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ABSTRACT 

Remote sensing images are predominantly affected by the presence of mixed pixels. Soft classifiers have the 

advantage to handle the mixed pixels due to the shortcomings of hard classifiers. The fuzzy based classifiers 

have shown to be robust and accurate when classifying land use and land cover maps. In the literature, the 

fuzzy c- means classifier has been studied with Euclidean, Mahalanobis and diagonal Mahalanobis norms. In 

this study, the fuzzy c- means classifier has been studied with nine other similarity and dissimilarity measures: 

Manhattan distance, chessboard distance, Bray-Curtis distance, Canberra, Cosine distance, correlation 

distance, mean absolute difference, median absolute difference and normalised squared Euclidean distance. 

Both single and composite modes were used with a varying weighted constant (m) at different α-cuts.  

Formosat-2 image and Landsat-8 image of 8m and 30m spatial resolution were used to implement the 

weighted norms respectively. Formosat-2 image of finer resolution was used as the reference image for the 

accuracy assessment of Landsat-8 image of coarser resolution. The results showed that the best single and 

composite norms were obtained by optimizing the weighted constant (m). This helps in controlling the 

degree of fuzziness at various α-cuts. The two best single norms obtained were combined to study the effect 

of composite norms on the datasets used. An image to image accuracy check was done to assess the accuracy 

of the classified images. Fuzzy Error Matrix (FERM) was used to measure the accuracy assessment outcomes 

for Landsat-8 dataset with respect to Formosat-2 dataset. Cosine norm was found to be the best single norm 

among all the norms with an overall accuracy of 75.24%, followed by the Euclidean norm.  These two norms 

were combined to form the composite norm which showed an overall accuracy of 69.80%. The accuracy of 

the classification was also measured in the case of an untrained class (wheat), which resulted in a decrease 

in the overall accuracy in comparison to the trained case. To conclude FCM classifier with Cosine norm 

performed better than the conventional Euclidean norm. But, due to the incapability of FCM classifier to 

handle noise properly, the classification accuracy was around 75%. 

 

 

 

Keywords: Fuzzy c-Means Classifier, Classification, Similarity and Dissimilarity measures, Distance, Fuzzy Error Matrix  
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||  ||A
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1. INTRODUCTION 

 

1.1. Background 

 
Remotely sensed image data are classified applying a classifier to generate user-defined labels 

(Mather and Tso, 2009). A Land Use/Land Cover (LULC) map is required for land use planning, preparing 

land cover maps, to check the health of the crops, etc. Thematic maps have a wide application among the 

end products of remote sensing. Spatial variations in phenomenon like geology, land surface elevation, soil 

type, vegetation, etc. are also displayed in a thematic map (Tyagi et al., 2015). In the digital domain, thematic 

maps are created by assigning labels to each pixel in an image and, this process is known as Digital Image 

Classification (Harikumar, 2014). Many factors affect the classification of remotely sensed image data into a 

thematic map such as the approach for image processing and classification, the quality and selection of 

remotely sensed data, the topography of the terrain, etc. These factors also affect the accuracy of the 

classification (Lo and Choi, 2004). 

 

Many previous works also show that image classification algorithms have been developed, which 

show a significant confidence in extraction of information and generation of thematic maps (Gong et 

al.,1992; Kontoes et al.,1996; San Miguel-Ayanz et al.,1997; Foody, 1996; Stuckens et al., 2000; Franklin et 

al., 2002; Otukei et al., 2010; Landgrebe, 2003; Gallego, 2004; Richards and Jia, 2006; Tso and Mather, 2001). 

But, classifying a remote sensing image into a thematic map is a big challenge as there are many factors, 

which may be involved like: landscape complexity, specification of  the data used, the algorithms used for 

image processing and classification, etc. and these factors may affect the success of classification (Foody et 

al., 1997;  Stehman, 1997). 

 

The term classification as defined by Chambers Twentieth Century Dictionary is the ‘act of forming 

into a class as per rank or order of persons or things’. The procedure to classify all pixels in an image into 

land cover classes is the main objective of an image classification technique (Lillesand et al., 1994). 

Classifications can be either one-to-one classification or one-to-many classification. One to one classification 

can be called as hard classification and a one to many classification can be called as soft classification 

technique (Mather and Tso, 2009). The probability that a pixel belongs to a class is equal to 0 or 1 in hard 

classification i.e. a pixel belongs to one particular class. In soft classification, a pixel can be assigned to more 

than one class with a value between 0 and 1 (Mather and Tso, 2009) (Figure 1.1). “Soft classifiers provide 

for each pixel a measure of the degree of similarity for every class” (Choodarathnakara et al., 2012).  
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However, heterogeneity of classes within a pixel may occur. This is commonly defined as a mixed pixel 

(Harikumar, 2014).  The presence of mixed pixels is the cause of different problems in mapping and 

monitoring of land cover. The most severe effect of mixed pixels is in the mapping of diverse landscape 

using images of coarser resolution (Foody, 2002). The fuzzy set approach has been found quite suitable for 

solving the mixed pixel problem (Kumar et al., 2006a). 

 

Fuzzy set theory introduced by Zadeh (1965) uses the concept of uncertainty in the definition of a 

set by removing the crisp boundary concept into a function of the degree of membership or non-

membership (Binaghi et al., 1999) (Figure 1.1). Fuzzy logic using fuzzy set theory provides important tools 

for data mining and to determine the data quality and has been proven to have the ability to present uncertain 

data that contain vagueness, uncertainty and incompleteness (Stein, 2010). This is especially observed if the 

databases are complex. Classifiers based on fuzzy set theory like the Fuzzy c-Means classifier (FCM) (Bezdek 

et al., 1984) has been studied  with weighted norms such as Euclidean norm, Mahalanobis norm and diagonal  

Mahalanobis norm for solving mixed pixel problems in remote sensing images (Kumar et al., 2006b). Earlier, 

other measures of similarity and dissimilarity measures such as the correlation, Canberra, Cosine distance, 

etc. have not been studied with FCM classifier. In this work, these measures were studied with FCM 

classifier. Common statistical analyses have been used in the past to calculate similarities for a fuzzy set like 

works done by Lopatka and Pedzisz ( 2000) and also by Besag  et al. (1986). However, these analyses have 

been heuristic and are rather general. Therefore, it is important to consider the analysis of vague and 

ambiguous data with a degree of membership. Also, to determine the distance between the fuzzy sets, -

cuts have been used to get a better accurate distance between the fuzzy sets and also to avoid or check the 

overlap between the cluster centres (Dilo, 2006). 

               

       Figure 1.1 Fuzzy membership concept (Zadeh, 1965)  
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Similarity and dissimilarity are concepts that have been used before by researchers to build 

automated systems that assist humans in solving classification issues (Goshtasby, 2012). Measure for 

similarity and dissimilarity can be metric, non-metric, independent and dependent. Metric measures do not 

deal with all the topologies that are required for fuzzy classifiers (Dilo, 2006). Non-metric measures are quite 

effective for comparing images captured by different sensors (Pekalska et al., 2006). Independent measures 

are independent of the scale of the data or the rotational or translational of axes (Le Maitre, 1982). 

Dependent measures largely depend upon the class that has to be classified (Cheplygina et al., 2012). These 

measures are used, for example, to analyse the correspondence of images stored in a database to an observed 

image from a camera or sensor. 

  

Measures of similarity can also be used to locate an object of interest (where the model of the object 

is given as a template) in an observed image, by finding the most appropriate place in the image where the 

template can fit. Measures of similarity can provide solutions when the templates and saved images and the 

observed image should neither have rotational nor scaling differences, and hence both the images match 

completely (Goshtasby, 2012). This shows the dependency between them. The dissimilarity measure 

between two datasets can be considered as a distance between them which quantifies their independency. 

 

 The works by  Binaghi et al. (1999), Zhang and Foody (1998), Congalton (1991) and Martin et al. 

(1989) demonstrated that the accuracy of classified images can be evaluated by various ways. The 

conventional method of error matrix is not to be used as it assigns a pixel to a single class, which is hard 

classification. The Fuzzy Error Matrix (FERM) introduced by Binaghi et al. (1999) can be used to evaluate 

the accuracy of soft classified images. Though it is quite captivating, it is not regarded as a standard method 

to calculate the accuracy of soft classified images. In this work, the soft classified images were evaluated 

using an image to image accuracy by considering reference image of finer resolution than the classified image 

of coarser resolution.     

1.2. Motivation and Problem Statement 

Remotely sensed images of coarser resolution are used for diverse purposes. These images, when 

classified, give an erroneous result due to the presence of mixed pixels (Figure 1.2). Thus, soft classification 

methods are chosen over hard classification methods to handle the mixed pixels. Early works by researchers 

have studied fuzzy classifiers with Euclidean, Mahalanobis and diagonal Mahalanobis norms and are able to 

handle the mixed pixel. Fuzzy based classifiers with Euclidean norm cannot handle complex environment 

(Wan-zhi et al., 2013). In this work, different other measures of similarity and dissimilarity for fuzzy 

classifiers is explored not just for the data quality but also for the distance quality. This will assist researchers 

in decision making on which norm is most accurate with a higher distance quality. Previous works has 

showed that Fuzzy c-Means (FCM) classifier have been studied with three weighted norms (Euclidean, 
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Mahalanobis and diagonal Mahalanobis) only. Throughout this work, it has been tried to incorporate the 

other various similarity and dissimilarity norms in FCM classifiers along with the -cuts. A comparative 

study has been taken into account to find out the best possible single or composite measures for both 

similarity and dissimilarity norms on the virtue of their output data quality results, as all the distance norms 

have not been studied extensively and the conventional process of using Euclidean norm in FCM lacks the 

handling capacity of complex environment. 

             

                              Figure 1.2 Causes of Mixed Pixels (Fisher, 1997) 

1.3. Research Objectives 

 
The main objective of this proposed research work was to study the behaviour of similarity and 

dissimilarity measures with a Fuzzy c-Means (FCM) approach. 

 

The main objective was reached by defining the following sub-objectives: 

 

 To develop an objective function for the fuzzy c-means classifier with similarity and dissimilarity 

measures. 

 To optimize parameters of FCM classifier with similarity and dissimilarity measures 

 To study FCM objective function with single or composite, similarity and dissimilarity measures 

using the -cuts. 

 To evaluate the performance of the proposed FCM classifier in the case of untrained classes. 
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1.4. Research Questions 

 
The following are the research questions identified from the research objectives for the proposed 

work: 

 How can similarity and dissimilarity measures be incorporated into the FCM classifier approach? 

 How single or composite, similarity and dissimilarity measures work with different -cuts along 

with FCM objective function? 

 What will be the effect of using composite distance norms on FCM as compared to single distance 

norm?  

1.5. Innovation Aimed At 

 
The innovations intended in this study are: 

 

 To study similarity and dissimilarity measures as single or composite distance norm with FCM 

classifier. 

 To find out the best distance norm to solve the mixed pixel problem in an image. 

 To make an optimal combination of two distance norms with FCM approach. 

1.6. Research Approach 

 
To answer the research questions and research objectives of this work, an objective function for 

the Fuzzy c- Means (FCM) classifier has been developed to handle the mixed pixel problem along with 

similarity and dissimilarity measures. The images of Formosat-2 and Landsat-8 satellites were geometrically 

corrected and geo-registered, and simulated images containing classes same as the remotely sensed images 

has been used. Supervised classification approach has been applied while incorporating various distance 

norms for similarity and dissimilarity measures using FCM classifier. Norms considered were Manhattan, 

chessboard, Bray-Curtis, Canberra, Euclidean, Mahalanobis, diagonal Mahalanobis, median-absolute-

difference, mean-absolute-difference and normalized-squared-Euclidean for dissimilarity measures. Cosine 

and correlation norms were used for similarity measures. A certain combination of norms has been used to 

form a composite measure for evaluating its performances with respect to the single best norm. The 

classification has been conducted by using FCM objective function by incorporating the aforesaid norms at 

different α-cuts. The accuracy assessment has been done for both single and composite distance norms. 
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1.7. Thesis structure 

 
The whole thesis has been organised into a total of six chapters. Chapter one includes the 

background information of the research work along with the important facets of the topic, the motivation 

and problem statement, research questions and the approach taken for the research. Chapter two describes 

the details of the related work that has been done in the past by various researchers. Chapter three includes 

the information of the study area chosen and the materials used along with the details of the methodology 

adopted. Chapter four describes the details of the classification techniques. Chapter five shows the results 

obtained along with the discussion of the results. Finally, the conclusion of the research work with 

recommendations leading to future research has been mentioned in chapter six.
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2. LITERATURE REVIEW 

This chapter has different sections giving an introduction (section 2.1) to the previous research 

works on land cover classification method (section 2.2); Fuzzy c- Means (FCM) Classification on remote 

sensing images (section 2.3); different similarity and dissimilarity measures (section 2.4) and also about the 

usages of α- cuts (section 2.5). 

2.1. Introduction 

In this chapter, an overall view has been given of the various works done by researchers on the 

extraction of land cover followed by different norms which have been used in soft classification techniques 

on the basis of similarity or dissimilarity criterion.  

Boyd et al.( 2006); Foody et al. (2006) and Li et al. (2011) showed that there is a need to have information 

about all the classes in the training set exhaustively, to determine a specific class by using supervised 

classification. This, however, may result in a considerable error (Foody et al., 2006). Hence, supervised 

classification or hard classification is inappropriate for extracting a specific class (Foody et al., 2006). A 

problem like the occurrence of mixed pixels will be encountered as well by this conventional approach of 

classification (Upadhyay et al., 2013). Kumar et al.(2006b) showed that mixed pixels are found on the 

boundary of two or more classes in an image due to the pixel size compatibility with the class size. 

The mixed pixel problem can be solved by the fuzzy set theory, by using a membership function along 

with -cuts and quantifying the degree of belongingness of a pixel to a class (Dilo, 2006). Foody (2000) 

showed that Fuzzy c-Means classifier can be used to solve the mixed pixel problem. This has been recognized 

in the past as well: “Fuzzy set theory provides a useful technique to allow a pixel to be a member of more 

than one category or class with graded membership” (Shankar et al., 2006). Lee et al.(1996); Wang et 

al.(2005) and Upadhyay et al.(2014) showed that norms like Euclidean, Mahalanobis and diagonal 

Mahalanobis have been incorporated with FCM classifier. Tyagi et al. (2015) show that a fuzzy classifier 

along with similarity and dissimilarity measures can be used to solve the mixed pixel problem. Lee et 

al.,(2009) showed that if a similarity measure of a data-set has been found, it can also represent the 

dissimilarity, as a high level of similarity of data shows a low level of dissimilarity measure. The measure of 

similarity can be calculated based on the distance between the data used (Lee et al., 2009). There is a 

relationship between distance and similarity measures and the combination of similarity measure and 

distance measure shows the totality of information (Xuecheng, 1994). 
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2.2. Land Cover Classification 

The main purpose of image classification is to classify every pixel either on the basis of one to one 

classification (hard classification) or one to many classification (soft classification) (Mather and Tso, 2009). 

There are many classification methods to classify a remotely sensed image into different land cover types. 

According to Swain and Davis (1979) these methods can be categorized into: 

a. Methods based on whether a process of training is needed or not, i.e. supervised and 

unsupervised classification respectively. 

b. Methods based on the usage and requirement of any parametric model (i.e. parametric and non-

parametric). 

There are many algorithms developed for classifying images. Amid the prevailing algorithms, the 

most widespread are the maximum likelihood classifier (MLC), support vector machine (SVM), decision 

tree classifiers and neural network classifiers. Maximum Likelihood Classifier (MLC) algorithm is a 

supervised statistical approach for thematic mapping using pixel based information. MLC follows Gaussian 

rule approach and it becomes unreliable when the class size is small (Gopinath, 1998), but works fine for a 

large class size though there is a high degree of computation. Despite its limitations, as it follows a normal 

distribution function for the signature of the classes (Swain and Davis, 1979), it is a common and widely 

used classification algorithm (Wang, 1990 and Hansen et al.,1996). 

Neural network classifiers (NNC) avoid some of the problems that are faced in MLC by choosing 

a non-parametric approach. They do not follow a Gaussian rule approach. Neural networks have an 

advantage of high computation rate due to the presence of huge parallel networks, which resulted in the 

development of various other types of neural networks (Lippmann, 1987) such as: the most commonly used 

network in the classification of remote sensing images is the Multi-Layer Perceptron (MLP) (Paola and 

Schowengerdt, 1995; Atkinson and Tatnall, 1997).  Artificial neural network (ANN) however may be very 

complex, as the learning rate can be high for the data of higher dimensionality. Large sets of training data 

are required for generalization as the data structure becomes complex on increasing the data dimensionality 

(Ablin and Sulochana, 2013). 

Decision tree classifier (DTC) uses a different approach for land cover classification. Safavian and 

Landgrebe (1991) showed that a decision tree breaks a complex problem of classification into several stages 

of simple processes of decision making. There are univariate and multivariate decision trees, determined on 

the basis of the amount of variables used at each stage (Friedl and Brodley, 1997). At a global scale, land 

cover classification is done using univariate decision trees (De Fries et al., 1998;  Hansen et al., 2000). 

Multivariate decision trees are generally more compact than univariate decision trees and are also sometimes 

more accurate than univariate decision trees (Brodley and Utgoff, 1995). The hierarchical method provides 
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an advantage that it is easily interpreted than ANN, as the tree structure can be observed as a white box 

(Roosta et al., 2012). Another advantage is that it needs less complex training in comparison to ANN, but 

decision frames need to be framed for decision trees and they become complex when there is a large number 

of decision rules (Mather and Tso, 2009). 

The Support Vector Machine (SVM) classifier is based on learning classification technique. It is used 

to allocate the labels as they were originally found in linear binary classifier (Mather and Tso, 2009). 

Construction of a separating hyperplane based on the properties of the training samples is the core operation 

of SVM. SVM has a large variety of applications. Osuna and Freund (1997) applied SVMs for human face 

detection along with digital image classification. Mukherjee et al. (1997) and Pal et al. (2005)  used SVM for 

classifying remote sensing images. Huang et al. (2002) have showed that SVM gives higher accuracies than 

other classifiers like MLC, NNC and DTC. However, SVMs can be a time consuming process as shown by 

Patra and Bruzzone (2011). 

Hard classifiers are poor in accounting information within mixed pixels and an analyzer has to adopt 

different methods like soft classifiers to handle mixed pixels. Soft classifiers result in different proportions 

of belongingness of classes within a single pixel. Presently, there are various classifiers like fuzzy classifiers, 

artificial neural network (ANN), etc. which can be used as soft classifiers. Fuzzy set theory classification 

takes heterogeneity and imprecise nature of the real world into account. It can also be used as supervised 

classification. The next sections provide a literature review on Fuzzy c- Means classification and the various 

distance measures that have been studied in this study. 

2.3. Fuzzy c- Means Classification 

Fuzzy c- Means (FCM) is a popular fuzzy clustering method that has been used for various 

applications for solving problems in the domain of remote sensing data. FCM is used with either supervised 

or unsupervised modes. Bezdek et al.(1984) showed that distance norms can be incorporated into FCM for 

clustering purpose with an unsupervised mode. 

Various other works show that FCM can be used to classify remotely sensed data. The work by  

Zhu (1997) shows how fuzzy logic can be used along with similarity algorithms to find out the uncertainty 

in a remotely sensed image. Thus, provides the areas where accuracy is high. Other works also show that 

fuzzy logic and fuzzy set theory can be used to classify remotely sensed images (Ji, 2003; Shalan et al., 2003). 

The aforesaid works showed how mixed pixels are handled at the allocation stage for class identification 

within a pixel. This is represented in the form of membership value of a class related to the class composition 

of the pixel. FCM approach with a supervised mode can also be used to classify remote sensing images 

(Wang, 1990). 
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 Foody (1996) and Bastin (1997) had evaluated the execution of Fuzzy c- Means (FCM) classifier 

and concluded that FCM provides a better approximation of sub-pixel land cover classes and thus can easily 

map the real world scenario. 

 Zhang and Foody (1998) applied FCM classification algorithm for classifying and mapping real life 

scenario. It was inferred that the obtained outputs were advantageously accurate while applying fuzzy 

classification and evaluation methods over conventional hard classification or partially fuzzy methods. 

Ibrahim et al. (2005) concluded that to produce accurate and proper land cover classification the concept of 

mixed pixels (which shows variability in the allocation of class) should be incorporated at all stages of the 

classifying process of remotely sensed images. Dwivedi et al. (2012) carried out a comparison of FCM (Fuzzy 

c-Means) and PCM (Possibilistic c-Means) and conducted an accuracy assessment by using FERM, SCM and 

Fuzzy Kappa Coefficient; norms considered were namely Euclidean, Mahalanobis and diagonal 

Mahalanobis only.  

2.4. Measures Of Similarity and Dissimilarity 

  Zwick et al. (1987) studied and compared nineteen measures of similarity and dissimilarity with the 

different fuzzy sets. These measures were both geometric and set-theoretic, and were compared on the basis 

of their behavioral performances. It was concluded that distance measures could be evaluated on one’s 

interest and the best distance measure should be chosen on the basis of high correlations for the particular 

situation. Deer et al. (1996); Takahashi et al. (2011) and Charulatha et al. (2013) had done a comparative 

study on FCM classifier with various distance metrics like Mahalanobis, Euclidean, Manhattan, Canberra, 

Tchebychev and Cosine. The results showed that the different distance metrics work differently with the 

variation of weighting exponent “m” and it was concluded that there is a need of exhaustive exploration of 

the distance metrics for different kind of datasets on various clustering algorithms. 

 Das (2013) analyzed how pattern recognition technique can be used with Fuzzy c-Means (FCM) 

classifier. In this work, the data analyzed was in the form of numerical vectors with predefined clusters. 

Besides, Euclidean other distances like Canberra and Hamming were also used in FCM classifier to get the 

variation in the outputs of membership values of the objects in the different clusters. The results showed 

that Euclidean produced the fastest and the most expected outputs whereas the outputs with Canberra were 

slowest and the least expected. Kouser et al. (2013) had applied K-means clustering algorithm with distances 

measures like Euclidean, Manhattan and Chebyshev. The experimental results showed that the overall 

accuracy of Chebyshev distance and Euclidean distance are comparable, whereas Chebyshev distance had 

the highest number of iterations.  

 Dik et al. (2014) showed how fuzzy clustering results improve when a weighting factor is introduced 

in the inter-object distances. The distances considered were Euclidean, Manhattan, Spearman and 

Chebyshev incorporated with FCM and were tested on three datasets. The results showed that there was a 

significant improvement in the accuracy when weighted distances were considered over unweighted 
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distances. Sinwar et al. (2014) studied two distance metrics, Euclidean and Manhattan, incorporated with 

simple K-Means clustering algorithm on two real and one synthetic dataset. The results of the experiments 

performed showed that Euclidean approach has better outcomes than Manhattan approach on the basis of 

number of iterations for calculating the centroid of the datasets used during the overall clustering process. 

2.5. Fuzzy α- Cuts 

 Reznik et al. (1994)  demonstrated the method of α-cut border mapping. This method was 

implemented along with a proportional–integral–derivative controller (PID controller). The results showed 

that the method of α -cut border mapping is quicker than defuzzification of fuzzy output set. Thus, it was 

as good as, or comparable to real-time control applications. Kainz (2007) and Ponce-Cruz et al. (2010) 

explained the concept of α-cut vividly and described a fuzzy set being composed of crisp sets by using the 

concept of α -cuts. It was also explained that α -cut concept can be used to know all the elements which 

belong to a fuzzy set and also possess some degree of membership. Xexéo (1997) explained that the concept 

of α-cut is important as it could be used to deduce fuzzy functions from crisp sets. He also described the 

difference between the concepts of α-cut and threshold level. Dunyak et al. (1997); Abebe et al. (2000); 

Wong et al. (2001) and Yang et al., (2009) studied the concept of α-cut with classifiers based on fuzzy set 

theory and explained the usage of α-cut while analyzing the uncertainty in the model parameters by 

showcasing the advantages and drawbacks. 

Kreinovich (2013) extended his ideas to fuzzy mathematics and fuzzy data processing from fuzzy logic and 

made some important proofs for α-cuts, such as: 

 The membership function and α-cut representations are not same from the algorithmic 

point of view. 

 Prevailing of a c-membership function for which computation of α-cuts are not possible 

and vice-versa is also true. 

 In general, computation of fuzzy data processing is not possible for membership functions, 

but exceptions are there for α-cuts. 

Other authors have shown that α-cuts can be used for solving various problems like;  

 Lee et al.(2015) showed the usage of α-cut as a filter in proxy caching mechanism for wireless 

services. This mechanism was demonstrated to monitor the traffic flow and thus guaranteeing exact 

and faster streaming of services while buffer caching. The results of the work showed that the given 

mechanism has better performance than other caching techniques like S-caching, I-caching and C-

caching mechanisms. 
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3. STUDY AREA, MATERIAL USED AND 
METHODOLOGY 

This chapter explains the study area with the reasons for choosing the study area and the materials used for 

completing the work along with the methodology. The explanation for using a simulated image and 

specifications of the sensors from which the datasets are acquired are also explained and described.  

 

3.1. Study Area 

 
The study area selected for this project work was Haridwar, Uttarakhand and is shown in Figure 3.1. The 

district shares its boundaries by Dehradun in the north, Pauri Garhwal in the east while, west and south are 

bounded by districts of Uttar Pradesh. The central latitude and longitude of the district are 29.956˚ N and 

78.170˚ E respectively. The coverage of the area is 2.664 km x 2.192 km in the east to west and north to 

south direction respectively. The land is fertile with river Ganga flowing through the district and agriculture 

remains the mainstay of the district. Five classes are considered: Water, Riverine Sand, Wheat Crop, Forest, 

and Fallow Land.  

 

The main reason for selecting the study area was the presence of diversity in terms of land use classes, such 

as vegetation type (wheat), riverine sand, forest, fallow land and water. Due to the diversity of land use and 

land cover classes, there is also the presence of mixed pixels at the boundaries of the classes and this will 

help to examine the capacity of FCM classifier with different similarity and dissimilarity measures for 

classification. Field ground truth data of study area was available as the field visit was conducted on 16th 

March, 2015. Datasets from the sensors FORMOSAT-2 and LANDSAT-8 were also available of the same 

time frame to check the image to image accuracy of the classifier 
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3.2. Materials used 

 
In any research work the suitable use of remotely sensed data is necessary depending on the usability of the 

proper algorithms. These data may vary in spectral, spatial and temporal attributes. In this research work, 

multispectral images of 8m and 30m resolution of FORMOSAT-2 and LANDSAT-8 satellites were used. 

The formosat-2 satellite was developed by National Space Organisation (NSPO), Taiwan and was launched 

on May 21, 2004. The main aim of the FORMOSAT-2 mission has been to capture remotely sensed data 

on land and oceans of the earth with a daily revisit (Corporation, 2013). The landsat-8 satellite was developed 

and launched by National Aeronautics and Space Administration (NASA) and the United States Geological 

Survey (USGS) on February 11, 2013. It is the eighth satellite in the satellite program of the Landsat. The 

main aim of the LANDSAT-8 mission is to provide optimum resolution images to segregate land use and 

land cover features to track down the usability of land and water (Corporation, 2015). The soft fractional 
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Figure 3.1: Image of the data is of Haridwar area, Uttarakhand, India 

 Haridwar Area 
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outputs of finer resolution FORMOSAT-2 images were used to validate the soft fractional outputs of 

LANDSAT-8. Table 3.1 shows the specifications of the satellite data used: 

 

Specification FORMOSAT-2 LANDSAT-8 

Spatial Resolution (m) 8m 30m 

 
 

Spectral Resolution 

• B1: 0.45 - 0.52 µm (Blue) 

• B2: 0.52 - 0.60 µm (Green) 

• B3: 0.63 - 0.69 µm (Red) 

• B4: 0.76 - 0.90 µm (Near-infrared) 

• B1: 0.450 - 0.515 µm (Blue) 

• B2: 0.525 - 0.600 µm (Green) 

• B3: 0.630 - 0.680 µm (Red) 

• B4: 0.845 - 0.885 µm (Near-

infrared) 

Sensor Footprint 24 km x 24 km 185 km x 170 km 

Return interval Daily After every 16 days 

 

         Table 3.1: FORMOSAT and LANDSAT satellite specification 

 

 

3.2.1. The simulated image 

 
In this research work, simulated images of multi-spectral data of Formosat-2 (4 bands) and Landsat-8 (7 

bands) has been taken to study the performances of all the norms i.e. Euclidean, Mahalanobis, diagonal 

Mahalanobis, Cosine, correlation, Canberra, Manhattan, chessboard, Bray-Curtis, mean absolute difference, 

median absolute difference and normalized squared Euclidean with FCM classifier. Simulated 

FORMOSAT-2 and LANDSAT-8 images contain five classes: water body, wheat, forest, fallow land and 

riverine-sand. In these simulated images, we have intentionally mixed classes in a specific ratio and also have 

created an intra-class variation. Based on these controlled conditions the ability of handling the mixed pixel 

problem and detecting the intra-class pixel value variation were tested on the simulated image. Details of 

the simulated images are explained in figures A-1 and A-2 (Appendix A). 

 

 

 

3.3. Methodology 

 
The main objective of this work was to develop an objective function for the Fuzzy c-Means classifier with 

similarity and dissimilarity measures, by incorporating the concept of α-cuts. This section of the chapter 

describes the steps taken to accomplish the objectives of section 1.3. 

The flow chart of the methodology adopted and developed has been presented in Figure 3.2. 
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Figure 3.2. Research Methodology for this research work 

 

3.4. Reference Dataset preparation 

The outputs of FCM classifier are soft classified outputs. Hence, for the calculation of accuracy of the 

outputs, there is a need for soft reference data. The outputs of the classifier were soft outputs for each of 

the concerned class. In this research work, the classified soft outputs of Formosat-2 having finer resolution 

were used as the reference images for evaluating the image to image accuracy of the classified Landsat-8 

images. The soft ground data were unable to be acquired due to the following reasons (Chawla, 2010): 

 

 To locate a subpixel class on the ground is not possible. 

 It is also not possible to accurately measure the stretch of a class at a sub-pixel level on the ground. 

 Due to inaccessibility in some areas, the ground data was very difficult to collect in a soft mode. 

 There may be presence of an error in the ground data, hence standard accuracy assessment can be 

termed as a degree of agreement but not the true value that is present on ground (Foody, 2002). 

Input: Multi-spectral Image of LANDSAT-8 or FORMOSAT-2 Data 

Pure Pixels in Training Stage: Signature Data 

 

 

Fuzzy c-Means (FCM) with different 

distance norms 

 

 

 

Proposed Distances: 

Similarity Measures: 

 Cosine               

 Correlation 

Dissimilarity Measures: 

 Canberra 

 Euclidean 

 Mahalanobis 

 Diagonal Mahalanobis 

 Manhattan 

 Chessboard 

 Bray Curtis 

 Mean-Absolute Distance 

 Median- Absolute Distance 

 Normalized Squared Euclidean 
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In this research work, outputs of the soft classification were of the type of fractional images for each 

considered class. The fractional images of Formosat-2 having finer resolution were used as the reference 

data (images) for assessing the accuracy of Landsat-8 fractional images. The images from Formosat-2 and 

Landsat-8 satellites were acquired of nearly same time frame. Hence, occurrence of errors due to temporal 

changes in the datasets were avoided. Kloditz et al. (1998) suggested a method using multi-resolution 

concept so that the estimation of accuracy after classification is possible for an image of low resolution by 

means of an image of finer resolution, where pixels of finer resolution for an area play a part to the pixels 

of low resolution of that same area during the assessment. It has also been observed that the pattern of the 

low-resolution image is conserved and there was also no damage to the inherent information of the image. 

 

3.5. Sub-pixel classification algorithms 

 
Supervised FCM classifier was used to generate the results for the sub-pixel classification. Three approaches 

namely fuzzy c-means (FCM), FCM with single measure and FCM with composite measures were applied. 

3.5.1. Fuzzy c-Means (FCM) 

 
There are many fuzzy based clustering algorithms. The outputs of all the sub-pixel classifications are in the 

form of fractional images for each concerned class. The optimization of the parameter is regarding the 

optimization of the weighted-constant (m) for each of the similarity and dissimilarity measures. This 

optimization is done on the simulated image by considering each norm with a fixed m-value and then 

checking the behaviour of the norm for classifying the following: 

1.  Pure pixel area ( intra-class variation as well as membership value must be tending to one and hence 

the pixel DN-value should nearly 255 on an 8-bit scale) 

 if the 1st condition is satisfied, then the behaviour of the similarity measure was checked on; 

 

a) Areas where there is a mixture of two classes, membership values must be tending to 0.5 for each 

class within a pixel (the DN-values should be nearly 127.5 for each class on an 8-bit scale) 

 

b) Areas where there is a mixture of three classes, membership values must be tending to 0.3, 0.3 

and 0.4 for each class within a pixel (the DN-value should be 76.5, 76.5 and 102 respectively on 

an 8-bit scale) 

 

The flowchart for optimization of the weight constant ‘m’ is shown in figure A-3 (Appendix A.). This 

optimization of the weighted-constant (m) was done for both single as well as composite norms. 
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3.5.2. FCM with similarity measures 

 
Mainly two types of measures were considered: similarity measures and dissimilarity measures. In this 

research work, two similarity measures were used: Cosine norm and correlation norm and ten dissimilarity 

measures were used: Bray-Curtis norm, Canberra norm, chessboard norm, diagonal Mahalanobis norm, 

Euclidean norm, Mahalanobis norm, Manhattan norm, mean absolute difference norm, median absolute 

difference norm and normalized-squared-Euclidean norm. Following the implementation of the similarity 

and dissimilarity measures, the optimization of the weighted constant ‘m’ was achieved for each measure. 

The best single measure was selected based on the minimum difference with the expected output using the 

simulated image for the optimized ‘m’-value. 

3.5.3. FCM with composite similarity measures 

The composite similarity and dissimilarity measures were obtained from the best possible single measures. 

In the composite measures, the weight factor λ varies in between 0.1 to 0.9 with an interval of 0.1. For the 

composite measures, the optimization of ‘m’ and λ were also necessary and this was accomplished in the 

same manner as in figure A-3 (Appendix A.). The untrained case of outputs were also verified by not using 

the signature data of one class in the FCM classifier (Byju, 2015), here we have considered the wheat field 

as the untrained class. 

The membership values produced in a pixel by a class is represented in the form of fractional images, which 

are the classified outputs of a soft classifier (Harikumar, 2014). The total number of fractional images 

produced is equal to the number of concerned classes. Selecting the training samples was very important for 

all the approaches as it helped to determine the quality of classification. Hence, the mean of the membership 

grade of all the samples collected was measured for each of the concerned class.  

3.5.4. FCM with α-cuts 

The concept of α-cut is to create a threshold for the membership value of a pixel in the concerned class. 

The outputs obtained from both the single or composite use of similarity and dissimilarity measures were 

checked by the α-cuts from 0.5 to 0.9 with an interval of 0.1. The value of α-cut was restricted from 0.5 to 

0.9 because if the value of α is below 0.5, then there will be an overlap of degree of membership of a class 

for a pixel and if the value of α is 1, then it represents the centre of the cluster of the concerned class (Yang 

et al., 2009). The outputs obtained at different α-cuts for both single and composite measures were evaluated 

for their accuracy to obtain the best α-cut value. 

3.6. Accuracy assessment 

Accuracy assessment is one of the most important aspect for diagnosing the quality of the outputs after 

classification. Image to image accuracy assessment was performed by taking FORMOSAT-2 data as the 

reference dataset for LANDSAT-8 data. To generate kappa statistics and overall accuracy fuzzy error matrix 

(FERM) and sub-pixel confusion uncertainty matrix (SCM) were used. 



 

18 

4. MEASURES OF SIMILARITY WITH FUZZY 

CLASSIFIERS 

This chapter emphases on the fuzzy classification algorithm which includes developed Fuzzy c-Means (FCM) 

algorithm incorporating a total of twelve similarity and dissimilarity measures (similarity measures – Cosine 

and correlation; dissimilarity measures – Canberra, Bray-Curtis, chessboard, Manhattan, mean absolute 

difference, median absolute difference, normalised squared-Euclidean, Euclidean, diagonal Mahalanobis and 

Mahalanobis) in a single mode or composite mode along with fuzzy α- cuts. These measures along with the 

soft classifier (FCM) generate fuzzy outputs as fractional images.  

4.1. Fuzzy c-Means Clustering Algorithm 

  Clustering is a method of grouping of pixels which has spectral similarity in multispectral space 

(Richards and Jia, 2006). Clustering segregates the pixels into multiple clusters on the basis of the similar 

properties (Fig. 4.1). There are a few common clustering techniques used for remotely sensed data such as, 

the iterative optimization clustering algorithm (Ball and Hall, 1965), single pass clustering algorithm, 

hierarchical clustering technique and clustering technique based on histogram peak selection (Letts, 1978; 

Richards and Jia, 2006). Furthermore, clustering can be segregated based on “hard” and “soft” methods of 

clustering (Jafar and Sivakumar, 2013). In hard clustering, a pixel of an input data is allocated to a particular 

cluster but in soft clustering (fuzzy clustering) a pixel is allocated a fuzzy membership value, with respect to 

each cluster (class), which shows the degree of belongingness of a pixel for a specific class (Zadeh, 1965).  

  

 

 

 

 

 

 

  

  

 

 

 

 

 

            Fig. 4.1 Clustering 
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The Fuzzy c-Means (FCM) classifier (Bezdek, 1981) is a widely considered soft clustering technique (Jafar 

and Sivakumar, 2013). FCM provides membership value ranging from 0 to 1 to each pixel of the sample 

data for the different clusters (classes) (Bezdek et al., 1984). 

In the concept of fuzzy membership, a pixel can be partially associated with many land cover classes. 

Thus, an idea of membership vector comes up with the value ranging from 0 to 1 for a sample of each class. 

Hence, a pixel can be associated with a class up to a certain level and may be associated with another class 

with another level and this level of association is shown by fuzzy membership values. In spectral space, the 

fuzzy membership value is the highest (closer to 1) for a point to a class, which lies next to the cluster centre 

of that class. In fuzzy membership values, there are no sharp partitions of the clusters for the spectral space. 

The main advantage of fuzzy membership value is that there is no loss of information, unlike hard 

partitioning technique, during determining the membership of a pixel (Wang, 1990). The concepts of hard 

partitioning technique and fuzzy membership value in spectral space is shown in figure 4.2. 

 

    Figure 4.2 (a) Hard partitioning and (b) fuzzy membership partitioning of spectral space (Wang, 1990) 

 
In hard partitioning technique (Figure 4.2. a) the spectral space is partitioned by crisp boundaries, thus the 

possibility of a pixel belonging to more than one class is omitted, whereas in fuzzy partitioning technique 

(Figure 4.2. b) membership values are assigned to a pixel which helps to depict the belongingness of a pixel 

to more than one class. Thus, fuzzy partitioning technique of spectral space can depict a real world situation 

better than hard partitioning technique and also helps to produce outputs close to ground information as 

there is no loss of information unlike hard partitioning (Wang, 1990). A fuzzy set is better described by a 

function of membership values that is associated with each sample data (pixel) ranging from 0 to 1. Let us 

consider a set of classes, represented by Y, in a spectral space X, then the fuzzy set is described as follows 

in equation 4.1 (Gehler and Scholkopf, 2009). 

    

Y = {f (x, µ(x)) | x ∈ X}                                                                              4.1 
 

  
    (a)                                            (b) 
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Here the membership value is represented by µ(x) and the sample pixels in the spectral space X is 

represented by x (Zadeh, 1965). Each pixel in the spectral space has a membership of value ranging from 

zero to one. The membership values close to unity represent a higher degree of similarity between the pixel 

and the concerned cluster (Bezdek et al., 1984). 

Fuzzy clustering algorithm is considered as another possible way of clustering apart from an unsupervised 

classification of the data using k-means. Fuzzy clustering technique is a clustering type which allows one 

pixel to belong to more than one clusters with a certain membership value for each cluster present in the 

spectral space. FCM algorithm, which was proposed by Dunn (1974) and later generalized by Bezdek (1981), 

is one of the most commonly used fuzzy clustering technique. In the concept of supervised classification 

using FCM, each pixel belongs to some cluster or other clusters with a certain membership value respectively 

and the sum of the membership values has to be unity. In FCM algorithm the spectral space (dataset) X = 

{x1, x2…, xn} is partitioned into c number of fuzzy subsets. A fuzzy partitioning of the spectral space X 

into c-partitions may be represented by (c × n) form of matrix U, where all entries are in the form of 𝜇𝑖𝑗 

representing the membership value of a pixel for a class (Mather and Tso, 2009). But the U matrix is subject 

to some constraints stated in equations 4.2a and 4.2b (Mather and Tso, 2009): 

𝜇𝑖𝑗   ∈   [0, 1]                                                                                (4.2a) 

and  

                                                    1
1




c

j
ij  for all i                          (4.2b) 

 

In FCM, the criterion for clustering can be attained by reducing the least-square error objective function 

(Mather and Tso, 2009) stated in equation 4.3 with certain constraints mentioned in equations 4.4a, 4.4b 

and 4.4c (Mather and Tso, 2009): 
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with certain constraints, 

             1
1




c

j
ij  for all i                                               (4.4a) 

               0
1




n

i
ij  for all j                                               (4.4b) 

                                                       0 ≤   
ij ≤ 1  for all i, j                                                          (4.4c) 

where, n denotes the sum of the number of pixels present, c denotes the total number of classes, µij the fuzzy 

membership value of the ith pixel for class j, m is the weighing exponent 1<m<∞, which determines the 

degree of fuzziness, X j is the vector pixel value, Vi is the mean vector of a class and ),( ij VXD is a similarity 
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or dissimilarity measures as described in Eqn. (4.8) to Eqn. (4.20) and Eqn. (4.22). The matrix µij of class 

membership is mentioned in equation 4.5 wherein 𝑑𝑖𝑘
2

 is calculated by equation 4.6 (Dwivedi et al., 2012): 
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ij

ij

)
d

d
(

μ , i= 1,……. c, j=1,…….n         (4.5) 

where,  

                                                                                 𝑑𝑖𝑘
2 =  ∑ 𝑑𝑖𝑗

2
𝑐

𝑗=1
                                                                (4.6) 

 

 

Weighted constant (m): The degree of fuzziness is controlled by the value of m and it is also known as 

the fuzzifier. As the value of m is changed from near to unity (1) to infinity (∞), there is a corresponding 

change of FCM from a hard classifier to a complete fuzzy classifier. Cannon et al. (1986) has studied the 

effects of m on FCM and suggested that the value of weighted constant m should range in between 1.3 to 

1.8. Zimmermann (2001) asserts in his book that the value of m should be 2, but there was lack of theoretical 

reasoning for selecting the value. Pal and Bezdek (1995) has suggested that the value of the weighted 

constant m should lie in the interval of 1.5 to 2.5 and the value of m equals to 2.0, which is the mean and 

midpoint of the interval, was a preferred choice. 

4.2. Similarity and Dissimilarity Measures 

 
Considering two sets of measurements X = {x1, x2, ………, xn} and Y = {y1, y2, ………., yn}, the 

similarity and dissimilarity between the two sets is a measure of quantifiable dependency or independency 

between the sets. Measurements of any two objects or phenomena can be represented by X and Y. A 

similarity measure S is to be considered as a metric if it shows increasing sequences of value of dependency 

corresponding to the values in the sequence. The following properties are satisfied by a metric similarity S 

for all orders of X and Y (Theodoridis and Koutroumbas, 2009; Goshtasby, 2012): 

  

i) The range is limited: S(X, Y) ≤ S0, where S0 is some arbitrarily large number. 

ii) Symmetric: S(X, Y) = S( Y, X) 

iii) Reflexivity: S(X, Y) = S0,  only when X = Y 

iv) Triangle Inequality: S(X, Y) S(Y, Z) ≤ [Z(X, Y) + S(Y, Z)] S(X, Z). 

 

Between the sequences X and Y, the largest possible similarity is S0. 
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A dissimilarity measure D is to be considered as a metric if it shows increasing sequences of value of 

independency corresponding to the values in the sequence. The following properties are satisfied by a metric 

dissimilarity D for all orders of X and Y (Duda et al., 2001; Theodoridis and Koutroumbas, 2009; Goshtasby, 

2012): 

 

i) Non- negativity: D(X, Y) ≥ 0. 

ii) Symmetric: D(X, Y) = D( Y, X) 

iii) Reflexivity: D(X, Y) = 0,  only when X = Y 

iv) Triangle Inequality: D(X, Y) + D(Y, Z) ≥ D(X, Z). 

 

Besides having the desirable properties of a metric, a similarity measure can be effective though it 

may be not metric. Similarity measures have a value ranging from zero to unity, whereas dissimilarity 

measures have a value ranging from zero to infinity (∞), but this value can be normalized to a value ranging 

from zero to unity. The relationship between similarity (S) and normalized dissimilarity (D) can be shown 

by the equation 4.7: 

   S(X,Y) = 1- D(X,Y)                                                                  (4.7) 

   

In few of situations, a dissimilarity measure is converted into similarity measure so that it makes the 

computation easier for further procedures. 

There are a lot of applications and usages of similarity or dissimilarity measures like it helps in 

distinguishing one object from another; the objects can be grouped on the basis of similarity and 

dissimilarity; a new object can be classified into a group based on the behavior as per the similarity or 

dissimilarity measures; thus further actions and decisions can be planned based on the prediction and 

structural information of the data. In this study, a total of twelve similarity and dissimilarity measures have 

been studied with Fuzzy c-Means (FCM) classifier in single or composite mode. The following sections 

describes the mathematical functions of similarity and dissimilarity measures. 

Manhattan: The Manhattan metric estimates the distance based on the sum of the differences between the 

values of the concerned variables at any location. It is known as city block metric or taxicab metric. It is also 

used to compare images and is also one of the oldest dissimilarity measures. If, we define vector pixel value 

like X j =( X j1, X j2, X j3, ………….., X jb ) and the mean values as Vi  = (Vi1, Vi2, Vi3, …………., Vib ), 

then the Manhattan distance can be described like in equation 4.8 (Hasnat et al., 2013):  

 

                    )(..........   )( )(),( 2211 ibjbijijij VXAbsVXAbsVXAbsVXD      (4.8) 

 where, b shows the total amount of bands in the image. 
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 The following figure 4.3a depicts the Manhattan Distance. 

                          

     Figure 4.3a. The Manhattan distance between two points X and Y on a grid. 

Bray-Curtis: The Bray-Curtis dissimilarity measure is named after J. Roger Bray and John T. Curtis (Bray 

and Curtis, 1957). It is a statistical approach, which is used for quantifying the compositional dissimilarity 

among two objects of different types. This quantitative approach is based on the number of counts at each 

object. It is a non-metric dissimilarity approach which is used for many applications and results are robust 

and reliable. Bray-Curtis dissimilarity is a modified way of the Manhattan dissimilarity measure, where the 

total summation of the differences among the variables is standardized with respect to the total summation 

of the object variables. Equation 4.9 shows the general equation of Bray-Curtis dissimilarity (Schulz, 2007): 

 

                                               𝑑𝐵𝐶𝐷(𝑖, 𝑗) =  
∑ |𝑦𝑖,𝑘− 𝑦𝑗,𝑘|𝑛−1

𝑘=0

∑ |𝑦𝑖,𝑘+ 𝑦𝑗,𝑘|𝑛−1
𝑘=0

                                  (4.9) 

 

In equation 4.9, dBCD is the Bray-Curtis dissimilarity measure between two objects i and j, k is the variable 

index and n depicts the total amount of variables in y. The outcomes of Bray-Curtis dissimilarity range from 

zero to unity, where zero defines that the two objects have the similar composition and represent exactly 

same coordinates and unity defines that the two objects do not have any similarity. If both the objects are 

at zero coordinates, then Bray-Curtis dissimilarity measure is not defined (Bloom, 1981). The Bray-Curtis 

dissimilarity is not a distance as it does not satisfy the triangle inequality. 

 

Chessboard: Chessboard is defined as a metric of greatest differences for two vectors along any dimensional 

coordinates in a vector space (Abello et al., 2002). It is also called Chebyshev (Tchebychev) distance after 

the name of Pafnuty Chebyshev. In the game of chess, the least moves required by a king to move from a 

square on a chessboard to another is same as the Chebyshev distance between the square centers, with a 

side length of one unit dimension in a 2-dimensional space (Heijden et al., 2004). It is depicted by the 

equation 4.10 (Moore, 2002; Balu, 2015): 

 



 

24 

  )](...,..........  , )(, )([),( 2211 ibjbijijij VXAbsVXAbsVXAbsMaxVXD 
   

(4.10) 

where, b shows the total amount of bands in the image. 

  

The following figure 4.3b depicts the difference between chessboard distance and Euclidean distance (Balu, 

2015): 

   

 

  

 

Figure 4.3b.  Euclidean distance (left-hand side) vs Chessboard Distance(right-hand side)(Moore, 2002). 

Canberra: Canberra distance was introduced by Lance and Williams (1966) and later it was refined in 1967 

(Lance and Williams, 1967). It is a numerical measurement of the distance between two points in a vector 

space. It has been used for various purposes like a metric for comparison of ranked lists (Jurman et al., 2009) 

and also in computer security by using intrusion detection (Emran and Ye, 2001). It is similar to Manhattan 

distance metric and it is mathematically defined as the absolute difference among the variables of the objects 

concerned with respect to the summation of the absolute value of the variables before it is summed. 

Equation 4.11 shows the working of Canberra distance (Johnson and Wichern, 1998; Emran and Ye, 2001): 
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                              (4.11) 

where, b shows the total amount of bands in the image. 

Mean Absolute Difference: The mean absolute difference is a statistical measurement of dispersion which is 

equal to the average value of the absolute difference of two independent numbers acquired from a 

probability distribution. Mathematically, it can be defined as the summation of the absolute differences 

between the variables of two independent objects with identical distribution of same order and type divided 

by the total number of variables. The mean absolute difference is generally depicted by Δ or as MD. 

Equation 4.12 shows the mathematical working of mean absolute difference (Vassiliadis et al., 1998):  

 )](..........   )( )([
1

),( 2211 ibjbijijij VXAbsVXAbsVXAbs
b

VXD              (4.12) 

where, b shows the total amount of bands in the image. 

 

√2   1 √2 

  1    1 

√2   1 √2 

 1    1   1 

 1    1 

 1   1   1 
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Median Absolute Difference: Manhattan dissimilarity measure produces an exaggerated value for the 

distance measure when salt and pepper or impulse noise is present in the image of fixed size with n number 

of pixels. Manhattan dissimilarity measure calculates the summation of the absolute difference of the 

intensity of the corresponding pixels of two different images. The median absolute differences (MAD) may 

be used instead of the average of absolute differences so that the effect of the noises is reduced on the 

dissimilarity measure. Although, salt and pepper noise has a considerable effect on Manhattan norm, but it 

has minimal effect on MAD (Sari et al., 2012). MAD is mathematically defined as finding out the differences 

between the absolute intensities of the corresponding pixels of two images and then taking the median of 

the orderly data as the dissimilarity measure. Equation 4.13 (Scollar et al., 1984) shows the mathematical 

working of MAD: 

)](......,, )(, )([),( 2211 ibjbijijij VXAbsVXAbsVXAbsMedianVXD    (4.13) 

 
where, b shows the total amount of bands in the image. 

Normalised Squared Euclidean: Normalised squared Euclidean calculates the normalised squared Euclidean 

distance amidst two vectors. It normalises the measure with respect to the contrast of the image. Normalised 

squared Euclidean requires normalization of the intensities of the pixels before calculating the summation 

of squared differences among the pixels of two images. Equation 4.14 (Wolfram, 2010) shows the 

mathematical formula: 

 

 

where, b shows the total amount of bands in the image. 

Cosine: Cosine similarity measure calculates the Cosine of the angle between two vectors present in an inner 

product space. The value of the Cosine of the angle ranges from -1 to 1. The Cosine measure at zero degree 

angle is 1 and it decreases at any angle other than zero. Thus, vectors of similar orientation have a Cosine 

similarity of 1, vectors at a right angle have a Cosine similarity of 0 and vectors which are exactly opposite 

to each other have a Cosine similarity of -1. But, generally Cosine similarity is used in positive space, so the 

values are bounded from 0 to 1. Cosine similarity is used for high dimensional positive spaces. Cosine 

similarity gives a measurement of similarity about two vectors with respect to each other (Singhal, 2001). 
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This technique is used for the calculation of cohesion among the clusters in the field of data mining (Tan et 

al., 2005). Equation 4.15 (Ye, 2011) shows the mathematical formula of Cosine similarity: 

 

 

where, b shows the total amount of bands in the image. 

 

Correlation: Correlation similarity is a measure of finding the correlation between two vectors. It uses a 

standardized angular separation method by centring the coordinates towards its mean vector value. The 

correlation output is within the range of -1 to 1. The correlation output is normalised for a positive vector 

space, hence the output ranges from 0 to 1. It is a similarity measure rather than a distance measure. The 

similarity between two vectors is computed by using the Pearson-r correlation (Sarwar, 2001).Equation 4.16 

(Zhang et al., 2008) shows the correlation mathematical formula: 

 

Euclidean: Euclidean distance is the normal distance between two objects in a metric space. The norm 

associated is known as the Euclidean norm. Bezdek et al. (1984) introduced this norm with FCM classifier 

in the form an identity matrix. Equation 4.17 shows the mathematical form of Euclidean norm used for 

FCM: 

),( ij VXD  = I, where I is the identity matrix                                            (4.17) 

 

Diagonal Mahalanobis Norm: Diagonal Mahalanobis norm is the diagonal matrix Dj consisting of diagonal 

elements which are the eigenvalues of the variance-covariance matrix Cj shown in equation 4.20. Equation 

4.18 (Bezdek et al., 1984), shows the mathematical form of diagonal norm: 

),( ij VXD  = 𝐷𝑗
−1                                                                                    (4.18) 

 

Mahalanobis Norm: Mahalanobis distance was introduced by Mahalanobis (1936). It measures the distance 

amidst a point and a distribution. The distance tends to zero as the point tends to move towards the mean 
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of the distribution and vice versa. Bezdek et al. (1984) used this distance in the form a variance-covariance 

matrix Cj for FCM. Equation 4.19 shows the mathematical formulation used for FCM: 

),( ij VXD  = 𝐶𝑗
−1                                                 (4.19) 

 

 

 

Cj = ∑ (𝑥𝑖 −  𝑣𝑗)𝑁
𝑖=0  (𝑥𝑖 −  𝑣𝑗)𝑇                                                                         (4.20) 

 

where,   

 

  𝑣𝑗 =  ∑ 𝑥𝑗 𝑁⁄𝑁
𝑗=1                                                                                         (4.21) 

 

4.3.  Composite Measure  

Composite measure can be generated by using any of the two measures (similarity or dissimilarity) in 

combination by choosing a weighting component λ. By using a combination of two among the twelve 

similarity or dissimilarity measures (details in section 4.2), a composite measure can be created as mentioned 

in Eqn. (4.22). 

             
        

                                                             )1( bac DDD                 (4.22) 

where, 

cD  is Composite measure and  is a weighting component, 0 ≤  ≤ 1, aD  and bD  can be any 

similarity or dissimilarity measure. 

4.4. α - cuts 

 

If A is a fuzzy subset of universal set X, then the α‐cut set of the fuzzy set A, will be written as 

A[α] and is defined as {x є X|A(x) ≥ α}, for 0 < α ≤ 1. The α equals to 0 cut, or A[0], should be defined 

separately because {x є X|A(x) ≥ 0} is always the whole universal set X (Buckley and Eslami, 2002). 

4.5. Accuracy Assessment 

 
Assessment is a very important step to quantify the results of the outputs and to compare them with 

other techniques of classification (Okeke and Karnieli, 2006). The error matrix or confusion matrix or 

contingency table is one of the ways to showcase the accuracy of results obtained through a classification. 

The error matrix produces the settlement of accuracy assessment between the data that are classified and 

the data that are used as a reference along with wrongly classified outputs. Several statistical processes such 

as the Kappa coefficient, user’s accuracy, producer’s accuracy and overall accuracy have been introduced on 

the basis of the error matrix. These processes are used to sum up all the statistics about accuracy assessment. 
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In the sole case of hard classification, the error matrix is used for the accuracy assessment as in hard 

classification a single pixel belongs to a single class and, not when a pixel may belong to two or more classes 

(Silván-Cárdenas and Wang, 2008). In the case of soft classification, other methods like fuzzy error matrix 

(FERM), sub-pixel confusion uncertainty matrix (SCM), etc. were introduced for assessing the accuracy 

(Congalton, 1991; Binaghi et al., 1999; Jr and Cheuk, 2006). Fuzzy Error Matrix was introduced for 

measuring the accuracy of soft classifiers. The following section describes the methods used for accuracy 

assessment of soft classified outputs. 

4.5.1. Fuzzy Error Matrix (FERM) 

 
The error matrix is a square matrix in the form of rows and columns, where the rows depict the 

classified data (pixels) and the columns depict the elements with respect to the referenced data (pixels). The 

diagonal elements of an error matrix represent the pixels that are classified correctly and the elements in the 

off-diagonal position show the wrongly classified pixels. But, in the case of FERM, both the referenced data 

and the classified data are in the form of a fuzzy set, having membership values ranging in between 0 and 1. 

FERM is created on the basis of the MIN operator which offers a maximum overlap among the classified 

and the referenced data at a sub-pixel level. Equation 4.23 (Binaghi et al., 1999) shows the mathematical 

formulation for FERM operator: 

 

                        µ𝐶𝑚 ⋂ 𝑅𝑛
(𝑥) = min(µ𝐶𝑚

(𝑥),  µ𝑅𝑛
(𝑥)                                                    (4.23) 

 

Where, Rn depicts the membership value from the referenced data, in the form of a set, which is allotted to 

class n, Cm depicts the membership value from the classified data, also in the form of a set, which are 

allotted to class m and the membership value of a pixel with respect to the classes is shown by µ. The overall 

accuracy is the primitive form of statistics gathered from an accuracy assessment. In error matrix, the overall 

accuracy is measured by summing up the diagonal components of the matrix and dividing the total by the 

sum of the sample components in the matrix. In the case of FERM, the overall accuracy is measured by 

calculating the sum of the diagonal components divided by the total membership value of the referenced 

data. Equation 4.24 (Kumar, 2007) shows the mathematical formulation: 

 

   𝑂𝐴𝐹𝐸𝑅𝑀 =  
∑ 𝑀(𝑖,𝑗)𝑐

𝑖=1

∑ 𝑅𝑗
𝑐
𝑖=1

                                                                 (4.24) 

 

Here, OA depicts the overall accuracy, M (i, j) depicts the element of the mth class of the soft classified result 

and nth class of the soft reference record, c depicts the total number of classes and Rj depicts the total 

summation of the membership value of n class in the soft reference data. 
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4.5.2. Subpixel confusion uncertainty matrix (SCM) 

 
Determination of the true overlap in between classes which are on the basis of fractional land-cover is 

challenging. This kind of situation is known as sub-pixel area allocation problem (Silván-Cárdenas and 

Wang, 2008). The spatial distribution of the classes determines the minimum or maximum overlap of the 

classes in a pixel. This kind of problem gives rise to solutions such as a unique solution or no solution. For, 

unique solution, there is a chance of overestimation or underestimation of classes and hence, sub-pixel 

confusion matrix can be uniquely defined. For the case of no solution, as there is a lack of unique solution, 

hence the solutions are depicted by confusion intervals. SCM has confusion intervals, which are shown as 

central value ± maximum error. The confusion matrix produced for a soft classifier output satisfies the 

following (Silván-Cárdenas and Wang, 2008): 

 

 Property of Diagonalization: If the data that are considered equals the classified data, then the 

matrix is a diagonal matrix. 

 Property of Marginal Sums: The total summation of the marginal equals the total values both 

from the data that are assessed and the classified data. 

 

Several operators were introduced for measuring the relationship between pixel and class in sub-pixel 

classifications. MIN operator provides the maximum overlap possible among the data that are classified and 

the data that are assessed. This process may result in an overestimation of the actual agreement and 

disagreement at a sub-pixel level, thus results in larger marginal sums. The Similarity Index (SI) produces a 

sub-pixel overlap normalization and is also a modification of the MIN operator. The PROD operator 

produces the expected overlap possible among the data that are classified and the data that are assessed. 

The LEAST operator produces the minimal sub-pixel overlap possible among the two concerned classes 

(Silván-Cárdenas and Wang, 2008). 

 

Several other composite operators like MIN-PROD, MIN-MIN and MIN-LEAST were introduced as the 

basic operators were unable to fulfil the property of diagonalization. The MIN-MIN operator operates by 

assigning the components at the diagonal and then the off-diagonal components. The MIN-LEAST 

operator operates by using the MIN operator for the components at the diagonal and the LEAST operator 

for the components at the off-diagonal positions. The MIN-PROD operator operates by using the MIN 

operator for the components on the diagonal of the matrix and the normalized PROD operator for the 

components at the off-diagonal positions. To determine the minimum and maximum overlapping at a sub-

pixel level operators like MIN-MIN and MIN-LEAST were put forth respectively. MIN-PROD operator is 

used when utmost a class has been overestimated or underestimated (Silván-Cárdenas and Wang, 2008). 
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5. RESULTS AND DISCUSSION 

This chapter describes the classified outputs achieved by using different classification methods and the 

analysis of them. The following section 5.1 presents the results of FCM classification on the simulated image 

of the FORMOSAT-2 dataset and LANDSAT-8 dataset, which was used for getting the optimized value of 

the weighted constant ‘m’. The next sections of 5.2 and 5.4 show the results of the optimized ‘m’ with the 

FORMOSAT-2 dataset for single measure and composite measure respectively. The sections of 5.3 and 5.5 

contain the results of FCM classification of the LANDSAT-8 dataset for single measure and composite 

measure respectively and the sections 5.6 and 5.7 depict the results of both FORMOSAT-2 and LANDSAT-

8 datasets by using α-cuts for single measure and composite measure respectively. The results of untrained 

class is shown in section 5.8 and followed by the discussion of the results in section 5.9. 

 

5.1. Identification of best measure and estimation of the parameter 

 
The behavioural characteristics of the developed FCM were studied in details using simulated image. This 

simulated image was developed to estimate the parameters and also to check the accuracy of the FCM 

classification. The simulated image was developed according to the study area selected, containing all the 

classes present in the study area and a within the class variation was incorporated to check the capability of 

the FCM classifier to detect variation at an intra-class level. The simulated image has been generated for the 

Formosat-2 image as well as for the Landsat-8 image. The membership grade of a pixel with respect to a 

class in a fractional image ranges from 0 to 1. In order to eliminate the cumbersome process of handling 

decimal digits between 0 and 1, the membership grades were up-scaled to 8-bit values ranging from 0 to 

255. In FCM, the membership grade of zero for a pixel denotes that there is no belongingness of the pixel 

to a concerned class and the membership grade of 255 for a pixel denotes that the pixel completely belongs 

to the concerned class. In this research work, the fractional images from Formosat-2 dataset has been used 

as the referenced images to calculate the accuracy of Landsat-8 dataset. 

 

The best parameter value of weighted constant “m” was estimated for the developed FCM algorithm with 

the simulated image (details in section 3.2.1), as the input values of the image and the values of the expected 

outputs were known. This optimized parameter of weighted constant “m” was also used to check the effect 

of change of the degree of fuzziness on the accuracy. The weighted-constant or fuzzifier was optimized 

within the value ranging from 1.10 to 3.00. By, using the optimization of parameter technique, the best two 

norms out of all twelve norms were chosen to form a composite measure (details in section 4.3). The 

optimization of the parameter value of weighed constant “m” was also estimated on the supervised FCM 

algorithm with this composite measure. Lastly, with this optimized parameter value of weighted constant 
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“m” for the best similarity or dissimilarity measure (single or composite) was implemented into the 

supervised FCM classification algorithm. 

 
The simulated image was used for optimization of the weighted constant “m” parameter and also to find 

out the best similarity or dissimilarity measures for both Formosat-2 and Landsat-8 datasets. This optimized 

parameter of “m” along with the best similarity or dissimilarity measure was used for the image to image 

accuracy assessment for the image of coarser resolution, Landsat-8. The aforementioned method was also 

used to optimize the weighted-constant “m” parameter to find the best similarity or dissimilarity measure 

for the Landsat-8 image. Accuracy assessment techniques like FERM (details in section 4.5.1) and SCM 

(details in section 4.5.2) were used to measure the accuracy of the classified images. 

 

5.1.1. Fuzzifier or Weighted Constant (m) 

 

Parameter estimation for Formosat-2 using simulated image 

 

Here, the study was executed with Formosat-2 simulated image (details in section 3.2.1) with five different 

classes. Firstly, the FCM algorithm was implemented with five different classes namely Fallow-Land, Forest, 

Riverine-Sand, Water and Wheat to optimize the weighted constant “m” for the FCM algorithm on various 

similarity and dissimilarity measures (mentioned in section 4.2) by following the well-defined method (details 

in section 3.6.1). After executing this method, a comparative exploration was done on the effect of the 

fuzzifier “m” on each similarity measures incorporated to the FCM algorithm. 

 

At first, we have implemented the FCM classification algorithm for all the similarity measures on the 

simulated image of the Formosat-2 dataset. The value for the weighted-constant or fuzzifier “m” was 

carefully chosen on the basis of the results obtained in the classification. In the results, the criteria for 

optimality was based on the classification of the pure pixels, whose value should reach the target value of 

255 and the intra-class variation should be least for that concerned class. Along with the aforementioned 

criteria, the mixed pixel should also be classified according to the target values (details in section 3.6.1). The 

results obtained showed that, for the Formosat-2 simulated image the optimal value of “m” was achieved at 

m equals to 2.7 for Cosine norm, which was the best measure according to the criteria defined in section 

3.6.1. Figure A-4 (Appendix A) shows the outputs of FCM algorithm with a simulated image for Cosine 

norm with m equals to 2.7. Table 5.1 shows the results of all the similarity measures while handling the pure 

pixel classes and also its behaviour for within the class variation. Table 5.2 shows the results of all the 

similarity measures while handling the mixed pixels of two different classes. Table 5.3 shows the results of 

all the similarity measures while handling the mixed pixels of three different classes. 
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 Table 5.1. The similarity measures for handling the pure pixel classes and also its behaviour within the class 

variation (Membership value was calculated on an 8-bit scale i.e., the target values for a class were 255 and 

254 (with a variation of 1 within the class)). 

 

Table 5.2. The similarity measures for handling the mixed pixel containing two classes (Membership value 

was calculated on an 8-bit scale i.e., the target value for each class was 127.5 respectively). 

Norms with m- 
value 

Water Wheat Forest Riverine-Sand Fallow-Land Total Variation 
of pure pixel 

class 

Canberra (1.9) 247-239 = 8 249 – 242 = 7 246- 238 = 8 253-252 = 1 246 – 237 = 9 33 

Cosine (2.7) 253-252 = 1 254 – 253 = 1 253-252 = 1 254 – 254 = 0 253-252 = 1 4 

Euclidean (2.5) 253-250=3 254-253=1 253-250=3 254-253=1 252-248=4 12 

Chessboard 
(1.9) 

252-249=3 253-252 = 1 251-248=3 253-251=2 251-246=5 14 

Mean absolute 
distance (1.9) 

248-240=8 251-246=5 248-241=7 253-251=2 246-237=9 31 

Diagonal 
Norm(2.5) 

253-250=3 254-253=1 253-250=3 254-253=1 252-248=4 12 

Median 
absolute 

distance (1.9) 

250-246=4 252-250=2 250-246=4 253-251=2 249-243=6 18 

Manhattan 
(1.9) 

248-240=8 251-246=5 248-241=7 253-251=2 246-237=9 31 

Bray-Curtis 
(1.9) 

247-240=7 241-247=4 248-240=8 253-252=1 246-237=9 29 

Correlation 
(2.5) 

0-0 0-0 0-0 0-0 0-0 - 

Mahalanobis 
(2.5) 

124-122 252-249 124-122 254-253 237-201 - 

Normalised 
Squared 

Euclidean (2.7) 

255 255 254 0 254 - 

Norms with m- value Riverine Sand – 

Forest 

Riverine Sand – Fallow 

Land 

Water – Wheat 

Canberra (1.9) 68 – 46 29-76 35-54 

Cosine (2.7) 69-33 46-154 14-20 

Euclidean (2.5) 50-52 18-94 30-29 

Chessboard (1.9) 53-54 26-105 28-28 

Mean absolute 

distance (1.9) 

51-52 20-77 39-40 

Diagonal Norm(2.5) 50-52 18-94 30-29 

Median absolute 

distance (1.9) 

49-50 22-97 37-37 

Manhattan (1.9) 51-52 20-77 39-40 

Bray-Curtis (1.9) 65-47 28-74 37-44 

Correlation(2.5) 19-26 12-210 10-39 

Mahalanobis(2.5) 32-34 3-18 57-49 

Normalised Squared 

Euclidean (2.7) 

24-24 15-211 16-16 
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Table 5.3. The similarity measures for handling the mixed pixel containing three classes (Membership value 

was calculated on an 8-bit scale i.e., the target values for each class were 76.5, 76.5 and 102 respectively).  

 

Here the mixed pixels are simulated with two types of variations, one with the composition of 50:50 (as 

shown in figures A-1 and A-2, Appendix-A) between two different classes and another with the arrangement 

of 30:30:40 (as shown in figures A-1 and A-2, Appendix-A) among three different classes. The target 

membership value expected for a pixel belonging completely to a class must be close to 255 (on an 8-bit 

scale) and the target membership value for a pixel of the mixed pixels of two different classes must be close 

to 127.5 (on an 8-bit scale) i.e., 50% of the full membership value of a pixel belonging to a concerned class 

and the target membership value for a pixel of the mixed pixels of three different classes must be close to 

76.5, 76.5 and 102 (on an 8-bit scale) i.e., 30%, 30% and 40% of the full membership value of a pixel 

belonging to a concerned class respectively. 

The results obtained for Formosat-2 simulated image as shown in table 5.1, depict that Cosine norm at m 

equals to 2.7 shows the best result among all the similarity measures for handling the pure pixels in an image 

and also can detect the intra-class variation properly. The results shown in table 5.2 and table 5.3 show that 

the measures were unable to handle the mixed pixels properly. This can be due to the inefficiency of FCM 

classifier to handle noise. Here, the mixture of two or more classes creates noise for the other concerned 

class during classification and hence, the developed FCM algorithm cannot handle the mixed pixels properly. 

A similar analysis was done on the simulated image of Landsat-8, which resulted in Cosine norm with m 

equals to 2.5 showed the best result while handling the pure pixels in an image and also while detecting the 

intra-class variation.  

 

Norms with m- value Water-Forest-

Riverine Sand 

Water-Riverine Sand- 

Wheat 

Riverine Sand - 

Fallow Land - Wheat 

Canberra (1.9) 52-52-49 49-49-48 47-60-47 

Cosine (2.7) 32-23-78 27-45-23 48-69-23 

Euclidean (2.5) 61-53-35 44-33-49 31-65-47 

Chessboard (1.9) 50-55-41 33-40-48 40-55-45 

Mean absolute 

distance (1.9) 

59-58-36 55-36-47 34-62-45 

Diagonal Norm(2.5) 61-53-35 44-33-49 31-65-47 

Median absolute 

distance (1.9) 

58-50-39 45-34-49 34-63-46 

Manhattan (1.9) 59-58-36 55-36-47 34-62-45 

Bray-Curtis (1.9) 55-53-48 50-48-48 45-58-47 

Correlation(2.5) 60-16-51 6-6-15 3-7-8 

Mahalanobis(2.5) 24-24-13 27-17-151 14-28-161 

Normalised Squared 

Euclidean (2.7) 

41-20-61 13-15-9 20-42-10 
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5.1.2. Optimization of weighting component (λ) for composite measure 

 
In section 4.3 it has been discussed that for composite measure a weighting component (λ) is required, which 

provides weight λ to a norm Da and 1 – λ to another norm Db. For, a composite measure it was essential 

to optimize both the parameters of λ and m. The values considered for λ was ranging from 0.10 to 0.90. 

However, the classification may result in misclassified outputs when the weight set for a norm Da is greater 

than Db. This kind of misclassification arises if the performance of Da is better than Db and with a larger 

value of weighting component (λ) to Db in a composite situation will result in a measure with inferior results. 

Figure A-5 (Appendix A) shows that fallow-land and forest classes have misclassification in the results. The 

two best norms obtained from the results shown in table 5.1, table 5.2 and table 5.3 were Cosine and 

Euclidean. These two norms were used to make the composite norm. The results obtained after 

optimization of both parameters m and λ on the simulated images show that the composite norm of Cosine 

and Euclidean were optimized at “m” equals to 2.5. However, there was no significant change observed 

while changing the value of λ from 0.10 to 0.99. Table 5.4, table 5.5 and table 5.6 shows the comparison 

between the results of the best single norm and the results of the composite norm. In figure A-5 (Appendix 

A), it was observed that the fallow land was misclassified as forest and also forest was misclassified with 

water and fallow land.  

 

Table 5.4 The comparative results of the best single similarity measures and the composite measure while 

handling the pure pixel classes and also its behaviour within the class variation (Membership value was 

calculated on an 8-bit scale i.e., the target values for a class is 255 and 254 (with variation of 1 within the 

class)) 

 

 
Table 5.5 The comparative results of the best single similarity measures and the composite measure while 

handling the mixed pixel containing two classes (Membership value was calculated on an 8-bit scale i.e., the 

target values for each class was 127.5 respectively). 

 

Norms with 
m- value 

Water Wheat Forest Riverine-
Sand 

Fallow-Land Total Variation 
of pure pixel 

class 
Cosine (2.7) 253-252 = 1 254 – 253 = 1 253-252 = 1 254 – 254 = 0 253-252 = 1 4 

Euclidean + 

Cosine (2.5) 

253-250=3 254-253=1 253-250=3 254-253=1 252-248=4 12 

Norms with m- value Riverine Sand – 

Forest 

Riverine Sand – Fallow 

Land 

Water – Wheat 

Cosine (2.7) 69-33 46-154 14-20 

Euclidean + Cosine (2.5) 50-52 18-94 30-29 
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Table 5.6 The comparative results of the best single similarity measures and the composite measure while 

handling the mixed pixel containing three classes (Membership value was calculated on an 8-bit scale i.e., 

the target values for each class were 76.5, 76.5, 102 respectively).  

 

  

5.2. FCM classification Results for Formosat-2 Dataset using single similarity measure 

FCM classifier was applied with a supervised approach for classification of Formosat-2 data. For this 

process, a total of 20 training pixels were carefully chosen from each of the land cover class. The training 

sites were selected at various locations spread well over the Formosat-2 image. In FCM classifier using 

supervised approach Cosine norm was considered (details in section 5.1.1). The weighted-constant or 

fuzzifier for Cosine was optimized at m equals to 2.7. The results of FCM classification on Formosat-2 data 

has been shown in figure 5.1. 

 

 

Figure. 5.1 Fractional images of FCM classification with Cosine norm at m equals to 2.7 for Formosat-2 

data. 

 

Norms with m- value Water-Forest-

Riverine Sand 

Water-Riverine Sand- 

Wheat 

Riverine Sand - 

Fallow Land - Wheat 

Cosine (2.7) 32-23-78 27-45-23 48-69-23 

Euclidean + Cosine (2.5) 61-53-35 40-33-49 31-65-47 
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The membership value of all the pixels in the fractional images is ranging from 0 to 1. These fractional 

images were used as the reference data for measuring the accuracy of landsat-8 classified fractional images. 

With the purpose of getting the resolution (10m) of Formosata-2 data (reference data) on a scale with 

Landsat-8 data (30m), the method of mean-aggregation was implemented. As the method of mean-

aggregation was applied on the reference data of finer resolution, the sensor’s point spread function (PSF) 

was overlooked. 

5.3. FCM classification Results for Landsat-8 Dataset using single similarity measure 

FCM classifier was applied with a supervised approach for classification of Landsat-8 data. For this process, 

a total of 20 training pixels were carefully chosen from each of the land cover class. The training sites were 

selected at various locations spread well over the Landsat-8 image. In FCM classifier using supervised 

approach Cosine norm was considered (details section 5.1.1). The results of FCM classification on Landsat-

8 data has been shown in figure 5.2. 

 Figure. 5.2 Fractional images of FCM classification with Cosine norm at m equals to 2.5 for Landsat-8 

data. 

 
The membership value of all the pixels in the fractional images was ranging from 0 to 1. In this study, mean-

aggregation method was used to maintain the scale ratio of resolutions of the reference data and the assessed 

data. The accuracy was assessed by the fuzzy based techniques like FERM and SCM (details in section 4.5). 

The method of mean-aggregation was also followed by FERM and SCM so that the referenced data and the 

assessed data are at the same scale (Binaghi et al., 1999 and Silván-Cárdenas et al., 2008). As the referenced 
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data and the assessed data were brought to the same scale, the following fuzzy accuracy operators like, 

FERM and SCM were used to measure the accuracy of the fractional images of the Landsat-8 dataset. 500 

sample points (pixels) were selected randomly as the test sites to carry out the accuracy assessment. The 

fuzzy user’s accuracy, producer’s accuracy, kappa coefficient and overall accuracy were computed for all the 

fuzzy accuracy operators using the error matrices. Table 5.7 shows the detailed statistics of the accuracy 

assessment. 

 

Accuracy Assessment Operators FERM SCM 

User’s Accuracy (%) 

Riverine Sand 86.05 86.88 ± 3.77 

Fallow Land 60.90 62.45 ± 5.52 

Forest 81.23 82.35 ± 4.15 

Water 81.72 82.87 ± 2.97 

Wheat 63.75 65.22 ± 5.26 

Producer’s Accuracy (%) 

Riverine Sand 66.30 67.78 ± 5.39 

Fallow Land 85.92 86.60 ± 2.50 

Forest 80.14 81.18 ± 2.75 

Water 50.86 53.50 ± 9.36 

Wheat 77.41 78.72 ± 3.68 

Overall Accuracy (%) 73.96 75.24 ± 4.72 

Fuzzy Kappa value  0.68 ± 0.06 

     

   Table 5.7 Details of accuracy assessment for classification results of Landsat-8 data using single measure  

 

Rendering to the table 5.7, the overall accuracy of the fuzzy classification of Landsat-8 data was found to be 

ranging in between 73% to 76% (73.96% in FERM, 75.24% in SCM) and SCM shows an uncertainty of 

±4.72% indicating a range of uncertainty over the different land cover classes. The results obtained from 

the fuzzy kappa statistics for this classification ranges in between 0.62 to 0.74 for SCM fuzzy accuracy 

operators. The mean fuzzy kappa value as obtained for SCM was 0.68 and the uncertainty associated with 

SCM kappa (± 0.06) was found to be low, indicating low error sources in the calculation of uncertainty 

(Silván-Cárdenas et al., 2008). From the statistics obtained in table 5.7, it can be inferred that the overall 

performance of the developed FCM classification method for Landsat-8 dataset was unaffected by the 

uncertainty. 
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The statistics of the classification of the Landsat-8 data by FCM approach for single measure has been 

shown in figure A-6 (Appendix –A). The results show better user’s accuracy than producer’s accuracy for 

all the fuzzy tools used for accuracy assessment. Thus, it can be inferred that omission error has occurred 

more than the commission error for the concerned land cover classes. 

5.4. FCM classification Results for Formosat-2 Dataset using composite similarity measure 

Composite similarity measures were tried to incorporate the characteristics of both the norms that are used 

in forming the composite similarity measure. For, this study a combination of the two best norms obtained 

from section 5.1 namely, Cosine and Euclidean were considered. The optimized value of the fuzzifier (m) 

as obtained (details in section 5.1.2) was equal to 2.5 for the composite similarity measure. However, there 

was no significant change in the classified outputs while optimizing the value of weighting constant (λ). 

Thus, the value of weighting component was set at λ equals to 0.5 (mean value of the range of λ [0.10, 0.90]) 

for the classification, which signifies the contribution of both the norms of an equal distribution of 50%. 

The result of supervised FCM classification using the composite measure has been shown in figure 5.3.  

     Figure. 5.3 Fractional images of FCM classification with composite measure at m equals to 2.5 and λ 

equals to 0.5 for Formosat-2 data. 

 

The membership value of the pixels distributed all over the fractional images ranges from 0 to 1. These 

fractional images were used as the reference data for measuring the accuracy of Landsat-8 classified images 

in the section 5.5.  
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5.5. FCM classification Results for Landsat-8 Dataset using composite similarity measure 

 
In this study, supervised FCM classification approach was used for classification of Landsat-8 dataset. A 

total of 20 training sites were carefully selected for each class. The training sites were chosen from various 

locations spreading all over the image. The two best norms obtained in section 5.1.1 were Euclidean and 

Cosine with an optimized fuzzifier (m) value equals to 2.5. . However, there was no significant change in the 

classified outputs while optimizing the value of weighting constant (λ). Thus, the value of weighting 

component was set at λ equals to 0.5 (mean value of the range of λ [0.10, 0.90]) for the classification, which 

signifies the contribution of both the norms of an equal distribution of 50%. The results of FCM 

classification on Landsat-8 data has been shown in figure 5.4. 

 

 

Figure. 5.4 Fractional images of FCM classification with composite measure at m equals to 2.5 and λ equals 

to 0.5 for Landsat-8 data. 

 

The membership values of the pixels present in the fractional images range in between 0 and 1. The accuracy 

assessment of these classified images was measured using various fuzzy based accuracy tools namely, FERM 

and SCM (details in section 4.5). 500 random sample points were carefully chosen as the test sites for carrying 

out the accuracy assessment. Different accuracy statistics were calculated like user’s accuracy, producer’s 
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accuracy, overall accuracy and kappa coefficient value for all the accuracy tools by means of error matrices. 

Table 5.8 shows the details of the statistics. 

 

Accuracy Assessment Operators FERM SCM 

User’s Accuracy (%) 

Riverine Sand 66.67 68.24 ± 6.25 

Fallow Land 44.84 46.26 ± 4.25 

Forest 86.30 86.94 ± 2.59 

Water 76.83 77.76 ± 1.68 

Wheat 64.31 65.92 ± 5.29 

Producer’s Accuracy (%) 

Riverine Sand 68.08 69.67 ± 5.93 

Fallow Land 77.72 78.51 ± 2.20 

Forest 75.28 76.46 ± 3.35 

Water 42.30 43.72 ± 5.17 

Wheat 78.99 80.11 ± 2.99 

Overall Accuracy (%) 68.57 69.80 ± 4.21 

Fuzzy Kappa value  0.61 ± 0.06 

 

Table 5.8 Details of accuracy assessment for classification results of Landsat-8 data using composite 

measure. 

 

Rendering to the results observed in the table 5.8, the overall accuracy of the classified images of Landsat-8 

was found to be in the range from 65% to 74% (68.57% in FERM, 69.80% in SCM) with SCM showing an 

uncertainty of ± 4.21%, which indicates uncertainty over the land cover classes present in the dataset. The 

results obtained for the fuzzy kappa statistics ranges from 0.55 to 0.66 for the SCM fuzzy accuracy 

assessment tool. The kappa value for SCM shows an uncertainty of ±0.06 from the mean value of 0.61. 

From the statistics obtained in table 5.8, it can be inferred that the overall performance of the developed 

FCM using composite measure for Landsat-8 dataset was unaffected by the uncertainty. More distinctly the 

performances of the developed FCM classifier with the various accuracy operators has been shown in figure 

A-7 (Appendix A). It has been also observed that results for producer’s accuracy was better than user’s 

accuracy for all the fuzzy based accuracy assessment. Hence, it can be inferred that the error of commission 

was more than the omission error for the concerned classes. 
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5.6. Results of FCM Classifier using α-cuts with single norm 

 
Though fuzzy clustering techniques with cluster cores have good clustering characteristics, however, there 

can be difficulties in cluster cores produced by FCM in case non-spherical shape clusters. Like, the cluster 

cores of two overlapping clusters (line structure) cannot be determined by FCM (Yang et al., 2009). So, to 

describe the general core of the clusters of any shape, α-cut has been incorporated in the FCM algorithm. 

The cluster cores generated by FCM was such that if the distance between the pixel and the cluster center 

of the concerned class was less than a defined threshold (α-cut value), then that pixel would be belonging 

to that class with membership grade value of 1. In this study, the α-cut value was taken in the range from 

0.5 to 0.9 with an interval of 0.1, as suggested by Yang et al. (2009). 

The α-cut FCM algorithm was implemented on the results obtained from sections 5.2 and 5.3. The generated 

fractional images of the α-cut FCM algorithm has been shown in figure 5.5 for each α-cut starting from 0.5 

to 0.9 with an interval of 0.1 for Formosat-2 data using Cosine norm at m equals to 2.7. 

 

 

Figure 5.5. Generated fractional images for Cosine norm at optimized m value of 2.7 of Formosat-2 data for 

(i) α-cut = 0.5 (ii) α-cut = 0.6 (iii) α-cut = 0.7 (iv) α-cut = 0.8 (v) α-cut = 0.9 for all the classes (a) Riverine-

Sand (b) Fallow-Land (c) Forest (d) Water (e) Wheat. 

 

(a)                         (b)                            (c)                         (d)                           (e) 

         

      (i) 

         

      (ii) 

 

         

           (iii) 
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          (iv) 

         

          (v) 

                                               

 

The membership grade of all the pixels in these fractional images ranges from 0 to 1. These fractional images 

were used as the reference data for measuring the accuracy of the results obtained from the Landsat-8 image. 

From the images in figure 5.5, it has been observed that as the α-cut value was increased from 0.5 towards 

0.9 with an interval of 0.1, the membership grades of the pixels which were less than the threshold value 

were removed. The generated fractional images of the α-cut FCM algorithm has been shown in figure 5.6 

for each α-cut starting from 0.5 to 0.9 with an interval of 0.1 for Landsat-8 data using Cosine norm at m 

equals to 2.5.  

 

Figure 5.6. Generated fractional images for Cosine norm at optimized m value of 2.5 of Landsat-8 data for 

(i) α-cut = 0.5 (ii) α-cut = 0.6 (iii) α-cut = 0.7 (iv) α-cut = 0.8 (v) α-cut = 0.9 for all the classes (a) Riverine-

Sand (b) Fallow-Land (c) Forest (d) Water (e) Wheat. 

 

(a)                         (b)                            (c)                         (d)                           (e) 

       

      (i) 

         

      (ii) 
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      (iii) 

         

      (iv) 

         

      (v) 

                   

 

The membership grade of all the pixels in these fractional images ranges from 0 to 1. From the figures, it 

has been observed that as the α-cut value was increased from 0.5 towards 0.9 with an interval of 0.1, the 

membership grades of the pixels which were less than the threshold value were removed. The accuracy 

assessment was done on these fractional images with the fractional images from the Formosat-2 dataset as 

the referenced images. Fuzzy accuracy operators like FERM and SCM were used to measure the accuracy 

of the classified images. Total of 500 sample points (pixels) were chosen randomly as the test sites for 

carrying out the accuracy assessment. The fuzzy user’s accuracy, producer’s accuracy, kappa coefficient and 

overall accuracy for all the accuracy operators were calculated for all the fuzzy accuracy operators using the 

error matrices for an α-cut value equal to 0.5, 0.6, 0.7, 0.8 and 0.9 respectively (Table B-1 to Table B-5, 

Appendix B). 

5.7. Results of FCM Classifier using α-cuts with composite norm 

Fuzzy clustering methods have good clustering features, but while handling non-spherical shape cluster, it 

may show some errors. For instance, FCM cannot determine cluster cores for two overlapping line 

structured clusters (Yang et al., 2009). Thus, the concept of α-cut was incorporated in this study to determine 

the cluster core for any shape. In this study, the α-cut FCM algorithm was implemented on the classified 

images of the Formosat-2 dataset using the composite measure as obtained in section 5.4 with α-cut values 

of 0.5, 0.6, 0.7, 0.8 and 0.9. The fractional images of the α-cut FCM algorithm have been shown in figure 

5.7 for each α-cut value ranging from 0.5 to 0.9 with an interval of 0.1. 
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(a)                      (b)                          (c)                         (d)                        (e) 

         

          (i) 

         

          (ii) 

         

          (iii) 

         

          (iv) 

         

             (v) 

             

 

Figure 5.7 Generated fractional images for composite measure of Cosine and Euclidean norms at optimized 

m value of 2.5 and λ value of 0.5 of Formosat-2 data for (i) α-cut = 0.5 (ii) α-cut = 0.6 (iii) α-cut = 0.7 (iv) 

α-cut = 0.8 (v) α-cut = 0.9 for all the classes (a) Riverine-Sand (b) Fallow-Land (c) Forest (d) Water (e) 

Wheat. 

 

The membership values of all the points (pixels) in these fractional images lies in between 0 and 1. These 

resultant fractional images were used as the reference images for the α-cut FCM classified images of Landsat-

8 data. It was observed that on increasing the α-cut (threshold) value from 0.5 to 0.9 with an interval of 0.1, 

the pixels containing membership value less than the threshold were removed. 
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The α-cut FCM algorithm was applied on the classified images of the Landsat-8 dataset (section 5.5) with 

α-cut values ranging from 0.5 to 0.9 with an interval of 0.1. The fractional images of the α-cut FCM algorithm 

have been shown in figure 5.8 for each α-cut value. 

(a)                      (b)                          (c)                         (d)                      (e) 

         

          (i) 

         

          (ii) 

         

          (iii) 

         

          (iv) 

         

          (v) 

                                                

Figure 5.8 Generated fractional images for composite measure of Cosine and Euclidean norms at optimized 

m value of 2.5 and λ value of 0.5 of Landsat-8 data for (i) α-cut = 0.5 (ii) α-cut = 0.6 (iii) α-cut = 0.7 (iv) α-

cut = 0.8 (v) α-cut = 0.9 for all the classes (a) Riverine-Sand (b) Fallow-Land (c) Forest (d) Water (e) Wheat. 

 

The membership value of all the pixels in these fractional images (figures 5.5 to 5.8) was within the range of 

0 and 1. From the results obtained, it was observed as there was an increment in the value of α-cut 

(threshold) the pixels below the threshold value were discarded. The accuracy assessment was performed 
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on these fractional images using the fractional images of the Formosat-2 dataset as the reference images. 

Various fuzzy accuracy operators were used like FERM and SCM for calculating the accuracy. 500 random 

sample points were chosen as the test sites for performing the accuracy assessments. The fuzzy user’s 

accuracy, producer’s accuracy, overall accuracy and kappa coefficient were calculated for all the fuzzy 

accuracy assessing tools for α-cut values from 0.5 to 0.9 with an interval of 0.1 respectively (Table C-1 to 

Table C-5, Appendix C). 

5.8. Untrained Classes 

During the training stage of a classifier, some classes were ignored resulting in the untrained class. The 

untrained classes depict higher degree of membership for classes which are spectrally different and hence, 

resulting in a drop in the accuracy of the classification (Foody, 2000). In this work, for the developed FCM 

classifier, the mean values of wheat for Formosat-2 and Landsat-8 datasets were not considered for training. 

Figure 5.9 compares the overall accuracy results of both single measure as well as composite measure for 

both trained (tables 5.7 and 5.8) and untrained cases respectively. 

 

 

Figure 5.9 Details of accuracy assessment in trained and untrained case of classification results for Landsat-

8 data with a single norm and composite norm respectively. 

 

The results obtained after accuracy assessment in figure 5.9 showed that the overall accuracy for trained 

classes was more than the untrained classes ranging from 49% to 55% for single and composite measures 

respectively. These results showed that the removal of a class (wheat) for untrained class reduced the overall 

accuracy, however, the trend was constant like for trained dataset. 
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5.9. Discussion of Results 

 
This section converses about the different results achieved by the classification algorithm used. In this study 

single and composite, similarity or dissimilarity measures were integrated into the FCM objective function 

to handle mixed pixels in a remote sensing data. The main objective of this research was to study the 

behaviour of similarity and dissimilarity measures while handling the mixed pixels.  

The foremost focus of this research work was on the optimization of different parameters for the different 

similarity and dissimilarity measures used in the FCM classifier. Setting optimal values for various parameters 

was necessary for their proper performance. These values might get changed by varying the datasets. 

Optimal values of m were achieved on the basis of the working of the particular norm while handling the 

pure and mixed pixels (details in section 3.6.1). For FCM using single measures and FCM using composite 

measures the optimization of the fuzzifier (m) was computed within the range from 1.1 to 3.0. On the basis 

of the statistics from Table 5.1, Table 5.2 and Table 5.3, Cosine norm was found to be the best among all 

the measures with an optimized “m” value of 2.7 for Formosat-2 data and “m” value of 2.5 for Landsat-8 

dataset. The composite measure was formed by using the two best norms (Euclidean norm and Cosine 

norm) obtained from section 5.1. The optimized value of “m” for the composite measure was at 2.5 for 

both Formosat-2 dataset and Landsat-8 dataset.  

 

FCM classification has resulted in an overall accuracy (using SCM operator) of 75.24% and 69.80% for 

Landsat-8 image with Formosat-2 image as the referenced image while using single measure and composite 

measure respectively. The average user’s accuracy using the same operator for Landsat-8 image for single 

and composite measures were 75.95% and 69.02% respectively and the average producer’s accuracy were 

73.56% and 69.69% respectively. From these results, it was evident that there was an overall decline in the 

accuracy while using composite measures instead of single measure. Izakian and Pedrycz (2014) showed the 

usage of weighted composite measures, however, the results were unsatisfactory. The performance of the 

composite measures depends on the type of single measures taken into account as a combination. Taking 

two best norms in a combination would give a deterioration in the results with respect to single best norms, 

due to weighting component (details in section 4.3). 

 

The classification was tested on the various α-cut values starting from 0.5 up to 0.9 with an interval of 0.1 

with the both single measure and composite measures with ‘m’ value of 2.5 and 2.7. The range of α-cut was 

chosen from 0.5 to 0.9 because the FCM clustering algorithm is sensitive to noise and thus the FCM 

clustering outputs do not show any result with a membership value of 1 (Yang et al., 2009). When a suitable 

value of α-cut was chosen, noise and outliers would be outside the cluster cores as α-cut was a threshold 

value and any pixel with a membership value less than the threshold would not be considered. That’s the 

reason we get either a very high accuracy or an accuracy of zero, as the α-cut value was moved towards 0.9 

(Table C-1 to C-5, Appendix C). The concept of α-cut was used for identification of the noisy points. For 
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example, if the α-cut value was set at 0.6 in the developed FCM algorithm, then the pixels having 

membership value greater than or equal to 0.6 would belong to the cluster core such that all the membership 

values of these pixels would become 1 for that concerned cluster and zero for the remaining clusters. 

However, if the pixels had membership value below 0.6, then the membership of the pixels remains same. 

As the pixels had a small membership value for the cluster, these pixels would be considered as noise and 

were removed from those clusters. Figure 5.5 to 5.8 show the clusters of the classes without the noisy pixels 

namely Riverine-Sand, Fallow-Land, Forest, Water and Wheat at different α-cut values of 0.5, 0.6, 0.7, 0.8 

and 0.9 respectively for both single measure and composite measure incorporated in the FCM algorithm. 

 

The classification was also verified on untrained classes where the FCM classifier was not trained about a 

class (in this study, wheat was untrained). There is an overall decrease in the accuracy in the untrained case 

in comparison with the trained case. The average overall accuracy for the single measure in case of trained 

and untrained was 74.6% and 55% respectively and for composite measures 69.19% and 49.34% 

respectively. However, figure 5.9 showed the overall trend of the accuracy was same for both trained and 

untrained with respect to single and composite measures respectively. This trend also explained that the 

incapability of FCM classifier to handle noise properly. On the removal of a class from the training samples, 

there was fall in the accuracy of nearly 20% in both single and composite measures. This showed that for 

the classification, the class (wheat) removed was noise for the other classes in the training samples, hence, 

there was a dip in the overall accuracy from trained case to untrained case. 

 

By considering the overall accuracy of the classification (tables 5.7 and 5.8), it can be established that FCM 

with the single measure (Cosine) performs better in classification than FCM with composite measures. FCM 

with α-cut also reduces the noise in the classified images (figures 5.5 to 5.8), which helps in the handling of 

the mixed pixel problem in a better way. In this study, all the similarity and dissimilarity measures were 

evaluated for images of both medium and coarser resolutions. However, the behaviour of the measures may 

differ with different datasets and these similarity or dissimilarity measures may also be evaluated with a large 

number of various datasets to get a robust conclusion. Kumar et al. (2007) and Dutta (2009) stated in their 

works that FCM with Euclidean norm performs better than diagonal Mahalanobis and Mahalanobis norms 

but, in this study, it was found that Cosine norm outperforms the Euclidean norm (section 5.1.1). 

 

All research work has its qualities and drawbacks, thus, this research work has a few merits and demerits 

with respect to the prevailing techniques and hence, there is a need for analysis. The SWOT (strength, 

weakness, opportunities and threats) analysis has been taken into consideration to analyse the advantages 

and limitations of this work, shown in table 6.1. 
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Table 6.1. The SWOT analysis of this research work 

 

                      External Factors 
 
 
 
 
 
 
 
 
 
 
 
Internal Factors 

Opportunities 
 

1. Soft classifications 
techniques are more 
prevalent to handle 
mixed pixels than hard 
classification 
techniques. 
 

2. High-end computers are 
available for fast 
computation. 

Threats 
1. In depth understanding 

of all similarity and 
dissimilarity along with 
FCM classifier is 
required to apply and 
develop as per 
requirement. 
 

2. Accuracy assessment 
tools and generation of 
soft classified data is 
still not globally 
accepted.  

Strength 
1. Mapping of the real 

world can be done 
accurately. 
 

2. Long and in-depth 
background of 
mathematics and fuzzy 
set theory. 

 
 
 

 
1. The developed FCM 

classifier can be used to 
map a region with 
vague boundaries and 
also in crop mapping. 
 

2. By using high-end 
computers, the 
developed FCM 
classifier along with α-
cut can be used in place 
other fuzzy based 
classifiers.  

 
1. People with expertise 

can be taken into 
account for mapping 
the real world using the 
developed FCM 
classifier along with the 
α-cut concept. 
 

2. The importance of the 
developed FCM can be 
upgraded by widespread 
field visit along with 
better accuracy tools. 

Weakness 
1. More computational 

time was taken for 
calculating the 
membership values 
during the 
incorporation of α-cut. 

 

 
1. Advancement of 

computer science can 
lessen the overall time 
for computing along 
with the help of experts. 

 
1. Applicability of the 

developed FCM is 
restricted due to the 
unavailability of 
standard assessment 
tools. 
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6. CONCLUSIONS AND RECOMMENDATIONS 

In this chapter, the conclusions attained through a detailed study of the existing and the developed method 

is presented. Section 6.1 presents the conclusions on the basis of the research objectives and questions. 

Section 6.2 shows the answers to the research questions and section 6.3 presents the recommendations for 

future work. 

 

6.1. Conclusions 

 
The occurrence of mixed pixels in the remote sensing images is largely due to the mismatch of resolution 

of the images with respect to class size. Due to the presence of mixed pixels, there are chances of having an 

inaccuracy in the results obtained after classification. Sub-pixel classification using fuzzy based classifiers 

such as FCM are a solution to this kind of uncertainty in data. Thus, to solve the problem of mixed pixels a 

fuzzy based approach using different similarity and dissimilarity measures have been studied in this research 

work. The main objective of this work was to the study behaviour of similarity and dissimilarity measures 

with FCM while handling the mixed pixels. The comparative study of different norms used, Cosine norm 

with ‘m’ value of 2.7 attained the highest overall accuracy during the classification. It was also witnessed that 

optimization of parameters like weighted constant ‘m’ and weighting component λ played a major role in 

the overall performance of the FCM based classifier. 

 

Various accuracy assessment methods are available to measure the accuracy of the classification. Fuzzy Error 

Matrix (FERM), Sub-Pixel Confusion Uncertainty Matrix (SCM) along with different operators like MIN-

PROD, MIN-MIN and MIN-LEAST has been recommended for the measurement of accuracy. The 

Landsat-8 image of the coarser resolution was assessed with a Formosat-2 image of finer resolution. The 

overall accuracy was low for the image of coarser resolution. This may be due to the lack of adjacency of 

the information in the coarser image with respect to the ground truth information. 

 

Among the different similarity and dissimilarity measures, Cosine and Euclidean norms has given the best 

overall performance. These two norms were combined to form a composite norm with λ value equals to 0.5 

and ‘m’ value of 2.5. The composite measure has lower overall accuracy in comparison with the single norm 

(table 5.7 and 5.8). The performance of composite measure depends on the individual performance of single 

norms selected to combine and form the composite measure. If the best single norm with higher 

performance is pooled with a norm having lower performance, the resultant norm will also have lower 

performance. 
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The concept of α-cut has also been incorporated into the FCM function to minimize the effect of noise in 

the FCM classifier. This has been done due to the incapability of FCM to handle the noise properly (Yang 

et al., 2009). In this study, the effect of untrained class on the accuracy of the classification was also carried 

out by dropping wheat as an untrained class which resulted in decrease in the overall accuracy in comparison 

to the trained case (figure 5.9). 

 

To conclude FCM classifier with Cosine norm performed better than the conventional Euclidean norm. 

But, due to the incapability of FCM classifier to handle noise properly, the classification accuracy was around 

75%. 

6.2. Answers to the research questions 

 How can similarity or dissimilarity measures be incorporated into the FCM classifier approach? 

 
Answer: The answer to the above question is given in section 4.2, 4.3 and 4.4. 

 

 How single or composite similarity measures work with different α-cuts along with FCM objective 

function?  

Answer: The different α-cut values namely 0.5, 0.6, 0.7, 0.8 and 0.9 were incorporated with the results 

obtained by classifying the Landsat-8 as well as Formosat-2 images using single or composite measures 

(details in sections 5.6 and 5.7). The α-cut values help in removing the noise or outliers in the classified 

outputs (figures 5.5 to 5.8). 

  

 What will be the effect of using composite measure on FCM as compared to single distance 

measure? 

 

Answer: Composite measure was formed by using the two best single measures with a certain weighting 

component. Thus, on increasing the weighting component, there is a change in the classification 

outputs. In this study, Euclidean and Cosine norms were combined to form a composite measure. 

However, it was obtained that the composite measure has a low accuracy with respect to the single 

norm when incorporated with FCM algorithm.  
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6.3. Recommendations 

The developed FCM algorithm using various similarity and dissimilarity while incorporating the concept of 

α-cuts handles the problem of mixed pixels properly. However, there are a few limitations for this research 

work due to the low accuracy. The results while handling mixed pixels can be improved by considering the 

following ideas: 

 The performance of developed α-cut FCM classifier with different similarity and dissimilarity 

measures can be tested for a large heterogeneous area with high complexity in the land cover. 

 The performance of α-cut in FCM classifier can be proposed further for handling the noise in FCM, 

as it can form cluster cores with membership grade of 1, unlike the FCM clustering algorithm.  

 The accuracy tools, as well as the mode of generating the soft reference data for accuracy assessment 

for soft classifiers, are still actively research in the field of digital image processing. 

 Instead of supervised FCM approach, this study can be tested with unsupervised FCM 

classification. 

 The accuracy assessment was done with datasets of coarser resolution and medium resolution, 

however if the accuracy assessment is obtained with two datasets of finer resolutions. Then, the 

robustness of the methodology used in this study can be evaluated properly. 

 If the method to calculate the area using the outputs of this research work is formed, then this 

methodology can be used to calculate the concerned area of interest e.g., vegetation fields, forest 

area, etc. 

 The results obtained for the single norm in this research also gives an opportunity to further study 

other fuzzy based classification techniques which use the similarity or dissimilarity measures like 

Possibilistic c-Means (PCM) classifier, etc. 
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APPENDIX A            

Details of the simulated image for Formosat-2 dataset is given in Fig. A-1: 
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Figure A-1: Simulated Image Details of Formosat-2 dataset 
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Details of the simulated image for Landsat-8 dataset is given in Fig. A-2: 
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Figure A-2: Simulated Image Details of Landsat-8 dataset 
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The flowchart for optimization of the weight constant ‘m’ is shown in figure A-3 

 

 

 

Figure A-3 Flow Chart for optimizing the parameter 
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The results of FCM algorithm with simulated image of Formosat-2 data for Cosine norm with m equals to 

2.7 has been shown in figure A-4. 

 

 

Figure. A-4. The result of simulated image using Cosine norm with m equals to 2.7 
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Figure A-5. The misclassified outputs in red circles while using composite measure with Euclidean and 

Cosine norms with m equals to 2.5 and λ equals to 0.5. 
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Figure A-6. The overall accuracy assessment for FCM using single measure in Landsat-8 data 
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Figure A-7. Accuracy assessment for by FCM using composite measure in Landsat-8 data 
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APPENDIX B            

Accuracy Assessment of classified outputs for Landsat imagery with Cosine norm at m equal to 2.5 and α-

cut values 0.5, 0.6, 0.7, 0.8 and 0.9 has been shown in Table B-1, B-2, B-3, B-4 and B-5 respectively. 

 

Table B-1 Details of accuracy assessment for classification results of Landsat-8 data at α-cut equals to 

0.5 

 

Accuracy Assessment 

Operators 

FERM SCM MIN-PROD MIN-MIN MIN-LEAST 

User’s Accuracy (%) 

Riverine Sand 38.98 67.82 ± 6.92 67.44 60.90 74.75 

Fallow Land 9.44 27.14 ± 9.52 23.50 17.62 36.66 

Forest 36.48 85.88 ± 8.99 83.80 76.89 94.87 

Water 23.60 61.97 ± 7.52 60.56 54.44 69.49 

Wheat 23.99 83.33 ±11.10 79.20 72.23 94.43 

Producer’s Accuracy (%) 

Riverine Sand 28.02 59.48 ±10.73 56.94 48.75 70.21 

Fallow Land 11.18 48.42 ±21.92 34.18 26.50 70.34 

Forest 52.70 98.06 ± 1.80 97.60 96.26 99.86 

Water 11.01 36.07 ±9.43 33.53 26.64 45.51 

Wheat 30.12 79.34 ±10.25 77.67 69.10 89.59 

Overall Accuracy (%) 31.59 74.16 ±10.14 71.81 64.03 84.30 

Fuzzy Kappa value  0.64 ± 0.15 0.62 0.52 0.77 

 

    

 

 

 

 

 

 

 



 

71 

Table B-2 Details of accuracy assessment for classification results of Landsat-8 data at α-cut equals to 

0.6 

 

Accuracy Assessment 

Operators 

FERM SCM MIN-PROD MIN-MIN MIN-LEAST 

User’s Accuracy (%) 

Riverine Sand 36.07 67.95 ± 4.55 68.11 63.40 72.51 

Fallow Land 3.22 10.66 ± 3.45 9.33 7.21 14.11 

Forest 27.59 84.57 ± 6.81 82.57 77.76 91.38 

Water 26.91 68.42 ± 7.01 66.82 61.41 75.43 

Wheat 16.68 67.95 ±10.21 63.74 57.74 78.16 

Producer’s Accuracy (%) 

Riverine Sand 16.84 54.45 ± 9.14 52.01 45.32 63.59 

Fallow Land 2.16 21.99 ±12.62 11.89 9.36 34.62 

Forest 38.16 98.87 ± 1.01 98.45 97.85 99.88 

Water 17.90 55.52 ± 7.29 54.04 48.23 62.82 

Wheat 19.43 67.52 ± 8.07 65.90 59.76 75.89 

Overall Accuracy (%) 22.92 72.20 ± 7.82 70.08 64.38 80.01 

Fuzzy Kappa value  0.62 ± 0.11 0.60 0.53 0.72 
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Table B-3 Details of accuracy assessment for classification results of Landsat-8 data at α-cut equals to 

0.7 

Accuracy Assessment 

Operators 

FERM SCM MIN-PROD MIN-MIN MIN-LEAST 

User’s Accuracy (%) 

Riverine Sand 19.53 94.46 ±5.54 91.32 88.93 100.0 

Fallow Land 4.01 18.57 ± 4.76 16.91 13.81 23.33 

Forest 19.23 93.05 ± 4.95 90.40 88.11 98.0 

Water 38.46 84.37 ± 0.82 84.22 83.55 85.18 

Wheat 21.74 80.85 ± 6.25 78.19 74.60 87.10 

Producer’s Accuracy (%) 

Riverine Sand 10.90 45.20 ± 7.86 42.24 37.34 53.05 

Fallow Land 6.42 43.81 ±21.26 26.98 22.55 65.07 

Forest 30.00 100.00 100.0 100.0 100.0 

Water 16.73 80.49 ± 4.91 78.35 75.58 85.40 

Wheat 20.39 98.51 ± 1.49 97.63 97.02 100.0 

Overall Accuracy (%) 19.54 82.61 ± 5.58 80.40 77.04 88.20 

Fuzzy Kappa value  0.76 ± 0.08 0.74 0.70       0.84 
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Table B-4 Details of accuracy assessment for classification results of Landsat-8 data at α-cut equals to 

0.8 

Accuracy Assessment 

Operators 

FERM SCM MIN-PROD MIN-MIN MIN-LEAST 

User’s Accuracy (%) 

Riverine Sand 6.52 45.29 ± 3.52 45.29 41.76 48.81 

Fallow Land 0.0 NaN NaN NaN NaN 

Forest 7.08 100.0 100.0 100.0 100.0 

Water 19.13 83.86 ± 3.62 81.0 80.24 87.47 

Wheat 14.24 87.05 ± 4.90 84.08 82.15 91.95 

Producer’s Accuracy (%) 

Riverine Sand 17.31 74.96 ± 5.03 70.93 69.93 80.00 

Fallow Land 0.0 NaN NaN NaN NaN 

Forest 9.06 95.33 ± 3.40 92.52 91.94 98.73 

Water 12.43 55.64 ± 4.20 55.07 51.44 59.84 

Wheat 7.92 100.0 100.0 100.0 100.0 

Overall Accuracy (%) 10.31 74.65 ± 3.86 73.27 70.80 78.51 

Fuzzy Kappa value  0.65 ± 0.05 0.63 0.60 0.71 
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Table B-5 Details of accuracy assessment for classification results of Landsat-8 data at α-cut equals to 

0.9 

 

Accuracy Assessment 

Operators 

FERM SCM MIN-PROD MIN-MIN MIN-LEAST 

User’s Accuracy (%) 

Riverine Sand 0.0            0.0 0.0 0.0 0.0 

Fallow Land 0.0 0.0 0.0 0.0 0.0 

Forest 2.83 100.0 100.0 100.0 100.0 

Water 6.49 100.0 100.0 100.0 100.0 

Wheat 0.0 NaN NaN NaN NaN 

Producer’s Accuracy (%) 

Riverine Sand 0.0 NaN NaN NaN NaN 

Fallow Land NaN NaN NaN NaN NaN 

Forest 3.02 100.0 100.0 100.0 100.0 

Water 6.11 65.25 ± 5.37 61.83 59.88 59.88 

Wheat 0.0 0.0 0.0 0.0 0.0 

Overall Accuracy (%) 1.52 35.29       34.78 32.88 37.69 

Fuzzy Kappa value  0.27 0.26 0.25 0.29 
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APPENDIX C            

Accuracy Assessment of classified outputs for Landsat imagery with composite measures formed by Cosine 

norm and Euclidean norm at m equal to 2.5, weighting constant (λ) equal to 0.5 and α-cut values 0.5, 0.6, 

0.7, 0.8 and 0.9 has been shown in Table C-1, C-2, C-3, C-4 and C-5 respectively. 

 

Table C-1 Details of accuracy assessment for classification results of Landsat-8 data at α-cut equals to 

0.5 

Accuracy Assessment 

Operators 

FERM SCM MIN-PROD MIN-MIN MIN-LEAST 

User’s Accuracy (%) 

Riverine Sand 21.05 34.08 ± 5.69 32.68 28.39 39.76 

Fallow Land 12.10 35.50 ± 8.19 33.80 27.31 43.69 

Forest 56.65 93.95 ± 3.38 93.45 90.56 97.33 

Water 46.42 74.14 ± 5.98 72.76 68.15 80.12 

Wheat 26.26  76.33 ± 5.67 75.32 70.66 82.00 

Producer’s Accuracy (%) 

Riverine Sand 27.80 60.85 ± 8.31 59.77 52.54 69.16 

Fallow Land 15.34 34.48 ± 7.29 32.04 27.19 41.77 

Forest 57.31 97.74 ± 1.41 97.62 96.34 99.15 

Water 28.19 60.01 ± 5.35 59.83 54.66 65.36 

Wheat 24.19 61.37 ± 11.6 58.02 49.76 72.97 

Overall Accuracy (%) 37.97 75.33 ± 6.38 74.37 68.95 81.71 

Fuzzy Kappa value  0.64 ± 0.11 0.63 0.56 0.73 
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Table C-2 Details of accuracy assessment for classification results of Landsat-8 data at α-cut equals to 

0.6 

 

Accuracy Assessment 

Operators 

FERM SCM MIN-PROD MIN-MIN MIN-LEAST 

User’s Accuracy (%) 

Riverine Sand     17.14 34.89 ± 5.98 33.59 28.91 40.87 

Fallow Land 28.00 59.38 ± 7.55 59.42 51.83 66.92 

Forest 53.65 93.23 ± 2.33 92.90 90.90 95.56 

Water 40.94 68.58 ± 3.47 68.13 65.11 72.05 

Wheat 18.60  79.10 ± 4.17 79.24 74.92 83.27 

Producer’s Accuracy (%) 

Riverine Sand 22.52 52.74 ± 5.21 53.02 47.53 57.95 

Fallow Land 29.09 60.82 ± 6.53 59.31 54.30 67.35 

Forest 52.91 99.92 ± 0.08 99.88 99.84 100.0 

Water 19.70 49.32 ± 6.91 49.18 42.42 56.23 

Wheat 12.35 55.53 ± 8.19 53.52 47.35 63.72 

Overall Accuracy (%) 33.62 78.05 ± 4.76 77.75 73.30 82.81 

Fuzzy Kappa value  0.66 ± 0.08 0.66 0.61 0.73 
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Table C-3 Details of accuracy assessment for classification results of Landsat-8 data at α-cut equals to 

0.7 

 

Accuracy Assessment 

Operators 

FERM SCM MIN-PROD MIN-MIN MIN-LEAST 

User’s Accuracy (%) 

Riverine Sand     13.24 24.31 ± 3.35 24.00 20.96 27.66 

Fallow Land 5.97 20.24 ± 2.77 20.66 17.47 23.01 

Forest 37.20 90.45 ± 2.58 89.90 87.88 93.03 

Water 28.48 67.72 ± 4.46 66.52 63.27 72.18 

Wheat 6.45 56.73 ± 5.86 54.68 50.87 62.59 

Producer’s Accuracy (%) 

Riverine Sand 17.23 52.73 ± 2.96 54.27 49.77 55.69 

Fallow Land 4.57 25.83 ± 8.65 20.58 17.17 34.48 

Forest 32.89 100.00 100.0 100.0 100.0 

Water 14.69  40.86 ± 4.12 40.64 36.74 44.98 

Wheat 3.81 27.37 ± 3.21 27.37 24.16 30.59 

Overall Accuracy (%) 18.36  64.42 ± 4.63 63.96 59.78 69.05 

Fuzzy Kappa value  0.50 ± 0.08 0.50 0.45       0.55 
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Table C-4 Details of accuracy assessment for classification results of Landsat-8 data at α-cut equals to 

0.8 

Accuracy Assessment 

Operators 

FERM SCM MIN-PROD MIN-MIN MIN-LEAST 

User’s Accuracy (%) 

Riverine Sand 14.36 49.07 ± 3.57 47.52 45.50 52.65 

Fallow Land 0.0             0.0 0.0 0.0 0.0 

Forest 33.31 98.57 ± 0.97  97.95 97.60 99.54 

Water 11.22 49.16 ± 5.97 46.32 43.19 55.14 

Wheat 12.63 78.14 ± 6.11 84.08 72.03       84.25 

Producer’s Accuracy (%) 

Riverine Sand 21.17 50.14 ± 3.57 48.45 45.05 55.23 

Fallow Land 0.0 0.0 0.0 0.0         0.0 

Forest 27.59 100.0 100.0 100.0 100.0 

Water 7.32 43.19 ± 5.97 41.72     39.12 47.26 

Wheat 3.25 100.0 100.0 100.0 100.0 

Overall Accuracy (%) 16.86 81.40 ± 3.14 73.27 78.26 84.54 

Fuzzy Kappa value  0.64 ± 0.08 0.63 0.60 0.69 
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Table C-5 Details of accuracy assessment for classification results of Landsat-8 data at α-cut equals to 

0.9 

Accuracy Assessment 

Operators 

FERM SCM MIN-PROD MIN-MIN MIN-LEAST 

User’s Accuracy (%) 

Riverine Sand 5.55  34.23 ± 0.87 34.14 33.36 35.10 

Fallow Land 0.0 0.0 0.0 0.0 0.0 

Forest 7.64 100.0 100.0 100.0 100.0 

Water 28.50 100.0 100.0 100.0 100.0 

Wheat 2.80 100.0 100.0 100.0 100.0 

Producer’s Accuracy (%) 

Riverine Sand 16.29 100.0 100.0 100.0 100.0 

Fallow Land 0.0 NaN NaN NaN NaN 

Forest 3.76 100.0 100.0 100.0 100.0 

Water 23.74 73.74 ± 1.49 73.15 72.25 75.23 

Wheat 0.57 100.0 100.0 100.0 100.0 

Overall Accuracy (%) 7.32 80.82 ± 1.19       80.35 79.63 82.01 

Fuzzy Kappa value  0.66 ± 0.02 0.65 0.64 0.68 
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APPENDIX D            

IMPLEMENTATION OF α-CUT FOR FUZZY C-MEANS (FCM) IN R 

 

 

 

rm(list=ls(all=TRUE)) 

 

require(rgdal) 

require(raster) 

 

 

#taking input image as raster 

 

img.file_1=raster ("C:/Users/mgi14-

9417/Documents/outputs/landsat/img_real_subset_landsat_Cosine_2.5/clay.img") 

img.file_2=raster ("C:/Users/mgi14-

9417/Documents/outputs/landsat/img_real_subset_landsat_Cosine_2.5/fallow.img") 

img.file_3=raster ("C:/Users/mgi14-

9417/Documents/outputs/landsat/img_real_subset_landsat_Cosine_2.5/forest.img") 

img.file_4=raster ("C:/Users/mgi14-

9417/Documents/outputs/landsat/img_real_subset_landsat_Cosine_2.5/water.img") 

img.file_5=raster ("C:/Users/mgi14-

9417/Documents/outputs/landsat/img_real_subset_landsat_Cosine_2.5/wheat.img") 

 

 

#Dimension of image files 

 

dim(img.file_1) 

dim(img.file_2) 

dim(img.file_3) 

dim(img.file_4) 

dim(img.file_5) 

 

row=74                                                  #Row value from dim 

col=89               #Col value from dim 

 

row_subset=74 

col_subset=89 

 

 

n=row*col 
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#Value of images is taken with respect to 1, so its divided by 255 (on an 8-bit scale image) 

 

value_1=(img.file_1)/255 

value_2=(img.file_2)/255 

value_3=(img.file_3)/255 

value_4=(img.file_4)/255 

value_5=(img.file_5)/255 

 

 

value_11=value_1 

value_22=value_2 

value_33=value_3 

value_44=value_4 

value_55=value_5 

 

#Loop for checking the value of image pixels with respect to the α-cut value (threshold) 

 

for (a in seq(0.5, 0.9, 0.1))              

{ 

  value_1=value_11 

  value_2=value_22 

  value_3=value_33 

  value_4=value_44 

  value_5=value_55 

   

  for (row in 2:row_subset) 

  { 

    for (col in 2:col_subset) 

    { 

      if(value_1[row,col] >0) 

      {   

      if (value_1[row,col] < a) 

      { 

        value_1[row,col] = 0 

      } 

      } 

      if (value_2[row,col] < a) 

      { 

        value_2[row,col] = 0 

      } 

       

      if (value_3[row,col] < a) 

      { 

        value_3[row,col] = 0 

      } 

       

      if (value_4[row,col] < a) 

      { 
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        value_4[row,col] = 0 

      } 

       

      if (value_5[row,col] < a) 

      { 

        value_5[row,col] = 0 

      } 

       

    } 

  } 

   

  

  #To change value of the pixels from values with respect to 1 to a scale of 255 

 

 

  value_1=value_1*255 

  value_2=value_2*255 

  value_3=value_3*255 

  value_4=value_4*255 

  value_5=value_5*255 

   

  #Outputs 

 

  rf <- writeRaster(value_1, filename="clay.tif", format="GTiff", overwrite=TRUE) 

   

  rf <- writeRaster(value_2, filename="fallow.tif", format="GTiff", overwrite=TRUE) 

   

  rf <- writeRaster(value_3, filename="forest.tif", format="GTiff", overwrite=TRUE) 

   

  rf <- writeRaster(value_4, filename="water.tif", format="GTiff", overwrite=TRUE) 

   

  rf <- writeRaster(value_5, filename="wheat.tif", format="GTiff", overwrite=TRUE)   

   

} 
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APPENDIX E            

 

E.1 Publications 

 

S.Mukhopadhaya, A.Kumar, A.Stein – “An effective approach of similarity and dissimilarity measures 

with alpha-cut” 

(Draft prepared. To be submitted in a peer reviewed journal) 


