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ABSTRACT 

Land cover classification using remotely sensed data is required for providing useful and authentic 

information about the land cover to solve many land and related environmental problems. Sometimes 

individual satellite sensors due to their limitations are not sufficient to distinguish various land cover 

features. Therefore, the fusion of information from multiple sensors is necessary. Multi-sensor fusion 

enables an enhanced interpretation and land cover classification by combining the information obtained 

from different sources (sensors). In this research Hyperion and dual frequency fully polarimetric data, 

namely, the Radarasat 2 C-band and Advanced Land Observing Satellite – Phased Array type L-band 

Synthetic Aperture Radar (ALOS - PALSAR) were fused individually. The fusion was performed at three 

levels namely the pixel level, feature level, and the decision level. In the case of pixel level fusion, High pass 

filter, Wavelet and Gram-Schmidt fusion techniques were used. To extract features for Feature level fusion, 

kernel based principal component analysis from Hyperion and multicomponent scattering decomposition 

parameters from fully Polarimetric Synthetic Aperture Radar (PolSAR) data were used. A feature vector was 

formed from the features extracted from Hyperion and SAR datasets. One against all strategy of support 

vector machines was used in case of decision level fusion to decide the final class membership of the defined 

classes based on the membership values from the generated rule images of the classification. For the 

classification of the fused images and the individual datasets, the non-linear support vector machines based 

classification was used. To assess the accuracy hold out method based cross validation was performed. The 

measures of accuracy which were taken into account were the overall accuracy, kappa and the individual 

class accuracies. From the obtained results, it was observed that the high pass filter fusion gave a better 

result for merging Polarimetric SAR (PolSAR) and hyperspectral data in comparison with the other pixel 

level fusion techniques used. Among the two pairs (Hyperion + ALOS PALSAR and Hyperion + Radarsat 

2), the Hyperion and Radarsat 2 performed better. In the case of feature level fusion and decision level 

fusion, the Hyperion and ALOS PALSAR pair outperformed the Hyperion and Radarsat 2 pair regarding 

overall accuracy and kappa. A comparative study was done between the pairs that obtained the highest 

overall accuracy at three levels, and it was found that the Hyperion and ALOS PALSAR fusion at feature 

level was able to enhance the land cover classification and gave a better accuracy. 

 

 

Keywords: Multi-sensor fusion, Pixel level, Feature level, Decision level, Support vector machines, 

Hyperspectral, PolSAR, Span 
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1. INTRODUCTION 

1.1. Background 

 
Land cover classification is a salient application of remotely sensed data. It has its usage in land cover 

mapping, urban planning, forest cover monitoring, etc. Useful and authentic information about the land 

cover is required and significant to provide solutions and solve many environmental related problems 

(Townshend, Justice, Li, Gurney, & McManus, 1991). In remote sensing, in the case of complex urban and 

industrial areas, the natural vegetation cover and man-made materials appear spectrally similar in moderate 

resolution optical sensors and even high spatial resolution satellite sensors may not be sufficient to 

distinguish it (Borghys, Shimoni, Degueldre, & Perneel, 2007). Hence, the information extracted from those 

sensors are limited which in turn affects the land cover classification and the accuracy of it. This research 

deals with the fusion of dual frequency fully polarimetric Synthetic Aperture Radar (SAR) and hyperspectral 

data for the enhanced land cover classification. 

 

Polarimetric SAR means that the RADAR (RAdioactive Detection And Ranging) sends and receives signal 

in different polarization channels. It measures the received backscatter signals and these signals correspond 

to different characteristics of the target object. Hence, the complete information about a target can be 

obtained using Polarimetric SAR. Significant advantages of RADAR are the longer wavelength property 

than the visible light and also not affected by the atmospheric interference. This property has made the 

RADAR to be used increasingly for the purpose of Earth Observation (Chandola, 2014). In the case of 

hyperspectral remote sensing or the imaging spectroscopy, the spectral resolution is the valuable property 

through which the spectrally similar objects can be differentiated. The term hyperspectral refers to spectra 

information which consists of a large number of contiguously spaced spectral bands. Each of these sensors 

provides different useful information which is complementary to each other. 

.  

Some of the man-made urban classes can be extracted using fully polarimetric Synthetic Aperture Radar 

(SAR) image based on the surface roughness, geometric and scattering properties of the objects. But in the 

case of interpretation of trees and vegetation, it is difficult using SAR imagery as the trees produce a bright 

backscatter as in buildings and identification of different vegetation types is also difficult (Borghys, Shimoni, 

& Perneel, 2007). The hyperspectral data are useful in extracting different vegetation classes due to the high 

spectral resolution. Therefore, information extraction from a single sensor does not provide an efficient 

solution. 
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It is necessary to make use of information from different sources for better interpretation and classification. 

The process of combining or merging information from different or multiple sources is termed as data 

fusion (Knödel et al., 2007). The data fusion preserves the primacy information and utilizes the 

interdependent information about the multiple sources ( Li, Zhang, Zhao, & Shi, 2013). Here the sources 

are the different sensors. Fusion depends on the level of processing and results in the following approaches, 

 

1. Pixel level data fusion,  

2. Feature level data fusion and  

3. Decision level data fusion ( Pohl & Van Genderen, 1998).  

 

As reviewed by Pohl & Van Genderen (1998) the data fusion levels are shown in the diagram (Figure 1.1) 

below. 

 

 

 

 

 
 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 
 

 

Figure 1-1 Levels of fusion 
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1.2. Motivation and Problem Statement: 

 

Information extracted from the individual spaceborne remote sensing sensors are very limited when there 

is a low spectral, spatial resolution which in turn affects the land cover classification and also the accuracy 

of it. Fusion of images, as well as information from different sensors, have been found productive by 

improving the feature extraction and classification. The fused images contain more reliable information as 

the contents from multiple sources are combined. The PolSAR could provide information about urban and 

man-made targets using different parameters such as scattering information, textural properties, surface 

roughness, etc. Where as the hyperspectral data could provide the detailed information on the spectrally 

similar features. Fusion of the above sources could improve the interpretation of features and the 

classification.. 

1.3. Research objectives 

 
The objective of this research is to enhance and improve the land cover classification accuracy by the fusion 

of dual frequency fully polarimetric SAR and hyperspectral data 

1.3.1. Sub Objectives:  

 

 Extraction of polarimetric parameters (Multi component scattering model (MCSM) and 

Span) from the fully polarimetric data. 

 

 To Perform Pixel level fusion of hyperspectral data with span data which is the total 

intensity backscatter image extracted from quadpol data and classification of the fused 

images  

 

 To Perform feature and decision level fusion of hyperspectral data with polarimetric 

parameters extracted from quadpol data and classification of the fused results  

 

 Comparative analysis of all classified results of the fused products  

1.4. Research questions  

 

 How multicomponent scattering model improves the feature extraction using fully 

polarimetric data?  

 

 Which pixel level fusion technique could give a satisfactory result for fusing hyperspectral 
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data with span data extracted from quadpol data?  

 

 How fusion of fully polarimetric SAR and hyperspectral data efficiently enhances the 

classification of urban and natural vegetation cover types?  

 

 Which level of fusion and also which fully polarimetric SAR data along with hyperspectral 

data can give an enhanced land cover classification?  

 

1.5. Innovation aimed at:  

 
 To make use of dual frequency fully polarimetric SAR data in the fusion process with the 

hyperspectral data.  

 

 To use polarimetric parameters extracted from MCSM for the fusion process.  

1.6.  Thesis Structure:  

 

This thesis accounts for the work done so far for this particular research work in following chapters. A brief 

introduction about this research, objectives to be accomplished and research formulated based on the 

objectives are given in the first chapter. The Second chapter describes the previous work that has been done 

related to this work and the methods used. The third chapter explains about the study area and the dataset 

used, the fourth chapter explains about the methodology and the methods adopted, the fifth chapter explains 

about the results and discussion, and the sixth chapter is about the conclusions of the research and the 

recommendations for future work.  

 

The following chapter is on a literature review of previous studies done and methods adopted by the 

researchers on data/image fusion. 
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2. LITERATURE REVIEW 

This chapter is about the literature review on the multi-sensor image/data fusion, different levels of 

image/data fusion and the previous research works done on image/data fusion at various levels. Also, review 

on SVM classification and MCSM decomposition technique of SAR is given in the separate sections of this 

chapter 

2.1. Multi- Sensor image fusion 

 

Many satellite imageries have become available with the development of multiple types of remote sensing 

sensors on board satellites. Each sensor has its own advantage and disadvantage of acquiring and extracting 

information of the land features. Multiple sensor image fusion enables the extraction of useful information 

that is not possible to obtain from a single sensor (Dong, Zhuang, Huang, & Fu, 2009). The fused images 

may contain more reliable information as the images with different characteristics are combined (Pohl & 

Van Genderen, 1998). Also, the images used for the fusion vary in spatial, spectral characteristics and also 

with time. Hence provides a complete view of the features observed (Pohl, Munro, & van Genderen, 1997) 

 

As reviewed by Pohl & Van Genderen (1998)there are several aspects to be looked at in the muti sensor 

data fusion. They are the objective/application of the user, selection of sensors based on their 

complementary characteristics like spatial, spectral and temporal resolutions, necessary pre-processing steps 

like geometric correction, resampling method, etc. and the most importantly the best fusion technique to 

be applied. Apart from these aspects, there are several other challenges faced by the researchers in multi-

sensor fusion. 

 

The challenges are the integration of more number of spectral bands which increases the processing 

complexity, high resolution images require higher geometric correction accuracy, the geometric and 

radiometric correction requirements, shadow features may appear due to different observation angles of the 

sensors ( Pohl & van Genderen, 2014). Apart from the above challenges the selection of bands for the 

fusion process is one of the important considerations to be taken into account for the fusion process. The 

band selection comes into picture when some of the fusion processes take only three input bands for the 

processing, for example, Intensity Hue Saturation (IHS) fusion technique. As reviewed by  Pohl & Van 

Genderen (1998)the band selection could be made by optimum index factor and the feature extraction to 

select the uncorrelated components could be done using principle component analysis. Depending on the 

approach and the level of processing, there are three different levels of fusion (Pohl & Van Genderen, 1998). 

They are Pixel level, Feature level, and Decision level fusion techniques. 
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Pixel level refers to the lowest processing level of image fusion by merging the measured physical 

parameters. Fusion at feature level requires the extraction of objects recognized in the various data source. 

Decision level fusion represents a method that uses value-added data where the input images are processed 

individually for information extraction. There are several objectives and achievements that can be attained 

using multi sensor image fusion techniques. 

 

The main goals of applying fusion techniques could be to sharpen the image by improving the spatial and 

spectral resolution of the fused image, to enhance the extraction of certain features and information, for 

change detection which depends on the temporal aspects of the different sensors, for improving the 

classification by combining multiple source data for processing, to replace defective data as the images 

acquired by the satellites are influenced by numerous effects such as noise, cloud cover, blurred features etc. 

(Pohl & Van Genderen, 1998). 

2.2. Pixel level fusion 

 

The lowest processing level of fusion is the pixel level fusion where the measured physical parameters from 

two or more images are merged. As reviewed by  Pohl & Genderen (2015) there are several pixel level fusion 

algorithms categorized in general as colour related and statistical related fusion techniques. The colour 

related techniques include the Intensity Hue Saturation fusion, Red Green Blue transformation fusion and 

YIQ fusion where Y represents the luma information that is the brightness of an image and I, Q represents 

the chrominance of the image. The statistical and the numerical methods include the Principal component 

analysis (PCA), Wavelet Transform, High pass filter (HPF), Regression variable substitution, Brovey 

transform and component substitution.  . The PCA works on the principle of principal component 

transformation. The optical imagery is first resampled and transformed into principal components, and the 

first component is replaced with the panchromatic (PAN) image to fuse with the optical imagery using 

inverse PCA to get the fused product with high spectral and spatial content (Metwalli, Nasr, Allah, El-

Rabaie, & El-Samie, 2010). Brovey transform is based on the arithmetic operations, wavelet fusion and high 

pass filter fusions are based on the extracting high frequency information content using filters and the 

component substitution is similar to the PCA method which works on the basis of forward transformation 

of the optical data and then follows the component substitution where the new data space is replaced with 

the high resolution band. Finally, the fused result is obtained by the inverse transform back to the original 

space. Regression variable based pixel level fusion was performed by Meng, Borders, & Madden,(2010) 

using Kriging. Here the correlation between the response variable ( an image that needs to be fused) and 

the predictor variable (image with finer spatial resolution). Many types of research have been done in the 

past on pixel level fusion. 

 

An improved Intensity Hue Saturation (IHS) transform based pixel level fusion was used by Ghanbari & 
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Sahebi (2014) in their research to fuse IKONOS multispectral and SAR HH band images. Both spectrally 

and spatially the fused image was comparatively good with other fusion techniques such as brovey and IHS. 

Amarsaikhan et al. (2010) compared the performances of different techniques such as PCA, brovey, Ehler’s 

fusion and wavelet transform on fusing SAR and Optical imagery. The research resulted that the multi-

sensor fusion could enhance the feature extraction. The IHS transformation was used by Chen, Hepner, & 

Forster (2003) to integrate the high spectral resolution, provided by hyperspectral data and the surface 

texture information derived from radar data into a single image of an urban area. Lu, Li, Moran, Dutra, & 

Batistella, (2011) have made a comparison of Radarsat 2 and ALOS PALSAR L fusion with Landsat TM 

mapper for land cover classification. Different pixel level fusion techniques such as wavelet fusion, High 

pass filter fusion, PCA and normalized multiplication. It was concluded that wavelet merge and high pass 

filter merge performed better in comparison with the other techniques. 

 

Ehlers (1991)used IHS transform in the fusion of Landsat TM and pan SPOT data which proved successful 

in enhancing the spectral and spatial detail of the image. Experiment on Pixel level fusion of Landsat and 

Spot images, Landsat and Seasat SAR images, IR and visible images were conducted by Li, Manjunath, & 

Mitra, (1995) using wavelet transform technique and performed better than laplacian pyramid based 

methods due to the compactness, directional selectivity, and orthogonality of the wavelet transform. Image 

fusion using Ehler’s spectral preserving algorithm was conducted by Klonus & Ehlers (2007). It was 

concluded that, for a multi sensor fusion, Ehler’s fusion provided a better result when compared to other 

spectral characteristics preserving fusion techniques.  

 

Advanced and complex pixel level fusion techniques like enhanced Gram-Schmidt spectral sharpening was 

performed by introducing a generalized intensity component for calculating a low resolution PAN image 

for the fusion process by Aiazzi, Baronti, Selva, & Alparone (2006). The results proved that the above 

method outperformed the regular Gram-Schmidt fusion in terms of spectral sharpness and high spatial 

quality. A comparative analysis of HIS, Brovey, and Ehler’s fusion techniques were carried out by Abdikan, 

Sanli, Sunar, & Ehlers (2012) on the image and multispectral SPOT images and concluded that among the 

fusion techniques used, the Ehler’s fusion produced a better result. 

2.3. Feature level fusion: 

 

Feature level fusion involves the extraction of features from different data sources to form a single feature 

vector containing all the extracted features and then fused for further understanding (Pohl & Van Genderen, 

1998). These extracted features correspond to the characteristics obtained from input images As reviewed 

by Zheng, Zhang, & Van Genderen (1998) in the feature level fusion different features are targeted by each 

sensor and feature extraction process in carried out to obtain a combined  feature vector from each sensor. 

The resulted feature vectors are then fused together and forms a joint feature vector. The process of feature 
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extraction or feature selection plays a significant role in this level of fusion. There are different feature level 

fusion techniques as discussed by Zheng et al. (1998) which includes Neural networks, Dempster Shafer’s 

theory, Expert systems, Logical templates, Bayesian inference and cluster analysis. Successful 

implementation of feature level fusion is possible only with the proper extraction and selection of features 

from the datasets. 

 

There are two approaches defined by Bruzzone & Serpico (2000) for reducing the number of features. They 

are 

 

(i) Extracting the information contained in the original features through the linear or 

nonlinear transformations to the original feature space. This method is usually termed as 

feature extraction 

(ii) Derive a subset of the original set of features (bands) that allows separating the land cover 

classes. This process is commonly called as feature selection. 

 

A high correlation occurs when a large number of features (bands) are obtained, and this leads to the 

redundancy of information. This occurs when the sensor has a high spectral resolution (Bruzzone & Serpico, 

2000).  

 

Research on kernel based feature selection approach was conducted by Persello & Bruzzone (2015) for the 

classification of hyperspectral data. This research focussed on selecting a subset of features from the 

hyperspectral image that helps in differentiating the defined classes and does not change across the source 

and target domains. This research was studied on two hyperspectral images to evaluate the domain stability 

in the kernel Hilbert space. Here the domain is referred to the images captured in the different geographical 

area or at different time period. The experimental results showed the improvement in classification accuracy 

with high generalization capabilities. Swain & Davis, (1981) suggested that the reduction in features helps in 

improving the classification accuracy by handling Hughes phenomenon and also reduces the computational 

burden.  

 

Peli, Young, Knox, Ellis, & Bennett (1999) in their paper described that the extraction and selection of 

features from the data sets as the most important part of the feature-level fusion process for both spectral 

and SAR imagery that are used for target discrimination and to reduce the effects of  registration  error. 

They have also classified the extracted features into three categories as statistics based, Fractal based and 

correlation based features. The statistics based features use amplitude based statistics to target or 

characterize a particular area. Fractal-based features calculate the fractal behavior. The correlation-based 

features measure the level of correlation among the targets. 
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Another method of extracting features is through texture analysis. This is the way of extracting contextual 

information. The texture is one of the important parameters of SAR data. Texture based feature extraction 

was researched, and the fusion of SAR and multispectral imageries was performed by Byun (2014). The 

Grey level co-occurrence matrix approach was used by the author to extract texture information from SAR 

amplitude image. Another research on texture based fusion of SAR and multispectral images was performed 

by Kiema (2002). The author has used the homogeneity measure obtained from the GLCM method for the 

fusion approach. . 

 

Very limited researches have been done in the past on feature level fusion of multiple sensors. Artificial 

neural network based feature level fusion was conducted by Giampouras, Charou, & Kesidis (2013).  Here 

the authors used principle component analysis (PCA) as a feature extraction method and formed a feature 

vector along with the LIght Detection And Ranging (LiDAR) data which was then fused and classified using 

Bayesian regularization propagation algorithm. A conclusion was made that the classification could be done 

efficiently with the use of Artificial Neural Network (ANN). Using wavelet transform and neural network 

An efficient block based feature level image fusion technique was researched by  Sheela, Vijayakumar, & 

Sujatha (2012).The feature extraction and selection was performed which was based on spatial frequency, 

Energy of Gradient, Edge information, Contrast visibility and variance. Research on feature level fusion was 

conducted by Huang, Zhang, & Li (2008) and used wavelet transform based feature extraction method and 

support vector machine for the classification of the formed feature vector using the extracted features. A 

review was done by Gamba (2013)on different feature level fusion approaches, status, and trends in remote 

sensing image fusion for urban areas. The author emphasized the growing importance of feature-based 

fusion and the high potential of spaceborne, airborne and ground-based sensors have in the extracting 

information of urban scenes. 

2.4.  Decision level fusion: 

 

Decision level fusion is the highest level of fusion among the three fusion levels. Decision level fusion 

represents a method that uses value-added data where the input images are processed and classified 

individually for information extraction. The obtained information is then combined applying decision rules 

to reinforce conventional interpretation and furnish a better understanding of the observed objects ( Pohl 

& Van Genderen, 1998). Decision level fusion is one of the research areas in the field of multi-sensor image 

fusion and very few researches have been done in the past. 

 

One of the research is in urban and industrial sites identification with the fusion of SAR and hyperspectral 

imageries. Three types of decision-level fusions namely the weighted majority vote, a method based on 

Support Vector Machines and based on a binary decision tree were implemented by Borghys et al. (2007) 

on SAR and hyperspectral imageries for improved object recognition in the region of urban and industrial 
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sites. It was concluded that the fusion based on decision tree provided a better result when compared with 

the other two fusion methods. Change detection in urban scenes with the fusion of SAR and Hyperspectral 

image was performed (Borghys et al., 2007). The expert classifier method was used to implement the 

decision level fusion and concluded that the adequate information of the changes in urban scenes was 

obtained. 

 

Bigdeli, Samadzadegan, & Reinartz (2014) performed a decision based fusion of LiDAR and Hyperspectral 

using multiple support vector machine classifiers for individually classifying the input data sets. For the 

fusion of the classified outputs Bayesian classification method was used and the adopted method improved 

the classification accuracy and kappa value than the individual data sets. Another research on decision level 

fusion using SVM and Random forest as individual classifiers were performed on Landsat 8 and MODIS 

data by Wang, Li, & Gong (2015) and using the decision rules the images were fused.  

 

Support vector machine based decision level fusion is also a standard method adopted by researchers for 

fusing multi-sensor datasets. Waske & Benediktsson (2007) used dual support vector machine based 

decision fusion of multi sensor images. Initially, the two sources were individually classified using SVM and 

then the feature vector was formed from the obtained rule images from both the classification. The rule 

images contain the distance of a pixel to the decision boundary of the SVM and the maximum value to the 

hyperplane determines the final class membership (Waske, Menz, & Benediktsson, 2007). Again a second 

SVM was used to classify the formed feature vector, and final class membership was decided. The research 

has concluded that the dual SVM based decision fusion of multi-sensor data outperforms other techniques 

such as majority voting, absolute maximum voting scheme and decision tree based fusion. 

2.5. Multi component decomposition model 

 

One of the important applications of polarimetric synthetic aperture radar is the terrain and land use 

classification. Polarimetric decomposition is the method to extract the ground features based on the 

scattering properties of the same. Zhang, Zou, Cai, & Zhang (2008) developed the multi component 

scattering model (MCSM) which consists of five scattering components namely the Surface scattering 

component, double bounce scattering component, Helix scattering component, Volume scattering 

component, and wire scattering component. This model is the extended version four component scattering 

model developed by (Wu, Yang, Zhu, & Zhang, 2014). Wire scattering component is the fifth component 

added to the MCSM model. 

 

Each of the scattering components has significance in feature extraction. Double bounce scattering, Volume 

scattering, and Surface scattering are used to describe the polarimetric backscatter of naturally occurring 

scatterers that are from a pair of orthogonal surfaces (in urban regions), from a cloud of randomly oriented 
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dipoles and from moderately rough surface respectively and the Helix and Wire scattering is used to describe 

the polarimetric backscatter of scatterers from man-made objects in the urban areas ( Zhang et al., 2008). 

Decomposition is an important process in case of classification of PolSAR image. MCSM, which is used to 

describe the polarimetric backscatter of both natural objects and man-made objects, proved useful in 

classification along with the texture parameter using SVM (Zhang, Zou, Zhang, & Zhang, 2009). 

2.6. Support Vector Machines classification 

 

Support vector machines is a non-parametric classifier which is being widely used in the classification of 

remotely sensed images. A critical  review on the kernel methods on  support vector machines was made by 

Bruzzone, Persello, & Chen (2010). The authors have mentioned the main properties of SVM which makes 

it to be used in most of the remote sensing applications are as follows, 

1. The ability of the classifier to be robust in case of Hughes problem. 

2. The use of kernel methods to solve the non-linearly separable classification problem. 

3. Less time required for the learning process of the model. 

4. There is no requirement for the statistical analysis of the training samples to perform the 

classification as it is a non-parametric method. 

 

In comparison with the traditional and conventional classification methods like maximum likelihood, the 

minimum distance to mean classifier, etc., the SVM is more robust in handling complex data such as the 

high dimensionality high resolution satellite images and the Hyperspectral images. Dai, Huang, & Dong 

(2007) have proved that the support vector machines based classification is more efficient, better in the 

learning ability and in the expressing ability in the classification of hyperspectral data. Another research on 

the ability of SVM to classify the hyperspectral images was performed by Melgani & Bruzzone (2002) and 

they observed that the SVM is more efficient than the other non-parametric classifiers such as RBF Neural 

network and KNN classifiers, and less sensitive to Hughes phenomenon. As the SVM can handle more 

complex data, it is also widely used in the classification of SAR data. 

 

Research on target recognition using SVM on SAR was performed by Zhao & Principe (2001) and have 

compared the SVM based target detection on SAR with other conventional classifiers. The results proved 

that the SVM outperformed all the other classifiers in target detection. Also, they have concluded that the 

SVM are able to form a locally bounded decision function for each of the classes. Fukuda, Hirosawa, & Ieee 

(2001) have performed classification of SAR using SVM on feature vectors such as the polarimetric 

parameters after the decomposition technique and also on the texture properties of SAR. This was 

performed by the authors on the high resolution data. 

 

Next chapter deals with the study area of this research, datasets, and the tools used. 
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Figure 3-1 Study area, Source:  http://bhuvan.nrsc.gov.in/bhuvan_links.php 

3. STUDY AREA, DATASETS, AND TOOLS USED 

This chapter deals with the study area of the research, satellite imagery and the defined classes of the study 

area and the tools used. 

3.1. Study area 

For this research work, the study area selected was the in and around regions if Dhanbad city of Jharkhand 

state, India. The study area consists of complex urban and industrial areas, dense and sparse vegetation area, 

cropland, barren land, water and dry river bed and these are the potential classes on which the research work 

was carried out. Below is the figure of study and the figure 3-2 shows the different classes present in the 

study are on a Hyperion image of 30 meters resolution. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
            
 
 
         

                                
 
 
 
 

 

3.2. Datasets used 

The datasets used for this research work used were, 

EO-1 Hyperion data 

Under the NASA’s new millennium program in the year, November 2000 Hyperion the Earth Observation 

(EO-1) sensor was developed and provides data for improved characterization of the earth surface. 
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Hyperion is a push broom based imaging instrument. The swath width of this instrument is 7.5 kilometres 

wide and consists of 220 unique spectral bands with the spectral range from 357nm-2576 nm. 

 

Radarsat 2 data 

Radarsat 2 data is a combinely funded mission of the Canadian Space Agency and MacDonald Dettwiler 

Associates Ltd. Of Richmond, BC in the year February 1998. The imaging frequency of Radarsat 2 is C-

band at 5.405 GHZ and works in the fully polarimetric mode. The look direction of the Radarsat 2 antenna 

is left or right. Radarsat 2 offers data in all four polarization channels (HH, HV, VH, and VV) 

 

ALOS PALSAR data 

Japan Aerospace and Exploration Agency (JAXA) launched the Advanced Land Observing Satellite (ALOS) 

was launched in the year January 24, 2006. ALOS carried the PALSAR and was launched into the sun-

synchronous orbit. The revisit time of this satellite was 14 times a day. The polarimetric mode of the 

PALSAR offers the complete polarimetry Of HH, HV, VV and VH polarizations 

3.3. Dataset Specifications:                                                     

Table 3-1 Dataset specifications 

Specifications Hyperion Radarsat 2 ALOS PALSAR 

Spatial Resolution 30 meters Range spacing – 3.125m 

Azimuth spacing – 

3.125m 

Range spacing – 6.25 m 

Azimuth spacing – 

12.5m 

Spectral Resolution 10 nm - - 

Wavelength 

220 bands (0.4 – 2.5 

micrometer)  C band  L-band 

Polarimetric mode - HH, HV, VH, VV HH, HV, VH, VV 

Incidence angle - 27.6 degree 25.6 degree 
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Table 3-2 Tools Used 

 

 

Next chapter is on the methodology adopted and the methods used to achieve the objective of the 

research 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tools Purpose 

PolSARPro Version  PolSAR Data processing 

ENVI, ERDAS Hyperspectral data processing, Data Fusion 

ArcGIS GIS related work 

R Classification and Accuracy Assessment 
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4. RESEARCH METHODOLOGY AND METHODS  

The purpose of this research is to enhance the land cover classification by fusing the fully polarimetric SAR 

data and Hyperspectral data. To achieve this goal, the methodology shown in the Figure 4-1 was adopted. . 

Initially, Hyperion (L1R data), Radarsat 2 (SLC) and ALOS PALSAR (SLC) were pre-processed and various 

polarimetric parameters polarimetric parameters were extracted from fully polarimetric data such as such as 

span, span, surface scattering, double bounce scattering, volume scattering, helix scattering and wire 

scattering. The extracted parameters were then co-registered with the atmospherically corrected Hyperion 

data. After the co-registration, pixel level, feature level and decision level fusion were performed and the 

classification and accuracy assessment of the fused products, as well as the individual datasets, were done. 

Comparative analysis was made between the accuracy results to obtain the optimal level and the fusion pair 

(Hyperion + RS2 or Hyperion + ALOS PALSAR) that gives the better overall accuracy.  
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          Figure 4-1 Research Methodology 
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4.1. Processing of the datasets 

 

Pre-processing of the data is an important process in fusion. The quality of the fused image and further the 

accuracy of the classification of the fused image depends on how well the pre-processing has been done. 

The Hyperion image obtained was at level 1, and the fully polarimetric data (Radarsat 2 and ALOS PALSAR) 

were at level 1 single look complex (SLC).  

The images underwent the pre-processing steps as follows.  

 

 Processing of Hyperion data 

The processing of Hyperion data required the bad band removal, averaging of the bad column and the 

atmospheric correction. 

 

Bad band removal and averaging of bad column 

Due to the atmospheric interference and water absorption, some bands of the Hyperion image appears to 

be black or very noisy as it has the low signal to noise ratio. Hence, those bands were removed manually. 

Total of 144 bands were obtained after the removal of non-informative bands. The scanner of the Hyperion 

sensor is the across track scanner which causes the stripping error due to its miss-calibration. This leads to 

the abnormal DN values in individual columns. Hence, those values are corrected using the averaging 

method. 

 

Atmospheric correction 

Atmospheric correction needs to be done as Hyperion was affected by the atmosphere which influences the 

radiation from ground to sensor. The primary objective of atmospheric correction is to find the actual 

surface reflectance of the objects by removing the atmospheric effects (Hadjimitsis et al., 2010). First Line 

of Sight Atmospheric Analysis of Hypercubes (FLAASH) model was used for the atmospheric correction 

of Hyperion data which is based on MODTRAN radiative transfer model. 

 Processing of PolSAR data 

 
The PolSAR data contains all the four polarization in the form of scattering matrix and its polarization state 

changes when it gets interacted with the target features. These backscatter responses from each of the 

polarization channels are stored in a scattering matrix. According to Verma ( 2014), 

[𝑆]= [
𝑆𝐻𝐻 𝑆𝐻𝑉

𝑆𝑉𝐻 𝑆𝑉𝑉
] 

where,   SHH = Backscatter response from HH Polarization channel 

SHV = Backscatter response from HV Polarization channel 

SVH = Backscatter response from HV Polarization channel 

SVV = Backscatter response from HV Polarization channel 

 Equation 4-1 
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The above matrix gives information only about the clear targets. But the earth surface has more complex 

structures and targets where the information provided by the scattering matrix is insufficient. Therefore, the 

second order statistics is calculated by making use of the vectorized form of the scattering matrix S. This is 

known as the coherency matrix. The vectorized form of scattering matrix using Pauli feature vector is given 

by, 

 

𝐾𝑝 =
1

√2

𝑆𝐻𝐻 + 𝑆𝑉𝑉

𝑆𝐻𝐻 − 𝑆𝑉𝑉

2𝑆𝐻𝑉

 

The product of this vector with the transpose of itself form the coherency matrix and was converted from 

single look complex (SLC) to multilook complex image (MLC) to turn the slant range to ground range 

resolution. The coherency matrix is given  as, 

 

〈[𝑇]〉 =  〈𝐾𝑝𝐾𝑃
† 〉=[〈(

〈|𝑆𝐻𝐻   + 𝑆𝑉𝑉|2〉 〈(𝑆𝐻𝐻 + 𝑆𝑉𝑉)𝑆𝐻𝐻 − 𝑆𝑉𝑉)〉 2〈(𝑆𝐻𝐻 + 𝑆𝑉𝑉)𝑆𝐻𝑉〉

𝑆𝐻𝐻 − 𝑆𝑉𝑉)𝑆𝐻𝐻 + 𝑆𝑉𝑉)〉 〈|𝑆𝐻𝐻    − 𝑆𝑉𝑉|2〉 2〈(𝑆𝐻𝐻 − 𝑆𝑉𝑉)𝑆𝐻𝑉〉

2〈𝑆𝐻𝑉(𝑆𝐻𝐻 + 𝑆𝑉𝑉)〉 2〈𝑆𝐻𝑉(𝑆𝐻𝐻 − 𝑆𝑉𝑉)〉 4〈|𝑆𝐻𝑉|2〉

] 

 

Where † represents the conjugate and the transpose and ˂˃ represents the averaging over the whole data.  

The sum of the diagonal elements gives the total backscatter intensity values called as span.  The span 

images are shown in the Figure 4-2. 

Span= 〈|𝑆𝐻𝐻   + 𝑆𝑉𝑉|2〉 +  〈|𝑆𝐻𝐻    − 𝑆𝑉𝑉|2〉 + 4〈|𝑆𝐻𝑉|2〉 

 

                                

(A)  (B) 

Figure 4-2 Span images of Radarsat 2 (A) and ALOS PALSAR (B) 

 

 

 

            Equation 4-2 

Equation 4-3 
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The SLC to MLC conversion is given as, 

Slant range resolution to Ground resolution= 𝐶 𝜏 /2(1/𝑠𝑖𝑛 𝜗) 

where,  C τ /2 = Pixel spacing in range direction and 

  Sin ϑ = Incidence Angle 

Parameters Radarsat 2 ALOS PALSAR 

Ground range resolution 20 meters 20 meters 

Incidence angle 27.6 degree 25.6 degree 

Multilook factor 5,2 6,1 

 

Various speckle filters namely the Gamma, box car filters Lee refined filter and Lee sigma filter were applied 

to reduce the speckles. It was observed that the Lee Refined filter with a window size of 3 provided a good 

result in terms of reduced smoothening of the image.  

 

MCSM Decomposition 

 
Multiple component scattering model decomposition was proposed by  Zhang et al. (2008). It is an extension 

of  the yamaguchi four component scattering model. Here, the fifth component known as the wire scattering 

is added to it. The wire scateering is very much prominent in urban areas. In the urban areas, the wire 

scattering is observed by the the canonical structures, walls, vertical buildings, etc. The total backscatter 

value is considered as the contribution of the five types of scattering mechanisms namely the Double 

bounce, Volume, Helix, Surface and Wire scattering. These scatterings depend on the scattering behaviour 

of the scatterers based on their orientation, shape, surface roughness, geometrical structure, etc.  Zhang et 

al. (2008) explained that the MCSM decomposition as the linear combination of five scattering mechanisms 

which describes the total received backscatter.  

Below description of the MCSM model is based on the work of Verma (2014). 

The total coherency matrix of MCSM decomposition is given as, 

 

[𝑇] =  𝑓𝑠[𝑇𝑠] + 𝑓𝑑[𝑇𝑑] + 𝑓𝑣[𝑇𝑣] + 𝑓ℎ[𝑇ℎ] + 𝑓𝑤[𝑇𝑤] 

 

[T] = Total Coherency Matrix 

[Ts], [Td], [Tv], [Th] and [Tw] are the coherency matrices of the individual scattering components and fs, fd, 

fv, fh, fw are the expansion coefficients of individual scattering components. The individual matrix elements 

of Surface, Volume, Helix, double bounce and wire scattering components are explained below. 

 

 

 

 

     Equation 4-4 

Equation 4-3 
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Surface Scattering 

The Surface scattering is prominent in the slightly rough surface regions where the cross polarization is 

negligible. For example, the road features, water bodies, barren land are the surface scatterers.  The 

coherency matrix of the surface scattering is given as, 

                                         〈[𝑇𝑠]〉 =  [
1 𝛽∗ 0

𝛽 |𝛽|2 0
0 0 0

] , 𝑊ℎ𝑒𝑟𝑒 𝛽 =  
𝑅𝐻−𝑅𝑉

𝑅𝐻+𝑅𝑉
  𝑎𝑛𝑑  |𝛽| < 1           

Where RH and RV are the Fresnel reflection coefficients 

 

Double bounce Scattering 

This type of scattering is displayed in the urban region where there are dihedral structures and also by the 

ground tree trunk. The coherency matrix is given S, 

                                                  

where RTH, RTV, RGV, RGH reflection coefficients of ground and tree trunk surface for horizontal and vertical 

polarization. According to Woodhouse (2012), this particular model is generalized by adding the propagation 

factors as shown in the equation to represent any propagation attenuation and any phase change effects. 

 

Volume Scattering 

This type of scattering corresponds to the multiple scatterers for example the dense forest canopy. The 

coherency matrix is given as, 

      

[𝑇𝑉] =  [
2 0 0
0 1 0
0 0 0

] 

Helix Scattering 

This type of scattering is prominent in the urban regions where there are complex man-made structures ( 

Zhang et al., 2008). A left handed and a right handed circular polarization are generated by a helix target. 

The corresponding coherency matrix is given by, 

 

[𝑇ℎ] =  
1

2
[

0 0 0
0 1 ±𝑗
0 ±𝑗 1

] 

Wire Scattering 

The thin canonical structures and the edges of the buildings contribute to the wire scattering (Zhang et al., 

2008). 

         

      Equation 4-5 

Equation 4-6 

Equation 4-7 

Equation 4-8 
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[𝑆𝑤] = [
𝛾 𝜌
𝜌 1], Where γ = 

𝑆𝐻𝐻

𝑆𝑉𝑉
, 𝜌 =  

𝑆𝐻𝐻

𝑆𝑉𝑉
 

The coherency matrix is given by,              

〈[𝑇𝑤]〉 = 
1

2 
[

|𝛾 + 1|2 (𝛾 + 1)(𝛾 − 1)∗ 2(𝛾 + 1)𝜌∗

(𝛾 − 1)(𝛾 + 1)∗ |𝛾 − 1|2 2(𝛾 − 1)𝜌∗

2(𝛾 + 1)∗𝜌 2𝜌(𝛾 − 1)∗ 4|𝜌|2

] 

From the above obtained coherency matrices of the individual scattering elements the total coherency matrix 

of the MCSM decomposition is given as, 

 

 

The individual scattering powers of the five scattering elements are obtained as follows, 

𝑃𝑠= 𝑓𝑠(1 + |𝛽|2) 

𝑃𝑑= 𝑓𝑑(1 + |𝛼|2) 

𝑃𝑣 = 𝑓𝑣 

𝑃ℎ = 𝑓ℎ 

𝑃𝑤 = 𝑓𝑤(1 + |𝛾|2 + 2|𝜌|2 

The expansion coefficients present above in the equations can be obtained as follows, 

From T23 element we get, 

                                                                     𝑓ℎ=2 𝑙𝑚(𝑇23) 

and             𝑓𝑤 =  
𝑅𝑒(𝑇23)

(𝛾−1)𝜌∗ 

Therefore               𝑃ℎ = 𝑓ℎ 

and                                                    𝑃𝑤 =
𝑅𝑒(𝑇23)

(𝛾−1)𝜌∗ (1 − |𝛾|2 + 2|𝜌|2) 

The volume component is determined based on the copolarized components namely the HH and VV.  

     

10 𝑙𝑜𝑔 [
〈|𝑆𝑉𝑉|2〉

〈|𝑆𝐻𝐻|2〉
] = 10 𝑙𝑜𝑔 [

𝑇11 + 𝑇22 − 2𝑅𝑒(𝑇12)

𝑇11 + 𝑇22 + 2𝑅𝑒(𝑇12)
] 

                          

𝐹𝑜𝑟 10 log (〈|𝑆𝑉𝑉|2〉/〈|𝑆𝐻𝐻|2〉) <  −2𝑑𝑏, 〈|𝑇𝑉|〉 =
1

30
[
15 5 0
5 7 0
0 0 8

] 

𝐹𝑜𝑟 − 2𝑑𝑏 <  10 log (〈|𝑆𝑉𝑉|2〉/〈|𝑆𝐻𝐻|2〉) <  2𝑑𝑏, 〈|𝑇𝑉|〉 =
1

4
[
12 0 0
0 1 0
0 0 1

] 

Eqn. (4.16) 

Equation 4-9 

Equation 4-10 

Equation 4-11 

Equations 4-12 

  Equation 4-13   Equation 4-14 

Equation 4-15 

Equation 4-16 

 Equations 4-1 



FUSION OF DUAL FREQUENCY FULLY POLARIMETRIC DATA AND HYPERSPECTRAL DATA FOR ENHANCED LANDCOVER CLASSIFICATION 

 

32 

𝐹𝑜𝑟 10 log (〈|𝑆𝑉𝑉|2〉/〈|𝑆𝐻𝐻|2〉) >  2𝑑𝑏, 〈|𝑇𝑉|〉 =
1

30
[

15 −5 0
−5 7 0
0 0 8

] 

 

Based on the coherency matrix of the volume scattering component the power of volume scattering is 

obtained as, 

         𝑃𝑣 = 4𝑇33 − 2𝑃ℎ − 8𝑓𝑤|𝜌|2   𝑜𝑟 𝑃𝑣 =
15

4
𝑇33 −

15

8
𝑃ℎ −

15

2
𝑓𝑤|𝜌|2      

The equations containing the coefficient for surface and double bounce scattering is given as, 

           

𝑆 =  𝑓𝑠+  𝑓𝑑|𝛼|2 = 𝑇11 −
𝑃𝑣

2
−

𝑓𝑤

2
|𝛾 + 1|2 

𝐷 =  𝑓𝑑|𝛽|2 + 𝑓𝑑 = 𝑇22 − 𝑇33 −
𝑓𝑤

2
(|𝛾 − 1|2 − 4|𝛾 + 1|2) 

𝐶 =  𝑓𝑠𝛽∗ + 𝑓𝑑𝛼 = 𝑇12 −
𝑓𝑤

2
(𝛾 + 1)(𝛾 − 1)∗ 

 

Based on the sign of   Re〈𝑆𝐻𝐻𝑆∗
𝑉𝑉〉  the surface and double bounce scattering is estimated. In terms of 

coherency matrix elements, the Re〈𝑆𝐻𝐻𝑆∗
𝑉𝑉〉   term is estimates as follows,  

𝐶0 =  𝑇11 + 𝑇22 +  𝑇33 + 𝑃ℎ 

If there is a dominance of surface scattering.  Then Re〈𝑆𝐻𝐻𝑆∗
𝑉𝑉〉 > 0    i.e. 𝐶0 > 0 . In this case, the double 

bounce scattering is negligible. The surface and double bounce scattering power is given as,           

𝑃𝑠 = 𝑓𝑠(1 + |𝛽|2) = 𝑆 +
|𝐶|2

𝐷
 

𝑃𝑑 = 𝑓𝑑(1 + |𝛼|2) = 𝐷 −
|𝐶|2

𝐷
 

If  Re〈𝑆𝐻𝐻𝑆∗
𝑉𝑉〉 < 0    the 𝛽 = 0 , the double bounce scattering is dominant. Then the power of the double 

bounce and the surface scattering is obtained as follows, 

𝑃𝑠 = 𝑓𝑠(1 + |𝛽|2) = 𝑆 −
|𝐶|2

𝐷
 

𝑃𝑑 = 𝑓𝑑(1 + |𝛼|2) = 𝐷 +
|𝐶|2

𝐷
 

 

Above are the power of different scattering elements. 

 

 

Geocoding of extracted PolSAR parameters 

The PolSAR data are captured on the side looking geometry which leads to distortions like shadow, layover, 

and foreshortening. To correct all these distortions and to Geo-Register the image, geocoding is required 

using Digital Elevation Model (DEM). The DEM used was the Shuttle Radar Topographic Mission (SRTM). 

Equation 4-18 

Equations 4-19 

    Equation 4-20 

Equations 4-21 

Equation 4-22 

Equation 4-17 
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PolSAR parameters extracted from both Radarsat 2 and ALOS PALSAR data were geocoded to the 

projection UTM Zone 45 and Datum WGS 84. 

 

Co-Registration and Subsetting of SAR and Hyperspectral Image 

Co-registration is a vital step in the process of fusion as both the input images should precisely get overlaid 

on each other. The atmospherically corrected Hyperion was precisely co-registered with the geocoded 

Radarsat 2 and ALOS PALSAR and the common are from all three datasets were subsetted. 

4.2. Pixel level fusion 

 

Next step was the fusion at the pixel level. This is the lowest level of fusion where the images were fused 

pixel to pixel. In this study Hyperion image was fused with the span image of Radarsat 2 and ALOS PALSAR 

using three pixel level fusion techniques. They are, 

1. High pass filter fusion, 

2. Wavelet fusion 

3. Gram-Schmidt fusion 

The above methods were chosen to preserve the spectral property of the Hyperion image in the fused 

product. Later the SVM based classification and cross validation based accuracy assessment of the model 

was performed on the fused products. Finally, the optimal fusion technique and also the fusion pair that is 

either Hyperion and Radarsat 2 or Hyperion and ALOS PALSAR was found based on the overall accuracy 

and kappa. Individual class accuracies were also analyzed for each of the fusion techniques. Below Figure 4-

2 represents the adopted pixel level fusion methodology. 

 

 

 

Pixel level fusion 

 

 

 

 

 

 

 

 

 

Pixel level fusion of Radarsat 2 (Span Image) 

+Hyperion and ALOS PALSAR (Span 

Image) + Hyperion 

High pass filter fusion Wavelet Resolution 

merge 

Gram-Schmidt resolution 

merge 

Classification, Accuracy 

assessment and Comparison 
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Next heading of this section is about the working of the adopted pixel level fusion techniques. 

 

 High pass filter fusion 

In this method, the high spatial resolution image is filtered with a high pass filter. This results in the data 

containing high frequency information. Then it is added pixel wise to the low resolution bands ( Pohl & 

Van Genderen, 1998). Below block diagram (Metwalli, Nasr, Allah, & El-Rabaie, 2009) shows the process 

of HPF fusion. 

 

 

 

 

 

 
 
 
 
 
 
 

 
 
The stepwise algorithm is as follows, 

 Read pixel sizes from Image files and calculate R, where R is the ratio of low resolution 

cell size to high-resolution cell size. 

 Apply the High-pass filter to the high spatial resolution.  

 Using HPF Kernel, the high spatial resolution image is filtered which produces a high pass 

filtered image. The size of kernel depends upon the value of R.  

 Resample the low resolution image to the pixel size of the high-pass image. 

 Add the HPF image to each low resolution image band. The HPF image is weighted relative 

to the global standard deviation of the each low resolution band. 

 Stretch the new fused image to match the mean and standard deviation of the original 

(input) low resolution image. 

Therefore, the relevant parameters that need to be considered for the fusion using HPF are the R value, 

Low resolution image Resampling 
Resampled low 

resolution image 

 

High resolution 

image 

High pass 

filter 
High spatial 

detail image 

Sharpened 

Image 

Figure 4-3 Pixel level fusion 

Figure 4-4 HPF fusion technique 
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Kernel size and the weighting factor to determine the crispness of the output image. Table 4-1 shows the 

parameter values for the HPF fusion technique 

                             Table 4-1 Parameter values for HPF fusion 

 

Parameters 

Hyperion + Radarsat 2 (SPAN) 

& 

Hyperion + ALOS PALSAR(SPAN) 

R Value 1.55 

Kernel size 5 

Kernel centre value 24 

Weighting factor 0.25 

 

 

 Wavelet Fusion 

Remotely sensed image analysis using wavelets is similar to Fourier transform analysis except the fact that 

in Fourier transform long continuous waves are used and in wavelet transform short continuous waves are 

used. The key element in wavelet transform is the selection of the base waveform to be used. This base 

waveform is called the mother wavelet, and it is used to represent the image. The input signal (image) is 

broken down into successively smaller multiples of this basis. 

 

A signal is decomposed into a multi-resolution representation with both low detail and high detail 

information content using discrete wavelet transform (Li, Kwok, & Wang, 2002). When used for image 

fusion, the source images are first geometrically registered, and then decomposed by DWT to the same 

resolution. Corresponding wavelet coefficients are combined, and the fused image is obtained by performing 

the inverse wavelet transform (Li et al., 2002).  Below diagram shows the discrete wavelet transform (DWT) 

of an input image. In the below image hφ and hᵠ represents the low pass and high pass filters respectively. Wφ, 

Wφ
h

, WV
ᵠ, WD

ᵠ are the approximation coefficients, horizontal coefficient, Vertical co-efficient, diagonal 

coefficients respectively (Gonzalez & Woods, 2001). 
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In the inverse discrete wavelet transform (IDWT) the reduced images are then passed through the low pass 

and high pass reconstruction filters to obtain the output image. This process is the inverse of DWT where 

the sub images are upsampled along the rows and convolved along the columns with the filters. The obtained 

output are combined and upsampled along columns and then by row wise it is filtered to get the original 

image. 
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Figure 4-5 Discrete wavelet transform 
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The algorithm of wavelet resolution merge (Li et al., 2002) is as follows, 

 Decompose the high spatial resolution image through several iterations using the wavelets 

until low pass image is generated along with all the corresponding high pass images derived 

during recursive decomposition. 

 The obtained low pass image from the high spatial resolution image is replaced with the 

low spatial resolution image 

 Inverse decomposition takes place using the high pass images derived from the 

decomposition and high resolution image was obtained. 

 

 

 

 

 

     

 

 

 

 

 

  

 

 Gram –Schmidt fusion 

The Gram-Schmidt merge is based on the Gram-Schmidt orthogonal transformation. Gram-Schmidt 

orthogonal transform is a common method which is being used in the multivariate statistics ( Lu & Zhang, 

2014). Conversion of non-orthogonal basis which is a set of linearly independent vectors to a set of 

orthonormal basis which is a set of orthogonal unit length vectors is the Gram – Schmidt process. The 

Gram-Schmidt process consists of taking each vector and then subtracting the elements in common with 

the previously obtained vectors (Klonus & Ehlers, 2007). The algorithm of Gram –Schmidt fusion process 

(Klonus & Ehlers, 2009) is as follows, 

  A gray scale band from the lower spatial resolution spectral bands of spectral image is 

generated.  

 Gram-Schmidt transformation is applied to the on the simulated gray scale band and the 

spectral bands, using the simulated gray scale band as the first band. 

High Spatial 

Resolution 

High spectral 

resolution 

a         v  

 

h         d 

  

 a           v 

 

h d 
Fused Image 

DWT 

IDWT 

Figure 4-6 Inverse discrete wavelet transform 

 Figure 4-7 Wavelet fusion 
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 Next step is to swap the high spatial resolution band with the first Gram-Schmidt band. 

 Inverse Gram-Schmidt transformation is applied to form the fused image with high 

spectral and spatial resolution. 

   

 

 

                                          

  

     

     

      

 

 

 

4.3.  Feature level fusion 

 
The second level of fusion performed was the feature level fusion. Here the features were extracted from 

different sources and then a feature vector was formed to perform SVM classification and accuracy 

assessment. The features from Hyperion was extracted using Kernel based principal component analysis 

method and the features from fully polarimetric SAR data was extracted using MCSM decomposition. The 

main purpose of KPCA is to generalize the PCA method for the nonlinear case as the higher dimensionality 

data is more sensitive to non-linearity. Also, KPCA considers the higher order information of the datasets 

and gives more principal components than the normal PCA. In the case of SAR images, MCSM 

decomposition was used to extract information. Decomposition of polarimetric SAR is useful in extraction 

of the features such as urban, vegetation, smooth surface features such as barren land, water, road features, 

etc. In the case of MCSM, it is useful in extracting the urban features prominently based on their scattering 

property. The Figure 4-8 shows the methodology and the methods adopted for performing feature level 

fusion.  

 

High Spectral 

resolution Image 

Generation of a 

low resolution 

grey scale band 

Gram 

Schmidt 

Trans. 
Gram 

Schmidt 

Trans. 

Gram Schmidt 

Transformed Image (First 

band is the low resolution 

grey scale band) 

Gram Schmidt 

Transformed Image (First 

band is the high 

resolution grey scale 

band) 

Swapping 

Fused Image 

Inverse Gram-

Schmidt Trans. 

Figure 4-8 Gram Schmidt fusion 
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Below are explanation of feature extraction methods adopted for the feature level fusion. 

 Kernel Principal Component analysis based feature extraction in Hyperion 

Linear Principal component analysis is the linear dimensionality reduction and feature extraction technique 

which works on the second order statistics. In real, the data is not linear, hence, the use of kernel based 

principal component analysis which works on higher order statistics comes into the picture (Fauvel, 

Chanussot, & Benediktsson, 2006). Schölkopf, Smola, & Müller (1997) have shown that even if the mapped 

feature space F has arbitrarily large dimensionality the PCA can be performed for some choices of φ using 

the kernel functions. According to Schölkopf et al. (1997) a data 𝑥𝑘  , where 𝑘 = 1, … , 𝑙  is mapped to a high 

dimensionality feature space F as φ(x1)……φ(xl) and, it is centered at  

 

     ∑ 𝜑(𝑥𝑘) = 0𝑙
𝑘=1  

 

Here l is the total number of representative samples 

After the mapping of data to a higher dimensional space F, to find PCA of the covariance matrix the 

necessary parameters called the Eigenvalues λ and the Eigenvectors V needs to be calculated. The covariance 

matrix is given as, 

 

     𝐶 =
1

𝑙
∑ 𝑥𝑗𝑥𝑗

𝑇𝑙
𝑗=1      

The Eigen vectors V ε F\ {0} and the λ values ≥ 0 from which it is understood that, 

 

Hyperion Radarsat 2 /ALOS PALSAR 

Feature Extraction using Kernel 

Principal Components 

Feature Extraction using MCSM 

Decomposition 

 

Classification and Accuracy assessment 

Feature Vector 

      Equation 4-23 

      Equation 4-24 

Figure 4-9 Feature level fusion 
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     𝜆𝑉 = 𝐶𝑉   

 

Since the Eigen Vector lies in between φ (𝑥1)…….φ (𝑥𝑘), the resulting equation is, 

 

     𝜆(𝜑(𝑥𝑘). 𝑉) = 𝐶(𝜑(𝑥𝑘). 𝑉) For all k=1….l  

     V=∑ 𝛼𝑖 
𝑙
𝑖=1 𝜑(𝑥𝑖) 

where,  

αi =Co-efficient 

By substituting V and C in the equation, we obtain, 

            𝑙𝜆𝐾𝛼 = 𝐾2𝛼   

Where K is the matrix of size l*l 

      

The solution for the above equation is obtained by solving the Eigen value problem given below for the 

non-zero Eigenvalues. 

            𝑙𝜆𝛼 = 𝐾𝛼    

By normalizing the solutions of 𝛼𝑘 which belongs to non-zero Eigen values and also the corresponding 

vectors in F is normalized we get, 

   1=∑ 𝛼𝑖
𝑘𝑙

𝑖,𝑗=1 𝛼𝑗
𝑘 (𝜑(𝑥𝑖). 𝜑(𝑥𝑗)) = (𝛼𝑘. 𝐾𝛼𝑘) = 𝜆𝑘(𝛼𝑘. 𝛼𝑘)  

   

 To extract the principal components, the projections of the image at a point onto the Eigen vectors in F is 

computed as, 

    (𝑉𝑘 . 𝜑(𝑥)) = ∑ 𝛼𝑖
𝑘𝑙

𝑖=1 (φ(𝑥𝑖). φ(x)) 

Where, 

𝑉𝑘 = Eigen Vectors 

α = Column vectors. 

Schölkopf et al. (1997) have found that the main advantage of using kernel based PCA is that it improves 

the recognition capability of the non-linear PCA components when compared with the linear PCA 

components. 

 

 MCSM based feature extraction in Radarsat 2 and ALOS PALSAR 

The extraction of features from the fully polarimetric data sets were performed using MCSM decomposition 

to obtain the Surface, Double bounce, Helix, Volume and Wire scattering parameters. The detailed 

description had been discussed earlier in this chapter. 

 

Next section is about the decision level fusion.  

Equation 4-25 

Equations 4-26 

  Equation 4-27 

Equation 4-28 

Equation 4-29 

Equation 4-30 
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4.4. Decision level fusion 

The third and the highest level of fusion is the decision level fusion. Here the original source images namely 

the Hyperion, extracted MCSM polarimetric parameters from Radarsat 2 and the ALOS PALSAR were first 

classified and the obtained rule images were stacked together to form a feature vector. So there were two 

feature vectors formed, one was for the Hyperion and Radarsat 2 pair and the other one was for Hyperion 

and ALOS PALSAR pair. These rule images are the priori output of the classification. These rule images 

consist of the membership values of the belongingness of a pixel to a particular class based on the distance 

from the fitted decision line. In general, the SVM multiclass classification works on two types of strategies. 

They are  

 One Against All (OAA) 

 One Against One (OAO) 

Since in this research, the SVM used was based on the “One Against All (OAA)” strategy, eight rule images 

were obtained for the eight defined classes and a second SVM classification was applied to the feature 

vectors to decide the final class membership of each pixel based on the fitted decision line. The one against 

all strategy was used in this research as it is computationally better than the one Against One (OAO)” 

strategy. Finally, the accuracy assessment was performed for the information fused outputs. The adopted 

methodology for the decision level fusion is shown in the figure 4-9. 
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Figure 4-10 Decision level fusion 
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 One Against All multiclass SVM classification 

Initially, the SVM were developed as a binary classifier. Now it’s being used to solve the multiclass problems. 

There are two mostly used approaches namely One Against All and One Against One strategies being used 

to solve the above problem (Waske & van der Linden, 2008).. In the case of OAA strategy, there are a set 

of n binary classifiers are trained to separate each class from the remaining classes (Waske et al., 2007). 

Therefore n rule images are obtained which consists of the maximum distance from the fitted decision line, 

and this decides the final class membership of a pixel. Below is the depiction of OAA Aisen (2006) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    

4.5. Classification and Accuracy Assessment 

 

4.5.1. Classification 

 
Classification using Support Vector Machine was performed after each level of fusion for the fused output 

from Hyperion + Radarsat 2 and Hyperion + ALOS PALSAR. Level 2 classification scheme of NRSC was 

adopted. The reason behind the choice of SVM classification was due to the high dimensionality of the 

hyperspectral dataset the well-known problem known as the Hughes phenomenon occurs. Hughes 

phenomenon is related to the number of training samples taken in relation to the dimensionality of the data. 

As the dimensionality of the data increases at a certain point, the prediction accuracy gets decreased.  This 

is because of the less training samples with respect to the number of bands of the hyperspectral data. 

Generally, in this case, feature selection or extraction is applied to the high dimensional dataset but the SVM 
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B CLASS 

C CLASS 

B 
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Figure 4-11 SVM OAA Classification 
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is more robust than any other classifier, and it is less sensitive to the Hughes phenomenon.  

 Support Vector Machines and Kernels 

 

Support vector machines is a supervised non-parametric and statistical learning technique. In this technique, 

there is no underlying assumption of the data (Mountrakis, Im, & Ogole, 2011). Given a set of labelled data, 

the SVM algorithm finds a hyperplane which separates the dataset into the defined classes.  The optimal 

separation hyperplane indicates the decision boundary that helps in minimizing the miss-classifications. SVM 

classifier is a linear binary classifier in its simplest form. In the linear case of SVM, the assumption is that 

the data are linearly separable in the input space (Mountrakis et al., 2011).  

Below explanation of the support vector machines is described based on the work of Melgani & Bruzzone 

(2004). 

Let us consider a set of training samples i=1, 2…, N in a feature |space Xi and there are two classes which 

are linearly separable. Hence, it is possible to find an optimal hyperplane that separates the two classes. 

Therefore, the discriminant function is given as, 

𝑓(𝑥) = 𝑊. 𝑥 + 𝑏 

Where, 

W = Vector that defines the hyperplane, 

b = bias that can separate two classes without errors. 

 

    

Figure 4-11 SVM Linear classification (Bruzzone et al., 2010)   

  

To get the optimal hyperplane, the parameters such as W and b has to be found. This is given as, 

 

    𝑦𝑖(𝑊. 𝑋𝑖 + 𝑏) > 0   Where 𝑖 =  1, 2 … . , 𝑁 

 

H – Hyperplane 

H+ and H- are the 

 Two classes 

Equation 4-31 

   Equation 4-32 
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The primary objective of SVM is to find the maximum distance between the training samples that are 

available closely and to the hyperplane that is separating. This distance is given a equal to 1/||W|| such 

that, 

 

    min 𝑖 (  𝑦𝑖(𝑊. 𝑋𝑖 + 𝑏)) ≥ 1 Where 𝑖 = 1, 2, … . . , 𝑁          

                        

Therefore, the geometrical margin between the two classes can be given as 2/||W||, and the optimal 

hyperplane is found out by, 

        

      

This optimization problem is translated into a dual problem using Lagrangian formulation AS 

 

 

Where αi is the Lagrange multiplier and now the discriminant function becomes dependent on both the 

Lagrange multiplier and also the training samples as, 

 

𝑓(𝑋)  =  ∑ 𝛼𝑦𝑖(𝑋𝑖 . 𝑋) + 𝑏𝐼∈𝑆  

 

Corresponding to the non-zero Lagrange multipliers’ 𝑆 is then subset of training samples. In determining 

of the discriminant function the Lagrange multipliers weight each of the training sample according to the 

importance determining the discriminant function. Support vectors are the training samples associated to 

nonzero weights. These support vectors lie exactly at a distance 1/||W||   to from the optimal hyperplane. 

In real cases, it is not possible that there are linearly separable cases. In the case of non-separable data, the 

solution is that expresses the combination of two criteria. The criteria are the margin maximization as in the 

previous case and the error minimization to penalize the wrongly classified samples. Hence, the new 

function is given as, 

 

𝜓(𝑊, 𝜉) = 1/2(||𝑊||)2+C∑ 𝜉𝑖
𝑁
𝑖=1  

 

In the above equation, 𝜉𝑖 called the slack variable is introduced to account for the non-separability of the 

data and C is the regularization or the cost parameter that allows to control the penalty assigned for the mis-

 Minimize :
2

||𝑤||
 

Subject to: 𝑦𝑖(𝑊. 𝑋𝑖 + 𝑏)) 

 

 

 

 

Equation 4-2 

 Equation 4-33 

      Equation 4-34 

Equation 4-35 

Equation 4-36 
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classification of the samples. It is to be noted that the larger the C value larger is the penalty associated with 

the miss-classification and vice-versa. 

To improve the above method of separating the two inseparable classes is to generalize the above method 

to non-linear discriminant function using kernels. In general, a kernel corresponds to the inner dot product 

of two features in a feature space based on some mapping.  

 

           Where φ is the mapping term. 

 

According to mercer’s theorem, every semi-positive definite function is a kernel. To be a valid kernel in 

SVM, the kernel function needs to fulfill mercer’s theorem (Scholkopf & Smola, 2002). Most standard kernel 

functions used in SVM are Polynomial, Sigmoid and Radial basis function kernels. 

 

 

 

Linear Kernel: 

 

 

 

Polynomial Kernel:  

 

This kernel computes the inner product of all monomials up to degree p 

 

𝐾 (𝑥, 𝑥𝑖) = (𝑥.𝑥𝑖 + 1) P 

 

Radial Basis Function Kernel: 

K (x, xi) =  
𝑒𝑥𝑝(−∥𝑥−𝑥𝑖∥)2

2𝜎2
 

 

Sigmoid Kernel:  

 

 

 

 

Equation 4-37 

   Equation 4-38 

   Equation 4-39 

Equation 4-41 

Equation 4-40 
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Figure 4-12 Nonlinearity mapping in high dimensional feature space using Kernel (Bruzzone et al., 2010) 

  

 

Therefore using of the kernel can avoid the computation effort and solve the dual problem, as it avoids 

the computation of the inner products in the transformed space. Hence, the final discriminant function is 

expressed as, 

𝑓(𝑋) = ∑ 𝛼𝑖𝑦𝑖𝑖∈𝑆 𝑘(𝑋𝑖,𝑋) + 𝑏 

 

4.5.2. Accuracy assessment  

 
Accuracy assessment is one of the necessary steps in validating the methods and methodology adopted. In 

this research the cross-validation based model evaluation and accuracy assessment was adopted. In 

particular, the hold-out method of cross validation was performed with Training set, Test set and validation 

set. Following is the explanation of cross validation in general, holdout method of cross validation and 

optimization of kernel parameters. 

 

 

 Cross Validation 

Cross-validation, is also called as rotation estimation (Kohavi, 1995), is a model validation technique which 

is used to evaluate the results of how the analysis based on statistics will generalize to an independent data 

set. The basic idea of cross validation is to train the classifier with the training set and test it with the entirely 

new test dataset. The different methods of cross-validation are, 

 Holdout cross validation 

 K-fold cross validation 

 Leave one out cross validation 

 

In this research Hold out method cross validation was used and spatially uncorrelated samples were taken 

as training, validation, and test sets. Below is the description of the method. 

X is the input space 

F is the high dimensional 

feature space 

Φ is the mapping function 

 

 

 

 

Equation 4-42 
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 Hold out method with parameter tuning 

This the simplest method of cross-validation. Hold out method was performed for this research to train the 

SVM classifier and to test it. This method is also called as the test sample estimation method as the data is 

divided into two mutually exclusive subsets of the training set and a test set or a holdout set (Kohavi, 1995). 

Additionally, a validation set was used to fine tune the kernel parameters. 

   

    

     

 

The validation set is used to fine tune the kernel parameters. In case of radial basis function the parameter 

is gamma (ɣ) and the SVM cost parameter C. In polynomial kernel the parameters are degree, gamma, 

coefficient and the SVM parameter C. In sigmoid kernel it is gamma and coefficient along with the SVM 

parameter C. A grid search is one of the methods to define a set of candidate values for the parameter which 

is to be optimized. These parameters were tested, and the optimum values of the parameters were obtained 

based on the higher accuracy on the validation set. Below is an example of assigning values for each 

parameter in a grid search. 

Cost C є {1, 50, 100, 150, 200, 250, 300} 

   Degree p є {1, 2, 3} 

   Co-efficient C0 є {1, 5, 10} 

   Gamma γ є {0.05, 0.10, 0.15, 0.20,…, 1} 

The parameters have to be well optimized and if not the overfitting or the under fitting problem of the 

model occurs. 

4.5.3. Comparative Analysis: 

Finally, a comparative analysis was made between the three levels of fusion and the two pairs of the products. 

The optimum level of fusion and also the pair was chosen based on the accuracy of the classification. 

 

 

 

 

 

 

 

 

 

 

Training Set Validation set  Test Set 

Figure 4-13 Samples for cross validation 



FUSION OF DUAL FREQUENCY FULLY POLARIMETRIC DATA AND HYPERSPECTRAL DATA FOR ENHANCED LANDCOVER CLASSIFICATION 

 

48 

5. RESULTS AND DISCUSSION 

5.1. Results    

5.1.1. Results of Pixel level fusion   

At this level of fusion, a comparative analysis was made for different pixel level fused products of Hyperion 

and SPAN data extracted from PolSAR data (Radarsat-2 & ALOS PALSAR) and their classified outputs. 

The results of the classified outputs of the fused products are shown in the Figure 5-1.  The summary of 

the classification parameters and the accuracy is given in the Table 5-1 

 

High pass filter fusion 

The fusion of Hyperion+Radarsat 2 (span) and Hyperion+ALOS PALSAR (span) preserved the spectral 

characteristics of Hyperion with minimal spatial distortion. The fused products are shown in the Figure 5-1 

(A and B). 

 

                                    

(A)                                                                                               (B) 
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Wavelet fusion 

Wavelet fusion of Hyperion+Radarsat 2 and Hyperion+ALOS PALSAR preserved the spectral property of 

Hyperion to a certain extent, but there were spatial distortions in both the fused products. The fused images 

are shown in the figure 5-1 (B and C).  

 

                                
         (C)                                               (D) 

 

   

Gram-Schmidt Fusion 

In this fusion, the spectral properties were not well preserved. It produced a spectrally distorted image as 

shown in the Figure 5-1(E and F). 
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 (E)                                                  (F) 

 
Figure 5-1 Fused results of pixel level fusion - (A) - HPF fusion of Hyperion and Radarsat 2  (B)- HPF fusion of 
Hyperion and ALOS PALSAR (C) –  Wavelet fusion of Hyperion and Radarsat 2 , (D) – Wavelet fusion of Hyperion 
and ALOS PALSAR, (E) – Gram-Schmidt fusion of Hyperion and Radarsat 2, (F) – Gram-Schmidt fusion of Hyperion 

and ALOS PALSAR. 

 Classification and the accuracy assessment of the fused products 

The classification was performed on all the pixel level fused products using non-linear support vector 

machines. The kernel function used for SVM was the radial basis function. Further the accuracy assessment 

was carried out using cross-validation based hold out method. Based on the ground truth data, the spatially 

uncorrelated pixels were taken as the training set, test set and validation set for each of the fused products 

and also for the original Hyperion. The SVM model was fine-tuned based on the accuracy obtained using 

validation set and the kernel parameter gamma and the SVM parameter C were chosen. Table 5-1 shows 

the summary of the parameter values chosen and the accuracy obtained for the classification of the fused 

products. Below are the classified images of the fused products and the original Hyperion image.    
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                                   (A)                                                    (B)      (C) 
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(D)    (E)            (F)     (G) 
              

 

 

Figure 5-2 Classified images of pixel level fusion - (A)-Original Hyperion image, (B) - Wavelet fusion (Hyperion+Radarsat 2), (C)-Wavelet fusion (Hyperion+ALOS PALSAR), 
(D)-HPF fusion (Hyperion+Radarsat 2), (E)-HPF fusion (Hyperion+ALOS PALSAR), (F)-Gram-Schmidt fusion (Hyperion+Radarsat 2), (G) – Gram-Schmidt fusion 
(Hyperion+ALOS PALSAR. 
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Table 5-1 Summary of the classification parameters, and the accuracy assessment – Pixel level fusion 

                        Data set 

 

Classification 

 and Accuracy Parameters 

Hyperion Wavelet fusion 

 

 

RS2+HSI      AP+HSI 

High pass filter 

fusion 

 

RS2/HSI      AP+HSI 

Gram-Schmidt 

fusion 

 

RS2+HSI      AP+HSI 

Cost Parameter 100 180          230 120         25 200         180 

Gamma 0.75 0.20         0.40 0.25        0.85 0.95        0.95 

Kernel RBF RBF        RBF RBF        RBF RBF       RBF 

Total Support 

Vectors 

385 1949        953 948         385 1889       514 

OA 66.599 64.293     65.261 70.661    67.274 51.862     51.273 

Kappa 0.565 0.561       0.568 0.635      0.601 0.328       0.305 

 

 

 
Figure 5-3 Comparison of overall accuracy and kappa of pixel level fusion techniques 
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The graphs (Figure 5-4 and Figure 5-5) represents the individual class accuracies for the defined land cover classes. 

 

 

 
Figure 5-4 User’s accuracies of the defined classes from the classified outputs of the Hyperion and Pixel level fused products 
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     Figure 5-5 Producer’s accuracies of the defined classes from the classified outputs of the Hyperion and Pixel level fused products 
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5.1.2. Results of Feature level fusion 

 
The results obtained after feature level fusion performed by forming a feature vector of KPCA components 

extracted from Hyperion and the MCSM parameters extracted from the fully polarimetric SAR data.  

 Feature extraction from Hyperion using KPCA 
The kernel based PCA was performed using the radial basis function with a gamma value of 0.583. 

Unsupervised K-means was performed using random training samples. The distance between the training 

samples were considered for choosing the gamma value. Below are the obtained principal components using 

kernel method.  

                                             
    Component 1    Component 2    Component 3 

                                             

    Component 4    Component 5    Component 6 
 

        Figure 5-6 Principal components using KPCA 
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 Multicomponent scattering model parameters 

The Multicomponent scattering model decomposition was performed on the fully polarimetric SAR data 

to extract the information using different scattering mechanisms such as the Double bounce scattering 

and Helix scattering for the extraction of urban features, Volume scattering for extracting the vegetation 

cover, Surface scattering for the moderately smooth scatterers and the wire scattering for extracting the 

thin canonical objects in the urban region. Below are the obtained MCSM components of RS2 and ALOS 

PALSAR images. The spatial resolution of the obtained images were at 20 meters. 

                

   Double Helix Scattering            Surface Scattering                     Volume Scattering              Wire Scattering 

 

               

 Double Helix Scattering             Surface Scattering           Volume Scattering                Wire Scattering 

 
               Figure 5-8 MCSM components of ALOS PALSAR 

Figure 5-7 MCSM parameters of Radarsat 2 
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False colour composite of the feature vectors formed using KPCA and MCSM components 

Hyperion + Radarsat 2                         Hyperion + ALOS PALSAR 

 

               

(A)                                                                                                              (B) 

Figure 5-8 False colour composite of the feature vectors R-Double Helix Scattering, G – KPCA component 6, B – 
KPCA component, (A)-Hyperion and Radarsat 2 (B) - Hyperion and ALOS PALSAR  

 Classification and accuracy assessment of the feature vectors and the SAR datasets 

 
After extracting the feature vectors from hyperspectral and PolSAR data the classification was performed 

using non-linear support vector machines. The kernel function used was the radial basis function for the 

classification of Hyperion and the feature vectors and polynomial kernel for the individual PolSAR datasets. 

In the case of the accuracy assessment was performed using cross-validation based hold out method. The 

spatially uncorrelated pixels were taken as the training set, test set and validation set for each of the feature 

vector and the fully polarimetric SAR datasets. The SVM model was fine-tuned based on the accuracy 

obtained using validation set and the kernel parameter gamma and the SVM parameter C were chosen. Table 

5-2 shows the summary of the parameter values chosen and the accuracy obtained for the classification of 

the fused products. Figure 5-13 shows the classified images of the Hyperion, individual PolSAR data and 

fused products at feature level fusion.  

In the below images RS2 indicates Radarsat 2
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                                  (D)                                                                                                                          (E) 
              

 

Figure 5-9 Feature level fusion - (A)- Hyperion, (B)- Radarsat 2, (C)- ALOS PALSAR,(D)-Hyperion+Radarsat 2, (E)-Hyperion+ALOS PALSAR 
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Table 5-2 Summary of the classification parameters, and the accuracy assessment – Feature level fusion 

Dataset 

 

 

 

 

Classification  

and Accuracy parameters 

Hyperion Image Radarsat 2 

Image 

ALOS PALSAR 

Image 

Hyperion + 

Radarsat 2 

 

using 

KPCA and 

MCSM 

Hyperion + 

ALOS PALSAR 

 

using 

KPCA and 

MCSM 

Kernel RBF polynomial polynomial RBF RBF 

Cost Parameter 100 230 320 270 290 

Gamma 0.75 0.35 0.6 1.85 1.4 

Degree NA 2 2 NA NA 

Coeff0 NA 5 5 NA NA 

Total Support Vectors 385 557 970 623 381 

OA 66.599 39.641 43.331 73.604 76.568 

Kappa 0.565 0.279 0.376 0.679 0.713 

 
 

 

 

 
Figure 5-10 Comparison of overall accuracy and kappa - Feature level fusion

6
6

.5
9

9

3
9

.6
4

1

4
3

.3
3

1

7
3

.6
0

4

7
6

.5
6

8

0
.5

6
5

0
.2

7
9

0
.3

7
6

0
.6

7
9

0
.7

1
3

A
C

C
U

R
A

C
Y

DATA SET

COMPARISON OF OVERALL ACCURACY AND KAPPA -
FEATURE LEVEL FUSION

Over all accuracy Kappa





FUSION OF DUAL FREQUENCY FULLY POLARIMETRIC DATA AND HYPERSPECTRAL DATA FOR ENHANCED LANDCOVER CLASSIFICATION 

 

 

65 

 

             Figure 5-11 Userr’s accuracies of the defined classes from the classified outputs of the Hyperion, Radarsat 2, ALOS PALSAR and Feature level fused products
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       Figure 5-12 Producer’s accuracies of the defined classes from the classified outputs of the Hyperion and Feature level fused products 
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5.1.3. Results of Decision level fusion 

Decision level fusion was performed on the rule images which were the priori output of the SVM 

classification of Radarsat 2, ALOS PALSAR and the Hyperion images. Total 8 rule images were obtained 

for each of the classes for all the three datasets. The feature vector formed using the obtained rule images 

is shown in Figure 5-16 

True colour composite of the feature vectors formed using the rule images 

      

(A) (B) 

Figure 5-13 False colour composite of the feature vector, R-Rule image of Urban class – Fully polarimetric data, G – 
Rule image of Dense vegetation class – Hyperion, B- Rule image of Water class – Hyperion - (A)-Hyperion and 
Radarsat 2, (B)-Hyperion and ALOS PALSAR,. 

 Classification and accuracy assessment of the feature vectors and the SAR datasets 

The feature vectors obtained using the rule images were classified using the SVM second time to obtain the 

final class membership of the pixels. The training, test, and validation samples were taken based on the 

membership values of each pixel belonging to a particular class. The value ranges from 0 to 1. The values 

indicate the distance of the pixels to the fitted hyperplane of the SVM model. Lower the value closer is the 

pixel to the fitted hyperplane and vice-versa. A decision was made in a way that a range was set from 0.80 

to 1, and the pixels belonging to this specified range was considered as the training, test, and validation 

samples. Different kernels such as radial basis function, polynomial and sigmoid were tried, and the optimal 

kernel was chosen based on the overall accuracy.  Figure 5-19 shows classified images of the original data 

sets and the information fused datasets at decision level fusion. Summary of the classification parameters 

and the accuracy is shown in the Figure 5-4 and Figure 5-5.
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    (A)                                                                                  (B)                                                                                               (C 

                                                                                      
              

 

  (D)                         (E) 

Figure 5-14 Decision level fusion- (A)-Hyperion, (B)-Radarsat 2, (C)-ALOS PALSAR, (D)-Hyperion+Radarsat 2, (E)-Hyperion+ALOS PALSAR 
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Table 5-3 Summary of the classification parameters, and the accuracy assessment – Decision level fusion (Hyperion 
+ Radarsat 2 

 

 

Table 5-4 Summary of the classification parameters, and the accuracy assessment – Decision level fusion (Hyperion 
+ ALOS PALSAR) 

 

 



FUSION OF DUAL FREQUENCY FULLY POLARIMETRIC DATA AND HYPERSPECTRAL DATA FOR ENHANCED LANDCOVER CLASSIFICATION 

 

74 

 

 
Figure 5-15 Comparison of overall accuracy and kappa - Decision level fusion 

 
Figure 5-17 and Figure 5-18 shows the user and producer class accuracies for the defined classes at decision 

level fusion. In the below images RS2 indicates Radarsat 2
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            Figure 5-16 User’s accuracies of the defined classes from the classified outputs of the Hyperion, Radarsat 2, ALOS PALSAR and Decision level fused products
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      Figure 5-17 Producer’s accuracies of the defined classes from the classified outputs of the Hyperion, Radarsat 2, ALOS PALSAR and Decision level fused products
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5.1.4.  Results of the comparative analysis of all the three levels of fusion 

 
From the above obtained results of the three levels of fusion, the optimal combination of the fusion pair 

was chosen from each of the levels and then compared. The optimal pair was selected based on the overall 

accuracy and kappa. From the pixel level fusion technique, the optimal fusion pair was found to be Hyperion 

and Radarsat 2 for the high pass filter fusion technique. Similarly, for the feature level fusion and the decision 

level fusion, it was Hyperion and Radarsat 2. Figure 5-21 shows the comparative analysis overall accuracy 

and kappa at all the three fusion levels. 

 

 

 
Figure 5-18 Comparison of overall accuracy and kappa - All three levels of fusion 

 

 

Figure 5-20 and Figure 5-21 represents the individual class accuracies at all three fusion levels
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      Figure 5-19 Userr’s accuracies of the defined classes from the classified outputs of the Hyperion, Radarsat 2, ALOS PALSAR and  fused products at  all three levels of fusion 
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Figure 5-20 Producer’s accuracies of the defined classes from the classified outputs of the Hyperion, Radarsat 2, ALOS PALSAR and  fused products at  all three levels of fusion 

70

34.285

99.1

63.888 65.217

88.888

35.294

48.936

79.139

12.5

3

50

28

0 0

54.716

86.444

15.384

0

8

0 0 0

55.072

90.979

42.857 41.248

86.666

80

55.762

63

41.463

99.082

51.444

18.86

90.707

80.61

23.07
27.586

91.24

81.232

90

63.38

93.44 93.75 93.44

77.27

0
0

20

40

60

80

100

120

Urban Dense vegetation Sparse vegretation Crop land Barren land Water Dry river bed Coal mine

C
la

ss
 a

cc
u

ra
cy

Land cover classes

Comparative analysis of producer's accuracy - all three levels of fusion

Hyperion Radarsat 2 Alos PALSAR Hyperion+RS2 (HPF - Pixellevel fusion) Hyperion+Alos PALSAR (Feature level fusion) Hyperion+Alos PALSAR (Decision level fusion)



FUSION OF DUAL FREQUENCY FULLY POLARIMETRIC DATA AND HYPERSPECTRAL DATA FOR ENHANCED LANDCOVER CLASSIFICATION 

 

83 

5.2. Discussion 

This section deals with the discussions on the obtained results at pixel level, feature level and decision 

level fusions and the comparison of all three levels of fusion 

5.2.1. Discussion on pixel level fusion results 

 
The three pixel level fusion techniques namely the wavelet fusion, High pass filter fusion and Gram-Schmidt 

fusion were chosen because these techniques are highly suitable for preserving the natural spectral properties 

of the original Hyperion image and also improving the spatial resolution. Similarly, all the three fusion 

techniques have their own limitations. In case of wavelet resolution merge, due to the decomposition of the 

higher resolution image during the discrete wavelet transformation, the spatial distortion occurs in the fused 

image. In Gram-Schmidt fusion, it forms a low resolution grey scale image from the high resolution grey 

scale image and according to literature this method performs well for single sensor fusion. But it was used 

for this research to check how the fusion performs for the mentioned datasets. In the case of High pass 

filter fusion, the most important advantage is that it preserves the spectral properties of the original optical 

image. But in the case of higher spatial resolution, there are distortions in the spectral properties due to the 

improper selection of the parameters such as the kernel center value, filter size and added the weight of the 

high pass filtered image. A detail discussions on the pixel level fusion results are made below: 

 

Based on the obtained results, it was observed that the high pass filter fusion of Hyperion and Radarsat 2 

images (Figure 5-2 (D)) gave a better result in terms of overall accuracy and kappa value (Table 5-1) when 

compared with original Hyperion image and other fusion results. There was an improvement of around 3 

% in the overall accuracy of the HPF fused image when compared with the original Hyperion image. To a 

certain extent the high pass filter fusion of ALOS PALSAR and Hyperion (Figure 5-2 (E)) improved the 

classification accuracy by 0.7 %. Also, the Kappa value of the high pass filter fusion of both Radarsat 2 and 

ALOS PALSAR images were better when compared with the other fused results. The main reason could 

be due to the ability of the fusion technique to preserve the spectral properties of the original Hyperion 

image with a minimal spatial distortions. The results of the accuracy assessment of the pixel level fusion is 

given in the Table 5-1. 

 

In the case of Gram-Schmidt fusion, the results were comparatively poor which could be due to the multi-

sensor fusion and overall accuracies of both Hyperion+Radarsat2 and Hyperion + ALOS PALSAR reduced 

by 14 % (Table 5-1). The classified images are shown in the Figure 5-2 (G and H). 

 

It was found that the wavelet resolution merge for both the pairs provided nearly the same results and did 

not affect much in the improvement of the overall accuracy and kappa value(Table 5-1) when compared 

with the original Hyperion classified image. Also, one of the important observation was that there was spatial 

distortion in the fused image. This could be one of the reasons for the reduced classification accuracy.  
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5.2.2. Discussion on feature level fusion results 

The results of feature level fusion were obtained through the information fusion of the extracted features 

Hyperion through kernel based principle component analysis (Figure 5-6) and SAR datasets through MCSM 

decomposition (Figure 5-7 and Figure 5-8). The feature vectors (Hyperion+Radarsat 2 and Hyperion + 

ALOS PALSAR) formed are shown in the Figure 5-11 (A and B). Classification after the information fusion 

of Hyperion+ RS2 and Hyperion+ ALOS PALSAR, have resulted in the increase in overall accuracy and 

kappa (Table 5-2). The classified images are given in the Figure 5-12 (D and E). There is an improvement 

of around 10 %and 33 % in the overall accuracy of Hyperion + ALOS PALSAR fusion when compared 

with the individual datasets namely the Hyperion and ALOS PALSAR. In the case of the other pair, there 

is around 7% and 36% improvement n       in the overall accuracy in comparison with Hyperion and Radarsat 

2 (Table 5-2). In the case of class accuracies, the urban class accuracy (both producer’s and user’s accuracy) 

was improved from the fusion of RS2 with Hyperion and ALOS PALSAR with Hyperion the fusion with 

ALOS PALSAR when compared with the individual datasets. The main reason could be the MCSM 

decomposition technique used for the extraction of features in SAR datasets. This decomposition technique 

is capable of extracting the urban region from the fully polarimetric data.  The individual class accuracies of 

the dense vegetation and sparse vegetation also showed a good improvement in the case of Hyperion + 

ALOS PALSAR and Hyperion + Radarsat 2 respectively. A reason could be due to the high penetration 

power of ALOS PALSAR the dense vegetation could have been classified correctly. Since Radarsat 2 has a 

low penetration power the sparse vegetation is better in the fusion of latter. Due to the surface scattering 

which is prominent in the moderately rough surface regions, there was an increase in the both producer’s 

and the user’s accuracy of barren land in both the information fusion of Hyperion with RS2 and ALOS 

PALSAR. Also, the coal mining regions were classified, and the accuracy was improved which could also 

be due to the surface scattering parameter. The results of the accuracy assessment are given in the Table 5-

2 

Main reasons for the above results could be the feature extraction, in particular, the kernel based non-linear 

transformation of the Hyperion data played a significant role in improving the overall accuracy and also 

some of the class accuracies of the classified feature vectors namely the water and dry river bed which were 

not classified correctly in the individual ALOS PALSAR and RS2 images. Also the MCSM decomposition 

based feature extraction in SAR improved the class accuracy of the urban class.  

The accuracies could have been further improved if the classification of the SAR datasets were performed 

better. Due to the surface scattering property of the coal mines class, dry river bed class, barren land class 

and also the water class were creating confusion and were miss-classified (Figure 5-12 (B and C)). 

Overall the fusion of Hyperion and ALOS PALSAR comparatively gave a better result in terms of overall 

accuracy and kappa. 
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Next section is about the discussion on the decision level fusion results. 

5.2.3. Discussion on decision level fusion results 

 

In this level of fusion, different kernels such as radial basis function, polynomial and sigmoid were used to 

classify the Radarsat 2, ALOS PALSAR and the feature vectors of Hyperion + RS2 and Hyperion + ALOS 

PALSAR. The initial output of this level of fusion was the rule images of RS2, ALOS PALSAR, and the 

Hyperion images. These are the priori outputs of the SVM classification which consists of the membership 

values of the each pixel belonging to a particular class. Later the rule images of RS2 and ALOS PALSAR 

were stacked individually with the Hyperion (Figure 5-16 (A and B)). Second SVM was applied based on 

the training samples obtained from the stacked rule images and finally the class memberships were decided 

for each of the pixels. Different parameters such as gamma for RBF kernel, gamma, degree and Coeff0 for 

polynomial kernel and gamma and degree for sigmoid kernel were chosen based on grid search method on 

the validation set.  

 

From the obtained results, the decision level fusion significantly improved the classification accuracy of the 

fused product when compared with the original RS2 and ALOS PALSAR by a greater margin, but very less 

improvement was found in comparison with Hyperion. It was observed that the ALOS PALSAR and 

Hyperion fusion was better when compared with Radarsat 2 and Hyperion in terms of overall accuracy and 

kappa (Table 5-3 & 5-4). The individual classification of the PolSAR images proved less useful in terms of 

the overall accuracy. The reasons could be due to the similar backscatter range values for coal, barren land, 

dry river bed and water because of the smooth surface scattering. Highest overall accuracy and kappa was 

obtained when the polynomial kernel was used for the individual SAR images. In the SVM applied to the 

feature vectors, it was found that the RBF kernel improved the overall accuracy. The summary of the 

accuracy results and classification parameters are given in the Table 5-3 & 5-4 

 

In the case of individual class accuracies the urban, cropland, water, coal and dense vegetation classes of the 

fused images improved  in terms of producer’s accuracy in comparison with the individual images. The 

urban class improved due to the MCSM decomposition parameters extracted from PolSAR data. The 

accuracy of dense vegetation was high in Hyperion and ALOS PALSAR fusion result due to the higher 

penetration capability of ALOS PALSAR. The comparative analysis of the user and producer accuracies of 

the individual classes for decision level fusion is shown in the Figure 5-19 and Figure 5-10. 

From the obtained results, there was no such improvement in the overall accuracy when compared with 

Hyperion. The reason could be due to the poor classification of the SAR datasets which were of coarser 

spatial resolution as well as the classes namely the coal, barrenland, dry river bed and the water class were 

having the same range of backscatter values due to the surface scattering property. This lead to the 

misclassification of the classes. 
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Overall the fusion of Hyperion and ALOS PALSAR proved to be better in comparison with Hyperion and 

Radarsat which improved the classification accuracy by around 1.5% when compared with Hyperion and 

the individual SAR dataset by around 28 % in comparison with Radarsat 2 and 29% in comparison with 

ALOS PALSAR. 

Discussion on the results of the comparative analysis of all the three levels of fusion 

 

Based on the obtained results of all the three levels of fusion, the optimal data pair which gave highest 

overall accuracy and the kappa at each level of fusion was found to be, 

1. Hyperion and Radarsat 2 for the pixel level fusion (Table 5-1) 

2. Hyperion and ALOS PALSAR for the feature level fusion (Table 5-2) and  

3. Hyperion and ALOS PALSAR for the decision level fusion (Tables 5-3 and 5-4). 

Comparative analysis was made in terms of overall accuracy and kappa (Figure 5-21) among the three and 

the optimal fusion pair along with the level of fusion was obtained. Based on the analysis, the Hyperion and 

ALOS PALSAR pair have the highest overall accuracy at the feature level of fusion. The overall accuracy 

obtained was 76.568 % which was greater than the original Hyperion, Radarsat 2. At decision level fusion 

Hyperion and ALOS PALSAR fusion have the better overall accuracy of around 68%. 

 

The producer’s accuracy of coal mines, cropland, and urban classes was improved at feature level fusion of 

Hyperion and ALOS PALSAR fusion pair (Figure 5-22 & 5-23).  

The main reasons for the above obtained results on all three levels of fusion are, 

 

 Effective feature extraction from both the datasets could have resulted in high accuracy at feature 

level fusion.  

 The spectral preserving property of HPF is the main reason for improved accuracy at pixel level 

fusion.  

 Thirdly at decision level, there was no much improvement in accuracy when compared with the 

original Hyperion and the other fusion levels. This could be due to the improper classification of 

SAR datasets which resulted in the ineffective decision making process. 

 Coarser resolution of SAR datasets (20 meters resolution) was one of the important factors that 

had an effect on the obtained results. 

 The penetration capability of each Alos PALSAR and Radarsat 2 

 MCSM decomposition which is prominent in extraction of the urban features but it was less 

effective in the classification process of the PolSAR datasets. 

Above are the discussions on the obtained results using the adopted methodology and the methods. 

 

 



FUSION OF DUAL FREQUENCY FULLY POLARIMETRIC DATA AND HYPERSPECTRAL DATA FOR ENHANCED LANDCOVER CLASSIFICATION 

 

87 

6. CONCLUSION AND RECOMMENDATION 

6.1. Conclusion 

 
Land cover classification is one of the primary applications of the remotely sensed datasets. But due to the 

coarser spatial resolution or, the less spectral resolution of the space borne sensors, the interpretation of the 

features becomes difficult and affects the accuracy of classification. Hence, it is necessary to combine the 

complementary information from multiple sensors for better interpretation and classification. In this study, 

three levels of fusion namely the pixel level, feature level, and the decision level were performed using 

Hyperion data which has a high spectral resolution individually with Radarsat 2 C-band and ALOS PALSAR 

L-band which have a better spatial resolution and also contains polarimetric information. The main objective 

of this research work was to enhance and improve the land cover classification accuracy by the fusion of 

dual frequency fully polarimetric SAR and hyperspectral data.  

 

At the pixel level, three fusion techniques namely the Gram-Schmidt, High pass filter and wavelet fusion 

methods were tested. In the case of feature level fusion Kernel based principal component analysis was used 

as a feature extraction process in Hyperion and Multi component scattering model decomposition based 

extraction of features was used in case of polarimetric data and then the information were combined. The 

OAA strategy of SVM based fusion was performed at decision level where the decisions to combine 

information from both the sensors were made from the obtained rule images of the individual classes. 

 

Different kernels were tested apart from RBF for non-linear classification using SVM for ALOS PALSAR, 

Radarsat data and also for the classification of feature vectors at the decision level fusion. It was observed 

that the polynomial kernel gave a better overall accuracy when compared with the radial basis and sigmoid 

kernel as shown in the Table 5-5. For Hyperion and fused products classification at the pixel level and the 

feature vectors classification at feature level, the radial basis function was tested. In the case of accuracy 

assessment, cross validation based hold out method was performed. There was an increase in accuracy for 

the fusion of Hyperion and ALOS PALSAR at feature (Table 5-2) and decision level (Table 5-3 and Table 

5-4), whereas the fusion of Hyperion and Radarsat 2 with High pass filter fusion gave an improved accuracy 

at pixel level fusion (Table 5-1). 

 

From the comparative analysis, it was observed that the fusion of Hyperion and ALOS PALSAR L-band 

fusion at feature level provided an improved classification accuracy when compared to the Hyperion and 

Radarsat 2 C-band and the individual sources. Also, the kernel based support vector machine classification 

played a significant role in improving the classification. 
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6.1.1. Answers to the research questions 

 
1. How Multicomponent scattering model improves the feature extraction in fully 

polarimetric data? 

From the obtained results there were 5 scattering parameters obtained from the MCSM 

decomposition technique. They are the Surface scattering, Double bounce scattering, Helix 

scattering, Volume scattering and Wire scattering. This decomposition is mainly for the efficient 

extraction of urban features as the double bounce scattering, helix scattering, and wire scattering are 

more prominent in urban regions. Wire scattering is noticeable where there are thin canonical 

structures, helix scattering is prominent to identify the complex helical structures and the tall 

buildings give rise to the double bounce scattering. Similarly, the surface scattering parameter 

identifies the smooth surface scatterers. In this research, the smooth surface scatterers included ere 

the water bodies, barren land, coal region, and the dry river bed. The volume scattering helps in the 

identification of the vegetation features. As this model is more suitable for extraction of the urban 

region, from the individual classification of ALOS PALSAR and Radarsat 2 fully polarimetric data 

it was found that the urban class gave a more improved class accuracy than the other classes.  

 

2. Which pixel level fusion technique could give a satisfactory result for fusing hyperspectral 

data and span data extracted from quadpol data? 

There were three pixel level fusion techniques implemented namely the High pass filter fusion, 

Wavelet fusion, and Gram-Schmidt fusion. Among these three, the High pass filter fusion gave a 

satisfactory result by improving the overall accuracy of the fused product when compared with the 

original Hyperion image. Also, the spectral properties of the original Hyperion data was preserved 

to a greater extent in the fused product. 

 

3. How fusion of fully polarimetric SAR and hyperspectral data efficiently enhance the 

classification of urban and vegetation cover types? 

In the case of fusion of multi-sensor data, the sensors must be complementary to each other in 

providing information about the land cover features. In this research, the Hyperion data consists of 

a high spectral resolution with a number of contiguous spectral bands. This helps in distinguishing 

the spectrally similar features. In this study, the spectrally similar classes included the dense 

vegetation and sparse vegetation, urban features and the dry river bed region. Similarly, the MCSM 

decomposition performed on the fully polarimetric data provides an enhanced information about 

the urban feature. Also the co-polarized channels namely the HH and VV enhance the urban 

features interpretation and cross-polarized channel such as HV and VH are for the interpretation 

of vegetation features. It is evident from the obtained results that, in many cases the individual class 

accuracies of urban, sparse vegetation dense vegetation and cropland of the fused products have 
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shown improved accuracy results when compared with the individual sources. Hence, the fusion of 

fully polarimetric SAR and hyperspectral can efficiently enhance the urban and vegetation cover 

types.  

 

4. Which level of fusion and also which band along with the hyperspectral data can give an 

enhanced land cover classification? 

From the obtained results it was observed that the ALOS PALSAR L-band along with the Hyperion 

data can give an enhanced land cover classification at the feature level fusion. This was concluded 

based on the overall accuracy and the kappa value obtained after the support vector machines 

classification. 

 

6.2. Recommendation 

It is very important in any research to evaluate the quality of the resultant product. Though there has been 

an effective improvement in the accuracy of the fused product of Hyperion and ALOS PALSAR at feature 

level when compared with the individual sources and other levels of fusion, there are few important 

observations which could be taken into account for the future work.  They are, 

 

 Usage of very high resolution spaceborne polarimetric data and hyperspectral data could improve 

the fusion performance. 

 Feature selection technique like kernel based Hilbert space independence criterion could be used 

to select the features based on the defined classes that are relevant for the classification process. 

This could further improve the performance of feature level fusion. 

 Texture parameters based classification could be done if the polarimetric data is of high spatial 

resolution. This, in turn, would improve the classification of the individual SAR datasets as well as 

the performance of decision level fusion. 

 Decision level fusion on the Usage of “One Against One” strategy based SVM classification could 

improve the decision making and classification accuracy as it performs a pairwise discrimination of 

each of the classes from the other which does a particular class differentiation. Though it is a time 

consuming process, it could prove effective in classification and fusion. 
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