to the best selection
of services to fulfill the user specification.

23

COMPOSITION OF SEMANTICALLY ENABLED GEOSPATIAL WEB SERVICES

In the next section, we discuss the first level of composability, Structural Composability.

3.4 STRUCTURAL COMPOSABILITY

In Structural Composability, we abstract the composition as a directed graph and define in which
conditions this graph is well-formed. A graph is a mathematical structure that represents objects
and the pairwise relationship between them. The object is called node, and the relationship edge.
For our scope, we define three disjoint classes of nodes: the service node, the input node, and
the output node. If exists an edge between two nodes we say they are connected. Let n and m be
nodes, the edge connecting the node n to m is denoted (n,m). The edge is directed, meaning that
(n,m) 6= (m,n). Next, we give a definition of a service and a service composition based on the
concepts introduced so far.

Definition 3.1 (Service). A service is a set containing one service node, zero or more input nodes,
and one or more output nodes, such that exists edges connecting the service node to each of the
input and output nodes, and there are no edges connecting inputs and outputs nodes.

Definition 3.2 (Service composition). LetNs be the set of all nodes of type service in a graph,Ni

the set of all nodes of type input, No the set of all nodes of type output. A service composition is a
graph G = (N,E), where N = Ni ∪No ∪Ns is the set of all nodes in the graph, and E is the set
of edges such that:

E = Eso ∪ Esi ∪ Eoi

Eso ⊂ Ns ×No

Esi ⊂ Ns ×Ni

Eoi ⊂ No ×Ni

E ⊂ N ×N

Meaning that Eoi are the edges connecting an output node to an input node, Eso are the edges
connecting a service node to output node, and Esi connecting to an input node. This definition
implies that connections between a pair of service nodes, output nodes, or input nodes, are for-
bidden. Also, a composition graph is also restricted to be a simple graph, meaning that between
two nodes can only exist a single edge.

The edges of a service composition have two different semantics, the first, for edges inEso and
Esi, is the relationship that the input/output belongs to the service; the second, for edges in Eoi,
is the passing of data between an output of one service to the input of the next.

A service composition is not a labeled graph since nodes do not necessarily have a unique iden-
tifier because a service may be needed multiple times. A weaker concept than labels is introduced:
tags. A tag allows the identification of a service, input and output, however, it is not necessarily
unique. We can formalize a tag in the following way:

Definition 3.3 (Tag). A tag is a string associated with a node in the composition graph. The set
of all tags is denoted T . The function tagValue associates a node with its tag:

tagValue : N � T (3.1)

Figure 3.2 shows the graphical representation of a graph. In the complete graph representation
weighted circles denote services nodes, small dashed circles denote input nodes, and the remaining

24

COMPOSITION OF SEMANTICALLY ENABLED GEOSPATIAL WEB SERVICES

(a) Complete graph representa-
tion with inputs and outputs

(b) Simple graph representation

Figure 3.2: Comparison of graph representations

denote output nodes. Also is presented the simple graph representation, that omits input and
output nodes.

In the next section, we formalize the conditions that a service composition is valid.

3.4.1 Composition Well-formedness

We defined a composition as well-formed if its execution does not produce structural errors. In
this section, we define the possible structural errors.

The first structural error is dependency cycles. A dependency cycle is a pair of services that
either directly or indirectly depend on each other. The reason for this restriction is straightforward
since it will not allow the complete execution of the composition, entering in an infinite queue state
waiting for a result that cannot be derived. This means that the composition must be a Directed
Acyclic Graph (DAG). To formalize cycles we first introduce the notion of a service path.

Definition 3.4 (Service path). A service path between the service nodes a and b is a sequence of
service nodes [s0, . . . , sk] such that s0 = a and sk = b and:

∀j ∈ [0, 1, . . . , k − 1] | ∃i ∈ Ni | ∃o ∈ No | (sj , o) ∈ Eso ∧
(sj+1, i) ∈ Esi ∧
(o, i) ∈ Eoi

(3.2)

Definition 3.5 (Dependency cycle). A dependency cycle is a nonempty service path where the start
and end nodes are the same.

To verify the existence of cycles we use the Tarjan’s strongly connected components algo-
rithm [69], which operates on a directed graph, and produces a partition of the graph into strongly
connected components, meaning that for every pair of nodes x and y inside a component there is
a directed path that connects x with y and y with x. In this way, a graph is acyclic if, and only if,
the result of Tarjan’s algorithm are graph partitions with only one node as a component.

The next structural error is the restriction in the name of inputs and outputs within a service.
To keep consistency in the service signature, it is required that all input tags that are connected to
one service must be different. The same apply to output tags.

25

COMPOSITION OF SEMANTICALLY ENABLED GEOSPATIAL WEB SERVICES

Definition 3.6 (Unique tags). For each service, the tags of inputs connected to it must be distinct.
The same apply to output nodes.

∀s ∈ Ns | ∀o1 ∈ No | ∀o2 ∈ No | (s, o1) ∈ Eso ∧
(s, o2) ∈ Eso ∧
o1 6= o2

⇒ tagValue(o1) 6= tagValue(o2)

(3.3)

∀s ∈ Ns | ∀i1 ∈ Ni | ∀i2 ∈ Ni | (s, i1) ∈ Esi ∧
(s, i2) ∈ Esi ∧
i1 6= i2

⇒ tagValue(i1) 6= tagValue(i2)

(3.4)

Services are also restricted not to have a self-connection, meaning that an output input edge
cannot link a pair of input/output that are linked to the same service, which creates a nonsensical
structure.

Definition 3.7 (Self connection). Cannot exist an edge connecting input and output edges con-
nected to the same service edge.

∀s ∈ Ns | ∀i ∈ Ni | ∀o ∈ No | (s, i) ∈ Ei ∧
(s, o) ∈ Eo ⇒
(o, i) /∈ Eoi

(3.5)

Another restriction that is imposed on the composition graph is that it requires to be weakly
connected, meaning that from any starting service node is possible to reach any other service node
by traversing the graph from output to input, or input to output. This simplifies the graph to a
unique overall process and implies that if two independent groups of tasks are being performed on
the same graph, they need to be broken into two graphs.

Definition 3.8 (Undirected service path). An undirected service path between service nodes a and
b is a sequence of service nodes [s0, . . . , sk] such that s0 = a and sk = b and:

∀j ∈ [0, 1, . . . , k − 1] | ∃i ∈ Ni | ∃o ∈ No | ((sj , o) ∈ Eso ∧ (sj+1, i) ∈ Esi ∧ (o, i) ∈ Eoi) ∨
((sj+1, o) ∈ Eso ∧ (sj , i) ∈ Esi ∧ (o, i) ∈ Eoi)

(3.6)

Definition 3.9 (Weakly connected graph). A weakly connected graph is a graph in which for every
pair of distinct service nodes exists a nonempty undirected service path.

The last two structural errors relate to two additional conditions that an input node can have,
the required and the unique condition. The required condition states that the input node must be
connected to at least an output input edge. The unique condition states that the input node must
be connected to at most one output input edge.

Definition 3.10 (Required input). Consider the following function relating input nodes and a
boolean:

required : Ni � boolean (3.7)

A input node i is defined required if required(i) = true. And for required nodes the following
applies:

26

COMPOSITION OF SEMANTICALLY ENABLED GEOSPATIAL WEB SERVICES

∀i ∈ Ni | ∃o ∈ No | required(i)⇒ (o, i) ∈ Eoi (3.8)

Meaning that in the composition graph it is necessary to exist an edge inEoi connected to that
node.

Definition 3.11 (Unique input). Consider the following function relating input nodes and a
boolean:

unique : Ni � boolean (3.9)

A input node i is defined unique if unique(i) = true. And for unique nodes the following
applies:

∀i ∈ Ni | ∀o1 ∈ No | ∀o2 ∈ No | unique(i)⇒ ((o1, i) ∈ Eoi ∧ (o2, i) ∈ Eoi ⇒ o1 = o2) (3.10)

Meaning that in the composition graph it is necessary to exist at most one edge in Eoi con-
nected to that node.

Remark. Prior to any verification of structural composition the composition representation re-
quires being syntactically validated against the capacity of the orchestration engine. This includes
the validation of the format that represents the composition, verify whether the data access bind-
ing of the services is supported, whether the transferred data file type is supported by the service.
As this validation is specific to each orchestration engine, it is not covered by the theory. How-
ever, the specific checks for the orchestration engine implemented in this thesis are discussed in
Chapter 7.

Figure 3.3 presents examples of structural errors.

3.4.2 Conditional Nodes

In this section, we introduce one more type of node: the conditional node. A conditional node
allows a boolean verification of an expression over input sets at run-time. Based on the result of the
verification it provides two outputs, the true output if the condition evaluates to true, and the false
output if it evaluates to false. This node is an exclusive disjunction, meaning that the composition
will only use one of the outputs, which branches the composition into two different scenarios.

Definition 3.12 (Conditional node). A conditional node is a type of service node, with one input
of tag input, and two outputs with tags true and false. LetNcond be the set of all conditional nodes,
the following apply:

Ncond ⊂ Ns

∀n ∈ Ncond | ∀i ∈ Ni | (n, i) ∈ Esi ⇒ unique(i) ∧ required(i)

We cannot directly evaluate well-formedness of a composition with one or more conditional
nodes. Based on each possible result of the conditional statements, one graph must be derived.
Each derived graph is defined as a scenario, and they are ensured not to contain a conditional node.
A composition with conditional nodes is well-formed if all scenarios are well-formed.

To generate all the possible scenarios, we develop a branching algorithm. It receives as an input
a graph with one or more conditional nodes, and it returns a set of scenarios. The pseudocode for
this algorithm is presented in Appendix B. It is divided into two steps: mark and clean. In the mark

27

COMPOSITION OF SEMANTICALLY ENABLED GEOSPATIAL WEB SERVICES

(a) Required input (b) Unique tags (c) Self connection

(d) Not weakly connected (e) Multi-edge (f) Dependency cycle

Figure 3.3: Examples of structural errors

step one conditional node is chosen and all the nodes dependent on the false output are marked as
0 and the ones dependent on the true output are marked as 1. In the case that a node is dependent
on both outputs it is not marked. The clean step generates two graphs, one by removing the nodes
marked with 0, and one by removing the mark nodes marked with 1. Also, the conditional node
is removed in each of the graphs and the edges fixed accordingly. Both steps are applied recursively
until all the conditionals are eliminated.

Figure 3.4 shows the result of the branching algorithm applied to a graph with two conditional
nodes. We use the simple graph representation; the diamond represents the conditional node.

3.4.3 Loop Nodes

When building compositions, in many situations, there are repetitive series of operations across
the composition, or even over different compositions. The repetitive parts can be identified, ag-
gregated, and replaced by a node, which allows reusability of series of operations in different parts
of a composition or different compositions. Subgraph is defined in this thesis as an abstraction of

28

COMPOSITION OF SEMANTICALLY ENABLED GEOSPATIAL WEB SERVICES

Figure 3.4: Simple graph representation with two conditionals and the possible scenarios

a series of nodes and edges into a single node, the subgraph node.
To formalize this, we first introduce three concepts: input parameter node, output parameter

node, and parametric graph. Input parameter node is a type of service node that is required to be
connected to a single output node, and not to be connected to any input node. A similar definition
applies to output parameter node, as a type of service node, which is required to be connected to
one input node, and not be connected to any output node. A parametric graph is a type of graph
which contains, at least, one input parameter node and one output parameter node.

We define a subgraph node as a type of service node that can be associated with a parametric
graph. Let Gp be the set of all parametric graphs, and Nsub be the set of all subgraph nodes. We
formalize the notion of subgraph as a function that relates a subgraph node and a parametric graph.

subgraph : Nsub � Gp (3.11)

Also, we define an expand operation, which replaces a subgraph node with the correspondent
parametric graph, fixing the edge connections accordingly. This operation can be performed at
compile-time or run-time.

Figure 3.5 exemplifies a subgraph. Is presented the graphic representation for subgraph node
(weighted dashed circle), and for input and output parameters a dashed circle. The subgraph node
represents the parametric subgraph in the box (not part of the composition graph). The parametric
graph is presented in simple graph notation.

To maintain the integrity of the graph, self-referencing is not allowed (the call of the same
subgraph node inside a subgraph). This self-referencing can be direct, the subgraph calls itself, or
indirect, nested subgraphs that form a cyclic reference. Next, we formalize both cases:

Definition 3.13 (Self reference). A graph is said to have a self-reference if:

∃n ∈ Nsub | n ∈ subgraph(n).N (3.12)

Meaning that the subgraph node associated with a parametric graph is a member of the nodes
of this parametric graph.

29

COMPOSITION OF SEMANTICALLY ENABLED GEOSPATIAL WEB SERVICES

Figure 3.5: Subgraph in simple graph representation

Definition 3.14 (Cyclic reference). A graph is said to have a cyclic reference if exists a sequence of
subgraph nodes [s0, . . . , sk] such that s0 = sk and :

∀j ∈ [1, . . . , k] | sk ∈ subgraph(sk−1).N (3.13)

The concept of a subgraph is further explored in Chapter 6. Based on the definition of a
subgraph we can define Loop nodes.

The concern of Structural Composability with a loop is to ensure that the overall composition
will eventually halt. A composition design error that leads to an infinite loop in a distributed
environment can lead to disastrous consequences, such as overload of the processing services. In
this way, it is necessary to ensure that the loop will halt prior to its execution, or have limits on the
number of iterations that a loop can perform. The latter is not ideal since a forced stop means that
the composition did not complete the intended operation, and can produce unreliable results. The
verification whether a program will halt or do an infinite loop, based on the input and description
of the loop is known as the Halting Problem [70]. This problem is known to be undecidable,
meaning that there exist algorithms for which we cannot prove that they will stop (even though
they may do). In this way, to ensure termination, it is necessary to reduce the expressive power of
our loop mechanism. We introduce constrained loop that is guaranteed to halt.

We discuss three types of loop: Iterate Inputs, Iterate Sets, and Iterate Multivalue. These are
simple loop nodes that are of common use in geospatial science and are defined in a way that
guarantees to halt. For each of these, a node type is introduced that behaves in a similar way to a
subgraph node. Below, we define each loop type and is given an example.

Iterate Sets receives one input of type Set and performs a series of operations independently on
each member of the set. After performing all operations, the result is aggregated back as a set type,
and this set is provided as the output. The number of executions of the subgraph is not known
at compile-time, but it is known to be finite since it is the same as the number of elements in the

30

COMPOSITION OF SEMANTICALLY ENABLED GEOSPATIAL WEB SERVICES

set. The Iterate set node is a type of service node that can be associated with a parametric graph.
Unlike the subgraph node, the iterate input node cannot be expanded, since it represents multiple
copies of the parametric graph. The parametric graph associated is constrained to have one input
parameter node and one output parameter node. The iterate sets node is connected to one input
node and one output node. The input node is required and unique.

Example 3.1. Consider the task of calculating a disaster response load balancing (as exemplified
in figure 3.5) for a set of major rivers. It receives as input a particular river, and it calculates the
affected buildings by a flood in that river, providing the number of buildings that each emergency
center would have to support. The load balancing can be defined as a subgraph, and each of the
major rivers is passed individually to the function by the use of Iterate Set. A subgraph which
passes an individual river to the load balancing subgraph is associated with the node Iterate Set.
For each of the features in the input set the function is executed, then the results are grouped
together in a set and given in the results output. Figure 3.6 shows the graph representation of the
multiple executions of load balancing.

Figure 3.6: Example of Iterate Set

ù

Iterate Multivalue receives the elements that will be processed and one array of values. For each
value in the array, a series of operations is performed on the input. When all values of the array
have processed the results for each value are aggregated as one output. For each loop execution,
one element of the array is available as an input parameter, in such a way that is performed the
same number of loop executions as the number of elements of the array, being known at compile-
time. The iterate multivalue node is a type of service node that can be associated with a parametric
graph. However, it cannot be expanded. The parametric graph associated is constrained to have
two input parameters node, one for the elements of the array of values and one for the input that
will be processed, and one output parameter node. The iterate multivalue node is connected to
two input nodes, one for the array of values and one for the elements that will be processed, and
one output node. Both input nodes are required and unique.

31

COMPOSITION OF SEMANTICALLY ENABLED GEOSPATIAL WEB SERVICES

Example 3.2. Consider the task of calculating multiple buffers with specific distance values for
a set of rivers. This can be done by applying multiple buffer operations specified with distinct
distance values, or it can be simplified by using iterate multivalue. A subgraph of the buffer oper-
ation is associated with the node iterate multivalue, the special nodes input parameter and output
parameter are used to indicate the passing of data respectively from and to the iterate multivalue
node, and the value node is used to pass the distance values. In each iteration, one value of the
array of values is passed in the value node, and all the results are aggregated into a single output.
Figure 3.7 shows the graph representation of the multiple buffering.

Figure 3.7: Example of Iterate Multivalue

ù

Iterate Input receives multiple inputs connections and performs a series of operations indepen-
dently for each of the inputs. Iterate input is a type of service node that can be associated with
a parametric graph. However, it cannot be expanded. The parametric graph associated is con-
strained to have one input parameter node and one output parameter node. The iterate input
node is connected to one input node, and the number of output nodes is the same as the number
of edges connecting the input node. The input node is required and not unique. The number of
operations performed by the iterate input is known at compile-time since it will perform a pre-
determined operation once for each of the inputs. This node is particularly useful when large
parametric subgraphs are used multiple times in a graph.

Example 3.3. Consider the task of clipping multiple feature layers with one layer areaOfInterest.
This can be done by applying multiple clip operations, or it can be simplified by using Iterate
Input. A subgraph of the clipping operation is associated with the node Iterate Input, the special
nodes Input Parameter and Output Parameter are used to indicate the passing of data respectively
from and to the Iterate Input node. For each one of the inputs, an output is generated. Figure 3.8
shows the graph representation of the multiple clipping operations.

ù

32

COMPOSITION OF SEMANTICALLY ENABLED GEOSPATIAL WEB SERVICES

Figure 3.8: Example of Iterate Input

Remark. The execution for Iterate Inputs, Iterate Sets, and Iterate Multivalue can be performed in
parallel, as the loop execution is independent of each other.

3.5 SUMMARY

In this chapter, we discuss which forms of composition can be recognized, and for each form how
far can be decided on its validity. We define five levels of composability: Static Syntactic Compos-
ability, Dynamic Syntactic Composability, Structural Composability, Semantic Composability,
and Qualitative Composability. The latter we do not discuss in this thesis.

Also, we discuss Structural Composability, which abstracts the composition as a directed acyclic
graph and defines the rules for assessing composition well-formedness. We formalized the follow-
ing constraints for a composition graph:

• The composition cannot contain dependency cycles.

• The inputs and outputs associated with one service need to contain different tags.

• The graph needs to be weakly connected.

• The composition cannot contain multi-edges.

• The composition cannot contain self-connections.

• The well-formedness of a composition with one or more conditional nodes can only be
evaluated after the graph is divided into the possible scenarios.

• Cyclic-referencing is not allowed in subgraphs.

• Loop needs to be ensured to halt at compile-time.

Chapter 4 discusses the second level of composability, the Static Syntactic Composability.

33

COMPOSITION OF SEMANTICALLY ENABLED GEOSPATIAL WEB SERVICES

34

COMPOSITION OF SEMANTICALLY ENABLED GEOSPATIAL WEB SERVICES

Chapter 4

Static Syntactic Composability

4.1 INTRODUCTION

In Chapter 3, we defined five levels of composability, each of which verifies the composition ac-
cording to some criteria, and we discussed the first level, Structural Composability. In this chapter,
we address Static Syntactic Composability, i.e., the second level, which looks at geospatial web ser-
vices and service composition as typed functions. In such functions, spatial data types play a fun-
damental role to characterize inputs and outputs, and consequently service types. We present here
a type checking algorithm to prevent a class of execution errors based only on static information
about the inputs and outputs provided by the service.

Section 4.2 introduces the type system FS<:, capable of expressing types for web services. Sec-
tion 4.3 defines the constructed types and abstract data types valid in FS<:. Section 4.4 defines
subtyping rules, the main mechanism to verify whether an input is valid, type-theoretically. Sec-
tion 4.5 discusses type propagation operations, which allow to express dependencies of output
types on input types. This is desired since classical static type systems do not allow to express type
propagation, and thus, some form of parametric typing is needed. Lastly, Section 4.6 addresses the
special cases of conditional, subgraph, and loop.

4.2 TYPE SYSTEM

Static Syntactic Composability is a service composition characteristic. It states that the output of
a component service can only become the input of the next service if their data types are identical
or the output data can be automatically coerced to the data type of the input parameter. We desire
to verify this characteristic at compile-time with the goal of preventing a class of execution errors.
An execution error is defined as an incorrect step that causes a program to behave in an unintended
or unanticipated manner.

In Static Syntactic Composability, we intend to prevent run-time type errors by performing
compile-time type-checking. I.e. we develop an algorithm that compares type signatures of out-
puts and inputs, and assesses whether the interaction between them is valid. In this thesis we define
type error as an execution error caused by performing an operation on a value that is not of the
appropriate type. We define a composition as well-behaved if it does not produce type errors at
run-time. A well-behaved composition still can present execution errors. However, it is expected
that type-checking prevents a significant amount of them.

The focus of this thesis is on compile-time verification, which cannot guarantee the absence of
errors. It prevents the composition (and thus, execution) of processes that generate incorrect re-
sults or no results at all. This, in turn, may lead to more robust results, saving users time, removing
unnecessary processing and data transfer over the Web.

We can use type systems to prevent errors during the execution of a program. A Type System is
a collection of rules that label expressions with data type information, and that allow the inference
of data type information on outcomes that a program generates. The rules state conditions under

35

COMPOSITION OF SEMANTICALLY ENABLED GEOSPATIAL WEB SERVICES

which a program will not display a certain class of execution error. In this thesis, we introduce the
type system FS<:, designed to follow Cardelli’s three expected properties of a type system:

• decidably verifiable: there is a type-checking algorithm capable of ensuring that a composi-
tion is well-behaved;

• transparent: it can predict whether the composition will type-check correctly, and if it fails,
the reason is evident;

• enforceable: type declarations are preferentially checked at compile-time, and when that is
not possible be checked at run-time.

In this thesis, the Cardelli formalism [71] is used to describe the type system. It applies three
basic concepts:

• expression: a syntactic construct that expresses a value or value computation. An expression
may contain free variables. Examples are: 1, x+ 1, true, x+ y.

• data type: static knowledge about the range of values that an expression can assume during
the execution of a program. For example, an expression of type boolean can assume the
values true and false, while an expression of type integer can assume the values 0, 1,

• environment: usually denoted by Γ , is a set of variables and their associated types during the
execution of a particular program fragment. It is of the form { x1 : τ1, . . . , xn : τn } where
xk is a declared variable and τk is its type. The set of declared variables of an environment
is denoted by dom(Γ). The trivial environment is the empty environment, denoted by ∅.

The goal is to guide the implementation of a static type checker for geospatial web service
compositions. We consider a environment, expression, or type to be well-formed if it is properly
constructed according to formal rules [71]. Table 4.1 defines the basics judgments, formal assertions
that relate environments, expressions, and types of the type system [71].

Table 4.1: Judgments for FS<:

Γ ` � Γ is a well-formed environment
Γ ` τ τ is a well-formed type in Γ
Γ ` e : τ e is a well-formed expression of type τ in Γ . The “:” is seen as a has-type

relation between expressions and types.

The last notation that we need to introduce is the Type Inference Rule. Type Inference Rule
allows one to assert the validity of a judgment based on premise judgments that are known to be
valid. In the notation, above the horizontal line are declared zero or more premise judgments
Γk ` τk, and below the line, at least, one conclusion judgment Γ ` τ , that is valid if all the premise
judgments are valid. Also, in each rule, one can specify a rule name. Equation 4.1 presents the
type inference rule notation.

RULE NAME
Γ1 ` τ1 . . . Γn ` τn

Γ ` τ
(4.1)

Table 4.2 presents the basic rules of the type system. The rule Environment ∅ states that the
empty environment is well-formed. The rule Environment Extension allows one to extend an

36

COMPOSITION OF SEMANTICALLY ENABLED GEOSPATIAL WEB SERVICES

environment by providing a variable, not in the domain of the environment and a well-formed
type. The rule Valid Variables allows one to access variables from a well-formed environment.
The rule Type Construction allows defining the valid types in the type system. Section 4.3 describes
the types contained in the Basic set.

Table 4.2: Basic rules

ENVIRONMENT ∅

∅ ` �

ENVIRONMENT EXTENSION
Γ ` τ x /∈ dom(Γ)

Γ , x : τ ` �

VALID VARIABLES
Γ , x : τ ` �
Γ , x : τ ` x : τ

TYPE CONSTRUCTION
Γ ` � K ∈ Basic

Γ ` K

4.3 TYPE DEFINITION

The proposed type system FS<: is an extension of Cardelli’s type system F1<: [71]. Cardelli de-
fined five basic types of interest to this thesis: unit, string, integer, real, boolean. In addition
to the types described by Cardelli, we define a number of abstract types to express spatio-temporal
concepts. Based on the OGC Simple Feature Access standard [57] and ISO 19125 [72] we identi-
fied the basic geometric types and their relations. Table 4.3 describes the geometry types covered
in this thesis.

Table 4.3: Geometry types

Type Description
point A 0-dimensional geometric object that represents a position.

linestring A 1-dimensional geometric object that represents a piecewise lin-
ear curve.

polygon A 2-dimensional planar geometric object defined by one exterior
boundary and zero or more interior boundaries. The bound-
aries are defined by closed and simple linestrings.

geometrycollection A geometric object that is a collection of geometric objects.
multipoint A geometrycollection of which all elements are 0-

dimensional.
multilinestring A geometrycollection of which all elements are LineStrings.

multipolygon A geometrycollection of which all elements are Polygons.
geometry Defined as a non-instantiable root class of the geometry hierar-

chy.

To overcome representation inconsistencies of bounding boxes as polygons, we add to the type
system another abstract data type not covered by the Simple Feature Access Standard, namely
the bbox type. It represents an axis-aligned bounding box which is guaranteed to contain one or
more geometries, and which allows the reasoning on the geometries’ coordinates range. Since the
bounding box can also be represented by only the bottom left and top right corner coordinates, it
must be conceptually distinguished from the Polygon type.

37

COMPOSITION OF SEMANTICALLY ENABLED GEOSPATIAL WEB SERVICES

The definition of our temporal types is based on the OGC discussion paper A Conceptual
Model and Text-based Notation for Temporal Geometry [73], in ISO 8601 [74], ISO 19108 [75],
and WMS Time, a profile of ISO 8601 specifically for use in WMS. Table 4.4 describes the seven
defined temporal types.

Table 4.4: Temporal types

Type Description
instant An instant in time with associated precision that represents all

time points within the precision of the statement.
period All time instants between two defined limiting instants. It is

equivalent to TimeInterval in ISO 8601.
multiinstant A set of Instants, either individually described or represented as

regularmultiinstant.
regularmultiinstant Sequence of consecutive Instants in constant time intervals.

multiperiod A set of Periods, either individually described or represented as
regularmultiperiod.

regularmultiperiod Sequence of consecutive Periods with the same length of time in
constant or variable time intervals. It is equivalent to Recurring-
TimeInterval in ISO 8601.

duration Length of time elapsed between two Instants. It is equivalent to
TM_Duration in ISO 19108.

Remark. It is important to notice the difference between a temporal type and a time format. Each
of the seven introduced types can have values in different formats. For example, all the following
values belong to the type instant, however, they are portrayed in different formats (and preci-
sions): 19850412, 1985-04-12, 1985-102, 1985-W15-5, 1985-W15, 1985-04, 1985. Syntactic Static
Composability does not take into account the possible formats of a variable. This is addressed
in Chapter 5, Dynamic Syntactic Composability, also with time zones and temporal coordinate
systems.

The last series of abstract data types that we introduce allows the representation of coverages.
A coverage is a function that associates a spatio-temporal domain with a range of values with defined
types [76]. The definition of the coverage types was based on OGC GML Application Schema -
Coverages [77] and ISO 19123:2005 [78]. Table 4.5 describes the seven defined coverage types.

Among the types defined by Cardelli, three categories are essential for the type system: Record
types, Set types, and Function types. The first two are used to express the notion of feature types and
feature collections. The Function type is used to define the Service type. Array and Variant types
are also part of the type system FS<:, however, for the sake of brevity they are not discussed in
detail here. One can find more information about them in [71].

Definition 4.1 (Record type). A record is a fixed size data structure that associates values with
attributes. A record type prescribes which are the attribute names, and which is the data type
associated with each of those names. A record type can contain zero or more attributes, and the
attribute names must be distinct. The rule Attribute Selection is a value-level operation that allows
the extraction of attribute value by name. Table 4.6 define rules for the Record type.

The Record type is used to express feature types.1 ISO 19101 [79] defines a feature as an ab-
straction of real world phenomena having common characteristics. A feature type is a description of a

1This is an unfortunate clash of names. A Feature type does not relate to a type of a type system, but to a widely
used concept in the geospatial sciences.

38

COMPOSITION OF SEMANTICALLY ENABLED GEOSPATIAL WEB SERVICES

Table 4.5: Coverage types

Type Description
rectifiedgridcoverage A discrete point coverage in which the domain is a regular, equi-

spaced grid of geometrically referenced points.
gridcoverage A discrete point coverage in which the domain is a regular, eq-

uispaced grid, however, not geometrically referenced such as in
RectifiedGridCoverage.

referenceablegridcoverage A discrete point coverage in which the domain is a grid not eq-
uispaced.

multipointcoverage A discrete coverage in which the domain is a multipoint geom-
etry and maps each point to a value in the range set. A example
of a value of type multipointcoverage is a point cloud.

multicurvecoverage A discrete coverage in which the domain is a multilinestring
geometry and maps each element to a value in the range set. A
example of a value of type multicurvecoverage is a trajectory.

multisurfacecoverage A discrete coverage in which the domain is a multipolygon ge-
ometry and maps each element to a value in the range set. Ex-
amples of values of type multisurfacecoverage are Thiessen
polygons and TIN.

Table 4.6: Record type

RECORD TYPE
Γ ` τ1 . . . Γ ` τn

Γ ` 〈a1 : τ1, . . . , an : τn〉

RECORD VALUE
Γ ` v1 : τ1 . . . Γ ` vn : τn

Γ ` 〈a1 � v1, . . . , an � vn〉 : 〈a1 : τ1, . . . , an : τn〉

ATTRIBUTE SELECTION
Γ `M : 〈a1 : τ1, . . . , an : τn〉

Γ `M.aj : τj

group of features, in which one associates an attribute with a name and a type. These similarities
in definition make the record types ideal to express feature types. For example, a feature type that
represents a river can have the attributes length of type real, name of type string, and geom of
type linestring. The type of the described feature is 〈name : string, length : real, geom :
linestring〉. A Feature instance is defined as an individual of a specific feature type having as-
signed values to the feature attributes [79], in this way we can see it as a record value. To specify
Feature collections, an arbitrary finite unordered collection of feature instances with the same fea-
ture type, we need Set types.

Definition 4.2 (Set type). A set is an unordered finite collection of elements of the same data type.
A Set type prescribes which is this common data type of all elements of the set. This common type
is called as inner type.

SET TYPE
Γ ` τ
Γ ` P τ

(4.2)

39

COMPOSITION OF SEMANTICALLY ENABLED GEOSPATIAL WEB SERVICES

The Set type is particularly useful when combined with Record types, in which a set of records
is used to express feature collections. In addition to the defined types in [71], we defined one more
type category in this thesis: Unions. One can see this type as an unlabeled Variant type.

Definition 4.3 (Union type). A Union type is an unordered collection of types of the possible
types of an expression. It is used when one cannot determine a type at compile-time, but one has
knowledge that it belongs to a finite collection of possible types. The possible types are called
element types. Provided the rule Union Value, and based on the properties of the OR operator,
one can derive the rules Flatten Union, Simplify Union, and the Reduce Union. Table 4.7 define
rules for the Union type.

Table 4.7: Union type

TYPE UNION
Γ ` A1 . . . Γ ` An

Γ ` union(A1, . . . , An)

UNION VALUE
Γ `M : union(A1, . . . , An)
Γ `M : A1 ∨ . . . ∨ Γ `M : An

FLATTEN UNION
Γ ` A Γ ` B Γ ` C

Γ ` union(A, union(B, C)) = union(A, B, C)

SIMPLIFY UNION
Γ ` A Γ ` B

Γ ` union(A, A, B) = union(A, B)

REDUCE UNION
Γ ` A

Γ ` union(A) = A

To define service types, first we need to define the inference rules for function types. Table 4.8
defines those rules.

Table 4.8: Function type

TYPE FUNCTION
Γ ` A Γ ` B
Γ ` A � B

VALUE APPLICATION
Γ `M : A � B Γ ` v : A

Γ `Mv : B

In the type system FS<: the central type is the service type. This type is shorthand notation for
a special case of the Function type, in which the domain and range of the function are characterized
by a Record type.

Definition 4.4 (Service type). The service type is a shorthand notation to express functions with
multiple arguments and results. The Record type is used to identify zero or more uniquely named
typed arguments, and one or more uniquely named typed results. The named arguments are called
input identifiers, and the named results output identifiers. The rule Service Execution assign a series
of values to the input identifier. If the value has the same type of the input identifier, it is called a
valid input. When all the assigned values are valid inputs the service execution is valid in the Static
Syntactic Composability context. Table 4.9 specifies the rules for the Service type.

40

COMPOSITION OF SEMANTICALLY ENABLED GEOSPATIAL WEB SERVICES

Table 4.9: Service type

SERVICE TYPE
Γ ` A1 . . . Γ ` An Γ ` B1 . . . Γ ` Bm

Γ ` 〈i1 : A1, . . . , in : An〉 � 〈o1 : B1, . . . , om : Bm〉

SERVICE EXECUTION
Γ `M : 〈i1 : A1, . . . , in : An〉 � 〈o1 : B1, . . . , om : Bm〉

Γ ` v1 : A1 . . . Γ ` vn : An

Γ `M〈i1 � v1, . . . , in � vn〉 : 〈o1 : B1, . . . , om : Bm〉

Expressions of service type can be related to a process called input realization. Input realization
is a relation between two expressions of service type, where an output identifier of the first service
is paired with an input identifier of the second service. The type of the output identifier in an
input realization is called realized type. An input realization is valid if all possible values for the first
service output identifier are valid inputs for the connected input identifier of the second service.
The act of creating input realization between two or more services is called a service composition.
When all input realizations in a service composition are valid, the services are considered to be
Static Syntactic Composable.

In the next section, we extend the type system with the notion of subtyping.

4.4 SUBTYPING

Subtyping is a binary relation between types, which formalizes substitutability of one for the
other, expressing that an element of a type is also an element of its supertype [71]. The notation
A <: B expresses that the type A is a subtype of B, meaning that for all values v of type A, v
is automatically of type B. Therefore, we add judgments of the form Γ ` A <: B to the type
system, in cases where this makes sense. Table 4.10 presents the basic rules for subtyping.

Table 4.10: Basic rules for subtyping in FS<:

REFLEXIVITY
Γ ` A

Γ ` A <: A

TRANSITIVITY
Γ ` A <: B Γ ` B <: C

Γ ` A <: C

SUBSUMPTION
Γ ` a : A Γ ` A <: B

Γ ` a : B

If S is an expression of service type of an input identifier of type A, and a value v : B with
B <: A, then the subsumption relation guarantee that v is a valid input. This mechanism is
the basis for the verification of Static Syntactic Composability. A series of services is considered
static syntactic composed if all input identifier types are supertypes of the correspondent output
identifier type.

The type Top, defined as the supertype of all types, is also added to the type system. This
means that all well-typed expressions have type Top. Table 4.11 presents the rules for it.

We also add ad hoc subtyping rules for abstract data types. OGC [57] defines the following
subtype relations for geometric types:

41

COMPOSITION OF SEMANTICALLY ENABLED GEOSPATIAL WEB SERVICES

Table 4.11: Rules for type Top

TYPE TOP
Γ ` �
Γ ` Top

SUB TOP
Γ ` A

Γ ` A <: Top

multipoint <: geometrycollection

multilinestring <: geometrycollection

multipolygon <: geometrycollection

geometrycollection <: geometry

point <: geometry

linestring <: geometry

polygon <: geometry

For the Coverage types, we define the following subtype relations. Two additional abstract
types are also defined in [77], coverage and discretecoverage, which are based on non-instantiable
classes.

discretecoverage <: coverage

gridcoverage <: coverage

rectifiedgridcoverage <: coverage

referenceablegridcoverage <: coverage

multisurfacecoverage <: discretecoverage

multicurvecoverage <: discretecoverage

multipointcoverage <: discretecoverage

OGC [73] defines the following subtype relations for temporal types:

regularmultiinstant <: multiinstant

regularmultiperiod <: multiperiod

Table 4.12 presents the subtyping relations for Record types, as defined in [71].

Table 4.12: Subtype rules for Record type

WIDTH SUBTYPE
Γ ` τ1 . . . Γ ` τn+m

Γ ` 〈a1 : τ1, . . . , an+m : τn+m〉 <: 〈a1 : τ1, . . . , an : τn〉

DEPTH SUBTYPE
Γ ` τ1 <: ρ1 . . . Γ ` τn <: ρn

Γ ` 〈a1 : τ1, . . . , an : τn〉 <: 〈a1 : ρ1, . . . , an : ρn〉

42

COMPOSITION OF SEMANTICALLY ENABLED GEOSPATIAL WEB SERVICES

We also define subtype rules for the Set and Union types. For Set types, the subtype relation
depends in the subtype relation of its inner type. For Union types, we define two basic rules:
Union Unpack, and Union Collapse. The first allows an element-wise verification of subtype re-
lation in Union types while the second allows one to replace the entire Union type in the case
that all its elements are a subtype of a common type. By combining the Union Unpack rule and
Union Collapse rule, one can derive the Union Subtype rule. Table 4.13 is presented the additional
subtyping rules.

Table 4.13: Subtype rules for Set and Union types

SET SUBTYPE
Γ ` A <: B
Γ ` P A <: P B

UNION UNPACK
Γ ` union(τ1, . . . , τn) Γ ` τ <: τk

Γ ` τ <: union(τ1, . . . , τn)

UNION COLLAPSE
Γ ` τ1 <: τ . . . Γ ` τn <: τ
Γ ` union(τ1, . . . , τn) <: τ

UNION SUBTYPE
Γ ` τ1 . . . Γ ` τn Γ ` ρ1 . . . Γ ` ρm

∀ k ∈ {1, . . . , n} . ∃ j ∈ {1, . . . ,m} . Γ ` τk <: ρj

Γ ` union(τ1, . . . , τn) <: union(ρ1, . . . , ρm)

Example 4.1. Consider a composition of three services, the first is neighborhoods, with no in-
puts and one output, nbhd, that returns polygon features that represent neighborhoods with their
respective names.

The second is accidents, with no inputs and one output, acdt, that returns features with geom-
etry of type point that represents traffic accidents, with the attributes acdtTime, time at which
the accident occurred, and acdtCat, the category of the accident.

The third is aggregate, with two inputs: ref, that receives a feature collection with geometry
of type polygon or multipolygon, and pnt a feature collection with geometry of type point.
The service has one output, agg, that returns a feature collection with Polygon geometry, with an
attribute pntCount, the number of points inside each polygon. We can represent their types in the
following way:

neighborhoods : 〈 〉 � 〈 nbhd : P〈geom : polygon, name : string〉 〉

accidents : 〈 〉 � 〈 acdt : P〈geom : point, acdtTime : instant, acdtCat : string〉 〉

aggregate : 〈 ref : P〈geom : union(polygon, multipolygon)〉, pnt : P〈geom : point〉 〉
� 〈 agg : P〈geom : union(polygon, multipolygon)〉, pntCount : integer〉 〉

Consider the composition as in Figure 4.1.
For this set of services to be static syntactic composed it is necessary that the following two

subtype relations hold:

43

COMPOSITION OF SEMANTICALLY ENABLED GEOSPATIAL WEB SERVICES

Figure 4.1: Example of composition

P〈geom : polygon, name : string〉 <: P〈geom : union(polygon, multipolygon)〉
P〈geom : point, acdtTime : instant, acdtCat : string〉 <: P〈geom : point〉

For the first subtype relation, it can be derived by applying the Transitivity rule with the
results of the following chain of two rules:

SET SUBTYPE

WIDTH SUBTYPE
Γ ` polygon Γ ` string

Γ ` 〈geom : polygon, name : string〉 <: 〈geom : polygon〉
Γ ` P〈geom : polygon, name : string〉 <: P〈geom : polygon〉

SET SUBTYPE

DEPTH SUBTYPE

UNION UNPACK

REFLEXIVITY
Γ ` polygon

Γ ` polygon <: polygon

Γ ` polygon <: union(polygon, multipolygon)
Γ ` 〈geom : polygon〉 <: 〈geom : union(polygon, multipolygon)〉

Γ ` P〈geom : polygon〉 <: P〈geom : union(polygon, multipolygon)〉

The second subtype relation follows in an analogous proof.
ù

Remark. One can notice that the type checking was possible because input and output parameters
used the same naming convention. In most of the cases, this will not happen, being necessary a
mechanism for attribute renaming. If performed manually, this alignment of attribute names will
be time-consuming and error prone. Chapter 5 introduces attribute normalization, a method that
rename attributes based on semantic information added to attributes, which allow identifying
attributes with different names that represent the same concept. Attribute normalization is a
prerequisite for a correct verification of Static Syntactic Composability.

Finally, we define the subtype rules for Function and Service types. We define variance as
the relation between subtyping in constructed types (set, array, functions) and subtyping between
their type components. When the subtype relation is maintained in the same direction it is called
a covariant, when the direction is inverted is called a contravariant. As described by Cardelli,
function types are contravariant for arguments and covariant for results. The reasoning is that a

44

COMPOSITION OF SEMANTICALLY ENABLED GEOSPATIAL WEB SERVICES

value v : A′ for any subtypeA′ ofA is also a valid argument by the subsumption relation, and since
it returns results with type B, it then obviously returns a value that also has any supertype B′ of
B. Therefore, a function of type A � B is also of a more general type A′ � B′. By combining
the subtype rules for function type and record type, we can derive the rules for the service type.
Table 4.14 presents the subtype rules for function type and service type. Both service type rules
are derived from function subtype and width and depth subtype.

Table 4.14: Subtype rule for Service type

FUNCTION SUBTYPE
Γ ` A′ <: A Γ ` B <: B′

Γ ` A � B <: A′ � B′

SERVICE SUBTYPE
Γ ` A′1 <: A1 . . . Γ ` A′n <: An Γ ` B1 <: B′1 . . . Γ ` Bm <: B′m

Γ ` 〈i1 : A1, . . . , in : An〉 � 〈o1 : B1, . . . , om : Bm〉 <: 〈i1 : A′1, . . . , in : A′n〉 � 〈o1 : B′1, . . . , om : B′m〉

ARGUMENTS SUBTYPE
Γ ` A1 . . . Γ ` An+r Γ ` B1 . . . Γ ` Bm+s

Γ ` 〈i1 : A1, . . . , in : An〉 � 〈o1 : B1, . . . , om+s : Bm+s〉 <: 〈i1 : A1, . . . , in+r : An+r〉 � 〈o1 : B1, . . . , om : Bm〉

The notion of Service subtype is particularly important when one tries to substitute a particu-
lar service in a composition. As a prerequisite for substitutability, it is necessary that the substitute
service’s type has a subtype relation with the original service’s type. This condition is naturally
not sufficient to ensure that two services can be replaced, since other factors also take place as
further discussed in Chapter 5, in Semantic Composability.

In the next section, we extend the type system with the notion of type propagation, which
allows the definition of output identifier types based on the realized type of the input identifiers.

4.5 TYPE PROPAGATION

A common pattern in geospatial processing services is that the output type depends on the input
types. So far, the presented type system is not able to do so. Type systems can be extended with
the notion of parametric polymorphism, which introduces the notion of type variable that allow a
data type to be expressed generically. This notion can be extended by constraining the possible
types allowed in the type variable. This is called bounded parametric polymorphism [80].

In this section, we introduce a series of type operators to the type system, which allows a
more detailed representation of the output types of services by providing a mechanism similar
to bounded parametric polymorphism. Those operators are evaluated at compile-time and re-
evaluated every time an input is realized. For example, suppose a function that performs a line
simplification with two inputs: ftr, a feature collection with a geometry of type linestring; and
tolerance, a number of type real which controls the degree of simplification. The output of the
function is a feature collection of geometry type linestring.

lineSimplification : 〈 ftr : P〈geom : linestring〉, tolerance : real 〉
� 〈 simplified : P〈geom : linestring〉 〉

Although this is a correct description of the function, it only provides a coarse description of
the output. For example, suppose that for a valid input ftr is provided that has type P〈name :

45

COMPOSITION OF SEMANTICALLY ENABLED GEOSPATIAL WEB SERVICES

string, length : real, geom : linestring〉, the output type fails to describe that the output
record also has the attributes name and length.

Due to the need to dynamically generate output type that reflects input provided, five type
operators are defined in this section. They allow a more detailed representation of the output by
means of type propagation of the input type into the output type. All operators are only valid as
type declarations of output identifiers of service types.

Definition 4.5 (typeof Operator). The typeof operator takes an input identifier within the same
service and returns its type. The typeof operator can only be declared in type definitions of service
outputs. Let S be a service with type 〈i1 : A1, . . . , in : An〉 � 〈. . . 〉, we have that:

typeof(ik) = Ak (4.3)

In case that the input was realized the typeof operator returns the realized type. Let vk : Bk

be a valid input, and consider the service composition S〈. . . , ik � vk, . . . 〉.

typeof(ik) = B (4.4)

The operator can also be used to refer to types of record attributes, allowing attribute naviga-
tion paths. Consider the input identifier ik : 〈. . . , aj : Bj , . . . 〉. We have:

typeof(ik.aj) = Bj (4.5)

In an analogous way, one can also refer to the type of an attribute in the case of a feature
collection.

Remark. The typeof operator extends the type theory in a similar way of parametric typing. How-
ever, it is restricted to types of the inputs of the attributes of the Service type.

Example 4.2. Consider the function lineSimplification with two inputs: ftr, a feature collection
with geometry of type linestring; and tolerance, a number of type real which determines the
degree of simplification of the geometry. This function returns that input feature collection but
with the a simplified geometry. The typeof operator can express this propagation of type as follows:

lineSimplification : 〈 ftr : P〈geom : linestring〉, tolerance : real 〉
� 〈 simplified : typeof(ftr) 〉

Before any value is assigned to the inputs the typeof operator calculate its value based on the
input type of the service. In this way lineSimplification has type:

lineSimplification : 〈 ftr : P〈geom : linestring〉, tolerance : real 〉
� 〈 simplified : P〈geom : linestring〉 〉

Consider a valid input v1 for ftr and a valid input v2 for tolerance:

v1 : P〈name : string, length : real, geom : linestring〉

When this value is realized the type propagation re-evaluates and we deduce that:

lineSimplification〈 ftr � v1, tolerance � v2 〉.simplified :
P〈name : string, length : real, geom : linestring〉

ù

46

COMPOSITION OF SEMANTICALLY ENABLED GEOSPATIAL WEB SERVICES

Definition 4.6 (unset Operator). The unset type operator take as input a Set type and returns its
inner type.

unset(P τ) = τ (4.6)

Example 4.3. Consider the function findNearest with two inputs: ftr, a feature collection with
geometry type point; and ref, a feature of geometry type point. The function returns the closest
point in the set to the reference geometry, ensuring that only one point is returned. The type
operator unset combined with the type operator typeof can express the type propagation:

findNearest : 〈 ftr : P〈geom : point〉, ref : 〈geom : point〉 〉
� 〈 nearest : unset(typeof(ftr)) 〉

Before any value is assigned to the inputs, findNearest has type:

findNearest : 〈 ftr : P〈geom : point〉, ref : 〈geom : point〉 〉
� 〈 nearest : 〈geom : point〉 〉

Consider a valid input v1 for ftr and a valid input v2 for ref :

v1 : P〈name : string, address : string, geom : point〉

Applying the type propagation we deduce that:

findNearest〈 ftr � v1, ref � v2 〉.nearest :
〈name : string, address : string, geom : point〉

ù

Definition 4.7 (addAttrs Operator). The addAttrs type operator, denoted by⊕, takes two Record
types and returns a Record type with the attributes merged:

〈a1 : τ1, . . . , an+m : τn+m〉 ⊕ 〈an+1 : ρn+1, . . . , an+m+j : ρn+m+j〉 =
〈a1 : τ1, . . . , an : τn, an+1 : ρn+1, . . . , an+m+j : ρn+m+j〉

(4.7)

In the case that the Record types have a common attribute the type is overwritten by the
attribute in the record on the right-hand side. This allows one to update types in a record.

〈a1 : τ1, . . . , an : τn〉 ⊕ 〈a1 : ρ〉 = 〈a1 : ρ, a2 : τ2, . . . , an : τn〉 (4.8)

This implies that, if A and B are Record types with common attributes but different types:
A⊕ B 6= B ⊕ A. The addAttrs operator can also be applied to Set types in the case that its inner
type is a Record type:

P〈a1 : τ1, . . . , an+m : τn+m〉 ⊕ 〈an+1 : ρn+1, . . . , an+m+j : ρn+m+j〉 =
〈a1 : τ1, . . . , an : τn, an+1 : ρn+1, . . . , an+m+j : ρn+m+j〉

(4.9)

Example 4.4. Consider the function distanceFromReference with two inputs: ftr, a feature collec-
tion with geometry type point; and ref, a feature of geometry type point. The function returns
that feature collection and adds an attribute distance of type real. The type operator addAttrs
combined with the type operator typeof can express the type propagation:

47

COMPOSITION OF SEMANTICALLY ENABLED GEOSPATIAL WEB SERVICES

distanceFromReference : 〈 ftr : P〈geom : point〉, ref : 〈geom : point〉 〉
� 〈 ftrDist : typeof(ftr)⊕ 〈distance : real〉 〉

Before any value is assigned to the inputs, distanceFromReference has type:

distanceFromReference : 〈 ftr : P〈geom : point〉, ref : 〈geom : point〉 〉
� 〈 ftrDist : P〈geom : point, distance : real〉〉 〉

Consider a valid input v1 for ftr and a valid input v2 for ref :

v1 : P〈name : string, address : string, geom : point〉

Applying the type propagation we deduce that:

distanceFromReference〈 ftr � v1, ref � v2 〉.ftrDist :
P〈name : string, address : string, geom : point, distance : real〉

ù

Example 4.5. Consider the function buffer with two inputs: ftr, a feature collection with geometry
type geometry; and distance, the buffer distance of type real. The function returns that feature
collection with the geometry modified to polygon or multipolygon, which depends on the input
geometry and the position of the features. The type operator addAttrs combined with the type
operator typeof can express the type propagation:

buffer : 〈 ftr : P〈geom : geometry〉, distance : real 〉
� 〈 buffered : typeof(ftr)⊕ 〈geom : union(polygon, multipolygon)〉 〉

Consider a valid input v1 for ftr and a valid input v2 for distance:

v1 : P〈name : string, length : real, geom : multilinestring〉

Applying the type propagation we deduce that:

buffer〈 ftr � v1, distance � v2 〉.buffered :
P〈name : string, length : real, geom : union(polygon, multipolygon)〉

ù

Example 4.6. Consider the function joinById with two inputs: ftr1 and ftr2, two feature collec-
tions with an identifier attribute. The function returns a set of Records that have the combination
of the attributes of both underlying record types. In the case that an attribute with the same name
exists in both features, the value in the result comes from ftr2. The type operator addAttrs com-
bined with the type operator typeof can express the type propagation:

joinById : 〈 ftr1 : P〈id : string〉, ftr2 : P〈id : string〉 〉
� 〈 joined : typeof(ftr1)⊕ typeof(ftr2) 〉

Before any value is assigned to the inputs, joinById has type:

48

COMPOSITION OF SEMANTICALLY ENABLED GEOSPATIAL WEB SERVICES

joinById : 〈 ftr1 : P〈id : string〉, ftr2 : P〈id : string〉 〉
� 〈 joined : P〈id : string〉 〉

Consider a valid input v1 for ftr1:

v1 : P〈id : string, name : string, geom : polygon〉

And a valid input v2 for ftr2:

v2 : P〈id : string, name : string, population : integer〉

Applying the type propagation we deduce that:

joinById〈 ftr1 � v1, ftr2 � v2 〉.joined :
P〈id : string, name : string, geom : polygon, population : integer〉

ù

Definition 4.8 (valueof Operator). Let A be the set of input identifier names of a service type.
The valueof operator receives as an input an element a of A, such that typeof(a) = string and
returns the value assigned to this attribute. This operator can only be used in the context of a
record type, and it is used to dynamically create attributes in a Record type.

Let S be service with type 〈a : string, . . . 〉 � 〈. . . 〉, v a value of type string and the service
execution S〈a � v, . . . 〉, we have that:

valueof(a) = v (4.10)

This value should follow all the conditions applied to attribute names, such as not generate
duplicate attribute names. In the case that the operator evaluates to an invalid attribute name a
type error is raised. In the case of an input realization in which the value cannot be evaluated at
compile-time the attribute in which the valueof operator is used is removed.

Example 4.7. Consider the function Max with four inputs: ftr, a feature collection with geom-
etry type polygon; pts, a feature collection with geometry type point; infield, a string which
represent the name of one attribute of the set of point features that will be used for the calculation
of the maximum value; outfield, a string which represent the name of the attribute that will be
added to the set of polygon features. The function returns the same set of polygons added a new
attributed of type real and name provided in the input. The type operator valueof combined
with the type operators typeof and addAttrs can express the type propagation:

max : 〈 ftr : P〈geom : polygon〉, pts : P〈geom : point〉,
infield : string, outfield : string 〉
� 〈maximum : typeof(ftr)⊕ 〈valueof(outfield) : real〉 〉

Consider a valid input v1 for ftr:

v1 : P〈name : string, geom : polygon〉

The valid input v2 for pts:

v2 : P〈height : real, geom : point〉

49

COMPOSITION OF SEMANTICALLY ENABLED GEOSPATIAL WEB SERVICES

And the value v3 = “height” for infield, and v4 = “maxHeight” for outfield. Applying the
propagation of type we deduce that:

max〈 ftr � v1, pts � v2, infield � v3, outfield � v4 〉.maximum :
P〈name : string, geom : polygon, maxHeight : real〉

Remark. Before the input value for outfield is known, the attribute of identifier outfield cannot be
realized, meaning that the output type of maximum will be equivalent to:

typeof(ftr)⊕ 〈〉 = typeof(ftr)
ù

Definition 4.9 (remAttrs Operator). The remAttrs type operator, denoted by ÿ, receives as input
two Record types and returns a Record type with the attributes which belongs to the left Record,
but does not belong to the right one:

〈v1 : τ1, . . . , vn+m : τn+m〉ÿ 〈vn+1 : τn+1, . . . , vn+m : τn+m〉 ≡ 〈v1 : τ1, . . . , vn : τn〉 (4.11)

Trying to remove attributes that does not exists is valid:

〈v1 : τ1, . . . , vn : τn〉ÿ 〈vn : τn, vn+1 : τn+1〉 ≡ 〈v1 : τ1, . . . , vn−1 : τn−1〉 (4.12)

We can also apply the remAttrs operator to Set types in the case that its inner type is a Record
type.

Remark. The types of the attributes in the records of the right side of remAttrs operator are not
relevant to the calculation, which means that we can simplify the notation omitting those types.

〈v1 : τ1, . . . , vn+m : τn+m〉ÿ 〈vn+1, . . . , vn+m〉 = 〈v1 : τ1, . . . , vn : τn〉 (4.13)

Example 4.8. Consider the function removeAttribute with two inputs: ftr, a feature collection;
name, a string which represent the name of the attribute to be removed. The function returns the
same feature collection as the inputs removed the desired attributed. The type operator remAttrs
combined with the type operators typeof and valueof can express the type propagation:

removeAttribute : 〈 ftr : P〈〉, name : string 〉
� 〈 attrRemoved : typeof(ftr)ÿ 〈valueof(name)〉 〉

Consider a valid input v1 for ftr:

v1 : P〈name : string, population : integer, geom : multipolygon〉
And the value v2 = “geom” for name. Applying the propagation of type we deduce that:

removeAttribute〈 ftr � v1, name � v2 〉.attrRemoved :
P〈name : string, population : integer〉

ù
It is important to notice that verifying the composability based on specifications is overly

restrictive, having false negatives. Consider the function Dissolve, that receives a set of polygons
and performs the merge of all the polygons that intersects. The possible results are of type polygon
or multipolygon, therefore, further compose with a function that requires a polygon as an input
in a general case is not valid. However, it still exists inputs that all the polygons are dissolved into
a single polygon making the functions composable, meaning that exists false negatives.

50

COMPOSITION OF SEMANTICALLY ENABLED GEOSPATIAL WEB SERVICES

4.6 CONDITIONAL AND LOOP TYPE CHECKING

In Chapter 3, we introduced three categories of nodes that are special cases of the service node,
namely, conditional, subgraph, and loop. The Conditional node allows a boolean evaluation of
a condition at run-time. It leads to one of two outputs: trueOut if the condition evaluates to
true, and falseOut otherwise. This allows exclusive branching the composition into two different
scenarios, meaning that the composition will use only one of the output scenarios. In compile-
time verification, the type checker cannot predict which branch of the composition will be used,
thus necessitating the evaluation of both scenarios of the composition. We can characterize in our
typing system the conditional node with a Service type in the following way:

conditional : 〈 input : τ 〉 � 〈 trueOut : typeof(input), falseOut : typeof(input) 〉

This node just passes the input type to the output ports, without any modification to the data.
We can apply this construct to decide at run-time between elements in a union type.

Example 4.9. Consider the services organized as in Figure 4.2 and the following type definitions
for each service:

Figure 4.2: Example of composition with conditional

buffer : 〈 ftr : P〈geom : geometry〉, distance : real 〉
� 〈 buffered : 〈geom : union(polygon, multipolygon)〉 〉

explode : 〈 ftr : P〈geom : multipolygon〉 〉
� 〈 exploded : typeof(ftr)⊕ 〈geom : polygon〉 〉

maxArea : 〈 ply : P〈geom : polygon〉 〉 � 〈max : unset(typeof(ply)) 〉

The explode process explodes multipolygons into polygons. The conditional structure is used
to verify at run-time whether the buffer output is realized as polygon or multipolygon. This con-
ditional requires the input to be a collection of features with geometry type polygon or multipolygon,

51

COMPOSITION OF SEMANTICALLY ENABLED GEOSPATIAL WEB SERVICES

and in the trueOut the feature is returned in case of the geometry be multipolygon, and the false-
Out is returned in case of polygon. We formalize the conditional as:

conditional : 〈 input :P〈geom : union(polygon, multipolygon)〉 〉
� 〈 trueOut : typeof(input)⊕ 〈geom : multipolygon〉,

falseOut : typeof(input)⊕ 〈geom : polygon〉 〉

The type checker considers both output ports of the conditional when it verifies the compo-
sition.

ù

Chapter 3 also introduces subgraph nodes, a service node that can be associated with paramet-
ric subgraphs. Parametric graphs are graphs with one or more input parameter node, and one or
more output parameter node. To define types for subgraph nodes we first need to define the type
for the input parameter node and output parameter node. Both nodes have no inherent type as-
sociated, their type is inferred from the types of the connected services. The input parameter can
connect to one or more services, and it is required to have a type that the value handover to each
service will be valid. We restrict that the input types of the connected services to be in a subtype
relation, in this way the type that is the subtype of all others is a valid type for the input parameter.
The type of the output parameter node is easily defined. Since it can only be connected to one
service output, its type becomes the same as the service output.

Example 4.10. Consider the services organized as in Figure 4.3 and the following type definitions
for each service:

Figure 4.3: Example of subgraph type inference

computeVoronoi : 〈 ftr : P〈geom : point〉, bb : bbox 〉
� 〈 vrn : typeof(ftr)⊕ 〈geom : polygon〉 〉

52

COMPOSITION OF SEMANTICALLY ENABLED GEOSPATIAL WEB SERVICES

computeBbox : 〈ftr : P〈geom : geometry〉 〉 � 〈 bb : bbox 〉

aggregatePoints : 〈ftr : P〈geom : point〉, ref : P〈geom : polygon〉 〉
� 〈 agg : typeof(ref)⊕ 〈count : integer〉 〉

The inputParam2 type can be directly inferred since it is only connected with one input. Its
type becomes P〈geom : point〉. Since inputParam1 is connected to two inputs, and as they are
in a subtype relation P〈geom : point〉 <: P〈geom : geometry〉, the type for inputParam1 is
P〈geom : point〉.

The outputParam type is also easily inferred, since it is only connected to one output. Its
type becomes typeof(ref)⊕ 〈count : integer〉. Before any input is realized this type evaluates
to P〈geom : polygon, count : integer〉.

ù

Chapter 3 also defines loop nodes. The loop nodes are also associated with parametric graphs,
and the types definition behaves in a similar way as described for subgraph nodes. For each type
of loop introduced in Chapter 3, we can define the types for input and output:

• Iterate Inputs: behaves in the same way as the subgraph node.

• Iterate Sets: types of inputs and outputs are set types with inner types the same as the defined
types for input and output parameter nodes.

• Iterate Multivalue: the value input is a set type with inner type the same as the defined type
for the input parameter node.

Example 4.11. Consider an Iterate Multivalue node associated with a subgraph that performs a
buffer operation, which allows multiple executions of the buffer operation with different distance
values for the same input. Figure 4.4 shows the graph representation of the Iterate Multivalue node
and a subgraph.

buffer : 〈 ftr : P〈geom : geometry〉, distance : real 〉
� 〈 buffered : typeof(ftr)⊕ 〈geom : union(polygon, multipolygon)〉 〉

The types for the nodes in the subgraph are defined as follows. The node value receives the
type real, the node inputParam is typed as P〈geom : geometry〉, and the node outputParam is
typed as typeof(ftr)⊕〈geom : union(polygon, multipolygon)〉. Before any input is realized
this type is evaluated to P〈geom : union(polygon, multipolygon)〉. In this way, we can define
the type for the Iterate Multivalue node as:

iterateMultivalue : 〈 inputs : P〈geom : geometry〉, values : P(real) 〉
� 〈 buffered : P〈geom : union(polygon, multipolygon) 〉

ù

53

COMPOSITION OF SEMANTICALLY ENABLED GEOSPATIAL WEB SERVICES

Figure 4.4: Example of loop type inference

4.7 SUMMARY

In this chapter, we discussed Static Syntactic Composability, in which we evaluated service compo-
sitions using the Cardelli type system F1<:, augmented with an additional type, the Service type.
This Service is a special case of the function type, which allows one to express a service as a func-
tion with zero or more named inputs and one or more named outputs. We also defined abstract
data types, to express concepts about geometry, coverage, and time, and type propagation opera-
tors, which allows one to express the output types of services based on the input types. Lastly, we
discussed how to type-check compositions with subgraph, conditional, and loop nodes.

Chapter 5 discusses Dynamic Syntactic Composability and Semantic Composability.

54

COMPOSITION OF SEMANTICALLY ENABLED GEOSPATIAL WEB SERVICES

Chapter 5

Dynamic Syntactic and Semantic Composability

5.1 INTRODUCTION

In Chapter 3, we defined five levels of composability and discussed the first level, Structural Com-
posability. In Chapter 4, we discussed Static Syntactic Composability, which introduces the Type
System FS<:, which allows the assignment of types to Web Services. In this chapter, we discuss
two more levels of composability: Dynamic Syntactic Composability and Semantic Composabil-
ity. We verify the first with preconditions and postconditions in Hoare Logic. This defines the
most common expressions when dealing with geometry, coverage, and temporal types, and how
the preconditions and postconditions of the composition can be derived based on the interactions
between inputs and outputs. In Semantic Composability, we consider any service to be seman-
tically enabled, and we discuss the semantics of input and output relation, the substitutability of
services, the normalization of attribute names, and workflow semantics.

Section 5.2 extends Hoare Logic with the notion of input and output, which allows the veri-
fication of constraints which the type system proposed in Chapter 4 cannot express. Section 5.3
discusses in which forms one can define Semantic Composability, and proposes mechanisms for
service substitution and name normalization of equivalent attributes consistently across the com-
position.

5.2 DYNAMIC SYNTACTIC COMPOSABILITY

Dynamic Syntactic Composability verifies input restrictions that the proposed type system of the
previous chapter cannot address. This includes the use of service states, coordinate systems, time
zones, interactions between inputs, restriction in the value range, and others. A way to express
these restrictions is to use Hoare Logic preconditions. Section 5.2.1 introduces that formalism.

5.2.1 Hoare Logic

Hoare logic is a formal system for reasoning about the correctness of computer programs [19].
The verification is based on specifications: preconditions, which are conditions required for the
program run correctly; and postconditions, which are conditions that are guaranteed to hold after
a correct execution. The central concept in Hoare Logic is the Hoare triple, for which we use the
following notation: {P} C {Q}. Here, P is the precondition, and Q is the postcondition, and
both are described in predicate logic.1 This notation allows the specification of an instruction C.
The semantics of the relation is that “If P holds before the execution of C, then Q will hold after the
execution.” For an instruction C, or a batch of such instructions, the most interesting assertions
are the weakest precondition and the strongest postcondition.

1The original notation is P {C}Q, a simple notation with the emphasis on the code C; however, the presented one
is currently widely used and de-emphasizes code over conditions.

55

COMPOSITION OF SEMANTICALLY ENABLED GEOSPATIAL WEB SERVICES

Definition 5.1 (Strongest postcondition). If {P} C {Q} and if for all Q′ such that {P} C {Q′},
and Q⇒ Q′, then Q is the strongest postcondition of C with respect to P .

Definition 5.2 (Weakest precondition). If {P}C {Q} and if for all P ′ such that {P ′}C {Q}, and
P ′ ⇒ P , then P is the weakest precondition of C with respect to Q.

In Dynamic Syntactic Composability, we abstractly view a web service as a function with zero
or more arguments (inputs) and one or more results (outputs). We assume that only the precon-
dition, postcondition, and service type are known while details of the service implementation are
unknown. The goal of this section is to describe inference rules to derive specifications for a composite
service from the available specifications of the individual services. This allows reasoning about the
validity of a service composition.

Pre- and postconditions are expressions in Predicate logic. Possible variables in the expres-
sions refer to inputs and outputs of the service as defined in the service type, or service states, or
attributes of input or output records (accessed by attribute selection rule), or even metadata. Meta-
data consists of associations between a service state, input, output, or an attribute on one hand and
a value that is maintained by the service on the other. This value is constant, and we consider it
to be known by all services in the composition at compile-time. Such an association is denoted by
a↑b, where amay be a state, input, output, or attribute expression, and b is the metadata attribute
(name). The allowed metadata attribute names are context-dependent on the type of the variable
a. State variables are written with a starting uppercase letter while input and output with a lower-
case letter. One can only differentiate an output from input by comparing with the service type
signature. The state after the execution of a service operation is decorated with a dash, for example
if the state before the execution is S, and then after execution is S′.

Besides variables, we allow the use of constants, functions, and predicates (here defined as
boolean-valued functions). Table 5.1 presents the syntax for pre- and postconditions in Backus-
Naur Form (BNF).

Example 5.1. Consider a function getBuildings, which receives two inputs, crs, a string repre-
senting a coordinate system, and a bounding box bb:bbox. The value for crs needs to be one of
the possible CRS that the service can handle, i.e. belong to the set availableCRS. The value for
bb needs to overlap the bounding box of all features, layerBBOX. The operation has as output a
feature collection bldg of geometry type polygon with the coordinate system provided by the user
and restricted to features within the bounding box provided. In the case that no value for crs is
given the service returns the features in the coordinate system defaultCRS. Moreover, in the case
that no value for bb is provided the service return all the features available. The execution of this
function does not alter the state of the service.

Let Building and Building′ be resp. the state before and after the execution of the operation,
the function overlaps:bbox×bbox � boolean, and the function within:bbox×bbox � boolean.
The description of the function can be formalized in the following way:

getBuildings : 〈 crs : string, bb : bbox 〉 � 〈 bldg : P〈geom : polygon〉 〉

56

COMPOSITION OF SEMANTICALLY ENABLED GEOSPATIAL WEB SERVICES

Table 5.1: BNF for preconditions and postconditions

<expression> ::= <term> <relation> <term>
| <predicate>(<term>,...,<term>)
| ¬<expression>
| (<expression>)
| <expression> <connective> <expression>
| <quantifier> <variable> “|” <expression>

<term> ::= <function>(<term>,...,<term>)
| <constant>
| <variable>

<connective> ::= ∧ | ∨ | ⇒ | ⇔
<relation> ::= > | < | ¾ | ¶ | = | 6= | ∈
<quantifier> ::= ∀ | ∃
<variable> ::= <state>

| <IO variable>
| <IO metadata>
| <service metadata>

<IO variable> ::= <input>|<output>|<input>.<attribute>|<output>.<attribute>
<IO metadata> ::= <IO variable>↑<metadata attribute>

<service metadata> ::= <state>↑<metadata attribute>

P ≡ crs 6= null ⇒ crs ∈ Building↑availableCRS ∧
bb 6= null ⇒ overlaps(bbox,Building↑layerBBOX)

Q ≡ Building′ = Building ∧
crs 6= null ⇒ bldg.geom↑crs = crs ∧
crs = null ⇒ bldg.geom↑crs = Building↑defaultCRS ∧
bb 6= null ⇒ within(bldg.geom↑bbox, bb) ∧
bb = null ⇒ bldg.geom↑bbox = Building↑layerBBOX

ù

A common precondition on the state of a service tests whether an object with a particular
identifier exists in the data source. For example, the operations GetFeatureById, DeleteFeature,
UpdateFeature, InsertFeature in a WFS depend on the existence test of an identifier. In this way,
let ServiceFeatures be the internal state variable about the features, we specify the precondition for
an InsertFeature operation as:

¬∃ f ∈ ServiceFeatures | ftr.id = f.id.

For variables of numeric types (real and integer) there exist two common patterns in pre-
and postconditions. The first is to test whether such a variable’s value is between two numbers. For

57

COMPOSITION OF SEMANTICALLY ENABLED GEOSPATIAL WEB SERVICES

example, the function ST_Line_Interpolate_Point, defined in PostGIS [81], receives two inputs, a
feature collection ftr with geometry linestring, and a real number a between 0 and 1. We can
specify this requirement as the precondition 0 ¶ a ∧ a ¶ 1.

The second pattern is used in testing a unit of measurement. Any numeric variable can be
associated with a metadata attribute stating the unit of measurement. For example, let a be a
real value the its unit of measurement can be accessed by a↑uom. The unit of measurement is
of type string and must follow the specification Quantities, Units, Dimensions and Data Types
Ontologies (QUDT) [82]. An example value is “http://qudt.org/1.1/vocab/unit/Meter”.

For a set typed variable value, we can use universal and existential quantifiers to specify con-
ditions about its members. For example, a restriction that a set S of inner type real needs to be
less than 100 is denoted as ∀x ∈ S | x < 100.

Next, we define metadata attributes that can be associated with a variable of geometry type:

• crs:string – The Coordinate Reference System (CRS) associated with the geometry. It
complies with the URL convention of OGC Name Type Specification for Coordinate Ref-
erence Systems [83]. Examples of values are: “noCRS” (in the case no CRS is specified for
the geometry), and “http://www.opengis.net/def/crs/OGC/1.3/CRS84”.

• dimension:array(string) – The number of dimensions of the geometry must be provided.
The OGC Simple Feature Access standard specifies the following dimensions: “x”, “y”, “z”,
“m”, in such a way that a 2-dimensional geometry contains [“x”, “y”] information, a 3-
dimensional geometry contains [“x”, “y”, “z”] or [“x”, “y”, “m”], and 4-dimensional geom-
etry contains [“x”, “y”, “z”, “m”]. In this thesis, the number of measurement dimensions is
not restricted to one, as discussed in Chapter 6. This metadata attribute specifies each of the
used dimensions, including each measure. For example, a valid value is [“x”, “y”, “atemp”,
“depth”], where atemp and depth are measurement specified in the GPX TrackPointExten-
sion V1 [84].

• bbox:bbox – The information about the bounding box of a feature or a set of features. It has
the same dimension as the geometry. An example value is [3.3579, 50.7504, 7.2275, 53.5552].
In this case is specified the bottom left corner and the top right corner of the bounding box.

• bboxFormat:string – One can specify the bounding box in different formats. The above
example uses the GeoJSON encoding. Examples values are “GeoJSON”, “GML” (envelope
object), and “WKT” (encoded as polygon).

• bboxCrs:string – The information of the coordinate system of the bounding box. The
possible values follow the same convention as those for crs.

• verticalDatum:string – In case that a geometry has a dimension with a z dimension, a
vertical datum needs to be indicated. The allowed values are described in the specification
WKT representation of coordinate reference systems [85].

An example value is “http://www.opengis.net/def/crs/vertical/normaalAmsterdamsPeil”.

• format:string – Structural Composability verifies the formats of the transferred files, how-
ever even for a single file format, one can use different geometry formats. Possible values
are: “WKT”, “WKB”, “EWTK”, “EWKB”, “TWKB”, and “GeoJSON”.

Variables of type bbox can be associated with three metadata attributes : crs, format, and di-
mension. They behave in the same way as bboxCrs, bboxFormat, dimension, respectively.

58

COMPOSITION OF SEMANTICALLY ENABLED GEOSPATIAL WEB SERVICES

Coverage metadata used to verify this level of composability is based on the GML Application
Schema — Coverages [77]. We list the following :

• quantityDefinition:string – Definition of what the value of the pixel represents. It must
follow the URL format defined in the GML Application Schema — Coverages [77]. An
example value is: “http://opengis.net/def/property/OGC/0/Radiance”.

• uom:string Unit in which the pixel value is measured. It is defined in the same manner as
in numeric types.

• valueSpace:array(real) – Defines the range of acceptable pixel values. It is an array with
exactly two elements. A example of a value is [0,255]. The value used for no data pixels is
not included in this range.

• noData:real – Value used to encode no data (null) values. Example: -9999.0.

• cellSizeX:real – and cellSizeY :real In case of RectifiedGridCoverage and GridCoverage,
the cell size in the X and Y direction are specified. They apply the same unit as the CRS.
Example: 10.0.

A variable of type coverage can also be associated with the metadata for crs, bbox, bboxFormat,
and bboxCrs, all defined in the same way as in geometry types.

Chapter 4 defines the temporal types used in the type system. The temporal metadata used to
verify this level of composability is based on the concepts of the current work of OGC Tech-
nical Committee’s Temporal Domain Working Group [86]. We define the following metadata
attributes for temporal data:

• format:string – Format in which time is represented, with allowed values described in
ISO 8601 [74] and in the candidate standard for a Temporal WKT [86]. Examples values
are: “YYYY-MM”, “YYYY”, “YY”, “YYYY-DDD”, “YYYY-Www”, “YYYY-Www-D”,
and “YYYY-MM-DDThh:mm:ss”, where W indicates the week designator, and T indicates
the time designator.

• trs:string – The Temporal Reference System (TRS) in which time is measured. It can be
a calendar or an ordinal scale. Based on [86], possible values for a calendar are “julian”,
“gregorian”, “prolepticGregorian”, “hijriCalendar”, and for a ordinal scale, “geologic”.

• epoch:string – The time instant of the beginning of a calendar. For example, Unix Time [87]
is defined as the number of seconds since 1 January of 1970, ignoring leap seconds. Examples
values are: “commonEra”, “unixTime”, and “julianDay”.

• timeZone:string – When one uses Coordinated Universal time (UTC), there is a need of
specifying offsets to convert to local time. The values are based on ISO 8601. The possi-
ble values are: “Z”, when the time is expressed in UTC; and values following the pattern
+hh:mm or -hh:mm when times are expressed in local time, for example, for Central Eu-
ropean Time (CET) the value is “+01:00”. Daylight saving time is also informed based on
timeZone.

Based on the metadata attributes presented above we introduce the notion of metadata type.

59

COMPOSITION OF SEMANTICALLY ENABLED GEOSPATIAL WEB SERVICES

Definition 5.3 (Metadata type). Input and output identifiers of service types can be associated
with a secondary type, the metadata type. This type indicates the metadata attributes available
to the particular input or output identifier. Let t be an input or output identifier, and m1 :
τ1, . . . ,mk : τk be metadata attributes as defined in this section with their correspondent type.
The metadata type for t is denoted by:

t↑ : 〈m1 : τ1, . . . , mn : τk〉 (5.1)

In this way the notation for an attribute selection would be t↑.mk, which we simplify as t↑mk.

Services that passed a type checking but fail a metadata type-checking are still considered Static
Syntactic Composable. However, for those services is not possible to evaluate the Dynamic Syn-
tactic Composability.

5.2.2 Relaxed Conditions

We may conclude from the above that one cannot possibly verify all the above conditions at
compile-time, especially conditions that relate to the state of the service. In the context of compile-
time verification, we propose that the precondition is relaxed to contain variables only that can
be evaluated. This means that we cannot ensure the correct execution of the service, and must
require additional run-time verification. Also, at compile-time, since actual data is not available,
we use the postcondition of the process as a description of the data characteristics. In this way, to
verify a composition at compile-time, we need a mechanism that evaluates the precondition of a
service based on the postconditions of its inputs.

Hoare [19] defines the rules of composition and consequence. The first gives a criterion for
reasoning about the correctness of sequential execution of two instructions. The second specifies
how one can modify the precondition and postcondition to obtain either a weaker postcondition
or stronger precondition.

{P} S {R}, {R} T {Q}
{P} S;T {Q} (Rule of Composition)

P1 ⇒ P2, {P2} S {Q2}, Q2 ⇒ Q1
{P1} S {Q1}

(Rule of Consequence)

The rule of consequence is of particular importance for the verification of Service Substi-
tutability. A service S′ (with triple {P ′}S′{Q′}) can substitute a service S (with triple {P}S{Q})
it is necessary that P ⇒ P ′ and Q′ ⇒ Q. Section 5.3 further discusses service substitutability.

By the combination of both the rule of composition and the rule of consequence, we can derive
a stronger composition rule:

{P1} S1 {Q1}, {P2} S2 {Q2}, Q1 ⇒ P2
{P1} S1;S2 {Q2}

(5.2)

In this way to proof that a composition between two service is valid, we need to proof the
assertion Q1 ⇒ P2 given that Q1 holds. We exemplify five rules of inference that can be used to
prove this assertion.

TRIVIAL CASE
A B

A ∧B ⇒ B
(5.3)

60

COMPOSITION OF SEMANTICALLY ENABLED GEOSPATIAL WEB SERVICES

ASSERTION ELIMINATION
A B

(A ∧B ⇒ C ∧B)⇔ (A⇒ C)
(5.4)

EXISTENTIAL ELIMINATION
∃x|A(x) B

((∃x|A(x) ∧B)⇒ C)⇔ (B ⇒ C)
(5.5)

VALUE SUBSTITUTION
x = v A(x)

((x = v) ∧A(x)⇒ B(x))⇔ (A(v)⇒ B(v))
(5.6)

OR PROOF
A1 ∨ · · · ∨An

(A1 ∨ · · · ∨An ⇒ B)⇔ ((A1 ⇒ B) ∧ · · · ∧ (An ⇒ B))
(5.7)

Aside from the mechanism for verifying the precondition of a service based on the postcondi-
tion of its inputs, we also need to define the notion of a relaxed condition.

Definition 5.4 (Relaxed condition). LetR be an precondition or a postcondition of a service, the
relaxed condition is defined as the result of applying to R existential quantification to all variables
that the value is not known at compile-time. In this case the variables refer to input, output,
or state, since IO metadata and service metadata are required to be known at compile-time. Let
x1 : τ1, . . . , xn : τn be variables with value not known at compile-time and their correspondent
types. The relaxed condition is denoted as:

R̃ ≡ ∃x1 : τ1 . . . ∃xn : τ1 | R (5.8)

Ideally, after we apply the existential quantifier, the relaxed condition can be further simplified.

Example 5.2. Consider a service that uses the operation insertRivers. It receives one input, ftr :
〈id : string, geom : linestring〉, which needs to use crs EPSG:28992, must overlap a given
bounding box, and there should not exist the same identifier in the current state of the service.
Also the metadata type for ftr is ftr↑ : 〈crs : string〉. Let Rivers and Rivers′ respectively be the
state before and after the execution of the operation. We define the pre- and postconditions as
follows:

P ≡ ftr .geom↑crs = “http://www.opengis.net/def/crs/EPSG/0/28992” ∧
overlaps(ftr .geom, [3.3579, 50.7504, 7.2275, 53.5552]) ∧
¬∃ rvr ∈ Rivers | ftr.id = rvr.id

Q ≡ Rivers′ = Rivers ∪ ftr
Since at compile-time, it is not possible to verify identifier non-existence, and the geometry is

not known the relaxed precondition becomes:

P̃ ≡ ∃ftr : | ftr .geom↑crs = “http://www.opengis.net/def/crs/EPSG/0/28992” ∧
overlaps(ftr .geom, [3.3579, 50.7504, 7.2275, 53.5552]) ∧
¬∃ rvr ∈ Rivers | ftr.id = rvr.id

Let R ≡ ftr .geom↑crs = “http://www.opengis.net/def/crs/EPSG/0/28992”, we have that
R ⇒ P̃ , therefore is a weaker (relaxed) precondition. In this way at compile-time we just evalu-
ate the precondition R. Moreover, naturally, we need to perform also a run-time verification of
Dynamic Semantic Composability.

61

COMPOSITION OF SEMANTICALLY ENABLED GEOSPATIAL WEB SERVICES

ù

The condition Q1 ⇒ P2 suffices to ensure composition validity; however it is not a necessary
condition. Even when Q1 6⇒ P2, the two services can compose a valid service. In Chapter 4, we
also discussed the existence of false negatives in Static Syntactic Composability. Also, the existence
of false positives inherently comes with compile-time verification. As stated before, we cannot
verify all preconditions at compile-time, such as those related to the state of the service. Therefore,
at compile-time, we consider a relaxed precondition that only takes into account terms that are
verifiable at compile-time. With this relaxed precondition, we cannot ensure the absence of run-
time errors.

The composition in Equation (5.2) has one shortcoming in the analyses of web service com-
position correctness: we cannot reason about value hand-over between the output of one service
and the input of the next service in their composition. To derive a stronger result, Section 5.2.3
defines a relation between the Hoare triple and the inputs and outputs of the service.

5.2.3 Inputs and Outputs

In this section, we extend the instruction notation to represent explicitly the inputs and outputs
of a service and develop methods to manipulate pre- and postconditions based on the interaction
between services. We use the same notation for inputs and outputs of a service introduced in
Chapter 4, with the modification that we can omit types. Moreover, we extend the notation to
allow optional inputs, which may be associated with a default value. Optional inputs are repre-
sented with the notational convention ?i Ì¹¹ d, where the left superscript ? indicates the input is
optional, and d is the default value associated. Below, in the case that the inputs or outputs are not
interesting for a particular example they are omitted. The inputs of the service C with optional
input ik and associated default value d is denoted as C : 〈i1, . . . , ?ik Ì¹¹ d, . . .〉 � 〈. . .〉.

We denote a service composition by indicating the component services and the value hand
over indication. Here, value hand over indication is a relationship between an output identifier of
a service and the input identifier of another. At run-time this indication realizes into data trans-
ferring between the services. Let C1 and C2 be services such that C1 : 〈. . .〉 � 〈o1, . . .〉 and
C2 : 〈i1, . . .〉 � 〈. . .〉, the notation C2;C1(o1 � i1) indicate that the services C1 and C2 are
composed with a value hand over indication between o1 and i1.

In this section, we present a series of term rewriting rules that allow the verification of the
composability when the composition includes multiple services, and different value hand over
patterns between them. In the case of a composition of two services, by Equation (5.2) we need to
evaluate the implication relation between the postcondition of the first service and the precondi-
tion of the second service. Naturally both services will use different variable names to define their
pre- and postconditions, and first we need to rename the variable names accordingly to the value
hand over interaction. The rule Assertion alias performs the variable renaming.

Definition 5.5 (Assertion alias). LetC2;C1(o1 � i1, . . . on � in,) be a composition between two
services, with hand over of data fromC1 toC2, and let {P}C1{Q}. The assertion alias rename the
variables ofQ based on the value hand over indication withC2 is denoted by [o1/i1; . . . ; on/in]Q.

This renamed postcondition is used for the evaluation of composability.

Example 5.3. Let getAccidents and computeConvexHull be services such that getAccidents : 〈. . .〉 �
〈pnt〉, and computeConvexHull : 〈ftr〉 � 〈. . .〉, where pnt and ftr are feature collections with a
geometry geom. Figure 5.1 shows the relation between inputs and outputs of services getAccidents
and computeConvexHull.

The postcondition for getAccidents is:

62

COMPOSITION OF SEMANTICALLY ENABLED GEOSPATIAL WEB SERVICES

Figure 5.1: Simple relation between inputs and outputs of two services

Q1 ≡ pnt.geom↑crs = “http://www.opengis.net/def/crs/EPSG/0/4326” ∧
pnt.geom↑bbox = [5.12, 52.77, 5.53, 53.24] ∧
pnt.geom↑bboxFormat = “GeoJSON” ∧
pnt.geom↑bboxCrs = “http://www.opengis.net/def/crs/EPSG/0/4326” ∧
pnt.geom↑dimension = [“x”, “y”]

The precondition for computeConvexHull is:

P2 ≡ ftr .geom↑dimension = [“x”, “y”]

The composition is represented by getAccidents; computeConvexHull(ftr � pnt). To this
composition be valid, is sufficient (by equation 5.2) that Q1 ⇒ P2. Both conditions use differ-
ent variables, being necessary to rename them before evaluate the composability. Based on the
interaction between the input and output we apply the assertion alias on Q1:

ftr .geom↑crs = “http://www.opengis.net/def/crs/EPSG/0/4326” ∧
ftr .geom↑bbox = [5.12, 52.77, 5.53, 53.24] ∧
ftr .geom↑bboxFormat = “GeoJSON” ∧
ftr .geom↑bboxCrs = “http://www.opengis.net/def/crs/EPSG/0/4326” ∧
ftr .geom↑dimension = [“x”, “y”]

Now the variable names are consistent, and we can evaluate the precondition. By Equation 5.3
we have that the services are composable.

ù

Next, we present the conjunction rule. It defines how to assess a precondition when connec-
tions exist that arise from outputs of multiple services.

Definition 5.6 (Conjunction). Let C0, . . . , Cw be services in a composition such that C1, . . . , Cw

hand over values toC0. And consider the Hoare triples {Pk}Ck {Qk} for k = 1, . . . , w. To verify
this composition is necessary to derive a combined postcondition for the servicesC1, . . . , Cw. The
conjunction rule defines that combined postcondition used for the evaluation of the composability
is:

Q1 ∧Q2 ∧ · · · ∧Qw (5.9)

63

COMPOSITION OF SEMANTICALLY ENABLED GEOSPATIAL WEB SERVICES

Example 5.4. Let getRoads, getNeighbourhoods, and clipFeatures be services such that:

getRoads : 〈. . .〉 � 〈rd : P〈geom : linestring〉〉

getNeighbourhoods : 〈. . .〉 � 〈ftr : P〈geom : polygon〉〉

clipFeatures : 〈ftr : P〈geom : geometry〉, clipper : P〈geom : polygon〉〉 � 〈. . .〉

Figure 5.2 shows the relation between inputs and outputs of services getRoads, getNeighbour-
hoods and clipFeatures.

Figure 5.2: Composition case with a conjunction of two services

The postcondition for getRoads is:

Q1 ≡ rd.geom↑crs = “http://www.opengis.net/def/crs/EPSG/0/4326” ∧
rd.geom↑bbox = “POLYGON((3.2 50.7, 7.01 50.7, 7.01 53.5, 3.2 53.5, 3.2 50.7))” ∧
rd.geom↑bboxFormat = “WKT” ∧
rd.geom↑bboxCrs = “http://www.opengis.net/def/crs/EPSG/0/4326” ∧
rd.geom↑dimension = [“x”, “y”]

The postcondition for getNeighbourhoods is:

Q2 ≡ ftr .geom↑crs = “http://www.opengis.net/def/crs/EPSG/0/28992” ∧
ftr .geom↑bbox = [3.15, 51.12, 5.96, 53.03] ∧
ftr .geom↑bboxFormat = “GeoJSON” ∧
ftr .geom↑bboxCrs = “http://www.opengis.net/def/crs/EPSG/0/4326” ∧
ftr .geom↑dimension = [“x”, “y”]

The precondition for clipFeatures is:

P3 ≡ ftr .geom↑crs = clipper .geom↑crs ∧
ftr .geom↑dimension = [“x”, “y”] ∧
clipper .geom↑dimension = [“x”, “y”]

The composition is represented by:

getRoads; getNeighbourhoods; clipFeatures〈ftr � rd, clipper � ftr〉

To verify the precondition of clipFeatures we need to combine the postcondition of getRoads
and getNeighbourhoods, which is done by the conjunction rule.

64

COMPOSITION OF SEMANTICALLY ENABLED GEOSPATIAL WEB SERVICES

ftr .geom↑crs = “http://www.opengis.net/def/crs/EPSG/0/4326” ∧
ftr .geom↑bbox = “POLYGON((3.2 50.7, 7.01 50.7, 7.01 53.5, 3.2 53.5, 3.2 50.7))” ∧
ftr .geom↑bboxFormat = “WKT” ∧
ftr .geom↑bboxCrs = “http://www.opengis.net/def/crs/EPSG/0/4326” ∧
ftr .geom↑dimension = [“x”, “y”] ∧
clipper .geom↑crs = “http://www.opengis.net/def/crs/EPSG/0/28992” ∧
clipper .geom↑bbox = [3.15, 51.12, 5.96, 53.03] ∧
clipper .geom↑bboxFormat = “GeoJSON” ∧
clipper .geom↑bboxCrs = “http://www.opengis.net/def/crs/EPSG/0/4326” ∧
clipper .geom↑dimension = [“x”, “y”]

With the combined postcondition we can evaluate if the composition is valid. By Equations 5.4
and 5.6 we verify that the composition is not valid, due to differences in the coordinate system.

ù

One special case of assertion alias is when the composition has more than one connection
from a single output. In this case, the direct application of the alias rule would create a conflict of
variable names. To solve this case we introduce the Postcondition copy rule.

Definition 5.7 (Postcondition copy). Let C1 and C2 be services with {P1}C1 {Q1}, C1 : 〈. . .〉 �
〈o1, . . .〉, and C2 : 〈i1, . . .〉 � 〈. . .〉. In the case of a composition represented by C1;C2〈i1 �
o1, i2 � o1, . . . 〉, since the output o1 is used twice, the renaming of the variables is performed in
the following way:

[o1/i1; o1/i2; . . .]Q1 ≡ [o1/i1; . . .]Q1 ∧ [o1/i2; . . .]Q1 (5.10)

Example 5.5. Let getSatelliteImg, getDisplacements, and correctGeo be services such that:

correctGeo :〈raster : rectifiedgridcoverage, ref : rectifiedgridcoverage,

vectors : P〈geom : linestring〉〉 � 〈. . .〉
getSatelliteImg :〈. . .〉 � 〈img : rectifiedgridcoverage〉

getDisplacements :〈. . .〉 � 〈ftr : P〈geom : linestring〉〉

Figure 5.3 shows the relation between inputs and outputs of services getSatelliteImg, getDis-
placements, and correctGeo.

The service correctGeo receives as an input a raster and refines its georeference (better positional
quality), a reference grid used to resample the georeferenced raster, and a set of vectors which
represent the control vectors to improve the raster planimetric accuracy. This example service is
based on the transformer RubberSheeter from FME [88]. The postcondition for getSatelliteImg
is:

Q1 ≡ img↑crs = “http://www.opengis.net/def/crs/EPSG/0/28992” ∧
img↑cellSizeX = 5 ∧
img↑cellSizeY = 5

65

COMPOSITION OF SEMANTICALLY ENABLED GEOSPATIAL WEB SERVICES

Figure 5.3: Composition case where a postcondition copy is needed

The getDisplacements feature service returns a set of 2-points linestring lines, where the
start point represents the original coordinates and the end point the corrected coordinates. The
postcondition for getDisplacements is:

Q2 ≡ ftr .geom↑crs = “http://www.opengis.net/def/crs/EPSG/0/28992” ∧
ftr .geom↑dimension = [“x”, “y”]

The precondition for correctGeo is:

P3 ≡ raster↑crs = vectors.geom↑crs ∧
raster↑crs = ref ↑crs ∧
vectors.geom↑dimension = [“x”, “y”]

The composition is denoted by:

getSatelliteImg; getDisplacements; correctGeo〈raster � img, ref � img, vectors � ftr〉

Since is a repetitive use of the output img, we need to apply the postcondition copy rule:

raster↑crs = “http://www.opengis.net/def/crs/EPSG/0/28992” ∧
raster↑cellSizeX = 5 ∧
raster↑cellSizeY = 5 ∧
ref ↑crs = “http://www.opengis.net/def/crs/EPSG/0/28992” ∧
ref ↑cellSizeX = 5 ∧
ref ↑cellSizeY = 5

To verify the composition is still needed to apply the conjugation operation.

raster↑crs = “http://www.opengis.net/def/crs/EPSG/0/28992” ∧
raster↑cellSizeX = 5 ∧
raster↑cellSizeY = 5 ∧
ref ↑crs = “http://www.opengis.net/def/crs/EPSG/0/28992” ∧
ref ↑cellSizeX = 5 ∧
ref ↑cellSizeY = 5 ∧
vectors.geom↑crs = “http://www.opengis.net/def/crs/EPSG/0/28992” ∧
vectors.geom↑dimension = [“x”, “y”]

66

COMPOSITION OF SEMANTICALLY ENABLED GEOSPATIAL WEB SERVICES

By Equations 5.4 and 5.6 we verify that the composition is valid.
ù

The Assertion alias rule is the basis for a consistent evaluation of a composition, which allows
a meaningful link between the free variables of the postcondition and precondition. However not
necessarily all outputs of one service will be used as input to the next service in the composition.
To remove variables that are not part of the value hand over of the postcondition we define the
Postcondition projection rule.

Definition 5.8 (Postcondition projection). LetC be a service such that {P}C{Q}, and the outputs
are:

C : 〈. . .〉 � 〈o1 : τ1, . . . , on : τn〉

And let K = {ok1 , . . . , okm} be a subset of the outputs of C. The projection of the postcon-
dition Q with scope K is denoted by:

∃ok1 : τk1 . . . ∃okm : τk1 | Q (5.11)

Example 5.6. Let intersectFeatures and calculateArea be services such that:

intersectFeatures :〈ftr : P〈geom : geometry〉, filter : P〈geom : geometry〉〉
� 〈passed : P〈geom : geometry〉, failed : P〈geom : geometry〉〉

calculateArea :〈ply : P〈geom : polygon〉〉 � 〈. . .〉

Figure 5.4 shows the relation between inputs and outputs of services intersectFeatures and cal-
culateArea.

Figure 5.4: Composition case where postcondition projection is needed

The postcondition for intersectFeatures is:

Q ≡ passed.geom↑crs = ftr .geom↑crs ∧
failed.geom↑crs = ftr .geom↑crs ∧
passed.geom↑dimension = ftr .geom↑dimension ∧
failed.geom↑dimension = ftr .geom↑dimension ∧
within(passed.geom↑bbox, filter .geom↑bbox) ∧
within(failed.geom↑bbox, ftr .geom↑bbox)

67

COMPOSITION OF SEMANTICALLY ENABLED GEOSPATIAL WEB SERVICES

The composition is represented by intersectFeatures; calculateArea〈ply � passed〉. Applying
postcondition projection and assertion alias the postcondition becomes:

∃ failed : P〈geom : geometry〉 | ply.geom↑crs = ftr .geom↑crs ∧
failed.geom↑crs = ftr .geom↑crs ∧
ply.geom↑dimension = ftr .geom↑dimension ∧
failed.geom↑dimension = ftr .geom↑dimension ∧
within(ply.geom↑bbox,filter .geom↑bbox) ∧
within(failed.geom↑bbox, ftr .geom↑bbox)

Which, by the existential elimination (equation 5.5), is simplified to:

ply.geom↑crs = ftr .geom↑crs ∧
ply.geom↑dimension = ftr .geom↑dimension ∧
within(ply.geom↑bbox,filter .geom↑bbox)

ù

Remark. The goal of postcondition projection is to bind the variables that are not part of the
composition.

One not necessarily needs to fill all the inputs of a service. The input can be optional, with
a default value, or completely omitting its use. In the latter case, one needs to variables of the
precondition that are not part of the value hand over. To accomplish this goal, we define the
Precondition projection rule.

Definition 5.9 (Precondition projection). Let C be a service with {P} C {Q}, and:

P : 〈i1 : τ1, . . . , in : τn〉 � 〈. . .〉

And letK = {ik1 , . . . , ikm} be a subset of the inputs ofC. The projection of the precondition
P with the scope K is denoted by:

∃ik1 : τk1 . . . ∃ikm : τkm | P (5.12)

Example 5.7. Let getEmergencyCenters and computeVoronoi be services such that:

computeVoronoi :〈ftr : P〈geom : point〉, ?bb : bbox〉 � 〈. . . 〉
getEmergencyCenters :〈. . .〉 � 〈centers : P〈geom : point〉〉

Figure 5.5 shows the relation between inputs and outputs of services getEmergencyCenters and
computeVoronoi.

The postcondition for getEmergencyCenters is:

Q1 ≡ centers.geom↑crs = “http://www.opengis.net/def/crs/EPSG/0/28992” ∧
centers.geom↑bbox = [3.3421, 50.7666, 5.132, 51.0012] ∧
centers.geom↑bboxFormat = “GeoJSON” ∧
centers.geom↑bboxCrs = “http://www.opengis.net/def/crs/EPSG/0/4326” ∧
centers.geom↑dimension = [“x”, “y”]

68

COMPOSITION OF SEMANTICALLY ENABLED GEOSPATIAL WEB SERVICES

Figure 5.5: Composition case with an optional input

The computeVoronoi service can receive a bounding box for the Voronoi diagram calculation.
If it does not receive such, it will calculate an appropriate bounding box. The precondition for
computeVoronoi is:

P2 ≡ within(ftr .geom↑bbox, bb) ∧
bb↑crs = ftr .geom↑crs ∧
ftr .geom↑dimension = [“x”, “y”] ∧
bb↑format = “GeoJSON”

The composition is represented by:

getEmergencyCenters; computeVoronoi〈ftr � centers, ?bb〉
Since no value was given to ?bb, for the evaluation of the composition the precondition of

computeVoronoi has to be projected, becoming:

∃ bb : bbox | within(ftr .geom↑bbox, bb) ∧
bb↑crs = ftr .geom↑crs ∧
ftr .geom↑dimension = [“x”, “y”] ∧
bb↑format = “GeoJSON”

Which by the existential elimination (equation 5.5) is simplified to:

ftr .geom↑dimension = [“x”, “y”]
Moreover, by equation 5.3 we have that the services are composable.

ù

The case of optional input where the default information is available is simpler and does not
require precondition projection.

Example 5.8. Consider the service buffer : 〈ftr, distance, ?unit Ì¹¹ “meters”〉 � 〈. . .〉 and the
getEmergencyCenters service described in the last example. In the case of a composition:

getEmergencyCenters; buffer〈ftr � centers, distance � 500, ?unit〉
Since no value was given to unit and a default value exists, the composition is represented by:

buffer〈ftr � centers, distance � 500, unit � “meters”〉
ù

69

COMPOSITION OF SEMANTICALLY ENABLED GEOSPATIAL WEB SERVICES

So far, in all defined compositions, the inputs are bound to a single output, which is not true
in all cases. The rule Precondition copy addresses the case of multiple values hand over to a single
input. This rule is applied before the alias rule to avoid conflict of variable names.

Definition 5.10 (Precondition copy). LetC be a service with {P}C{Q} andC : 〈i1, . . .〉 � 〈. . .〉,
and let v1 and v2 be valid inputs. In the case of a compositionC〈i1 � v1, i1 � v2, . . . 〉, to evaluate
the composition we consider the precondition as:

[i1/1i1]P ∧ [i1/2i1]P (5.13)

Where 1i1 and 2i1 are auxiliary variables. In addition, the composition relation is rewritten as
C〈1i1 � v1, 2i1 � v2, . . . 〉

Example 5.9. Consider the services getVegetation, getForest and dissolveFeatures such that:

dissolveFeatures :〈ply : P〈geom : polygon〉〉 � 〈. . . 〉
getVegetation :〈. . .〉 � 〈veg : P〈geom : polygon〉〉

getForest :〈. . .〉 � 〈ftr : P〈geom : polygon〉〉
Figure 5.6 shows the relation between inputs and outputs of services getVegetation, getForest

and dissolveFeatures.

Figure 5.6: Composition case where a precondition copy is needed

The precondition for getVegetation is:

Q1 ≡ veg.geom↑crs = “http://www.opengis.net/def/crs/EPSG/0/28992” ∧
veg.geom↑bbox = [3.3, 50.7,−1.3, 5.1, 51.3, 17.4] ∧
veg.geom↑bboxFormat = “GeoJSON” ∧
veg.geom↑bboxCrs = “http://www.opengis.net/def/crs/EPSG/0/4326” ∧
veg.geom↑verticalDatum = “.../normaalAmsterdamsPeil” ∧
veg.geom↑dimension = [“x”, “y”, “z”]

The precondition for getForest is:

Q2 ≡ ftr .geom↑crs = “http://www.opengis.net/def/crs/EPSG/0/28992” ∧
ftr .geom↑bbox = [3.1, 50.6, 3.85, 51.9] ∧
ftr .geom↑bboxFormat = “GeoJSON” ∧
ftr .geom↑bboxCrs = “http://www.opengis.net/def/crs/EPSG/0/4326” ∧
ftr .geom↑dimension = [“x”, “y”]

70

COMPOSITION OF SEMANTICALLY ENABLED GEOSPATIAL WEB SERVICES

And the precondition for dissolveFeatures is:

P3 ≡ ply.geom↑dimension = [“x”, “y”]

The composition is represented by

getVegetation; getForest; dissolveFeatures〈ply � veg, ply � ftr〉

Since there is a repetitive use of the input ply there is a need of precondition copy, which alters
the relation between inputs and outputs to:

dissolveFeatures〈ply1 � veg, ply2 � ftr〉

And the precondition to the evaluation of the composition becomes:

ply1 .geom↑dimension = [“x”, “y”] ∧
ply2 .geom↑dimension = [“x”, “y”]

And by applying the conjunction rule the combined postcondition of getVegetation and get-
Forest becomes:

ply1 .geom↑crs = “http://www.opengis.net/def/crs/EPSG/0/28992” ∧
ply1 .geom↑bbox = [3.3, 50.7,−1.3, 5.1, 51.3, 17.4] ∧
ply1 .geom↑bboxFormat = “GeoJSON” ∧
ply1 .geom↑bboxCrs = “http://www.opengis.net/def/crs/EPSG/0/4326” ∧
ply1 .geom↑verticalDatum = “.../normaalAmsterdamsPeil” ∧
ply1 .geom↑dimension = [“x”, “y”, “z”] ∧
ply2 .geom↑crs = “http://www.opengis.net/def/crs/EPSG/0/28992” ∧
ply2 .geom↑bbox = [3.1, 50.6, 3.85, 51.9] ∧
ply2 .geom↑bboxFormat = “GeoJSON” ∧
ply2 .geom↑bboxCrs = “http://www.opengis.net/def/crs/EPSG/0/4326” ∧
ply2 .geom↑dimension = [“x”, “y”]

Which by Equation 5.6 is not a valid composition, due to the invalid dimension in the input
getVegetation.

ù

In practice, the presented rules are used in combination. If f and g are rules, one needs to
verify whether f ◦ g is valid and whether f ◦ g = g ◦ f . This helps to understand when and how
to apply those rules in the case where one requires multiple rules.

Only in three cases of f◦g is not valid: Alias then Postcondition Copy; Alias then Precondition
Copy; and Postcondition Copy then Precondition Copy. They are not valid due to a conflict in
variable names. As a general recommendation, the alias rule is performed last in all cases, and the
precondition copy first. For all valid cases, it is trivially true that f ◦ g = g ◦ f .

5.2.4 Conditional, Subgraph, and Loop

Chapter 3 defines the conditional node with one input and two outputs, which creates an exclusive
disjunction in the graph. It allows the evaluation of a boolean expression about the variables of its
input at run-time. The boolean expression is assigned to the conditional node upon its creation,

71

COMPOSITION OF SEMANTICALLY ENABLED GEOSPATIAL WEB SERVICES

and this conditional is evaluated once at run-time. In the case the expression evaluates to true, the
output path true is chosen. In the case it evaluates to false, the path false is chosen. This operator
does not behave in the same way as a service because its two output paths (true or false) have
different postconditions.

Suppose C : 〈i〉 � 〈true, false〉 a conditional node with an associated boolean expression B,
and an input S such that {P} S {Q} with S : 〈. . .〉 � 〈o1, . . .〉. And consider the composition
S;C(i � o1), we define the postcondition of the output path true asQ∧B, and the postcondition
of false as Q ∧ ¬B.

This is especially useful when a postcondition of a service is of the formQ = Q1 ∨Q2. In this
case, one can associate the expression Q1 with the conditional node, in which the postcondition
of the composition in the output path true becomes:

Q ∧Q1 ≡ (Q1 ∨Q2) ∧Q1 ≡ Q1

and for the output path false it becomes Q2.
Chapter 3 also introduces subgraph nodes, a service node that can be associated with paramet-

ric subgraphs. Parametric graphs are graphs with one or more input parameter node, and one or
more output parameter node. An input parameter node can be connected to one or more services
in the subgraph. We define the postcondition of an input parameter node as the conjunction of
the preconditions of all connected services. The reason is that the input parameter must be han-
dover a valid value for all connected services, meaning that it must fulfill all the preconditions
simultaneously.

An output parameter node can be connected to only one service in the subgraph. We define
the precondition of the output parameter as the postcondition of the connected service since the
service that is connected to it must hand over a valid value. We define the precondition of the
subgraph node as the postcondition of the input parameter node. Moreover, the postcondition of
the subgraph node as the precondition of the output parameter node.

Chapter 3 also defines loop nodes. The loop nodes are also associated with parametric graphs,
and the pre- and postcondition definition behaves in a similar way as described for subgraph nodes.
For the loop Iterate Inputs, we can define the precondition in the same way as in subgraph. How-
ever, the postcondition is defined per output (such as in a conditional), and each of the postcondi-
tions is the precondition of the correspondent output parameter node.

For the loop iterate sets, let Is be a iterate multivalue node such as Is : 〈i〉 � 〈o〉, where i
and o are sets. The correspondent input parameter to i in the parametric graph only refers to one
element of the set. Let T be the postcondition of the of the input parameter. The precondition
for the entire set is ∀x ∈ i | T . Let R be the precondition of the output parameter correspondent
to o, it also only refers to one element of the set. In this way the postcondition for the iterate set
node is ∀x ∈ o | R.

For the loop iterate multivalue, let Im be a iterate multivalue node such as Im : 〈i, values〉 �
〈o〉. The precondition for iterate multivalue is defined as the conjunction between the precondi-
tion inferred for i and for values. The precondition for i is defined as the postcondition for the
correspondent input parameter node in the parametric subgraph. Let T1 be this precondition. In
the case of the values input, the correspondent input parameter node only refer to one element of
this set, let T2 be its postcondition. The precondition for the entire set is ∀x ∈ values | T2. In this
way the precondition for the iterate multivalue node is T1 ∧∀x ∈ values | T2. The postcondition
is defined directly from the output parameter node.

72

COMPOSITION OF SEMANTICALLY ENABLED GEOSPATIAL WEB SERVICES

5.3 SEMANTIC COMPOSABILITY

Semantic Composability addresses the meaning of the data and the computational processes and
aims to verify whether the combination of processes can derive a meaningful result or even one
that is the intended result of the user. It is built on the concept of semantic interoperability, the
ability of independently defined services to exchange information in an unambiguous way, which
allows a “shared understanding” of data and functionality. To verify Semantic Composability, and
for services to be considered semantically interoperable, it is needed that all the components in a
service composition are semantically enabled. A service is considered semantically enabled if it has
semantic information associated with the provided data and metadata.

Semantic Composability can be static or dynamic. We define different categories of Static
Semantic Composability based on which information of the service is semantically enabled: In-
put/Output (I/O), Attribute, Service.

The I/O Semantically Composable category uses semantic information associated with inputs
and outputs of services to prevent unexpected behavior of processes at the thematic level. For ex-
ample, suppose we operate a process floodRisk, which calculates the risk of flood in a particular area
based on the geometry of the river (linestring), the soil types, the digital surface model (DSM),
and rainfall data. A client can provide road data as an input instead of river data, in such a way that
it also satisfies the Static and Dynamic Syntactic Composability. The process will run without
errors. However, the result will not be meaningful, i.e., it will be semantically invalid. To prevent
such cases, we complement inputs and outputs with semantic information. This information can
be materialized with the use of an ontology, a formal description of a conceptualization [89], spec-
ifying concepts and relationships. Languages such as Web Ontology Language (OWL) [90] and
Resource Description Framework (RDF) [91] allow the organization of knowledge in hierarchical
classes and define relationships between them. Examples relationships are equivalentClass, where
two classes represent the same concept, and subClassOf, where one class inherits the characteristics
of its superclass.

RDF expresses statements in a triple form, consisting of a subject, a predicate, and an ob-
ject. For example, we can state that the Rhine belongs to the class River, this relation is expressed
in Turtle syntax [92] as Rhine rdfs:type River where rdfs is an RDF vocabulary. An RDF vo-
cabulary is used to uniquely identify the context of classes and relationships. It is a collection
of Internationalized Resource Identifiers (IRI) with a corresponding namespace prefix. Exam-
ples vocabularies are rdf, rdfs, owl dbpedia, ogc, schema, and agrovoc. The notation dbpedia:River
states that the class River belongs to the vocabulary dbpedia, and, as the IRI for the dbpedia vo-
cabulary is “http://dbpedia.org/ontology/”, information about the class River can be found at
“http://dbpedia.org/ontology/River”.

If the orchestration engine cannot match the semantics of the input and output (by equivalent-
Class or subClassOf), the services are considered not to be composable.

Example 5.10. Consider the processing service floodRisk : 〈river, soil, dsm, rainfall〉 � 〈risk〉.
Semantics are added to the inputs by the use of OWL in the following way:

river owl:equivalentClass dbpedia:River
soil owl:equivalentClass dbpedia:Soil
dsm owl:equivalentClass ogc:DSM
rainfall owl:equivalentClass agrovoc:Rainfall

Suppose we have an input with owl:equivalentClass BraidedRiver, such that:

BraidedRiver rdfs:subClassOf dbpedia:River,

73

COMPOSITION OF SEMANTICALLY ENABLED GEOSPATIAL WEB SERVICES

since BraidedRiver is a subclass of River it can be used instead of it, in this way it is a valid input.
Analogously, suppose an input with owl:equivalentClass schema:RiverBodyOfWater, such that:

schema:RiverBodyOfWater owl:equivalentClass dbpedia:River

since the classes is equivalent, it is also a valid input.
ù

The Attribute Semantically Composable category in Semantic Composability associates seman-
tics to attributes of inputs and outputs. Observe that for previous levels of composability, we did
not define any operator to rename attributes. In practice, when composing services, one may use
attributes that represent the same concept under different names, due to language differences or
institutional conventions. For example, one can define the attribute that represents the geometry
of the feature as geom, geometry or geometria (Portuguese). This is obviously very common in data
exchange applications, and it is an unreasonable expectation to work under a single convention for
each (semantic) attribute name.

To allow flexibility in the attribute names while maintaining identifiable meanings, the at-
tributes can be linked to an ontology. One can see attributes of a feature type as a relationship
in an ontology, which provides a formal description method to identify the meaning of that at-
tribute. Semantic Composability performs an alignment of ontologies that describes the attributes
of features, thereby standardizing the attribute names across the composition. This allows verifica-
tion of the relationship equivalentProperty across the defined service descriptions, and a collection
of ontologies known to the verification engine, and thus allowing to normalize the names of at-
tributes that represent the same concept.

This alignment of attribute names is performed immediately after the Structural Composabil-
ity verification, enabling verification of service types in the Static Syntactic Composability and
correct association of variables in Dynamic Syntactic Composability. After name normalization,
if the orchestration engine cannot match the attribute names, the services are considered to be not
composable, since one cannot verify the attributes in Static and Dynamic Syntactic Composabil-
ity. To the semantic alignment be scalable ideally it should not be embed in the processing service,
which turns the WPS complex by adding a reasoner, and adds an overhead by requiring every pro-
cess to start with a semantic alignment. The client should be able to verify the processing service
metadata, identifying which ontology it needs to align and send the data in the schema that the
service expects. Additionally, to perform this alignment most likely, it will need the assistance of
a Web Ontology Service (an ontology catalogue). This communication with the catalogue would
add another overhead to the processing service

Example 5.11. Let getRivers and simplifyLines be services such that Q1 is the getRivers postcon-
dition and P2 is the simplifyLines precondition. The service types, preconditions, postconditions,
and attribute semantics are:

getRivers : 〈 〉 � 〈 rvr : P〈name : string, length : real, the_geom : linestring〉 〉

Q1 ≡ rvr .the_geom↑crs = “http://www.opengis.net/def/crs/EPSG/0/4326” ∧
rvr .the_geom↑bbox = [5.12, 52.77, 5.53, 53.24] ∧
rvr .the_geom↑bboxFormat = “GeoJSON” ∧
rvr .the_geom↑bboxCrs = “http://www.opengis.net/def/crs/EPSG/0/4326” ∧
rvr .the_geom↑dimension = [“x′′, “y′′]

74

COMPOSITION OF SEMANTICALLY ENABLED GEOSPATIAL WEB SERVICES

name owl:equivalentProperty schema:name
length owl:equivalentProperty dbpedia:length
the_geom owl:equivalentProperty ogc:geometry

simplifyLines : 〈 ftr : P〈geom : linestring〉, tolerance : real 〉
� 〈 simplified : typeof(ftr) 〉

P2 ≡ ftr .geom↑dimension = [“x′′, “y′′] ∧
tolerance > 0

geom owl:equivalentProperty ogc:geometry

In the composition getRivers; simplifyLine(ftr � rvr , tolerance � 0.5), the precondition
cannot be evaluated, since the attribute names do not match. Also, type checking fails, due to at-
tribute name differences. Based on the semantic information, however, we can infer that the_geom
owl:equivalentProperty geom, and can rename the attributes accordingly.

ù

Remark. One should note that this evaluation is simple and does not require the use of an inference
engine. It only requires a graph traversal in edges of type equivalentProperty. This solution is just
applicable to a limited number of cases since, in the case of cross-community interoperability, the
concepts will most likely not match directly.

The next is the Service Semantically Composable category. It provides semantic information
about the overall functionality of a processing service. This category intends to study and allow
service substitution. Substitutability is classified as single service and multi-service modes. Single
service substitutability addresses the case that a particular service is not available during the compo-
sition execution, and equips the orchestration engine to find an equivalent service with the same
functionality. Multi-service substitutability addresses the case that an equivalent service was not
found, and multiple parts of the composition need to be added or redesigned to achieve overall
equivalent functionality.

To these ends, we need to link an ontology with the service based on the classification of its
functionality. Brauner [93] provides a useful general classification of geoprocessing functionality
for discovery in catalogue services. This classification provides semantics for a service category.
However, the work requires further extension into a full-fledged ontology. Services that are in an
equivalentClass or subClassOf relation are potential candidates for single service substitutability.

Apart from semantic comparisons at service category level, one needs to compare services
according to Static Syntactic Composability, applying the service subtyping mechanism discussed
in Chapter 4, in Dynamic Syntactic Composability, applying the rules of consequence mechanism
described in Section 5.2.1, and finally, one must have semantic equivalence in attributes and I/O
categories.

Multi-service substitutability is not discussed in this thesis, but certainly deserves later work.
The main concept that is required for multi-service substitutability is how a particular process
affects the semantics of its inputs, meaning that we need a mechanism that derives the semantics
of the output based on the semantics of the input and that of the operation. Once this is possible,
the orchestration engine can search for service combinations that provide the needed semantics.

Remark. The concept of substitutability can also be used in Qualitative Composability, where an
orchestration engine can substitute services to achieve better quality in the results, to complete
the process at better performance, and others. Also, Multi-service substitutability can be used for

75

COMPOSITION OF SEMANTICALLY ENABLED GEOSPATIAL WEB SERVICES

composition optimization, identifying parts of the workflow that generate equivalent data, and
that thus prevent the unnecessary execution of composition parts when that result is available.

For Dynamic Semantic Composability we will consider the semantics of a collection of ser-
vices abstracted as a subgraph. To specify the semantics of a workflow, we need the idea of semantic
propagation. It can be defined as the dynamic generation of the semantics of an output based on
the semantics of the inputs and the semantics of the executed process. Since the output of most
atomic operations does not have a specific meaning, the output semantics are better expressed by
an algebra that manipulates semantics. For example, if one applies a buffer operation to a road
feature, the output does not have any special meaning. However, we can express it for example
as swrlb:Buffer(roads, 50). The notation used was Semantic Web Rule Language (SWRL) [94], a
combination of OWL and RuleML, which allows a higher-level of abstraction for semantics. In
SWRL, the idea of Built-Ins is presented, which is a way of expressing semantics based on a func-
tion application.

Every processing service semantic introduced in the service level is considered a built-in and
the semantics of the generated output are expressed in terms of the built-ins and the semantics of
their inputs. One can chain such a process to express the semantics of a workflow. This idea was
not implemented in this thesis, and will require substantial study to allow standardized functional
semantics denotations.

Semantic Composability is also needed for automatic service composition. In this case, the client
expresses his requirements for the workflow, and the orchestration engine tries to find a service
or a composition that fulfills the client’s requirements. This concept is not explored in this thesis.
The main idea needed to achieve such automatic service composition is a notation to specify the
client requirements, which ideally should be generated automatically from a natural language de-
scription. An orchestration engine capable of verifying the four described categories of semantic
composability could create multiple possible workflows based on the given description. Another
challenge is to keep the search space under control when creating possible compositions that fulfill
the requirements.

5.4 SUMMARY

In this chapter, we discussed the last two levels of composability considered in this thesis. Dynamic
Syntactic Composability uses an extension of Hoare Logic that relates the inputs and outputs of a
service with its precondition and postcondition. We defined the most common variables used
in geospatial services, as well as five operations that allow the manipulation of precondition and
postcondition, based on the interaction between the inputs and outputs of the web services.

Semantic Composability addresses the meaning of the data and processes and tries to capture
the intended goal of the user. We discussed Semantic Composability in four different categories:
I/O, Attribute, Service, and Workflow. We provided a mechanism to normalize attribute names,
which removes the need for an attribute renaming method at all other levels of composability.
We also proposed a mechanism for service substitutability, based on a service classification by a
geo-operator thesaurus.

Chapter 6 discusses how the concepts defined in Chapters 4, 5, and 6 are serialized as JSON and
in Chapter 7 we discuss the implementation of the verification. Also, in Chapter 6, we discuss how
OGC services can be semantically enabled and how compositions can be shared in an interoperable
way.

76

COMPOSITION OF SEMANTICALLY ENABLED GEOSPATIAL WEB SERVICES

Chapter 6

Semantic Descriptions

6.1 INTRODUCTION

In this chapter, we present solutions to four different points of attention related to descriptions of
OGC services:

• the need for semantically enabled data and metadata.

• flexible machine-readable service functionality description.

• dynamic generation of metadata for WPS results.

• interoperable sharing of compositions.

The first issue is that OGC services are syntactically but not semantically interoperable. There
is a series of challenges in making OGC services semantically interoperable, requiring the exten-
sion of both metadata and data. Chapter 2 presents GeoJSON as the format for sharing geospatial
data in the proposed RESTful OGC services. However, this format lacks semantic information
and presents a series of incompatibilities with OGC services.

OGC standards are used in many domains which make predicting user requirements essen-
tially impossible. We thus need flexible and expansible metadata, which allows service functional-
ity to be expressed in any desired granularity. Ideally, such metadata should allow existing services
to extend their descriptions to meet OGC requirements. Those descriptions should allow an au-
tonomous client to use OGC web services without being specially programmed against each ser-
vice. In this thesis, those autonomous clients are called generic clients: clients that at run-time can
discover the service functionality without relying on human-readable documentation or having
standardized URLs.

Chapter 2 proposes service result of asynchronous WPS execution to be indistinguishable from
a WFS resource. For both resource types to be truly equivalent, they need to provide equivalent
metadata. Currently, WPS result metadata is static and does not depend on the inputs of the pro-
cess. Metadata should be dynamically generated for the results of an asynchronous WPS execution,
based on the inputs’ metadata and chaining rules provided by the WPS. The last point of attention
is how to share service compositions in an interoperable way. At present, orchestration of OGC
services is hard-coded in a WPS, or is described by the use of BPEL and WSDL. The latter makes
the composition process complex and requires a specialized tool chain.

In this chapter, we discuss how semantic descriptions can be defined and generated for geospa-
tial data, service metadata, and compositions. Section 6.2 addresses the use of JSON-LD to enhance
data and metadata with semantic descriptions. Also, we look into extending GeoJSON to be in
accordance with the WFS specification, and to be semantically enabled. Section 6.3 presents the
Hydra Core Vocabulary and describes integration with OWS metadata that provides machine-
readable and machine-interpretable service descriptions at a level of granularity that matches de-
veloper needs. Section 6.4 presents a mechanism of metadata propagation, which allows dynamic

77

COMPOSITION OF SEMANTICALLY ENABLED GEOSPATIAL WEB SERVICES

generation of metadata for WPS results, and consequently for compositions. Lastly, Section 6.5
presents a JSON Workflow notation to describe the web service composition in an interoperable
way.

6.2 SEMANTIC ENABLEMENT

OGC standards have made significant progress towards syntactic interoperability of services and
feature-level data access. However, they do not yet solve semantic heterogeneity problems [9]. In
this section, we discuss how OGC services can become semantically interoperable, meaning that
services can exchange information in an unambiguous way, with appropriate (deeper) understand-
ing of the meaning of the data [10]. Semantic interoperability allows the use of data in contexts
for which it was not originally created and for use by autonomous clients. These can then, for
example, reason over multiple service descriptions and assist a user in finding best-fitting services
given user requirements.

To achieve semantic interoperability, alternatives in Semantic Web Technology have been pro-
posed [95, 96]. The Semantic Web is an extension of the Web based on W3C standards that fa-
cilitate data sharing and re-use across applications by providing accurate and unambiguous defini-
tions with data schemas. One way of achieving the vision of the Semantic Web is Linked Data, a
group of best practices to publish and interlink structured machine-readable data on the web [11].
In summary, such best practices include standard identification of resources (URI); use of the Re-
source Description Framework (RDF) graph-based data model to structure and interlink data; and
use of the SPARQL Protocol and RDF Query Language (SPARQL), the standard query language
for RDF. One usually combines RDF with an ontology, a formal description of a conceptual-
ization [89], specifying concepts and relationships. RDF data combined with ontologies is highly
interoperable, being independent of syntax, and can provide unambiguous meaning for the objects
and properties.

The lack of semantically annotated services is considered one of the greatest problems to
achieve cross-community interoperability [97], and several works state the importance of seman-
tically enabling geospatial data and metadata [98, 99]. The report OGC Testbed 11 [97], recom-
mends that the semantic enablement of OGC services should focus on a RESTful implementation,
and the design proposed in this thesis matches that wish.

6.2.1 Previous Approaches

A series of works have attempted to adapt OGC services to provide semantically enabled data.
Zhang et al. [100] and Zhao et al. [101] use a conversion from SPARQL queries to WFS filter
encoding to query multiple WFS services at once from a single SPARQL endpoint. This solution
allows the semantic search of features, however, the data provided is not semantically enabled, and
the user needs to provide an appropriate SPARQL query. Conversely, Jones et al. [102] propose
the LOD4WFS Adapter, which converts WFS requests into SPARQL queries and translates the
RDF response into GML. This solution allows the WFS standard interface to provide Linked
Data. However, it does not improve in any respect the semantic issues of both data and metadata
of a WFS.

Janowicz et al. [103] propose two more types of services: Web Ontology Services (WOS) and
Web Reasoning Services (WRS). An existing WFS service is annotated by providing a link between
its data and the ontologies provided by the WOS. This solution potentially provides semantically
enabled data and descriptions, as well as semantic search and reasoning capabilities. However,
it follows the current implementation of OGC specifications and ignores current trends in web
technology. Therefore, a rather complex implementation can only arise.

78

COMPOSITION OF SEMANTICALLY ENABLED GEOSPATIAL WEB SERVICES

6.2.2 JSON-LD

To maintain consistency, ease of use, and alignment with contemporary technology, we desire
a JSON-based format capable of expressing semantics. We found five attempts of adding hy-
permedia support to JSON files: JSON Reference [104], HAL [105], Collection+JSON [106],
SEREDASj [107], and JSON-LD [108]. The first three address new media type formats are requir-
ing specific processing methods. SEREDASj takes a closer approach to plain JSON and allows to
transform the representation into RDF, but this project was eventually discontinued in favour of
JSON-LD. JSON-LD is a W3C recommendation and allows the serialization of Linked Data in
JSON. JSON-LD builds up from JSON and JSON-LD files are valid JSON files. Its simplicity
and direct compatibility with the JSON format make this format a good candidate for the pro-
posed services. Also, a Testbed 11 report [97] recommends that if the service is JSON-based and
RESTful, one should add semantics by using JSON-LD.

The only overhead created in JSON-LD is the addition of the @context property, which links
the attributes with the correspondent vocabulary. This context allows a mechanism similar to
namespace definitions in XML, by assigning each attribute to a dereferenceable URL, which unam-
biguously identifies that concept. JSON-LD objects allow a lossless roundtrip to the RDF model,
which makes the data interoperable while at the same time maintaining the ease to use and transfer
to the Web of the JSON format. The only exception of this conversion is data in the shape of a
list of lists. In this case, the processing complexity increases, and it was decided that the standard
should not allow such structures. We address this limitation in the next section. One should no-
tice that JSON-LD only permits the association of JSON properties with semantics, which means
that ontologies are still needed to express them. In [109], OGC proposes a lightweight ontology
for some spatial concepts. In this thesis, we use this ontology as the basis for expressing the se-
mantics of spatial concepts. The format also defines a series of attributes, all starting with the “@”
character. The three most common attributes are:

• @context: a JSON object containing the name of the attributes and the corresponding URL
that identifies the attributes semantics.

• @id: a string that holds the RDF node identifier. It must be a dereferenceable URL.

• @type: a string or array of strings that represents a dereferenceable URL, which identifies
the object semantics. Also, the @type attribute provides a linking mechanism, being an
alternative of XLink to JSON. With these linking capabilities, the proposed REST services
comply with the Hypermedia as the Engine of Application State (HATEOAS) constraint
that we presented in Chapter 2.

A framing API, which allows restructuring a JSON-LD file into a format more convenient for
the user or application, is also developed. Listing 6.1 presents an example of a JSON-LD repre-
sentation of a river feature. The attribute @id provides the URL where one can access the feature,
@type associates the semantics of the feature to the river ontology of DBpedia. The @context re-
lates attributes and the semantics, for example, the attribute name is associated with the concept of
a name in the Schema.org vocabulary. Lastly, for the attribute countries the @type attribute (line
15) is used to denote that each element is a link, in a similar way to XLink.

Listing 6.1: JSON-LD example
1 {
2 @context : {
3 name: "http :// schema .org/name",
4 xsd: "http :// www.w3.org /2001/ XMLSchema #",
5 uom: "http :// www. opengis .net/def/uom",

79

COMPOSITION OF SEMANTICALLY ENABLED GEOSPATIAL WEB SERVICES

6 length : {
7 @id: "http :// schema .org/ distance ",
8 @type ": "xsd: float ",
9 uom: "http :// www. opengis .net/ont/ measure / spatial /uom# Kilometer "

10 },
11 dbpedia : "http :// dbpedia .org/ ontology /",
12 dbinstance : "http :// dbpedia .org/page /"
13 countries : {
14 @id: "http :// schema .org/ nationality ",
15 @type : "@id"
16 }
17 },
18 river : {
19 @id: "http :// www. example .com/wfs/ rivers /5",
20 @type : " dbpedia : river "
21 name: " Amazon River ",
22 length : 6992,
23 countries : [" dbinstance : Brazil ", " dbinstance : Colombia ", " dbinstance :Peru", "

dbinstance : Ecuador "]
24 }}

We use JSON-LD as the main format for the proposed service for data and metadata sharing.
By combining it with ontologies, we turn OGC services into semantically enabled services. In the
next section, we define a GeoJSON extension based on JSON-LD, which enables spatial data to
be semantically enabled. Section 6.3 presents the Hydra Core Vocabulary, which uses JSON-LD
to provide semantic metadata to a service, describing its functionality.

6.2.3 GeoJSON Extension

Chapter 2 introduces GeoJSON as the preferred JSON format for serializing geospatial features,
and we present a series of disadvantages in its use. In this section, we introduce ExtGeoJSON, an
extension of GeoJSON that allows the representation of geospatial objects consistent with JSON-
LD, and GeoJSON.

The first problem that we address is how to add semantics to GeoJSON objects. To this end,
GeoJSON can be extended with JSON-LD principles. An important problem of using GeoJSON
as such is that one cannot efficiently encode a list of lists in RDF [110], and that this requires
a modification in GeoJSON or the JSON-LD parser. Gillies [111] discussed the GeoJSON-LD
standard, however, consensus on approach did not emerge. In this thesis, we propose the encoding
of the geometry in RDF in the WKT format. Since it is a string, the conversion does not create any
issues. Also, WKT is the most common used format for expressing geospatial features in Linked
Data, being part of the GeoSPARQL standard. One solution to achieve this without breaking
compatibility with both JSON-LD and GeoJSON is to create a custom type in the JSON-LD
standard that treats the value of the property as a string, essentially ignoring any complex parsing.
In this thesis we identify this JSON-LD type as jsonld:geoJsonCoords. A client that wants to make
use of the spatial coordinates in the RDF representation can use a custom parser that converts
objects of type jsonld:geoJsonCoords to WKT. As discussed in the previous section, to add semantics
to features, one can use the JSON-LD property @type.

The second problem is how to handle coordinate systems in GeoJSON. The latest draft
from GeoJSON advocates only the use of EPSG 4326, stating that allowing multiple coordi-
nate systems can disrupt interoperability. However, this statement goes against general expe-
rience and requirements from OGC standards. Therefore, in OGC service context GeoJSON
should be able to express geometries in any given coordinate system. The property crs has the
context “http://www.opengis.net/ont/spatial/crs” with possible values following the URL conven-
tion of OGC Name Type Specification for Coordinate Reference Systems [83]. For example:
“http://www.opengis.net/def/crs/OGC/1.3/CRS84”.

80

COMPOSITION OF SEMANTICALLY ENABLED GEOSPATIAL WEB SERVICES

The third problem is how to handle multiple measurement values in GeoJSON. Currently,
the specification does not mention measurement values. However, there is no restriction in the
dimension of the geometry, only restricting it to numeric values. GeoJSON-X [112] is a GeoJ-
SON extension that allows the representation of multiple measurement values. Those values can
have numeric or string types. The property extension was added to the geometries object, which
allows one to specify the identifiers of the measurement values. This approach is not valid Geo-
JSON according to the specification. However, it is compatible with current Leaflet and Open-
Layers implementation. We incorporate this approach and extend it to JSON-LD. We propose
the following context for the extension object “http://www.opengis.net/ont/spatial/measure”. It
is of type array of strings, where the strings provide dereferenceable identifiers. Table 6.1 exem-
plifies measurement values used in GPS Exchange Format (GPX) and TrackPointExtension and
extension of GPX defined by Garmin. The table was extracted from [112]. Listing 6.2 presents
an example of an ExtGeoJSON expression that represents a river, with a measurement value that
provides the depth, with an explicit coordinate system, and an “@id” indicating the location in the
WFS where it was originally accessed.

Table 6.1: Examples of measurement values

Value Description Source
atemp air temperature in degrees Celsius TrackPointExtension V1

cad cadence in revolutions per minute TrackPointExtension V1
depth diving depth in meters TrackPointExtension V1

hr heart rate in beats per minute TrackPointExtension V1
time time stamp (defined as xsd:dateTime in GPX 1.1) for an

individual geographic poin.
GPX 1.1

wtemp water temperature in degrees Celsius TrackPointExtension V1

Listing 6.2: ExtGeoJSON example
1 { @context : {
2 type: {
3 @id: "http :// www. opengis .net/ont/ geojson /type",
4 @type : "@id"
5 },
6 geometry : "http :// www. opengis .net/ont/ geojson / geometry ",
7 coordinates : {
8 @id: "http :// www. opengis .net/ont/ geojson / coordinates ",
9 @type : " jsonld : geoJsonCoords "

10 },
11 dbpedia : "http :// dbpedia .org/ ontology /",
12 line: "http :// www. opengis .net/ont/sf# LineString ",
13 feature : "http :// www. opengis .net/ont/ geojson / feature ",
14 extensions : {
15 @id: "http :// www. opengis .net/ont/ spatial / measure ",
16 @type : "@id"
17 },
18 crs: "http :// www. opengis .net/ont/ spatial /crs",
19 depth : "http :// www. opengis .net/ont/ spatial / measure / depth "
20 },
21 @id: "http :// www. example .com/wfs/ rivers /5"
22 type: " feature ",
23 @type : " dbpedia : river ",
24 crs: "http :// www. opengis .net/def/crs/OGC /1.3/ CRS84 ",
25 geometry : {
26 type: "line",
27 extensions : [" depth "],
28 coordinates : [[102.0 , 0.0, 0.5], [103.0 , 1.0, 0.8], [104.0 , 0.0, 0.7], [105.0 , 1.0,

0.4]]

81

COMPOSITION OF SEMANTICALLY ENABLED GEOSPATIAL WEB SERVICES

29 },
30 properties : {
31 name: " Igarape "
32 }}

The last problem is how to obtain efficient GeoJSON data transfer. The GeoJSON format
is not as efficient as binary encodings such as Shapefile or WKB. Nevertheless, GeoJSON is still
more efficient than GML 2.0 for simple data and is as efficient for complex data [113]. Several
approaches can be used to reduce the size of GeoJSON files. The first is to minify the GeoJSON
file. Libraries such as GeoJSON-minifier [114] perform a precision reduction and uses delta and
zigzag encoding to reduce the storage size of the coordinates. In general, it reduces the file size by
a factor of two to four. The obvious disadvantage is that it creates overhead on both server and
client to serialize and deserialize the object.

A relevant second approach is by compressing the GeoJSON file. The HTTP specification
recommends the use of Gzip to compress data transferred over the Web. Another compression
mechanism is GeoBuf. GeoBuf [115] is a lossless compression of GeoJSON data into a binary
format. It claims to make GeoJSON files six to eight times smaller, has fast en- and decoding, and
could potentially allow incremental reading of features. It is based on Google Protocol Buffers,
a language-neutral mechanism for serializing structured data into a compact binary wire format.
When compared, GeoBuf provides better compression than Gzip and also gives faster en- and
decoding. The data compression can assist in the reduction of bandwidth use in a service compo-
sition.

6.3 HYDRA CORE VOCABULARY

The literature presents an extensive list of service description languages. In this section, we discuss
the most relevant ones for use in OGC services and RESTful APIs. WSDL [116] is an XML-based
description of SOAP services. In its version 2.0, it was extended to describe RESTful services. It
can describe both REST and SOAP services, however, REST services should be described from
an RPC perspective. OWL-S [117] and WSMO [118] were two important initiatives in the area
of semantic descriptions for Web Services. Both predate the idea of Linked Data, and we are not
aware of any substantial real-world usage of these languages [119]. hRESTS [120] is a microformat
approach, meaning that the semantics are associated with HTML, not applying to OGC services.
Also, the descriptions are based on RPC semantics, not RESTful bindings. SA-REST [121] is
similar to hREST, however, it uses RDFa syntax for service descriptions, which is an extension of
HTML. SEREDASj [107]was created to address the problems of hRESTS and SA-REST, allowing
a RESTful description based on resources and HTTP-like semantics for interactions. It uses JSON-
like format for the description. The work in SEREDASj was discontinued in favour of the work
in JSON-LD [53].

Lanthaler, 2013 [122] presents the Hydra Core Vocabulary, which allows to model and de-
scribes RESTful services using JSON-LD and a specific vocabulary. The goal is to enable au-
tonomous clients to interact with the service. Hydra descriptions allow a client to discover the
functionality at run-time, removing the need of standardized URLs. In this way, a Hydra-enabled
service is truly self-described by the use of hypermedia controls, lowering the need for human-
readable documentation. Since Hydra is used to describe the API interface from Linked Data
Fragment datasets [123], more than 600,000 APIs are described by Hydra Core Vocabulary [124].

In this thesis, we adopt the Hydra Core Vocabulary to describe the metadata of services. Since
it uses JSON-LD, we maintain the consistency of formats in the services. Also, the use of Hydra
Core Vocabulary allows easier communication between OGC services and RESTful web services

82

COMPOSITION OF SEMANTICALLY ENABLED GEOSPATIAL WEB SERVICES

not in the OWS-family. We combine this vocabulary with standard OGC metadata, and a JSON
serialization of the concepts presented in Chapters 3, 4, and 5, which allows the services to have
enough metadata for the composition verification at compile-time.

Hydra adds two classes to the GetCapabilities document: supportedClass, a list of resources
available for the service, and supportedStatus, the description of the HTTP status code that the
client is expected to handle. The resource description contains information about the supported-
Operations, descriptions about the HTTP operations that one can perform on the resource, and
supportedProperties, the attributes that the resource supports. Also, the vocabulary completely
describes all the functionality of the service, allowing a client to discover it at runtime without
the need of external documentation. Also, by the use of template links, URL query parameters
can be documented. In this way, different operations and query parameters for each resource can
be documented. The complete specification can be accessed at [125]. Additionally to the Hydra
properties, we have added custom metadata related to precondition, postcondition, service types,
and semantics.

Example 6.1. Consider the service computeVoronoi with the following description:

computeVoronoi : 〈 ftr : P〈geom : point〉, bb : bbox 〉
� 〈 voronoi : typeof(ftr)⊕ 〈geom : polygon〉 〉

P ≡ within(ftr .geom↑bbox, bb) ∧
bb↑crs = ftr .geom↑crs ∧
ftr .geom↑dimension = [“x”,“y”] ∧
bb↑format = “GeoJSON”

Q ≡ voronoi.geom↑crs = ftr .geom↑crs ∧
voronoi.geom↑bbox = bb ∧
voronoi.geom↑dimension = [“x”,“y”] ∧
voronoi.geom↑bboxCrs = ftr .geom↑crs ∧
voronoi.geom↑bboxFormat = “GeoJSON”

Listings 6.3 and 6.4 exemplify the serialization of the description in JSON. The attributes
required and unique (lines 4 and 5 of Listing 6.3) refer to the conditions added to the input node
in Chapter 3, which specify whether the input is required for the execution of the process, and
whether multiple edges can connect to the input.

Listing 6.3: JSON representation for service type
1 inputTypes : {
2 bb: {
3 type: "BBOX",
4 required : true,
5 unique : true
6 },
7 ftr: {
8 type: {$set: { $record : {geom: " Point "}}},
9 required : true,

10 unique : true
11 }
12 },
13 outputTypes : {
14 voronoi : {
15 typePropagation : { $addAttrs : [
16 { $typeOf : " features "},
17 {geom: " Polygon "}
18]},

83

COMPOSITION OF SEMANTICALLY ENABLED GEOSPATIAL WEB SERVICES

19 type: {$set: { $record : {geom: " Polygon "}}}
20 }
21 }

Listing 6.4: JSON representation for pre- and postcondition
1 precondition : {
2 $and: [
3 {$eq: ["bb.crs","ftr.geom.crs"]},
4 {$eq: ["ftr.geom. dimension ",{ $literal : ["x","y"]}]},
5 {$eq: ["bb. format ",{ $literal : " GeoJSON "}]},
6 { $within : ["ftr.geom.bbox", "bb"]}
7]
8 },
9 postcondition : {

10 $and: [
11 {$eq: [" voronoi .geom. dimension ", { $literal : ["x","y"]]},
12 {$eq: [" voronoi .geom.crs","ftr.geom.crs"]},
13 {$eq: [" voronoi .geom.bbox","bb"]},
14 {$eq: [" voronoi .geom. bboxFormat ",{ $literal : " GeoJSON "}]},
15 {$eq: [" voronoi .geom. bboxCrs ","ftr.geom.crs"]}
16]
17 }

ù

Appendix C presents the JSON serialization for types, preconditions, and postconditions.
Chapter 7 describes a generic client capable of processing Hydra descriptions for OGC services,
which allow the dynamic creation of a user interface on the basis of the available service function-
ality.

6.4 METADATA PROPAGATION

In Chapter 2, we modified the WPS standard to ensure that the result of an asynchronous process
is indistinguishable from that of a WFS. For this to happen, it is needed that the metadata of the
result contains all the required metadata of a WFS resource. In the current WPS specification, the
metadata for the results is general and does not depend on the inputs of the process. We propose a
metadata propagation mechanism, which allows the dynamic metadata generation of WPS results.
This mechanism directly relates to the methods presented in Chapters 4 and 5.

We divide this mechanism into three parts: generation of JSON-LD Context, generation of
JSON Schema, and generation of general metadata. For the generation of JSON-LD context, the
WPS uses its service signature to modify the @context object from its inputs. This information can
be transferred with the input data or can be requested by the DescribeFeature operation discussed
in Chapter 2. We use the type propagation operators described in Chapter 4 to modify the JSON
Context of the inputs. The typeof operator indicates which inputs must provide the @context
object for metadata propagation. In case that an attribute is added to the output by the addAttrs
operator, the WPS service is required to provide the metadata for that attribute.

Example 6.2. Consider the service aggregate which receives two inputs: ref, a feature collection
with geometry polygon or multipolygon, and pnts a feature collection with geometry of type
point. The service has one output, agg, which returns the input ref with an added attribute
pntCount, which is the number of points inside each geometry. The service type and postcondition
are the following:

84

COMPOSITION OF SEMANTICALLY ENABLED GEOSPATIAL WEB SERVICES

aggregate : 〈 ref : P〈geom : union(polygon, multipolygon)〉, pnts : P〈geom : point〉 〉
� 〈 agg : typeof(ref)⊕ 〈pntCount : integer〉 〉

Q1 ≡ agg.geom↑crs = ref .geom↑crs ∧
agg.geom↑bbox = ref .geom↑bbox ∧
agg.geom↑dimension = [“x”,“y”] ∧
agg.geom↑bboxCrs = ref .geom↑bboxCrs ∧
agg.geom↑bboxFormat = ref .geom↑bboxFormat ∧
agg.pntCount ¾ 0

pntCount : “http://www.opengis.net/ont/measure/quantity#CountingUnit”

The typeof operator requires the context of the materialized input for ref, and the addAttrs
operator indicates that a new property pntCount is added to that context. Consider the following
service as input for ref :

neighborhoods : 〈 〉 � 〈 nbhd : P〈geom : polygon, name : string, population : integer〉 〉

Q2 ≡ nbhd.geom↑crs = “http://www.opengis.net/def/crs/EPSG/0/28992” ∧
nbhd.geom↑bbox = [3.3579, 50.7504, 7.2275, 53.5552] ∧
nbhd.geom↑dimension = [“x”,“y”] ∧
nbhd.geom↑bboxCrs = “http://www.opengis.net/def/crs/EPSG/0/4326” ∧
nbhd.geom↑bboxFormat = “GeoJSON”

1 { @context : {
2 type: {
3 @id: "http :// www. opengis .net/ont/ geojson /type",
4 @type : "@id"
5 },
6 geom: "http :// www. opengis .net/ont/ geojson / geometry ",
7 coordinates : {
8 @id: "http :// www. opengis .net/ont/ geojson / coordinates ",
9 @type : " jsonld : geoJsonCoords "

10 },
11 dbpedia : "http :// dbpedia .org/ ontology /",
12 polygon : "http :// www. opengis .net/ont/sf# Polygon ",
13 feature : "http :// www. opengis .net/ont/ geojson / feature ",
14 name: "http :// schema .org/name",
15 population : "http :// dbpedia .org/ ontology / populationTotal "
16 }}

The propagation mechanism will simply add the pntCount property to the @context object
and in this way it can accurately describe the feature schema.

ù

Remark. In this thesis, we do not take into account semantic propagation as discussed in Chapter 5.
In a system that realizes this, the output semantics will change, and this implies a change in the
@type property, which may require modification in the @context.

85

COMPOSITION OF SEMANTICALLY ENABLED GEOSPATIAL WEB SERVICES

The generation of the JSON Schema works analogously. The WPS service requests the JSON-
Schema of the relevant inputs, and based on the type propagation operators modifies the schema.
For the general metadata, we cover two cases: output type and postcondition. The output type
is generated by the mechanism of type propagation described in Chapter 4. When the inputs are
materialized, the output type can be evaluated. The WPS service must request metadata informa-
tion about the types of the materialized inputs. In the case of the example, the propagated output
type is:

P〈geom : polygon, name : string, population : integer, pntCount : integer〉

The postcondition can be evaluated using the postconditions of the inputs (which need to be
requested), and the rules presented in Chapter 5. In the example case, the propagated postcondition
is:

Q1 ≡ agg.geom↑crs = “http://www.opengis.net/def/crs/EPSG/0/28992” ∧
agg.geom↑bbox = [3.3579, 50.7504, 7.2275, 53.5552] ∧
agg.geom↑dimension = [“x”,“y”] ∧
agg.geom↑bboxCrs = “http://www.opengis.net/def/crs/EPSG/0/4326” ∧
agg.geom↑bboxFormat = “GeoJSON” ∧
agg.pntCount ¾ 0

The same mechanism can also be applied to derive metadata for a service composition in para-
metric workflows. Such metadata uses the metadata of the services connected to the input pa-
rameter and the output parameter. In this way, the mechanism of metadata propagation can be
repeatedly applied, deriving metadata for outputs of each processing service in a composition. The
metadata of the service connected to the output parameter is used as the metadata for the workflow.
Due to the resource-oriented architecture, the metadata of each output is independent.

It is also important to track the provenance of data generated by a workflow. This was not
addressed in this thesis. The Open Provenance Model [126] and the PROV-O [127] ontology are
possible candidates to be followed.

6.5 JSON-W

As OGC standards are based on the concepts of services and data bindings, they do not provide
any means of abstracting compositions. In this thesis, a composition is desired to be indistinguish-
able from a WPS from a metadata perspective, and to be indistinguishable from WFS from a data
access perspective. However, a specific application, an orchestration engine namely, is needed to
execute a composition. An orchestration engine receives as an input a composition representation,
and it handles the execution of each service, the transmission of the necessary data, the exception
handling, and it returns the results to the client. This section discusses an interoperable notation
that can be used for this purpose, with enough information to execute and verify a composition.

One important concern about workflow representation is interoperability. Ideally, the work-
flow representation can be used by different orchestration engines and graphical user interfaces. In
this thesis, we model the workflow in the Resource Description Framework (RDF) and then seri-
alize this model in the JSON-LD format. The use of RDF and ontologies ensure that one can share
workflows in an interoperable manner. By the use of JSON-LD framing, we ensure simplicity of
use and sharing on the Web without losing the expressiveness of RDF.

86

COMPOSITION OF SEMANTICALLY ENABLED GEOSPATIAL WEB SERVICES

Workflow representations such as Business Process Model and Notation (BPMN) are usually
defined in XML and cover an extensive variety of use cases such as conditional flow, message ex-
change, sub-process, event, and loop. We define a simple workflow notation in JSON-LD inspired
in the BPMN notation; it focuses on the definition of connections between inputs and outputs.
This simplification allows a concise notation that covers all example cases in this thesis. The pro-
posed language is conceptually different from BPEL, which focuses on message exchange and data
bindings. We focus on the modeling aspects, ensuring that the workflow is interoperable, and
complete information for the execution or verification of a composition.

Chapter 3 presents a formalization of a composition as a graph. The RDF model is a natu-
ral way of representing that graph, in which the triple subject – predicate – object can be seen as a
relationship between nodes in a graph. In this case, the subject and object are considered nodes
of the graph, and the predicates are edges. Aside the RDF representation, we also need an on-
tology to formalize the classes and properties described in RDF. The ontology can also be used
to verify whether a particular workflow in RDF is semantically correct. This model can both de-
scribe graphs and parametric graphs (as defined in Chapter 3). Parametric graphs described in RDF
model are called parametric workflows. Appendix D presents an example of the RDF serialization,
ontology, and JSON-LD context.

The RDF model is expressive, however, it is considered too complex to be handled by or-
chestration engines and applications directly. We make use of JSON-LD framing to do a lossless
conversion from RDF to a compact JSON-LD object. By providing a JSON-LD context, one can
translate the JSON-LD object back to the RDF graph representation. This notation is compact,
not explicitly creating nodes for inputs and outputs.

In JSON-LD, we describe the workflow with two properties: tasks and sequence flows. The
property tasks is an array containing task objects. A task represents a service with service, input,
and output nodes. The property sequence flows is an array containing sequence flow objects. A
sequence flow represents the edges of the graph; they define connections between ports (inputs and
outputs) of tasks. The task and sequence flow can be at any order; the Orchestration Engine should
evaluate the order in which services must be executed. This can be done by applying a topological
sorting algorithm on the graph structure [128]. We define nine properties for the task object:

• id:string a unique identifier within the workflow. This is required since the same service
can be used multiple times (for example an intersect WPS can be used in two parts of the
workflow). It is of type string.

• name:string a string which represents the tag of the service node.

• type:string a string which represents the type of the task. The possible values are: “WFS”,
“WPS”, “Literal”, “Conditional”, “Subgraph”, “Iterate Input”, “Iterate Sets”, “Iterate Multi-
value”, “Input parameter”, and “Output parameter”.

• inputs:array(string) an array of strings with the tags of the input nodes associated with
the service.

• outputs:array(string) an array of strings with the tags of the output nodes associated with
the service.

• url:string The URL of the service resource. This attribute is of type string, and can only
be used by tasks of type “WFS”, “WPS”, “Subgraph”, “Iterate Input”, “Iterate Sets”, and “Iterate
Multivalue”. In the case of the last four, the URL refers to the subgraph associated with the
loop.

87

COMPOSITION OF SEMANTICALLY ENABLED GEOSPATIAL WEB SERVICES

• value the value of a literal node, it can be of any valid JSON data type. Only a task of type
“Literal” can use this attribute.

• condition:record an JSON object representing a condition statement. Only a task of type
“Conditional” can use this attribute.

• reference:string a string representing the name of the input or output linked with the pa-
rameter. Only a task of type “Input parameter”, or “Output parameter” can use this attribute.

We define four properties for the sequence flow object:

• from:string the id of the task linked to the start point of the edge.

• to:string the id of the task linked to the end point of the edge.

• fromPort:string the output node tag linked to the start of the edge.

• toPort:string the input node tag linked to the end of the edge.

Listing 6.5 presents the JSON-W notation of the workflow for the graph presented in the
Figure 6.1.

Figure 6.1: Graph of a composition

Listing 6.5: JSON-W example
1 { tasks : [
2 {id :" task :0", name: " rivers ", type: "WFS", inputs : [], outputs : [" rivers "], url:

"http :// localhost :3001/ wfs/ rivers /nl. top10nl .111016252" },
3 {id :" task :1", name: " literal ", type: " Literal ", inputs : [], outputs : [" literal "],

value : 1000},

88

COMPOSITION OF SEMANTICALLY ENABLED GEOSPATIAL WEB SERVICES

4 {id :" task :2", name: " buffer ", type: "WPS", inputs : [" features "," distance ","unit"]
, outputs : [" buffered "], url: "http :// localhost :3000/ wps/ buffer /jobs"},

5 {id :" task :3", name: " buildings ", type: "WFS", inputs : [], outputs : [" buildings "],
url: "http :// localhost :3001/ wfs/ buildings "},

6 {id :" task :4", name: " intersects ", type: "WPS", inputs : [" filter "," features "],
outputs : [" passed ", " failed "], url: "http :// localhost :3000/ wps/ intersects /
jobs"}

7],
8 sequenceFlows : [
9 {from: "task :0", to: "task :2", fromPort : " rivers ", toPort : " features "},

10 {from: "task :1", to: "task :2", fromPort : " literal ", toPort : " distance "},
11 {from: "task :3", to: "task :4", fromPort : " buildings ", toPort : " features "},
12 {from: "task :2", to: "task :4", fromPort : " buffered ", toPort : " filter "}
13]}

Unlike BPEL, the proposed language does not specify the methods for communication and
message exchange, as the goal is only to model the composition. This simplification is applicable
in this thesis since all the component services are expected to be JSON-LD based RESTful OGC
services with Hydra Core Vocabulary metadata. As a recommendation for future work, the nota-
tion should be extended to define the transferred data format and the data access bindings of each
service explicitly.

We also apply the mechanism of metadata propagation discussed in the previous section to
compositions. By using this procedure, the metadata of each component service is propagated to
generate metadata of a parametric workflow. Additionally to automatically generate the metadata,
the creator of the workflow must specify information about the creation of the workflow, such as
name, keywords, and responsible party. This metadata is specified in the same way as in a WPS
service, and it allows the description of the datasets and operations used to create the workflow,
the provenance of the generated data, workflow discovery, substitutability of services, and seman-
tically aided search of component services during composition creation. In Chapter 7, we describe
and implement a Workflow CSW, capable of storing and sharing workflows and parametric work-
flows encoded in JSON-W.

To enable a more efficient verification of service composability, we include an additional at-
tribute, namely metadata. This attribute can be used within a task or in the root of the JSON-W
document. In the task object, it captures the service metadata of the resource as described by the
Hydra Core Vocabulary. The metadata property in the JSON-W root holds the metadata of the
workflow, which allows, for example, workflow discovery. In this thesis, we focus on the metadata
of parametric workflows generated by metadata propagation, which allows them to be used as a
component in another composition.

Bucchiarone and Gnesi [129] compares the main languages used to describe business process
composition, namely BPEL, BPML (deprecated, now BPMN), WSCI, WS-CDL, and DAML-S
(superseded by OWL-S). It uses eight criteria to evaluate the languages mentioned above, in which
we also evaluate JSON-W:

• Modelling collaboration: the interaction between services is modelled in terms of message
exchange. This is a basic function of every workflow language, and it is the basis of JSON-W.

• Modelling execution control: the ability to assemble individual web services in a composi-
tion. Also, a basic function of every workflow language.

• Representation of Role: component services play different roles in different execution stages.
This requirement relates to choreography, where each service is responsible for handling
data communication. JSON-W does not support the representation of role, meaning that
its execution needs to be by orchestration.

89

COMPOSITION OF SEMANTICALLY ENABLED GEOSPATIAL WEB SERVICES

• Transactions and Compensations: ability to manage transactions (atomic or not) and of
rollback effects of completed transactions in case of failure. The proposed language does
not support transactions, being left as recommended, future work.

• Exception handling: the language should provide a mechanism to handle cases where a ser-
vice does not respond or fails in execution. In this thesis, we hand this responsibility to
the orchestration engine, simplifying the workflow language to be a concern mostly about
modelling aspects.

• Semantic support: languages should enable semantic metadata to facilitate automatic com-
position and web service verification. In JSON-W, both the workflow and the components
can express the semantics of the operations and data. In this thesis, we use this semantic
information for automatic verification of the composition at compile-time.

The two remaining aspects are business agreement support and software support, which is not
applicable to the proposed language. Wohed at al. [130] evaluates BPEL, XLANG, WSFL, BPML,
WSCI considering 20 workflow patterns described in [131]. Table 6.2 was adapted from [130] to
include the evaluation for JSON-W. For definitions of each pattern, one can consult the workflow
pattern home page [132].

Table 6.2: Evaluation of workflow languages

Pattern
Language

BPEL XLANG WSFL BPML WSCI JSON-W
Sequence + + + + + +

Parallel Split + + + + + +
Synchronization + + + + + +
Exclusive Choice + + + + + +

Simple Merge + + + + + +
Multi Choice + - + - - +/-

Synchronizing Merge + - + - - +
Multi-Merge - - - +/- +/- -

Discriminator - - - - - -
Arbitrary Cycles - - - - - -

Implicit Termination + - + + + +
MI without Synchronization + + + + + +/-
MI with a priori compile-time

knowledge
+ + + + + +

MI with a priori run-time
knowledge

- - - - - +

MI without a priori run-time
knowledge

- - - - - -

Deferred Choice + + - + + -
Interleaved Parallel Routing +/- - - - - -

Milestone - - - - - -
Cancel Activity + + + + + -

Cancel Case + + + + + -

Some of the patterns worth a deeper discussion:

90

COMPOSITION OF SEMANTICALLY ENABLED GEOSPATIAL WEB SERVICES

• Exclusive Choice: we use conditional nodes to allow the creation of exclusive Choice pat-
terns.

• Simple merge: there is no need for a specific notation for simple merge since the Orchestra-
tion Engine can automatically infer the merge points in a well-formed graph.

• Multi-Choice: JSON-W does not directly support this pattern. However, it can be per-
formed by rewriting the composition using parallel execution and conditionals.

• Synchronizing Merge: the Orchestration Engine can infer the synchronization points in a
composition in a similar way to simple merge.

• Multi-merge: it is not supported by JSON-W, in this notation for each service execution one
service node must be provided. One possible workaround is the use of iterate input node.
However, it is not equivalent to the Multi-merge pattern in the general case.

• Discriminator: this pattern is not supported, however, it is an interesting extension. It al-
lows specifying the case where two or more processes run in parallel and control will con-
sider only the first result to be returned, with others being ignored. This allows the use case
of reducing the overall processing time of the workflow by performing an operation in two
different service endpoints.

• Arbitrary Cycles: this pattern is intentionally not supported, since it cannot be verified for
all cases that the loop will halt.

• MI without synchronization: in JSON-W one can simulate this pattern with the iterate set
node. This node necessarily synchronizes the results at the end of the execution. However,
one can insert the required operation inside the subgraph associated with the iterate set node,
achieving the same functionality.

• MI with a priori compile-time knowledge: in JSON-W we build this pattern with the iterate
multivalue node.

• MI with a priori run-time knowledge: we build this pattern with the iterate sets node.

• MI without a priori run-time knowledge: this pattern is intentionally restricted since is not
a safe operation, where one is not able to ensure the loop termination.

To extend JSON-W use cases, an appropriate starting point can be the patterns defined in [132].
Also, as a recommendation for future work the proposed language should be compared with other
languages that can describe compositions, such as the Sensor Model Language (SensorML) [133]
and Open Modelling Interface (OpenMI) [134].

6.6 SUMMARY

This chapter discusses how to extend data and metadata with semantic information, which turns
OGC services into semantically enabled ones. We propose the use of JSON-LD to enrich JSON
files with semantic capabilities, making metadata of OGC services semantically interoperable.
Also, it handles namespace definitions as in XML, can handle links, being an alternative for XLink
from XML, and allows the definition of abstract data types by associating the context with an on-
tology. To provide semantically enabled geospatial data, we introduce ExtGeoJSON, an extension
of GeoJSON that is compatible with JSON-LD, therefore giving semantic capabilities to the data.

91

COMPOSITION OF SEMANTICALLY ENABLED GEOSPATIAL WEB SERVICES

Additionally, we discuss limitations of GeoJSON such as handling measurement multiple values,
geometry semantics, specific feature type as required by the WFS specification, and compaction.

To enhance the metadata of OGC services, we proposed the use of the Hydra Core Vocab-
ulary, which allows the description of service functionality in a machine-readable and machine-
interpretable way. Hydra descriptions allow a client to discover the functionality at run-time,
without the need to use standardized URLs. In this way, a Hydra-enabled service is truly self-
describable by the use of hypermedia controls, lowering the need for human-readable documen-
tation, which allows the creation of generic clients. Also by using Hydra, the OGC Web Services
can better integrate with other RESTful APIs.

For the result of an asynchronous WPS execution to be indistinguishable from that of a WFS
resource both resources must provide equivalent metadata. We propose a mechanism for meta-
data propagation that is capable of dynamically generating metadata from a result of a WPS asyn-
chronous process based on the input metadata. This mechanism also allows the metadata of com-
ponent services in a composition to be combined into the parametric workflow metadata. We
focus on the propagation of metadata needed for the verification of the workflow composability.

Lastly, we presented an interoperable workflow representation based on JSON-LD. The de-
veloped notation for describing and sharing workflows allows a lossless roundtrip to RDF serial-
ization, making the workflows interoperable and at the same time maintaining the ease to use and
transfer to the Web of the JSON format. The aim of this representation is to be used as an input
for orchestration engines, and services that can verify the composability of the services.

In Chapter 7, we present the implementation of the proposed RESTful services, of a generic
client capable of processing Hydra Core Vocabulary and the dynamical creation of a user interface
based on the service functionality. Lastly, we described the implementation of an orchestration
client which assists the user in generating the JSON-W notation of a composition.

92

COMPOSITION OF SEMANTICALLY ENABLED GEOSPATIAL WEB SERVICES

Chapter 7

Implementation

7.1 INTRODUCTION

In the previous chapters was discussed several modifications to the OGC services that combined
can improve the verification and sharing of service compositions. In this chapter, we discuss the
implementation of those services, and also present three specialized services. The first is an or-
chestration WPS, which can leverage the proposed modification to the services, being capable
of executing the asynchronous execution mode for WPS services, creating and monitoring jobs
according to the specification. Also, the orchestration engine uses a mechanism to pass data by
reference, removing the need for the orchestration engine receive data from the services. The sec-
ond is a composition verification WPS that receives a JSON-W and verifies its validity according to
the methods described in Chapters 3, 4 and 5. Lastly, the third is a Workflow CSW, which allows
the storage and retrieval of workflows descriptions as described in Chapter 6.

As a proof of concept, two web applications were built first is the Generic OGC Client, which
is capable of processing the service metadata described in Chapter 6, which allows seamless inter-
action with different OGC services. Second is the Orchestration Client, a graphical user interface
to assist the construction of services composition by visually creating the workflow representation
and by verifying at compile-time the composability of the selected services.

In this chapter is discussed the implementation of the services mentioned above and applica-
tions. Section 7.2 discusses the implementation of the services WFS, WPS, and CSW. Section 7.3
describes the implementation of a Generic Client for the implemented services. Section 7.4 dis-
cusses the implementation of three specialized services: the Orchestration WPS, the Composition
Verification WPS, and the Workflow CSW. Lastly, Section 7.5 describes the implementation of
the Orchestration Client.

7.2 SERVICES IMPLEMENTATION

For the service implementation, we use Node.js [135]. It allows the development of server side
applications fully in JavaScript by executing the code in Google V8 JavaScript engine, written in
C++. There are several advantages in this approach:

• Node.js in combination with Express.js, a web framework for Node, has a natural affinity
in building RESTful APIs;

• Use of only one programming language across all applications, both on server and client
side, and to interact with the database (MongoDB);

• Node.js can perform all the I/O operations asynchronously, increasing the application through-
put and scalability;

• Node.js can work with data streams over HTTP, which could help to implement a family
of streamable WPS. This idea was not implemented in this thesis and is left as future work.

93

COMPOSITION OF SEMANTICALLY ENABLED GEOSPATIAL WEB SERVICES

The disadvantage of Node.js is that JavaScript still does not have mature geospatial processing
libraries, needing to rely on Turf.js [136], developed by Mapbox to do simple spatial operations
in the browser; JSTS Topology Suite [137], a port of the well-known Java library JTS Topology
Suit; and node-gdal [138], which provide Node.js bindings to the native GDAL library bindings
in C++. All libraries are in the initial stage of development, not being robust or having a high
variety of spatial functions.

The primary data format used in the services is JSON-LD. For spatial data is used ExtGeoJ-
SON, an extension of GeoJSON presented in Chapter 6 extended to be consistent with JSON-LD.
We store the data in a MongoDB database, a free and open-source document-oriented database,
which does not uses table-based structures such as in a relational database, but uses JSON-like doc-
uments which allow dynamic schemas. MongoDB is a perfect fit when working with JSON files
since it is its native structure, only having the overhead of converting to the native binary format-
ted used by the database, BSON. Also, MongoDB is a NoSQL database which uses JSON-like
objects to specify queries. The disadvantage of MongoDB is that it has limited geospatial func-
tionality compared to PostGIS, having a small number of spatial function, only natively support
WGS84, and does not support R-trees for spatial indexing. Nevertheless, most of the spatial queries
performed against the database in WFS and CSW are simple, such as searching within bounding
boxes and performing spatial relations. The library Mongoose [139] provides the communication
between MongoDB and Node.js.

For the implementation of WebSockets, we used Stream.IO [140], an open-source JavaScript
library that provides both the client and the server side implementation needed for WebSock-
ets communication. For all services was created a socket which broadcasts if the metadata has
changed. As discussed in Chapter 2, Catalogue Services can exploit this connection to make sure
the metadata is always up-to-date.

A common problem in using data from multiple origins of data, such as in a composition, is the
limitation of cross-origin HTTP request. For security reasons, browsers do not allow the request
of certain types of data within a script tag (via JavaScript that comes from another web server
domain). One common solution is the use of JSON-P (JSON with padding) format [141], which
is not desirable since is a different format, having a different Internet Media Type, and needs to be
handled by the client in a different way than plain JSON. A more modern and flexible solution
is the use of Cross-Origin Resource Sharing (CORS) [142], which is a standardized set of headers
implemented in all modern browsers which allow the server and the client to communicate which
requests are allowed for cross-domain requests. In this thesis, all the implemented services support
CORS.

Whenever a service receives JSON data, for example in an update or inserts requests in WFS,
as input data for a process in WPS, or as a query in JSFE in a CSW, it requires to the JSON file be
validated. As discussed in Chapter 2 the JSON file is described by a JSON Schema version 4, which
allows the validation of the expected keys and correspondent types. The schemas are maintained
by the services and are accessible to the client. To validate the JSON file against the schema, we
used the Tiny Validator for v4 JSON Schema (Tv4) [143].

In the next sections is discussed specific operations of each service type.

7.2.1 Web Feature Service

We define nine operations in a WFS: Get Capabilities, Describe Feature, Get Feature, Get Feature
by ID, Insert, Update, Delete, Ad hoc queries, and Batch Processing.

In the Get Capabilities operations, the client can retrieve the metadata from the service. A
client performs a HEAD request to the root URL of the service and follows the link relation
http://www.w3.org/ns/hydra/core#apiDocumentation, specifying the Accepts header as applica-

94

COMPOSITION OF SEMANTICALLY ENABLED GEOSPATIAL WEB SERVICES

tion/ld+json. The service returns the HTTP status code 200 (OK) and a JSON-LD document
based on the Hydra Core Vocabulary discussed in Chapter 6. From this document, the client can
access information from the service metadata, the available resource, and for each resource the spe-
cific metadata, JSON-LD context, and JSON Schema. In the case that the client wants to access
the context and the JSON schema of a specific resource without the need to parse the metadata
document it can use the Describe Feature operation, by performing a HEAD request to the spe-
cific URL of the resource and follow the link relation http://www.w3.org/ns/json-ld#context in
the case of JSON-LD context, the link relation http://json-schema.org/json-schema in the case of
JSON schema, and the link relation http://www.opengis.net/rest-ows/resourceMetadata to retrieve
just the metadata correspondent to that resource.

In the Get Feature operation, the client retrieves a feature collection from a resource. A client
performs a GET request to a specific URL of a resource with an acceptable value for the Accepts
Header. The client also can specify query parameters in the URL, such as BBOX, attribute pro-
jection, start index, sort by, and count. In the case of success, it returns the HTTP status code 200
(OK). In a similar way, in the Get Feature by ID operation, the client retrieve a specific feature
with known identifier (ID). A client performs a GET request to a specific URL of an ID of a re-
source with an acceptable value for the Accepts Header. In the case of success, the server returns
the HTTP status code 200 (OK).

In a transactional WFS, the Insert operation inserts one or more features into a resource. A
client performs a POST request to a specific URL of a resource with a payload containing the
feature instance or feature collection in ExtGeoJSON, and the Content-Type header as applica-
tion/ext.geo+json. The server performs a two-step validation of the file, by first verifying against a
generic ExtGeoJSON schema and then verifying against the specific schema of the resource. In the
case of success the features are inserted in the database, returning the HTTP status 201 (Created)
and a Location Header with the URL of the resources created.

In the Update operation, the client can update one specific feature with known ID from a
resource. A client performs a PATCH request to a specific URL of an ID of a resource with a
payload containing the feature instance in ExtGeoJSON and the Content-Type header as applica-
tion/ext.geo+json. The server performs the validation in the same way as described in the Insert
operation and then updates the feature in MongoDB returning the HTTP status 200 (OK) in the
case of success.

The last operation of Transactional WFS is the Delete, where the client can delete one specific
feature with known ID from a resource. A client performs a DELETE request in a specific URL
of an ID of a resource. The server verifies if the resource exists and deletes the feature in MongoDB
returning the HTTP status 204 (No Content).

For WFS that supports Ad Hoc Queries a client can perform a POST request to the queries
resource with a payload containing a query encoded in JSFE and specifying the Content-Type
header as application/ld+json. The server performs the validation against the JSFE schema, and in
the case of success returns the HTTP status 202 (Accepted) and a Location Header with the URL
to the results of the query. The client then can perform a Get Feature operation to retrieves the
results. Since the results are also a common WFS resource, it is indistinguishable from a regular
layer, which allows the use of query parameters and Get Feature by ID operation.

The Batch Processing was not implemented in this thesis. However, for WFS that supports
Batch Processing a client can perform a POST request to the transactions resource with a payload
containing a Multipart MIME message specifying the transactions that are needed to be performed.
The Content-Type header is multipart/mixed. The service returns a multipart message to the client
as a response, specifying the result of each operation individually.

In case of failure different status codes are returned depending on the situation:

95

COMPOSITION OF SEMANTICALLY ENABLED GEOSPATIAL WEB SERVICES

• 404 (Not Found): the client requests an invalid resource or ID.

• 406 (Not Acceptable): the client requests a resource representation that is not available. For
example, if a client during content negotiation requests the resource to be provided in XML
when the service is not able to do so.

• 415 (Unsupported media type): the client performs a POST or PATCH operation sending
a resource in a media type that is not acceptable to the server. For example, if a client tries
to insert a feature serialized in XML when the service is not able to do so.

• 422 (Unprocessable Entity): when the file sent to the server is malformed or failed the vali-
dation against a schema.

By the use of content negotiation the client can choose whether he wants to visualize the
data in the browser or to access directly the data. The implementation is available at GitHub.1

Figure 7.1 gives an example of a GetFeatureById request being performed in the browser, returning
the visualization of the feature.

Figure 7.1: Content negotiation in the browser returning visual representation

7.2.2 Web Processing Service

We define seven operations in a WPS: Get Capabilities, Describe Process, Describe Result, Exe-
cute, Get Status, Get Result, and Dismiss Job.

1https://github.com/dinizime/wfsjs

96

COMPOSITION OF SEMANTICALLY ENABLED GEOSPATIAL WEB SERVICES

The Execute operation allows the client to execute one process by performing a POST requests
to the URL of the process with a payload containing a JSON-LD file following the standard input
format for WPS and the Content-Type header application/ld+json. The server first validates the
file against the input schema; then it verifies if any of the inputs contains data passed by reference.
In this case, the service needs to request the inputs, which is done in parallel. If there are one
or more inputs by reference, they are validated against the input schema. If all inputs are valid,
the server creates a Job and returns the status code 202 (Accepted) to the client, with a Location
Header for verifying the status of the job. Listing 7.1 presents an example of an WPS input, where
both inputs (filter and ftr) receives data passed by reference, coming from one WFS and from a
result from another WPS process.

Listing 7.1: WPS input example
1 {
2 @context : {
3 wps: "http :// www. opengis .net/ont/wps /",
4 inputs : "wps: input ",
5 ftr: {
6 @id: "http :// www. opengis .net/ont/ spatial / object # SpatialObject ",
7 @type : "@id"
8 },
9 filter : {

10 @id: "http :// www. opengis .net/ont/ spatial / object # SpatialObject ",
11 @type : "@id"
12 }
13 },
14 @type : " inputs ",
15 filter : "http :// localhost :3000/ wps/ buffer /jobs/job:c7645010 -d0bb -11e5 -bdc4 -

edb06f859154 / outputs / buffered ",
16 ftr: "http :// localhost :3001/ wfs/ buildings ?bbox =5.902 , 51.949 , 5.947 , 51.984"
17 }

With this URL, the client can perform a Get Status operation with the Accept header ap-
plication/ld+json, where it receives a JSON-LD file containing the status of the current job and
optionally a time estimation of completion. The job status follows the WPS standard, with the
possible values: Succeeded, Failed, Accepted (valid input, however, the server still did not start the
job), and Running. When the status is succeeded the server also returns an additional property
resultsUrl. This property contains the URL necessary for the Get Results operation, which the
client can perform a GET requests with Accept header application/ld+json, and retrieve a Results
document. Listings 7.2 and 7.3 presents an example of a Get Status response and of a Get Results
operation, respectively.

Listing 7.2: WPS status example
1 {
2 @context : {
3 wps: "http :// www. opengis .net/ont/wps /",
4 job: "wps:job",
5 status : {
6 @id: "wps: status ",
7 @type : "@id"
8 },
9 jobID : "@id",

10 expirationDate : "wps: expirationDate ",
11 estimatedCompletion : "wps: estimatedCompletion ",
12 nextPoll : "wps: nextPoll ",
13 percentComplete : "wps: percentComplete ",
14 resultsUrl : {
15 @id: "wps: resultsUrl ",
16 @type : @id
17 },
18 Succeeded : "wps: status / succeeded ",

97

COMPOSITION OF SEMANTICALLY ENABLED GEOSPATIAL WEB SERVICES

19 Failed : "wps: status / failed ",
20 Accepted : "wps: status / accepted ",
21 Running : "wps: status / running ",
22 },
23 @type : "job",
24 jobID : "job:e08cfa40 -d0bd -11e5 -87ad - e17a6c7ed164 ",
25 status : " Succeeded ",
26 resultsUrl : "http :// localhost :3000/ wps/ intersects /jobs/job:e08cfa40 -d0bd -11e5 -87

ad - e17a6c7ed164 / outputs ",
27 }

Listing 7.3: WPS result example
1 {
2 @context : {
3 wps: "http :// www. opengis .net/ont/wps /",
4 outputList : "wps: outputList ",
5 passed : {
6 @id: "http :// www. opengis .net/ont/ spatial / object # SpatialObject ",
7 @type : "@id"
8 },
9 failed : {

10 @id: "http :// www. opengis .net/ont/ spatial / object # SpatialObject ",
11 @type : "@id"
12 }
13 },
14 @type : " outputList ",
15 passed : "http :// localhost :3000/ wps/ intersects /jobs/job:e08cfa40 -d0bd -11e5 -87ad -

e17a6c7ed164 / outputs / passed ",
16 failed : "http :// localhost :3000/ wps/ intersects /jobs/job:e08cfa40 -d0bd -11e5 -87ad -

e17a6c7ed164 / outputs / failed "
17 }

The results document contains the identifier of each output with the correspondent URL that
allows accessing the results. Each result resource behaves in the same way as a WFS, which allows
the use of query parameters and Get Feature by ID. At this moment, the server also dynamically
generates the metadata of the output by using the metadata propagation mechanism discussed in
Chapter 6. The Describe Result operation allows accessing the metadata of the result, which is not
part of the WPS standard. It behaves in the same way as Describe Feature specified for WFS, the
client performs a HEAD request and follow the Links headers that lead to the JSON-LD Context,
to the JSON Schema or the specific metadata of the result. Figure 7.2 presents the sequence diagram
for a WPS execution. Figure 7.3 shows the result of the WPS process by accessing the result URL
in the browser.

For a WPS that supports Dismiss Job operation, a client can perform a DELETE request to
the URL of a process. The server verifies if the process exists, stopping it in the case it is running
or deleting its results in the case it completed, returning the status code 204 (No Content). The
operations Get Capabilities and Describe Process behaves in the same way as specified for WFS.

In the implementation of WPS we made use of the libraries Async.js [144], which allows the
management of asynchronous control flow such as parallel, series and waterfall executions, and
node-uuid [145]which enables the generation of universally unique identifier (UUID) conformant
with RFC 4122 [146], which was used to give unique identifiers to the jobs.

Also, as discussed in Chapter 2, the WPS service manage WebSockets connections to inform
the user of the current status of the job, to remove the need of a client to perform polling (sending
requests at regular intervals) or to rely on the job ETA. When a client creates a job, is created
a WebSockets connection with the same identifier as the job, which the client can connect and
receive real-time information about the changes in status. Whenever the job is completed, the
connection is closed, and the client can perform the Get Result operation. The implementation is

98

COMPOSITION OF SEMANTICALLY ENABLED GEOSPATIAL WEB SERVICES

available at GitHub.2 It contains a series of spatial functions from Turf.js with the necessary doc-
umentation for verifying the composability. It also implements the Orchestration WPS described
in the Section 7.4.1, and the Composition Verification WPS described in the Section 7.4.2.

Figure 7.2: Sequence diagram for WPS execution

7.2.3 Catalogue Service for the Web

We define eight operations in a WCS: Get Capabilities, Describe Record, Get Records, Get Records
by ID, Ad Hoc Queries, Get Domain, Delete, and Harvest.

The operation Harvest allows the catalogue to create or update records. It is started by a POST
operation to the harvest resource with a payload containing a JSON-LD file with a list of services
URL that the service will crawl. The Content-Type header is application/ld+json. The server first
validates the input and then requests each of the services URL. If the input is valid, the service
returns the status code 202 (Accepted) with a Location Header with the URL of the status of
harvesting. The client can access this document to verify if each of the services was successfully
harvested, what was the given identifier to each harvested record, and information specifying if
the record was added or updated. The crawler expects the services to be described with the Hydra
Core Vocabulary, as discussed in Chapter 6.

The operation Get Domain allows the client to retrieve run-time information about the range
of values of an attribute of the records. This operation is useful when creating user interfaces and
is needed to show the user the possible options to fill an attribute. The client can perform a GET

2https://github.com/dinizime/wpsjs

99

COMPOSITION OF SEMANTICALLY ENABLED GEOSPATIAL WEB SERVICES

Figure 7.3: WPS result in the browser

request on the resource domain specifying by hierarchy the name of the attribute which the client
wants to retrieve the range of values. If the attribute exists, the server returns the status code 200
(OK), with a JSON-LD list of the possible values.

The operations Get Capabilities, Describe Record, Get Records, Get Records by ID, Ad Hoc
Queries, and Delete behaves in the same way as specified for WFS. Also, as discussed in Chapter 2,
the CSW service is capable of connecting to multiple WebSockets of services, receiving informa-
tion in case of a metadata update. This allows the CSW to manage efficiently the Harvest operation
and to guarantee that always have the most up-to-date metadata.

As discussed in Chapter 2, the semantics of the records was also extended, which allows the
storage of information other than service metadata. Section 7.4.3 specifies a profile of CSW that
allows the storage of workflow information. The implementation is available at GitHub.3 It also
implements the Workflow CSW described in the Section 7.4.3.

7.3 GENERIC CLIENT

As a proof of concept, we implement a Generic Client (GC) capable of processing the Hydra Core
Vocabulary, which allows the interface to be built according to the functionality of the service. It
allows seamless interaction with all available operations of WFS, WPS, and CSW. This imple-
mentation supports the idea that the proposed services can be specified without standardization

3https://github.com/dinizime/cswjs

100

COMPOSITION OF SEMANTICALLY ENABLED GEOSPATIAL WEB SERVICES

of URLs and with the heterogeneous availability of operations per resource. The goal is to assist
human clients in the use of OGC services.

It was implemented using Angular.js [147] and Leaflet [148]. Also, we used Leaflet.draw [149]
for the acquisition of geometries. The GC is capable of verifying which layers accepts transactional
operations, enabling the acquisition of geometries with the correct types, and generation of forms
to fill attributes, with built-in type verification. The GC is also capable of managing the execution
of processes in a WPS, adding the results of resources. The implementation is available at GitHub.4

Figure 7.4 presents the Generic Client user interface accessing a WFS service.

Figure 7.4: Generic Client user interface

7.4 SPECIALIZED SERVICES

In this section, we discuss three particular types of services that deserve a more in-depth discus-
sion. The Orchestration WPS that allows the asynchronous orchestration of compositions; the
Composition Verification WPS, that permits the verification of a composition according to the
theory of Chapters 3, 4, 5; and the Workflow CSW, that is capable of storing and distributing
workflows.

7.4.1 Orchestration WPS

In Chapter 3, we define web service composition as the process of selecting and assembling a mean-
ingful combination of services to solve a specified problem that cannot be solved by individual ser-
vices. The composition process is divided into synthesis, the selection of services and construction
of workflow, and execution, coordination of the passing of data among the component services.
Execution can be performed by orchestration or choreography. In orchestration exists a central
service which coordinates the execution and passing of data between the services of the composi-
tion. In choreography there is no central services, each service is responsible for coordinating the

4https://github.com/dinizime/ogc-client

101

COMPOSITION OF SEMANTICALLY ENABLED GEOSPATIAL WEB SERVICES

execution of the next. In this thesis we focus on an orchestration execution, since choreography
requires a significant change in the WPS specification, requiring service functionality to be rather
complex, going against the vision of this thesis.

In this section we propose a simple orchestration engine, which can be encapsulated in a WPS,
and focus on the execution of the asynchronous mode of WPS, creating and monitoring jobs ac-
cording to the specification. An Orchestration Engine (OE) receives as an input a composition
description, and coordinate the services execution and the communication of data, returning the
result to the client when complete. It should be able to do exception handling, and ideally, in the
case of error, propose another workflow.

Walia et al. [150] uses the WPS interface to orchestrate multiple WPS and WFS services. This
approach is rigid, as it does not allow the selection of services to be composable, and requires
knowledge of the implementation of the different services to verify composition validity. Meng et
al. [151] describe the application of three different approaches to service composition, making use
of the WPS interface, cascading service chains from via WPS GET operations, and the Business
Process Execution Language (BPEL). The downside of this approach is that the composition is
specified in WSDL, requiring human interaction for every service composition. Also, all three
approaches are rigid, and must be specified by a human upfront. Jesus et al. [152] does not use
BPEL but instead describes the composition in WSDL and the Taverna Workbench is used to
perform the orchestration of the services. This approach is more flexible than the former two but
is required the use of the SOAP interface.

In Akram et al. [153] evaluates BPEL for the orchestration of scientific workflows. The work
established a series of requirements in which we can evaluate our proposed orchestration engine:

• Modular design: it can reutilize workflows and break workflows in pieces with smaller com-
plexity. The proposed OE can use the parametric workflow as a component in the compo-
sition.

• Exception handling: it can identify and return errors at run-time. Based on the proposed
theory of composability we identify a group of errors that can exist during the composition
execution. The OE is capable of raise exception for this group of errors.

• Compensation mechanism: it can undo steps that already completed successfully. This is
not supported by the proposed orchestration engine, and in this thesis, we did not focus on
transactions. However, all partial results of the orchestration are available, which allows the
user to rebuild the process from a desired part of the composition.

• Adaptative workflows: it can redesign and optimization at run-time. This concept is related
to service substitutability, presented in Chapter 5. The current implementation of the OE
does not support this case.

• Flexible workflows: the client can modify workflows.By the use of the Orchestration Client
presented in Section 7.5, the client can modify the workflows and store them in a Workflow
CSW.

• Management of workflows: the client can monitor the execution of workflows, also allowing
to stop and resume the execution, and to verify partial results. By the use of the Orchestra-
tion Client presented in Section 7.5, the client can monitor the execution of the workflow
and access the results. However, the current implementation does not allow one to pause or
stop the execution.

102

COMPOSITION OF SEMANTICALLY ENABLED GEOSPATIAL WEB SERVICES

The orchestration engine allows the execution of components in parallel and focuses on the
asynchronous execution of WPS. It is implemented as a WPS with as input a JSON-W, and it can
build a request for job creation and monitor the job status. The orchestration engine first builds a
dependency tree based on the topological sorting of the graph structure of JSON-W, which allows
the identification of a proper service execution order. Also, it uses the library async.js to identify
and run processes in parallel when possible. The OE performs two activities, build requests and
track status. Based on the derived order of execution the OE builds the requests for WPS services.
It does not need to communicate with WFS since the data will be indicated by reference to the WPS
input. After the input is built the OE starts an Execution as described in Figure 7.2. The main
responsibility at this stage is to track the status of the execution, and when it is complete request
the location of the results. Figure 7.5 shows an example sequence diagram for the orchestration of
the composition illustrated in Figure 6.1.

Figure 7.5: Example of orchestration execution

We added the attribute orchestrationStatus, a list of objects, to the status document so that the
client can keep track of the status of the component services. The orchestration engine returns a
document with the results of the process, also including partial results. Listing 7.4 exemplifies an
status document for a orchestration execution (with the context omitted). Listing 7.5 exemplifies
an orchestration result document (with the context omitted).

103

COMPOSITION OF SEMANTICALLY ENABLED GEOSPATIAL WEB SERVICES

Listing 7.4: Orchestration status example
1 {
2 @type : "job",
3 jobID : "job :9331 a500 -d119 -11e5 -9dc0 -43 d8c9620c6e ",
4 status : " Running ",
5 orchestrationStatus : [{
6 status : " Succeeded ",
7 name: " Literal ",
8 @id: "task :0"
9 },{

10 status : " Succeeded ",
11 name: " Rivers ",
12 @id: "task :1"
13 },{
14 status : " Succeeded ",
15 name: " Buffer ",
16 @id: "task :2"
17 },{
18 status : " Succeeded ",
19 name: " Buildings ",
20 @id: "task :3"
21 },{
22 status : " Running ",
23 name: " Intersects ",
24 @id: "task :4"
25 }
26]
27 }

Listing 7.5: Orchestration result example
1 {
2 task :2: {
3 buildings : "http :// localhost :3001/ wfs/ buildings ?bbox =5.902 , 51.949 , 5.947 , 51.984"
4 },
5 task :3: {
6 rivers : "http :// localhost :3001/ wfs/ rivers /nl. top10nl .111016252"
7 },
8 task :4: {
9 literal : 1000

10 },
11 task :0: {
12 buffered : "http :// localhost :3000/ wps/ buffer /jobs/job :93430 a20 -d119 -11e5 -9dc0 -43

d8c9620c6e / outputs / buffered "
13 },
14 task :1: {
15 passed : "http :// localhost :3000/ wps/ intersects /jobs/job :94 e8cae0 -d119 -11e5 -9dc0 -43

d8c9620c6e / outputs / passed ",
16 failed : "http :// localhost :3000/ wps/ intersects /jobs/job :94 e8cae0 -d119 -11e5 -9dc0 -43

d8c9620c6e / outputs / failed "
17 }
18 }

The advantage of using the asynchronous execution of WPS is that by using the mechanism
of data transfer by reference, it reduces the bandwidth usage by not requiring the orchestration
service retrieve and send the data between services. This is only possible due to the modification
of the WPS result to be indistinguishable from a WFS, harmonizing the passing of data between
OGC services. Figure 7.6 compares the pass of data by value and by reference. The central server
represents the orchestration engine, the solid lines represent data passing, and the dashed lines
represents requests without data. By using data passing by value, the orchestration engine must
request all the data and re-transmit to the appropriate service. Using data passing by reference the
orchestration engine does not need to request for data, it only needs to construct the appropri-
ate request, and the WPS server can request the needed data. It is expected that on average this

104

COMPOSITION OF SEMANTICALLY ENABLED GEOSPATIAL WEB SERVICES

procedure reduces in 50% the data transfer.

(a) Data passing by value (b) Data passing by reference

Figure 7.6: Comparison of data passing by value and reference

Three cases require special treatment in the composition: subgraph, conditional, and loop.
For handling subgraphs, the orchestration engine has two options. The first is nested execution,
where whenever the orchestration engine needs to execute a subgraph it creates another orchestra-
tion instance that executes the subgraph, and when it is complete it passes the result to the main
orchestration instance. The second is pre-flattening, where the orchestration engine identifies the
existence of subgraphs, requests the necessary components, and rebuilds the workflow in a way
that there are no subgraphs. The latter is simpler, requiring minor modifications to the orches-
tration engine. For conditional evaluation exists two possibilities: the data is transferred to the
orchestration engine which evaluates the condition, or the orchestration engine can perform a
query with an appropriate statement of the evaluated service, verifying if the condition is true or
false. The latter is preferred, as there is no need for data transfer. Also, the orchestration engine
verifies if the conditional node can be resolved at compile-time, removing unnecessary condition-
als.

In the case of loop each of the introduced loop nodes needs to be discussed separately. In
the case of Iterate Inputs and Iterate Multi-Value, the Orchestration engine only needs to manage
the correct calling of services. To handle Iterate Sets, it is necessary a mechanism extract features
instances individually from the set, or the orchestration engine need to retrieve the entire set from
the service and send the instances to the iteration accordingly. In Chapter 2 was discussed how
the output of WPS was modified to be indistinguishable from a WFS, meaning that the operation
GetFeatureById can be applied to extract the inputs individually from the set. As the last step for
Iterate Multi-Value and Iterate Sets, it is necessary the aggregation of the results. If the next step in
the workflow accepts multi inputs, it is just required for the orchestration engine to aggregate the
URL results in an array. If it does not accept multiple inputs, the data needs to be transferred to
the orchestration engine, which aggregates the data and becomes a temporary access point.

7.4.2 Composition Verification WPS

Verification WPS is a common WPS with a process that can verify if a workflow representation is
composable. It receives as an input a JSON-W describing a composition and performs a series of
operations following the theory described in Chapters 3, 4, 5. It returns a JSON-LD document

105

COMPOSITION OF SEMANTICALLY ENABLED GEOSPATIAL WEB SERVICES

specifying the errors found, if any. Figure 7.7 shows the general flowchart of the operations that
are applied during the verification of the composition.

Figure 7.7: General flowchart for composition verification

The verification of a level of composability can only be executed if the workflow has enough
metadata for its verification. Each of the applied algorithms has a correspondent error code, that
can be used by the user to identify the problems, or used by an application to take further actions.
Listing 7.6 exemplifies an result of the Composition Verification WPS (with context omited).

Listing 7.6: Composability result example
1 {
2 tasks : {
3 "task :6": [
4 {
5 @type : " taskCycles ",
6 message : " Cycles are not allowed ",
7 cycles : [
8 [

106

COMPOSITION OF SEMANTICALLY ENABLED GEOSPATIAL WEB SERVICES

9 "task :6",
10 "task :9",
11 "task :8"
12]
13]
14 }
15],
16 "task :8": [
17 {
18 @type : " invalidType ",
19 message : " Connection did not type check ",
20 inputType : {
21 "set ": {
22 " record ": {
23 "geom ": " Point "
24 }
25 }
26 },
27 outputType : {
28 "set ": {
29 " record ": {
30 "geom ": " Polygon "
31 }
32 }
33 }
34 }
35]
36 },
37 sequenceFlows : {}
38 }

7.4.3 Workflow CSW

The Workflow CSW is a profile of a CSW that can store two types of records: workflows and
parametric workflows. The workflows are serialized in JSON-W, which makes convenient its
storage in a document database, such as MongoDB. The workflow metadata can be queried with
the operations Get Records, which allows workflow discovery.

The workflow record stores the workflow JSON representation and its basic metadata. This
enables the execution of the workflow by sending it directly to an Orchestration Engine, which
can be done by reference by using the URL of the GetRecordsById. The workflow can also be
requested, modified, and updated in the CSW. This can be done manually or by the use of the
Orchestration Client discussed in the next section.

The parametric workflow record stores the workflow as an opaque composition, which can
be used as component service in a composition. It follows the same structure as in the JSON-W,
being able to embed the workflow information or just reference it in the URL attribute.

7.5 ORCHESTRATION CLIENT

As a proof of concept, we implement the Orchestration Client (OC) to assist a human client to
build, verify and execute compositions. The interface gives the user a visual way of creating the
JSON-W representation. The OC can connect directly to WPS and WFS or connect to a CSW,
which allows interacting with all the services stored. It also permits the connection to a Workflow
CSW, where it can discover and load workflow records, for execution or modification, or paramet-
ric workflow records, which allows one to use workflows as components in a composition. This
connection with the Workflow CSW is transactional, which allows the client to create, update,
and delete both workflows and parametric workflow records. This creates an easy was of sharing

107

COMPOSITION OF SEMANTICALLY ENABLED GEOSPATIAL WEB SERVICES

a composition in an interoperable manner. This interface is also capable of dealing with special
nodes such as a conditional and controlled loop. The implementation is available at GitHub.5

Figure 7.8 presents the interface of the OC.

Figure 7.8: Orchestration Client user interface

When the client completes the construction of a composition, it can send it directly to Com-
position Verification WPS, where the interface allows the client to follow the progress of the ver-
ification and display the results both in the JSON format and by highlighting the errors in the
interface. The OC client also can perform some of the verifications on-the-fly, not needing to
send to a verification WPS. If the composition has no errors the user can send it directly to an Or-
chestration WPS, where the client is capable of monitoring its execution, and to access the results.
Figure 7.9 presents the error highlight in the OC.

Figure 7.9: Orchestration Client error highlight

5https://github.com/dinizime/orchestration-client

108

COMPOSITION OF SEMANTICALLY ENABLED GEOSPATIAL WEB SERVICES

7.6 SUMMARY

In this chapter we describe the implementation of the proposed RESTful services, giving a more
in-depth discussion about three specialized services, namely, Orchestration WPS, Composition
Verification WPS, and Workflow CSW. We show that is viable the implementation of OGC web
services purely in JavaScript server side (Node.js). However, the state of current implementations
of spatial libraries in JavaScript is still in its infancy. Also, document database fits well for the use
of JSON documents, not creating an overhead for converting to and from JSON objects. How-
ever, still the spatial capabilities of documents libraries need to be developed further to be able to
match relational databases such as PostgreSQL/PostGIS. In the Orchestration WPS, we provide
an implementation that can execute WPS asynchronously, and as well handle conditional, sub-
graph, and loop. Also, we show how the mechanism of passing data by reference can optimize the
bandwidth usage of a service composition execution. In the Composition Verification WPS, we
encapsulate in a WPS the concepts presented in Chapters 3, 4, and 5, which provides a compile-
time verification of the composition. The Workflow CSW allows the storage and distribution of
workflows both for direct consumption (running workflows without modification) and for using
the workflow as an opaque composition that can be a component in another workflow.

Lastly, as a proof of concept, we implemented two user interfaces, the Generic Client, and the
Orchestration Client. In the Generic Client implementation, we show that the Hydra Core Vo-
cabulary can describe web service capabilities with a high granularity, which allows Hydra-aware
applications to discover and use web services without being specifically programmed for each ser-
vice, lowering human interaction. The Orchestration Client assists the user to construct JSON-W
description by providing a graphical interface where the user can build the composition visually.
The interface also can connect to web services to retrieve their metadata, to a Composition Verifi-
cation WPS, which allows the verification of the workflow at compile-time, and to connect to an
Orchestration WPS, which enables the execution of the workflow.

109

COMPOSITION OF SEMANTICALLY ENABLED GEOSPATIAL WEB SERVICES

110

COMPOSITION OF SEMANTICALLY ENABLED GEOSPATIAL WEB SERVICES

Chapter 8

Conclusions and Recommendations

8.1 CONCLUSIONS

OGC standards have made significant progress towards syntactic interoperability of services and
feature-level data access. However, they do not solve semantic heterogeneity problems. At the
same time, Semantic Web Technology can provide semantic interoperability but has had a slow
uptake, since it is complex and does not follow current trends for data formats and access, thereby
heading in an opposite direction of what developers and users expect. Even for services that pro-
vide semantically enabled data, service discovery and manual composition in a distributed environ-
ment are still time-consuming and error-prone. Typically, one must select multiple data provision
services, and apply the processes with the need to understand their functionality and input/output
restrictions. As a consequence of these difficulties, there is a lack of tools and methods to facilitate
the construction, verification and execution of composition of geospatial web services.

In this thesis, several advancements are made in the fields of composition verification, sharing,
and execution. For composition verification, four theoretically founded levels of composability
are discussed and implemented. The focus of the theory of composability is compile-time verifi-
cation, which prevents to run an invalid composition that could lead to unnecessary long running
time as well high usage of the server processing capabilities. For composition sharing, we develop
an interoperable JSON-LD workflow representation. It is capable of describing the interaction
between web services, as well as that it covers the use cases of subgraph, conditional and loop, and
capable of being stored and shared using a CSW. For composition execution, we develop an or-
chestration engine, implemented as a WPS, and able to executing WPS processes in asynchronous
mode, which reduces bandwidth usage by not requiring the orchestration service to handle the
data between services. We implemented all proposed services, including three specialized services:
the composition verification WPS, the orchestration WPS, and the Workflow CSW. Also, we im-
plement a generic OGC client capable of dynamically build user interfaces based on the available
functionality of the service, and, to assist the use of JSON-W, we implemented an orchestration
client, a graphical interface that allows the user to build the composition visually.

Although this research project modified the OGC services significantly, all the modifications
are aligned with current OGC vision. Three engineering reports released by OGC were the base
for the proposed modifications. Testbed 11 REST Interface Engineering Report [35] gives a first dis-
cussion about the ubiquitous use of RESTful bindings in OGC services. Testbed 11 Implementing
JSON/GeoJSON in an OGC Standard Engineering Report [24] addresses the use of JSON, Geo-
JSON, and JSON-LD in multiple OGC services. Testbed 11 Implementing Linked Data and Se-
mantically Enabling OGC Services Engineering Report [97] addresses the possible solutions to add
semantic information to OGC services, being one of the conclusions that the most straightfor-
ward solution for semantically enabling OGC services is to consider RESTful services. All these
documents were released in late 2015, showing that all issues discussed in this thesis are current
and relevant problems in the geospatial community.

Furthermore, from the six areas of interest of the OGC Workflow Domain Working Group [154],

111

COMPOSITION OF SEMANTICALLY ENABLED GEOSPATIAL WEB SERVICES

we address four in this thesis:

• Cost reduction of workflow implementation: in this thesis we modified the output of an
asynchronous WPS execution to be indistinguishable from a WFS resource, harmonizing
the passing of data between OGC services. Also, the service encodings were restricted to
the proposed RESTful services.

• Workflow languages: in this thesis we propose a lightweight workflow language serialized
in JSON-LD.

• Workflow interfaces: we implemented an orchestration client, which assists the user in
building compositions and allows to monitor the progress of the orchestration.

• Architecture discussion: in this thesis, we implemented an orchestration engine that uses
a mechanism for passing data by reference, which allows bandwidth usage optimization.
Also, this orchestration engine uses the asynchronous execution mode of WPS. Moreover,
we defined a mechanism of metadata propagation that allows the generation of workflow
metadata.

In the paragraphs below, we answer the research questions.

1. How can current standards be modified to align with contemporary web technology?

Chapter 2 discusses how REST and JSON are the most used technology in Web APIs, and
we presented RESTful Binding for the WFS, WPS and CSW services discussing trade-off
of applying these changes to the architecture. The use of REST provides a simpler alter-
native to the standard KVP and SOAP bindings in OGC services, and resource-oriented
architecture provide scalability to the server, and also renders the services lightweight com-
pared to RPC/SOAP/XML implementations, especially when combined with JSON as the
main data format. The proposed services are flexible since they allow an individual defini-
tion of methods and parameters for each resource, and as the application needs. We also
provided two scenarios in which the WebSockets protocol is applied in the OGC services,
complementing the cases where REST architecture leads to an inefficient implementation.
WebSockets can be used to enhance the capabilities of a CSW to keep metadata up-to-date,
and to lower the overhead of communication when tracking the progress status of a job in an
asynchronous execution of WPS. Lastly, we discussed the use of JSON as a data format for
sharing metadata and spatial data in OGC services. We addressed the limitations of GeoJ-
SON for sharing spatial data compared to GML and proposed solutions with JSON Schema
and JSON-LD.

2. Which forms of composition can be recognized, and for each of these, to what extent can
we decide on their validity?

Chapter 3 discusses the division of the theory of composability based on the expressiveness
of checking into five levels, namely, Structural, Static Syntactic, Dynamic Syntactic, Seman-
tic, and Qualitative. Each of the levels gives a definition to service and service composition
and specifies which types of error can be identified, and how to detect those errors.

Structural Composability abstracts the composition as a directed graph and defines under
which conditions this graph is valid. In this graph, services are represented as nodes and
edges represents the passing of data between output and input. We discuss this level in Chap-
ter 3. Static Syntactic Composability states that the output of a component service can only
become the input of the next service if the respective data types are identical or the output

112

COMPOSITION OF SEMANTICALLY ENABLED GEOSPATIAL WEB SERVICES

data can be automatically coerced to the data type of the input parameter. This level of
composability aims to prevent type errors and is discussed in Chapter 4. Dynamic Syntac-
tic Composability complements Static Syntactic Composability by evaluating restrictions
related to data values that cannot be expressed in the type system. These include interaction
between inputs, coordinate system, geometry dimension, time zone, and pixel size. We dis-
cussed this level in Chapter 5. Semantic Composability addresses the meaning of data and
processes, verifying whether the combination of processes can derive a meaningful result,
or whether it produces the intended result of the user. We discuss this level in Chapter 5.
Qualitative Composability evaluates of the composition against user requirements related
to non-functional characteristics such as response time, service availability, cost, security,
legal rights, and quality of operations. This level of composability is not discussed in this
thesis since it fundamentally is not related to protection against errors, but with the best
selection of services to fulfill the user specification.

3. How to verify the validity of the composition of services?

Throughout Chapters 3, 4, and 5 we present a series of methods to verify the composition of
services. In Structural Composability, the composition is seen as a graph and describes under
which conditions the graph is well-formed, meaning its execution does not produce struc-
tural errors. Examples of structural errors discussed are dependency cycle, self-connections,
repeated tags within one service, non-weakly connected graph, a cyclic reference in sub-
graphs, unique and required condition violation for inputs.

In Static Syntactic Composability, we evaluate service compositions using the Cardelli type
system F1<:, augmented with an additional type, the service type. This type is a special
case of the function type, which allows one to express a service as a function with zero or
more named inputs and one or more named outputs. We also defined abstract data types,
to express concepts about geometry, coverage, and time, and type propagation operators,
which allows one to express the output types of services as parameterized by the input types.
We also discussed how to type-check compositions with subgraph, conditional, and loop
nodes.

In Dynamic Syntactic Composability, we use an extension of Hoare Logic that relates the
inputs and outputs of a service with its pre- and postcondition. We define the most common
variables used in geospatial services and five operations that allow the manipulation of pre-
and postcondition on the basis of the interaction between inputs and outputs of the web
services.

In Semantic Composability, we divide the verification into four categories: input/output
(IO), attributes, service, and workflow. In the IO category, an ontology is associated with
the inputs and outputs of the service to prevent unexpected behavior of processes at the the-
matic level. This is done by restricting the input semantics to have the relationship equiva-
lentClass or subClassOf. In the attribute category, an ontology is associated with attributes,
and we present a mechanism that normalizes the attribute names across the composition
by verifying the equivalentProperty relation. In the service category, processing services are
associated with an ontology based on their functionality. We based the ontology on a geo-
operators thesaurus. This category allows substitutability of services. A method for the
workflow category is not provided in this thesis.

113

COMPOSITION OF SEMANTICALLY ENABLED GEOSPATIAL WEB SERVICES

4. How can OGC services be extended to be semantically interoperable?

Chapter 5 uses JSON-LD to relate metadata and ontologies, also allowing a lossless roundtrip
to RDF model. The basic ontology for OGC services metadata is also provided. For geospa-
tial data, GeoJSON cannot be used as a JSON-LD directly due to the impossibility of han-
dling the conversion of a list of lists to the RDF model (the geometry of GeoJSON is encoded
as a list of lists). In this way, we present ExtGeoJSON, an extension of GeoJSON format
that allows multiple geometry representations, making it compatible with JSON-LD. Also,
it allows identifying the semantics of the feature layer, of attributes, and of the geometry.

5. How can geospatial web services functionality be described in a machine-readable and machine-
interpretable way?

Chapter 6 enhances the metadata of the OGC services with the Hydra Core Vocabulary.
It allows the description of the functionality of each resource of a RESTful service. This
vocabulary is serialized in JSON-LD, which allows the metadata to be interoperable. By
using Hydra, the OGC Web Services can better integrate with other RESTful APIs. We
also improved the descriptions to contain information that allows verification of the com-
position. Those include service types, preconditions, postconditions, the semantics of the
service, and semantics of the inputs and outputs. Chapter 7 describes the implementation
of a generic client for OGC services capable of processing Hydra-enabled metadata and dy-
namically generating the user interface based on the functionality of the service. This client
works seamlessly for WFS, WPS and CSW services.

6. How can the metadata of individual services be combined and propagated to generate de-
scriptions for a composite service?

Chapter 6 presents a metadata propagation method that allows generating the metadata of
WPS results dynamically on the basis of input metadata. The propagation occurs in three
different steps: generation of JSON Schema, generation of JSON-LD context and gener-
ation of general metadata. The former two allows the result of a WPS process to have a
consistent metadata compared to a WFS. The latter can be used for provenance information
and other metadata related to composition verification, such as postcondition, service type,
and semantics. The same method can be used to generate the metadata of component ser-
vices in a composition, which allows the generation of workflow metadata. This method is
especially useful to describe parametric workflows, which allows them to be used as a com-
ponent in a composition in a way that is indistinguishable from a WPS. The implemented
metadata propagation mechanism is constrained to the generation of metadata necessary for
the verification of composability.

7. How can geospatial service composition be described and shared in an interoperable way?

Chapter 6 presents JSON-W, a JSON-LD object which describes service compositions, in-
cluding conditional, subgraph, and controlled loop. We based this notation on the graph
representation of a composition formalized in Chapter 3 and serialized in RDF in Chap-
ter 6. By the use of JSON-LD, we maintain the ease to use and transfer to the Web of the
JSON format while allowing lossless roundtrip to the RDF model. In the RDF model, the
classes and properties are formalized by an ontology introduced in Chapter 6, which guaran-
tees that the workflow description is interoperable. We describe two types of compositions:
workflows and parametric workflows. The latter allow the workflow to be represented and
used as a WPS in an orchestration engine, which in turn allows the use of the workflow as
a component in a composition. In Chapter 7, we use this notation as the standard input for

114

COMPOSITION OF SEMANTICALLY ENABLED GEOSPATIAL WEB SERVICES

the implemented orchestration WPS and verification WPS. In the same chapter, we present
the Workflow CSW, a profile of CSW that is capable of storing and sharing workflows and
parametric workflows. To assist the use of JSON-W, we implemented a graphical interface
that allows the user to build the composition visually. This application also allows send-
ing the workflow notation to a verification WPS, which assesses the composability of the
workflow, and to an orchestration WPS that executes it.

8. How can bandwidth usage in the execution of a composition be minimized?

Chapter 2 modifies the asynchronous execution of WPS processes in such a way that the re-
sult is indistinguishable from a WFS resource. Consequently, data access in OGC standards
is harmonized, which allows consistent passing of data by reference instead of by value.
Chapter 7 presents the Orchestration WPS, an orchestration engine encapsulated in a WPS
that receives a workflow representation described in JSON-W and executes the composition.
We implement it in such a way that it executes the component services in the asynchronous
execution mode of WPS, individually monitoring their status, and controlling the overall
composition in parallel and asynchronously. The passing of data by reference is exploited
such that there is no need for data transfer to the orchestration engine. The orchestration
engine is just responsible for building valid requests indicating the location of the inputs
for a service, and the service itself is responsible for fetching the required resources. This
mechanism significantly reduces data transfer during the orchestration.

8.2 LIMITATIONS

In this section, we mention some limitations of this research.

• Although in this thesis we implemented all the proposed methods, and we annotated Turf.js
library functions with the metadata necessary for the composition verification, it is still
necessary to evaluate its applicability in a real world workflow. This evaluation can help to
understand for which cases the theory needs to be extended.

• The proposed JSON Workflow representation is tightly coupled with the proposed RESTful
OGC services, and it is not compatible with KVP/SOAP encodings. Also, due to the JSON
oriented approach, it is not compatible with W3C WS in general.

• Orchestration engine relies on the asynchronous mode of WPS, making it impossible to
execute in synchronous mode. The Orchestration WPS needs to be extended to handle this
case.

• Composability theory at all levels is not compatible with transactions, prompting the need
to verify how transactions (atomic or not) can affect the verification of a composition.

• Compile-time verification cannot identify all errors. As we discuss both for Static Syntac-
tic Composability and Dynamic Syntactic Composability, one cannot identify all errors at
compile-time, requiring additional run-time verification.

• Metadata propagation does not allow to track provenance. In this thesis, the metadata prop-
agation focuses on the elements necessary for the composition verification. The metadata
propagation method needs to be extended to track information about which steps the work-
flow took to generate the result.

115

COMPOSITION OF SEMANTICALLY ENABLED GEOSPATIAL WEB SERVICES

• JSON-W does not cover data formats and service bindings. The JSON-W notation assumes
that the services are RESTful and JSON-LD based. One needs to extend the notation with
sufficient information in a way that the orchestration engine can mediate between different
data formats and service bindings.

8.3 SUGGESTIONS FOR OGC STANDARDS

In this section, we expose a list of recommendations for further testing and possible adoption in
OGC Standards:

• REST service encoding: currently WFS, WPS, and CSW only provide RPC or SOAP bind-
ings. The adoption of RESTful bindings will allow the creation of simpler services and
potentially increase the adoption of OGC standards.

• The output of WPS as a WFS: to harmonize the passing of data between OGC services it is
necessary that the results of a WPS in asynchronous execution mode behave in a way that
is indistinguishable from a WFS. Although it renders the WPS slightly more complex, the
advantages compensate the complexity.

• JSON format as default for REST: as discussed in this thesis, JSON is now the most used
format in APIs. The adoption of JSON as an alternative for XML will potentially increase
the use of OGC standards.

• JSON-LD Context+ JSON Schema for describing features: JSON-LD extends JSON with
the capabilities of adding semantics to attributes and providing linking capabilities similar
to XLink. JSON Schema allows the syntactic description and validation of a JSON file, and
it can be used as an alternative for XSD.

• Service metadata based on Hydra Core Vocabulary: Hydra allows a description of the ser-
vice functionality at the resource granularity. Hydra metadata is semantically enabled using
a controlled vocabulary and JSON-LD, which allows a direct conversion to RDF. Also by
using Hydra, the OGC Web Services can better integrate with other RESTful APIs.

• Extended GeoJSON: regular GeoJSON cannot be directly extended to JSON-LD due to
problems in representing lists of lists in the transformation between JSON-LD and RDF.
Also, GeoJSON cannot provide semantics at feature type and geometric level. In this thesis,
we propose ExtGeoJSON, an extension of GeoJSON that solves both of these problems,
making the GeoJSON format more flexible.

• Use of CORS: currently OGC standards do not discuss how one can handle cases of cross-
origin data sharing. Some implementations of OWS allow data transfer in the JSON-P for-
mat, but this is not desirable, as specific parsers become necessary. In this thesis, we use
CORS, which allows the server and the client to specify which data transfer is allowed in a
cross-origin request. CORS has the advantage of being implemented in all modern browsers
and does not require the transfer of a specific data format.

• Standardization of the HTTP error codes across the specifications: OGC standards do not
correctly use HTTP error codes across the defined services. By using HTTP error codes
with the correct semantics, generic clients can better handle errors.

116

COMPOSITION OF SEMANTICALLY ENABLED GEOSPATIAL WEB SERVICES

• Extension of Simple Feature standard to allow multiple measurement values: currently
OGC limits the number of measurement dimensions to one. This limitation reduces the
use cases and creates inconsistencies when dealing with other formats such as the GPX spec-
ification.

• Units of measurement following the Quantities, Units, Dimensions and Data Types On-
tologies (QUDT): currently, in OGC standards, units are specified with a free text entry.
By using an ontology for units of measurement, the interoperability of OGC services will
increase.

8.4 RECOMMENDATIONS FOR FUTURE WORK

In this section, we identify the aspects of the research that still need further development.

• Consider transactions in the theory of composability: at all levels of composability, the focus
was on stateless services, not considering transactions. When performing multiple transac-
tions with different services in a workflow, the atomicity property becomes a challenge and
a specialized mechanism to handle this case is needed.

• JSON-based RESTful Bindings for Web Coverage Service (WCS), and Sensor Observation
Service (SOS): following the ideas presented in this thesis, one could define RESTful bind-
ings for WCS and SOS. In the case of SOS, one possible reference is the SensorThings API.

• Extend type theory to cover SOS cases: the type theory considers only WPS, WFS, and
WCS, but the author expects that the theory is also applicable for SOS. Nevertheless, SOS
services need to be further studied for their type-theoretic treatment.

• Semantic Composability: in this thesis, we briefly discussed this level of composability and
much work is left to be done. However, in the author’s opinion, the use of complex seman-
tics will most likely lead to only inapplicable methods that only make sense in the academic
domain. The use of lightweight ontologies and simple relationships will reduce the toolchain
and the overall complexity of the application. Also, the composability can become undecid-
able for complex ontologies, for example, the use of SKOS ontology with relationships such
as closeMatch, narrowMatch, relatedMatch will most likely turn the semantic composability
to come intractable.

• Qualitative Composability: in this thesis we did not discuss the last level of composability
introduced, and a mechanism for its verification is still needed. The concepts of response
time, service, availability, cost, security, legal rights, and quality of operations then require
formal definitions. Also is needed a notation of the specification of client requirements. This
notation ideally should be generated automatically from a natural language description.

• Extension of Filter Encoding JSON serialization to handle multiple resources: in this the-
sis, we introduce JSFE notation as an alternative to XML Filter Encoding. However, the
notation is limited to simple queries against a single resource. It is recommended to define
an alternative for XPath in XML that applies to JSON. This should enable complex queries
such as spatial and temporal joins.

• Optimization of compositions: several approaches can be used to optimize the execution
of workflows, for example: removal of redundant, or unnecessary operations; selection of
servers with more processing capabilities; use of the code shipping paradigm to reduce data

117

COMPOSITION OF SEMANTICALLY ENABLED GEOSPATIAL WEB SERVICES

transferring; mechanism to reduce the transfer of unnecessary data; workflow rewrite when
one service can provide the functionality of multiple operations; load balancing when one
service is used several times in a composition.

• Automatic service composition: provide a method to suggest workflows based on user re-
quirements, which allows not only to suggest built workflows (such as in a workflow discov-
ery) but when possible, dynamically build a workflow that fulfills the user requirements.

• Stream processing: when working with SOS, is desirable to have processing services capable
of stream processing. This requires adaptation of both processing and data services, creating
special cases when performing compositions. This can potentially be implemented using
WebSockets.

• Substitutability of services: recomposition at run-time to achieve better performance or to
replace unavailable services. In this thesis, we discussed briefly the substitution of individual
services but a far more challenging problem is the multi-service substitutability touched
upon in Chapter 5.

• Discovery of Workflows: the proposed mechanism of metadata propagation allows the au-
tomatic generation of composition metadata, however, most likely this metadata is not suf-
ficient for efficient discovery of workflows. One key point that is missing in the metadata of
workflows is semantics. A mechanism that can capture the semantics of the workflow from
the semantics of its components seems from the view of the author the biggest challenge in
workflow discovery. In Chapter 5, we discussed the concept of semantic propagation with
the potential use of SWRL, this approach should be considered.

• Evaluate JSON-W: it is desirable to test and evaluate JSON-W notation in different applica-
tion domains. One could start by comparing it with SensorML and OpenMI standards.

• Validation of JSON-LD at RDF level: in this thesis, we only perform a JSON Schema vali-
dation against JSON files. In the case of JSON-LD, this is not desirable since one can have
JSON-LD files with the same contents but following a different structure. In this way, there
exist two alternatives: validate the JSON-LD file at the RDF level, or first use JSON-LD
framing to bring the file into a known structure and then apply the JSON Schema validation.
Both methods should be implemented and compared regarding computational complexity
and expressiveness of the validation.

• Verify how HTTP/2 modifies or enhances the ideas presented in this thesis: the HTTP/2
standard provides three main capabilities: improved performance, security, server push. The
author expects that HTTP/2 push can be applied instead of WebSockets, and a performance
comparison is needed. HTTP/2 will also make REST more efficient by providing means of
compressing headers and multiplexing, which allows multiple HTTP requests to run in par-
allel and also allows multiple responses to be sent with only a single request. HTTP/2 also
migrates from a textual protocol to a binary one, which has a lower overhead to transmit,
and is less error-prone.

• Integration with other types of services: The proposed solution is only applicable to JSON-
LD-based, RESTful, Hydra-enabled Web Services and considers only the asynchronous exe-
cution mode of WPS. One needs to verify how those very specific services can be integrated
with the WS-* family of services, which are XML- and SOAP-based.

118

LIST OF REFERENCES

[1] S. Donkervoort, S. Dolan, M. Beckwith, T. Northrup, and A. Sozer, “Enhancing accurate
data collection in mass fatality kinship identifications: Lessons learned from Hurricane Ka-
trina,” Forensic Sci. Int. Genet., no. 2, pp. 354–362, 2008.

[2] D. Hintz, “GIS for Disaster Response,” 2007. [Online]. Available: http://archives.
profsurv.com/magazine/article.aspx?i=70147#Disaster_Response

[3] N. Wiegand and C. Garcia, “A task-based ontology approach to automate goespatial data
retrieval,” Transactions in GIS, no. 11, pp. 355–376, 2007.

[4] NASA, “A.40 computational modeling algorithms and cyberinfrastructure,” National
Aeronautics and Space Administration (NASA), Tech. Rep., 2012.

[5] W. Yaxing, S. Santhana-Vannan, and R. Cook, “Discover, visualize, and deliver geospatial
data through OGC standards-based WebGIS system,” in Proc. 17th Internation Conference
on Geoinformatics, Fairfax, VA, 2009, pp. 1–6.

[6] Open Geospatial Consortium Inc, “OpenGIS Web Feature Service 2.0 Interface
Standard,” Open Geospatial Consortium Inc, Tech. Rep., 2010. [Online]. Available:
http://www.opengeospatial.org/standards/wfs

[7] Open Geospatial Consortium Inc, “OGC WPS 2.0 Interface Standard,” Open Geospatial
Consortium Inc, Tech. Rep., 2015. [Online]. Available: http://docs.opengeospatial.org/
is/14-065/14-065.html

[8] Open Geospatial Consortium Inc, “OpenGIS Catalogue Services Specification,” Open
Geospatial Consortium Inc, Tech. Rep., 2007. [Online]. Available: http://www.
opengeospatial.org/standards/cat

[9] Open Geospatial Consortium Inc, “Geospatial Semantic Web Interoperability Exper-
iment,” Open Geospatial Consortium Inc, Tech. Rep., 2006. [Online]. Available:
http://www.opengeospatial.org/projects/initiatives/gswie

[10] W. Kuhn, “Geospatial semantics: why, of what, and how?” Journal on Data Semantics III,
no. 3, pp. 1–24, 2005.

[11] T. Berners-Lee, “Linked Data - Design Issues,” 2009. [Online]. Available: http:
//www.w3.org/DesignIssues/LinkedData.html

[12] G. Hart and C. Dolbear, Linked Data: a Geographic Perspective. Boca Raton, FL: CRC
Press, 2013. [Online]. Available: http://ezproxy.utwente.nl:2100/isbn/978-1-4398-6995-6

[13] Google, “Google Trends - Web Search interest: Semantic Web - Worldwide, 2004 - present,”
2015. [Online]. Available: https://www.google.com/trends/explore#q=%2Fm%2F076k0

[14] TopQuadrant Inc, “TopQuadrant,” 2015. [Online]. Available: http://www.topquadrant.
com/

119

[15] Thomson Reuters |, “Open Calais,” 2015. [Online]. Available: http://new.opencalais.
com/

[16] IBM, “IBM Watson,” 2015. [Online]. Available: http://www.ibm.com/smarterplanet/us/
en/ibmwatson/

[17] Open Geospatial Consortium Inc, “OGC GeoSPARQL - A geographic query language
for RDF data,” Open Geospatial Consortium Inc, Tech. Rep., 2012. [Online].
Available: http://www.opengeospatial.org/standards/geosparqlhttp://www.opengis.net/
doc/IS/geosparql/1.0

[18] Google, “Google Trends,” 2015. [Online]. Available: https://www.google.com/trends/

[19] C. A. R. Hoare, “An axiomatic basis for computer programming,” Communications of the
ACM, vol. 12, no. 10, pp. 576–580, 1969.

[20] Object Management Group, “Business Process Model and Notation (BPMN) Version 2.0,”
Object Management Group, Tech. Rep., 2011.

[21] Open Geospatial Consortium Inc, “OGC Reference Model,” Open Geospatial Consortium
Inc, Tech. Rep., 2011.

[22] ProgrammableWeb, “ProgrammableWeb - APIs, Mashups and the Web as Platform,” 2016.
[Online]. Available: http://www.programmableweb.com/

[23] Google Code blog, “A well earned retirement for the SOAP
Search API,” 2009. [Online]. Available: http://googlecode.blogspot.nl/2009/08/
well-earned-retirement-for-soap-search.html

[24] Open Geospatial Consortium Inc, “Testbed 11 Implementing JSON/GeoJSON in an OGC
Standard Engineering Report,” Open Geospatial Consortium Inc, Tech. Rep., 2015.

[25] Open Geospatial Consortium Inc, “Testbed 10 Rules for JSON and GeoJSON Adoption:
Focus on OWS-Context,” Open Geospatial Consortium Inc, Tech. Rep., 2014.

[26] Open Geospatial Consortium Inc, “The OGC Forms REST and WFS/FE Standards
Working Groups,” 2011. [Online]. Available: http://www.opengeospatial.org/node/1497

[27] Open Geospatial Consortium Inc, “OGC Web Map Tile Service Implementation Stan-
dard,” Open Geospatial Consortium Inc, Tech. Rep., 2010.

[28] Open Geospatial Consortium Inc, “OGC RESTful encoding of OGC Sensor Planning Ser-
vice for Earth Observation satellite Tasking,” Open Geospatial Consortium Inc, Tech. Rep.,
2014.

[29] Open Geospatial Consortium Inc, “OGC RESTful Encoding of Ordering Services Frame-
work For Earth Observation Products,” Open Geospatial Consortium Inc, Tech. Rep.,
2014.

[30] Open Geospatial Consortium Inc, “OGC Download Service for Earth Observation Prod-
ucts,” Open Geospatial Consortium Inc, Tech. Rep., 2014.

[31] Open Geospatial Consortium Inc, “OGC SensorThings API,” Open Geospatial Con-
sortium Inc, Tech. Rep., 2015. [Online]. Available: http://ogc-iot.github.io/ogc-iot-api/
index.html

120

[32] Esri, “GeoServices REST Specification,” Esri, Tech. Rep. September, 2010.

[33] C. Shorter, “GeoServices REST API adoption vote - update and motion to withdraw,” 2013.
[Online]. Available: http://lists.osgeo.org/pipermail/discuss/2013-May/011789.html

[34] P. Panagiotis, “A REST binding for WFS 2.0,” p. 3, 2011. [Online]. Available:
https://portal.opengeospatial.org/files/?artifact_id=44852

[35] Open Geospatial Consortium Inc, “Testbed 11 REST Interface Engineering Report,” Open
Geospatial Consortium Inc, Tech. Rep., 2015.

[36] C. Granell, L. Díaz, A. Tamayo, and J. Huerta, “Assessment of OGC Web Processing
Services for REST principles,” Data Mining, Modelling and Management, 2012. [Online].
Available: http://arxiv.org/abs/1202.0723

[37] T. Foerster, A. Brühl, and B. Schäffer, “RESTful Web Processing Service,” in
14th AGILE International Conference on Geographic Information Science, 2011.
[Online]. Available: http://ifgi.uni-muenster.de/\simtfoer_01/articles/AGILE2011_
Foerster_etal_RESTful_WPS.pdf

[38] L. C. Jiang, P. Yue, and X. C. Lu, “Restful Implementation of Catalogue Service for
Geospatial Data Provenance,” ISPRS - International Archives of the Photogrammetry, Remote
Sensing and Spatial Information Sciences, vol. XL-4/W2, no. November, pp. 121–125,
2013. [Online]. Available: http://www.int-arch-photogramm-remote-sens-spatial-inf-sci.
net/XL-4-W2/121/2013/

[39] P. Mazzetti, S. Nativi, and J. Caron, “RESTful implementation of geospatial services for
Earth and Space Science applications,” International Journal of Digital Earth, vol. 2, no.
sup1, pp. 40–61, 2009.

[40] K. Janowicz, A. Bröring, C. Stasch, S. Schade, T. Everding, and A. Llaves, “A RESTful
proxy and data model for linked sensor data,” International Journal of Digital Earth, pp.
1–22, 2011.

[41] K. R. Page, D. C. D. Roure, K. Martinez, J. D. Sadler, and O. Y. Kit, “Linked Sensor
Data: RESTfully serving RDF and GML,” in Semantic Sensor Networks, 2009, pp. 49–63.
[Online]. Available: http://eprints.ecs.soton.ac.uk/21743/1/ssn09-krp-03.pdf

[42] 52 North Initiative for Geospatial Open Source Software GmbH, “SOS RESTful Add-on,”
2015. [Online]. Available: http://52north.org/communities/sensorweb/sosREST/

[43] 52 North Initiative for Geospatial Open Source Software GmbH, “Sensor
Web REST API,” 2015. [Online]. Available: http://sensorweb.demo.52north.org/
sensorwebclient-webapp-stable/api-doc/

[44] R. T. Fielding, “Architectural Styles and the Design of Network-based Software
Architectures,” Ph.D. dissertation, University of California, 2000. [Online]. Available:
https://www.ics.uci.edu/\simfielding/pubs/dissertation/top.htm

[45] R. Fielding and J. Reschke, “Hypertext Transfer Protocol (HTTP/1.1): Semantics and
Content,” 2014. [Online]. Available: https://tools.ietf.org/html/rfc7231

[46] Oasis, “OData - Open Data Protocol,” 2015. [Online]. Available: http://www.odata.org/

121

[47] N. Freed and N. Borenstein, “Multipurpose Internet Mail Extensions (MIME) Part Two:
Media Types,” 1996. [Online]. Available: http://www.rfc-editor.org/rfc/rfc2046.txt

[48] Oasis, “Batch Processing (OData Version 3.0),” 2015. [Online]. Available: http:
//www.odata.org/documentation/odata-version-3-0/batch-processing/

[49] M. Muller, L. Bernard, and J. Brauner, “Moving Code in Spatial Data Infrastructures - Web
Service Based Deployment of Geoprocessing Algorithms,” Transactions in GIS, 2010.

[50] Open Geospatial Consortium Inc, “OGC Filter Encoding 2.0 Encoding Standard With
Corrigendum,” Open Geospatial Consortium Inc, Tech. Rep., 2014.

[51] I. Fette and A. Melnikov, “The WebSocket Protocol,” 2011. [Online]. Available:
https://tools.ietf.org/html/rfc6455

[52] T. Bray, “The JavaScript Object Notation (JSON) Data Interchange Format,” 2014.
[Online]. Available: https://tools.ietf.org/html/rfc7159

[53] M. Lanthaler and C. Gütl, “On Using JSON-LD to Create Evolvable RESTful Services,”
in WS-REST ’12, 2012, pp. 25–32.

[54] R. Lämmel and E. Meijer, “Revealing the X/O impedance mismatch,” Datatype-Generic
Programming, pp. 1–80, 2007. [Online]. Available: http://link.springer.com/chapter/10.
1007/978-3-540-76786-2_6

[55] H. Butler, M. Daly, A. Doyle, S. Gillies, T. Schaub, and C. Schmidt, “GeoJSON,” 2008.
[Online]. Available: http://geojson.org/

[56] Open Geospatial Consortium Inc, “OGC OWS Context GeoJSON Encoding Standard,”
Open Geospatial Consortium Inc, Tech. Rep., 2015.

[57] Open Geospatial Consortium, “Opengis implementation standard for geo-
graphic information - Simple feature access - Part 1: Common Archi-
tecture,” Open Geospatial Consortium Inc, Tech. Rep., 2011. [Online].
Available: http://portal.opengeospatial.org/files/?artifact_id=25355E+Implementation+
Standard+for+Geographic+information+-+Simple+feature+access#1

[58] MongoDB Inc, “MongoDB,” 2016. [Online]. Available: https://www.mongodb.org/

[59] F. Galiegue, K. Zyp, and G. Court, “JSON Schema,” 2013. [Online]. Available:
http://json-schema.org/

[60] F. Galiegue, “Sample JSON schemas,” 2014. [Online]. Available: https://github.com/fge/
sample-json-schemas/

[61] International Organization for Standardization, “ISO 19119:2005 Geographic Information
- Services,” International Organization for Standardization, Geneva, Tech. Rep., 2005.

[62] R. d. S. Rocha, L. C. Degrossi, and J. P. de Albuquerque, “A Systematic Literature Review
of Geospatial Web Service Composition,” in XVIII Ibero-American Conference on Software
Engineering, 2015. [Online]. Available: http://www.agora.icmc.usp.br/site/wp-content/
uploads/2015/03/Rocha_ESELAW_2015.pdf

122

[63] H. Rusli, S. Ibrahim, and M. Puteh, “Testing Web Services Composition: A
Mapping Study,” Communications of the IBIMA, pp. 1–12, 2011. [Online]. Available:
http://www.ibimapublishing.com/journals/CIBIMA/2011/598357/598357.html

[64] N. Milanovic, “Contract-based web service composition framework with correctness guar-
antees,” in Second International Service Availability Symposium, ISAS, vol. 3694 LNCS, 2005,
pp. 52–67.

[65] G. Baryannis, M. Carro, and D. Plexousakis, “Deriving Specifications for Composite Web
Services,” in 2012 IEEE 36th International Conference on Computer Software and Applica-
tiosn, 2012, pp. 432–437.

[66] Z. Chen, J. Wu, S. Deng, Y. Li, and Z. Wu, “Describing and Verifying Web Service Using
Type Theory,” in 10th International Conference on Computer Supported Cooperative Work
in Design, 2006, pp. 1–5. [Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/
wrapper.htm?arnumber=4019219

[67] A. Kim, E. Ioup, M. Kang, C. Meadows, and J. Sample, “A Framework for Automatic Web
Service Composition,” Naval Research Laboratory, Tech. Rep., 2009. [Online]. Available:
http://www.dtic.mil/dtic/tr/fulltext/u2/a499917.pdf

[68] B. Medjahed and A. Bouguettaya, “A multilevel composability model for semantic Web
services,” IEEE Transactions on Knowledge and Data Engineering, vol. 17, no. 7, pp.
954–968, 2005. [Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.
htm?arnumber=1432704

[69] R. Tarjan, “Depth-first search and linear graph algorithms,” 12th Annual Symposium on
Switching and Automata Theory, vol. 1, no. 2, pp. 146–160, 1971.

[70] M. Sipser, “The Halting Problem,” in Introduction to the Theory of Computation, 2nd ed.
Course Technology, 2006.

[71] L. Cardelli, “Type Systems,” in CRC Handbook of Computer Science and Engineering,
2nd ed., A. B. Tucker, Ed. Chapman and Hall/CRC, 2004, ch. 97, pp. 2208–2236.
[Online]. Available: http://lucacardelli.name/papers/typesystems.pdf

[72] International Organization for Standardization, “ISO 19125-1:2004 Geographic informa-
tion - Simple feature access - Part 1: Common architecture,” International Organization for
Standardization, Geneva, Tech. Rep., 2004.

[73] Open Geospatial Consortium Inc, “A Conceptual Model and Text-based Notation for
Temporal Geometry,” Open Geospatial Consortium Inc, Tech. Rep., 2014. [Online].
Available: http://www.opengeospatial.org/blog/2357

[74] International Organization for Standardization, “ISO 8601 - Data elements and interchange
formats - Information interchange - Representation of dates and times,” International Or-
ganization for Standardization, Geneva, Tech. Rep., 2004.

[75] International Organization for Standardization, “ISO 19108:2002 Geographic information
- Temporal schema,” International Organization for Standardization, Geneva, Tech. Rep.,
2002.

[76] Open Geospatial Consortium Inc, “OpenGIS Abstract Specification Topic 6: Schema for
coverage geometry and functions,” Open Geospatial Consortium Inc, Tech. Rep., 2006.

123

[77] Open Geospatial Consortium Inc, “OGC GML Application Schema - Coverages,” Open
Geospatial Consortium Inc, Tech. Rep., 2010.

[78] International Organization for Standardization, “ISO 19123:2005 Geographic information
- Schema for coverage geometry and functions,” International Organization for Standard-
ization, Geneva, Tech. Rep., 2005.

[79] International Organization for Standardization, “ISO 19101-1:2005 Geographic informa-
tion - Reference model - Part 1: Fundamentals,” International Organization for Standard-
ization, Geneva, Tech. Rep., 2005.

[80] L. Cardelli and P. Wegner, “On understanding types, data abstraction, and polymorphism,”
ACM Computing Surveys, vol. 17, no. 4, pp. 471–523, 1985.

[81] PostGIS, “PostGIS 2.2.2dev Manual,” 2015. [Online]. Available: http://postgis.net/docs/
manual-2.2/

[82] R. Hodgson, P. J. Keller, J. Hodges, and J. Spivak, “QUDT - Quantities, Units, Dimensions
and Types,” 2014. [Online]. Available: http://www.qudt.org/

[83] Open Geospatial Consortium Inc, “OGC Name Type Specification for Coordinate Refer-
ence Systems,” Open Geospatial Consortium Inc, Tech. Rep., 2013.

[84] Garmin, “GPX TrackPointExtension v1,” 2004. [Online]. Available: https://www8.
garmin.com/xmlschemas/TrackPointExtensionv1.xsd

[85] Open Geospatial Consortium Inc, “Geographic information - Well-known text representa-
tion of coordinate reference systems,” Open Geospatial Consortium Inc, Tech. Rep., may
2015. [Online]. Available: http://docs.opengeospatial.org/is/12-063r5/12-063r5.html

[86] M. Hedley and C. Little, “Advancing our ability to tell time,” 2016. [Online]. Available:
http://www.opengeospatial.org/blog/2357

[87] IEEE, “Seconds Since the Epoch,” 2013. [Online]. Available: http://pubs.opengroup.org/
onlinepubs/9699919799/basedefs/V1_chap04.html#tag_04_15

[88] Safe Software, “Rubber Sheeter | FME by Safe Software,” 2016. [Online]. Available:
https://www.safe.com/transformers/rubber-sheeter/

[89] T. Gruber, “Toward principles for the design of ontologies used for knowledge sharing,”
International Journal of Human-Computer Studies, vol. 43, no. 5-6, pp. 907–928, 1995.
[Online]. Available: http://dx.doi.org/10.1006/ijhc.1995.1081

[90] W3C Working Group, “OWL 2 Web Ontology Language Document Overview
(Second Edition),” 2012. [Online]. Available: https://www.w3.org/TR/2012/
REC-owl2-overview-20121211/

[91] W3C, “RDF 1.1 Concepts and Abstract Syntax,” 2014. [Online]. Available: https:
//www.w3.org/TR/rdf11-concepts/

[92] D. Beckett, T. Berners-Lee, E. Prud’hommeaux, and G. Carothers, “RDF 1.1 Turtle,”
2014. [Online]. Available: https://www.w3.org/TR/2014/REC-turtle-20140225/

[93] J. Brauner, “Formalizations for geooperators - Geoprocessing in spatial data infrastruc-
tures,” PhD, Technische Universitat Dresden, 2015.

124

[94] I. Horrocks, P. Patel-Schneider, H. Boley, S. Tabet, B. Grosof, and M. Dean, “SWRL: A
Semantic Web Rule Language Combining OWL and RuleML,” 2004. [Online]. Available:
http://www.w3.org/Submission/SWRL/

[95] K. Janowicz, F. V. Harmelen, J. a. Hendler, and P. Hitzler, “Why the data train needs se-
mantic rails,” AI Magazine, Association for the Advancement of Artificial Intelligence (AAAI),
no. May, pp. 1–8, 2014.

[96] W. Kuhn, T. Kauppinen, and K. Janowicz, “Linked Data - A Paradigm Shift for Geographic
Information Science,” in 8th International Conference, GIScience 2014, 2014.

[97] Open Geospatial Consortium Inc, “Testbed 11 Implementing Linked Data and Seman-
tically Enabling OGC Services Engineering Report,” Open Geospatial Consortium Inc,
Tech. Rep., 2015.

[98] K. Janowicz, S. Scheider, T. Pehle, and G. Hart, “Geospatial semantics and linked spatiotem-
poral data - past, present, and future,” Semantic Web, vol. 3, no. 4z, pp. 321–332, 2012.

[99] F. Harvey, J. Jones, S. Scheider, A. Iwaniak, I. Kaczmarek, J. Lukowicz, and M. Strzelecki,
“Little Steps Towards Big Goals. Using Linked Data to Develop Next Generation Spatial
Data Infrastructures (aka SDI 3.0),” in Proceedings of the AGILE 2014 - International Con-
ference on Geographic Information Science, 2014, pp. 3–6.

[100] C. Zhang, T. Zhao, and W. Li, “Automatic search of geospatial features for disaster and
emergency management,” International Journal of Applied Earth Observation and Geoinfor-
mation, vol. 12, no. 6, pp. 409–418, 2010.

[101] T. Zhao, C. Zhang, M. Wei, and Z. R. Peng, “Ontology-based geospatial data query and
integration,” in 5th International Conference, GIScience 2008, vol. 5266 LNCS, no. 1, Park
City, UT, USA, 2008, pp. 370–392.

[102] J. Jones, W. Kuhn, C. Kebler, and S. Scheider, “Making the Web of Data Available
Via Web Feature Services,” in Connecting a Digital Europe through Location and Place.
Proceedings of the AGILE’2014 International Conference on Geographic Information Science.
Springer International Publishing, 2014, ch. Part V, pp. 341–361. [Online]. Available:
http://link.springer.com/10.1007/978-3-319-03611-3

[103] K. Janowicz, S. Schade, A. Bröring, C. Keßler, P. Maué, and C. Stasch, “Semantic Enable-
ment for Spatial Data Infrastructures,” Transactions in GIS, vol. 14, no. 2, pp. 111–129, 2010.

[104] P. Bryan and K. Zyp, “JSON Reference,” 2013. [Online]. Available: https://tools.ietf.org/
html/draft-pbryan-zyp-json-ref-03

[105] M. Kelly, “The Hypertext Application Language,” 2013. [Online]. Available: http:
//stateless.co/hal_specification.html

[106] M. Amundsen, “Collection+JSON - Document Format : Media Types,” 2013. [Online].
Available: http://amundsen.com/media-types/collection/format/

[107] M. Lanthaler, “A Semantic Description Language for RESTful Data Services to Combat
Semaphobia,” in 5th IEEE International Conference on Digital Ecosystems and Technologies,
vol. 5, no. June, 2011, pp. 47–53.

125

[108] M. Sporny, D. Longley, G. Kellogg, M. Lanthaler, and N. Lindström, “JSON-LD 1.0,”
2014. [Online]. Available: https://www.w3.org/TR/json-ld/

[109] Open Geospatial Consortium Inc, “Geospatial Microtheories,” 2015. [Online]. Available:
http://ows.usersmarts.com/geospatial/

[110] P. Colpaert, “Coordinates to RDF doesn’t work - 32,” 2015. [Online]. Available:
https://github.com/geojson/geojson-ld/issues/32

[111] S. Gillies, “GeoJSON-LD,” 2015. [Online]. Available: https://github.com/geojson/
geojson-ld

[112] E. Wilde, “GeoJSON-X,” 2015. [Online]. Available: https://github.com/dret/
GeoJSON-X

[113] GeOps, “GeoServer WFS Performance Comparison,” 2013. [Online]. Available: http:
//geops.de/blog/130-geoserver-wfs-performance-comparison?language=en

[114] I. Tihonov, “GeoJSON-minifier,” 2015. [Online]. Available: https://github.com/igorti/
geojson-minifier

[115] Mapbox, “Geobuf,” 2015. [Online]. Available: https://github.com/mapbox/geobuf

[116] R. Chinnici, J.-J. Moreau, A. Ryman, and S. Weerawarana, “Web Services Description
Language (WSDL) Version 2.0 Part 1: Core Language,” 2007. [Online]. Available:
https://www.w3.org/TR/wsdl20/

[117] D. Martin, M. Burstein, J. Hobbs, O. Lassila, D. McDermott, S. McIlraith, S. Narayanan,
M. Paolucci, B. Parsia, T. Payne, E. Sirin, N. Srinivasan, and K. Sycara, “OWL-S: Semantic
Markup for Web Services,” 2004. [Online]. Available: https://www.w3.org/Submission/
OWL-S/

[118] J. de Bruijn, C. Bussler, J. Domingue, D. Fensel, M. Hepp, U. Keller, M. Kifer,
B. König-Ries, J. Kopecky, R. Lara, H. Lausen, E. Oren, A. Polleres, D. Roman,
J. Scicluna, and M. Stollberg, “Web Service Modeling Ontology (WSMO),” 2005. [Online].
Available: https://www.w3.org/Submission/WSMO/

[119] R. Verborgh, T. Steiner, R. V. de Walle, and J. Gabarro, “Linked Data and
Linked APIs: Similarities, Differences, and Challenges,” in The Semantic Web:
ESWC 2012 Satellite Events, vol. 7540, 2012, pp. 73–86. [Online]. Available: http:
//www.scopus.com/inward/record.url?eid=2-s2.0-84942616762&partnerID=tZOtx3y1

[120] J. Kopecký, K. Gomadam, and T. Vitvar, “hRESTS: An HTML microformat for describing
RESTful Web services,” in 2008 IEEE/WIC/ACM International Conference on Web Intelli-
gence and Intelligent Agent Technology, 2008, pp. 619–625.

[121] J. Lathem, “SA-REST and (S) mashups : Adding Semantics to RESTful Services,” in Inter-
national Conference on Semantic Computing, 2007, pp. 469–476.

[122] M. Lanthaler, “Creating 3rd Generation Web APIs with Hydra,” in WWW 2013 Compan-
ion, 2013, pp. 2–4.

[123] Multimedia Lab Ghent University - iMind, “Linked Data Fragments,” 2016. [Online].
Available: http://linkeddatafragments.org/

126

[124] R. Verborgh, “600,000 queryable datasets - and counting,” 2015. [Online]. Available:
http://ruben.verborgh.org/blog/2015/01/30/600000-queryable-datasets-and-counting/

[125] M. Lanthaler, “Hydra Core Vocabulary,” 2015. [Online]. Available: http://www.hydra-cg.
com/spec/latest/core/

[126] L. Moreau, B. Clifford, J. Freire, J. Futrelle, Y. Gil, P. Groth, N. Kwasnikowska,
S. Miles, P. Missier, J. Myers, B. Plale, Y. Simmhan, E. Stephan, and J. V. Den
Bussche, “The Open Provenance Model core specification (v1.1),” Future Generation
Computer Systems, vol. 27, no. 6, pp. 743–756, 2011. [Online]. Available: http:
//dx.doi.org/10.1016/j.future.2010.07.005

[127] W3C Working Group, “PROV-O: The PROV Ontology,” 2013. [Online]. Available:
https://www.w3.org/TR/prov-o/

[128] S. A. Cook, “A taxonomy of problems with fast parallel algorithms,” Information
and Control, vol. 64, no. 1-3, pp. 2–22, jan 1985. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S0019995885800413

[129] A. Bucchiarone and S. Gnesi, “A Survey on Services Composition Languages and Models,”
in International Workshop on Web Services Modelling and Testing, 2006, pp. 1–13.

[130] P. Wohed, W. Aalst, M. Dumas, and A. Hofstede, “Analysis of Web Services Composition
Languages: The Case of BPEL4WS,” in 22nd International Conference on Conceptual Mod-
eling, vol. 2813, Chicago, IL, USA, 2003, pp. 200–215.

[131] W. M. P. Van der Aalst, a. H. M. Ter Hofstede, B. Kiepuszewski, and a. P. Barros, “Workflow
patterns,” Distributed and Parallel Databases, vol. 14, pp. 5–51, 2003.

[132] W. van der Aalst and A. ter Hofstede, “Workflow Patterns Home Page,” 2011. [Online].
Available: http://www.workflowpatterns.com/

[133] Open Geospatial Consortium Inc, “SensorML: Model and XML Encoding Standard,”
Open Geospatial Consortium Inc, Tech. Rep., 2014.

[134] OpenMI Association, “OpenMI,” 2015. [Online]. Available: http://www.openmi.org/

[135] Node.js Foundation, “Node.js,” 2016. [Online]. Available: https://nodejs.org/en/

[136] Mapbox, “Turf.js,” 2016. [Online]. Available: http://turfjs.org/

[137] B. Harrtell, “JSTS Topology Suite,” 2016. [Online]. Available: https://github.com/
bjornharrtell/jsts

[138] Natural Atlas, “node-gdal,” 2016. [Online]. Available: https://github.com/naturalatlas/
node-gdal

[139] LearnBoost, “Mongoose ODM v4.3.7,” 2016. [Online]. Available: http://mongoosejs.
com/

[140] Socket.IO, “Socket.IO,” 2016. [Online]. Available: http://socket.io/

[141] Getify Solutions, “JSON-P: Safer cross-domain Ajax with JSON-P/JSONP,” 2010.
[Online]. Available: http://json-p.org/

127

COMPOSITION OF SEMANTICALLY ENABLED GEOSPATIAL WEB SERVICES

[142] M. Hossain and M. Hausenblas, “Enable cross-origin resource sharing,” 2016. [Online].
Available: http://enable-cors.org/

[143] G. Luff, “Tiny Validator (for v4 JSON Schema),” 2016. [Online]. Available: https:
//github.com/geraintluff/tv4

[144] C. McMahon, “Async.js,” 2016. [Online]. Available: https://github.com/caolan/async

[145] A. ONeal, “node-uuid,” 2015. [Online]. Available: https://github.com/broofa/node-uuid

[146] P. Leach, M. Mealling, and R. Salz, “A Universally Unique Identifier (UUID) URN
Namespace,” 2005. [Online]. Available: http://www.ietf.org/rfc/rfc4122.txt

[147] Google, “AngularJS - Superheroic JavaScript MVW Framework,” 2016. [Online].
Available: https://angularjs.org/

[148] V. Agafonkin, “Leaflet - a JavaScript library for interactive maps,” 2016. [Online].
Available: http://leafletjs.com/

[149] I. S. Ortega, “Leaflet.draw,” 2015. [Online]. Available: https://github.com/Leaflet/
Leaflet.draw

[150] S. S. Walia, A. Dasgupta, and S. K. Ghosh, “Geospatial orchestration framework for resolv-
ing complex user query,” in ICCSA 2011, vol. 6782 LNCS, no. PART 1, 2011, pp. 643–651.

[151] X. Meng, Y. Xie, and F. Bian, “Distributed geospatial analysis through web processing ser-
vice: A case study of earthquake disaster assessment,” Journal of Software, vol. 5, no. 6, pp.
671–679, 2010.

[152] J. de Jesus, P. Walker, M. Grant, and S. Groom, “WPS orchestration using the Taverna
workbench: The eScience approach,” Computers and Geosciences, vol. 47, pp. 75–86, 2011.
[Online]. Available: http://dx.doi.org/10.1016/j.cageo.2011.11.011

[153] A. Akram, D. Meredith, and R. Allan, “Evaluation of BPEL to Scientific Workflows,” in
Sixth IEEE International Symposium on Cluster Computing and the Grid, 2006, pp. 4–7.

[154] Open Geospatial Consortium Inc, “Workflow DWG | OGC,” 2016. [Online]. Available:
http://www.opengeospatial.org/projects/groups/workflowdwg

128

COMPOSITION OF SEMANTICALLY ENABLED GEOSPATIAL WEB SERVICES

Appendix A

JSON Serialization for Filter Encoding

Filter Encoding is necessary for the definition of Catalogue Services for the Web (CSW) and op-
tional in Web Feature Services (WFS). It is standardized in OGC Filter Encoding 2.0 Standard
and ISO 19143 – Filter Encoding. In this appendix, we exemplify operations of JSON Serializa-
tion for Filter Encoding (JSFE). All operations are based on MongoDB query parameters. It uses
GeoJSON geometry encoding, in contrast with OGC Filter Encoding that uses GML geometries.

Table A.1 presents the syntax for JSFE in Backus-Naur Form (BNF). Table A.2 presents a
comparison between XML Filter Encoding and JSFE.

Table A.1: BNF for JSFE

<expression> ::= {$and: [<expression>,...,<expression>]}
| {$or: [<expression>,...,<expression>]}
| {$not: <expression>}
| <standard filter>
| <spatial filter>

<standard filter> ::= {<attribute>: {$<simple operator>: <numeric>}}
| {<attribute>: {$exists: true}}
| {<attribute>: {$exists: false}}
| {<attribute>: {$between: [<numeric>, <numeric>]}}
| {<attribute>: {$regex: <string>, $wildCard: <char>,
$singleChar: <char>, $escape: <char>}}

<simple operator> ::= lt|lte|gt|gte|eq
<spatial filter> ::= {<attribute>: {$<simple spatial operator>: <geometry>}}

| {<attribute>: {$<binary spatial operator>: <geometry>,
$distance: <numeric>}}}
| {geom: {$bbox: <bbox>}}}

<simple spatial operator> ::= equal|disjoint|touches|within|overlaps|crosses|intersects|contains
<binary spatial operator> ::= within|beyond

129

COMPOSITION OF SEMANTICALLY ENABLED GEOSPATIAL WEB SERVICES

Table A.2: JSFE operators

Operator Filter Encoding JSFE
Property Is Null <PropertyIsNull>

<PropertyName>name </PropertyName>

</PropertyIsNull>

{name: {$exists:

true }}

Property Is Nil <PropertyIsNil>

<PropertyName>name </PropertyName>

</PropertyIsNil>

{name: {$exists:

false }}

Property Is Less Than <PropertyIsLessThan>

<PropertyName>age </PropertyName>

<Literal>18</Literal>

</PropertyIsLessThan>

{age: {$lt: 18}}

Property Is Less Than
Or Equal To

<PropertyIsLessThanOrEqualTo>

<PropertyName>age </PropertyName>

<Literal>18</Literal>

</PropertyIsLessThanOrEqualTo>

{age: {$lte: 18}}

Property Is Greater
Than

<PropertyIsGreaterThan>
<PropertyName>age </PropertyName>
<Literal>18</Literal>
</PropertyIsGreaterThan>

{age: {$gt: 18}}

Property Is Greater
Than Or Equal To

<PropertyIsGreaterThanOrEqualTo>

<PropertyName>age </PropertyName>

<Literal>18</Literal>

</PropertyIsGreaterThanOrEqualTo>

{age: {$gte: 18}}

Property Is Equal To <PropertyIsEqualTo>

<PropertyName>age </PropertyName>

<Literal>18</Literal>

</PropertyIsEqualTo>

{age: {$eq: 18}}

Property Is Between <PropertyIsBetween>

<PropertyName>age </PropertyName>

<LowerBoundary>18</LowerBoundary>

<UpperBoundary>60< /UpperBoundary>

</PropertyIsBetween>

{age: {$between: [18,

60]}}

Property Is Like <PropertyIsLike wildCard=“*”

singleChar=“.” escape=“!” >

<PropertyName>owmstat </PropertyName>

<Literal>Natuurlij* </Literal>

</PropertyIsLike>

{owmstat: {$regex:

“Natuurlij*”, $wildCard:

“*”, $singleChar: “.”,

$escape: “!” }}

And <And> ... </And> {$and: [...]}

Or <Or> ... </Or> {$or: [...]}

Not <Not> ... </Not> {$not: {...}}

Equal <Equal>

<PropertyName>geom </PropertyName>

<gml:Point> <gml:coordinates>125.6

10.1</gml:coordinates> </gml:Point>

</Equal>

{geom: {$equal:

{geometry: {type:

“Point”, coordinates:

[125.6, 10.1]}}}}

130

COMPOSITION OF SEMANTICALLY ENABLED GEOSPATIAL WEB SERVICES

Operator Filter Encoding JSFE
Disjoint <Disjoint>

<PropertyName>geom </PropertyName>

<gml:Point> <gml:coordinates>125.6

10.1</gml:coordinates> </gml:Point>

</Disjoint>

{geom: {$disjoint:

{geometry: {type:

“Point”, coordinates:

[125.6, 10.1]}}}}

Touches <Touches>

<PropertyName>geom </PropertyName>

<gml:Point> <gml:coordinates>125.6

10.1</gml:coordinates> </gml:Point>

</Touches>

{geom: {$touches:

{geometry: {type:

“Point”, coordinates:

[125.6, 10.1]}}}}

Within <Within>

<PropertyName>geom </PropertyName>

<gml:Polygon> <gml:outerBoundaryIs>

<gml:LinearRing>

<gml:coordinates>-10.0 -10.0,

10.0 -10.0, 10.0 10.0, -10.0,

10.0</gml:coordinates>

</gml:LinearRing>

</gml:outerBoundaryIs>

</gml:Polygon> </Within>

{geom: {$within:

{geometry: {type:

“Polygon”, coordinates:

[[[-10.0, -10.0], [10.0,

-10.0], [10.0, 10.0],

[-10.0, 10.0]]]}}}}

Overlaps <Overlaps>

<PropertyName>geom </PropertyName>

<gml:Polygon> <gml:outerBoundaryIs>

<gml:LinearRing>

<gml:coordinates>-10.0 -10.0,

10.0 -10.0, 10.0 10.0, -10.0,

10.0</gml:coordinates>

</gml:LinearRing>

</gml:outerBoundaryIs>

</gml:Polygon> </Overlaps>

{geom: {$overlaps:

{geometry: {type:

“Polygon”, coordinates:

[[[-10.0, -10.0], [10.0,

-10.0], [10.0, 10.0],

[-10.0, 10.0]]]}}}}

Crosses <Crosses>

<PropertyName>geom </PropertyName>

<gml:Polygon> <gml:outerBoundaryIs>

<gml:LinearRing>

<gml:coordinates>-10.0 -10.0,

10.0 -10.0, 10.0 10.0, -10.0,

10.0</gml:coordinates>

</gml:LinearRing>

</gml:outerBoundaryIs>

</gml:Polygon> </Crosses>

{geom: {$crosses:

{geometry: {type:

“Polygon”, coordinates:

[[[-10.0, -10.0], [10.0,

-10.0], [10.0, 10.0],

[-10.0, 10.0]]]}}}}

Intersects <Intersects>

<PropertyName>geom </PropertyName>

<gml:Point> <gml:coordinates>125.6

10.1</gml:coordinates> </gml:Point>

</Intersects>

{geom: {$intersects:

{geometry: {type:

“Point”, coordinates:

[125.6, 10.1]}}}}

131

COMPOSITION OF SEMANTICALLY ENABLED GEOSPATIAL WEB SERVICES

Operator Filter Encoding JSFE
Contains <Contains>

<PropertyName>geom </PropertyName>

<gml:Point> <gml:coordinates>125.6

10.1</gml:coordinates> </gml:Point>

</Contains>

{geom: {$contains:

{geometry: {type:

“Point”, coordinates:

[125.6, 10.1]}}}}

DWithin <DWithin>

<PropertyName>geom </PropertyName>

<gml:Point> <gml:coordinates>125.6

10.1</gml:coordinates> </gml:Point>

<Distance>100</Distance> </Dwithin>

{geom: {$dWithin:

{geometry: {type:

“Point”, coordinates:

[125.6, 10.1]},

$distance: 100}}}

Beyond <Beyond>

<PropertyName>geom </PropertyName>

<gml:Point> <gml:coordinates>125.6

10.1</gml:coordinates> </gml:Point>

<Distance>100</Distance> </Beyond>

{geom: {$beyond:

{geometry: {type:

“Point”, coordinates:

[125.6, 10.1]},

$distance: 100}}}

BBOX <BBOX>

<PropertyName>geom </PropertyName>

<gml:Box><gml:coord>

<gml:X>-10</gml:X><gml:Y>0</gml:Y>

</gml:coord><gml:coord>

<gml:X>10</gml:X><gml:Y>10</gml:Y>

</gml:coord></gml:Box></BBOX>

{geom: {$bbox: [-10,

0, 10, 10]}}}

132

COMPOSITION OF SEMANTICALLY ENABLED GEOSPATIAL WEB SERVICES

Appendix B

Algorithms for Structural Composability

The Algorithm 1 performs a recursive call of the Algorithms 2 and 3.

Algorithm 1: Branching algorithm for deriving all possible graph scenarios

1 Algorithm branchingGraph(G)
Input: A topologically sorted graph G, with nodes N and the edges E
Output: a set S of graph scenarios

2 S← []
3 v← null
4 forall nodes n in N do
5 if type(n) = conditional then
6 v← n
7 break
8 end
9 end

10 if v 6= null then
11 Nmarked, Emarked = markGraph(N,E, v)
12 S0← cleanGraph(Nmarked, Emarked, v, 0)
13 S1← cleanGraph(Nmarked, Emarked, v, 1)
14 S.concatenate(branchingGraph(S0), branchingGraph(S1))
15 else
16 S.push((N,E))
17 end
18 return S

133

COMPOSITION OF SEMANTICALLY ENABLED GEOSPATIAL WEB SERVICES

Algorithm 2: Marking algorithm for a particular conditional

1 Algorithm markGraph(N,E, v)
Input: A graph (N,E) and v a conditional node
Output: the graph N, E marked

2 S← []
3 forall edges e from v to w in (N,E).adjacentEdges(v)[false] do
4 S.push(w) // initial nodes for depth-first traverse
5 E[e].mark = 0 // select the edge e in E and set the mark value
6 end
7 while S is not empty do
8 u = S.pop()
9 if u.mark = null then

10 N [u].mark = 0 // selected the node u in N and set the mark
11 forall edges e from u to w in (N,E).adjacentEdges(u) do
12 E[e].mark = 0
13 S.push(w)
14 end
15 end
16 end
17 forall edges e from v to w in (N,E).adjacentEdges(v)[true] do
18 S.push(w)
19 E[e].mark = 1
20 end
21 while S is not empty do
22 u = S.pop()
23 if u.mark = null || u.mark = 0 then
24 if u.mark = 0 then /* if the node is marked it receives mark 2 */
25 N(u).mark = 2
26 else
27 N(u).mark = 1
28 end
29 forall edges e from u to w in (N,E).adjacentEdges(u) do
30 if e.mark = 0 then
31 E(e).mark = 2
32 else
33 E(e).mark = 1
34 end
35 S.push(w)
36 end
37 end
38 end
39 return (N,E)

134

COMPOSITION OF SEMANTICALLY ENABLED GEOSPATIAL WEB SERVICES

Algorithm 3: Cleaning algorithm for deriving a particular scenario

1 Algorithm cleanGraph(N,E, v, t)
Input: The marked nodes N and edges E of the graph representation, an conditional

node v, and the identifier t of the mark (0 or 1)
Output: the graph N, E cleaned

2 S← []
3 forall nodes n in N do
4 if n.mark = t then
5 S← []
6 S.push(n)
7 while S is not empty do
8 u = S.pop()
9 forall edges e from w to u in (N,E).adjacentEdges(u) do

10 if w.mark = t || w.mark = null then
11 E[e].pop()
12 S.push(w)
13 end
14 end
15 N [u].pop()
16 end
17 end
18 end
19 initNode← (N,E).parentNode(v)
20 forall edges e from v to w in (N,E).adjacentEdges(v)[¬ t] do
21 E[e].origin = initNode
22 end
23 return (N,E)

135

COMPOSITION OF SEMANTICALLY ENABLED GEOSPATIAL WEB SERVICES

136

COMPOSITION OF SEMANTICALLY ENABLED GEOSPATIAL WEB SERVICES

Appendix C

JSON Serialization for Types and Conditions

Table C.1 presents the syntax for the JSON serialization of type declarations in Backus-Naur Form
(BNF). Table C.2 presents the systax for the JSON serialization pre- and postconditon.

Table C.1: BNF for type declarations

<type> ::= {$set: { <type> }}
| {$record: { <name>:<type>,...,<name>:<type> }}
| {$union: [<type>,...,<type>]}
| <type operator>
| <basic type>
| <geometry type>
| <temporal type>
| <coverage type>

<type operator> ::= {$typeOf: <name>}
| {$addAttrs: [<type>,<type>]}
| {$remAttrs: [<type>,<type>]}
| {$unset: <type>}

<basic type> ::= unit|string|integer|real|boolean
<geometry type> ::= point|linestring|polygon|geometrycollection|multipoint

multipoint|multilinestring|multipolygon|geometry|bbox
<temporal type> ::= instant|period|multiinstant|regularmultiinstant|multiperiod

regularmultiperiod|duration
<coverage type> ::= rectifiedgridcoverage|gridcoverage|referenceablegridcoverage|

multipointcoverage|multicurvecoverage|multisurfacecoverage

137

COMPOSITION OF SEMANTICALLY ENABLED GEOSPATIAL WEB SERVICES

Table C.2: BNF for JSON serialization of pre- and postconditions

<expression> ::= {$and: [<expression>,...,<expression>]}
| {$or: [<expression>,...,<expression>]}
| {$not: <expression>}
| {$implies: [<expression>,<expression>]}
| {$<relation>:[<term>,<term>]}
| {$<predicate>:[<term>,...,<term>]}
| {$<quantifier>:[<variable>,<set>,<expression>]}

<term> ::= {$<function>:[<term>,...,<term>]}
| {$literal: <constant>}
| <variable>

<relation> ::= lt|lte|gt|gte|eq|df
<quantifier> ::= forall|exists

138

COMPOSITION OF SEMANTICALLY ENABLED GEOSPATIAL WEB SERVICES

Appendix D

JSON Workflow Representation

Listing D.1 presents the RDF model of the workflow presented in Figure 6.1.

Listing D.1: RDF model for workflows
1 @prefix : <http :// www. semanticweb .org/itc/ ontologies / workflow #> .
2 @prefix owl: <http :// www.w3.org /2002/07/ owl#> .
3 @prefix rdf: <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#> .
4 @prefix xml: <http :// www.w3.org/XML /1998/ namespace > .
5 @prefix xsd: <http :// www.w3.org /2001/ XMLSchema #> .
6 @prefix rdfs: <http :// www.w3.org /2000/01/ rdf - schema #> .
7 @base <http :// www. semanticweb .org/itc/ ontologies /workflow > .
8
9 _:b0 rdf:type :wfs ;

10 : hasName " Rivers " ;
11 : hasUrl "http :// localhost :3001/ wfs/ rivers " ;
12 : hasOutput _:b1 .
13
14 _:b1 rdf:type : output ;
15 : hasName " rivers " ;
16 : sequenceFlow _:b6 .
17
18 _:b2 rdf:type : literal ;
19 : hasValue 1000 ;
20 : hasType "Real" ;
21 : hasOutput _:b3 .
22
23 _:b3 rdf:type : output ,
24 : hasName " literal " ;
25 : sequenceFlow _:b7 .
26
27 _:b4 rdf:type :wps ;
28 : hasName " Buffer " ;
29 : hasUrl "http :// localhost :3000/ wps/ buffer /job" ;
30 : hasOutput _:b5 ;
31 : hasInput _:b6 ,
32 _:b7 ,
33 _:b8 .
34
35 _:b5 rdf:type : output ;
36 : hasName " buffered " ;
37 : sequenceFlow _:b15 .
38
39 _:b6 rdf:type : input ;
40 : hasName " features " .
41
42 _:b7 rdf:type : input ;
43 : hasName " distance " .
44
45 _:b8 rdf:type : input ;
46 : hasName "unit" .
47
48 _:b9 rdf:type :wfs ,
49 : hasName " Buildings " ;
50 : hasUrl "http :// localhost :3001/ wfs/ buildings " ;
51 : hasOutput _:b10 .
52

139

COMPOSITION OF SEMANTICALLY ENABLED GEOSPATIAL WEB SERVICES

53 _:b10 rdf:type : output ,
54 : hasName " buildings " ;
55 : sequenceFlow _:b14 .
56
57 _:b11 rdf:type :wps ,
58 : hasUrl "http :// localhost :3000/ wps/ intersects /jobs" ;
59 : hasName " Intersects " ;
60 : hasOutput _:b12 ,
61 _:b13
62 : hasInput _:b14 ,
63 _:b15 ;
64
65 _:b12 rdf:type : output ;
66 : hasName " failed " .
67
68 _:b13 rdf:type : output ;
69 : hasName " passed " .
70
71 _:b14 rdf:type : input ;
72 : hasName " features " .
73
74 _:b15 rdf:type : input ;
75 : hasName " filter " .

Listing D.2: Ontology for workflows
1 @prefix : <http :// www. semanticweb .org/itc/ ontologies / workflow #> .
2 @prefix owl: <http :// www.w3.org /2002/07/ owl#> .
3 @prefix rdf: <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#> .
4 @prefix xml: <http :// www.w3.org/XML /1998/ namespace > .
5 @prefix xsd: <http :// www.w3.org /2001/ XMLSchema #> .
6 @prefix rdfs: <http :// www.w3.org /2000/01/ rdf - schema #> .
7 @base <http :// www. semanticweb .org/itc/ ontologies /workflow > .
8
9 <http :// www. semanticweb .org/itc/ ontologies /workflow > rdf:type owl: Ontology .

10
11 :task rdf:type owl: Class .
12
13 :wfs rdf:type owl: Class ;
14 rdfs: subClassOf :task .
15
16 :wps rdf:type owl: Class ;
17 rdfs: subClassOf :task .
18
19 : literal rdf:type owl: Class ;
20 rdfs: subClassOf :task .
21
22 : conditional rdf:type owl: Class ;
23 rdfs: subClassOf :task .
24
25 : subgraph rdf:type owl: Class ;
26 rdfs: subClassOf :task .
27
28 : iterateInput rdf:type owl: Class ;
29 rdfs: subClassOf :task .
30
31 : iterateSets rdf:type owl: Class ;
32 rdfs: subClassOf :task .
33
34 : iterateMultivalue rdf:type owl: Class ;
35 rdfs: subClassOf :task .
36
37 : inputParameter rdf:type owl: Class ;
38 rdfs: subClassOf :task .
39
40 : outputParameter rdf:type owl: Class ;
41 rdfs: subClassOf :task .
42

140

COMPOSITION OF SEMANTICALLY ENABLED GEOSPATIAL WEB SERVICES

43 : input rdf:type owl: Class .
44
45 : output rdf:type owl: Class .
46
47 : condition rdf:type owl: Class .
48
49 : metadata rdf:type owl: Class .
50
51 : hasInput rdf:type owl: ObjectProperty ;
52 rdfs: range : input ;
53 rdfs: domain :task .
54
55 : hasOutput rdf:type owl: ObjectProperty ;
56 rdfs: range : output ;
57 rdfs: domain :task .
58
59 : sequenceFlow rdf:type owl: ObjectProperty ;
60 rdfs: range : input ;
61 rdfs: domain : output .
62
63 : hasCondition rdf:type owl: ObjectProperty ;
64 rdfs: domain : conditional ;
65 rdfs: range : condition .
66
67 : hasMetadata rdf:type owl: ObjectProperty ;
68 rdfs: domain :task ;
69 rdfs: range : metadata .
70
71 : hasName rdf:type owl: DatatypeProperty ;
72 rdfs: domain :task ;
73 rdfs: range xsd: string .
74
75 : hasType rdf:type owl: DatatypeProperty ;
76 rdfs: domain : literal ;
77 rdfs: range xsd: string .
78
79 : hasReference rdf:type owl: DatatypeProperty ;
80 rdfs: range xsd: string ;
81 rdfs: domain [rdf:type owl: Class ;
82 owl: unionOf (: inputParameter
83 : outputParameter
84)
85] .
86
87 : hasUrl rdf:type owl: DatatypeProperty ;
88 rdfs: range xsd: string ;
89 rdfs: domain [rdf:type owl: Class ;
90 owl: unionOf (:wfs
91 :wps
92 : subgraph
93 : iterateInput
94 : iterateSets
95 : iterateMultivalue
96)
97] .
98
99 : hasValue rdf:type owl: DatatypeProperty ;

100 rdfs: domain : literal .

Listing D.3: JSON-LD context for workflow
1 @context :{
2 orchestration : "http :// www. opengis .net/ont/ jsonw /",
3 tasks : {@id: " orchestration : tasks /", @container : "@set"},
4 sequenceFlows : {@id: " orchestration : sequenceFlows /", @container : "@set"},
5 id: " orchestration :id /",
6 name: " orchestration :name /",
7 inputs : {@id: " orchestration : inputs /", @container : "@set"},

141

COMPOSITION OF SEMANTICALLY ENABLED GEOSPATIAL WEB SERVICES

8 outputs : {@id: " orchestration : outputs /", @container : "@set"},
9 url: " orchestration :url /",

10 value : " orchestration : value /",
11 valueType : " orchestration : valueType /",
12 condition : " orchestration : condition /",
13 reference : " orchestration : reference /",
14 metadata : " orchestration : metadata /",
15 from: " orchestration :from /",
16 to: " orchestration :to /",
17 fromPort : " orchestration : fromPort /",
18 toPort : " orchestration : toPort /",
19 wfs: " orchestration :wfs /",
20 wps: " orchestration :wps /",
21 conditional : " orchestration : conditional /",
22 subgraph : " orchestration : subgraph /",
23 iterateInput : " orchestration : iterateInput /",
24 iterateSets : " orchestration : iterateSets /",
25 iterateMultivalue : " orchestration : iterateMultivalue /",
26 inputParameter : " orchestration : inputParameter /",
27 outputParameter : " orchestration : outputParameter /",
28 literal : " orchestration : literal /"
29 }

142

