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Abstract

We explore in this study the effects of multi-task training methods and domain adaptation on
Automatic Short Answer Grading (ASAG) using the text-to-text transfer transformer model
(T5). Within this study, we design an ASAG model and evaluate its applicability to a practice
dataset from the University of Twente. We fine-tuned a multi-task model that is trained on a
profound selection of related tasks and an extensively pre-trained model. We evaluate the
performance of the models on the SciEntsBank dataset and achieved new-state-of-the-art
results. With the best performing model we showed that domain-independent fine-tuning is
preferable to domain-specific fine-tuning for data sparse cases. The optimized model was
used and its performance was demonstrated in the university context. The predictions of
the model were explained with different model-agnostic methods which resulted in several
hypotheses that describe the model behavior. The reported results reveal that the model is
biased towards correct answers and has particular problems with partially correct answers.
Through the gained knowledge about the decision behavior, the model robustness against
student manipulations was evaluated and tested. Within a validation study, we asked stu-
dents to generate manipulation answers. Our findings emphasize the susceptibility of the
model towards manipulation strategies and difficulties with handling imbalanced and sparse
data. We observe that for a functional ASAG model balanced and extensive data are nec-
essary.
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Chapter 1

Introduction

Now more than ever, the question is being asked whether the current school system has
adapted to fit future demands. Although technological advances have drastically changed
most areas of life, the educational system has not progressed in proportion. In essence,
there is still one individual facilitating the classroom environment, whether in-person or on-
line. In current years, student’s desire a wider range of information available to them. How-
ever, each student learns at a different pace and individuality is not supported properly by the
current educational system. The use of tutors and educational content (e.g. Khan Academy)
has therefore increased steadily over the years to meet this demand of learning not provided
in the classroom. The Internet was used to pioneer the creation of such digital developments
in education.

But what does the future of education look like and what will be the next step to approach
asynchronous learning?

Let’s imagine the perfect school for the future generations where everybody has the
same educational possibilities with its own tutor that aligns the learning pace according to
the capabilities of the student. Such a system raises several questions and from today’s
perspective is connected with various problems. On the one hand, there are not enough
people to teach each child separately and this would be far too expensive under the current
conditions. On the other hand, the quality and the individuality of the tutors are different
which leads to inequalities and non-individual education. The first problem has been largely
solved by technological advancements. Today, everyone can access knowledge and fur-
ther education from anywhere. People even have the possibility to study online courses of
renowned universities for almost free. As a consequence of these developments, more peo-
ple evolved into digital teachers by teaching their knowledge online. However, this resulted
in an almost abundance of information and content which leaves the internet as a library of
many educational videos and content. Regardless of the benefits, it did not solve the prob-
lem of the individuality of education. It is obvious that such a problem might be solved with
the coming revolution in the education sector with an individual digital tutor. Such a tutor will
embody a diversity of skills and characteristics but it is not set in stone how they will look
like. However, the assumption is obvious that a digital tutor might provide student’s with cus-
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2 CHAPTER 1. INTRODUCTION

tomized content (e.g. suggesting suitable learning videos) while simultaneously tests them
on what they know. More importantly, it will adapt to the way the student learns over time
by comparing the effectiveness of different videos and different tests to decide what works
best for the student. This allows student’s to be individually supervised and their learning
process to be tailored to their abilities with very little human interference.

In the past years, many approaches have been developed that point in this direction.
Each of the approaches relies on the development in the field of artificial intelligence (AI)
since it is crucial for developing such a system. Therefore, AI will play the most significant
role and pave the way for the next revolution in the education system.

Consequently, the question arises on how much progress has been made and what
steps can be taken now to further develop and get closer to future a digital tutor.

1.1 Motivation and Problem Statement

To address this question the entire prospective tutoring system must be broken down into the
individual parts and approached chronologically. For such a system it is decisive to analyze
the learning process of the student to provide the student with individual learning advice.
This makes the evaluation of the learning success of the student crucial and perspectively
important to solve.

The evaluation of student’s learning process is already one of the most critical points
in the school system since it describes the efficiency and success of acquiring knowledge.
For such an evaluation process it is crucial to assess the learned knowledge of the student
as precisely as possible. Currently, the major assessment methods used are exams [4].
In these exams, the knowledge of the student’s can be tested in different ways. Testing
methods vary in general and range from closed answers (e.g. multiple-choice) to open
answers (e.g. essays or short answers) [5], each with advantages over the other. When
it comes to a qualitative assessment of student knowledge, multiple-choice questions is
not the most suitable assessment method since it only produces quantitative data and no
qualitative. In contrast, open questions force the student to provide a compact description
of his knowledge. This makes such questions the preferable choice since it captures the
gained knowledge more precisely.

From research and technical perspective, this leads us into the area known as Auto-
matic Short Answer Grading (ASAG). In this field, we define short answers according to [5].
According to their definition, an answer must fulfill five criteria to be considered as a short
answer.

1. The question asks for external knowledge which means that the student is expected to
answer by using his knowledge and not just passages from a provided prompt text

2. The student response needs to be given in a natural language

3. The length of the answer is around 50 words but not more than 100

4. The grading of the answer focuses on the content rather than the writing quality



1.1. MOTIVATION AND PROBLEM STATEMENT 3

5. The question restricts the student in his possible answers

In this field, natural language answers are evaluated on an ordinal scale which reflects the
nature of a digital tutor system. But where are we in this field, how far is the development
and where is it lacking?

A closer look at the literature on ASAG shows that there are hardly any holistic ap-
proaches where a realistic application is a final goal. This highlights that the research is
lagging behind in topics that are essential for such an application. In detail, when taking a
step back and looking at the whole context of the problem, topics like model interpretability
and explainability are rarely addressed in the literature. Despite their importance for ASAG,
hardly anyone takes the trouble to analyze the developed models. However, researchers
did realize that a real model implementation requires the knowledge of the underlying de-
cision basis. Otherwise, one is confronted with accountability problems which prevent an
implementation. Another point is that most researchers approach the task only selectively
by aiming for a good performance on some dataset. Most authors are satisfied with good
test results for a given dataset. Hardly anyone is going one step further and is considering a
practical demonstration and evaluation of such a model on different datasets. Consequen-
tially, models lack in general applicability which makes the practical application improbable.

These shortcomings are further connected with the fact that researchers exclusively eval-
uate performances on respective test scores and thus fail to deal with the data sets and its
characteristics. One reason for this is that ASAG itself is a data sparse field and therefore
the data basis is not very extensive and structured. This sparsity also prevents progress in
the field of adversarial attacks and makes models particularly susceptible to targeted ma-
nipulation attempts.

On the basis of this current status and the resulting shortcomings, requirements for such
an ASAG model can be derived, which have to be solved to enable a practical implementa-
tion and advancement in the development of a digital tutor system (table 1.1).

Table 1.1: Identified general requirements for a ASAG model
Nr. Requirement
1 The model is required to have high-performance and efficiency
2 The model needs to be trainable with small data while keeping performance
3 The model predictions are required to be comprehensible and explainable
4 The model needs to be robust enough to deal with student manipulations

These requirements raise the question of the extent to which currently available ap-
proaches can be used to meet them and what are next steps to further advance the devel-
opment. Answering and evaluating these general questions is essential for advancements
for digital tutors and are therefore the main motivation for this thesis.
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1.2 Research Goal

Inspired by the latest developments around the field of ASAG the main goal of this thesis is
to design an ASAG model and evaluate its applicability to practice. By demonstrating and
evaluating such an implementation we further aim to gain valuable insights and to reveal the
potential for improvements.

In order to achieve this, we formulated different objectives for each of the identified re-
quirements. As table 1.2 shows, a model must be created that can be trained efficiently while
keeping high-performance in short answer grading. Furthermore, the model is required to
be able to compensate for the data sparse nature of the ASAG field. In addition, we want
to make the model explainable and analyze the prediction behavior. To improve the practi-
cability of the model, we demonstrate the model on a dataset from the University of Twente.
The final goal of this work is to investigate how robust the model is.

Table 1.2: Derived research goals from requirements
Nr. Research Goals
1 Create a model with an efficient training approach and high-performance
2 Create a model that deals efficiently with data sparsity
3 Make the model decisions comprehensible and explainable
4 Evaluate the model robustness on handling student manipulations

1.3 Research Questions

Within the scope of this work, research questions were defined that will be answered by the
methodology and the particularly defined experiments. The research questions are aligned
with the formulated objectives and thereby contribute to the achievement of the main goal.
In detail, we can break the goals down into four relevant areas. These were addressed in
the 4 main research questions and corresponding sub-questions:

1. Research Question: Does multi-task learning improve the performance of Auto-
matic Short Answer Grading?

This question can be answered with two sub-questions.

1. Sub-question 1: Is a multi-task learning approach beneficial when incorporating datasets
from the same and related research fields?

To develop such an ASAG model it is important that the training process is efficient
while aiming for the best possible performance. With this question, we analyze if the
multi-task training approach is beneficial for the problem and if it can be further op-
timized by using a more profound dataset selecting process. This may reveal the
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potential for improving the training process by select specific datasets for multi-task
pre-training.

2. Sub-question 2: Does a mulit-task pre-trained model improve Automatic Short Answer
Grading and outperform the baseline?

The next step is to increase the performance further by fine-tuning a more comprehen-
sive model. A comparison with the previous model provides whether the pre-trained
model or the self-trained model is more suitable for the ASAG task. This result can be
used to determine the preferable model training approach.

2. Research Question: Does domain-specific fine-tuning influence the performance
of Automatic Short Answer Grading?

This question aims to further optimize the fine-tuning process of the selected model by
means of domain adaptation. It is essential to determine if domain-specific fine-tuning is
beneficial or if it makes sense to include other unspecific data from different domains. This
information is useful when deciding between either fine-tuning one model on several ques-
tions on multiple-source domains, or fine-tuning domain-specific models. Such a compari-
son reveal insights on how the model can be optimized with sparse data. This results in a
preferred fine-tuning process and can be used as a basis for the demonstration and evalua-
tion.

3. Research Question: How can we explain model decisions in a real-world applica-
tion?

The knowledge gained from the first two research questions regarding model training and
the fine-tuning process can be applied to a real-world dataset from the University of Twente.
After successful testing and evaluation, the question focuses on making the model decisions
comprehensible and explainable by applying useful algorithms. Based on the findings in
the literature review an integrated method compilation is introduced to explain the model
behavior with hypotheses.

4. Research Question: How robust is the model towards student manipulations?

This question follows up on the hypotheses found in the previous question by using them
to analyze and evaluate the model’s robustness against student manipulations. The model
robustness is evaluated by generating adversarial answers which challenge the model. This
results in an assessment of the extent to which the model is susceptible to student manip-
ulations which provides insights about the deployment possibility in a real-world setting like
the university.
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1.4 Research Methodology

The following research methodology serves as a guideline for the thesis and describes the
overall research structure, the respective roles of the research questions, and their interre-
lationships with the overall goal of creating a real-world ASAG model. The detailed imple-
mentation of the mentioned points are described in detail in the methodology (see chapter 4).

For our research we used the illustrated process in figure 1.1. It encompasses several
main activities: problem identification and motivation, identification of specific requirements
to derive specific model objectives, design and optimization of the training and fine-tuning
method as well as model demonstration and evaluation.

Figure 1.1: Overview of the research methodology

With the chosen research approach we represent the main research goal of designing
a real-world ASAG model and evaluating its applicability in practice. For designing such a
model we first illustrate the problem context and motivation (section 1.1. From this, specific
model requirements for a real-world ASAG model are identified. Based on these require-
ments specific objectives are derived which are the foundation of our model design. We
identify suitable models, training and evaluation methods, and algorithms for each of the
objectives by conducting a semi-structured literature review in chapter 3.

To address the different characteristics and the actual model design the work is struc-
tured in four pillars. Each of the pillars represents one requirement and a corresponding goal.
The first two pillars are used to identify and determine the preferable model training method
and fine-tune process by means of a public ASAG dataset which is described in section
5.1. In order to design a model that contributes to achieving the goal of high-performance
and efficiency on small data, we analyzed first to what extend multi-task training can be
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optimized and if we can design a new state-of-the-art model. This was done by answering
the first research question with the two corresponding sub-questions which resulted in a
high-performance model with a preferred training method.

As a next step, this model was used to investigate if the fine-tuning process can be
improved by means of domain adaptation. This answers the question to what extent a
data sparse, domain-specific fine-tune process or a non-domain-specific fine-tune process
is superior with respect to the performance (research question 2). After identifying the best
suitable model and fine-tune process the performance on a real-world dataset from the Uni-
versity of Twente has been demonstrated and evaluated. This led to the third pillar where
the model decisions have been made comprehensible and explainable. The aforementioned
pillar has been answered with the third research question which introduced a composite ap-
proach of different methods to make the model explainable. As a result, different hypotheses
that explain the model decision have been constructed.

Through the gained knowledge about the decision behavior, the model robustness against
student manipulations was then evaluated and tested within research question four. This
was achieved by defining individual adversarial attacks from a experimental group of stu-
dents and attacks that are based on the identified hypotheses. As a result, the robustness of
the model in a university context has been evaluated and determined whether the designed
ASAG model can be deployed.

These mentioned steps together resulted in a demonstration of a high-performance
ASAG model in a real-world university context and an evaluation to what extent the require-
ments in section 1.2 have been met.

1.5 Report Organization

The remainder of this report is organized as follows. In Chapter 2 we give the background
information that provides the necessary knowledge for this thesis. Chapter 3 analyses the
existing related work in the field of ASAG and provides the reasoning behind the model
choices. Then, in Chapter 4 we describe the underlying methodology followed by the in-
troduction of the used datasets. The conducted experiments and corresponding results are
presented in chapter 6. This is followed by a detailed discussion of the results and limitations
associated with the work. Finally, in Chapter 8, conclusions and recommendations for future
work are given.
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Chapter 2

Background

This chapter provides the essential background knowledge in order to follow along with the
subsequent chapters. First, we introduce deep transfer learning in NLP including multi-task
learning, domain adaptation, and sequential transfer learning approaches. Then, we explain
the functionality of transformers as a type of neural network architecture. Afterward we will
give a detailed description of the text-to-text-transfer transformer (T5) model and the used
multi-task training approach. Finally, the evaluation metrics used in this work are explained
in the context of imbalanced datasets.

2.1 Deep Transfer Learning for Natural Language Processing

In contrast to transfer learning, the traditional machine learning approach is an isolated
learning approach where the model is trained to solve a single task. With this approach,
no knowledge is retained or accumulated. As a consequence, the learning approach relies
only on the single task. Whereas transfer learning as a subarea of machine learning can be
described as the ability of a model to leverage learned knowledge from prior tasks to a new
and unknown task. The main idea behind is that a extensively trained base model can be
used for a new tasks. This makes a model training from scratch unnecessary and knowledge
retainable. Eventually, this leads to a faster learning process and a generally stronger model
that requires relatively less training data for good results.

Within the field of transfer learning and more specifically in NLP one has different possi-
bilities to apply transfer learning. For this, [1] introduced a scenario-based taxonomy to dif-
ferentiate between transfer learning categories which are illustrated in figure 2.1. According
to [1] the different transfer learning scenarios can be arranged into two categories: Trans-
ductive and inductive transfer learning. The difference is that transductive transfer learning
include methods where the source and target tasks are the same (e.g. domain adaptation
and cross-lingual learning). Whereas in an inductive transfer learning setting (e.g. multi-task
learning and sequential transfer learning) the tasks differ.

In this thesis, we combine sequential transfer learning in the different stages with multi-
task learning and domain adaptation. Therefore, only these methods will be explained in

9
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Figure 2.1: Taxonomy for transfer learning for NLP (from [1])

detail.

2.1.1 Multi-task Learning in Neural Networks

In recent years, multi-task learning (MTL) approaches have become increasingly important.
Main reason for this was the good performance in various machine learning areas such
as NLP [6], speech recognition [7], and computer vision [8]. The term multi-task learn-
ing describes the use of different, similar or related tasks to solve a problem by transferring
knowledge gained from one task to another. In general, one can speak of multi-task learning
as soon as more than one loss function is optimized. Multi-task learning has its motivation
from the learning behavior of humans. Where the idea is that when learning a new task
one actually applies the previously gained knowledge from other related tasks. This logic is
applicable to machine learning where such a training method can lead to better performance
and generalizations of the model [9].

In the following we discuss the main methods for MTL, followed by the importance of
selected tasks selection and sampling strategy. Finally, we explain the associated benefits
and for which problems it is useful.
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(a) Hard Parameter Sharing (b) Soft Parameter Sharing

Figure 2.2: Methods for multi-task learning in neural networks (from [1])

Methods for Multi-Task Learning

Within the field of multi-task learning, it generally is distinguished between two different
methods: Hard and soft parameter sharing between hidden layers [1].

Hard Parameter Sharing This method is one of the more popular used methods in neural
networks. In such a setup the model shares several layers between the tasks and simultane-
ously separating task-specific output layers. This is illustrated in figure2.2 a). Since most of
the layers are shared the risk of overfitting can be significantly reduced. The reason behind
this is intuitive since the more tasks the model needs to learn at the same time, the more
it captures diversified representations rather than task-specific [1]. This makes the training
especially useful when similar target tasks exist.

Soft Parameter Sharing In contrast, soft parameter sharing uses different models for each
task. This is illustrated in figure 2.2 b). Each of the models learns its own parameters but
the the distance between the different layers of the models is regularized. This encouraged
the different layers of the models to be similar. Commonly used regularization techniques
are l1 or l2 norm.

Auxiliary Tasks and Sampling Strategies

Mulit-task learning is mainly utilised to solve different tasks simultaneously. However, it can
also be used to solve only one specific task. In the latter case it is necessary to pay attention
to the task selection. For this reason it is from great importance to analyze the main task
and the auxiliary tasks that want to be used to improve the model performance. In doing so
two questions are of essential importance that must be answered individually. On the one
hand, it must be decided what auxiliary tasks to include. On the other hand, it is important
to determine the task ratio the model is trained on.

Auxiliary Tasks For a MTL setup it is mostly useful to include related task. In general for
NLP problems mostly tasks from areas such as speech recognition, machine translation,
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multilingual task, language grounding, semantic parsing question answering, information
retrieval and more are selected. In order to decide if a task promises an advantage depends
on the main task itself and is decided individually. Such a task filtering process is especially
important when working with limited computational resources. In such cases a minimization
of the tasks helps mitigating these problems by using a more profound dataset selection
strategy.

Sampling Strategies There are different approaches for considering a task ratio which
have to be chosen according to the overall goal. In most multi-task learning cases the task-
individual loss functions are summed up and the corresponding mean represents the loss
on the basis of which the model is updated. Therefore, one possible sampling strategy is to
determine a task-specific weight factor to influence the training in favor of several tasks. As
an alternative, a sample strategy can be selected accoring to a pre-determined probability
distribution over the tasks. An accurate sampling strategy becomes especially important
when dealing with task imbalances.

Benefits of Multi-Task Learning

Multi-task learning is connected to several advantages. One of the biggest advantage of
MTL is when dealing with sparse data availability. In such a case the data can easily be ex-
tended by including more related tasks. This does not necessarily improve the performance
on the target task but it leads to a higher generalization capability of the model, since pa-
rameters are learned that solve each task in the best possible way. Furthermore, multi-task
learning can help models to concentrate on the essential features and neglect unimportant
ones. In addition, as a general rule it can be said that if a multi-task model performs well on
many tasks one can assume that it will also perform sufficient on learning new related tasks.
At the same time, the regularization reduces the risk that the model will over-fit the target
data.

2.1.2 Domain Adaptation in Neural Networks

Domain Adaptation belongs to the class of transductive transfer learning and is a popular ap-
proach to align model to a certain task or domain. Main characteristics of domain adaptation
is that it does not aim for a good general representation but rather for a good representation
for a specific target domain.

In the literature the term domain adaptation is used in different context depending on the
model learning methods (unsupervised, semi-supervised and supervised). Each of them is
beneficial for different problems and depend on the data availability. Compared to super-
vised domain adaptation, unsupervised adaptation needs a large amount of unlabeled data
in order to be an effective approach. Which makes it less applicable to the data scarcity prob-
lem in ASAG. Hence, in this thesis we will only refer to supervised domain adaptation which
means that labeled data is available. Basic assumption in a supervised learning setup is that
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the training and test data follow the same distribution. In reality however, such an assump-
tion can be wrong when working with inherently different (e.g. multiple domains) data. In a
so called multi-domain case the training distribution between the individual domains differs
which can lead to a performance drop. This is the area where domain adaptation becomes
important since it aim is to adapt the training distribution to better fit the test distribution.

Domain adaptation for neural networks can be applied in two mains stages of model
training. It can either be conducted in the pre-training or in the fine-tuning of the model. It
further differs depending on the problem context and the amount of domains. Most cases
are concerned with a single source domain. However, in this thesis we are dealing with
multiple source domains. This means that training and test data is available from multiple
domains. Therefore, we focus on this particular multi-source domain adaptation case.

Multi-domain problems are mostly approached by pre-training a model on enough data
and fine-tuning it on one domain instead of across domains. This approach has two bene-
ficial consequences. First, the training and test distribution is expected to be more similar
which increases model performance. Second, domain-specific fine-tuning increases the
richness of the representations within one domain since it reduces ambiguities in word in-
terpretation. This makes domain adaptation an efficient approach to efficiently produce
meaningful input representations for a particular task.

2.1.3 Sequential Transfer Learning

Sequential transfer learning is one of the prevalent transfer learning method in NLP due to
its simple usability. It can be defined as an sequential training approach where the source
and target task differ. As a consequence the model learns different tasks separately rather
than jointly as in multi-task learning. In essence, the goal of sequential transfer learning is
to gain knowledge on a source task and transfer this to a target task. This makes it most
useful in scenarios where one is dealing with a data sparse target task or where the model
needs to adapt to different tasks.

In general, sequential transfer learning consists of a pre-training and an adaption stage
where the previously mentioned techniques multi-task learning and domain adaptation can
be incorporated. Since this is the approach the thesis utilized we will elaborate these in
greater detail.

Pre-training Stage

In this stage the goal is to learn universal representations which capture general properties
of natural language. This is especially effective when there is access to a large amount
of data. In pre-training there is a distinction between three different methods that differ in
terms of their level of availability of labeled data. In this work we refer to them as unsuper-
vised, semi-supervised and supervised training. The results of the pre-training be used as
representation of the data.
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Unsupervised learning For unsupervised learning only raw text data without labels is
required which makes it easy to obtain. In recent years the term self-supervised became
popular which can be considered a subset of unsupervised learning. The idea is to use the
raw input data and transform it to an input-target structure. This results in self-generated tar-
gets from raw textual data. Such an approach is used when the language model incorporate
next sentence predictions or predictions of masked out tokens.

Semi-supervised learning In contrast, semi-supervised learning uses the raw data to
automatically generate a large amount of noisy supervised data. Main difference to self-
supervised learning is that noisy labels are added and the input is not just ”reshaped”.

Supervised learning Supervised learning methods can be clearly differentiated since they
only deal with manually labeled training data. This makes it the most used method in ma-
chine learning.

General Word Representation Almost all models used in NLP are using unsupervised
pre-training in some way. Main reason is that general knowledge and ability to detect word
dependencies are crucial for most NLP tasks. Such a knowledge can only be obtained when
a model is trained on a large amount of data. This makes unsupervised pre-training the
most general approach to learn expressive representations of words since it works with raw
unlabeled text data which makes it scaleable. In order to obtain such word representations
many different approaches are used where word embeddings have shown to be superior for
most cases. Word embeddings are one possible type of word representation where words
with similar meaning have a similar representation.

Adaptation Stage

The adaptation is the second stage of the sequential transfer learning. It represents the
knowledge transfer from the previous source task (i.e. pre-training) to the target task. There
are two ways to adapt the model to a target task: Feature extraction and fine-tuning.

Feature Extraction The first is called feature extraction where the weights from the previ-
ous models are extracted and used as representation for a different downstream task. This
can include different layer combinations of the model and for neural networks we refer to
these representations as word embeddings. Most used techniques are summing, averaging
or concatenating different layers. Such representations can be used and applied to other
models.

Fine-tuning The second way is called fine-tuning and instead of extracting the representa-
tion the process includes a further parameter updating or a change of the model architecture.
This allows the user to adapt a generic pre-trained model to various tasks. In general, there
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are three main techniques to fine-tune a model. First, the entire model can be further trained
on the target task. In this case the pre-training and fine-tuning process is the same since we
back-propagate through the entire pre-trained model and update the weights. Second, the
model can be updated partially by keeping some layers of the architecture and only further
update some parts of the model architecture. There are also many individual approaches
that differ in how many layers are updated and whether this number is dynamic or static.
One such popular approach is gradual unfreezing where the number of layers that are up-
dated increases over time. With the last technique the entire model architecture is frozen
and additional layers are attached that will be trained on the target task.

2.2 Transformers

In this section we explain the development of transformers, introduce their concepts of and
the main underlying attention mechanism.

2.2.1 Transformer and Attention Mechanism

Before transformer-based architectures became state-of-the-art for most tasks, researcher
used neural approaches that enable processing sequential data by remembering the impor-
tant information of a textual sequence. This era of models is mostly marked by Recurrent
Neural Networks (RNN) and Long Short-Term Memory (LSTM) models that were especially
useful in handling sequence data of different lengths. LSTM models were so to speak a
successor of RNNs because they prevented the model from assigning zero weights to early
inputs in the sequence [10]. As a result, models were able to capture longer relationships
and represent the entire sentence or paragraph in their network and based their prediction
on it [11]. A change was achieved after [2] introduced transformer-architectures and the
attention mechanism. The Transformer is a novel neural architecture which is especially
suited for sequence-to-sequence tasks because of the ability to capture long-term depen-
dencies in sequential data like text [2]. The main idea behind the transformer architecture
is to use so called attention mechanisms to generate word/sentence representations. The
general transformer architecture is based on encoder and decoder stacks and uses attention
to determine the word representation.

Encoder and Decoder Stacks

The transformer architecture is illustrated in figure 2.3. In contrast to previous architectures,
transformer models completely rely on multi-head self-attention mechanisms. A transformer
model consists of an encoder (left block) and a decoder (right block) part in which one
or more encoder/decoder are stacked together. All the stacked encoder have an identical
structure with a Self-Attention layer and a Feed Forward Neural Network followed by a layer-
normalization step. In contrast the decoder contains in addition a Multi-Head Attention layer
applied over the encoder output. The architecture also modified the Self-Attention layer via
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masking in a way that prediction only depends on the known outputs at the current position.
In the following we will discuss the most important functions of this architecture the attention
mechanism.

Figure 2.3: Transformer architecture (from [2])

Multi-Headed Self-Attention Mechanism

The transformer structure in figure 2.3 shows that the encoder and decoder use multi-
headed self-attention. For this reason we first elaborate self-attention and then go into
details with multi-head attention proposed by [2].

Self-Attention Self-attention refers to the attention between within a input sequence or
also with an output sequence. The idea behind the calculation of the self-attention is that a
word representation is represented by the weighted sum of the individual token inputs of the
sequence. The assigned weight corresponds to a similarity measure between the target and
source token. The exact underlying process with vector representations is described below.

Before calculating self-attention three vectors are created by multiplying the input word
embedding with three different weight matrices. These matrices are learned during the train-
ing process. After the multiplication three different representations of each input sequence
(query vector (Q), key vector (K) and value vector (V)) are obtained. In a next step, each
individual word receives a attention score for each word in the sentence. I.e. each individual
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word is scored against the current word in the sequence. This score represents the impor-
tance or attention for a particular input. The score is calculated by taking the dot-product of
the query vector (from the current word) and the key-vector of each word containing in the in-
put sequence. For the first input one attention score for each word (including the word itself)
is obtained. These scores are divided by the square root of the dimension of the key-vector
and feed into a softmax function in order to obtain weights that sum up to one. This process
is called Scaled Dot-Product Attention (see figure 2.4). In order to obtain the final word rep-
resentation, the weighted sum of all the weights and the corresponding value-vector of the
word is calculated. This new attention matrix (or embedding) for each word is so to speak a
weighted combination of all the words in the input sequence including the word itself. As a
result we end up with a matrix representation of each input.

Figure 2.4: Scaled dot-product attention and multi-head attention (from [2])

Multi-Head Attention The above explained process is one possibility for self-attention and
can be also considered as a one-head attention since during training only one weight matrix
for the query, key and value matrices is learned. The authors’ of the paper realized that in
contrast to a single linear projections (weight matrix), multiple projections can be beneficial.
This is also known as multi-head attention. Essentially, the same linear projection is done
multiple times where the weight initialization of the query, key and value matrices are differ-
ent. Dependent on the number of used heads the final representation is a concatenation of
the self-attention results for each head. This is illustrated in the on the right side in figure 2.4

On the decoder side figure 2.3 we can see an attention layer where the output of the
encoder stack and the input of the decoder are brought together. This so called encoder-
decoder attention layer is comparable to the multi-head attention where the query matrix
comes from the decoder and the key and value matrix from the encoder. Main difference
is that future outputs are masked to make sure that the final prediction are only based on
known outputs.
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Positional encoding

Since the model does not use recurrence of convolution it is important to keep track of the
order of the words in the input sequence. In the transformer architecture this can be done
in different ways, but the one addressed by [2] is to add an positional encoding (i.e. simple
vector) to the input embedding. Broadly speaking, by adding this positional encoding the
resulting embeddings contain information about the distance between words in the input
sequence. For more details about the positional encoding and the underlying functionality
see [2].

Benefits of attention-based architecture

Such attention-based transformer architecture with capability to pay attention to a specific
subset of the sequential input data helped improve the performance of several NLP tasks.
These models became state-of-the-art for most NLP tasks due to their better and more effi-
cient performance in terms of computational resources. As described the most popular type
of attention-based networks are the transformers which handle sequential data simultane-
ously rather than just sequentially like RNNs [10]. This lead on the one hand to a faster
and more extensive model training and on the other hand to an increased usage of transfer
learning of such pre-trained models [12].

2.3 T5 Model Architecture

The research paper published by the authors’ gives an overview of different transfer learn-
ing methods and introduces a novel approach to combine any natural language tasks. The
proposed method transforms natural language tasks into a text-to-text format. By doing so
one model can be trained on several tasks simultaneously. This flexibility in the integration
of different tasks enables a T5 model to be used in an enormously wide range of applica-
tions and reduces the need for individually task-specific trained models. In their work the
authors’ carried out many experiments that they combined in their survey paper. We will not
summarize the content of this paper as they can easily be found in [3] and various other
sources [13] [14]. We only explain and discuss the final and most suitable result of the pa-
per that results in their published trained model. For detailed explanations and the different
approaches investigated we refer to the paper [3].

In the following, we will explain first the new text-to-text format and the unique input and
output representation of the model. This is followed by an introduction to the underlying C4
dataset. Afterward we describe the model architecture and the used training approach for
the model.
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2.3.1 Text-to-Text format and Input/Output Representation

The novel unified framework which allows the model to combine all language problems in a
text-to-text format in one model is the core of the T5 model. The systematic behind it can be
seen in the following picture.

Figure 2.5: Diagram of the text-to-text framework (from [3])

As the name of the model text-to-text transfer transformer implies the main idea is that
it treats each NLP task as a ”text-to-text” problem. In detail, the model receives as input
a simple string and produces a string output (i.e. text output). In order to distinguish be-
tween the different tasks, a unique prefix is added to each input sequence from a task. This
approach is based on the assumption that the model learns to recognize each task by its
prefix and outputs in intended labels in a text version. This framework allows to use a single
model, with a single - although combined - loss function including all NLP tasks. This makes
it an unique multi-task learning approach since all model parameters are shared between
tasks and the model simply learns to predict different labels according to the added task
prefix. Figure 2.5 illustrates the T5 model framework where it combines different NLP tasks
like machine translation, similarity tasks and summarization. Even regression tasks can be
used by not predicting a continuous variable but rather consider the string representation of
the variable as a single label class. This differentiation between tasks however is associated
with the risk, that the model makes predictions that do not correspond to the intended labels
of the task. In such cases, the model is trained to interpret deviating predictions as a wrong.
However, according to the authors’, this never occurred in their experiments which indicates
that the model indeed learns to differentiate between the different tasks.

2.3.2 C4 - Colossal Clean Crawled Corpus

In their paper, the authors’ pursued the goal of analyzing to what extent the up-scaling of
pre-training has an impact on performance. Therefore an enormously large and diverse
dataset was needed. For this reason, the authors’ developed a dataset called Colossal
Clean Crawled Corpus (C4). The final dataset contains 750GB of clean english text scraped
from the web. It was created with a month of data from the common crawl corpus cleaned
with a set of filters that filtered out “bad/useless” text (e.g. offensive language, source code,
etc.). As a comparison and to illustrate the enormous size of the dataset, models like BERT
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[15] used only 13GB of data for training and XLNet [16] 126GB.

2.3.3 Model Architecture

In the following the key points of the model architecture are mentioned, as they led to the
chosen model and training architecture used in this thesis.

The T5 model architecture is aligned to the described encoder-decoder transformer im-
plementation proposed by [2] which is explained in section 2.2. The general process can be
described in several steps that reflects the model architecture. First, the model learns with
a SentencePiece tokenizer [17] how to encode the WordPieces tokens [18] [19]. In a next
step, these sequences of tokens are transformed into an embedding and passed to the en-
coder. These embeddings have 1024 dimensions which are the same as for each sub-layer.
The Baseline T5 architecture also works with a stack of encoders where each consists of a
self-attention layer and a feed-forward layer. Each of the feed forwards layers have an output
dimension of 3072 and use ReLU activation function. As dimension for the key and value
matrices, 64 was chosen with 12 different attention heads. The encoder and the decoder
consist of 12 blocks. In addition layer normalization [20] is applied but only the activation
is re-scaled without applying additive bias. This is followed by a residual skip connection
[21]. Furthermore, a dropout probability of 0.1 [22] is applied (on the feed-forward network,
attention weights, skip connection, and input/output of stack). The decoder structure is the
same as described in 2.2.1 where in contrast to the encoder it uses causal self-attention in
order to prevent that the encoder attends to future outputs. The final decoders output is fed
into a dense layer (weights are shared with the input embedding) and a softmax function
is applied. Furthermore, the model uses also Multi-Head Attention and in contrast to the
proposed model from [2] they used relative position representation [23] [24]. In the paper,
it was proven that up-scaling the model size leads to an increase in performance. For this
reason, the authors’ trained models of different sizes, the specification and their results of
the two biggest models are shown here.

”3B and 11B Model: For both model they use dmodel
a = 1024, a 24 layer encoder

and decoder, and dkv b = 128. For the “3B” model, they used dff = 16,384 with
32-headed attention, which results in around 2.8 billion parameters; for the “11B”
model they used dff c = 65,536 with 128-headed attention producing a model with
about 11 billion parameters.” [3]

admodel = Sub-layers and embedding dimensions
bdkv = Key and value matrix dimensionality of all attention mechanisms
cdff = Output dimension of Feed-Forward layer

2.3.4 Unsupervised Training Objective

As the training objective for the unsupervised task the model uses BERT Masked Language
Modeling. The model masked out 15% of the tokens where the target is to reconstruct the
uniquely masked out tokens. In contrast to BERT, the T5 model replaces tokens with a range
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of masked out tokens (e.g. < X >, < Y > and < Z >). Furthermore, consecutive tokens
(i.e. span) are replaced by only one token. This schematic can be seen in figure 2.6.

Figure 2.6: Schematic of the unsupervised training objective (from [3])

2.3.5 Training Strategy

The training strategy is divided into two parts. The multi-task pre-training and the subsequent
fine-tuning of the model for the respective downstream task.

Multi-task Training

The model uses a multi-task learning approach in which it combines the previously men-
tioned unsupervised and several supervised NLP task. In total it used all datasets from the
GLUE, SuperGLUE, WMT, CNN/DM and SQuAD tasks which amount to 23 different NLP
tasks. The authors’ refine the multi-task learning term by simply mixing dataset together. An
important point in such multi-task training is the mixing ratio between the datasets in a partic-
ular batch. As a task mixing ratio, the models uses an approach called example-proportional
mixing which helps with large imbalances between the datasets. This procedure selects
samples according to the respective dataset distribution. However, since the C4 corpus is
disproportionately larger a dataset size limit implemented. Such a limit is used to calculate
the probability of drawing a sample from a specific task.

The text-based pre-processed input allows using teacher forcing for standard maximum
likelihood training. Since this model architecture requires the prediction of a sequence it
produces a probability distributions over each possible output. To decode the sequence all
possible output sequences (corresponds to the target labels from the task) are searched
based on their likelihood. To approximate the sequence with the highest probability at each
time step greedy decoding is used. As hyper-parameters during pre-training the model
uses AdaFactor optimizer [25] and a learning rate schedule defined as 1/

p
max(n, k with

n=current training iteration and k=number of warm-up steps. This means during warm-up
the learning rate is constantly 0.01 and decays after exponentially. The model is trained for
1,000,000 steps with a batch size of 211.
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Fine-tuning

For fine-tuning, the model uses the method of updating all pre-trained layers when training
on downstream tasks. In contrast to the model training while fine-tuning the model uses a
constant learning rate of 0.001. For further information about technicality please see the
original paper [3].

2.4 Evaluation for Imbalanced Dataset

In this section, we describe the used evaluation metrics and elaborate the specifics and
benefits. Evaluation of the trained model is a crucial part of deploying a machine learning
model. A common problem with evaluating the performance of a machine learning model is
to choose the right metrics. In order to give an overview of the different metrics for classi-
fication problems, we explain the main metrics and their relevance for binary classification
and multi-class classification.

2.4.1 Binary-Class Evaluation Metrics

In general accuracy is mostly used as metrics for performance evaluation. However, in some
cases it is not enough to reliably evaluate the model performance. One example is the case
when one is dealing with multi-class dataset with an imbalance class distribution. In such
a case a model could achieve a high accuracy by simply predicting the maturity class all
the time. Since this can be misleading and makes the model impractical other ways of
performance evaluation can be used.

One of the main metrics for model evaluations are parts of the confusion matrix. In
general the confusion matrix visualizes the model predictions and the true sample class of
a prediction. This is a way of visualizing the model performance for each class. One of the
main benefits is that several metrics can be derived from the confusion matrix that are from
great relevance. For the sack of understanding we consider a binary classification problem
where a student answer is either correct (positive) or false (negative). The main elements of
the confusion matrix are illustrated in figure 2.7 and are defined as follows:

• True positive (TP): The value represents the number of student answers that are actu-
ally correct (positive) and classified as correct (positive).

• False negative (FN): The value represents the number of student answers that are
actually correct (positive) and classified as false (negative).

• False positive (FP): The value represents the number of student answers that are
actually false (negative) and classified as correct (positive).

• True negative (TN): Its value represents the number of student answers that are actu-
ally false (negative) and classified as false (negative)
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Figure 2.7: Example of a confusion matrix

Further important evaluation metrics for the model performance can be derived or de-
termined from the confusion matrix. These are illustrated in table 2.1. Each of the metrics
measures a different property of the classifier which leads to trade-offs between metrics
such as precision and recall.

Table 2.1: Overview evaluation metrics for measuring model performance
Metrics Formula

Accuracy Accuracy =
TP + TN

TP + TN + FP + FN

Precision Precision =
TP

TP + FP

Recall or Sensitivity Recall =
TP

TP + FN

Specificity or True Negative Rate (TNR) Specificity =
TN

FP + TN

F1-Score F1� Score =
2 ⇤ Precision ⇤Recall

Precision+Recall

The goal for a good classifier is to achieve high precision and simultaneously a high recall
value. Meaning that there are no false-positive or false-negatives. Since there is a trade-off
between precision and recall the f1-score is used to express these two metrics in a single
metric. The F1-score is computed by the formula:

F1 =
2 ⇤ Precision ⇤Recall

Precision+Recall
=

2 ⇤ TP
2 ⇤ TP + FP + FN

(2.1)

By using the harmonic mean the F1-score makes sure that a low score becomes a large
weight. Meaning that, for instance, in case a classifier achieves a precision of 100% whereas
the recall is 0%, the f1-score will not be the arithmetically mean (50%) but 0%.
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2.4.2 Multi-Class Evaluation Metrics

Similar to the binary case precision and recall can be calculated for each class in a multi-
classification problem.

Figure 2.8: Example of a multi-class confusion matrix

For the example in figure 2.8 the precision of class 0 is given by the number of correctly
predicted instances divided by all predictions of class 0. Therefore the precision results as
follows.

Precision =
TP

TP + FP
=

4

4 + (1 + 1)
(2.2)

Whereas the recall is given by the number of correctly predicted instances divided by all
actual class 0 instances. This is illustrated in the following formula.

Recall =
TP

TP + FN
=

4

4 + (6 + 3)
(2.3)

With this approach, the precision and recall for each class can be calculated. After
applying equation 2.1 for each class and obtain for each class one F1-score. To measure
the performance of a model with a single metrics on a downstream task different f1 related
metrics can be used. The simplest one is the macro-average f1-score that calculates the
arithmetic mean of the f1-scores for each class i :

Fmacro�average
1 =

PN
i=1 F

i
1

N
(2.4)

When using the macro-average f1-score we treat each class the same which fails to
reflect the true performance of a classifier in an imbalanced dataset since minority classes
are considered the same as majority classes. To avoid this and to consider imbalances in
the dataset the weighted-average f1-score is used since it weighs each class by the number
of samples. It is defined by:

Fweighted�average
1 =

NX

i=1

wi ⇤ F i
1 (2.5)

For the evaluation of the models implemented in the thesis, the key figures weighted
average f1-score, macro average f1-score, precision, recall are used.



Chapter 3

Related Work

This chapter reviews the most relevant work related to Automatic Short Answer Grading.
In particular, we discuss the latest advancements regarding ASAG and their chosen model
architectures. Then we introduce different ASAG datasets and derive the current state-of-
the-art baseline. This is followed by a short literature review on commonly used methods
in the fields of multi-task learning, domain adaptation and model explainability. We then
conclude the review by explaining the selection of the models used in this thesis.

3.1 Automatic Short Answer Grading

Existing approaches in the field of ASAG fall into two broad categories. (1) Early approaches
which rely on hand-crafted features. (2) Deep learning approaches which minimized man-
ual feature engineering and focus on the semantic information [26]. The latter category
can be further divided into three subcategories that align with the advancements in Natural
Language Processing. The focus of this section is exclusively on deep learning models.

3.1.1 Deep Learning Approaches in ASAG

The models found in the literature dealing with short answer grading align with the general
advancements in natural language processing. The analyzed models can be divided into
three categories that correspond to the historical development of NLP. First, models that
made use of the advancement of Word Embeddings with the Word2Vec breakthrough. Such
models mostly use word-representations and sentence embeddings. Where latter ones are
generated by summing or averaging the single word embeddings. These representations
are used to generate more advanced features which contain more semantic information
[10]. Second, neural approaches that enable processing sequential data by remembering
the important information of a textual sequence. This era of models is mostly marked by
Recurrent Neural Networks (RNN) Long Short-Term Memory models that were especially
useful in handling sequence data of different lengths. LSTM models were so to speak a
successor of RNNs because they prevented the model from assigning zero weights to early
inputs in the sequence [10]. As a result, models were able to capture longer relationships
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and represent the entire sentence or paragraph in their network and based their prediction
on it [11]. Third, attention-based neural network with the capability to pay attention to a
specific subset of the sequential input data. These models became state-of-the-art for most
NLP tasks due to their better and more efficient performance in terms of computational
resources. The most popular types of attention-based networks are the transformers that
can handle sequential data simultaneously rather than just sequentially like RNN’s [10].
This leads on the one hand to a faster and more extensive model training and on the other
hand to an increased usage of transfer learning of such pre-trained models [12]. These
three categories are elaborated in greater detail in the following with a focus on their specific
benefits and drawback on ASAG.

With advances in deep learning, new approaches for short answer grading have become
more popular. Most of them were using word embeddings [27] [28] [29]. The main reason
for this was the advantage in their semantic richness of the embedding representations. The
review methods made use of word embedding in order to enhance the calculated similarity
between words from the student answer and from the reference answer. Nevertheless, the
researchers emphasized that simple word embeddings are beneficial for ASAG for calcu-
lating word similarity but lack in their performance when used as sentence representations.
[28] for instance used different types of similarity measures based on word vector represen-
tation obtained by pre-trained word embedding models (Word2Vec and GloVe). By using
features based on word and sentence embeddings they achieved below-average results on
the SemEval 5-way task. Other approaches that solely focus on features extracted from
embeddings did not outperform the models with more engineered features. Therefore, most
of the initial attempts are characterized by trying to compensate for the limitations of word
embeddings by extracting additional engineered features. One method proposed by [27]
was to incorporate external knowledge like paraphrase database and WordNet and syntac-
tical similarity features. With their approach, they achieved one of the best scores on the
SciEntsBank dataset for unseen answers. The research further indicated that using word
embeddings increased the model’s generalizability. This can be seen in their performance on
the SemEval task when handling unseen questions and domains where they increased the
performance of the models. With further development in deep learning researchers used in
addition sentence representations obtained by summing or averaging the word embeddings
in a sentence. [29] for instance used sentences and word alignments by calculating lexical
and semantic similarity. Lexical similar word-pairs are obtained by using an external para-
phrase database. Further, he calculated the semantic similarity (cosine similarity) with word
vectors extracted from pre-trained word embedding models and represented a sentence by
summing the corresponding word embeddings. Their approach resulted in relatively good
results which indicated the usefulness of their feature selection but also emphasized the
necessary future developments of sentence representations.

Nevertheless, the used embeddings had limitations in usability and a significant increase
of different neural model architectures was no longer visible according to the review. There-
fore, researchers like [11] investigated the importance of domain adaption of a short answer
grading system. They argued that systems that rely on textual similarity, paraphrasing or
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entailment can be dependent on the domain. He analyzed this by proposing a joint multi-
domain deep learning architecture that uses domain adaptation. The system uses an en-
coder with a BiLSTM layer to transform the reference answer and the student answer into
an output embedding. Based on the result, a similarity scorer is trained domain-specifically
by using the just in-domain training data. In order to represent additional generic features,
the system also has a generic similarity scorer which was trained on all the domains. For
the final prediction, the system adds the domain-specific with the generics class scores.
Their approach achieved the best overall results on the SemEval task and therefore showed
that a combination of in- and off-domain training combined with word/sentence embeddings
can improve the performance. Unfortunately, the overall best model reported only the mean
score for the three categories and not for each category separately. This makes the inter-
pretation of the model approach difficult since it is not clear how the model performed in the
different categories.

Other subsequent research extended these approaches by exploring the effect of more
sophisticated feature representation methods in order to capture more semantic informa-
tion and structural information. [12] investigated how neural network approaches perform
on short answer scoring. They used different basic neural networks like LSTM, CNN and
attention mechanism. In their research, they showed that neural architectures can outper-
form previous methods. Especially bidirectional LSTMs and attention produced good results.
However, they empathized the importance of the used input embedding and the parameter
setting. According to the author it is crucial to fine-tune pre-trained models for the tasks in
order to obtain good results. In addition, they stated that parameter optimization and the
combination of different neural architectures may result in a better performance. Most of the
followed approaches made use of transfer learning with the goal to generate more contextu-
alized embeddings by using different architectures and different attention mechanisms.

A change was achieved after transformer-architectures were introduced [2]. These al-
lowed to create better word and especially sentence representations. Based on that devel-
opment further research was focusing on exploring the effects of using embeddings which
are based on transformer-based architectures with an attention mechanism. [26] showed
with his research the superiority of such deep learning approaches by leveraging a fine-
tuned Bidirectional Encoder Representation from Transformers (BERT) architecture for short
answer grading task. The author showed that transformer-based pre-trained models can
produce superior results in ASAG. However, their research also showed the domain de-
pendency of trained models and the resulted lack of off-domain generalizability. In addition,
their research indicated that task-specific transfer learning with BERT can be beneficial even
without many training samples. As a continuation of [26] [30] investigated the improvement
potential of the contextual representation of the sentences. They showed that by utilizing
unstructured domain text data and question answer pairs better results compared to a sim-
ple task-specific fine-tuning can be achieved. Those developments highlight the importance
of transfer learning and domain-specific training. With their approach they were able to out-
perform all the previous work on the SemEval 3-way task which indicates the superiority of
the model. Unfortunately, they did not report the results on the 5-way task which makes the
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comparison more difficult.

3.1.2 Datasets for ASAG

Most of the related research papers dealt with a great variety of datasets. These datasets
have many differences regarding the number of questions, the number of answers, question
type, domain, language, grading basis, answer length. To the best of our knowledge, 12
frequently used different datasets have been identified in the review. Some of the models are
evaluated on more than one dataset, but there is no clear standard in terms of comparability
because of different characteristics and properties. In addition, some of the used datasets
were connected with uncertainty and did not provide a reference. Due to inconsistencies in
references and the unavailability of the dataset we filtered the following four most commonly
used datasets and analyzed their usability:

1. SciEntsBank dataset as part of the SemEval 2013 Task [31]

2. Beetle dataset as part of the SemEval 2013 Task [31]

3. University of North Texas dataset [32]

4. Automated Student Assessment Prize Short Answer Scoring (ASAP-SAS) dataset
[33]

In general, all datasets are suitable for comparing different short answer grading sys-
tems. The ASAP-SAS dataset mirrors the real world and the diversity in exam questions
quite well. Nevertheless, the diversity of the task causes problems in finding a general ap-
proach for all the questions and focusing on a single question would decrease the data
disproportionately. Furthermore, the ASAP-SAS and the University of North Texas dataset
used regression for the score prediction. Whereas the SciEntsBank/Beetle dataset uses ex-
actly 5 predefined categories which also indicate missing parts in the student answer. This
results in the possibility to include feedback which is closer to a digital tutor. In addition,
the SciEntsBank task seems to be a more realistic and challenging test for an automated
tutoring system. Within the SemEval task the SciEntsBank dataset encompasses several
domains that makes it more suitable for the analysis of domain adaptation possibilities than
the Beetle dataset. For these mentioned reasons, in this thesis, we will focus on the SciEnt-
Bank dataset.

Dataset Baseline and Model Evaluation

As part of the previously conducted review, we analyzed the model performances on the
target dataset. One of the results was the comparison of the best published models and
their performance on the SciEntsBank dataset. Based on this the best performing models
on the SciEntsBank 5-way classification task are collected and determine our baseline. Due
to the difficulty and the inconsistencies in reporting results, the baseline is defined in a
more meaningful way. Most research defines the success of the model by reporting average
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scores of the three categories Unseen Answer, Unseen Question and Unseen Domain rather
than reporting scores for each category separately. In order to compare our model in a more
informative way, we build the baseline according to the best achieved scores from different
research models for each category. This baseline and the best performing models for each
category can be seen in table 3.112.

Table 3.1: Baseline for the SciEntsBank dataset using weighted average f1-score
Model Average** Unseen Answer* Unseen Question* Unseen Domain*

[11] 0.6565 - - -
[27] 0.5656 0.6720 0.5180 0.5070
[34] 0.5903 0.6660 0.5310 0.5740

Baseline 0.6565 0.6720 0.5310 0.5740

3.2 Multi-task Training

In this review we analyses current multi-task models that can be used for the given problem
context of ASAG. The latest advancements and approaches on mulit-task learning model
methods are analyzed extensively in [35] and [36]. We limit the analyzed models to the
field of NLP.

Commonly used approaches selected individual training methods for different layers and
shared the embeddings accordingly. The underlying idea is that simpler related tasks are
trained in earlier layers and can be used in subsequent layers for more advanced tasks. [37]
for instance used a joint many-task model that uses the linguistic hierarchies to train a neural
network for an entailment task. The idea behind it is that the model needs to perform well on
low-level tasks (e.g. POS tagging) before training on more complicated tasks. Such training
approaches are especially useful when linguistic features are important for solving the target
task. [38] used a similar approach for coreference resolution and relation extraction. In
contrast to [37], they used a shortcut connection between the multi-layer encoder modules
for each task rather than optimizing all weights in the training. This means information from
lower-level tasks is shared by concatenating their embeddings with upper-level embeddings.
With this approach, they prevent the model of so called catastrophic forgetting [39] where
the model forgets knowledge from previously trained tasks. Other approaches like [40]
achieved good results for learning sentence representations across tasks. They used a
hard parameter sharing approach where lower layers are shared and top layers are trained
task-specific.

Another line of research focused less on the model architecture and task hierarchy but
more on the ability to easily integrate tasks into a combined model by transforming the input
and output data. [41] predicted one target sequence which consisted of several tasks.
In their attention-based encoder-decoder model they transformed machine translation, POS

1* Results are reported as weighted average f1-score
2** Average is calculated by taking the mean (not weighted) over the three categories
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tags and NER tasks into a single prediction problem. This means that the target sequence is
a concatenation of the translated input, the corresponding POS tags and the named entities
of the target sequence. They concluded that a simultaneous training of different tasks in one
sequence is not preferable and splitting can be beneficial. A similar approach for improving
word representation was used by [42]. They incorporated machine translation, constituency
parsing and NLI tasks. The authors’ transformed the tasks into a sequence-to-sequence
problem. This choice enabled the model to train a single shared encoder and task-specific
decoder. The authors’ showed that by sharing the encoder across related tasks substantial
improvements can be achieved.

Other researchers followed a sequence-to-sequence approach where different tasks are
transformed and combined in one encoder-decoder architecture. [43] trained one single
translation model jointly on dependency parsing and part-of-speech tagging. They used
task-specific embeddings so the model recognizes the different tasks during training. This
allows the model to be trained efficiently and to adjust the sample ratio of the tasks individu-
ally and easily. Another method that achieves very good results on different tasks is [3]. In
contrast to most of the models, their approach focuses on adapting the input format of the
datasets. In their work, they introduced a text-to-text architecture which made it even easier
to include different tasks without changing the model architecture. This makes the model
highly flexible is usability and easily adaptable to new tasks and.

3.3 Domain Adaptation

In this review, we focus on domain adaptation in the pre-training and adaptation (i.e. fine-
tuning) stage for different NLP tasks. Based on these findings we elaborate our domain
adaptation approach used in this thesis.

With the development of excessively trained neural models researchers analyzed if it is
beneficial to pre-train model on particular domains. [44] showed in a comprehensive study
that a domain-adaptive pre-training of a language model (RoBERTa) is beneficial. Other
approaches achieved similar results. For instance, the BERT model was further successfully
pre-trained on literature of biomedical and computer science [45], financial services [46]
or patent data [47]. However, this requires a large amount of domain-specific data which
causes trouble in data collection and therefore makes it particular difficult to apply without
access to domain-specific data.

To circumvent this problem while take advantage of the benefits focused on the fine-
tuning process on a particular domain. Such approaches proofed beneficial when the target
data does not encompass many training samples and one wants to compensate for such
low-resource data. [48] illustrated in their work that a combination of pre-training on one
followed by fine-tune on another domain can be beneficial for data spares tasks. The au-
thors’ concluded that such a setup improves the generalization ability of the model and still
keeps the model focused on the particular target domain. [49] showed similar results by
pre-training a model on generic text followed by domain-specific fine-tuning on the target
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task.
Other approaches indicated that a multi-stage fine-tune process can increase perfor-

mance for extracting definitions from free text. [50] compared different fine-tune strategies
and found that fine-tuning a model twice can be beneficial. In their setup the authors’ first
fine-tuned the BERT based model on the full dataset and then fine-tuned it further towards
the domain-specific data. Other modification of the fine-tuning process were used by [51]
for a translation task. The authors’ used a multi-stage fine-tune process on different com-
pilations of datasets and showed that heir method outperformed normal single-stage fine-
tuning. However, this is associated with significantly increased computational costs since
they fine-tune the model multiple times.

3.4 Model Explainability and Interpretability

In NLP there is a trend in the last years that research use bigger and more complex models
that are trained with an enormous amount of data and computational resources. Despite the
significant performance improvements, these models raised questions regarding their inter-
pretability and explainability. Within this section, we review the latest research focusing on
the interpretability and robustness of NLP models. The research in this field can be roughly
distinguished in three categories: Direct model understanding, Model-agnostic approaches
and example-based explanations.

3.4.1 Direct Model Understanding

For a better understanding of the internals of the model, it is common to use the attention
mechanism (i.e. attention weights). Underlying assumptions for its usability is that since
attention layers weigh the inputs and generate embeddings it can be used to identify partic-
ular important tokens ( [52], [53]). However, it is not clear if there is a relationship between
attention weights and the actual model prediction. Several researchers doubted the usability
( [54], [55]). [54] for instance stated that only in some cases attention weights actually corre-
late with model predictions and that it can not be assumed that it would hold in most cases.
Other provided several methods were the attention weights could be successfully used for
inferring model decision ( [56], [57], [58]).

3.4.2 Model-agnostic Approaches

Since the internal of such a complex model is difficult to understand, separating the model
from the explanation was found to be advantageous. This is addressed by model-agnostic
interpenetration methods which simplify the interpretation by focusing on the model predic-
tions rather than the internals of the model.

One popular method is called LIME (local interpretable model-agnostic explanations)
[59]. Lime builds a local surrogate model that explains particular instances of the model.
The methods train a linear model on different generated samples (i.e. manipulations of one
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sample) of an instance to predict the original model predictions. With this surrogate model,
important instances for a prediction can be identified. Due to its local focus it is, however
not clear if the explanation is also applicable for unseen instances. Furthermore, simple
surrogate models are restricted in their learning and can not fully capture the prediction
behavior which results in an oversimplification of reality.

Other researchers extend the mere local focus of the LIME model. [60] introduced a con-
cept called anchors that identifies tokens or sequences (i.e. anchors) which are sufficient
for a certain model prediction. These anchors are found by including the entire datasets
rather than only one single sample. That makes it possible to derive more general predic-
tion rules that are also applicable for unseen instances. However, this is associated with a
considerable computational effort depending on the dataset size.

The L2X Model proposed by [61] is another possibility to extract important features within
a language task. The idea is that it selects for each instance separately the most important
feature (i.e. token). The method is based on a CNN architecture that learns to extract n
numbers of tokens from an input sequence that are most informative. A model is trained as
a feature selector that selects a subset of words based on their mutual information between
the token and the target variable. This model is especially useful when one is looking for
fast and efficient identification of local features since it does not require a huge amount of
evaluations of the re-sampled original model inputs like LIME.

3.4.3 Example-based Explanations

Another approach to explain a prediction distribution is to generate example-based explana-
tions that are based on findings from model-agnostic methods. With this method, one tries
to draw conclusions about the model behavior by generating samples and test them on the
respective model. One line of research focuses especially on adversarial examples as they
simultaneously explain and test the vulnerability of the model. For detailed information, we
refer to a comprehensive survey about adversarial attacks from [62].

Broadly speaking such adversarial attacks for NLP can be structured in gradient-based
( [63], [64]) or generative-based approaches which also include manual sample generations.
[65] used the gradients of the input representation to determine the best possible input ma-
nipulation that increases the model’s loss function. [66] and [67] followed the approach but
generated input-independent token sequences that trigger the model to classify the opposite
label. With such gradient-based approaches one mostly exposes superficial patterns which
are efficient in tricking the system but fails to consider realistic sequences. For this reason,
other approaches have been developed that aim to transform a sample by preserving the
original meaning ( [68], [69]). This improves the sample quality but still fails to capture the
diversity which is expected in reality. Therefore, such approaches are solely beneficial to
improve the model but are limited in their diversity and usefulness for robustness tests for
ASAG models. [70] addressed this issue and used professionals to generate adversarial
samples. Such manual approaches cover more diverse patterns resulting in complex and
diversified examples. This is however achieved at the expense of scalability.
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Another line of research focuses on specific behavioral tests of the model to infer model
capabilities. Most approaches aim for evaluating the machine comprehension of textual
data. [71] proposed a framework called CheckList to facilitate behavioral testing of linguistic
capabilities supplemented with individual test types. Others evaluating specific behaviors
which makes them only applicable for particular behaviors. For instance [72] and [73]
targeted the solely on evaluating the model on detecting grammatical errors.

3.5 Conclusion Review

Based on the previous review we decided which model is most useful for the different require-
ments with a focus on model architecture, fine-tuning approach and model explainability, and
model robustness.

A suitable model architecture for the given problem needs to be first and foremost simple
and efficient to use. In particular, it is necessary to deal with the multi-domain SciEntsBank
datasets and to provide the possibility to easily incorporate different NLP tasks. The T5
model architecture is best suited for these requirements due to its flexibility and proven high
performance. In contrast to other models, T5 is a well studied and optimized model with
unique characteristics in applying multi-task learning. This makes it particularly easy to
incorporate different structured datasets. In terms of domain adaptation it is most useful to
apply domain-specific fine-tuning with the model choice.

Due to the enormous size of the T5 model and the associated ambiguities in the usability
of the attention weights, it does not seem promising to concentrate on the internal functioning
(e.g. attention weights) of the model. Instead, model agnostic approaches are more suitable.
For the ASAG area, models that focus on local features are particularly useful. This is due
to the fact that questions and student answers are generally very different which makes
identification of general patterns of limited use. Furthermore, the algorithm should be easy
to implement and efficient to use. This makes the L2X model3 most useful as it is more
efficient than LIME and easier to use than the anchors introduced by [60].

Based on the results of the algorithm simple hypothesis can be derived and adversarial
attacks can be generated. To ensure diversity in adversarial attacks the manual creation
of adversarial samples is most appropriate and realistic to challenge the model. These
identified algorithms will be used in the further course of this work.

3https://github.com/Jianbo-Lab/L2X



34 CHAPTER 3. RELATED WORK



Chapter 4

Methodology

This chapter presents the detailed methodology which is used to answer the research ques-
tions and follows the research methodology in section 1.4. The structure of this chapter is
based on the mentioned 4 pillars and the last two process steps (1) design and optimization
of the model; (2) demonstration and evaluation. Each pillar represents an objective and an-
swers one of the four main research questions. A diagram at the beginning of each section
illustrates the detailed stages of this particular part of the methodology.

4.1 Multi-task Training

The following section is structured in three parts. Within the first part, we describe the se-
lection process that we applied to determine the different downstream tasks that were used
in the multi-task pre-training. In the second part we explain the used model architectures
and the multi-task pre-training process. Lastly, we elaborate the fine-tuning process of the
pre-trained T5 model. This section describes the design and optimization of the multi-task
training approach using the selected SciEntsBank dataset. The overall strategy can be seen
in figure 4.1.

4.1.1 Task Selection for Multi-task Training

In this section we describe the details about the methodology for choosing the datasets for
multi-task training and introduce the datasets.

Since the overall goal of the published T5 model was to study the general learning abili-
ties the original model was trained with 23 datasets. This is connected with a huge compu-
tational effort due to the model architecture and its size. In order to improve the efficiency
of training, we tried to limit the number of used datasets by profoundly pre-selecting only re-
lated datasets that promise potential added value. As already described in the related work
section, this step is based on the assumption that a model learns relevant (task-related)
features instead of general features and thus increases the performance for ASAG. Simul-
taneously, with this approach we guarantee a more efficient training process since we limit
the number of training tasks.
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Figure 4.1: Methodology for evaluating multi-task training approaches

Therefore, we analyzed the existing datasets in the NLP field and applied a filter strategy
which is illustrated in figure 4.2 to identify the most suitable datasets.

Figure 4.2: Filter strategy to identify suitable multi-task datasets

In the first step we defined five similar research areas that are related to ASAG that are
particularly promising. These are listed below with the respective assumptions regarding
their benefits for ASAG:

1. Natural Language Inference: By including tasks from NLI we expect the model to in-
crease its performance on ASAG by learning to predict the semantic relations between
sentences. This corresponds to the semantic relation between reference and student
answer.

2. Semantic Textual Similarity: The goal is that the model learns to detect sentence para-
phrases and therefore increases the ability to capture semantic information in the stu-
dent answers and apply this knowledge to the corresponding reference answer.
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3. Question Answering and Reading Comprehension: We expect the model to learn com-
monsense reasoning and answering questions especially with regard to additionally
provided context information. By gaining such knowledge the authors expect the model
to apply this reasoning and answering behavior to the ASAG task.

4. Word Ambiguity: Since these tasks deal with an important and difficult problem in
NLP we expect that the model further learns to understand references between ob-
jects/subjects and the corresponding pronoun as well as understands the meaning of
words in a different context.

5. Short Answer Grading: Due to the similar nature of the task, the author expects that
the models learns about the syntax of student answers and in particular the nature of
question, reference answer and student answer.

In each of these areas we identified the most popular datasets. These are illustrated in
table 4.1.

Table 4.1: Original selection of datasets for each research field
Research Field Datasets
Natural Language Inference [74] [75] [76] [77] [78]
Semantic Textual Similarity [79] [80] [81] [82]
Question Answering and Reading Comprehension [83] [84] [85] [86] [87] [88]
Word Ambiguity [89] [90] [91]
Short Answer Grading [32] [33] [31]

This selection was further analyzed in greater detail and decided whether the dataset is
compatible with the T5 model. After the selection process, we were left with a total of 14
datasets. Table 4.2 gives an overview of the selected datasets, their size1 and corresponding
research field. In order to use the datasets with the T5 model architecture, we first had
to transform each into a text-to-text format. Detailed examples of the transformed model
inputs for each task are illustrated in the appendix A.1. These were partly based on the
transformations applied in [3] or individual formats were defined.

4.1.2 Multi-task Training and Fine-tuning

The goal of this first stage of the methodology is threefold. (1) we investigated the usefulness
and superiority of a multi-task pre-training approach; (2) we determined if a profound dataset
selection strategy can increase the performance; (3) we aimed to outperform the state-of-
the-art model since we want to obtain a high-performance model.

In order to achieve these goals, firstly a suitable model had to be chosen and an adequate
methodology needed to be defined. As mentioned in the related work section we used the T5
model architecture provided by the research team from Google [3]. The model is available

1Only the training data was used in order to keep the option of a model validation and test on other tasks
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Table 4.2: Overview of the selected multi-task datasets
Nr. Dataset Research Field Train Sample
1 MultiRC: Multi-Sentence Reading

Comprehension [87]
Question
Answering

27,243

2 SQuAD 1.0: The Stanford Question
Answering Dataset [84]

Question
Answering

87,599

3 ReCoRD: Reading Comprehension
with Commonsense Reasoning [86]

Reading
Comprehension

60,621

4 SNLI: Stanford Natural Language
Inference (SNLI) Corpus [74]

Natural Language
Inference

549,367

5 MulitNLI: Multi-Genre Natural Language
Inference (MultiNLI) Corpus [75]

Natural Language
Inference

391,165

6 RTE: Recognizing Textual
Entailment [78]

Natural Language
Inference

2,490

7 COPA: Choice of Plausible
Alternatives [77]

Natural Language
Inference

400

8 STS Benschmark [80] Semantic Textual
Similarity

5,749

9 MRPC: Microsoft Research Paraphrase
Corpus [81]

Semantic Textual
Similarity

4,439

10 SICK Dataset [79] Semantic Textual
Similarity

4,439

11 WiC: The Word in Context Dataset [91] Word Ambiguity 5,428
12 WSC: The Winograd Schema

Challenge [90]
Word Ambiguity 554

13 ASAP-SAS Dataset [33] Short Answer Grading 17,207
14 University of North Texas Dataset [32] Short Answer Grading 2,442

in several sizes as explained in section 2.3. Due to the associated computational costs, we
used the second largest 3B model with roughly 3 billion parameters rather than the largest
with 11 billion. The underlying model code from the authors’ and their model checkpoints
are provided in their GitHub repository 2.

Since the authors’ only released certain model checkpoints for use, two different model
architectures had to be used for the experiments. This made a reliable comparison with
the published model impossible. Therefore as illustrated in figure 4.1, we used the same
model checkpoint for both experiments in section 4.1.2 but a different model architecture for
the fine-tuning of the already pre-trained model in section 4.1.3. As a consequence, these
should not be compared against each other since they vary in their parameter choice and
architectural setup. The architectural differences between the two models can be seen in
table 4.3.

2https://github.com/google-research/text-to-text-transfer-transformer
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Multi-task Training Experiments

With the first two conducted experiments we aimed to achieve the first two goals mentioned
in section 4.1.2. To determine the base performance of the model we conducted the first
experiment where we used the released checkpoint3 from the t5.1.1.xl model (corresponds
to the T5 Model Architecture 1 in table 4.3) and fine-tuned it on the target dataset (subsection
5.1) without additional multi-task pre-training.

For the comparison and to decide if the multi-task training is beneficial we conducted the
second experiment. We loaded the same t5.1.1.xl model from the released checkpoint and
further trained it on the multiple tasks selected in section 4.1.1. Afterward, we fine-tuned
the model on the target dataset and reported the performance. Finally, we compared the
performance on the test set according to the evaluation metrics introduced in section 2.4,
and concluded to what extent the used multi-task training approach was beneficial.

4.1.3 Fine-tuning of Pre-trained Model

In the third experiment, we wanted to improve the performance further by using the extensive
pre-trained model checkpoint from the 3B model and fine-tune it on the target task. This
model refers to the Architecture 2 in table 4.3. The model performance is again evaluated
on the test set and compared against the defined baseline in section 3.1.2. To determine
the model with the highest performance, the three applied models were compared and the
best was the basis for further experiments.

Table 4.3: Architectural differences and key parameters of used models
Category T5 Model Architecture 1 T5 Model Architecture 2
Activation function GEGLU ReLU
Dropout Rate 0.1 0.1
Pre-trained C4 corpus C4 corpus and mulit-task
Parameter Sharing4 No Yes
dff 5120 16384
dkv 64 128
dmodel 2048 1024
Attention Heads 32 32
Number of Layers 24 24

4.2 Domain Adaptation with Domain-specific Fine-tuning

This section of the methodology focuses on answering the second research question. In
detail, we aim to investigate if we can improve the fine-tuning process by means of domain

3https://github.com/google-research/text-to-text-transfer-transformer/blob/master/released checkpoints.md
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adaptation. This answers the question to what extent a data sparse, domain-specific fine-
tune process or a non-domain-specific fine-tune process is superior. The detailed method-
ology is illustrated in figure 4.3

Figure 4.3: Methodology for multi-task domain-specific fine-tuning

In order to analyze the performance of a domain-specific model we fine-tuned one model
for each domain separately. This means that each model is fine-tuned only on the relevant
data from the corresponding domain. For that reason, we split the train, validation and test
set into 12 parts where each part contains question-answer pairs from their particular do-
main. Since the datasets are relatively small, we trained three different models per domain.
Each of them is trained on a different training/validation split. By evaluating the average test
score we make sure that the results are reliable despite the small data size. The final model
evaluation is done by comparing the performance on each domain with the performance of
the previously selected model. Therefore, we used the already fine-tuned model and ana-
lyzed the performance on the test set for each domain. For evaluation and comparison we
used the weighted average f1-score.

4.3 Model Explainability and Interpretability

As third part, we elaborate the methodology regarding the model explainability and inter-
pretability. This is the first step in the demonstration and evaluation of the determined train-
ing and fine-tune method. In detail, we describe the three different stages of the model
analysis process. For each stage, we explain the chosen strategy and model choices that
we used in order to interpret and analyze the model behavior.

4.3.1 Introduction and Overview of Methodology

This section addresses the problem that the predictions of a practical ASAG model need to
be comprehensible. Hence, we aim to gain a general understanding of the basis of model
decisions. The main focus is to determine why and when the model predicts a full score
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and if these predictions follow certain answer patterns. The underlying analysis strategy is
illustrated in figure 4.4

Figure 4.4: Methodology for model explainability and interpretability

As figure 4.4 shows, we first used the optimized model and fine-tuned it on the extracted
dataset from the University of Twente. Thereby we wanted to demonstrate to what extent
the model is applicable to a real university context. Detailed dataset description and the
data pre-processing are illustrated in section 5.2. After fine-tuning the model, the respective
predictions from the training, validation and test set were extracted. To reduce the analysis
effort we selected five suitable questions for a deeper analysis. We then carried out an anal-
ysis process structured in three stages: (1) Analyzing false positive answers, (2) extracting
keywords and identifying local key features and (3) analyzing the semantic relations between
the answers. Based on the combined results we formulated hypotheses that describe the
model predictions.

4.3.2 First Stage: Analyzing False Positives

In the first stage we analyzed the false positive (predicted value was 2 but the actual value
was less) cases. This analysis was done by manually skimming through the answers in
order to identify patterns. In particular we paid attention to similar semantic information
and overlapping phrases within student answers. The goal of the analysis was to identify
commonalities within the false positive predictions in order to derive model behavior.
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4.3.3 Second Stage: Extracting Keywords and Local Key Features

In the second stage, we analyzed the model behavior in greater detail by means of model-
agnostic approaches explained in 3.4.2. The central goal was to determine the keywords
and key features for each question and predicted labels in order to derive the important
keyphrases for the predictions. For this, we used two algorithms to consider both global and
local features.

First, we analyzed global features for particular questions. Therefore, we determined
keywords-phrases for each question and answer category (i.e. predicted score) by means
of the RAKE (Rapid Automatic Keyword Extraction) method [92]. This is a method that fo-
cuses on identifying keyphrases with frequently used content words. We used this method
to imitate the grading process of teachers that search for particular keyphrases within an an-
swer. Such recurring response patterns can be an indication of a certain prediction behavior.
We extracted the main keywords based on the ratio of the word degree and frequency since
we are more interested in context-relevant keyphrases. However, this implies that single
keywords will get a lower score. Therefore, we extracted all the keyphrases with their cor-
responding scores and investigate the top 10 for each keyphrase (unigrams, bigrams and
trigrams).

Second, we applied the L2X model to identify local features from the individual answers
(important keyword unigrams). We did this by using the L2X model implementation since
it focuses on local keywords per answer rather than for the entire question/score. This
method was chosen because of the versatile nature of student answers. The goal was to
extract local answer features for a single answer. The underlying idea was to identify a
specific number of keywords for every single answer. These keywords were then grouped
per question and category and overlaps (i.e. commonalities) were identified. These local
features (i.e. uni-gram keywords) also provide valuable insight later in the manual analysis
of semantic relations between answers.

4.3.4 Third Stage: Identifying Semantic Relations

In the third stage, we aimed to identify the semantic relations within groups of answers. The
first goal is to determine how semantically related the answers are and if semantic patterns
were observable. In detail, we identified different topic areas - based on the semantic rela-
tions between answers - that get high scores. This was done because the dataset encom-
passes open questions on several topic areas. Within questions, we assumed that students
mention thematically related answers. The second goal was to identify certain anomalies
within semantically related student answers. This was done simultaneously in a manual
manner. In order to simplify the manual analysis process we used a hierarchical cluster
algorithm which groups semantically similar answers. We chose this algorithm because we
can first look at the corresponding semantic variances of the answers (by visualizing dendo-
gram) and determine a preferable number of clusters. With this we ensured that significantly
different answers are not clustered together.
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4.3.5 Putting it Together: Formulating Model Hypotheses

Finally, we brought these three analysis stages together and derived specific anomalies
or prediction characteristics. Based on this, we determined hypotheses for each question
which reflect and explain why a model predicts an answer as correct.

4.4 Model Robustness against Adversarial Attacks

This section contains the chosen methodology to evaluate the robustness of the demon-
strated model. We did this by generating adversarial attacks based on the identified model
behavior. The detailed steps are illustrated in figure 4.5. We incorporated two different
goals with the used methodology.

Figure 4.5: Methodology for evaluating model robustness

The first goal was to evaluate the accuracy of the generated hypotheses from the previ-
ous analysis. We took these and generated guidelines that reflect how model features can
be exploited. This included the instruction that the keywords identified in section 6.3 should
appear in the answer and that the answer should not make sense or should be unrelated.
The central goal was to evaluate the applicability of the identified hypotheses. Within this
method, an experimental group of students was asked to find answers in order to trick the
model into predicting an originally wrong answer as correct. We further supplemented the
student answers by creating more answers. These answers follow similar guidelines but are
expanded according to the knowledge gained from previous sections. In this way, we wanted
to focus even more specifically on the supposed weak points of the model.

For the second goal, we aimed to determine the capability of the model to deal with
student manipulations by challenging the model in a more general way. In detail, we gen-
erated several wrong answers based on specific cheating strategies. Wrong in this context
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includes syntactically wrong sentences, off-topic answers, meaningless answers and more.
A detailed description of the cheating strategies can be seen in the appendix table A.4. This
analysis is essential to determine the usability of the model for a real-world application. In
which such an ASAG model needs to be able to handle students whose goal is to muddle
through questions and collect points with their answers.



Chapter 5

Datasets

For the conducted research several datasets are of particular relevance. In this chapter we
describe the main datasets used for evaluating the performance and their characteristics.
Followed by the introduction and the undertaking pre-processing steps of the second dataset
which is used to demonstrate and evaluate the model in a university context.

5.1 SciEntsBank Dataset

The SciEntsBank dataset is part of the task introduced in [31] and became well known as
part of the the SemEval 2013 Shared Task 2013 challenge. The SciEntsBank data contains
assessment questions and student answers from students in grades 3-6 in schools across
North America.

In general, the goal of the task is to identify correct answers, common mistakes like
omissions and wrong or thematically irrelevant statements for developing customized cor-
rection strategies. The dataset is available in three different versions but does not differ in
content, since these versions use the exact same data and differ only in the used labels.
For the research, we focused on the 5-way classification task since multi-class classification
is more challenging. As the name suggested the 5-way task consists of five labels. Where
each question-answer-pair is labeled as either (0) contradictory ; (1) correct; (2) partially
correct incomplete; (3) non domain or (4) irrelevant/incorrect. The 5-way task was espe-
cially created for the tutoring dialogue system since the labels indicate already a possible
dialogue-feedback strategy.

In total the dataset contains 4,969 answers to 135 different questions from 12 domains.
Detailed dataset properties can be taken from table 5.1. The dataset has an uneven domain
distribution of samples. This can be seen in figure 5.1 a). It can be seen that few domains
(e.g. ME, MX, PS, SE) make up a large part of the total training data.

In addition, as picture 5.1 b) shows, the class distribution of the SciEntsBank dataset is
imbalanced and skewed towards correct and partially correct answers. This property can
be problematic for machine learning algorithms since they are mostly designed under the
assumption of even class distribution. Despite the risk that this imbalance can lead to a
poor performance of the minority class we decided to accept this imbalance and not to use

45



46 CHAPTER 5. DATASETS

Table 5.1: Overview of the dataset and key properties
Category Train Dataset Test Dataset
Number of samples 4,969 5,835
Number of Domains 12 15
Number of Questions 135 196
Average Number of Answers per Question 37 30
Average Student Answer Length (in words) 13 11
Average Reference Answer Length (in words) 17 15
Label Range {0,1,2,3,4} {0,1,2,3,4}

(a) Domain distribution of the training Data (b) Class distribution of the training Data

Figure 5.1: Properties of the SciEntsBank dataset

re-sampling methods such as [93] or [94]. The decision to excluding this from the scope of
the work was made because it is a complex problem and a comprehensible analysis was
not feasible in the given time.

In order to test the performance of the model, the authors’ of the dataset introduced a
test set that consists of three different categories where each is capturing a different model
behavior. First part is the testing of the system regarding unseen answers. The second part
deals with unseen questions on which the model was not trained on. The last part of the
testing set deals with different questions from unseen domains. With these three categories,
the dataset captures the flexibility of the model and capability to generalize over different
domains.

5.2 University of Twente Dataset

In order to analyze the performance of the identified model on a real-world example we
used a dataset obtained from the University of Twente. The dataset consists of exam ques-
tions from the master course Electronic Commerce which was taught in 2019/2020 (course:
192320501). With the help of the professor of the course the dataset was extracted from
the digital assessments tool Remindo and several pre-processing steps have been applied.
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After pre-processing the dataset consisted of 1243 samples distributed over 22 different
questions which were structured in 8 main question with several sub-questions. The de-
tailed properties of the dataset can be seen in table 5.2.

Table 5.2: Key properties of the university dataset
Category Train Dataset Test Dataset
Number of samples 994 249
Number of Questions 22 22
Average Number of Answers per Question 45 11
Average Student Answer Length (in words) 35 33
Average Reference Answer Length (in words) 31 32
Label Range {0,1,2} {0,1,2}

A general analysis of the dataset distribution shows significant class imbalances. As
figure 5.2 a) illustrates, the majority of the samples are allocated in class two which repre-
sents the class of correct answers. Furthermore, the sample distribution over the different
questions is imbalanced which can be seen in figure 5.2 b). It further shows that only two
questions encompass around 70 answers whereas the majority of the questions contain less
than 40 question-answer pairs.

(a) Class distribution of training data (b) Sample distribution of questions

Figure 5.2: Properties of the university dataset

5.2.1 Data Pre-processing

In this section we describe the pre-processing steps that were used to restructure the exam
data and adapt the input format for the transformer model.

Question Pre-processing and Reformulation

Since the questions and answers of the dataset were of good overall structure it was possible
to restructure them by combining the answers from questions. For instance, one question
was to name three different advantages where the original answers were split into three dif-
ferent answers and were graded separately. Thus, it was possible to treat each of the three
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answers from one student as a single answer by simply reformulating the question. Other
questions expected the student to comment on a statement by either agreeing or disagree-
ing, providing two reasons in each case. These two reasons were also graded separately
by the professors. This allowed us to split the answers and assign two different questions
by transforming one question to two and only consider the relevant answers. To illustrate
the procedure one of the original questions can be seen in the first text box whereas the
reformulated questions in the second box.

Below you can find three propositions relating to E-commerce. First, specify
whether you agree or disagree with the propositions. Then, provide TWO rea-
sons for your choice (each is two points). Give key facts from the course materials
that support your view.
1. B2C commerce in Europe is now the dominant way of shopping across all retail
sectors.

The reformulated questions are the following:

1. Do you agree with the fact that B2C commerce in Europe is now the dominant
way of shopping across all retail sectors? (only answer if you agree)
2. Do you disagree with the fact that B2C commerce in Europe is now the dominant
way of shopping across all retail sectors? (only answer if you disagree)

By choosing these pre-processing approaches it was possible to amplify the number
of training samples for several questions. Furthermore, the question and answer structure
better fit the model due to the division of the questions into answers that agree and disagree.
Hence, the model learns the distinctions better since the argumentation is not of opposite
nature. Similar steps were done for several questions. After determining all the questions
we adapted the reference answers provided by the professors and created new ones that
match with the transformed questions.

Pre-processing of Student Answers

Since the model itself used a specific tokenizer and pre-processing, we only discuss the spe-
cific pre-processing steps to clean the data. Firstly, we replaced all line or paragraph breaks
(e.g. ’\n, \n\n’) with a single space. Secondly, since students tend to include enumera-
tions in their answers combined with hyphens, the author replaced ’\n-’ with a dot. Lastly,
we deleted special characters (only cases with several dots, e.g. ‘...’) and several minor
changes in terms of white space characters (e.g. ” .” to ”.”). In addition, some of the answers
exceeded the maximum answer length of 100 and were therefore excluded since these are
not considered short answers according to [5].
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Label Pre-processing

The original prediction task was a regression task since the model answers are theoretically
continuous. However, most of the professors evaluate the exams according to certain points
which results in a limited amount of possible scores. Therefore, the task can be interpreted
as a classification task due to its deterministic labels. Since the dataset is so small we de-
cided to pre-process the labels in order to create a dataset with a more-utilizable uniform
class distributions. Most of the label ranges of the questions were 0,1,2, the labels in be-
tween (e.g. 0.5, 1.5) were rounded off and assigned the corresponding class. This approach
was chosen for all questions and their sub-questions.
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Chapter 6

Experiments and Results

In the current chapter the experimental setup will be elaborated. We will include an in-depth
description of the specific implementations and the obtained results from the different parts
of experiments as described in chapter 4. This is followed by a short interpretation.

6.1 Multi-task Training

The goals in this section were to conclude if the multi-task training approach is beneficial for
ASAG and if the baseline (defined in section 3.1.2) can be outperformed. For this reason we
conducted three experiments in which we implemented and tested different models. Each
model implementations is based on their released code on github1. For the evaluation of the
trained models we compared them against each other and the defined baseline.

6.1.1 Experiment 1: Fine-tuning without Multi-task Training

In the first experiment we determine the base performance of the model that was not trained
in a multi-task manner. For this we used the pre-trained model checkpoint which was only
trained on the C4 corpus and not on multiple tasks.

The model refers to the implementation of the T5 Model Architecture 1 in table 4.3 where
we used the released checkpoint from the t5.1.1.xl model. As parameter setting we used
a learning rate of 0.001 since this was proposed by [3] as a result of a comprehensive
study on the hyper-parameter choices for the model. Furthermore, we used a relatively
small batch size of 16 since we wanted to decrease the computational costs and a large
batch size would further increase them [95]. Although preferable, a too large batch size
would have caused problems, because we were already working with the model on the
edge of the memory capabilities. We fine-tuned the model for 25,000 steps without early
stopping criteria and selected the model with the highest validation score. Furthermore,
we determined the length of the input sequence as 512 and the output sequence as 5.
The reason for this is that for a smaller output sequence the model predicts empty string.
However, this should be as low as possible since we only want to predict the target labels.

1https://github.com/google-research/text-to-text-transfer-transformer
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These parameters were set as default and were not altered since we did not conduct a
hyper-parameter analysis due to time constraints and disproportionate computational effort.
Unfortunately, the implementation does not allow the training score to be extracted to check
if the model is over- or underfitting. Therefore we only compared the validation and the test
score. The results for this experiment corresponds to the acronym T5-XL-base in table 6.1.
Furthermore, the test score in the table corresponds only to the category Unseen Answer
since otherwise it would have diluted the results and the informative value.

Table 6.1: Weighted average f1-score for validation and test data for each experiment
Exp. Model Validation Score Test Score
1 T5-XL-base 0.6036 0.5317
2 T5-XL-mt 0.6483 0.6096
3 T5-3B-base 0.7765 0.7451

It can be observed that the model achieved an overall test score of 0.5317 which is a
below average result. Despite the difference between validation and test score, it seems
that the model does not over-fit the data considering the difficulty of the task. The detailed
results for each category can be seen in table 6.2. In each of the categories the T5-XL-base
model is inferior to the baseline. However, this was to be expected since this model was not
trained extensively and it only served as a basis for comparison.

6.1.2 Experiment 2: Multi-task Training and Fine-tuning

After the baseline has been determined for the model we applied the individual multi-task
training approach and further pre-train the model. This was done since we want to identify if
the performance can be improved with a more profound and efficient pre-training approach.

In this experiment we used the same multi-task training approach setup as the authors
of [3]. We first prepared the different tasks by generating the corresponding pre-processing
functions and by combining the different tasks. For each task we used the weighted average
f1- score as optimization metrics and cross-entropy loss. The transformed input formats
for each task are illustrated in the appendix section A.1. In the training process, randomly
selected samples from each task are assigned to a batch and the model parameters are
adjusted accordingly. This was done by using the examples-proportional mixing approach
without setting a dataset limit (for details see section 2.3.5). Therefore, we considered each
task according to the overall dataset distribution.

For multi-task training we used the same checkpoint as in section 6.1.1 with the same
parameter settings. As training step size we used 219 = 524, 288 since it was used by [3] for
pre-training. With this step, we tried to imitate the training method (i.e. the number of train-
ing steps) used in the paper. For the training we included training and validation samples
of the corresponding tasks. However, due to the technical structure of the implementation
it was not possible to extract the validation scores for each specific task. Hence, we only
saved few checkpoints of the model during the training. For this reason, the last checkpoint
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of the model is used for the following fine-tuning. By doing so we did not consider to what
extent the model might be over-trained on specific tasks. After the pre-training of the model
we fine-tuned it with the same hyper-parameter choices as in the previous section 6.1.1. Af-
ter fine-tuning we used the model with the best validation score and applied it on the test set.

The results of the fine-tuned model T5-XL-mt can be seen in table 6.1. The model
achieved a validation score of 0.6483 and a test score of 0.6096 which indicates that the
model does not over or under-fit the data in a significant manner. A more detailed analysis
of the model performance by category is shown in table 6.2. It can be seen that the training
was successful with regard to the category Unseen Answer, as the weighted average f1-
score was improved by more than 0.07. However, this was at the expense of the other
two categories, which have deteriorated significantly. This score of less than 0.3 in each
category is slightly better but almost equivalent to randomly chosen predictions. This led to
the average of the model slipping below 0.4 which is worse than the average result of the
previous model. Despite the positive result for unseen answers, the model was not able to
beat the baseline where it performed much worse than previous models.

Furthermore, the results indicate that the training was positive for the category unseen
answer. Here the model has learned to make better predictions when it is trained on our task
selection. However, the generalization ability of the model suffered since the performance
for unknown questions and domains worsened significantly. Therefore, it seems that the
chosen multi-task training approach is only beneficial for questions the model has already
been seen during training. The reasons behind this behavior are not clear but it seems that
the model learned more during training and fine-tuning while simultaneously losing its ability
to generalize over unseen domains and questions.

6.1.3 Experiment 3: Fine-Tuning with Pre-trained T5 Model

The models from previous sections were not able to achieve new state-of-the-art results
on the target dataset. Therefore, we used the originally published model which has been
trained much more extensively in order to improve the performance against the baseline.
The model was used identically to the previous ones by accessing the checkpoint of the
model. As explained in the methodology (section 4.1), this is the same type of model with a
different model architecture, configuration choices and pre-training method.

We implemented the model based on the released checkpoint described in section 4.1.3.
All parameters for fine-tuning were kept the same.

The model T5-3B-base achieved a test score of 0.7451 with a validation score of 0.7765.
This indicates that the model learned the question-answer-structure from the training and
that there was no indication of under or over-fitting. The detailed performance of the model
T5-3B-base can be seen in the table 6.2. The model outperformed the baseline and achieved
new state-of-the-art results on the target dataset. In the category unseen answer, the model
is approximately 0.07 better than the baseline. For the other two categories, the model
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achieved a 0.10 (for unseen domain) and 0.15 (unseen question) higher weighted average
f1-score than the baseline. Interestingly, the model achieved the same performance for
unknown questions and unknown domains as the baseline for unknown answers. This in-
dicates how powerful such exhaustively trained and complex models are and how well they
represent textual data.

6.1.4 Evaluation of Multi-task Training Experiments

The following table 6.2 illustrates the detailed results on the SciEntsBank test set achieved
by each of the three models.

Table 6.2: Weighted average f1-scores of conducted experiments and baseline
Exp. Model Average** Unseen Answer* Unseen Question* Unseen Domain*
1 T5-XL-base 0.4906 0.5317 0.4496 0.4121
2 T5-XL-mt 0.3875 0.6096 0.2676 0.2855
3 T5-3B-base 0.6975 0.7451 0.6687 0.6788

Baseline 0.6565 0.6720 0.5310 0.5740

The results show that the excessive pre-trained T5-3B-base model outperformed each
of the individually trained models T5-Xl-base and T5-Xl-mt as well as the baseline in each
category significantly. This makes it the new-state-of-the art model for the SciEntsBank
dataset.

We analyzed the best model in greater detail by means of the confusion matrix split into
figure 6.1a for all three categories and figure 6.1b for the single category unseen answers2.

(a) Confusion matrix for all categories (b) Confusion matrix for unseen answers

Figure 6.1: Confusion matrix of the T5-3B-base model on test set

The two confusion matrices make it clear that the general prediction behavior within the
different classes did not differ much between the categories. Due to these minor differences,
the following performance metrics refer only to the category unseen answers (figure 6.1 b)
but are also representative for the overall model. In detail it shows that the model is able
to predict the correct answers well considering the difficulty with a precision of 0.8425 and

2Label decoded: 0 contradictory, 1 correct, 2 irrelevant, 3 non domain, 4 partially correct
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a recall of 0.7811. However, for the partially correct the model only achieved a precision of
0.4903 and a recall of 0.6725. Many partially correct answers are classified as correct which
shows that the model lacks in distinguishing between correct and partially correct answers
and has a general bias towards correct answers. In addition, the model falsely predicts
contradictory, irrelevant and correct answers as partially true. This is the main reason for
the low performance for the class of partially true answers. Although the model in general
performs well, the results indicate that the model has difficulties especially in classifying
partially true answers.

6.2 Domain-specific Multi-task Training

In this section, we describe the implementation of the fourth experiment. In detail, we elab-
orate the preparation of the domain-specific data, the experimental setup for the fine-tuning
process and report the corresponding results for each domain. The goal in this experiment
was to investigate to what extent a domain-specific fine-tuned model can improve the overall
performance and if it helps to mitigate the data sparsity problem. The conducted experiment
is based on the best performing model architecture T5-3B-base from the previous section.

6.2.1 Experiment 4: Domain-specific Fine-tuning

Since the previously implemented model has been trained on the entire dataset (i.e. all 12
domains) we first split the train, validation and test set according to their domains. This re-
sulted in 12 different train/validation/test sets which served as input for the domain-specific
fine-tuning. This step made the already small training samples even smaller. This caused
problems since fine-tuning models on such a small dataset is likely to lead the network to
overfitt the data. Consequently, the reliability of the training suffers. In order to avoid reduced
reliability of the performance and to maintain the informative value of the approach, we cre-
ated for each domain 3 different train/validation splits. By that, we trained three different
models for each domain and averaged their performance on the test set for each domain.
In addition, we calculated the standard deviation for each result to measure the variation
within the splits. This increased the significance of the chosen approach and compensated
partially for the small dataset. Each domain is represented in different quantities in the data
and we wanted to train each for the same number of epochs. Therefore, we adapt the step
size for each domain accordingly and reduced the batch size. The detailed parameters for
each domain-specific model training can be seen in the appendix table A.1. All the other
previously used fine-tuning hyper-parameters are kept the same. After the models have
been trained we analyzed the prediction of the previously implemented model and reported
the performance on the test set for each domain independently.

In table 6.3 the results of the domain-specific and non-domain-specific model perfor-
mances are illustrated. The latter corresponds to the T5-3B-base model from the previous
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Table 6.3: Results for domain-specific fine-tuning per domain
EM FN II LF

Category UA/� UQ/� UA/� UQ/� UA/� UQ/� UA/� UQ/�
Domain 0.678/0.048 0.408/0.004 0.619/0.004 0.268/0.101 0.619/0.006 0.533/0.014 0.571/0.054 0.465/0.064
Non-Domain 0.817 0.503 0.777 0.691 0.649 0.747 0.673 0.528
Test Samples 48 80 36 40 24 38 44 40

LP ME MS MX
Category UA/� UQ/� UA/� UQ/� UA/� UQ/� UA/� UQ/�
Domain 0.791/0.071 0.266/0.011 0.756/0.022 0.447/0.032 0.673/0.043 0.421/0.036 0.605/0.029 0.821/0.089
Non-Domain 0.881 0.671 0.769 0.641 0.791 0.533 0.672 0.933
Test Samples 8 40 92 80 28 40 80 40

PS SE ST VB
Category UA/� UQ/� UA/� UQ/� UA/� UQ/� UA/� UQ/�
Domain 0.834/0.034 0.683/0.088 0.612/0.026 0.372/0.045 0.641/0.049 - 0.547/0.02 0.547/0.021
Non-Domain 0.858 0.773 0.741 0.667 0.708 - 0.663 0.624
Test Samples 44 215 60 80 32 - 44 40

experiment where we reported the performance for each domain. For each model and do-
main the results are reported separately for each category (unseen answer, unseen ques-
tion). The results for the domain-specific model in table 6.3 are averages of the three sep-
arately trained models. The detailed results for each split are illustrated in table A.3 in the
appendix. It becomes clear that the model which has been trained on all domains achieved
better performance on each domain and demonstrated its superiority. For some domains
the standard deviation of the splits is high, which indicate the issue with the small training
set and that some of the models overfit the data. This pattern can be seen in the detailed
results when we take the corresponding validation score into account.

6.3 Model Explainability and Interpretability

Within this section, we describe the implementation of the identified model and their demon-
stration on the dataset from the University. We further introduce the implemented algorithms
that have been used to explain the model decisions and their corresponding results. We
close this section by the identified hypotheses of the model behavior.

6.3.1 Model Demonstration on the University of Twente Dataset

In the demonstration phase, we took the best performing model and fine-tuned it on the
dataset from the University of Twente. According to the results from section 6.2.1 a domain-
independent fine-tuning would have been preferable. Due to permission issues only one
dataset (i.e. one exam) could be used rather than combining several courses. Therefore,
we only fine-tuned the model on one dataset. For the model fine-tuning, we split the dataset
into train, validation and test set. Train and test set are split with a ratio of 0.2 in a stratified
fashion and the train set is further split into train and validation set with the ratio 0.25. For the
model training we used the same pre-trained model checkpoint as the T5-3B-base model.
Parameters are kept the same with learning rate of 0.001, batch size of 16 and the number
of steps with 25,000. The detailed results on the test set can be seen in figure 6.2.

The model performed well on the test data with a weighted average f1-score of 0.7435
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(a) Confusion matrix for the test set (b) Performance evaluation on test set

Figure 6.2: Test set results for university dataset

compared to the validation data with a weighted average f1-score of 0.7146. This higher
test score indicates that the model generalizes well on that particular group of answers.
However, we observed significant differences between the classes where the model only
performs well on correct answers. For incomplete and incorrect answers the model lacks in
performance which is a result of the imbalanced nature of the dataset.

This behavior is reflected by an analysis on question level. Here the model performed
well on questions that have an imbalanced class distribution where the majority of samples
are correct answers. As soon as the class distribution for a question is more balanced we
see the reverse pattern where the performance of the model decreases. This behavior is an
indicator that the imbalanced nature of the data needs specific consideration and that the
model tends to predict wrong answers as correct by default.

6.3.2 Pre-selection of Questions

In the next step, we analyzed each question and the corresponding answers in detail and
decided if the question is suitable for a deeper analysis. We ended up selecting the questions
1.1, 5.3, 6.3, 7.1 and 8.3 based on their amount of training samples and their more suitable
class distribution which are illustrated in figure 6.3.

Figure 6.3: Pre-selected label distribution university dataset
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6.3.3 First Stage: Analyzing False Positives

In the first stage, we manually analyzed for each question the false positive (i.e. predicted
value was 2 but the actual value was less) in order to find specific patterns for inferring model
behavior. This analysis was done by skimming through the answers and trying to find com-
monalities and anomalies. We especially paid attention to similar semantic information in the
answers and overlapping words within student responses. We used the model predictions
on the test set as well as from the validation set.

The results showed that no clear or significant patterns could be detected that would
have allowed a draw a reliable conclusion about model behavior. This is mostly due to the
small amount of data in the test and validation set.

6.3.4 Second Stage: Extracting Keywords and Local Key Features

In the second stage, we analyzed the model behavior in greater detail. The central goal
of the second stage was to determine the key features for each question and each label in
order to derive the main responsible keywords and local key feature for a specific score. For
this reason, we applied two different extraction methods.

In the first method, we extracted the keywords separately from each question predicted
label using the RAKE Keyword Extraction Method [92]. In detail, we filtered the student an-
swers according to each question and each predicted score. We used the rake-nltk3 library
from python. In order to limit the keywords we only used unigrams, bigrams and trigrams.
After applying the algorithm we extracted all keywords with the calculated importance score
for each question-score category. In the next step, we manually analyzed the top 10 uni-
grams, bigrams and trigrams for each category and select the top 5 keyphrases. In addition,
we manually searched for answer patterns for each question in the extracted keywords. The
results for each score can be seen in the first three rows per question in table 6.4 and table
6.5.

3https://pypi.org/project/rake-nltk/
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In the second method, we leveraged the model proposed by [61] to detect local key
features for each individual answer. In essence, the model used a so called ”instance-
wise feature selection method” where the feature selector (CNN architecture) is trained to
maximize the mutual information between features and the label. For further technological
details please see the paper [61].

We implemented the L2X for explaining word-based CNN on IMDB method and adapted
the published code to our task. Originally the code was designed to explain a CNN-based bi-
nary sentiment classification prediction on the large movie review dataset IMDB4. Since our
task consists of three possible labels we changed the number of neurons in the explainer-
module to 3. Furthermore, we reduced the input sequence from previously 400 to 105 since
we deal with short answers. All other parameters are kept the same and can be found in
the authors’ GitHub repository5. Since the model is based on a CNN architecture several
pre-processing steps were necessary before the model could be used. First, we created a
word-to-id dictionary which simply maps each token to a unique number. The unique tokens
(i.e. bag-of-words) of the dictionary were created based on the words occurring in question,
student answer and reference answer. For these steps we used the word tokenizer from nltk
library6. Second, we further included start tokens ”<START >” which indicate the start of
each student answer, unknown words tokens ”<UNK >” in case the word does not exist in
the dictionary and a padding token ”<PAD >” for answers that are shorter than the input
sequence of the CNN. In such cases we used pre-padding. After we prepared the dataset,
we applied the model and selected the 10 key local features per answer. Since we were
interested in the most important tokens we analyzed if local key features were selected by
the algorithm more often for answers from a particular question. We did this by grouping
the extracted local features by questions and predicted labels and counting the word occur-
rences. Afterwards depending on the word frequency the final 6-8 keywords per question
and score were determined. The results of the local key features for each question and
score are illustrated in figure in table 6.4 and 6.5.

6.3.5 Third Stage: Identifying Semantic Relations

The third stage of the analysis focused on the semantic information within the answers for the
specific question. We generated semantically related answer cluster and manually identified
semantic patterns that trigger the model to classify the answer as correct. In a next step, we
combined the previously extracted keyphrases and derived hypotheses which describe the
model behavior.

Since an extensive analysis of each answer individually would not be proportionate, we
clustered semantically similar answers together and analyzed the clusters as a whole. This
made the process viable, more scale-able and allows a better selective analysis of answer
groups. The analysis process is divided into four different steps: Extracting answer embed-

4https://www.tensorflow.org/datasets/catalog/imdb reviews
5https://github.com/Jianbo-Lab/L2X/tree/master/imdb-word
6http://www.nltk.org/ modules/nltk/tokenize.html



62 CHAPTER 6. EXPERIMENTS AND RESULTS

dings, filtering each question and score, applying cluster algorithm, inspecting each cluster
manually.

Since the fine-tuned model implementation did not provide the possibility to extract the
answer-embeddings we used the T5 implementation from Huggingface7. Due to memory
problems and computation expenses it was only possible to used the pre-trained t5-large
model for extracting. We extracted the answer-embeddings by averaging the individual word
embeddings within a particular answer. These embeddings were then used to generate a
distance matrix based on the transformed cosine similarity which is define by:

distance(Ai, Bi) = 1� cos(✓) (6.1)

Where Ai and Bi represent the distance between two multidimensional answer vectors.
The resulting distance matrix was then used as input for the hierarchical cluster algo-

rithm. For this we used the sklearn library and their Agglomerative Clustering implemen-
tation. We chose hierarchical cluster algorithm because of its bottom-up nature and its
flexibility in finding a suitable number of cluster. In detail, the algorithm starts by considering
each data point (in our case student answer) as a single cluster and merges that with the
nearest cluster iteratively. Since we were dealing with data that tends to be inherently differ-
ent we ensured that we determined a suitable number of cluster. As parameter setting we
chose the distance metric euclidean distance and as linkage criteria between clusters the
ward method. The ward method was used because it aims to minimize the overall distance
of the data-points within a cluster (i.e. it minimizes the sum of squared differences8). By
that, we ensured that the data-points within a cluster are as similar as possible which eases
the later analysis.

After generating the different clusters for each question-score category we investigated
each cluster in detail. Within this step, we analyzed the answers for commonalities and
answer patterns. Based on the results we derived hypotheses about the model behavior
by including the identified keywords and the local features identified in section 6.3.4. The
most important result for each of the steps and the derived hypotheses are illustrated in the
following section.

6.3.6 Detailed Results and Formulating Model Hypotheses

This section contains the results of the five analyzed question and their corresponding de-
rived hypotheses. We show the exact confusion matrix per question for the validation and
test set and we report the detailed performance.

Question 1.1

Figure 6.4 shows the confusion matrices for question 1.1 in the University of Twente dataset.
The model achieved a weighted average f1-score of 0.5333 for the test set. This score re-
flects the fact that the model simply predicted all samples as correct. A similar behavior can

7https://huggingface.co/transformers/model doc/t5.html
8https://scikit-learn.org/stable/modules/clustering.html



6.3. MODEL EXPLAINABILITY AND INTERPRETABILITY 63

be seen in the performance on the validation set. Here the weighted average f1- score was
0.7699 since the validation set encompasses only three answers with label incorrect. This
bias towards correct answer was not a surprise since the model was trained on 69 correct
(label 2) and only 7 wrong (label 0) answers.

(a) Confusion matrix for validation set (b) Confusion matrix for sest set

Figure 6.4: Model results for university dataset question 1.1

After incorporating each of the stages from section 6.3 we derived the following four
hypotheses which explain the model behavior for the particular question.

1. Hypothesis 1: Answers that contain the phrases contain consumer, product, store,
customer, support, country far away (alone and all together) tend to get full points in
their prediction.

2. Hypothesis 2: Answers that contain the phrases product, online, people, store(s),
shopping, traditional (alone and all together) tend to get full points in their prediction.

3. Hypothesis 3: Answers that contain vacuous answers but talk about the topic tend to
get predicted correct.

4. Hypothesis 4: Answers that contain short and general advantages without being spe-
cific tend to get full points in their prediction (e.g. improve customer experience).

Question 5.3

The general model prediction behavior can be seen in the confusion matrices in figure 6.5.
The model achieved for the specific question on the test set a weighted average f1-score
of 0.7269. For the validation set the weighted average f1- score was 0.9468. This result
illustrates clearly the importance of a balanced dataset since it was less biased towards a
score. Such model behavior can be traced back to the class distribution of the training set,
since the model was trained in a more balanced way on 1 wrong, 19 incomplete and 23
correct answers.

Based on the analysis we derived the following three hypotheses that we think can ex-
plain the model behavior.
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(a) Confusion matrix for validation set (b) Confusion matrix for test set

Figure 6.5: Model results for university dataset question 5.3

1. Hypothesis 1: Answers that contain the phrases product, groups, identify, preset (alone
and all together) tend to get full points in their prediction.

2. Hypothesis 2: Answers that contain the phrases product, machine, customer, reviews,
groups, machine learning, algorithm (alone and all together) tend to get full points in
their prediction.

3. Hypothesis 3: Answers which start with an general explanation of NER (introducing the
general concept of it, correct or even incomplete) combined with a wrong explanation
tend to be predicted correct.

Question 6.3

For the third analyzed question, the general model prediction behavior is illustrated in figure
6.6. The model achieved on the test set a weighted average f1-score of 0.6029. For the
validation set the weighted average f1- score was 0.5404. The results of the two confusion
matrices reflect the indecisiveness of the model in decision making. In contrast to most,
the training data was very balanced but the question itself was difficult to answer (e.g. long
and nested answers) since naming specific details were of particular importance for the an-
swer. This revealed that complex questions that expect a relatively detailed answer tend to
perform worse. That shows that answers, where more complex explanations are expected,
the model tends to have difficulties. This makes a correct prediction particularly difficult for
longer and complex structured answers.

We derived the following four hypotheses which explain the model behavior for the par-
ticular question.

1. Hypothesis 1: Answers that contain the phrases based, precision, ratings (alone and
all together) tend to get full points in their prediction.

2. Hypothesis 2: Answers that contain the sub-string ”The MAE,MSE,RMSE predict ex-
isting ratings and measure how accurate the algorithm performs.” tend to get full points
in their prediction.
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(a) Confusion matrix for validation set (b) Confusion matrix for test set

Figure 6.6: Model results for university dataset question 6.3

3. Hypothesis 3: Answers that contain the phrases algorithm performs, nominal data,
continuous data, assessing numeric data tend to get full points in the answer.

4. Hypothesis 4: General and not specific answers which contain the sub-string ”MAE,
MSE, RMSE, are calculated” tend to get predicted correct.

Question 7.1

The general model prediction behavior can be seen in figure 6.7. The model achieved a
weighted average f1-score of 0.7706 on the test set. For the validation set the weighted
average f1- score was 0.4631. This clearly indicated the model bias towards correct answer,
since the test set contained mostly correct answers. This shows again how dependent the
model is on the corresponding data structure and class distribution of the training data. In
detail, for this specific question the model was trained on 2 wrong, 20 incomplete and 49
correct answers. A deep analysis of the falsely correct (i.e. true class is either 0 or 1 but 2
was predicted) predicted answers revealed that most of the answers were in general correct
but fail to include the part of the question which asks for the importance to the business of
this feature. Therefore, it seems that the model struggles in distinguishing between complete
and incomplete answers and predicts a full score more often because of its bias.

(a) Confusion matrix for validation set (b) Confusion matrix for test set

Figure 6.7: Model results for university dataset question 7.1
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Based on the analysis we derived four different hypotheses that explain the model be-
havior.

1. Hypothesis 1: Answers that contain the phrases cart, rate, conversion, conversion rate,
buyer conversion (alone and all together) tend to get full points in their prediction.

2. Hypothesis 2: Answers that contain the phrases product, page, books, rate, people,
website, insights (alone and all together) tend to get full points in their prediction.

3. Hypothesis 3: Explanations which include many different key metrics terms similar to
conversion rate, bounce rate, audience metrics tend to get full points.

4. Hypothesis 4: Incomplete answers that do not provide information about the impor-
tance of the mentioned metrics for the business tend to get classified as correct.

Question 8.3

The general model prediction behavior for the last question is illustrated in figure 6.8. For
this question, the model achieved a weighted average f1-score of 0.5750 on the test set.
For the validation set the weighted average f1- score is 0.2721. The results indicated the
randomness in the prediction behavior on the validation set. In addition, it can be seen that
the model has a tendency of predicting full scores, although the model learned with more
balanced training data. Such a behavior could be accounted to the question type itself since
this question asked for the naming of different actors in a particular field. Therefore, the
answers had a different answer pattern since most students answered either in bullet-points
or coherent sentences. This seemed to make it more difficult for the model since we would
expect a relatively good performance. Nevertheless, the small training set does not seem to
be enough data to achieve reliable results.

(a) Confusion matrix for validation set (b) Confusion matrix for test set

Figure 6.8: Model results for university dataset question 8.3

After the analysis including the extracted keywords and local features, the following hy-
potheses were developed.

1. Hypothesis 1: Answers that contain the phrases mindful chef often in its explanation
(also for explaining other actors) tend to get full points in their prediction.
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2. Hypothesis 2: Answers that contain the phrases chef, blogger, customers, good, fresh,
hello, charity, riverford tend to get full points in their prediction.

3. Hypothesis 3: Answers that contain the phrases readers, mindful chef, hello fresh, neg-
ative feedback, prospective customers, one feeds two, mindful chef company, added
content people (alone and together) tend to get full points in their prediction.

6.4 Model Robustness against Adversarial Attacks

In this section, we explain the used methods to generated adversarial answers in order to
evaluate the model robustness against student manipulations. First, we analyze to what
extend the previously identified hypotheses represent the model behavior. Followed by an
evaluation of the models susceptibility towards certain cheating and manipulation strategies.

6.4.1 Answer Creation Process

Based on the determined hypotheses we derived guidelines how the system can be chal-
lenged. Herewith we tried to achieve several things. Firstly, the guidelines were formulated in
such a way that the hypotheses could either be confirmed or rejected. This made it possible
to rule out whether the hypotheses and thus also the approach was successful. Secondly,
we aimed for a greater variety of answers by asking different students to trick the system.
In addition, the students identified their own manipulation strategies and wrote their own
answers. With this approach we ensured that the results are relevant and versatile.

We selected an experimental group of 6 students who were familiar with the topic of the
dataset. After we have been instructing the students to answer the questions they went
through the answers independently and formulated answers. In order to analyze the reliabil-
ity and usefulness of the answers, the answers were checked and evaluated by the course
professors. If answers were not suitable - meaning that they could be considered partially
correct - they were excluded from the validation process of the system. In this step, a total
of 20 answers were filtered out, which resulted in a total number of 123 samples. To enable
a subsequent analysis of the manipulation strategies we analyzed the answers and grouped
cheating strategies to 14 categories. These are shown in table 6.6. A description for each
of the strategies is given in the appendix table A.4.

The remaining answers were added as input to the already trained model and the pre-
dictions were analyzed accordingly. From the results we deduced to what extent the defined
hypotheses correspond to reality and to what extent and with which strategies the system
can be tricked. This was done by simply analysing how many of the test answers were pre-
dicted correct or partially correct from the model. Based on this number we concluded if the
cheating strategy were successful or not.
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Table 6.6: Cheating categories and resulting model predictions
Nr. Cheating Category Prediction

Correct Incomplete Wrong
1 Keywords, meaningless answer 37 4 3
2 Keywords, general, unrelated answer 31 5 -
3 General answer, meaningless argument 3 1
4 Derive solution from question 2 5 -
5 Keywords, general, partially true argument

but no explanation
4 2 2

6 General answer, applicable to many things 5 - -
7 Confusing answer, mixing knowledge 1 3 -
8 General answer, partially true argument

but no explanation
4 2 -

9 Ambiguous answer 2 - -
10 Correct definition of concept

but no valid reason
1 1 -

11 Correct answer to opposite question 1 - -

6.4.2 Results for each Cheating Strategy

In table 6.6 we reported the aggregated results of the respective model predictions for each
of the categories. The detailed results for each individual question can be seen in table 6.7.

It is obvious that when keyphrases were used in the answer, the model tends to classify
the answer as correct. However, it should be noted that the cheating strategies were gen-
erally rather one-sided and keywords were used in most cases. Furthermore, the detailed
results in table 6.7 show different behaviors between the questions. This suggests that a
detailed examination of the question/answer types and -structure could provide important
insights. We further observed that for relatively general questions (e.g. question 1.1 which
asked for a simple advantage) it seems that very general answers regardless of their mean-
ing were classified as correct. However, if the question is more specific - such as questions
5.3, 6.3, 7.1 - the model showed a tendency to classify answers as incomplete or even oc-
casionally as wrong. Especially for general answers and answers that were derived from the
question the model was able to classify them as incomplete or even wrong.
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Table 6.7: Cheating categories of model robustness test per question
Nr. Cheating Category Prediction

Correct Incomplete Wrong
1.1 Ambiguous answer 2 0 0

Correct answer to opposite question 1 0 0
General answer 2 0 0
General answer, applicable to many things 5 0 0
General answer, meaningless argument 1 0 0
Keywords, general, unrelated answer 11 0 0
Keywords, meaningless answer 7 0 0

5.3 Confusing answer, mixing knowledge 0 1 0
Derive solution from question 1 4 0
General answer, meaningless argument 1 0 0
Keywords, general, partially true
argument but no explanation

4 1 0

Keywords, general, unrelated answer 11 3 0
6.3 Derive solution from question 1 1 0

Keywords, general, partially true
argument but no explanation

0 0 1

Keywords, general, unrelated answer 4 2 0
Keywords, meaningless answer 12 3 3

7.1 Confusing answer, mixing knowledge 1 2 0
Correct definition of concept but no valid reason 1 1 0
General answer, meaningless argument 0 3 1
General answer, partially true argument
no explanation

1 2 0

Keywords, general, partially true
argument but no explanation

0 1 0

Keywords, general, unrelated answer 4 0 0
Keywords, meaningless answer 11 1 0

8.3 General answer, meaningless argument 3 0 0
Keywords, general, partially true
argument but no explanation

2 0 0

Keywords, general, unrelated answer 1 0 0
Keywords, meaningless answer 7 0 0
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Chapter 7

Discussion and Limitations

In this section, we take up the results from the previous chapter and discuss them for each
experiment. The chapter is structured in the same chronological order as the research
methodology but with a focus on a more general interpretation of the results and their corre-
sponding implications. In addition, several limitations from the work are mentioned.

7.1 Multi-task Training

We presented an example of transfer learning methods of the T5 model to Automatic Short
Answer Grading. With the T5 model that has been trained using a customized dataset selec-
tion strategy we obtained mediocre performance improvements. Overall, however it showed
the benefits of multi-task learning for ASAG. Significant improvement has been achieved by
an extensively pre-trained T5 model that outperformed all previous published models on the
ASAG task. This indicates that an extensively trained model achieves better results and
that individualized training methods cannot keep up with excessive training. However, the
reasons behind these differences are not clear. In addition, the best model achieved similar
performance on the category unseen domain and unseen question. This illustrates that the
model is not dependent on the domain itself which subsequently means that it either already
gained knowledge in the pre-training or that the dataset domains were similar. These find-
ings emphasized the possibilities associated with transfer learning and the multi-task training
approach for ASAG. Such a finding aligns with recent developments in NLP research where
more extensively trained models to obtain better results.

Despite the design of a suitable model, the performed experiment cannot clearly prove
whether the improvements are due to the multi-task training method or to the extensive
pre-training. This makes it unclear which design choice for such a model is beneficial. Inde-
pendent of this, by using such a multi-task training method any relevant NLP tasks can easily
be integrated. This ultimately increases the performance and gives educational institutions
the freedom to use different tasks in one model. This reduces the data collection effort since
the structure of existing exam questions is inherently different.

One of the biggest concerns of the T5 model is the weakness in classifying critical (par-
tially true) answers. It is essential for a model to deal with this particular problem in ASAG
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since often the accuracy of an answers depends on specific details. Such details could not
be detected reliably with our model because we think that it cannot correctly determine the
pattern for correct and incomplete answers. This emphasizes that a teacher who is familiar
with the details is still necessary for a reliable evaluation and that such an application cannot
be used autonomously at present. Nevertheless, it is interesting how the pre-trained model
could achieve new-state-of-the-art for the task. This illustrates that even for such difficult
tasks as ASAG, development does not stop and transfer learning seems to be a crucial part
for further improvements. It makes clear that newly released model architecture should be
tested regularly to track progress in the field of ASAG.

7.2 Domain-specific Multi-task Training

Within the experiment, we showed that in general a domain-independent T5 model is prefer-
able to a domain-specific fine-tuned model. Interestingly, the results for both methods show
considerable variation within the different domains. This indicates that the questions and
answers within the domain seem to be from different difficulties for the models and that the
training data is of importance. We believe that the imbalanced nature and the small dataset
have significantly influenced the result. For some domains the results indicated a conver-
gence of the performance of the two models when the domain training data increases in size.
This could mean that the domain-specific dataset size plays a important role and could flip
around the conclusion when a threshold is exceeded. As a consequence, domain-specific
fine-tuning would provide a way to compensate for data sparse data. However, since this
pattern is only observed in a few cases such an interpretation must be treated with caution
and its exact origin and validity must be analyzed more closely.

For the answers from unseen questions, the performance between the methods varies
greatly and the non-domain model performs significantly better. From this behavior we can
conclude that the non-domain performance benefit from the training of different domain
questions. This indicates that there has been a transfer of knowledge between the ques-
tions which improved the model generalization capabilities. Such behavior reflects to some
extent the natural learning behavior of humans. However, the nature of this behavior is not
obvious and it is not clear if this is only due to the amount of training data or whether the
domain-specific model overfits the training data.

Furthermore, the results should be considered with regard to the size of the test set. This
coupled with the imbalanced dataset dilutes the general significance of the interpretations.

The result, that domain-specific training does not necessarily lead to performance im-
provements contradicts with some literature that sees potential improvements through do-
main adaptation in NLP tasks. However, some authors like [27] mitigated this problem
by including both domain-specific knowledge and general knowledge to solve the task and
achieved good results. This combination seems to be preferable since the generalization
ability of the model suffers when focusing purely on a specific domain.

As a consequence, educational institutions do not necessarily have to focus on collecting
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domain-specific data and can improve the performance by training the model with as much
data as possible regardless of the domain. Consequently, this domain-independent fine-
tuning leads to a simplification in the collection of usable training data. In addition, it offers
the possibility to include any domain, which makes collaboration and data sharing between
institutions much easier.

7.3 Model Explainability and Interpretability

Demonstrating the optimized T5 model for the ASAG task resulted in a well-performing but
highly biased model. This proved how important an interpretation and analysis of the model
decisions is with sparse and imbalanced data.

Four points should be especially considered here. Firstly, the dependency of a model and
the importance of a well-balanced dataset. Questions with an imbalanced class distribution
achieved relatively good results whereas a more balanced distribution lead to worse results.
Such a behavior can be traced back to the imbalanced training which inevitably leads to a
preferred prediction of the maturity class. This distorts the interpretation and must there-
fore be considered differently. Therefore, a simple comparison of performance measures is
misleading for this problem, especially when the dataset is so small and a deeper analysis
is necessary. For a real implementation, this means that a focus on a balanced dataset
is essential for the model usability. Furthermore, the evaluation metrics should be chosen
according to the individual requirements combined with an investigation of the performance
for each class for understanding and evaluate the model behavior.

Secondly, the importance of differentiated consideration of questions with different de-
grees of difficulty. The model performance varies with the expected difficulty of given an-
swers. Especially for nested and complex structured answers, the model has severe prob-
lems. For such cases it is inevitable to extend the dataset so the model can learn to un-
derstand the different semantics patterns that determine a true prediction. The transferred
model itself was not able to be adapted perfectly on the given task and did not make up
for the data sparse nature. In practice this means that we believe that the more answers
the model is trained on the better it becomes. In terms of difficult and specific questions,
we think it is advisable to work with several reference answers that capture these specific
requirements or to keep the questions simple.

Lastly, the challenges with non-coherent sentences. In some cases incomplete sen-
tences and bullet-points of rather simple questions caused problems for the model. The
same applies to answers that are written by using the wrong vocabulary due to language
issues. Not surprisingly the model fails to understand the true intended meaning of the an-
swer. Such problems are ubiquitous when working with real exams, since the students are
under time pressure and have only average language skills. For such answers it is difficult
to rely on this type of a model since it was trained with a different objective. Therefore, we
think that such answers have to be taken care of in advance. One possible way would be to
educate the student in answering the questions with complete sentences.
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For the overall interpretation process, the selected algorithms and the scientific approach
to develop behavior hypotheses is advisable for complex models. The incorporation of key-
words, local features and the semantic information lead to useful interpretations of the model
predictions. Nonetheless, this manual approach is difficult to scale and only feasible with
small data size. This creates a conflict of objectives since we believe that the performance
can be increase with more data. In such cases, the chosen approach reaches its limits and
needs to be replaced with more automated analysis methods.

7.4 Model Robustness against Adversarial Attacks

Evaluation of the demonstrated model showed how susceptible the model is towards manip-
ulations. The majority of the hypothesis-based answers were predicted as correct answers.
For this reason, it can be concluded that the hypotheses concerning the predictive behav-
ior of the model were largely confirmed. This makes it particularly prone to manipulation
and makes its application in practice as such critical. However, in order to rule out that this
result is only due to the imbalanced training method, further experiments and a significant
expansion of the dataset is required.

A similar behavior was observed with most of the cheating strategies. It is obvious that
the model follows its normal prediction patterns and predicts in most cases the majority
class. This is to be interpreted very critically because it means that the model does not
understand when an answer is not only wrong but also syntactically completely meaning-
less. Such behavior can either be attributed to the general tendency of the model to classify
responses as correct because of the small and imbalanced dataset, or to the fact that the
model indeed lacks in the ability to understand semantic information of the answers. Re-
gardless of the result, these findings emphasize the need to test models for their robustness
before deployment.

Nevertheless, in a minority of the cases, the model was able to classify the answer as
wrong or as incomplete. This indicates that apart from the general tendency to classify an-
swers as correct, the model shows potential to detect individual manipulation strategies of
students. It is interesting in this context that these question types have similar characteris-
tics. They ask for a specific answer that is less open to interpretation and which tends to
have a more limited number of possible solutions. This coupled with the fact that the class
distributions of these question were more balanced than the others emphasizes again the
importance of the dataset for a working model. Therefore, it also seems to make sense to
deal with the questions itself in terms of content and to analyze question properties (e.g.
question type, difficulty, length, complexity, nesting).

7.5 Limitations

There are also few limitations associated with the experiment which are listed below.
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• The imbalanced nature of each of the datasets is one of the main limitations of this
work and might dilute some of the results and interpretations.

• For none of the models a hyper-parameter analysis was performed. However, this
could lead to different performances of the models and change the results.

• In each of the fine-tuning processes, all model parameters (i.e. weights) were updated.
However, other fine-tuning methods may be advantageous, e.g. only the last layers of
the model are updated.

• The composition and usage of the different datasets during multi-task pre-training is a
limitation because there were great imbalances. This could result in the model being
over-trained for a special task that affect the performance.

• The multi-task training ratio was not investigated in this work but is an important factor
of multi-task training and can have a significant influence on the model performance.

• Each of the trained models randomly mixed the training samples to assemble the train-
ing batches. This can lead to different results per model training which has not been
verified in this work.

• The origin of the differences between the domain- and the non-domain-specific is not
completely clear. It could also be due to the fact that the questions and answers
only partially use specific vocabulary and therefore often have generally formulated
answers since the questions are on school level. It might be possible that much more
specific questions that go deeper into a domain and therefore require an extended
technical vocabulary will benefit from domain-specific training. However, this requires
a detailed analysis of the dataset and a professional evaluation.

• Due to a lack of permission only one dataset could be used rather than multiple. This
could have influenced the performance of the demonstrated model.

• The efficiency and usefulness of the keywords/local feature extraction methods were
not evaluated.

• Some of the reference answers for the University of Twente dataset were selected by
the author himself based on his knowledge, research and correct student responses.
After validation with a participating professor, some of the reference answers were
found to be arguably not completely correct. This could have influenced the model
predictions.

• The performed model robustness analysis had only a small-scale character. Therefore
not all different strategies could be tested extensively.
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

The conclusions is structured in three parts. In the first part, we directly answer the re-
search question that was formulated in Chapter 1. Furthermore, we state to what extent the
research goal has been achieved. Part two explains the contributions and implications for
the education sector and what institutions can take away from the present work. Lastly, we
discuss the involvement of the work to research and illustrate how the present paper makes
a valuable contribution to the field of ASAG.

8.1.1 Answer to Research Questions

The objective of this research was to design an ASAG model and evaluate its applicability
to practice in order to advance the fields of ASAG and facilitate progress for a digital tutor
application. Based on this, the goal was defined in the form of the four main research
questions. The answers to these questions are the result of the present research.

1. Research Question: Does multi-task learning improve the performance of Auto-
matic Short Answer Grading?

The research has shown that the multi-task training approach with the T5 model is beneficial
for Automatic Short Answer Grading by setting a new-state-of-the-art model for the SciEnts-
Bank dataset. Although the results are subject to some uncertainty, they provide sufficient
evidence to conclude that multi-task training improves performance in short answer grading.

1. Subquestion 1: Is a multi-task learning approach beneficial when incorporating datasets
from the same and related research fields?

The conducted experiments revealed evidence that training a model with multiple
tasks from the same and related fields can indeed improve the performance. The
experiments showed that multi-task training leads to an 7.00% increase (weighted
average f1 score of 60.69%) in the performance of unseen answers compared to
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a non-mulit-task trained model. At the same time, this also resulted in a signifi-
cant decrease in performance in the categories unseen question (-18.20%) and
unseen domain (-12.69%). Furthermore, with the chosen approach it was not
possible to outperform the defined baseline for the ScieEntsBank dataset. How-
ever, it is not clear from the results to what extent multi-task training is responsible
or the improvement on unseen answer. A more detailed discussion about this can
be seen in section 7.4.

2. Subquestion 2: Does a mulit-task pre-trained model improve Automatic Short Answer
Grading and outperform the baseline?

The results showed that by using an extensively pre-trained model a new state-
of-the-art performance was achieved for the SciEntsBank dataset. The chosen
model outperformed the baseline by long shot. For the category unseen answer it
achieved a weighted average f1-score of 74.51% (+7.31%), for unseen questions
66.87% (+13.77%) and for unseen domains 67.88% (+10.48%). Therefore the re-
sults support the fact that pre-trained models are clearly preferable to individually
trained models and it does not seem to matter which NLP tasks are used. This
emphasizes the significant role of the extent of the training and the complexity of
the model.

2. Research Question: Does domain-specific fine-tuning influence the performance
of Automatic Short Answer Grading?

It was found that the non-domain model outperformed the domain-specific model in
each of the 12 domains and each question category. This showed that non-domain
models benefit from the training of different domains. According to the results, this can
be traced back to the fact that the generic learning model uses the knowledge gained
from different domains. Whereas the domain-specific model lacks in generalization
capabilities.

3. Research Question: How can we explain model decisions in a real-world applica-
tion?

Within this work, we developed a framework for the analysis of model behavior of a
real-world exam dataset from the University of Twente. The model achieved a weighted
average f1-score of 74.35% on the test set. With the identification of keywords and lo-
cal answer features (RAKE method and L2X model) and the application of hierarchical
cluster algorithm different prediction patterns in the answers could be identified. Based
on the patterns we were able to formulate suitable hypotheses for selected questions
that describe the model behavior and explain their decisions. During the analysis
some important insights were detected. It turned out that the high test score should
be viewed with extreme caution since the model as a whole predominantly classifies
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answers as correct. This is due to the characteristics of the training set, in which there
is a clear imbalance which results in a bias towards correct answers. Such enormous
imbalances in the data set and the additional small amount of data presented a great
challenge and diluted the analysis.

4. Research Question: How robust is the model towards student manipulations?

One of the most neglected issues in ASAG was brought into focus with this ques-
tion. Based on the analysis of the model behavior, adversarial attacks were created.
These were supplemented by selected students who tried to trick the system for spe-
cific questions. These attempts were combined into cheating strategies and clearly
showed how susceptible the model is towards manipulation attempts. In particular,
answers that contain the identified keywords and were either completely meaningless
or unrelated to the actual question were mostly able to get a full score. Furthermore,
there was a slight correlation between the difficulty of the question and the degree
of susceptibility. In some cases, answers to more specific questions could be classi-
fied as partially correct or incorrect. Therefore the evaluated model is not suitable for
practical use under these conditions.

Achievement of the Research Goal

The work showed that an efficient model could be developed which sets a new benchmark
for the target dataset. However, when applied to the university context, it shows clear weak-
nesses. The main reasons for the weaknesses were the small number of training samples
coupled with imbalanced training data. The model was not able to deal with these efficiently.
The decision bases of the model could be identified with suitable algorithms. However, the
results were diluted by the poor data basis. Furthermore, it was clearly shown how sus-
ceptible the model is towards student manipulations and how strong the dependency on the
training data was.

Regarding the progress of a digital tutor, we can say that we have not yet arrived at a
practical model for a digital tutor. The main reason for poor performance is the difficulty of
the task itself and the data situation. Currently, a very well-performing transformer model is
not able to give a human-like evaluation. Nevertheless, the results suggest that we are on
the right track and that researcher should work on the data basis of ASAG.

8.1.2 Educational Implications and Contribution to Practice

This work was motivated by the goal of developing a practical solution or at least advance
the field with a practical application focus. The present research therefore, offers some
contributions to practice and implications for educational institutions.

First, the model shows that domain-specific training is not beneficial but rather the amount
of training data is from importance. This means that institutions do not necessarily have
to collect domain-specific data. This allows for extensive cooperation among each other,
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which can lead to data sharing models and collaborative advances. Second, the used
model shines by its simple integration possibility of different tasks. Thus the use of the
T5 architecture offers enormous potential and can be developed further by simply preparing
new data sets. This makes usage and continuous expansion possible without adapting the
model, which is an advantage in today’s variety of questions. Third, due to the superiority
of a pre-trained model, this facilitates the application of the model as no extensive training
from scratch is required. This saves valuable resources and makes it more environmentally
friendly. Nevertheless, it should be noted that the size of the model should not be underesti-
mated and the necessary infrastructure must be guaranteed for such applications in future.
Fourth, the framework for an interpretation of the results can be used and adapted to the
respective requirements. However, the clustering of exams according to semantic similar-
ity is hardly scalable. Here the manual approach reaches its limits after a certain number
of questions/answers pairs. Fifth, the research provides an incentive to take a closer look
at the question/answer structures and the degree of difficulty for such a model application.
This might lead to the development of new question structures and guidelines. Finally, one
of the most important implications should be mentioned. Educational institutions should be
realistic and critical about ASAG because there is still a lot of potentials. The robustness
test provided an incentive to take a critical look at the models and not to rely on them blindly.
Furthermore, autonomous and accurate applications that replace humans are not yet feasi-
ble.

8.1.3 Contribution to Research

The contributions to research through comprehensive work is versatile. First, the application
of the multi-task training approach to the problem of ASAG showed successful feasibility. To
the best of our knowledge, such an approach has not been done before. Within the exper-
iments, a new state-of-the-art model was created which outperforms the previous models
significantly and therefore a new milestone for this dataset was reached. This combination
lays the foundation for a more focused scientific discussion on multi-task learning models
in the field of ASAG. Secondly, the obtained results regarding the advantage of generically
trained models over domain-specific ones stimulate an extensive discussion about the train-
ing methodology of such models. Third, the research applied a model that performs very well
on a ASAG dataset to a real exam of a university. This allowed to analyze the model more
precisely and to identify the basis for decision making. Therefore a scientific approach using
hypotheses was presented based on a compounded and in-depth model-agnostic analysis.
This approach can be used by other researchers to make progress in the field of model ex-
plainability. It could also be shown that an exact examination of the respective performance
metrics is necessary and that especially the dataset should be considered in detail. Fourth,
by challenging the algorithm, the weaknesses of such a system could be highlighted. The
identification of the far-reaching influence of an imbalanced dataset leads to an incentive
that such models can not only be used for popular datasets but are also resilient enough
to be suitable for practical application. For this purpose, a further applicable methodology
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was developed which can be further refined and developed. Finally, the proposed work
combines the most important features of a model which are necessary for a practical ap-
plication. It supports researchers in approaching this problem as a multifaceted one with
a practical focus. In addition, it creates awareness for model explainability and resilience
which have been neglected by researchers. Individual features of this work can be further
developed by researchers taking into account the important factors. This leads to a new
research approach in the field of ASAG which aims at a practical solution.

8.2 Recommendations and Future Work

The recommendations and possible future research are divided into two parts. Here we
show to what extent the present work can be extended and improved.

8.2.1 Multi-task Training and Domain-specific Fine-tuning

The presented model training and fine-tuning could be improved and extended in several
ways.

As discussed above, the research did not provide absolute evidence of the superiority
of multi-task training. Therefore a next step would be to transform the multiple tasks to an
unsupervised problem and train the model only on textual data. The performance can than
be compared to the already trained model which provides enough evidence for a reliable
conclusion. In addition, it could be analyzed how the hyper-parameter choice influences
the results and whether the conclusions is preserved. Especially the experiments 2-3 could
be repeated with different hyper-parameters (especially batch size, learning rate and step
size). This could be used to improve performance and inspect why the model (experiment
2) showed such a performance drop in its generalization ability.

Due to the random composition of training and fine-tune batches, the implementation
could be adapted so that the models are trained with exactly the same batches. This would
help to reduce the diluted results of the experiments. However, additional pre-training on
large amount of data is associated with enormous computational effort. When experiment-
ing with such large models it should not be the incentive to develop always exclusively better
models, but rather the efficiency and resource conservation should be considered. There-
fore, one should be weighing between necessity and sustainability before training a new
model. Based on the experience of the work, we advise not to train extensive models on
your own but to use pre-trained models and further train them.

We further recommend enhancing the adaptation process by analyzing if another fine-
tune process is beneficial. One possibility would be to experiment in adjusting the number of
parameters (e.g. only adapt last few layers) that are updated during fine-tuning. This could
lead to better performance and to a reduction of the training time. In addition, a further step
would be to conduct a similar domain adaptation experiment but keeping the fine-tuning
datasets the same size. The reason for this is that it can be excluded whether the larger
data volume of the generic model is responsible for the better performance. We expect that



82 CHAPTER 8. CONCLUSIONS AND FUTURE WORK

this could solve the differences between the dataset splits within a domain. However, this
requires a careful combination of different datasets or even the creation of a new one.

We also believe that we would have obtained even better results by using the largest 11B
model. This would improve the performance even more, but also increase the computational
costs and the model could only be trained with special TPUs from Google.

8.2.2 Model Explainability and Robustness

As mentioned data scarcity is one of the major obstacles. For the demonstration and eval-
uation we recommend performing the experiments in the field of model explainability and
robustness with a balanced and comprehensive dataset. This can be achieved by collect-
ing more comprehensive data from exams or student tasks. Especially in the digital age
we expect a growth in availability of data. Furthermore, various ways to deal with the class
imbalances like data amplification could be investigated. For example the feasibility and ap-
plication of classical methods like [93], [96], [94], [97] to such a NLP problem could be
analyzed.

Studying ways to incorporate model-agnostic and non-agnostic interpretation approaches
(like attention weights visualizations) is a great challenge but could produce interesting find-
ings. Likewise, the key-phrase extraction methods could be analyzed in greater detail and
the accuracy could be validated. By applying the two methods to a balanced dataset one
could make valuable inferences to the importance of keywords and local key features. With
this more reliable hypotheses could be found and tested. In addition, it could be analyzed if
more scalable methods are applicable to cluster the answers based on semantic information
and content. The goal should be to automatically identify specific topics of the answers. An
interesting approach could be to analyze answers with topic model or similar approaches.

Further, researchers could gradually increase the number of labels in order to increase
the difficulty of the task. By that, the model learns to distinguish between correct and par-
tially correct answers since this is one the main lacks which prevents current autonomous
application. An analysis of how advanced training can improve model capabilities is crucial
for a real application. Such training could be complemented by integrating different manip-
ulation responses which specifically influence the model training. Thereby we expect that
the mentioned weaknesses of the model can be reduced. For this purpose, specific an-
swers can be formulated which are continuously added to the model training to improve the
performance and resilience towards cheating strategies.
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Appendix

A.1 Multi-task Training Preprocessed Inputs

In this section we give an example for each preprocessed input format for the datasets used.
For the processed labels the label range is indicated, in the application only the true label is
processed and not all of them.

COPA
Processed Input: ”copa premise: my body cast a shadow over the grass. choice1: the sun
was rising. choice2: the grass was cut. question: cause”
Processed Target Labels: ”true/false”

MSRP
Processed Input: ”mrpc sentence1: amrozi accused his brother, whom he called the wit-
ness, of deliberately distorting his evidence. sentence2: referring to him as only the witness,
amrozi accused his brother of deliberately distorting his evidence.”
Processed Target Labels: ”true/false”

MultiNLI
Processed Input: ”multinli sentence1: how do you know? all this is their information again.
sentence2: this information belongs to them”
Processed Target Labels: ”entailment/neutral/no entailment”

MultiRC
Processed Input: ”multirc passage: while this process moved along, diplomacy continued
its rounds. direct pressure on the taliban had proved unsuccessful. as one nsc staff note
put it, under the taliban, afghanistan is not so much a state sponsor of terrorism as it is a
state sponsored by terrorists. [...] president clinton told us that when he pulled musharraf
aside for a brief, one-on-one meeting, he pleaded with the general for help regarding bin
laden.”” i offered him the moon when i went to see him, in terms of better relations with the
united states, if hed help us get bin laden and deal with another issue or two.”” the u.s. effort
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continued. ” question: what did the high-level effort to persuade pakistan include? answer:
children, gerd, or dorian popa”
Processed Target Labels: ”true/false”

ReCoRD1

Processed Input: ”record passage: the harrowing stories of women and children locked up
for so-called moral crimes’ in afghanistan’s notorious female prison have been revealed after
cameras were allowed inside. mariam has been in badam bagh prison for three months after
she shot a man who just raped her at gunpoint and then turned the weapon on herself - but
she has yet to been charged. nuria has eight months left to serve of her sentence for trying
to divorce her husband. she gave birth in prison to her son and they share a cell together.
scroll down for video nuria was jailed for trying to divorce her husband. her son is one of 62
children living at badam bagh prison most of the 202 badam bagh inmates are jailed for so-
called ’moral crimes crimes include leaving their husbands or refusing an arrange marriage
62 children live there and share cells with their mothers and five others query: the baby she
gave birth to is her husbands and he has even offered to have the courts set her free if she
returns, but @placeholder has refused.”
Processed Target Labels: ”nuria”

RTE
Processed Input: ”rte premise: no weapons of mass destruction found in iraq yet. hypoth-
esis: weapons of mass destruction found in iraq.”
Processed Target Labels: ”entailment/no entailment”

SNLI
Processed Input: ”snli sentence1: a person on a horse jumps over a broken down airplane.
sentence2: a person is training his horse for a competition.”’
Processed Target Labels: ”entailment/neutral/no entailment”

SICK
Processed Input: ”sick sentence1: the young boys are playing outdoors and the man is
smiling nearby. sentence2: the kids are playing outdoors near a man with a smile.”
Processed Target Labels: ”entailment/neutral/no entailment”

STS-Benchmark
Processed Input: stsb sentence1: a plane is taking off. sentence2: an air plane is taking
off.’, ’targets’: b’5.00’
Processed Target Labels: ”0.00/0.25/0.50/.../4.50/4.75/5.00”

1For this datasets the authors used a customized appraoch in order to transform the tasks to the text-to-text
input format. We only included samples that have three or less possible answer choices where all have the
same string, i.e. are duplicates and refer to the same object or subject
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SQuAD1.0
Processed Input: ”squad context: architecturally, the school has a catholic character. atop
the main buildingś gold dome is a golden statue of the virgin mary. immediately in front
of the main building and facing it, is a copper statue of christ with arms upraised with the
legend ”venite ad me omnes”. next to the main building is the basilica of the sacred heart.
immediately behind the basilica is the grotto, a marian place of prayer and reflection. it is
a replica of the grotto at lourdes, france where the virgin mary reputedly appeared to saint
bernadette soubirous in 1858. at the end of the main drive (and in a direct line that connects
through 3 statues and the gold dome), is a simple, modern stone statue of mary. question:
to whom did the virgin mary allegedly appear in 1858 in lourdes france?”
Processed Target Labels: ”saint bernadette soubirous”

ASAP-SAS
Processed Input: ”asap essayset: 1. essaytext: what you need is more trials, a control set
up, and an exact amount of vinegar to pour in each cup/beaker. you could also take and
check the mass every 30 min or 1 hour”
Processed Target Labels: ”0/1/2/3”

University of Texas
Processed Input: ”texas question: what is the role of a prototype program in problem
solving? reference answer: to simulate the behaviour of portions of the desired software
product. answer: a prototype program simulates the behaviors of portions of the desired
software product to allow for error checking.”
Processed Target Labels: ”0.0/0.5/1/.../4/4.5/5.0”

WiC
Processed Input: ”wic sentence1: approach a task. sentence2: to approach the city. word:
approach”
Processed Target Labels: ”true/false”

WSC
Processed Input: ”wsc text: i poured water from the bottle into the cup until *it* was full.
word: the cup”
Processed Target Labels: ”true/false”

SciEntsBank
Processed Input: ”semeval question: when conducting a controlled experiment, why do
you use a standard? semeval reference answers: a standard is used for comparison to de-
termine how changing one variable changes the results. semeval student answers: to keep
the variables controlled.”
Processed Target Labels: ”0/1/2/3/4”
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A.2 University of Twente Dataset Preprocessed Inputs

Processed Input: ”exams question: What advantages do traditional brick and mortar re-
tailers have over e-commerce only retailers when it comes to latest developments in e-
commerce? exams reference answers: they already have an offline shop infrastructure in
place which enables them to establish a cross-channel experience. exams student answers:
groceries are the most in-store bought items. by expanding from online stores to physical
stores amazon can expand their market influence.”
Processed Target Labels: ”0/1/2”

A.3 Domain Adaptation and Model Robustness

Table A.1: Parameters for model training
Domain Batch Size Step Size Epochs

EM 8 4,111 115
FN 8 4,111 115
II 8 2,041 115

LF 8 3,766 115
LP 8 661 115
ME 8 7,935 115
MS 8 2,415 115
MX 8 6,670 115
PS 8 5,218 115
SE 8 5,160 115
ST 8 2,702 115
VB 8 3,795 115

Table A.2: Train, validation and test set distribution per domain
Domain Train Samples Validation Samples Test Samples UA

EM 318 112 48
FN 223 100 36
II 152 61 24

LF 277 116 44
LP 51 19 8
ME 582 246 92
MS 165 87 28
MX 496 201 80
PS 376 169 44
SE 376 163 60
ST 188 95 32
VB 274 122 44
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Table A.3: Detailed results domain specific learning
Domain Split Model Accuracy Model Weighted F1 Score

Validation Test UA Test UQ Validation Test UA Test UQ
EM 1 0.770833 0.645833 0.412500 0.778034 0.647980 0.410857

2 0.678322 0.645833 0.462500 0.654949 0.642350 0.411416
3 0.706294 0.750000 0.462500 0.701270 0.746205 0.403274

FN 1 0.675926 0.611111 0.300000 0.667502 0.624751 0.215482
2 0.694444 0.611111 0.275000 0.683495 0.614929 0.180393
3 0.710280 0.611111 0.425000 0.702417 0.620077 0.409230

II 1 0.464789 0.625000 0.526316 0.450131 0.610979 0.513822
2 0.577465 0.625000 0.552632 0.567868 0.623684 0.543473
3 0.619718 0.625000 0.552632 0.621368 0.623684 0.543473

LF 1 0.648855 0.568182 0.300000 0.645209 0.547847 0.374841
2 0.633588 0.659091 0.425000 0.628214 0.645426 0.513095
3 0.625954 0.545455 0.425000 0.625092 0.519805 0.507221

LP 1 0.708333 0.750000 0.400000 0.693223 0.722222 0.265566
2 0.608696 0.750000 0.425000 0.630952 0.763889 0.253509
3 0.826087 0.875000 0.425000 0.801609 0.888889 0.280423

ME 1 0.793478 0.760870 0.450000 0.789064 0.762836 0.410677
2 0.731884 0.760870 0.51100 0.729176 0.710420 0.423667
3 0.746377 0.760870 0.537500 0.737528 0.750420 0.483667

MS 1 0.773810 0.642857 0.425000 0.757454 0.612364 0.471562
2 0.773810 0.714286 0.400000 0.776347 0.700819 0.389586
3 0.761905 0.750000 0.500000 0.757559 0.705866 0.402642

MX 1 0.660944 0.575000 0.825000 0.659478 0.575621 0.826587
2 0.698276 0.600000 0.675000 0.696206 0.594519 0.708988
3 0.685345 0.650000 0.925000 0.686395 0.645156 0.926111

PS 1 0.851648 0.863636 0.809302 0.849266 0.881667 0.785039
2 0.890110 0.772727 0.567442 0.884490 0.803776 0.570286
3 0.911602 0.795455 0.711628 0.911096 0.818023 0.694256

SE 1 0.622222 0.550000 0.325000 0.623976 0.576012 0.315713
2 0.672222 0.600000 0.425000 0.664733 0.622553 0.426957
3 0.642458 0.600000 0.400000 0.641860 0.638462 0.373854

ST 1 0.726316 0.562500 - 0.729213 0.592070 -
2 0.734043 0.593750 - 0.726227 0.622455 -
3 0.787234 0.687500 - 0.783241 0.708287 -

VB 1 0.659091 0.545455 0.550000 0.646694 0.544108 0.575214
2 0.674242 0.568182 0.550000 0.679807 0.572808 0.540686
3 0.666667 0.522727 0.575000 0.645459 0.523088 0.526096
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