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ABSTRACT 

Remote sensing data have been used for recognition and classification of land use and land cover (LULC) 

features on Earth surface. The mixed pixel problem and non-linearity present in the image can be handled 

through soft classifiers. The classification was performed with Landsat-8 data, Formosat-2 data and their 

simulated images.  The widely used FCM classifier due to its membership constraint faces limitation as it is 

not able to handle untrained classes and the membership value does not represent the true concept of 

typicality. The Possibilistic c-means classification was chosen to overcome this membership constraint with 

its possibilistic membership values which is a measure of belongingness and shows high resistance to 

untrained classes. Various measures for accuracy assessment like Pearson correlation coefficient, RMSE, 

FERM and entropy were used for parameter optimization and accuracy assessment. The linear-PCM 

classifier was not able to handle the mixed pixel problem and non-linearity in the data adequately and thus, 

in order to handle the mixed pixel problem and non-linearity, the kernel functions were incorporated with 

PCM classifier. Nine different kernel functions were incorporated with PCM classifier and the fuzzy 

parameter was optimized for them. The hyper tangent kernel was identified as the best performing kernel 

function as it showed highest overall accuracy of 98.37% and low entropy value of 0.48 as compared to 

linear PCM classifier, which showed low overall accuracy of 78.38% and high entropy of 0.5430. The better 

classification with KPCM classifier for mixed pixel was achieved with the classification of simulated image. 

To add the best outcome from different kernels the composite kernel was formed by fusing the best 

performing hyper tangent kernel and sigmoid kernel using weighted summation approach and the value of 

weight constant was also optimised for composite kernel.  The accuracy assessment results for composite 

kernel were similar to the best performing hyper tangent kernel. An improved average user’s accuracy of 

89.90% was obtained with composite kernel, whereas the average user’s accuracy with KPCM classifier was 

89.17%. Hyper tangent KPCM classification was unaffected in presence of untrained classes as compared 

to PCM classification by showing very negligible effect in correlation values. The results revealed that the 

hyper tangent KPCM was consistently performing better with Landsat-8 data as well as with Formosat-2 

data, in presence of non-linearity as well as in absence of non-linearity.  
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CHAPTER 1 

1. INTRODUCTION 

1.1. Research Background 

 

Remote sensing data have been used for recognition and classification of land use and land cover (LULC) 

features on Earth surface. Several type of sensors are used in remote sensing (like Radiometer, spectrometer, 

LIDAR, RADAR and various other types of sensors) to provide information in the form of digital images. 

The classification of digital images leads to the development of thematic maps which can be used for 

agriculture resource management, disaster management, urban planning, water resource management and 

in many more applications. The process of classifying each pixel within the image into categories or classes 

is known as Image Classification and the algorithms that perform classification are known as Classifiers. 

Conventionally, image classification is defined under two major categories – supervised (classification) and 

unsupervised (clustering) image classifications (Lillesand and Kiefer, 1979). Supervised classification 

algorithms are provided with sample data points and with labels for all sampled points to identify the classes 

or categories they belong. The sampled data are used to form decision rules (i.e. parameters for the 

classification algorithm) to predict the class of un-sampled data points. The unsupervised algorithms are not 

provided with sampled data, they group the data based on different similarity measure into homogenous 

groups known as clusters and the process of forming cluster is known as clustering. 

 

The conventional classification techniques typically classify maps into hard, discrete categories or classes 

(e.g., urban, forest). This technique is known as hard classification, wherein each pixel has 100% belongingness 

to only one specific class and is known as pure pixel. It has been observed that in the real world rate of 

heterogeneity in the land cover is higher than the sampling done by the image pixels which results in the 

presence of pixels covering more than one land cover classes. These pixels are known as mixed pixels. In 

remotely sensed images, the digital number of these mixed pixels is cumulative sum of the different land 

cover classes that it covers on the ground.  

 

The classification of a mixed pixel by hard classification technique will lead to classification of pixel to one 

particular class (generally to the class having higher proportion in the pixel) and in doing so the essential 

information about other classes present in mixed pixel is lost. As mixed pixels are dependent on image 
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resolution, and medium and coarser resolution images have a higher proportion of mixed pixels, so hard 

classification of them is less favoured (Foody, 2000). As the mixed pixels cover more than one land cover 

class, the classification technique must present output that restore the information present in these mixed 

pixel. Soft or fuzzy classification approaches are commonly used to handle mixed pixel problem by assigning 

multiple class memberships to a pixel. Artificial neural network (ANN), linear mixture model (LMM), 

decision tree and fuzzy logic based classifier are some of the soft classification methods.  

1.2. Fuzzy Classifier 

The proposed research is focused on fuzzy logic based classifiers to handle the mixed pixels. They are based 

on the idea of fuzzy set logic put forwarded by  Zadeh (1965). They introduce degree of vagueness or 

fuzziness by membership function. According to it a pixel or a sample can be assigned to more than one 

class with the grade of membership value ranging between 0 and 1. The value nearer to 1 resembles higher 

membership of the sample or pixel to the class. 

 

FCM is a popular fuzzy classifier. Fuzzy c-Means (FCM) is based on constraint, according to which the sum 

of memberships of classes present in a pixel must sum to 1 (Bezdek et. al., 1984). This constraint adversely 

affects the performance of FCM when noise or untrained classes are present in the data (Krishnapuram and 

Keller, 1993). The issues in FCM due to this constraint are as follows: 

 

a) Some pixels depending on their location in the feature space (a space where input variables are defined) 

will have different membership value for a class though they may be located at equal distance from that 

class mean value(Krishnapuram and Keller, 1993). As, the value of membership of a pixel is a relative 

to the number of classes defined and is not an absolute membership value. 

 

b) Some pixel lying far away from other data points (generally known as outliers) are given membership 

value of 1/n where n is the number of classes  (Krishnapuram and Keller, 1993).  

Thus, it can be seen that the membership value in case of FCM is not a representation of the degree of 

belongingness rather resembles the degree of sharing. Also, during membership assignment FCM cannot 

discriminate between highly similar representative pixels and the highly dissimilar pixels because of its 

constraint membership assignment.  

 

As in the case of supervised FCM classification, the membership values of each pixel are dependent on the 

number of classes that are defined during the training stage. So, the class membership of each pixel is divided 

among these defined classes. Though, it is considered that during the training stage all the classes at the site 

were taken into account, some of the classes are often missed unintentionally. Assigning the membership 

values of the pixels of the untrained, spectrally distinct classes on the basis of FCM constraint leads to the 
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partition of full membership value of these pixels among the trained classes. As a result, these pixels are 

misclassified and significantly degrade the overall accuracy of the classification (Foody, 2000).  

 

In order to overcome the limitation of FCM, Krishnapuram and Keller (1993) proposed possibilistic c-

means (PCM) method which is based on possibilistic approach for clustering. Unlike as in FCM, in PCM 

the sum of membership of classes present in a pixel is not constrained to 1. The membership value now 

resembles typicality or absolute membership. Also, the membership value of a pixel to a class is not affected 

by the presence of other classes and thus, untrained classes present during classification have less impact on 

the overall accuracy (Foody, 2000).  Thus, the limitations due to the FCM constraint are handled by PCM.  

 

FCM and PCM are effective only in clustering the data by linear boundaries, and in order to extend FCM 

and PCM for clustering data by non-linear boundaries the kernel functions are used. A kernel function maps 

data from original input feature space to a higher dimensional feature space where the problem of 

nonlinearity can be resolved (illustrated in Figure 1.1 and Figure 1.2).  

The kernel functions are classified as local kernels, global kernels and spectral kernels  (Kumar et. al. , 2014). 

Also, a concept of composite kernels was developed which included multiple kernel functions for 

classification. As per the study done by Camps-Valls et. al. (2006) if an appropriate combination of kernels 

is chosen then a more accurate classification can be achieved by composite kernel.  

 

Thus, in the undertaken research, mixed pixel problem and non-linearity present in the image was handled 

through soft classifiers. The PCM classifier was used to handle the mixed pixel problem, and kernel 

functions were incorporated in PCM to handle non- linearity in data. The research work aimed at developing 

an objective function for kernel based PCM classifier to handle non-linear class separation by selecting a 

suitable kernel function from nine different kernels. The chosen nine kernel functions were Gaussian kernel 

using Euclidean norm, radial basis kernel, kernel with the moderate decreasing (KMOD), inverse multi 

quadratic kernel, linear kernel, polynomial kernel, sigmoid kernel, spectral kernel, and hyper tangent kernel. 

Among these nine kernels, the optimal kernel function was identified based on the accuracy of classification.

  

 

 

 

    

 (a)               (b) 

 

 

 

Figure 1.1. Two clusters in feature space. (a) Linearly separable clusters (b) Non-linearly separable clusters 
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(a)                                                                                            (b) 

 

 

 

The results of the fuzzy classifier are the fuzzy categorical maps. The fuzzy categorical map differs from the 

primitive results from the hard classifier (i.e. object-based categorical map) in the sense that for object-based 

categorical map at any particular location “A” a single class is allowed at each location, i.e. at location “A” 

there is full membership for class forest and zero membership for all other classes (Figure 1.3 (a)). In contrast 

to this in fuzzy categorical maps the location “A” may belong to more than one class i.e. the pixel at location 

“A” may have non-zero membership value for more than one class (Figure 1.3 (b)). 

 

 

 

 

 

 

 

 

 

(a)                                             (b) 

 

In order to set confidence on the results from the classifier, accuracy assessment was done. As there is no 

universally accepted method for accuracy assessment of soft output, the result of different classifiers was 

compared and validated using multiple accuracy assessment techniques. To evaluate the soft classified 

output, various approaches have been forwarded (Foody, 1995; Binaghi et. al. , 1999;Ricotta and Avena, 

2002). The image to image accuracy assessment based on fuzzy error matrix (FERM), Pearson correlation 

coefficient, RMSE and entropy were used to estimate the parameter value and to identify the accuracy of 

classification. 

 

 

 

Figure 1.2. Feature space transformation using kernel function (a) Non-linearly separable clusters in input 
feature space (b) Linearly separated clusters in transformed kernel feature space 

Figure 1.3.  (a) object-based categorical map from hard classifiers (b) fuzzy categorical maps from soft 
classifier 
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1.3. Problem Statement 

 

 Hard classification of the remote sensed images that contains significant amount of mixed pixels 

leads to loss of information present in the mixed pixels and results in under estimation or over 

estimation of land cover. 

 

 Classification of remote sensed images containing non-linearity between classes by linear classifiers 

(like FCM and PCM) may lead to misclassification. 

 

 The presence of untrained classes (acting as noise in data) during classification using soft classifier 

like FCM significantly affects the classification accuracy.  

1.4. Research Objective 

 

The main objective of the research was to develop a method to separate the classes having non-linear 

boundaries using KPCM. The specific objectives were: 

 

 To develop an objective function for kernel based PCM (KPCM) classifier.  

 To derive a method for selecting parameters for optimal kernel function. 

 To evaluate the performance of developed KPCM classifier in case of untrained classes. 

 To study the performance of single/composite kernels with PCM classifier.  

 To compare the performance of PCM with the developed KPCM classifier. 

 

1.5. Research Questions  

 

 How well non-linearity between classes in the input feature space will be handled by KPCM? 

 How can mixed pixels be handled using KPCM? 

 How well KPCM performs in case of untrained classes (considering one or more than one classes 

at a time)?  

 How can we evaluate the performance in terms of accuracy and robustness during classification 

with single/composite kernel in KPCM? 
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1.6. Innovation aimed at 

 

 To incorporate nine kernels with PCM classifier as PCM classifier has been studied only with 

Euclidean/ Mahalanobis norms and with limited kernels like Gaussian or RBF kernel. 

 To study behaviour of single as well as composite kernels with PCM classifier. 

1.7. Research approach 

 

The research was started with literature review about different fuzzy classification algorithms. Specifically, 

c-means algorithm was chosen because of its potentiality to be extended to produce other methods of 

classification. The objective was to develop a fuzzy classifier that can handle non-linearity in the data, for 

which kernel methods were selected to be incorporated with the possibilistic c-means algorithm to handle 

the non-linearity.  

 

Firstly, the presence of non-linearity was verified in the data using SVM. The non-linearity is simulated in 

the real data by removing some features and merging some classes. Further, a synthetic image was generated 

for the available Formosat-2 real image, parameters were optimized and the best kernel was selected. The 

parameter estimation and accuracy assessment was done using various accuracy assessment measures like 

FERM, SCM, Entropy, RMSE and correlation for the image to be classified. Further the strengths of kernel 

based PCM algorithm were identified by comparing the results of selected kernel with the primitive PCM 

algorithm. The general thesis approach is explained in Figure 1.4. 
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1.8. Thesis Structure 

 

The thesis has been organized into six different chapters. The first chapter gives a brief introduction about 

the basic and background knowledge on the aspects of this research, the objectives to be accomplished, 

research questions formulated from the research objectives and research approach followed. The second 

chapter describes about the previous work that was done related to the research work. The third chapter 

describes classification approach adopted to complete the objective. The fourth chapter elaborates the 

study area and methodology adopted in this research work. The fifth chapter includes the classification 

results obtained. The sixth chapter explains the classification results obtained. The seventh chapter deals 

with the recommendation on further work that can be taken forward from this study. 

  

Figure 1.4. General approach of the 
thesis 

Input data 

Identify and simulate non-

linearity in the data 

Apply KPCM/PCM to 

simulated/real image and 

select the best kernel 

Optimize the parameter for 

PCM/KPCM 

Accuracy Assessment 
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CHAPTER 2 

2. LITERATURE REVIEW 

This chapter summarizes the literature survey done for identifying the possible solutions for achieving the 

desired objective. There are existing researches in the field of machine learning with kernels where the 

selection of kernel is emphasised to achieve the best classification. The first section describes the existing 

research on PCM classifier in context with supervised PCM which has been used in this study. The second 

section includes the existing researches on KPCM classifiers and the significant results obtained in these 

researches. The third section describes the literature survey related to accuracy assessment.  

2.1. Fuzzy based classifiers 

 

The fuzzy classification is useful when the input data contains overlapping cluster, outliers or noise because 

the  membership value assigned by soft classification may then be an appropriate measure to explain the 

degree to which a pixel belongs to a class( Filippone et. al., 2010). The possibilistic c-means (PCM) algorithm 

is based on theory of possibility forwarded by Zadeh (1978). According to theory, the possibilistic analysis 

doesn’t provide any measure on the data but provides the appropriate meaning or information about the 

data. So, during classification the possibilistic membership values for a pixel defines the degree of 

belongingness for a class and it doesn’t measure the degree of sharing among the classes (Krishnapuram 

and Keller, 1993). The probabilistic membership value in Fuzzy c-Means(FCM) algorithm follows the 

probability constraint according to which the sum of membership value for a pixel must sum to one. Here 

the membership value of a pixel to a particular cluster depends on the distance of the pixel from all the 

cluster centres (Bezdek et al., 1984). This leads to certain problems- 1) pixels located at two distinct locations 

but equidistant from a cluster may have different membership value for that cluster 2) the noise or outlier 

may have high membership value and can affect the classification accuracy. In order to overcome these 

problems,  Krishnapuram and Keller (1993) proposed the Possibilistic c-Means (PCM) algorithm. Unlike 

FCM, in case of PCM, the membership value of data point for a cluster is not affected by the presence of 

other neighbouring clusters, thus, providing the degree of belongingness for a cluster (Krishnapuram and 

Keller, 1993). Later on, Krishnapuram and Keller (1996) further clarified the implementation principle for 

PCM and mentioned the need of good initialization and estimation of parameters for effectively functioning 

of PCM. It has also been observed that the PCM algorithm was not affected by the presence of untrained 
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classes and showed no effect in classification accuracy due to the presence of noise or untrained classes in 

the data set (Foody, 2000). 

  

The weighting component 𝑚 determines the fuzziness in classification. This fuzzy parameter is known as 

fuzzifier or fuzzification constant. When fuzzy parameter tends to 1, the classification becomes hard and with 

𝑚 tending to infinity, the classification becomes maximally fuzzy. In PCM, with increasing the value of 𝑚, 

the possibility of a pixel belonging to a given class increases. The value of  𝜂𝑖  is a non-negative constant 

that determines the zone of influence and shape of the cluster. FCM algorithm can be used to estimate the 

value for  𝜂𝑖 and for initializing the cluster centre (Krishnapuram and Keller, 1996). Foody (2000) has given 

a supervised version of PCM where the cluster centres are determined from the labelled data. Kumar et. al. 

(2006) investigated that the supervised PCM gave best result with Euclidean distance norm and showed 

higher accuracy than FCM classifier. 

2.2. Kernel methods 

  

The primitive classification algorithm can be combined with kernel functions to generate a non-linear 

hypersurface between the clusters. Rhee et. al. (2012) proposed a kernel based possibilistic clustering 

technique, in which fuzzy kernel c-means (FKCM) algorithm for initialization of PCM was used and PCM 

was modified using kernel induced metric replacing Euclidean distance measure and showed better results 

than FCM, PCM, and FKCM. It has been shown that KPCM assign least membership value to the 

noise/outliers than PCM or FCM, thus provides more accurate results. Hu et al. (2012) showed that 

integrating kernel with possibilistic c-means, the classifier not only inherits the capability of PCM of handling 

noise/outliers but also adds the capability of detecting clusters with different shape and thus, handling non-

linearity in the data. Wu (2006) and Ganesan and Rajini (2010) introduced the KPCM classifier by modifying 

PCM objective function by replacing Euclidean norm metric by kernel induced metric (Gaussian kernel) 

which is more robust to noise than PCM and FPCM. Ganesan and Rajini (2010) also observed that the 

approach using kernel method is much faster (in terms of time elapsed and number of iterations) than FCM. 

Mittal and Tripathy (2015) studied that the Gaussian kernel produced more accurate clustering than radial 

and hyper tangent kernel for small-sized dataset though hyper tangent kernel out performed other kernel 

for considerably large data set. Camps-Valls et al. (2006) and Kumar et. al. (2005) have shown that the 

properties of different kernel can be added up by forming composite kernels. The composite kernel can be 

formed by adding up the kernel functions based on the weight factor. 
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2.3. Accuracy assessment 

 

The accuracy assessment is the most important part of any classification process as the classifiers are 

evaluated and compared on the basis of results of accuracy assessment. It also provides confidence on the 

results of classifiers. 

 

The primitive confusion matrix was modified by Binaghi et al. (1999) to incorporate the vagueness in 

classification and several fuzzy indices like user’s accuracy, producer’s accuracy, and overall accuracy were 

defined for evaluating the accuracy of soft classification. The degree of uncertainty in classification of 

different classes is measured through entropy, lower the value of entropy higher is the confidence in 

classification of class. This technique is favoured when the classified data is soft and reference data is hard 

classified (Ricotta and Avena, 2002; Dehghan and Ghassemian, 2006). The cross-entropy technique is used 

for accuracy assessment when the classified data and reference data are soft (Foody, 1995). The correlation 

and RMSE value defines the correspondence of the classified output with the referenced data set. The 

RMSE and correlation coefficient have also been used for accuracy assessment of soft classification (Foody, 

2000). Silvan-Cardenas and Wang  (2008) introduced the concept of sub-pixel confusion uncertainty that 

looks into the uncertainty for the class distribution within the pixel. The fuzzy operators like min, prod and 

their composite operators were used for sub pixel accuracy assessment. But the SCM follows probabilistic 

constraint for membership and not suitable for pixel level accuracy assessment for Possibilistic c-Means 

algorithm (Upadhyay et. al., 2014). 

 

Till date various techniques have been proposed by researchers for accuracy assessment of soft classification 

but none of them have been universally accepted as a standard to evaluate accuracy. So, in the current 

research work multiple accuracy assessment techniques were used for accuracy assessment of the soft 

classified output from KPCM classifier. Here RMSE, correlation, FERM and Entropy measure were used 

for accuracy assessment. 
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CHAPTER 3 

3. CLASSIFICATION APPROACHES 

This chapter discusses about different classification approaches that have been used to obtain the objective 

for developing the kernel based PCM classifier.  

 

Section 3.1 discusses about the PCM classifier and its advantage over FCM. Section 3.2 discusses different 

kernel methods that are used in this study. Section 3.3 provides introduction to the kernel based possibilistic 

c-means (KPCM) algorithm. Here what and how of the classification approaches used in this research work 

have been explained. The accuracy assessment is an integral part of classification to rely on the output of 

the classifier, Section 3.4 deals with different accuracy assessment techniques. 

3.1. Possibilistic c-Means (PCM) classifier 

  

The PCM algorithm was introduced by Krishnapuram and Keller (1993) as solution for the shortcoming of 

FCM. The classification based on FCM algorithm were not able to handle the situations like: 

 

Strong Outliers or Anomaly 

Strong outlier is a feature vector that deviates from other observations so much that it seems to be 

indifferent in classification. Due to their large deviating values, they may significantly affects the 

classification result (Aggarwal, 2015). In the rest of this study report, strong outliers will be referred 

simply as an outlier.  

 

Weak Outliers or Noise 

Noise are those pixels which do not belong to any defined class. They are a kind of weak outliers, 

which do not strongly meet the criteria necessary for a data point to be considered as different 

enough (Aggarwal, 2015). 
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(a)                                                                  (b) 

 

In Figure 3.1 (a), the feature vector ‘A’ lies far from the class or cluster boundaries present in the feature 

space and is very different from the remaining feature vectors. Whereas in Figure 3.1 (b), for the feature 

vector ‘A’ it is much harder to state that the feature vector represents a deviation from the remaining 

feature vectors. The feature vector ‘A’ in Figure 3.1 (a) represents an outlier in the dataset whereas the 

feature vector ‘A’ in Figure 3.1 (b) seems to fit the pattern represented by other randomly distributed 

point and is considered as a noise in the dataset. Remotely sensed data is effected by noise and outlier 

due to various reasons, some of them are - atmospheric interference (aerosols, clouds etc.) and 

instrument malfunction. 

Untrained classes 

In supervised classification, it is impossible to get sample for all classes present in the study area or some 

of the classes may not be considered for classification. As a result, some of the classes are left untrained 

during classification. 

 

The assignment of membership value by FCM leads to partition of membership value of outlier, noise and 

untrained pixels among the trained classes due to its probabilistic constraint on membership value. Here, 

the noise, outlier or untrained class pixels usually get relatively higher membership value than PCM due to 

its membership constraint. As a result, these pixels will be misclassified and will significantly degrade the 

overall accuracy of the classification in case of the FCM (Krishnapuram and Keller, 1993). As, membership 

value in FCM measures the relative degree of sharing of the pixel among the classes/clusters.  This 

membership value does not represent the real world concept of degree of belongingness or typicality. 

 

The PCM algorithm assigns the membership value to each feature vector (pixel) based on its distance from 

the mean value of each cluster. Unlike FCM, the membership value is not partitioned between the classes 

A A 

Figure 3.1. Difference between noise and outlier (Aggarwal, 2015) (a) Noise and (b) Outlier 
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but is assigned to a pixel as a degree of belongingness i.e. the compatibility of a pixel with each independent 

cluster. So, the outlier and anomalous feature vector are assigned very small value as compared to FCM.  

 

(3.1) 

 

 

            (3.2) 

 

The membership value  𝜇𝑖𝑘   is the membership value of feature vector 𝑘 in class 𝑖, the value 𝜇𝑖𝑘 varies 

between 0 and 1 as mentioned in equation (3.1). Unlike FCM, in case of PCM the sum of membership value 

of a pixel in different classes need not be sum to 1 (Pal et.al., 1997) as shown in equation (3.2). Due to this 

constraint lower membership value can be assigned to noise and outliers making PCM classifier robust in 

the presence of untrained classes.  

 

                      𝐽𝑃𝐶𝑀 =  ∑ ∑ (𝜇𝑖𝑘
𝑚)𝑛

𝑘=1
𝑐
𝑖=1 ||𝑥𝑘 − 𝑣𝑖||2 +   ∑ 𝜂𝑖 ∑ (1 − 𝜇𝑖𝑘)𝑚𝑛

𝑘=1
𝑐
𝑖=1                          (3.3)     

 

                             

              (3.4) 

 

                                            𝜇𝑖𝑘 = [1 + (
𝑑𝑖𝑘

𝜂𝑖
)

1
(𝑚−1)⁄

]

−1

                                                                   (3.5) 

 

The equation (3.3) shows the objective function for PCM where 𝑛 is the number of feature vectors (pixels); 

𝑐 is the total number of classes present in the site. 𝜇𝑖𝑘   is the membership value of feature vector 𝑘 in class 

𝑖. From equation (3.5), it can be seen that in PCM the membership value of a feature vector 𝑘 in class 𝑖 is 

computed with respect to a single class (𝑖)  and is independent of all other classes present. Here, 𝒅𝒊𝒌  
𝟐   is the 

Euclidean distance of an unknown feature vector  𝒙𝒌 from the mean vector of the class 𝒗𝒊. For computing 

distance different distance norms can be used, like Euclidean distance, Manhattan distance and Mahalanobis 

distance. The parameter 𝜂𝑖  is the scale parameter or bandwidth parameter, it defines the shape and size of 

clusters. The value of 𝜂𝑖   needs to be known prior for each class and FCM can be used for initialization of 

𝜂𝑖   as shown in equation (3.4) (Krishnapuram and Keller, 1996). It also works as the weighting factor for 

the second term in the objective function for PCM. The fuzzy parameter 𝑚 is used to define the fuzziness 

in the possibilistic c-means partition. The value of fuzzy parameter varies between [1,∞], when it approaches 

to 1 the classification becomes hard  and with it approaches to infinity the classification becomes maximally 

fuzzy (Krishnapuram and Keller, 1993). The objective function can be minimized by decreasing the distance 

of data points from the cluster centres and by increasing the membership values. 

𝜇ik ϵ [0,1]     for all 𝑖 and 𝑘, 

0 ≤ ∑ 𝜇𝑖𝑘 

𝑐

𝑖=1

≤ 𝑐 

𝜂𝑖= 
∑ 𝜇𝑖𝑘

𝑚𝑑𝑖𝑘  
2𝑛

𝑘=1

∑ 𝜇𝑖𝑘
𝑚𝑁

𝑘=1
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In this study the supervised PCM algorithm is implemented. Unlike unsupervised PCM, the supervised PCM 

algorithm requires specification of class centroid using the sample data and a single pass of the data from 

the algorithm (Foody, 2000). The general form of PCM algorithm is as follows: 

 

 

 

 

 

 

 

 

 

3.2. Kernel methods 

 
The machine learning algorithms are generally divided into two basic categories: linear and non-linear, based 

on the type of data.  The linear classification algorithms are not able to separate the non-linearly separable 

classes present in the data set. The kernel method adds capability to linear algorithms to separate the non-

linearly separable classes.  

 

The kernel method projects the data from the input feature space to higher dimensional feature space. Each 

coordinate in the input feature space corresponds to one feature. In this higher dimensional feature space, 

the non-linearly separable classes may appear to be linearly separable or better structured. The aim of kernel 

method is to identify a linearly separating hyperplane that separates the classes (Figure 1.2) in higher 

dimensional feature space. As depicted from Figure 1.2 (a), the data available was not linearly separable in 

two dimensional feature space. In Figure 1.2 (b), the data when mapped to a three dimensional feature space 

becomes linearly separable by a hyperplane. The features are the attribute that adds uniqueness to the feature 

vector, so that they can be uniquely identified. All kernel methods used in this research work are either dot 

product function e.g. global kernels or distance function e.g. local kernels. 

 

In equation (3.6) the feature map (𝜑) is the mapping function that non-linearly maps the data to a higher 

dimensional feature space. For example, in equation (3.7) the kernel function (𝐾) implicitly computes the 

dot product between two vectors 𝒙 and 𝒙𝒊 in higher dimensional feature space without explicitly 

transforming 𝒙 and 𝒙𝒊 to that higher dimensional feature space, this technique is known as “Kernel trick”.  

Supervised Possibilistic c-Means (PCM) clustering algorithm: 

 

1- Identify the number of classes, and calculate the class centroid based on the sample 

data. 

2- Fix the value of 𝑚, such that 1< 𝑚 <∞. 

3- Compute the distance vector for unknown feature vector from the centroid of each 

class (using Euclidean norm). 

4- Calculate the value of 𝜂𝑖 for each class (using equation (3.4)). 

5- Compute the membership value for unknown feature vector (using equation (3.5)). 
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                    𝜑: 𝑅𝑝                     𝑅𝑞,      where p < q               (3.6) 

 

    (3.7) 

 

The different kernel function used in this research work are defined as follows: 

 

3.2.1. Local Kernels 

 

They are based on evaluation of the quadratic distance between training samples and the mean vector of the 

class. Only feature vectors that are close or in proximity of each other have an influence on the kernel value. 

In this research, the value of the input vector was normalized between [0,1] and thus acceptable result can 

be produced at "𝜎"  equals 1. The different local kernels were defined as follows: 

 

Radial basis function (Rbf) kernel 

 

The RBF kernel is defined by exponential function (Mittal and Tripathy, 2015) as shown in equation (3.8). 

Here, 𝒙𝒊 is the feature vector in the data and 𝒗𝒋 is the mean vector of class 𝑗. 𝜎 determines the width of the 

kernel, 𝑎 and 𝑏  are the constants. By replacing 𝑎 and 𝑏  by 1 the Gaussian kernel can be obtained. In this 

study the value of 𝑎  and 𝑏  were taken to be 2 and 3 respectively (Mittal and Tripathy, 2015). 

 

 

                                                   (3.8) 

 

 

KMOD- (kernel with moderate decreasing) 

 

KMOD is the distance based kernel function introduced by Ayat et. al., 2001, as shown in equation (3.9). It 

shows better result in classifying closely related datasets (highly correlated) and have shown better accuracy 

than Radial Basis Function (RBF) and polynomial kernel.  

 

                                                                                                                                                           

                 (3.9) 

 

 

𝐾(𝒙, 𝒙𝒊) = 𝜑(𝒙) · 𝜑(𝒙𝒊) 

       𝐾(𝒙𝒊, 𝒗𝒋) =𝑒
(

𝛾

𝜎2+‖𝒙𝒊−𝒗𝒋‖
2) 

− 1                                where 𝜎, 𝛾 >0 

𝐾(𝒙𝒊, 𝒗𝒋) = 𝑒
(− 

‖𝒙𝒊
𝑎−𝒗𝒋

𝑏‖
2

2𝜎2 )

                     where 𝜎, 𝑎, 𝑏 >0 
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The parameter 𝛾 and 𝜎 controls the decreasing speed of the kernel function and the width of the kernel 

respectively. In this study the value of 𝛾 was taken to be one. 

 

 

Gaussian kernel  

 

The Gaussian kernel is a special case of radial basis function kernel (Scholkopf, 2002), shown in equation 

(3.10). Here, 𝒙𝒊 is the feature vector in the image and 𝒗𝒋 is the mean vector of the class.  

 

 

    

                            (3.10) 

 

 

Inverse Multi-quadratic (IMQ) kernel 

 

The inverse multi-quadratic kernel is defined as in equation (3.11) (Vidnerova and Neruda, 2011). Here the 

value of 𝑐 was taken to be one. 

 

 

   where 𝑐>0       (3.11)                       

 

  

 

3.2.2. Global Kernels 

 

In global kernels, the samples that are far away from each other have an influence on the kernel value. All 

the kernels which are based on the dot-product are global. The different global kernels are as follows: 

   

Linear kernel 

 

Linear kernel is one of the simplest kernel function. It is defined as the inner product of the input feature 

vectors, as shown in equation (3.12). The implementation of kernel algorithms using linear kernel is often 

equivalent to their non-kernel counterparts, i.e. PCM with linear kernel is equivalent to the standard PCM. 

 

               (3.12) 

 

𝐾(𝒙𝒊, 𝒗𝒋)=
1

√(‖𝒙𝒊−𝒗𝒋‖
2

+𝑐)

 

𝐾(𝒙𝒊, 𝒗𝒋) = 𝒙𝒊 · 𝒗𝒋 

𝐾(𝒙𝑖, 𝒗𝒋) = 𝑒
(− 

‖𝒙𝒊−𝒗𝒋‖
2

2𝜎2 )

            where 𝜎>0 
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Polynomial kernel 

 

The polynomial kernel is a positive definite kernel i.e. each element of the kernel matrix (a kernel matric is 

a 𝑛 × 𝑛 matrix of feature vector) is positive, shown in equation (3.13). 𝑃 defines the degree of the 

polynomial function and c is the constant (Hofmann et. al., 2008). The optimal value of degree of the 

polynomial function was identified to be at 2 and has been optimized within the range between [2,6]. The 

value of c was taken to be zero. 

                                         

                                        (3.13)

  

 

Sigmoid kernel 

 

Sigmoid kernel is a hyperbolic tangent function, as shown in equation (3.14). The parameter 𝛼 work as 

scaling parameter for the kernel function and defines width of the kernel. The best possible value for 𝛼 and 

c were when 𝛼 > 0and c< 0 (Lin and Lin, 2003). 

 

 

           (3.14) 

      

3.2.3. Spectral Kernel 

 

The spectral kernel takes into consideration the spectral signature concept, as shown in equation (3.15). 

These kernel are based on the use of spectral angle  𝑎(𝒙, 𝒗𝒊) to measures the distance between the feature 

vector 𝒙 and the mean vector of the class 𝒗𝒊. It is expressed as follows:     

               

               (3.15) 

 

 

 

 

 

 

                   𝐾(𝒙𝒊, 𝒗𝒋) =(𝒙𝒊 · 𝒗𝒋 + c) 𝑃   where c ≥0 and 

𝑃 >0 

 𝐾(𝒙𝒊, 𝒗𝒋) = tanh (𝛼𝒙𝒊 · 𝒗𝒋+c) 

𝑎(𝒙, 𝒗𝒊) = 𝑎𝑟𝑐𝑐𝑜𝑠 (
(𝒙 · 𝒗𝒊)

‖𝒙‖‖𝒗𝒊‖
) 
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3.2.4. Hyper Tangent Kernel 

 

The hyper tangent kernel is a hyperbolic tangent function, as shown in equation (3.16). The adjustable 

parameter 𝜎 defines the width or the scale of the kernel. Here 𝑥 and 𝑣𝑖 are the feature vectors in the data. 

It has been seen that the hyper tangent kernel outperforms other kernels when applied to a large data set 

(Mittal and Tripathy, 2015). 

 

            (3.16) 

 

3.2.5. Composite Kernel 

 

The composite kernel concept is introduced to merge the efficiency of two different kernel function. The 

composite kernel function is formed by merging kernel function from two different kernel families, like- a 

global kernel and a local kernel or a local kernel or a spectral kernel. The composite kernel function may 

demonstrate a) improved classification accuracy as compared to primitive single kernel approach b) it 

provides the flexibility to adjust between the influence of the kernels by including weight factor (Camps-

Valls et al., 2006). There are different methods for combining kernels such as stacked approach, direct 

summation kernel, weighted summation kernel and cross-information kernel. In this research work weighted 

summation kernel method has been adopted for composite kernel. 

 

The composite kernel adjusts the influence of two different kernel and is formed by using weighted kernel 

summation approach as defined in equation (3.17) for input feature vector 𝒙𝒊 and 𝒙𝒋. The weight factor 𝜆 

varies between (0,1) and is optimized to get the best mixing between two kernels. Here 𝐾𝑎 and 𝐾𝑏 are two 

different kernel function that are used to form the composite kernel 𝐾. 

 

             

          (3.17) 

 

3.3. Kernel Possibilistic c-Means (KPCM) classifier 

 

The KPCM classifier is formed by using kernel methods with PCM algorithm. It is expected to handle non-

linearity in the data by implementation of kernel methods. In KPCM the kernel metric is used to compute 

distance between the cluster prototype (the mean value of the cluster) and the feature vector (pixel), as 

𝐾(𝑥, 𝒗𝒊) = 1 − 𝑡𝑎𝑛ℎ (−
||𝒙 − 𝒗𝒊||

2

𝜎2
) 

𝐾(𝒙𝒊, 𝒙𝒋) = 𝜆 𝐾𝑎(𝒙𝒊, 𝒙𝒋) + (1 − 𝜆)𝐾𝑏(𝒙𝒊, 𝒙𝒋) 
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mentioned in equation (3.18) and equation (3.21). This distance can be calculated in kernel higher dimension 

feature space without actual transformation of the feature vector to that higher dimensional feature space.  

 

The distance between two vectors in higher dimensional feature space can be expressed as: 

 

𝑑𝑖,𝑗
2 = ‖𝜑(𝒙) − 𝜑(𝒙𝒊)‖2          

        

   = 𝜑(𝒙) · 𝜑(𝒙) − 2𝜑(𝒙𝒊) · 𝜑(𝒙) + 𝜑(𝒙𝒊) · 𝜑(𝒙𝒊)           (3.18) 

In the higher dimensional feature space, the KPCM objective function and the membership function (𝜇𝑖𝑗) 

can be expressed as equation in (3.19) and equation (3.20) respectively. The meaning of the different terms 

used in these equations is same as defined for PCM and kernel functions. 

 

JKPCM (U, V) = ∑ ∑ (𝜇𝑖𝑘
𝑚) ||𝜑(𝒙𝒌) −𝑛

𝑘=1
𝑐
𝑖=1  𝜑(𝒗𝒊)||2  + ∑ 𝜂𝑖 ∑ (1 − 𝜇𝑖𝑘)𝑚𝑛

𝑘=1
𝑐
𝑖=1             (3.19)                    

 

 

 

                                                                                           (3.20) 

 

 

The mapping function in the distance equation (3.18) can be replaced by kernel function (3.7) as: 

𝑑𝑖,𝑗
2 = ||𝜑(𝒙𝒌) − 𝜑(𝒗𝒊)||2 = 𝐾(𝒙𝒌, 𝒙𝒌) − 2𝐾(𝒙𝒌, 𝒗𝒊) + 𝐾(𝒗𝒊, 𝒗𝒊)            (3.21) 

 

 

Thus, KPCM objective function can be obtained by replacing the Euclidean distance metric by kernel 

distance metric in the PCM objective function. 

 

 

 

 

 

 

 

 

 

𝜇𝑖𝑗 = ∑
(||𝜑(𝒙𝒌) − 𝜑(𝒗𝒊)||)

2/(𝑚−1)

𝜂𝑖

𝑐

𝑘=1

 

The Kernel Possibilistic c-Means (KPCM) clustering algorithm: 

 

1- Identify the number of classes, and specify the class centroid based on the sample 

data. 

2- Fix the value of 𝑚, 1< 𝑚 <∞. 

3- Compute the kernel distance vector for each feature vector from the centroid of 

every class (using equation (3.21)). 

4- Calculate the value of 𝜂𝑖 for each class (using equation (3.4)). 

5- Using the kernel distance metric, compute membership value for each feature 

vector (using equation (3.20)). 
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3.4. SVM classification 

 

SVM is a non-parametric classifier i.e. it doesn’t depend on factors such as mean and co-variance for 

estimation of classification parameters for a class (Richards, 1993). SVM is based on finding a geometric 

decision planes to define decision boundaries for classification. The decision plane separates the pixel having 

different class memberships. This decision surface can be a multi-dimensional linear surface or a hyperplane. 

This hyperplane is constructed based on the training pixel.  The training pixel considered for finding the 

hyperplane are those nearest to the hyperplane. And, the best hyperplane would be equidistant, between the 

bordering pixels for each of the two class. This hyperplane separating the classes is known as optimal 

hyperplane (Scholkopf, 2002; Scholkopf et. al., 2008). The pixels considered for constructing optimal 

hyperplane are known as support vectors (Figure 3.2). The equation for hyperplane is defined as follows: 

 

                                        (3.22) 

 

In equation (3.22) 𝒙 is the feature vector i.e. a column vector containing brightness value in all features, 𝑊 

is the set of coefficient known as weight vector. The number of weights will be equal to total number of 

features 𝑁 plus one.  

 

The optimal hyperplane is found by training based on the labelled feature vectors (training set). Two more 

hyperplanes can be drawn parallel to the optimal hyperplane that passes from the nearest training pixel from 

the classes. These planes are known as marginal hyperplane as defined by equation (3.23,3.24).  

 

Marginal hyperplane on right side (Figure 3.2):                                        (3.23)             (3.23) 

 

Marginal hyperplane on left side (Figure 3.2):                                         (3.24) 

 

 

In Figure 3.2, the pixel that are beyond the right marginal hyperplanes can be defined by the equation (3.25).  

               

            (3.25) 

 

In Figure 3.2, the pixel that are beyond the left marginal hyperplanes can be defined by the equation (3.26). 

 

                               (3.26) 

 

𝑊𝑇𝒙 + 𝑊𝑁+1 = 0 

𝑊𝑇𝑥 + 𝑊𝑁+1 = 1 

𝑊𝑇𝑥 + 𝑊𝑁+1 = −1 

𝑊𝑇𝑥 + 𝑊𝑁+1 ≥ 1 

𝑊𝑇𝑥 + 𝑊𝑁+1 ≤ 1 
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The separation between the hyperplane is known as margin. The best position of the separating hyperplane 

is the one where the margin is largest or where weight vector norm ‖𝑊‖ is smallest, as explained in equation 

(3.27). 

 

                (3.27) 

 

 

                                                                                             

 

                                                                         

                         

                        

         

                                         

 

                                                      

 

 

 

 

 

The linear-SVM is a classic example of linear classifier but it can also be used for classification of non-

linearly distributed data by incorporating different kernels.   

3.5. Accuracy assessment 

 

Accuracy assessment is an important part of classification. To provide reliability on the classifier, it is 

essential to quantify the accuracy of classification. Accuracy assessment technique is used for optimizing the 

parameter as well as identifying the exactness of the classifier. In remote sensing the accuracy assessment of 

classification (specifically land-cover accuracy assessment) is usually done by comparing the result from 

classifier with some referenced data that is expected to reflect the true land-cover information. The 

referenced data includes ground truth information gathered through surveys and higher resolution images.  

 

The error induced during supervised classification may be due to incorrect logic. For example, the classes 

taken during the supervised hard classification may not be mutually exclusive. The classes considered may 

be mislabelled during the supervised classification (Lillesand et. al., 1987). Also, using the same sampled data 

Band 1 

B
an

d
 2

 

Figure 3.2. The optimal hyperplane determined by finding the maximum separation between the classes.  

𝑚𝑎𝑟𝑔𝑖𝑛 =
2

‖𝑊‖
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for all phases of classification will result in overly optimistic accuracy assessment and the results will be 

misleading. So in the supervised classification the sampled data need to be divided into three exclusive sets: 

 

Training set: This set of labelled data is used to train the classifier. 

Validation set: This set of labelled data is used to optimize the parameter for the classifier. 

Test set: This set of labelled data is used to estimate the accuracy of the classification. 

 

For hard classification, the confusion matrix is considered as a standard for assessing the accuracy of 

classification. But on the other hand there is no standard, globally accepted technique for assessing the 

accuracy of soft classification. This limits the usability of soft classification techniques. In this study a 

number of different techniques for computing the accuracy of soft classification output were used. Soft as 

well as hard methods of accuracy assessment were implemented for optimizing the parameters and 

identifying the accuracy of the classifier. 

 

The following sub section describes the various methods for accuracy assessment.  

3.5.1. Error Matrix 

 

It is the standard for accuracy assessment in hard classification. It lists the predicted output classes present 

in classified data in row and the actual classes present in the referenced data in column. Each cell in the 

error matrix represent the pixels that are common between the referenced class and the classified class. The 

diagonal element contains pixels that belongs to same class in referenced data set as well as in classified data 

set (Richards, 1993). The total number of pixels in the column of error matrix represent the total number 

of labelled pixels (pixel in the test set) available per class. The row sum represents the total number of pixels 

classified in a particular class by the classifier. To quantify the accuracy of classification the following 

measures for classification accuracy were calculated: 

 

Producer’s accuracy: It is defined as the ratio of the correctly classified pixels in the (i.e. a diagonal element 

of a class) to the total number of pixels of that class as derived from the reference data (i.e. column total). 

This measures the probability of a referenced pixel being correctly classified and is measure of omission 

error (Lillesand and Kiefer, 1979). 

 

User’s accuracy: It is defined as the ratio of the correctly classified pixels in the class (i.e. a diagonal element 

of a class) to the total number of pixels that were actually classified in that class (i.e. row total), the result is 

a measure of commission error. This measures the probability that a pixel classified on the map actually 

represents the category on the ground (Richards, 1993). 
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Overall Accuracy: The overall accuracy is defined as the ratio of the sum of all the diagonal element of the 

matrix to the total number of pixel considered for accuracy assessment.  

 

Kappa Coefficient: The Kappa coefficient is the measure of agreement between the classification map and 

the referenced data, shown in equation (3.28). 

 

                       (3.28) 

  

 

 

The probability of correct classification is given by the diagonal element and the probability of chance 

agreement is given by row and column total. 

 

3.5.2. Fuzzy Error Matrix (FERM) 

 

The fuzzy error matrix (𝑀) is a modification of traditional error matrix for accuracy assessment of the soft 

classifier. Similar to the traditional error matrix the fuzzy error matrix is a square array of positive fractional 

value varying between [0,1]. The column 𝑅𝑛 usually represent the sample elements assigned to the reference 

class 𝑛 while the rows indicate the sample elements assigned to the classified class 𝑚(Binaghi et al., 1999). 

The element in fuzzy error matrix (𝑀)  at row 𝑚 and column 𝑛 for a feature vector 𝒙 is computed as shown 

in equation (3.29). 

 

                     (3.29) 

 

 

In equation (3.29), 𝑿 is the overall sampled data set. 𝜇𝐶𝑚
  and 𝜇𝑅𝑛

 are the membership value for the 

referenced and the classified data. The "min" operator is the traditional fuzzy set operator, it returns the 

minimum membership value between the classified and referenced data set for a class.  The various indices 

for accuracy assessment like overall accuracy, user’s accuracy, and producer’s accuracy can be calculated 

from FERM as in case of traditional error matrix. The value of these accuracy assessment measures range 

between [0,1]. 

 

Producer’s Accuracy: Producer’s accuracy for a class is calculated by dividing the element of major 

diagonal for the class by the total grade of membership found in the referenced data for the specified class 

(i.e. the column total). 

𝜅 =
𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 − 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑐ℎ𝑎𝑛𝑐𝑒 𝑎𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡

1 −  𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑐ℎ𝑎𝑛𝑐𝑒 𝑎𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡
 

𝑀(𝑚, 𝑛) =  ∑ min (𝜇𝐶𝑚
(𝒙), 𝜇𝑅𝑛

(𝒙))

𝒙∈𝑿
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User’s Accuracy: User’s accuracy for a class is calculated by dividing the element of major diagonal for the 

class by the total grade of membership found in the classified data for the specified class (i.e. the row total). 

 

Overall Accuracy: Overall accuracy in FERM is calculated by dividing the sum of the major diagonal by 

the total grade of membership found in the reference data. 

 

3.5.3. Sub-pixel Confusion Uncertainty Matrix (SCM) 

 

SCM is also a modification of traditional error matrix. Unlike, traditional error matrix the entries are based 

on the agreement and disagreement measure for a class between the classified output and the referenced 

data at pixel level (Silvan-Cardenas and Wang, 2008). It presents a better insight into the per class accuracy 

at pixel level for soft classification. But SCM will not be used for accuracy assessment of KPCM classification  

because of the membership constraint to be followed in SCM (Upadhyay et. al., 2014).  

 The area overlap between the classes is used as a measure of agreement and disagreement between the 

classes to compute the entries of SCM. The operator used for computing SCM are defined as follows: 

 

𝑴𝑰𝑵 operator 

 

The 𝑀𝐼𝑁 operator is the fuzzy set intersection operator. In case of SCM it gives the maximum sub-

pixel overlap between the classes. The value with 𝑀𝐼𝑁 operator for a pixel containing reference 

class 𝑚 and classified class 𝑛 with membership value 𝜇𝐶𝑚
 and 𝜇𝑅𝑛

 respectively is expressed as 

shown in equation (3.30). 

 

           

                   (3.30) 

 

 

𝑷𝑹𝑶𝑫 operator 

 

The 𝑃𝑅𝑂𝐷 operator gives the joint probability that the referenced and the classified pixel belongs 

to two different classes. The value with 𝑃𝑅𝑂𝐷 operator for a pixel containing reference class 𝑚 

and classified class 𝑛 with membership value 𝜇𝐶𝑚
 and 𝜇𝑅𝑛

 respectively is expressed as shown in 

equation (3.31). 

𝑀𝐼𝑁(𝑚, 𝑛) = 𝑀𝐼𝑁 (𝜇𝐶𝑚
, 𝜇𝑅𝑛

) 
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                     (3.31) 

 

𝑳𝑬𝑨𝑺𝑻 operator 

 

The 𝐿𝐸𝐴𝑆𝑇 operator gives the minimum possible sub-pixel overlap between two classes within a 

pixel. The value with 𝐿𝐸𝐴𝑆𝑇 operator for a pixel containing class 𝑚 and class 𝑛 with membership 

value 𝜇𝑅𝑛
 and 𝜇𝐶𝑚

 respectively is expressed as shown in equation (3.32). 

 

                     (3.32) 

 

MIN-MIN operator: 

 

The MIN-MIN composite operator uses minimum operator for assigning both the diagonal and 

off-diagonal element, as shown in equation (3.33) and equation (3.34). It differs from the MIN 

operator because it computes the off-diagonal element based on over and under estimation errors. 

The over-estimation error (𝜇′𝑅𝑛
) is due to the over estimation of the reference pixel membership 

by the classified pixel membership. The under estimation error ( 𝜇′𝐶𝑚
) is due to under estimation 

of the reference pixel membership by the classified pixel membership.  

 

Diagonal element:                    (3.33) 

 

Off-diagonal element:                    where m≠n and  

 

 

                     (3.34) 

 

 

MIN-PROD operator 

 

The MIN-PROD operator uses the minimum operator to compute the diagonal element for SCM 

and the normalized product operator for the off-diagonal cell, as shown in equation (3.35) and 

equation (3.36). 

 

𝑃𝑅𝑂𝐷(𝑚, 𝑛) = 𝜇
𝐶𝑚

. 𝜇
𝑅𝑛

 

𝐿𝐸𝐴𝑆𝑇(𝑚, 𝑛) = max (( 𝜇
𝐶𝑚

+ 𝜇
𝑅𝑛

) − 1,0) 

min ( 𝜇
𝐶𝑚

, 𝜇
𝑅𝑛

) 

min ( 𝜇′
𝐶𝑚

, 𝜇′
𝑅𝑛

) 
𝜇′𝐶𝑚

= 𝜇𝐶𝑚
− min (𝜇𝐶𝑚

, 𝜇𝑅𝑛
), 

𝜇′𝑅𝑛
= 𝜇𝑅𝑛

− min (𝜇𝐶𝑚
, 𝜇𝑅𝑛

) 



NON-LINEAR SEPARATION OF CLASSES USING A KERNEL BASED POSSIBILISTIC c-MEANS 

 

28 

 

Diagonal element:                   (3.35) 

 

Off-diagonal element:      where m≠n     (3.36)     

MIN-LEAST operator 

 

The MIN-LEAST operator uses the minimum operator to compute the diagonal element for SCM 

and the normalized LEAST operator for the off-diagonal cell, as shown in equation (3.37) and 

equation (3.38). 

 

Diagonal element:                               (3.37) 

 

Off-diagonal element:                           where m≠n            (3.38) 

3.5.4. Entropy 

 

Entropy has been introduced to estimate the uncertainty in the classification. It defines the degree to which 

the membership value is partitioned between the classes. Entropy maximises when the membership value 

is partitioned between the classes and minimizes when the membership value is associated entirely with a 

single class. Entropy measure is favoured when the classification is fuzzy and ground data is hard (Foody, 

1995). It has been observed that entropy is not a satisfactory technique for estimating the accuracy of the 

classification but can be used for comparing the quality of the classification based on uncertainty in the 

results. The value of entropy for a pixel is given by the Shannon’s entropy as expressed by equation (3.39) 

(Ricotta and Avena, 2002;Foody, 1995). 

 

 

                       (3.39) 

 

 

Here 𝝁𝒋𝒌 is the fuzzy membership value of the classified output and 𝒄 is the total number classes present in 

the classified output. Higher value of entropy (i.e. close to one) resembles lower quality of classification. 

  

 

 

 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = −
∑ 𝜇𝑗𝑘

𝑐
𝑘=1 𝑙𝑜𝑔2 𝜇𝑗𝑘

∑ 𝜇𝑗𝑘
𝑐
𝑘=1

 

( 𝜇′
𝐶𝑚

. 𝜇′
𝑅𝑛

)/ ∑ 𝜇′
𝑅𝑛

𝑖

 

min ( 𝜇
𝐶𝑚

, 𝜇
𝑅𝑛

) 

( 𝜇′
𝐶𝑚

· 𝜇′
𝑅𝑛

)/ ∑ 𝜇′
𝑅𝑛

𝑖

 

min ( 𝜇
𝐶𝑚

, 𝜇
𝑅𝑛

) 
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3.5.5. Root Mean Square Error (RMSE) 

 

RMSE measures the difference between the membership value of the classified output and the membership 

value of the referenced data. It determines the error in the prediction of the membership value by the 

classifier. The RMSE values are always greater than zero. The RMSE value close to zero shows the output 

from the classifier deviates less from the referenced data. In case of soft classification output the RMSE can 

be calculated into two ways: a) Global RMSE; as shown in equation(3.40) and b) Per class RMSE; as shown 

in equation (3.41) (Byju, 2015; Dehghan and Ghassemian, 2006). 

 

 

                       (3.40) 

Global RMSE:     

 

 

                       

Per class RMSE:                                                         (3.41) 

 

 

In equation (3.40) and equation (3.41), 𝜇𝑐𝑙𝑖𝑗
 is the membership value in the classified image and 𝜇𝑟𝑖𝑗

 is the 

membership value in the referenced image for the feature vector 𝑗 in class 𝑖. 𝑐 is the total number of class, 

𝑀 is the total number of features present in the data and 𝑁 is the total number of feature vectors per feature 

and 𝑀 × 𝑁 is the size of the image. 

 

3.5.6. Pearson correlation coefficient (𝝆) 

 

The Pearson correlation coefficient is the measure of linear dependence between two variables. The value 

of the correlation coefficient varies between [-1, +1]. The value of Pearson correlation of -1 resembles 

completely negative correlation, 0 is no correlation and +1 is completely positive correlation (Weisstein, 

2006). 

 

In this research study, the Pearson correlation coefficient was calculated between the fractional image for 

each class of Landsat-8 and fractional image for each class of Formosat-2. The correlation between two 

feature vectors, X and Y, can be given by the equation (3.42). The Pearson correlation coefficient (𝜌𝑋,𝑌) 

between two feature vectors, X and Y, is defined as the ratio of the covariance between the membership 

𝑅𝑀𝑆𝐸𝐺𝑙𝑜𝑏𝑎𝑙 =
√∑ ∑ ∑ (𝜇𝑐𝑙𝑖𝑗

− 𝜇𝑟𝑖𝑗
)

2
𝑁
𝑗=1

𝑐
𝑖=1

𝑀 × 𝑁
 

𝑅𝑀𝑆𝐸𝑝𝑒𝑟𝐶𝑙𝑎𝑠𝑠 = √∑ (𝜇𝑐𝑖𝑗
− 𝜇𝑟𝑖𝑗

)
2

      𝑁
𝑗=1

𝑀×𝑁
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value of the corresponding feature vector 𝑐𝑜𝑣(𝜇𝑋𝑖 , 𝜇𝑌𝑖) to the product of their standard deviation (𝜎𝜇𝑋𝑖
×

𝜎𝜇𝑌𝑖
).   

                

 

 

             (3.42) 
 

3.5.7. Simulated Image Technique 

 

In this research a new method for identifying the behaviour of fuzzy based algorithm (based on the distance 

measure) have been introduced. This method was developed by taking into consideration the basic idea of 

assigning the fuzzy membership values to feature vectors based on the distance measure from the mean 

vector of the classes (mean vector). The simulated image is generated based on the sample data for each 

class with desired number of bands. With the simulated image, it is easy to compare the outcome of the 

classifier with the expected known input at a particular location. Also, it makes easy to identify the behaviour 

of classifier with the mixed pixels. The mixed pixels can be simulated with varying proportions of different 

classes. As shown in Figure. 3.3, that simulated image is classified into fractional images by using soft 

classifier. The proportion of these classes in each individual fractional image can be identified and compared 

with the input. The membership value for a class in fractional image is affected by the distance criteria used 

for classification. 

 

 

 

 

 

 

 

 

 

 

 

 

𝜌𝑋,𝑌 =  
∑ 𝑐𝑜𝑣(𝜇𝑿𝑖

, 𝜇𝒀𝑖
)𝑛

𝑖=1

𝜎𝜇𝑿𝑖
× 𝜎𝜇𝑌𝑖

 

 

Figure 3.3. Simulated image with the fractional output along with possibilistic membership value generated 
by the fuzzy classifier (PCM).  
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CHAPTER 4 

4. STUDY AREA AND METHODOLGY 

4.1. Study Area 

 

This section defines the data used for the study. It also provides explanation for selecting particular data and 

study area. 

 

The site for the study work was situated in Haridwar district in the state of Uttarakhand, India. Area extends 

from 29°52’49” N to 29°54’2” N and 78°9’43” E to 78°11’25” E. The site was identified with six land cover 

classes (Figure 4.1) i.e. wheat, grassland, forest, eucalyptus, water and riverine sand (mentioned simply as 

sand in later text). The reasons for selecting this study area include: 

 Landsat-8 and Formosat-2 images were available for selected site.  

 Ground truth information was available and has been identified for six classes for Landsat-8 and 

Formosat-2 images. 

 

  

 

Figure 4.1. Location of area under study (a) Formosat-2 image (8 m) (a) Landsat-8 image (30 m) 

(b) (a) 
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4.2. Data details 

 

The data set used in the project work was acquired from Landsat-8 and Formosat-2 satellite.  

 

Landsat-8 is an American Earth observation satellite launched on February 11, 2013. It provides moderate-

resolution imagery, from 15 meters to 100 meters, of Earth’s land surface and polar regions. The used image 

was acquired on 12th February, 2015. Landsat 8 operates in the visible, near-infrared, short wave infrared 

and thermal infrared spectrums. The sensor spectral wavebands specifications are enlisted in Table 4.1. 

 

 

 

 

 

 

 

 

 

 

 

 

FORMOSAT-2 was the first remote sensing satellite developed by National Space Organization (NSPO). 

FORMOSAT-2 satellite carries both “remote sensing” and “scientific observation” tasks in its mission. It 

supports monitoring and detecting land change for any specific regions for various industries and mapping 

applications. The used image was acquired on 21st February, 2015. Formosat-2’s ability to acquire repeat 

imagery of an area of interest every day and with the same viewing parameters guarantees a timely flow of 

compatible data, allowing to analyse and compare imagery acquired at different dates with no need of 

additional processing. The satellite captures panchromatic and multispectral data simultaneously with 2m 

and 8m spatial resolution respectively. The sensor footprint is 24×24 km and is designed in such a way to 

revisit the same point on the globe every day in the same viewing conditions. The sensor spectral wavebands 

specifications have been enlisted in Table 4.2. 

 

 

 

 

 

Table 4.1. Data details for Landsat-8 

Spectral Band Wavelength Resolution (m) 

Band 1 - Coastal / Aerosol 0.433 - 0.453 µm 30 

Band 2 – Blue 0.450 - 0.515 µm 30 

Band 3 – Green 0.525 - 0.600 µm 30 

Band 4 – Red 0.630 - 0.680 µm 30 

Band 5 - Near Infrared 0.845 - 0.885 µm 30 

Band 6 - Short Wavelength Infrared 1.560 - 1.660 µm 30 

Band 7 - Short Wavelength Infrared 2.100 - 2.300 µm 30 

Band 8 – Panchromatic 0.500 - 0.680 µm 15 

Band 9 – Cirrus 1.360 - 1.390 µm 30 
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Table 4.2. Data details for Formosat-2 

 

 

 

 

 

 

 

 

 

Simulated image was generated to study the behaviour of developed KPCM algorithm accurately. The 

different classes and their mixing present in the simulated image is explained in Figure (4.2). The advantage 

of using simulated image are as follows: 

 

 The composition of each class is known. 

 The mixed pixels are simulated with varying mixture of classes.  

 The capability to handle the mixed pixel by the developed KPCM algorithm can also be verified. 

 The pixel with known composition can easily be located within the simulated image. 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Band Wavelength 

(micrometres) 

Spatial Resolution 

(meters) 

Band 1 –Blue 0.45 - 0.52 8 

Band 2 –Green 0.52 - 0.60 8 

Band 3 –Red 0.63 - 0.69 8 

Band 4 - Near Infrared (NIR) 0.76 - 0.90 8 

P -  Panchromatic 0.45 – 0.90 2 

Water (c1) Wheat (c2) 

Forest_Gr (c3) 

Mixing of c1, c3, c4 

(30:30:40) 

Mixing of c1, c2 

(50:50) 

Mixing of c4, c5, c2 

(30:30:40) 

Eucalyptus (c5) 
Sand (c4) 

Mixing of c4, c5 
(50:50) 

Mixing of c1, c2 

(50:50) 

Mixing of c1, c4, c2 

(30:30:40) 

Figure 4.2. Image simulated for Formosat-2 real image. It contains five different classes with variation of 1 unit between the 
DN values 



NON-LINEAR SEPARATION OF CLASSES USING A KERNEL BASED POSSIBILISTIC c-MEANS 

 

35 

The available finer resolution Formosat-2 data (8m) was used as a reference data for accuracy assessment of 

classified results of coarser resolution Landsat-8 data (30m). In order to evaluate the accuracy of results by 

image to image accuracy assessment method an integral ratio between the pixel size of referenced data and 

classified data was needed. So, the Formosat-2 data was resampled to 10m, a ratio of three was set between 

the referenced and the classified image pixels. The Nearest Neighbour Resampling technique was used 

to resample the Formosat-2 data as it does not affect the pixel value of the input layer.  

4.3. Methodology 

 

This section defines the methodology that has been adopted in order to achieve the desired objective. 

 

 

 

 

  

Developing the objective 
function for KPCM  

Accuracy Assessment 

Supervised classification with 
optimized kernel 

  

Supervised classification 
using PCM 
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Linear kernel 
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Sigmoid kernel 
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Identifying and simulating 
non-linearity in the data  

Figure 4.3. Overview of the methodology 
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All the steps presented in Figure (4.3) for the methodology adopted in the research study are 

explained below. 

 

a) Identifying and simulating non-linearity in the input data 

 

Initially, the study was carried out with Formosat-2 data and six different classes were identified 

according to the ground survey. The linear-SVM classification was performed on the Formosat-2 

data. The classification results were showing 99% accuracy, thus linear-SVM classifier was 

successful in classifying the present dataset.  Hence, it can be concluded that in the available data 

for Formosat-2, these classes were linearly separable (Figure A-2, Appendix A). Therefore, in order 

to demonstrate a useful implementation of kernel functions, non-linearity was simulated in the 

available dataset image using following steps: 

 

 A new eucalyptus class was identified in the forest class. There was high mixing between 

these classes. 

 Merging “forest” and “grassland” class into a single “forest” class, naming it as 

“Forest_Gr”. 

 Taking subset of the features. Band1 (blue) and Band2 (green) were chosen for 

classification. 

 

The detail of simulating the non-linearity is explained in section A.2. in Appendix A. The Formosat-

2 and Landsat-8 data now contains non-linearity in them with five different classes viz. Forest_Gr, 

wheat, sand, water, and eucalyptus. 

 

b) Developing the objective function for KPCM  

 

The Kernel based PCM classifier was formed by replacing the Euclidean distance norm present in the 

PCM classifier with kernel metric as described in section (3.1.3) in chapter 3.  

 

c) Parameter estimation for different kernels and identifying best performing kernel 

 

The parameter estimation is one of the most important step in the classification process. Choosing the 

optimal parameter guarantees the best results from the classifier. Here, the developed KPCM classifier 

was executed on the available data set for different values of fuzzy parameter ranging between [1.3,4.5] 

and the optimal value of fuzzy parameter was selected based on the accuracy assessment of 

classification. Comparing the accuracy of kernel functions on different value of fuzzy parameter the 
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best performing kernel function was identified and was chosen for classification. The value of weight 

constant 𝜆 in composite kernel was also optimized within the range of (0,1). The parameter selection 

was based on the implementation of accuracy assessment method like Pearson correlation coefficient, 

FERM and RMSE. 

 

d) Supervised classification with optimized kernel 

 

The supervised KPCM classifier was developed with an aim to handle non-linearity between the classes. 

In this step, the best kernel function selected from nine different kernel functions was incorporated into 

PCM. The optimized value for fuzzy parameter was used for classification. The steps followed in 

supervised classification using KPCM classifier were as follows (Richards, 1993): 

 

1. Identifying the required land cover classes into which the image has to be classified. This 

ground cover data was used for training the classifier and evaluating the accuracy. 

2. Identifying the ground data in the image for each class. This data is known as training data. 

Training data was collected through ground surveys and photointerpretation method. 

3. Using the training data to estimate the parameter for KPCM. These parameters are known as 

signature of the class. This step is known as training of classifier. 

4. Using the trained KPCM classifier to calculate the membership value of feature vectors for 

each class. These per class classified maps are known as thematic maps. 

5. Using the higher resolution classified results as referenced data (Formosat-2) for computing 

accuracy of the classification. 

 

e) Accuracy Assessment 

 

Several researchers have given many different techniques for accuracy assessment of the output 

from soft classifiers but none of them is considered as standard and universally accepted. Different 

accuracy assessment method used in this study are defined in section (3.5). 

 

In this research work, a new method for evaluating the accuracy of classification was proposed. 

This method is known as simulated image technique. It has been used to estimate the results from 

PCM and KPCM classifier. As, the pixel composition is known in the simulated image so the results 

from the classifier can easily be verified. Other techniques like, FERM and RMSE and correlation 

were used for verification of fractional output from soft classifier. Apart of this, to implement the 

standard method of accuracy assessment i.e. error matrix, the fractional outputs from soft classifier 

were hardened and specific class based accuracy (i.e. user’s accuracy and producer’s accuracy), 

overall accuracy and Kappa coefficient were computed. 
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CHAPTER 5 

5. RESULTS 

This chapter shows the result of different analysis that were performed on the dataset to achieve the 

objective of the research study. This chapter is majorly divided into five sections. The first section (5.1) deals 

with the method for identifying the best kernel and optimizing the fuzzy parameter. In the second section 

(5.2), the classification done with KPCM classifier using the best kernel and optimised parameter obtained 

in the first section are dealt with. The third section (5.3) compares the PCM and KPCM classifier and 

elaborates the advantage of using the non-linear KPCM classifier over the linear PCM classifier. The fourth 

section (5.4) demonstrates the usability of composite kernel and their advantage. The fifth section (5.5) 

explains the effect on the KPCM classification by introducing the untrained classes in the dataset. 

5.1. Identifying the best kernel and estimating the parameter 

 

The optimal fuzzy parameter value (𝑚) and the best performing kernel for developed KPCM algorithm 

with Formosat-2 data were estimated based on the simulated image. Here, the fuzzy parameter was estimated 

for linear Formosat-2 data as well as for non-linear Formosat-2 data, thus the effect of non-linearity on the 

value fuzzy parameter was observed.  

 

Using the optimized value of fuzzy parameter and the best performing kernel function, the KPCM based 

classification was performed on Formosat-2 data. The classified fractional output for Formosat-2 data was 

used as referenced data for calculating FERM, RMSE and Pearson correlation by image to image accuracy 

assessment method for optimization of parameters for Landsat-8 (30m) dataset. From here, the effect of 

resolution on the value of fuzzy parameter can be observed. The fuzzy parameter was optimized within the 

range of [1.5,4]. The best kernel function was chosen from nine different kernels. Finally, with the optimized 

parameter value and the best kernel function, supervised KPCM classification on Landsat-8 was performed 

and the accuracy assessment of the classification was conducted.  

 

As none of the accuracy assessment methods were considered as a standard for fuzzy accuracy assessment, 

multiple accuracy assessment techniques were implemented and compared. The techniques such as FERM, 

Person correlation coefficient, entropy and RMSE were used to assess the accuracy of the classification. In 

the following section, various techniques implemented for estimating the fuzzy parameter have been 
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explained with their results. Each parameter estimation method measures a different attribute of the 

classified results. 

 

5.1.1. Optimisation of Fuzzifier (𝒎)  

 

Simulated image technique 

The simulated image was generated for both linear and non-linear Formsat-2 data. Firstly, the KPCM 

classification was performed on the linear data set (simulated Formosat-2 image) with five different classes 

named as Wheat, Water, Forest, Grassland and Sand. Later, the KPCM classification was performed on the 

non-linear data set (simulated Formosat-2 image) with five different classes namely Water, Wheat, 

Forest_Gr (forest and grassland merged), Sand and Eucalyptus.  

At first, the KPCM classifier implementing kernel functions were applied to Formosat-2 linear simulated 

dataset. The value for the fuzzy parameter was selected based on the classification results (Figure 5.1). For 

the optimal classification, the membership value of pure pixel in the classified output of a class must be 

maximum (shown as Pure Pixel (I) in Figure 5.1) and it must also show the variation present within the class 

(shown as Pure Pixel (II) in Figure 5.1). The mixed pixels were simulated with two variations, one with 

composition of 50:50 (shown as Mixed Pixel (50:50) in Figure 5.1) between two different classes and other 

with composition of 30:30:40 (shown as Mixed Pixel (30:30:40) in Figure 5.1) among three different classes.  

The membership value of a pixel is shown with three different horizontal lines i.e. grey, yellow and green 

colour representing the target values for a pure pixel, mixed pixel (50:50) and mixed pixel (30:30:40) 

respectively. The target membership value expected from the pixel with full belongingness to a class must 

be close to 1, the target membership value of 0.50, 0.40 and 0.30 is expected from the pixel with 50%, 40% 

and 30% belongingness for a class respectively.  

 

As evident from the histograms in Figure 5.1, the optimal value for fuzzy parameter was obtained at 2.5 for 

hyper tangent kernel for all five classes. Later, the developed KPCM classifier was applied on Formosat-2 

non-linear simulated image and as illustrated in figure 5.2, the optimal value for fuzzy parameter was 

obtained at 3 for hyper tangent kernel for all classes. In both cases, the hyper tangent kernel function 

outperforms all other kernel functions followed by the sigmoid kernel function. 
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Figure 5.1. (a)-(y) compares the membership value in the classified results for each class for linear simulated 

image using KPCM.  The plot with red boundaries are the optimal value of fuzzy parameter in each class. 
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Figure 5.1. (a)-(y) Comparison of the membership for KPCM classified linear simulated image. The plot with red 

boundaries are the optimal value of fuzzy parameter 𝑚. 
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Figure 5.2. (a)-(y) Comparison of the membership for KPCM classified non-linear simulated image. The plot with red 

boundaries are the optimal value of fuzzy parameter 𝑚. 
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Fuzzy Error Matrix (FERM) 

 

The image to image accuracy assesment techniques were used to estimate the fuzzy parameter for Landsat-

8 data. The optimal value of fuzzy paramter for Formosat-2, used as reference image for parameter 

optimisation was estimated at 3 using simulated Formosat-2 image. Fuzzy error matrix (FERM) was used 

to estimate the optimal value of fuzzy parameter for Landsat-8 data with reference to Formosat-2 data. As 

shown in Figure 5.3, the highest overall accuracy of 98.87% was achieved with hypertangent kernel function 

for fuzzy parameter  equals to 2.7. The second best result was observed with the sigmoid kernel with 

maximum overall accuracy of 92.60% at fuzzy parameter value equals to 1.5. 

 

 

 

 

  

Figure 5.3. Overall accuracy of different kernels using FERM with respect to fuzzy parameter (𝒎).  
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Pearson Correlation Coefficient (𝝆) 

 

Pearson correlation was computed with reference to Formosat-2 dataset. It can be observed from Figure 

5.4, that for different classes high correlation was achieved with different kernels and at different values for 

fuzzy parameter (𝑚). Overall, better results were achieved with hyper tangent kernel in all classes within the 

range of [2.5,3] as shown in Table 5.1 and Figure 5.4. Similarly, as in case of optimizing parameter with 

simulated image and FERM, here also, sigmoid kernel provides better results after hyper tangent kernel 

function. The highest 𝝆 of magnitude 0.97 was attained for eucalyptus class with linear KPCM classifier at 

fuzzy parameter value equals to 2. The lowest 𝝆 of magnitude 0.79 was calculated for water class with 

sigmoid-KPCM classifier at fuzzy parameter value equals to 2.3. 

 

Table 5.1. The value of 𝝆 for all class with the best performing kernel at an optimal value of 𝑚. It also shows the 

highest 𝝆 value for hyper tangent kernel and corresponding value of fuzzy parameter. 

    

 

 Class – with the best 

performing Kernel 

Max. corelation 

value 

𝒎   𝝆 with Hyper Tangent 

Kernel 

1. Sand-  Hyper Tangent 0.91 2.5 0.91 (𝒎=2.5) 

2. Eucalyptus- Linear 0.97 2 0.96 (𝒎=2.9) 

3. Forest_Gr- Polynomial 0.91 1.5 0.89 (𝒎=2.7) 

4. Water- Sigmoid 0.79 2.3 0.73 (𝒎=2.7) 

5. Wheat- HyperTangent 0.94 2.9 0.94 (𝒎=2.9) 
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5.1.2. Optimization of weight factor (𝝀) for composite kernel 

 

The weight factor (𝜆) for composite kernel was optimized using RMSE, Pearson correlation coefficient (𝝆) 

and FERM. The weight factor in composite kernel was optimized within the range of [0.1,0.9]. The best 

performing hyper tangent kernel and sigmoid kernel were combined together as given in equation (5.1). In 

equation 5.1, the composite kernel function is implemented on the input feature vector 𝑥, 𝑥𝑖, combining the 

best performing kernels implemented with their optimal parameter values. 

 

            (5.1) 

 

 

 

Pearson correlation coefficient 

 

The value of weight factor in composite kernel was optimized with different values of fuzzy parameter. The 

optimal value of weight factor was identified at 2.7 fuzzy parameter value. From Figure 5.5, it can be 

observed that for different class, the best value for 𝝆 was obtained at different values of weight factor. Table 

5.2 shows the best value of 𝝆 for different classes and the corresponding optimal values of 𝜆. The maximum 
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Figure 5.4. (a-e) Pearson correlation coefficient (𝝆), for different kernel functions, with respect to fuzzy parameter (𝒎)  

(e) Wheat 

𝐾(𝑥, 𝑥𝑖) =  𝜆 × 𝐻𝑦𝑝𝑒𝑟𝑇𝑎𝑛𝑔𝑒𝑛𝑡(𝑥, 𝑥𝑖) + (1 − 𝜆) × 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑥, 𝑥𝑖) 
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𝝆 of 0.965 was achieved for eucalyptus class at 𝝀 equals to 0.2 and lowest 𝝆 value was attained for water of 

magnitude 0.72 at 𝝀 which equals to 1. 

 

          (a)  Sand                                    (b) Eucalyptus                            (c) Forest_Gr 

 

         (d) Water                       (e)Wheat 
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Figure 5.5. (a-e) Pearson correlation coefficient (𝝆) for different kernel functions with respect to weight constant (𝝀) for 
each class. 

Table 5.2. The maximum value of correlation coefficient (𝝆) and corresponding fuzzy parameter (𝒎) for different 

classes using composite kernel. 
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Root Mean Square Error (RMSE) 

 

Further the value of 𝜆 was optimized using RMSE for composite kernel. The per class RMSE value was 

lowest at 𝜆 value (0.2) for class Sand, Eucalyptus, Forest_Gr and Wheat. The global RMSE was lowest with 

value being 0.223 at 𝜆 as 0.2 and then increases as the share of hyper tangent kernel increases in the 

composite kernel (Table 5.3). The value of RMSE was highest when the composite kernel had 90% share 

for sigmoid kernel.  The lowest class based RMSE value of 0.0648 was achieved for eucalyptus at 𝜆 value of 

0.2 and highest for Water with value 0.5556 at 𝜆 value of 0.1. 

 

 

 

FERM 

The 𝜆 value was again optimized using FERM for composite kernel. The class based accuracy was analysed 

for each class and it was observed that maximum value of user’s accuracy in all classes were obtained for 

composite kernel (hyper tangent-sigmoid) at 𝜆=0.2 (Figure 5.6). Further, it was observed that maximum 

producer’s accuracy in Eucalyptus (98.49%), Sand (99.51%) and Wheat (98.88%) class were obtained for 

composite kernel at 𝜆=0.5, and for Forest_Gr (97.47%) and Water (96.88%) at 𝜆=0.9 and 𝜆=0.6 

respectively. The value of overall accuracy increases as the value of 𝜆 tends to 1 (98% at 𝜆=0.9), that is when 

the composite kernel is composed of only hyper tangent kernel. 

 

Lambda  Sand Eucalyptus Forest_Gr Water Wheat Global RMSE 

0.1 0.5099 0.2286 0.3415 0.5556 0.3632 0.9325 

0.2 0.0725 0.0648 0.1077 0.126 0.1028 0.2180 

0.3 0.0756 0.0674 0.111 0.1257 0.1064 0.2230 

0.4 0.0788 0.0693 0.1142 0.1323 0.1088 0.2311 

0.5 0.0804 0.0703 0.1161 0.1361 0.1102 0.2357 

0.6 0.0812 0.071 0.1172 0.1382 0.1111 0.2384 

0.7 0.0817 0.0713 0.1179 0.1396 0.1116 0.2401 

0.8 0.0819 0.0715 0.1183 0.1405 0.1119 0.2411 

0.9 0.0819 0.0716 0.1187 0.1412 0.1121 0.5257 

Table 5.3. RMSE value for different classes using composite kernel 
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Figure 5.6. User’s and Producer’s accuracy obtained through FERM (Fuzzy error matrix) for different values of 

weight constant ( 𝜆) for composite kernel. 

 

So, the optimal value for fuzzy parameter was identified at 2.7. The value of fuzzy parameter was selected 

based on the simulated image technique, high Pearson correlation value (Table 5.1) and high overall accuracy 

shown in FERM (Figure 5.3). The optimal value for 𝜆 was identified at 0.5 because of its overall high 

correlation (Figure 5.5), low RMSE (Table 5.3) and high producer accuracy (Figure 5.6) in all classes. The 

hyper tangent kernel was identified as the best performing kernel for all classes. 
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5.2. Accuracy assessment  

 

 

5.2.1. Accuracy assessment based on soft classification 

 

 
The optimized values of parameters were used with kernel based PCM classifier to classify Landsat-8 data. 

The soft outputs from the classifier were then analysed with various accuracy assessment methods to 

quantify the accuracy of classification. There are various techniques mentioned in section 3.5 (chapter 3) for 

accuracy assessment of fuzzy output. The accuracy of classified Landsat-8 image was computed with respect 

to Formosat-2 image.  

 

Soft classified output using KPCM classifier 

Figure 5.7 shows the soft classified output for Landsat-8 dataset using KPCM classifier at the optimal value 

for fuzzy parameter. Each fractional image represents the membership value of a pixel in a particular class. 

All five classes were visible in their respective fractional images. The dark pixels in the fractional image of 

particular class shows lower degree of belongingness for the class and the brighter pixels shows higher 

degree of belongingness. Eucalyptus, water and sand, classes were clearly visible in their corresponding 

fractional images whereas in Forest_Gr class, the grassland class which was merged with forest was not well 

classified. Also, due to very closely located mean values of wheat and the Forest_Gr class, the wheat class 

was given high membership value in the fractional image for Forest_Gr class and vice-versa. 
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Figure 5.7. Fractional output for KPCM classification using hyper-tangent kernel. 
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Figure 5.8. Membership value for KPCM classification using hyper tangent kernel. 

Figure 5.8 shows the distribution of membership values in the fractional output for Landsat-8 dataset using 

KPCM classifier. Each histogram plot shows the distribution of membership values of a pixel within the 

range of [0,1]. In all classes, the membership value of feature vectors tends to be maximum. The maximum 

number of pixels are having membership value in range of [0.8,1] for Forest_Gr, Wheat and Eucalyptus 

class. Most of the pixels in sand class are having membership value between [0.4,0.6]. The membership value 

of most pixels in water class is in the range of [0.5,0.7]. 

 

Correlation (𝝆), RMSE and FERM results using hyper-tangent KPCM classifier 

To further assess the accuracy of the classified results for Landsat-8 data with hyper-tangent kernel based 

PCM at fuzzy parameter equals to 2.7, the Pearson correlation coefficient, RMSE, FERM and entropy were 

calculated. Table 5.4 shows the 𝜌 and RMSE value achieved for all classes. The highest value for 𝜌 was 
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obtained for eucalyptus class with magnitude being to 0.95 and the water class shows the lowest value for 

𝜌, the value being 0.72. Correspondingly, the RMSE value is lowest for eucalyptus class (0.07) and highest 

for water class (0.14). The results of KPCM classifier were further analysed using FERM (Table 5.5). The 

overall accuracy of 98.37% was achieved with FERM. The highest user’s accuracy was attained for 

eucalyptus class (93.26%) and lowest user’s accuracy was obtained for water class (82.68%). The results 

obtained from supervised KPCM classification of Landsat-8 data at 𝑚 = 2.7 were further evaluated based 

on the entropy values. The entropy value for hyper-tangent KPCM classification was 0.4758.  

 

Table 5.4. RMSE and correlation value using hyper-tangent kernel based PCM classifier. 

 

Class Correlation (𝝆) RMSE 

Sand 0.91 0.08 

Eucalyptus 0.95 0.07 

Forest_Gr 0.89 0.11 

Water 0.72 0.14 

Wheat 0.94 0.11 

Accuracy Assessment methods FERM (%) 

Sand  

User’s Accuracy 92.08 

Producer’s Accuracy 99.46 

Eucalyptus  

Table 5.5. FERM based accuracy assessment for classified result of Landsat-8 dataset using hyper-tangent kernel 
based PCM. 
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5.2.2. Accuracy assessment based on hard classification 

 

By hardening the output from the KPCM classifier the membership of a pixel was forced to belong to a 

single cluster. This provides the crisp interpretation of the soft output from the KPCM (hyper tangent) 

classifier. The hard classification of a fuzzy soft output provides a general idea about the magnitude of 

membership value in different classes. The Forest_Gr was having lowest producer accuracy of 9.045%. The 

overall accuracy with confusion matrix was 58.18% which is quite low as demonstrated with soft classifier 

(Table 5.6) 

 

 

 

 

 

User’s Accuracy 93.26 

Producer’s Accuracy 98.61 

Forest_Gr  

User’s Accuracy 90.24 

Producer’s Accuracy 97.42 

Water  

User’s Accuracy 82.68 

Producer’s Accuracy 97.53 

Wheat  

User’s Accuracy 87.59 

Producer’s Accuracy 99.01 

Average User’s Accuracy 89.17 

Average Producer’s Accuracy 98.41 

Fuzzy overall Accuracy 98.37 

Entropy 0.4758 
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Figure 5.9. Hard classification of the fractional image from hyper tangent kernel based possibilistic c-means 
classifier. 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.3. Comparison of PCM and KPCM 

 

To identify the advantage of KPCM classifier over PCM classifier, the classified outputs of hyper-tangent 

KPCM classifier were compared with outputs from PCM classifier.  For this, accuracy assessment method 

Producer’s Accuracy (omission error) User’s Accuracy (commission error) 

Forest_Gr=
18

199
=9.045% 90.95% (omission error) Forest_Gr=

18

46
= 39.13% 60.87%(commission 

error) 

Wheat=
36

64
= 56.25% 43.75%(omission error) Wheat=

36

119
= 30.25% 69.75%(commission 

error) 

Eucalyptus=
54

54
=100% 0%(omission error) Eucalyptus =

54

125
= 43.2% 56.80%(commission 

error) 

Sand=
129

132
= 97.72% 2.28% (omission error) Sand=

129

129
= 100% 0%(commission 

error) 

Water=
58

58
= 100% 0% (omission error) Water =

58

88
= 65.90% 34.10%(commission 

error) 

Table 5.6. Error matrix for the hard classified KPCM classification. 
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like entropy, simulated image technique, RMSE, correlation cofficient and FERM were used for comparison. 

The value of the fuzzy parameter in PCM was optimised at 2 for Landsat-8 data, it was optimized based on 

high correlation value, low RMSE and high overall accuracy with FERM for all classes. It should be noted 

that the result of PCM classifier were similar to linear-KPCM classifier (Figure 5.3).  

 

 

Simulated image technique 

 

In figure 5.10, the classified results from PCM and KPCM classifier of simulated Landsat-8 data for different 

value of fuzzy parameter were evaluated.  In figure 5.10 the membership value of pure pixel is shown as 

Pure Pixel (I) and the variation present within the class is shown as Pure Pixel (II). The mixed pixels were 

simulated with two variations, one with composition of 50:50 shown as Mixed Pixel (50:50) formed by 

mixture of two different classes and other with composition of 30:30:40 shown as Mixed Pixel (30:30:40) 

formed by mixture of three different classes. In Figure 5.10 the three different horizontal lines grey, yellow 

and green colour representing the target values for a pure pixel, mixed pixel (50:50) and mixed pixel 

(30:30:40) respectively. The target membership value expected from the pixel with full belongingness to a 

class must be close to 1, the target membership value of .50, .40 and .30 is expected from the pixel with 

50%, 40% and 30% belongingness for a class respectively.  

 

Here the PCM and hyper tangent-KPCM classifiers at different value of fuzzy parameter (𝑚) were compared 

using simulated Landsat-8 data. From figure (5.10) it can be observed that the hyper-tangent KPCM 

classifier shows better classification results  in comparison  to PCM classifier. Also, the influence of the 

fuzzy parameter on the classification results of hyper-tangent KPCM classifier was low as compared to PCM 

classifier. In Table 5.7, value of the classified pixels for optimal value of fuzzy parameter in PCM and KPCM 

classifier are compared and it can be observed that the value of the pure pixel and mixed pixel are more near 

to the target values (shown as T.Pure Pixel, T. Mixed Pixel (50:50), T. Mixed Pixel (30:30:40)) for KPCM 

classification as compared to PCM classification. 

 

Classifier 

𝑚 Class 
Pure 

Pixel (I) 

Pure 
Pixel 
(II) 

T. 
Pure 
Pixel 

Mixed 
Pixel 

(50:50) 

T. 
Mixed 
Pixel 

(50:50) 

Mixed 
Pixel 

(30:30:40) 

T. Mixed 
Pixel 

(30:30:40) 

PCM 

2 

Sand 0.9803 0.9254 1 0 0.5 0 0.3 

Eucalyptus 0.9803 0.9607 1 0 0.5 0.0039 0.3 

Forest_Gr 0.7333 0.5490 1 0.0549 0.5 0.0549 0.3 

Table 5.7. Comparison between the pixel values for classified output for simulated Landsat-8 data for optimal 𝑚. 
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PCM HyperTangent

Wheat

Water 0.9960 0.9843 1 0.1058 0.5 0.2745 0.3 

Wheat 0.9882 0.9686 1 0.0549 0.5 0.0078 0.4 

KPCM 

2.7 

Sand 0.9960 0.9960 1 0.4352 0.5 0.3921 0.3 

Eucalyptus 0.9960 0.9921 1 0.3215 0.5 0.4392 0.3 

Forest_Gr 0.8627 0.7882 1 0.3294 0.5 0.3294 0.3 

Water 0.8627 0.7882 1 0.3294 0.5 0.3294 0.3 

Wheat 0.9960 0.9921 1 0.6941 0.5 0.3803 0.4 

Figure 5.10. (a-e) Comparison of PCM and KPCM classification for simulated data set with different fuzzy parameter (𝑚) 
values. 
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Soft classified output with PCM classifier 

 

Figure 5.11 shows the classified output for PCM classifier when applied to Landsat-8 dataset at the optimal 

value of fuzzifier parameter as 2. Each fractional image represented the membership value of a pixel in a 

particular class. The eucalyptus, water and sand, these classes are clearly visible in their corresponding 

fractional images. But in the Forest_Gr class the grassland class which was merged with forest was not well 

classified. Also due to closely located mean values of wheat and Forest_Gr class, the wheat class was given 

high membership value in the fractional image for Forest_Gr and vice-versa. 

 

 

 

On visual comparison between the output of PCM and KPCM classifier, it can be seen that the classes like 

sand, eucalyptus, water are visually more evident in their corresponding fractional images from KPCM 

classifier though on first look, the PCM seems to be more promising because of the contrast present in the 

Figure 5.11. Fractional output of PCM classification on Formosat-2 (non-linear) data set. 
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fractional image due to which the feature seems to be revealing. This higher contrast is due to the lower 

value of fuzzy parameter in PCM classifier. 

Figure 5.12. Membership value for different classes in the output from PCM classifier. 

 

Figure 5.12 depicts the distribution of membership value in the fractional output for each class using PCM 

classifier. Each histogram shows the distribution of membership value within the range of [0,1]. In Table 

5.8, the range of the membership value for maximum number of pixel in each class is compared for PCM 

and KPCM classifier. Also, it can be observed that the membership value increases for pixels within each 

class, and randomness decreases in KPCM classification outputs as compared to PCM classification.  

 



NON-LINEAR SEPARATION OF CLASSES USING A KERNEL BASED POSSIBILISTIC c-MEANS 

 

64 

 

Table 5.8. Comparison of the range of membership value where maximum pixels lies within each class. 

Classifier 𝒎 Class  Range of membership value  

PCM 2 

Sand 0-0.1 

Eucalyptus 0-1 

Forest_Gr 0.8-1 

Water 0.2-0.4 

Wheat 0.8-1 

KPCM 2.7 

Sand 0.4-0.6 

Eucalyptus 0.8-1 

Forest_Gr 0.8-1 

Water 0.5-0.7 

Wheat 0.8-1 

 

 

Pearson correlation coefficient (𝝆), RMSE and FERM results using PCM classifier 

 

To evaluate the accuracy of PCM classification results the 𝝆, RMSE, FERM and entropy were used. Table 

5.9 shows the values for 𝝆 and RMSE for PCM classification. The highest value for 𝜌 was obtained for 

eucalyptus class with magnitude being equal to 0.97 and the water class shows the lowest value for 𝜌 as 0.73. 

The correlation values for each class in KPCM outputs (except for sand class) is similar as calculated for 

PCM output. The correlation value for the sand class in PCM outputs was 0.86 whereas it was 0.91 for the 

sand class in KPCM classification.  The RMSE value was lowest for eucalyptus class (0.14) and highest for 

sand class (0.37). The RMSE values are higher for the outputs of PCM classifier as compared to the KPCM 

classifier. For PCM classification output, the overall accuracy of 78.38% was obtained with FERM which is 

less than the overall accuracy of 98.37% achieved with KPCM classification (Table 5.10). The entropy value 

of 0.5430 for PCM classifier is also significantly large than the hyper-tangent KPCM classification (0.4758). 

PCM classification results showed better value for average users accuracy of 91.42% compare to KPCM 

classifier with value of 89.17%. This shows higher quality of classification results of KPCM classifier in 

comparison to PCM classifier. 
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Table 5.9. RMSE and correlation value for classified results of PCM classifier. 

 

Class Correlation (𝝆) RMSE 

Sand 0.86 0.37 

Eucalyptus 0.97 0.14 

Forest_Gr 0.90 0.14 

Water 0.73 0.20 

Wheat 0.93 0.16 

Accuracy Assessment methods FERM (%) 

Sand 

User’s Accuracy 91.19 

Producer’s Accuracy 29.70 

Eucalyptus 

User’s Accuracy 96.24 

Producer’s Accuracy 87.84 

Forest_Gr 

User’s Accuracy 89.49 

Producer’s Accuracy 93.04 

Water 

User’s Accuracy 91.95 

Producer’s Accuracy 76.23 

Table 5.10. Result of FERM for classified results of PCM classifier 
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5.4. Results of kernel based PCM classifier using composite kernel 

 

The composite kernels were developed to combine the capabilities of different kernel and to enhance the 

efficiency of individual kernel. For composite kernel, the hyper tangent kernel and the sigmoid kernel are 

preferred choice because of the high overall accuracy demonstrated by them in FERM (Figure 5.3 and Figure 

5.4). To combine the spectral information in a classifier, the spectral kernel was combined with the best 

performing hyper tangent kernel but the result obtained were not satisfactory (not even visually) so this 

combination was rejected and not considered for analysis.  

The equation for composite kernel (𝐾(𝑥, 𝑥𝑖)) formed with the optimized 𝜆 value is shown in equation 5.2. 

Though in general, the maximum value of correlation for all classes was attained at 𝜆 being equal to 1 (Table 

5.2) i.e. fully hyper Tangent Kernel. For analysis, the lambda value was selected on the basis of producer’s 

accuracy, which was highest at 0.5 for most of the classes. Also, at 𝜆 equals to 0.5, the composite kernel 

contains the property of both the kernels by equal proportion.      

                                                                                                          

            (5.2) 

 

Soft classified output using composite-KPCM classifier 

 

Figure 5.13 shows the classified output for Landsat-8 dataset using KPCM classifier (hyper Tangent-Sigmoid 

kernel) at the optimal value for “𝑚” being 2.7 and “𝜆” as .5. Each fractional image represents the 

membership value of a pixel in a particular class. All five classes were clearly visible in their respective 

fractional images.  

Wheat 

User’s Accuracy 88.21 

Producer’s Accuracy 91.63 

Average User’s Accuracy 91.42 

Average Producer’s Accuracy 75.69 

Fuzzy overall Accuracy 78.38 

Entropy 0.5430 

𝐾(𝑥, 𝑥𝑖) = 0.5 ∗ 𝐻𝑦𝑝𝑒𝑟𝑇𝑎𝑛𝑔𝑒𝑛𝑡(𝑥, 𝑥𝑖) + 0.5 ∗ 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑥, 𝑥𝑖) 



NON-LINEAR SEPARATION OF CLASSES USING A KERNEL BASED POSSIBILISTIC c-MEANS 

 

67 

 

 

 Figure 5.13. Fractional output for composite kernel based classification (hyper tangent - Sigmoid) at 𝜆=0.5. 
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Figure 5.14. Membership value for composite kernel based classification (hyper tangent - Sigmoid) at 𝜆=0.5. 

In Figure 5.14, the histogram plots were similar as obtained from the classification with hyper tangent-

KPCM classifier. The range of membership value for maximum pixels in different classes is same as with 

the output for KPCM classifiers. 

 

Correlation (𝝆), RMSE and FERM results for hyper tangent-sigmoid KPCM classifier 

The results of hyper tangent-sigmoid KPCM classifier were further analysed on the basis of Pearson 

correlation coefficient, RMSE, Entropy and FERM measures. The correlation and RMSE value calculated 

for the outputs of composite kernel were identical to the corresponding value attained with KPCM classifier 
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(Table 5.11). Table 5.12 shows the FERM accuracy assessment results for the output of hyper tangent-

sigmoid KPCM classifier. The overall accuracy of 97.84% and entropy as 0.48 were attained. 

Table 5.11. RMSE and correlation value with composite-kernel. 

 

Class Correlation (𝝆) RMSE 

Sand 0.91 0.08 

Eucalyptus 0.96 0.07 

Forest_Gr 0.89 0.11 

Water 0.71 0.13 

Wheat 0.93 0.11 

Accuracy Assessment methods FERM %) 

Sand 

User’s Accuracy 91.85 

Producer’s Accuracy 99.51 

Eucalyptus 

User’s Accuracy 93.94 

Producer’s Accuracy 98.49 

Forest_Gr 

User’s Accuracy 91.31 

Producer’s Accuracy 97 

Water 

User’s Accuracy 83.96 

Producer’s Accuracy 95.42 

Wheat 

Table 5.12. Result of FERM with composite kernel 
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5.5. Untrained classes 

 

The KPCM algorithm using hyper-tangent kernel function was further analysed for the effect of the 

presence of untrained classes during classification, because in case of FCM,  it has been observed that the 

presence of untrained classes affects the membership value and decreases the correspondence between the 

estimated and the actual class composition (Byju, 2015). This happens with FCM because of its membership 

constraint (Foody, 2000).In supervised classification, the untrained class is generated by escaping the training 

of classifier for a particular class. 

 

From Table 5.9, Table 5.10 and Table 5.11, it can be interpreted that the possibilistic membership value in 

KPCM are not affected by the presence of untrained classes. Pearson correlation coefficient, RMSE values, 

class based accuracy as well as overall accuracy remains unaffected in the presence of untrained class. These 

values are obtained by removing one class each time from training stage. 

 

Table 5.13. Correlation for PCM and KPCM classification results. One untrained class was considered at a time. 

Algorithm Untrained 

class 

Correlation Coefficient 

  Sand Eucalyptus Forest_Gr Water Wheat 

PCM None 0.8684 0.9546 0.8874 0.7356 0.9325 

 Sand - 0.9646 0.8932 0.7332 0.9389 

 Eucalyptus 0.8805 - 0.89019 0.7347 0.9335 

 Forest_Gr 0.8794 0.9607 - 0.7353 0.9231 

User’s Accuracy 88.44 

Producer’s Accuracy 98.84 

Average User’s Accuracy 89.90 

Average Producer’s Accuracy 97.85 

Fuzzy overall Accuracy 97.84 

Entropy 0.4838 
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 Water 0.8792 0.9637 0.8915 - 0.9374 

 Wheat 0.8795 0.9589 0.8747 0.7353 - 

KPCM (Hyper 

Tangent) 

None 0.9122 0.9628 0.8922 0.7211 0.9392 

 Sand - 0.9624 0.8919 0.7210 0.9391 

 Eucalyptus 0.9122 - 0.8922 0.7211 0.9393 

 Forest_Gr 0.9122 0.9629 - 0.7211 0.9393 

 Water 0.9122 0.9629 0.8922 - 0.9393 

 Wheat 0.9122 0.9629 0.8923 0.7211 - 

 

 

Algorithm Untrained 

class 

RMSE Error 

  Sand Eucalyptus Forest_Gr Water Wheat 

PCM None 0.3006 0.1795 0.1325 0.1650 0.1144 

 Sand - 0.0001 0.0010 0.0014 0.0006 

 Eucalyptus 0.0017 - 0.0004 0.0012 0.0002 

 Forest_Gr 0.0018 0.0005 - 0.0010 0.0006 

 Water 0.0018 0.0002 0.0006 - 0.0004 

 Wheat 0.0018 0.0006 0.0003 0.0011 - 

KPCM (Hyper 

Tangent) 

None 0.0819 0.0716 0.1188 0.1417 0.1122 

 Sand - 0.0013 0.0018 0.002143 0.0016 

 Eucalyptus 0.0009 - 0.0018 0.002143 0.0016 

 Forest_Gr 0.0009 0.0012 - 0.002143 0.0016 

 Water 0.0009 0.0012 0.0018 - 0.0016 

Table 5.14.  RMSE for PCM and KPCM classification results. One untrained class was considered at a time. 
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Table 5.15. FERM for PCM and KPCM classification results. One untrained class was considered at a time. 

 

 

 

 

 

 

 

 

 

 

 

  

 Wheat 0.0009 0.0012 0.0018 0.002143 - 

Algorit

hm 

Untraine

d class 

Sand Eucalyptu

s 

Forest_Gr Water Wheat Overall 

Accuracy 

  UA PA UA PA UA PA UA PA UA PA  

KPCM None 92.08 99.46 93.26 98.61 90.24 97.42 82.68 97.53 87.59 99.01 98.37 

 Sand - - 93.47 98.43 90.52 97.53 81.47 97.10 87.83 98.98 98.05 

 Eucalyptus 92.48 99.46 - - 90.23 97.41 82.23 97.90 87.59 99.06 98.41 

 Forest_Gr 91.57 99.38 94.42 98.33 - - 81.66 97.19 88.37 98.99 98.48 

 Water 91.57 99.45 93.41 98.44 90.16 97.38 - - 88.39 98.88 98.46 

 Wheat 91.39 99.42 93.81 98.31 90.73 97.21 82.31 96.86 - - 97.89 
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CHAPTER 6 

6. DISCUSSION 

The present chapter explains the results obtained in chapter 5. The main objective of this research work was 

to develop a kernel based possibilistic c-means algorithm for handling non-linear classes present in the 

dataset by identifying the best kernel methods and optimizing the parameters.  

 

The most important parameter in PCM classifiers was the fuzzy parameter (𝑚). It handles the randomness 

in the classification results. The fuzzy classifiers like PCM allow to adjust the randomness present in the 

ground through the fuzzy parameter.  The value for fuzzy parameter increased from 2.5 to 3 when non-

linearity was incorporated in the linear Formosat-2 data.  The change in spatial resolution didn’t have 

significant effect in the value of fuzzy parameter. The reason for this may be associated with less difference 

in spatial resolution between the Formosat-2 and Landsat-8 data. It has been observed from the 

classification of simulated image that the mixed pixels were better handled with the non-linear hyper tangent- 

KPCM classifier as it assigns the expected membership values to the mixed pixels (section 5.1 in chapter 5). 

The optimal value of fuzzy parameter was kernel specific and thus, needed to be optimized very carefully 

for implementation of kernel with fuzzy classifier. 

 

The accuracy for classification of a class depends on the physical properties of that class and on the accuracy 

assessment technique. For instance, the water class in KPCM classification have shown lower user’s 

accuracy, low value for Pearson correlation coefficient and high RMSE value when calculated by using image 

to image accuracy assessment method. This may be because the water body present in the site was river 

which is not having a defined boundary and neither was a uniform continuous feature. This may result into 

large number of mixed pixels. So, when it was accessed through image to image accuracy assessment 

technique with higher resolution formosat-2 image as reference image, the correspondence between the 

water pixels in the classified and the referenced image may not be high and thus, resulting into lower 

accuracy.  

 

The handling of non-linearity can’t be observed visually from the classification results but can be depicted 

from the improved accuracy results. The non-linear KPCM classifier handled the non-linearity present in 

the data as evident from its high overall accuracy of 98.37% in comparison to PCM classifier with 

comparatively low overall accuracy of 78.38%. A total increase of 19.99% in the overall accuracy of 

classification was observed. The quality of the results of non-linear KPCM classifier were better than the 
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linear PCM classifier as evident from the low entropy value for results of KPCM classifier (0.4758) as 

compared to high entropy for results of PCM classifier (0.5430).  

 

The composite kernel were formed by fusing the two best kernels through weighted summation technique 

(Camps-Valls et al., 2006). The hyper tangent and the sigmoid kernel were fused in the ratio of 50:50. The 

resultant composite kernel provided satisfactory classification with fuzzy overall accuracy of 97.84% 

equivalent to 98.37% achieved with hyper tangent KPCM classifier. With composite kernel, there was an 

improvement in average user’s accuracy from 89.17% in case of KPCM to 89.90% for composite kernel. 

Thus, composite kernel can be used to add merits of different individual kernel function into a single kernel 

function 

 

It has been observed from the previous studies that the accuracy of FCM classifiers decreased with the 

introduction of the untrained classes (Byju, 2015).  But in case of PCM, shown in Table 5.9 and Table 5.10, 

the value of correlation, RMSE does not change with the introduction of untrained classes. Table 5.11 

depicts the result for FERM where the class based accuracy was same and didn’t change with introduction 

of untrained classes. This resistance by PCM classifier for the presence of untrained classes was due to the 

possibilistic (probabilistic) membership value which was calculated independently without considering the 

presence of other classes, thus, ignoring the untrained classes. 

 

It has been seen that the implementation of kernels was data specific (Mittal and Tripathy, 2015), so in this 

research nine different kernel functions were implemented to identify the best kernel function. Among, nine 

different kernel functions implemented, hyper tangent kernel function performed best followed by sigmoid 

kernel function. The hyper tangent kernel generally showed good results for large numeric data set (Mittal 

and Tripathy, 2015). The high accuracy of classification of hyper tangent kernel in presence of non-linearity 

and mixed pixels showed its high sensitivity for the spectral variations. As the raster satellite data is the best 

example of large numeric data and they also have high spectral variations, the hyper tangent can have broader 

applicability in remote sensing image classification. The sigmoid kernel was also a hyperbolic tangent 

function which may be the reason for its better accuracy. 

 

To conclude, the classifier developed by incorporating the hyper tangent kernel function with Possibilistic 

c-Means classifier not only handles the mixed pixels but also provide solution for the non-linearity present 

between the classes and handles untrained classes. The behavior of kernel functions was not affected by 

change in the dataset which may be due to the similar spectral variations in the dataset. As in this study the 

effect of data on kernel function is not considered, it provides scope for kernel function being studied with 

different dataset.  
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CHAPTER 7 

7. CONCLUSION AND RECOMMENDATION 

This chapter discusses the conclusion (section 7.1) and recommendation (section 7.2), it describes the final 

take away from this study. The section 7.1 concludes by answering the research questions framed at the 

beginning of this research and provides the concluding remark. The section 7.2 provides the 

recommendation for further research work which can be extended from this study work. 

 

7.1. Conclusion 

 

The main objective of this research work was to develop a kernel based Possibilistic c-Means (KPCM) 

classifier for handling the non-linear data. The Possibilistic c-Means (PCM) approach was used for handling 

the mixed pixel and kernel functions were used for handling the non-linearity. Nine different kernel 

functions were chosen for implementation. The incorporation of kernel function into PCM involves 

replacing of the Euclidean distance measure in PCM to kernel distance measure that takes care of the 

complicated non-linear boundaries between the classes. 

 

To access the accuracy of classification different accuracy assessment methods were incorporated. Their 

results have shown different dimensions for comparing the accuracy of results, like correlation and RMSE 

provides the correspondence between the reference data and the classified output, entropy gives the degree 

of randomness in the result and shows the quality of classification. As each accuracy assessment method 

provides a new measure for evaluation of classifier, therefore, no accuracy assessment method can be said 

to be the best.  

 

 The thematic maps generated from hyper tangent-KPCM classifier were more accurate as the output of 

this classifier shows overall accuracy of 98.37%which was better than all other eight kernel function 

implemented. The lowest entropy value 0.47 attained with hyper tangent KPCM classifier guarantees better 

classification quality of the fuzzy output. It performs far better than all other kernel functions in absence as 

well as presence of non-linearity as demonstrated for Formosat-2 data (Fig 5.1 and Fig. 5.2) and with 

different resolution data set as shown with Formosat-2 and Landsat-8 data. So, it is evident that the 

classification results with hyper tangent kernel are quite stable and accurate for different datasets. 
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Though it is known that PCM classifier handles the untrained class quite well but it has been observed that 

the kernel (hyper-tangent) implementation with PCM further improves the capability to handle the untrained 

classes. It can be observed from Table 5.13, Table 5.14 and Table 5.15 that for KPCM classifier, the 

correlation, class based accuracy values remain constant and high (or vary within a negligible range) whereas 

for PCM classifier these values are comparatively varying and are low. 

 

 

Answers to the research questions 

 

Research Question 1: How well non-linearity between classes in the input feature space will be handled by 

KPCM? 

 

Answer 1: The non-linearity handled with KPCM classifier has been proved by comparison of non-linear 

KPCM (with hyper tangent kernel) classifier with linear-PCM classifier. The hyper tangent-KPCM classifier 

shows accuracy of 98.37% as compared to PCM with low overall accuracy of 78.38% (Table 5.5). The 

KPCM classification outcome shows high correlation and low RMSE value with respect to the referenced 

data (Table 5.3 and Table 5.4). The lower entropy value (0.47) for classified results of KPCM in comparison 

to PCM classifier further guarantees the improved handling of non-linearity present in the input space. 

 

Research Question 2: How can mixed pixels be handled using KPCM? 

 

Answer 2:  From the classification of simulated image, it can be observed that the mixed pixels were better 

handled by hyper tangent KPCM classifier as compared to linear PCM classifier (Figure 5.1). For example- 

in Figure 5.1 (b), a mixed pixel with composition of 50% for wheat class shows the membership value of 

0.49 for wheat class whereas for the same pixel, with linear PCM classifier have very low membership value 

of 0.027 for the wheat class. 

 

Research Question 3: How well KPCM performs in case of untrained classes (considering one or more 

than one classes at a time)?  

 

Answer 3: The capability to handle the untrained classes increases with hyper tangent-KPCM classifier. As 

it is evident from the Table 5.13, the correlation values are high and remain constant for KPCM classifier 

in comparison to PCM classifier where the correlation value were low and varying. The similar affect was 

observed with RMSE, and FERM from Table 5.14 and Table 5.15 respectively. For example- In Table 5.13, 

for sand class the correlation value with PCM classifier is in between [0.86-0.88] whereas the correlation 

value for sand class remains constant (.9122) and comparatively high.  
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Research Question 4: How can we evaluate the performance in terms of accuracy and robustness during 

classification with single/composite kernel in KPCM? 

 

Answer 4: There are various accuracy assessment techniques that can be employed for the accuracy 

assessment of the soft classified output. But none of the soft accuracy assessment techniques are considered 

as standard as each of the technique is having its own merit and provides a unique measure for assessment. 

So, in in this research multiple accuracy assessment techniques like Pearson correlation coefficient, RMSE, 

entropy and FERM were used. The Pearson correlation coefficient, RMSE and FERM were calculated 

relative to the referenced data, whereas the entropy is an absolute measurement i.e. it does not require any 

referenced data for computing entropy. The Pearson correlation coefficient, RMSE and FERM quantifies 

the correspondence between the classified and the reference data set. The entropy on the other hand 

quantifies the classification quality by giving lower value of entropy to the classification output having lower 

randomness. 

 

7.2. Recommendations  

 

The present research has scope for improvement as well as extensibility by enhancing the existing 

implementation and by incorporating of new and advance techniques. The KPCM classifier can be improved 

by taking following point into consideration: 

 

 A detailed study is needed on parameter optimisation for different kernel functions as well as new 

method for parameter estimation can be implemented. 

 

 A more rigorous study on the effect of multi sensor data on kernel implementation is needed. 

 

 The KPCM classifier in this research study was developed by incorporating the kernel function with 

primitive PCM algorithm other new PCM algorithm like FPCM (Pal et al., 1997), IPCM (Zhang 

and Leung, 2004), PFCM (Pal et. al., 2005) and EPCM (Xie et. al., 2008) can be experimented with 

aim to get higher accuracy. 

 

 More variability can be incorporated within the classes in simulated image so that it can represent 

the real image more accurately. 

 

 The research can take a new dimension by performing KPCM in unsupervised mode. 
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APPENDIX A 

 
A.1: For Generation of referenced image from formosat-2 data, for image to image based accuracy 

assessment technique involves resampling of formosat-2 data from 8m to 10m. The generated Formosat-2 

data is shown in Figure A-1. 

 

 

 Figure A-1: Classified results for Fromsat-2 used as reference data for accuracy assessment. 
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A.2 Identifying and Simulating non-linearity in the data 

 

At first, the linear-SVM classification was performed on Formosat-2 data for identifying non-

linearity. The classification results showed 99.81% accuracy and linear-SVM classifier was successful 

in classifying the data (Figure A-2). 

 

 

 

To demonstrate a useful implementation of kernel functions, non-linearity was simulated in the 

data with following steps: 

 

 A new eucalyptus class was identified in the forest class. There was high mixing between 

these classes. 

 Merging “forest” and “grassland” class into a single “forest” class, naming it as 

“Forest_Gr”. 

 Taking subset of the features. Band1 (blue) and Band2 (green) were chosen for 

classification. 

 

On the simulated non-linear data linear-SVM classification was performed. High misclassification 

was observed between wheat and forest class. Steps involved in verifying the non-linearity in data 

by linear-SVM are as follows: 

 

Training the classifier, i.e., identifying “𝑊” of the optimal hyperplane, as shown in equation 

(3.26).  

Figure A-2. Linear SVM classification for linear Formosat-2 data. 
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The SVM classifier was trained with the available training data to identify the optimal value 

of the weight vector (𝑊). 

 

Tuning the classifier, i.e., choosing the optimal value for the cost factor (Figure A-3). 

 

The optimal value of cost factor was estimated based on the kappa value of classification 

result. The kappa value was calculated for the range of cost factor between [1*10-7 ,400]. 

The optimal value for cost factor was identified at 290. 

 

 

Figure A-3. Plot between kappa values for different value of cost factor 
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Figure A-4. Classified result for linear-SVM classification with non-linear data. 
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Accuracy Assessment, i.e., estimating classification accuracy 

 

To evaluate the accuracy of linear-SVM classification the test data was used to identify the accuracy 

of each class. Here high misclassification was observed between wheat, eucalyptus and Forest_Gr 

class (Figure A-4). For the simulated dataset the overlap between these classes (forest and wheat) 

was depicted from the feature space as shown in Figure A-5. It can be seen that the wheat class is 

within the convex hull drawn (based on the co-variance of the classes) for Forest_Gr class. So, the 

non-linearity was present between Forest_Gr and wheat class. 

                     

 

                                                   Figure A-5. Feature space for classes identified in Formosat-2 

 

To further assure the presence of non-linearity in the data, classification was performed with non-

linear SVM using RBF kernel with optimized value of cost factor and gamma at 230 and .01 

respectively. The classified output for non-linear SVM (RBF kernel) shows higher accuracy than 

linear SVM kernel (Figure A-6). 
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As, higher accuracy in classification was attained using non-linear SVM (with radial kernel), thus it 

is clear that non-linearity was successfully incorporated in the data set. 

 

 

APPENDIX B 

 A draft for the research paper has been submitted to guides. And is aimed to be published in a 

peer reviewed journal. - “Non-Linear separation of classes using kernel based possibilistic c-

means”. Nitin Kandpal, Anil Kumar, Valentyn Tolpekin 
 

 

 

 

                 

              

 

 

 

 

Figure A-6. Classified result for non-linear SVM (radial) classification. It shows the classified 
image, legend and error matrix for linear-SVM classification. 
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