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ABSTRACT 

Applications of machine learning algorithms have witnessed substantial increases in the geoscientific field. 

However, the predictive performance of these algorithms can be biased if the existing spatial 

autocorrelation in geospatial data is unattended. This study investigates the approach to account for spatial 

autocorrelation by introducing additional spatial features in machine learning. We explore the 

incorporation of two spatial features, i.e. spatial lag and eigenvector spatial filtering (ESF) features, with 

the widely used random forest (RF) algorithm. Least absolute shrinkage and selection operator (LASSO) 

selection is introduced to determine the best subset among multiple spatial features that would be included 

in machine learning. The effects of these spatial features are illustrated on two public datasets of varying 

sizes (Meuse dataset and California housing dataset). Normal and spatial cross-validation are applied to 

hyper-parameter tuning and performance evaluation. We utilize Moran’s I and local indicators of spatial 

association (LISA) to assess whether the spatial autocorrelation is captured at both global and local scales. 

The results show that RF models combined with either spatial lag or ESF features generally yields lower 

training errors (up to 38% in difference) than the model with no spatial features included. The global 

spatial autocorrelation of residuals is reduced (up to 95% decrease in Moran’s I) when spatial features are 

included. The local patterns, especially for homogeneous clusters, are weakened as well. However, the 

generalized error of spatial models increases considerably in spatial cross-validation compared to the error 

estimated from normal CV (up to 43% in average difference). Normal cross-validation generally returns a 

lower generalized error which indicates a potential over-optimistic estimate. It can be concluded that the 

two proposed spatial features are able to account for spatial autocorrelation in machine learning. The 

differences between normal and spatial cross-validation should be considered whenever a spatial model is 

evaluated. This study reveals the effectiveness of spatial features in capturing spatial autocorrelation, and 

provides insights on the usage of spatial cross-validation in performance estimation.   

Keywords: spatial autocorrelation, spatial features, machine learning, spatial cross-validation 
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1. INTRODUCTION 

The volume of data generated in recent years is increasing tremendously and a large proportion of big data 

is georeferenced (e.g. remote sensing imagery, GPS trajectories, weather measurements) (Goodchild, 

2013). Spatial big data bears the same properties as normal big data like huge volume, high velocity, and 

high variety. Big data provides new opportunities to uncover previously unknown insights of our world. 

However, one of the associated challenges with spatial big data lies in developing new methods to handle 

and analyze complex datasets where traditional approaches may fail (Kitchin, 2013).  

 

Machine learning has demonstrated its versatility for data analysis in different scenarios including face 

detection, speech recognition, and machine translation. Machine learning methods allow computers to 

learn from experience. It is powerful to extract information and identify structures from large and high-

dimensional datasets (Hoffmann et al., 2019). With unprecedented volumes of geospatial data available in 

recent years, machine learning has been universally employed in geoscientific research such as land cover 

classification, soil mapping and atmospheric dynamics (Reichstein et al., 2019). Four major tasks of 

machine learning include classification, regression, clustering and dimensionality reduction. One of the 

main utilization of machine learning on geospatial data is spatial prediction where a model is built using 

training samples to predict unknown values at specific locations  (Kanevski, Timonin, & Pozdnukhov, 

2009; Shekhar et al., 2015). 

 

In contrast with machine learning, which represents a generic toolset for data analysis, spatial methods 

specifically aim to analyze data in a spatial context. The nexus of these methods are built upon the first law 

of geography which states that “everything is related to everything else, but near things are more related 

than distant things” (Goodchild, 1992; Miller, 2000; Tobler, 1970). Such characteristics of spatial 

phenomena imply the underlying spatial dependence or spatial autocorrelation (SAC). The presence of this 

spatial relationship violates the assumption of identical and independent distribution (i.i.d.) upon which 

many non-spatial statistical methods are predicated. Spatial methods distinguish themselves in explicitly 

dealing with spatial dependence or spatial autocorrelation that is not addressed by non-spatial models.  

 

Spatial autoregressive (Anselin, 1988) and geographically weighted regression (GWR) (Brunsdon, 

Fotheringham, & Charlton, 1996) are two commonly used spatial models. Spatial autoregressive models 

can be configured differently depending on where spatial autocorrelation are introduced (Anselin, 1988; 

Löchl & Axhausen, 2010). For instance, spatial lag model assumes spatial autocorrelation in the response 

variable and spatial error model specifies spatial dependencies in the error term. GWR represents a 

localized linear regression that aims to model spatial heterogeneity by estimating spatially varying 

parameters (Wheeler, 2014). Another research field that deals with spatial autocorrelation is geostatistics. 

Kriging is a classic technique in this field that covers a family of methods to interpolate or predict spatial 

autocorrelated variables. It captures spatial autocorrelation by determining the spatial covariance of 

samples using a variogram model. However, all these methods mentioned above suffer from divergent 

drawbacks. Spatial autoregressive and GWR mainly focus on linear relationships. Kriging usually requires 

assumptions about spatial distribution (e.g. second-order stationary) which may be unrealistic in practice 

(Fouedjio & Klump, 2019). Additionally, it is difficult to scale kriging and GWR for big spatial 

computation because of estimation complexity (Kleijnen & van Beers, 2018; Murakami, Tsutsumida, 

Yoshida, Nakaya, & Lu, 2019). 
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Machine learning is generally accurate, flexible and scalable for analyzing complex data but may not 

recognize spatial context. Spatial methods succeed in capturing spatial effects but are limited for 

applications of non-linear modeling and large-scale computing. Analyses that directly apply machine 

learning algorithms to spatial data without accounting for the potential spatial autocorrelation could lead 

to biased outcomes (Dormann et al., 2007; Hengl, Nussbaum, Wright, Heuvelink, & Gräler, 2018; Meyer, 

Reudenbach, Wöllauer, & Nauss, 2019; Pohjankukka, Pahikkala, Nevalainen, & Heikkonen, 2017).  

1.1. Problem statement 

The adaptation of machine learning in a geospatial context is a topic that receives attention along with the 

prominence of artificial intelligence and big data. Present research concerning the incorporation of 

machine learning and spatial analysis is still preliminary. Existing approaches that have been explored in 

this field could be roughly categorized in four directions: inclusion of spatial features in original algorithms 

(Behrens et al., 2018; Hengl et al., 2018; Li, Shen, Yuan, Zhang, & Zhang, 2017), hybrid models with 

geostatistics (Chen et al., 2019; Foresti, Pozdnoukhov, Tuia, & Kanevski, 2010; Hengl et al., 2015; Hengl, 

Heuvelink, & Rossiter, 2007), cluster-based methods where cluster analysis on independent variables is 

introduced as a preprocessing procedure (Mueller, Sandoval, Mudigonda, & Elliott, 2018), and other 

algorithms exclusively designed for spatial problems such as spatial predictive clustering trees (PCTs) 

(Stojanova, Ceci, Appice, Malerba, & Džeroski, 2013) and SpaceGAN (Klemmer, Koshiyama, & 

Flennerhag, 2019). 

 

The aforementioned four directions manifest diverse advantages and unique research values, but it is not 

feasible to cover all in one attempt. This thesis will investigate the inclusion of spatial features. Feature is a 

machine learning terminology that is similar to the notion of explanatory variables in statistics. Spatial 

features refer to relevant variables that can reflect geographical connectivity and spatial relations between 

observations, thus potentially accounting for spatial autocorrelation (Hengl et al., 2018). Feature 

engineering represents a crucial process in machine learning which aims to extract and formulate suitable 

features from raw data for the expected model. Multiple options exist to specify spatial features in present 

literature: Euclidean distance fields (EDF) which include buffer distances (distance to sampling locations) 

and coordinates (Behrens et al., 2018), spatial lag based on a definition of neighborhood (Kiely & Bastian, 

2019; Li et al., 2017; Zhu, Zhang, Xu, Sun, & Hu, 2019). Adding spatial variables into feature sets aligns 

with an intuitive and normal procedure in training machine learning models. This technique belongs to a 

generic feature engineering procedure that it could be extended for various algorithms. 

 

The inclusion of spatial features in machine learning is less explored compared with the combination of 

machine learning and kriging which can be exemplified by the various applications of regression kriging, 

neural network with kriging and random forest with kriging (Chen et al., 2019; Foresti et al., 2010; Hengl 

et al., 2007). Cluster-based methods mainly focus on model interpretability rather than predictive ability. 

The clusters are usually specified empirically which lacks rigorous justification. The major advantage of the 

spatial feature approach over exclusively spatial algorithms is that it does not require direct modification of 

the original algorithm, thus reviving non-spatial machine learning in geographical contexts and maintaining 

the variety of models that are already established scientifically. In addition, relevant research using spatial 

features for prediction is fragmented and mostly case-specific. Varying quantifications of spatial features 

are employed to account for spatial autocorrelation. Hengl et al. (2018) proposed a random forest 

framework to incorporate distance variants including EDF as geographical covariates for spatial 

prediction. To our best knowledge, no studies have been made to explicitly figure out how the other 

spatial features such as spatial lag could be adopted in a general machine learning prediction context, 

which will serve as the fundamental research problem of this study. 
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1.2. Objectives 

Considering the research gaps and problems mentioned above, the general objective of this study is to 

investigate the utilization of spatial features in spatially-aware machine learning for prediction. 

1.2.1. Sub-objectives & research questions  

1) To develop methods for building spatial features. 

Q 1.1: What spatial features can be constructed to potentially account for spatial autocorrelation? 

Q 1.2: How can the spatial features be properly configured? (e.g. standard spatial autoregressive models 

demand the configuration of a spatial weight matrix to define spatial relationships.) 

 

2) To investigate methods to train machine learning models with spatial features.  

Q 2.1: What effects do cross-validation have on the performance of models with spatial features? (e.g. 

Brenning, (2012), Pohjankukka et al. (2017), Ruß and Kruse (2010) stated that the presence of spatial 

autocorrelation can potentially cause standard cross-validation to underestimate the model error.) 

 

3) To evaluate the performance of machine learning models with spatial features. 

Q 3.1: Which spatial features can help to capture spatial autocorrelation and improve prediction 

accuracy? 

Q 3.2: What variations, if any, do the proposed spatial features have on small and large datasets in 

terms of the abilities to help with spatial autocorrelation and model accuracy?  
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2. LITERATURE REVIEW 

Adopting machine learning for spatial prediction covers broad concepts from both machine learning and 

spatial domain. This chapter reviews the basic theoretical aspects and methods that are related to this 

thesis. Section 2.1describes the notion of spatial autocorrelation and corresponding quantitative 

measurements for detecting the correlation. In section 2.2, available spatial features that can be extended 

to machine learning are discussed. Section 2.3 explains fundamental methods involved in the modeling 

process such as feature selection (2.3.2) and cross-validation (2.3.3). Arguments for the choice of machine 

learning algorithm and feature selection method used in this study are also provided in section 2.3.1 and 

2.3.2 respectively. The last section (2.4) reviews current developments concerning the incorporation of 

spatial features in machine learning. 

2.1. Spatial autocorrelation 

Spatial autocorrelation can be considered as a special case of statistical correlation. It assumes that 

observations at different locations are not independent. It specifically describes the correlation within 

variables through space (Getis, 2008). For a spatially distributed variable, positive spatial autocorrelation 

indicates that similar values occur between target location and surroundings while negative spatial 

autocorrelation implies dissimilar values observed in such locations.  

 

To test spatial autocorrelation, Moran's I statistic is the most widely used measurement that is analogous 

to the Pearson correlation coefficient. For 𝑛 observations of variable 𝑥, it is formulated as follows: 

 
𝐼 =

𝑛

𝑆0

∑ ∑ 𝑤𝑖𝑗(𝑥𝑖 − �̅�)(𝑥𝑗 − �̅�)𝑗𝑖

∑ (𝑥𝑖 − �̅�)2
𝑖

 
(2.1) 

where 𝑖 and 𝑗 are location indices, �̅� is the mean of the variable, 𝑤𝑖𝑗 is the spatial weight between location 

𝑖 and 𝑗, and 𝑆0 is the sum of all spatial weights: 𝑆0 = ∑ ∑ 𝑤𝑖𝑗𝑗𝑖 . Moran’s I varies from -1 to +1. A positive 

value indicates positive spatial autocorrelation and a negative value indicates otherwise. Zero value means 

no spatial autocorrelation.  

 

Moran’s I evaluates the degree of spatial autocorrelation on a global level, but it does not consider the 

potential local instabilities. Built from decomposition of Moran’s I, local indicators of spatial association 

(LISA) was introduced by Anselin (1995) to assess local spatial autocorrelation. This statistics for location 

𝑖 is calculated as: 

 
𝐼𝑖 = (𝑛 − 1)

(𝑥𝑖 − �̅�) ∑ 𝑤𝑖𝑗(𝑥𝑗 − �̅�)𝑗

∑ (𝑥𝑖 − �̅�)2
𝑖

 
(2.2) 

Four groups with significant local spatial autocorrelation (High-High, Low-Low, Low-High, High-Low) 

can be captured by LISA. High-High (HH) and Low-Low (LL) indicate clustering of high and low values 

respectively. Low-High (LH) denotes low values surrounded by high values, and the High-Low (HL) 

group denotes high values surrounded by low values. 
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2.2. Spatial features 

Spatial features are variables that represent spatial relationships of the phenomenon under study. This 

section introduces two variables from spatial autoregressive models, i.e. spatial lag and eigenvector spatial 

filtering (ESF). 

2.2.1. Spatial lag 

Spatial lag is a similar term to the lagged dependent variable in autoregressive time series analysis. Spatial 

lag linear regression popularized in spatial economics is built on this idea where spatial lag is considered as 

an additional regressor together with other explanatory variables (Arbia, 2014). A spatial lag model is 

expressed as follows. 

  

 
𝑦 = 𝜌𝑊𝑦 + 𝑋𝛽 + 𝜀 

(2.3) 

The lag term 𝑊𝑦 denotes the influence of values from neighboring locations given a target spatial variable 

(Anselin, 1988). The neighbor structure is expressed through a spatial weight matrix where its element 

describes the spatial interactions between each paired location in sample data. The spatial weight matrix is 

usually row standardized. Thus, spatial lag is numerically a weighted variable that captures spatial 

autocorrelation of the dependent variable in surrounding areas. The spatial lag of location 𝑖 then is 

calculated as: 

 𝐿𝑎𝑔𝑖 = ∑ 𝑤𝑖𝑗𝑥𝑗
𝑗

 (2.4) 

A spatial weight matrix is necessary to construct lag features. In principle, the construction of such a 

spatial weight matrix involves two procedures: definition of a neighborhood, and calculation of spatial 

weights. The neighborhood determines which areas are linked. The spatial weights determine the strength 

of links. It is either determined by binary settings or calculated through distance-based functions such as 

inverse distance and kernel functions. Different specifications of the matrix represent varying spatial 

structures. But there does not exist a consensus on the choice of a spatial weight matrix (Bauman, Drouet, 

Dray, & Vleminckx, 2018).  

 

Three typical approaches of specifying neighborhood include contiguity-based neighbors, k-nearest 

neighbor, and distance band neighbors.  

• Contiguity indicates whether two spatial units share a common border or not. Rook contiguity 

(Figure 2.1.1) defines neighbors as spatial units sharing a common edge. Queen contiguity (Figure 

2.1.2) defines neighbors if two spatial units share a common edge or a common vertex. In 

addition, the scope of spatial influence can be determined by different orders of neighbors. For 

instance, second-order neighbors are the neighbors of the first-order neighbors. 

• K-nearest neighbor defines a fixed number of neighbors for every spatial unit through the 

parameter k. For a target spatial unit, distances between this unit and all the other units are 

calculated and ordered. The k closest units are considered as the neighbors. 

• Distance band defines a fixed distance threshold. When the distance between two spatial units 

falls under the threshold, these two units are considered as neighbors. 

  
a) Rook contiguity b) Queen contiguity 

Figure 2.1. Contiguity-based neighbors 
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Weight values can also be specified in various forms, and three typical weighting schemes for spatial 

weight matrix are listed in Table 2.1. 

Table 2.1. Examples of weighting schemes for spatial weight matrix 

Weighting scheme Description 

Binary weights 𝑤𝑖𝑗 = {
1, 𝑖𝑓 𝑖 𝑎𝑛𝑑 𝑗 𝑎𝑟𝑒 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠
0,                                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

 

Power distance weights 𝑤𝑖𝑗 = 𝑑𝑖𝑗
−𝛼 , 𝛼 > 0 

Exponential distance weights 𝑤𝑖𝑗 = exp (−𝛼𝑑𝑖𝑗), 𝛼 > 0 

2.2.2. Eigenvector spatial filtering (ESF) 

Eigenvector spatial filtering (ESF) is a regression technique proposed by Getis and Griffith (2002) to 

enhance the model results in the presence of spatial dependence. This idea is originated from Moran’s I 

where the spatial weight matrix is used to capture the spatial covariations. ESF decomposes a transformed 

spatial weight matrix and extracts eigenvectors that furnish the underlying latent map patterns (Griffith & 

Chun, 2014). The spatial weight matrix 𝑊 is centered by: 

 (𝐼 − 11𝑇/𝑛)𝑊(𝐼 − 11𝑇/𝑛) (2.5) 

where 𝐼 is an identity matrix, 1 is a n-by-1 vector of ones. Eigenvectors corresponding to large positive 

eigenvalues denotes the structure with greater positive spatial dependence (Dormann et al., 2007). These 

orthogonal and uncorrelated eigenvectors are further utilized as synthetic variables in regression to enable 

the model to account for spatial autocorrelation (Cupido, Jevtic, & Paez, 2019; Getis & Griffith, 2002; 

Paez, 2019; Zhang et al., 2018). Constructing ESF also requires the determination of a smaller subset from 

𝑛 eigenvectors. A subsequent stepwise regression is usually used for selection but it suffers from slow 

computation. LASSO (the least absolute shrinkage and selection operator) can be utilized as a faster 

alternative (Seya, Murakami, Tsutsumi, & Yamagata, 2015).  

 

Eigen-decomposition is essential for ESF, which is computationally intensive for large samples. To 

improve computing efficiency, Murakami and Griffith (2018) proposed to approximate the first 𝐿 (𝐿 ≪

𝑛) eigenvectors using Nyström extension. They employed k‐means clustering on the spatial coordinates, 

and the cluster centers are regarded as the knots for the Nyström extension. At least 200 eigenvectors 

were advised to be calculated to effectively remove positive spatial autocorrelation with small 

approximation errors. It was proven that the approximation was able to capture spatial characteristics 

successfully. ESF, usually used as an exploratory technique, can also be extended to perform prediction on 

unknown locations by using the approximation.  However, this approximation technique cannot deal with 

negative spatial dependence and is only limited to spatial weight matrices that are based on positive 

semidefinite kernels such as Gaussian or exponential kernels.  

2.3. Machine learning 

Machine learning is a broad research field covering numerous algorithms. In terms of prediction tasks, 

different algorithms can be applied to the same problem, but most of them share similar analyzing 

procedures which typically involve data collection, data processing, model training, and model evaluation. 

This research aims to explore the incorporation of spatial features which essentially resemble a feature 

engineering work in machine learning. Without losing generality, random forest serves as our basis for 
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discussion because of its general accuracy and successful applications in diverse geoscientific problems. 

(Foresti et al., 2010; J. Li, Heap, Potter, & Daniell, 2011; Zhu et al., 2019). It has also been used as a 

framework recently to integrate distance variables in spatial prediction (Hengl et al., 2018). Random forest 

stands for a reasonable starting point for this study. But it can be changed to any suitable algorithms for 

specific research requirements. 

2.3.1. Algorithm: random forest 

Random forest (RF) (Breiman, 2001) is an ensemble of classification and regression trees (CART) that 

make predictions by aggregating the outputs from all the trees. It is built upon one of the fundamental 

ideas in ensemble learning called bagging. For each single tree in the ensemble, the training data is 

reconstructed by iteratively resampling the original dataset with replacement until the new dataset is of the 

same size as the original one. This resampling process is called bootstrapping. Randomness is also 

introduced in node splitting of a CART tree. Normally, a split is examined on all features to determine the 

optimal one that helps the tree learn the best based on a chosen criterion. While in random forest, the 

optimal splitting is only searched among a randomly selected subset of the whole feature set. The size of 

the subset is determined by a fixed hyper-parameter which predefines the number of features to be 

randomly selected. Bagging and random feature subsets in splitting enable random forest to reduce the 

model’s variance without increasing the bias. Random forest is capable to deal with high-dimensional data 

and robust to noise (Breiman, 2001). The construction of trees of the originally proposed random forest 

algorithm can be summarized as follows: 

a) Assuming the dataset contains 𝑁 samples, resample the dataset with replacement until 𝑁 “new” 

samples are retrieved.  

b) For each splitting in a tree, randomly select 𝑚 features from the total 𝑀 features (𝑚 ≪ 𝑀). 

c) Assuming the number of trees is 𝑇, repeat the above procedures for 𝑇 times. 

For classification, the majority voting strategy is employed to aggregate results from 𝑇 trees. In regression, 

the aggregation is conducted by averaging the prediction of all the trees. Two major hyper-parameters are 

involved in random forest (although other parameters can also be introduced in further variants such as 

the minimum number of observations in a leaf node): the number of trees 𝑇 and the size of feature subset 

𝑚. To obtain optimal performance and stable outputs, it is argued that 𝑇 should be set to a sufficiently 

large value (Oshiro, Perez, & Baranauskas, 2012; Probst & Boulesteix, 2017). The default value for the 

number of feature candidates 𝑚 in several implementations is usually set to √𝑀 and it can be further 

optimized.  

2.3.2. Feature selection 

Feature selection aims to reduce the number of features in machine learning models. Using a subset of 

features allows better interpretability of the model and helps to run the algorithm faster. But feature 

selection is not an indispensable and obligatory procedure for building data-driven models. Feature 

selection is especially important for high-dimensional data when the number of features exceeds the 

available samples. The least absolute shrinkage and selection operator (LASSO) is a regularization method 

developed by Tibshirani (1996) that is widely used in machine learning for feature selection. It sets a L1 

constrain on linear regression and penalizes the coefficients by shrinking a part of them to exactly zero. In 

a linear regression model denoted as 𝑌 = 𝑋𝛽 + 𝜖, the ordinary least square (OLS) estimate of 𝛽 is 

equivalent to:  

 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒
∑ (𝑌𝑖 − 𝑋𝑖𝛽)2𝑛

𝑖=0

𝑛
 (2.6) 

The solution of LASSO is given by minimizing the above equation plus the L1 constraint, which is: 
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 argmin
𝛽

[
∑ (𝑌𝑖 − 𝑋𝑖𝛽)2𝑛

𝑖=0

𝑛
+ 𝜆‖𝛽‖1] (2.7) 

The L1 regularization term is calculated as ‖𝛽‖1 = ∑ |𝛽𝑗|𝑘
𝑗=0 , mathematically equal to the sum of absolute 

values of model coefficients. A hyper-parameter 𝜆 ≥ 0 controls the strength of L1 penalty in LASSO, 

which can be tuned by cross-validation. Features with non-zero coefficients are preserved in the final 

model. The largest value of lambda such that the error is within one standard-error of the minimum is 

often used for the best model (Friedman, Hastie, & Tibshirani, 2010). Particularly, Seya et al. (2015) prove 

that LASSO can be efficiently used as an alternative to stepwise eigenvector selection in ESF. Feature 

selection in this study specifically refers to the selection of spatial lag features and eigenvectors of ESF 

rather than the original features or their combination, as this procedure only aims to identify the spatial 

features describing the underlying spatial structures. 

2.3.3. Spatial cross-validation 

Many machine learning models involve hyper-parameters that cannot be directly learned from data. To 

obtain robust results, these hyper-parameters have to be tuned (Schratz, Muenchow, Iturritxa, Richter, & 

Brenning, 2019). Cross-validation (CV) is a technique for model evaluation and is widely applied for 

hyper-parameter optimization. The fundamental idea of CV is to iteratively divide the data into two parts, 

i.e. training set and test set. The model is trained on the training set, yet the test set is reserved for 

evaluation. The basic approach, called k-fold CV, randomly partitions the data into k groups. Each fold 

will serve as the test set once and the training proceeds on the remaining folds. These k performance 

measurements are averaged to derive the final evaluation value. Each candidate of hyper-parameter 

settings is evaluated on the same k folds, then the optimal one can be determined by comparing the 

averaged evaluation scores. 

 

Figure 2.2. k-fold cross-validation 

However, cross-validation assumes sample independence. Data samples are randomly assigned to different 

folds in normal k-fold cross validation. The training and testing samples are spatially close if the data is 

geo-referenced. With the presence of spatial autocorrelation, training and testing samples are not 

independent as they inherit similar spatial information.  A model fitted on training samples in this scenario 

will lead to better results on testing samples.  Thus, the cross-validation estimates are biased and 

overoptimistic (Schratz et al., 2019).  
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To account for spatial autocorrelation, clustering (e.g. k-means) can be used as a preliminary process 

before resampling (Brenning, 2012; Ruß & Kruse, 2010). Based on k-means clustering on sample 

coordinates, the dataset is partitioned into spatially contiguous clusters. Then standard cross-validation is 

performed on these defined clusters. Every cluster obtained from k-means will serve as the testing set 

once. The above steps are proven to be able to prevent model overfitting on spatial data (Ruß & Brenning, 

2010; Schratz et al., 2019). Figure 2.3 shows the difference between normal CV and spatial CV on 

simulated data.  

 

To be specific, this spatial cross-validation process (k-fold) is described as below: 

a) For a predetermined value K, perform k-means clustering using the sample coordinates;  

b) For each cluster k=1, 2, …, K:  

1) Take samples in cluster k as testing set test; take the remaining samples as training set 

train. 

2) Fit a model on train, and evaluate the model on test. 

c) Average the testing results across K clusters and report the mean value. 

 

  
a) Normal cross-validation b) Spatial cross-validation 

Figure 2.3. Illustration of normal and spatial cross-validation (4 folds) 

2.3.4. Nested cross-validation 

The fundamental idea of cross-validation for performance estimates is to separate the dataset into 

different parts: training and testing. The information of testing samples remains unknown when a model is 

trained. The result given by cross-validation therefore represents an objective estimate of how the model 

will generalize on future data. However, the model building process usually involves multiple steps that 

utilize cross-validation for optimization. When cross-validation is used for multiple times, the information 

from previous modeling steps is likely to be disclosed subsequent steps. Consequently, the performance 

estimate may be biased for evaluation. Nested cross-validation is a suitable approach to evaluate the 

generalization abilities of a model that prevents bias in estimates (Cawley & Talbot, 2010).  

 

Two layers of k-fold cross-validation are included in nested CV (Figure 2.4). The outer CV only serves for 

estimation while inner CV takes care of other procedures such as hyper-parameter tuning. Inner folds are 

obtained by splitting the outer training folds. The hyper-parameters are determined by inner CV, then the 

optimal values are used to fit a model on outer training set. The generalized performance reported by 
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nested CV is the average over all outer testing folds. The detailed description of a K-by-L nested CV is 

illustrated as follows: 

a) Split the dataset into K outer folds. 

b) For each outer fold k=1, 2, …, K: outer loop for model evaluation  

1) Take fold k as outer testing set outer-test; take the remaining folds as outer training set outer-

train. 

2) Split the outer-train into L inner folds. 

3) For each inner fold l=1, 2, …, L: inner loop for hyper-parameter tuning  

i. Take fold l as inner testing set inner-test and the remining as inner-train. 

ii. For each hyper-parameter candidate, fit a model on inner-train with the combined 

feature set.  

iii. Evaluate the model on inner-test with the assessment metric. 

4) For each hyper-parameter candidate, average the assessment metric values across L folds, and 

choose the best hyper-parameter. 

5) Train a model with the best hyper-parameter on outer-train.  

6) Evaluate the model on outer-test with the assessment metric. 

c) Average the metric values over K folds, and report the generalized performance. 

 

 

Figure 2.4. Nested cross-validation (3 outer folds, 3 inner folds) 

2.4. Current developments 

Research on the combination of spatial features and machine learning is emerging these years. Behrens et 

al. (2018) introduce a spatial modeling framework with generic Euclidean distance fields (EDF) as 

additional spatial covariates. They combined EDF with other commonly used environmental covariates in 

the case of digital soil mapping. Six machine learning algorithms were chosen to compare against a 

reference obtained from regression kriging. The inclusion of EDF enables machine learning to infer 

spatial autocorrelation when predicting at new locations without an additional step to correct residuals 

using kriging. Hengl et al. (2018) presented a random forest framework for spatial prediction (RFsp) which 
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accounts for spatial effects by involving geographical covariates. Multiple distance-based quantifications 

were proposed including EDF. They evaluated the effectiveness of buffer distances on five environmental 

datasets. The results demonstrate that RFsp can produce similar predictions as ordinary kriging and 

regression kriging while RFsp does not demand strict assumptions about distribution and stationarity. The 

authors also point out that it would be difficult to derive buffer distance variables for datasets that contain 

a large number of sample points. 

 

Apart from explicit distance-based features, studies on the incorporation of other spatial features and 

machine learning mainly concentrate on spatial lags. Li et al. (2017) proposed a Geo-intelligent deep 

learning approach where spatially and temporally lagged PM2.5 terms were combined with satellite-derived 

and socioeconomic indicators in a deep belief network model. Site-based leave-one-out cross-validation 

was applied to evaluate the spatial performance. Their analysis proved that including spatial lag as a 

representation of geographical relations significantly improves the accuracy of PM2.5 estimations. Kiely 

and Bastian (2019) incorporated spatial lag features into multiple machine learning algorithms to predict 

real estate sales. The comparison results indicated an enhanced predictive performance of spatially-aware 

models over non-spatial counterparts. In the work of Zhu et al. (2019), the authors followed the same 

technique as Li et al. (2017) to include lagged features in several machine learning algorithms. The 

modified algorithms showed great improvement in terms of accuracy when reconstructing the surface air 

temperature across China. 

 

However, the research mentioned above adopted varying specifications of spatial lag features and no 

unified way is proposed to incorporate these spatial features other than distance-based ones. Additionally, 

none of the studies above except Li et al. (2017) and Zhu et al. (2019) considered the influence of spatial 

autocorrelation when tuning their models with cross-validation. Kiely and Bastian (2019) discovered 

overfitting of their models with spatial lag features. Thus, the utilization of spatial cross-validation would 

be a necessary technique in determining hyper-parameters when spatial features are employed. 

 

In summary, current research confronts three major limitations: 
a) Buffer distance features cannot fully satisfy the requirements for all spatial problems especially the 

ones involving large amounts of data samples, which necessitates the investigation of other 

possible spatial features. 

b) The utilization of spatial lag in machine learning is case-oriented currently. No consistent 

configuration of this feature is presented such as the specification of spatial weight matrix. It is 

worthy of adopting this feature under a generic machine learning scenario. 

c) The problem of cross-validation is generally neglected when tuning machine learning hyper-

parameters with spatial data. The resulting spatial model may suffer from overfitting and under-

estimated errors. 
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3. METHODOLOGY 

Previous chapters explain fundamental concepts and related approaches of spatial prediction. Though 

researchers have made progress in adapting machine learning for spatial data, there still exist certain 

limitations: first, some spatial features from previous research cannot be effectively applied for large 

dataset; second, existing spatial lag applications lack proper configuring procedure; third, the issues of 

cross-validation are not well considered when spatial features are incorporated.  This chapter introduces 

the proposed methodology targeted at these drawbacks. Figure 3.1 illustrates the complete procedure that 

guides the structure of this chapter. Details are elaborated in subsequent sections. Section 3.1 describes the 

data on which the experiments are based. The other sections explain how the two spatial features (spatial 

lag feature and eigenvector spatial filtering) are incorporated in machine learning. Specifically, construction 

and processing of the two features are illustrated in section 3.2; how to train and evaluate random forest 

models with spatial features is demonstrated in section 3.3. These two spatial features represent different 

experiments but share certain procedures. Differences between the two experiments are distinguished 

separately while the common processes are explained together to avoid verbosity. Specifications of the 

experiments are summarized in section 3.4. Section 3.5 illustrates the tools or platforms used in this study, 

and describes what approach is adopted to reproduce this study. 
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Figure 3.1. Procedures for spatial prediction 

3.1. Data sources 

Data is the fundamental and essential element for machine learning where models are built to learn the 

properties of training data. As a method-oriented study that aims to explore possibilities of applying new 

spatial features in machine learning models, it is important to select representative and effective datasets to 

demonstrate validity of the proposed methods. Using public and open datasets as benchmark such as 

Boston housing dataset (Harrison & Rubinfeld, 1978) and ImageNet (Deng et al., 2009) represents a 

common practice to obtain standardized evaluation of algorithms in machine learning and especially deep 

learning (LeCun, Bengio, & Hinton, 2015; Russakovsky et al., 2015). Benchmark datasets are usually 
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carefully collected and curated by professionals to guarantee data quality. Two public spatial datasets with 

different sizes are used in this study to test the usability of proposed methods.  

3.1.1. Meuse river dataset 

Meuse is a classical spatial dataset in geostatistics which consists of 155 samples collected in a flood plain 

of the river Meuse in the Netherlands. Hengl et al. (2018) used Meuse dataset for one of the experiments 

where distance-based spatial features are introduced in machine learning models. It is internally integrated 

with several R packages such as ‘gstat’ (Pebesma, 2004) and ‘sp’ (Bivand, Pebesma, & Gómez-Rubio, 

2013). Four heavy metal concentrations are measured for each sample. Geographical locations are also 

included together with a number of soil and landscape variables. Details about the data variables are 

described in Table 3.1. Interpolation of zinc concentration is usually the main focus of this dataset. 

Flooding frequency and distance to the river can be considered as covariates in regression kriging to 

predict zinc concentration with the assumption that the river is the main source of zinc. Figure 3.2 shows 

the distribution of zinc concentrations. Each category has approximately equal number of samples which 

is determined by quantiles. A higher concentration of zinc is observed along the western riverbank (Figure 

3.2). In this study, three samples with missing values are removed which leave 152 samples in total.  

 

 

Figure 3.2. Distribution of Meuse data samples (quantile breaks) 
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Table 3.1. Variable description of Meuse river dataset 

Variable Description Variable Description 

x 
X coordinate 

(EPSG: 28992) 
ffreq 

Flooding frequency 

class 

y 
Y coordinate 

(EPSG: 28992) 
soil Soil type 

cadmium, copper, 

lead, zinc 

Top soil heavy metal 

concentration 

(mg/kg) 

landuse Land use class 

elev 
Relative elevation 

above local river bed 
lime Lime class 

om Organic matter dist 
Distance to river 

Meuse  

3.1.2. California housing dataset 

This dataset contains 20,640 observations of California housing prices based on 1990 California census 

data. Each row represents a census block group or district (the smallest geographical unit for which the 

U.S. Census Bureau publishes sample data). It was originally used by Pace and Barry (1997) to build spatial 

autoregressive models, and it is considered as a standard example dataset with spatial autocorrelation 

(Klemmer et al., 2019). Median house price, location of the samples and 6 other explanatory variables are 

described in Table 3.2. The price values are classified by quantiles in Figure 3.3. Coastal regions usually 

hold higher house prices, especially for districts around metropolitan cities like San Francisco and Los 

Angeles (Figure 3.3). Because different districts are populated with varying amounts of households, the 

total number of rooms or bedrooms will be divided by the number of households in this study to obtain 

the average variable. The major task is to create a model that can predict the housing price of this region 

with improved accuracy.  
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Figure 3.3. Distribution of California housing data samples (quantile breaks) 

 

Table 3.2. Variable description of California housing dataset 

Variable Description Variable Description 

longitude WGS 84 coordinate population 
Total population in 

the district 

latitude WGS 84 coordinate households 
Total households in 

the district 

housing_median_age 
Median house age in 

the district 
median_income 

Median income of 

the district 

total_rooms 
Total rooms in the 

district 
median_house_value 

Median house price 

of the district 

total_bedrooms 
Total bedrooms in 

the district 
  

3.2. Construction and processing of spatial features 

3.2.1. Spatial lag features 

Many efforts have been invested in selecting an appropriate spatial matrix for spatial autoregressive 

regression. Rather than one single matrix, different spatial weight matrices can be used to include multiple 

spatial lags in one regression model aiming to capture different types of dependence (Debarsy & LeSage, 

2018). Similarly, we propose to include different spatial lag features in machine learning to accommodate 

diverse possibilities of spatial representations.  
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It is possible that not all lag features are representative of the unknown spatial phenomenon, which makes 

it beneficial to exclude unnecessary ones in terms of model interpretability and complexity. LASSO is 

further utilized to select a subset of lag features. In our setting, the target variable is regressed only on the 

constructed lag features. The lag features with non-zero coefficients are selected and further combined 

with other original features in random forest. However, it should be noted that lag features for a test 

sample or location with unknown target value can only be derived from a re-built spatial weight matrix, 

which describes the spatial relations between this single testing location and all the training samples.  

 
In this study, k-nearest neighbor is utilized as it provides a convenient interface to construct spatial weight 
matrix by changing the value of parameter k. k-nearest neighbor also introduces an adaptive connectivity 
configuration, in which the number of neighbors is constant but the distance range between neighbors is 
not fixed compared with the distance-band option. Besides, the weight matrix is row-standardized such 
that lag features represent the average of surrounding values. Thus, the weight values are: 

 𝑤𝑖𝑗 = {
1/𝑘, 𝑖𝑓 𝑖 𝑎𝑛𝑑 𝑗 𝑎𝑟𝑒 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠

0,                                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
 (3.1) 

For Meuse data, an increasing sequence of 5, 10, 15 is used for parameter k to indicate spatial properties at 

different scales. Three corresponding spatial lag features are constructed in this case. As California 

housing data covers a larger area, 5, 10, 15, 50 nearest neighbors are employed to generate four spatial lag 

features. This study follows a data-driven approach and these k values are empirically configured with the 

purpose to include different possibilities of the neighbors. The subsequent LASSO procedure bears the 

responsibility to select the best subset of the lag features. The number of neighbors can be changed 

depending on the data characteristics. K-nearest neighbor can also be replaced by other types of spatial 

weight matrices to accommodate different needs of other spatial problems.  

3.2.2. Eigenvector spatial filtering 

As we stated in chapter 2, ESF for prediction is currently only valid for a positive semidefinite spatial 

weight matrix because of the constraints of Nyström approximation. This study adopts a common 

exponential kernel from Murakami and Griffith (2018) where the authors demonstrated the usability of 

ESF in large datasets. The element of the matrix is calculated as: 

 𝑤𝑖𝑗 = exp (
−𝑑𝑖𝑗

𝑟
) (3.2) 

where 𝑑𝑖𝑗 is the distance between location 𝑖 and 𝑗, and 𝑟 is given by the maximum length in the minimum 

spanning tree that connects all the samples. The exponential kernel can be substituted with any kernel 

function to meet the requirements of other problems as long as the kernel is semidefinite. ESF is capable 

to explain the spatial patterns by multiple eigenvectors of one spatial weight matrix. Similar to the process 

of lag features, LASSO is conducted with the extracted eigenvectors. The eigenvector features with non-

zero coefficients are selected. Due to the sample size and computational concern of eigen-decomposition, 

only the first 200 eigenvalues are approximated for California housing data. For Meuse dataset, the exact 

eigenvalues are calculated without approximation. Eigenvector features of testing samples can only be 

approximated by Nyström extension for both datasets. 

3.3. Machine learning models and evaluation  

After finishing the construction of spatial features, this section proceeds to explain how these features are 

used in building spatial models. The section is organized in three parts. First, sub-section 3.3.1 describes 

how spatial and non-spatial models are trained. Then, prediction accuracy is examined in 3.3.2. Sub-

section 3.3.3 aims to assess whether spatial autocorrelation is successfully accounted in spatial models.  
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3.3.1. Hyper-parameter tuning 

Random forest is used in this study for its general effectiveness and efficiency. To incorporate spatial 

relationships, original predictors and selected spatial features are combined for spatial prediction. The 

most influential hyper-parameter in random forest is the number of sub-features used in node splitting 

(‘mtry’). As normal cross-validation suffers from spatial autocorrelation, spatial CV is also used for 

parameter tuning where training and testing set are determined by k-means clusters. The models in our 

experiments are tuned twice with both normal CV and spatial CV to examine their difference.  The 

number of trees is kept at a moderate size of 200 trees for a balance between computational efficiency and 

predictive stability. Non-spatial random forest shares the same process such as spatial cross-validation but 

without spatial features. 

 

To be specific, three models are built in this study: a spatial model with spatial lag features, a spatial one 

with ESF features, and a non-spatial model. The lag model uses lag features created from multiple spatial 

weight matrices. The ESF model uses a subset of eigenvector extracted from one kernel matrix. 

3.3.2. Accuracy evaluation 

The proposed method consists of multiple steps spanning from spatial feature construction, feature 

selection to hyper-parameter tuning. To retrieve more objective performance estimates of the method, we 

adopt the idea of nested cross-validation. The optimal hyper-parameters are used in the outer fold to re-

train a model. It has to be stressed that nested cross-validation just provides a generalized estimate for the 

whole procedure. It does not provide optimal hyper-parameters, or produce a model for practical use.   

 

As stated at the start of this chapter, the proposed approach in this study can be generalized into four 

major processes: construction of spatial features, selection of spatial features (LASSO), model training 

with specified hyper-parameter values, and evaluation. The nested CV follows the four steps without 

exception, but implements these in an iterative and nested manner. The nested CV starts from inner 

loops. To be specific, the spatial features are first generated on the inner training folds. Then LASSO is 

performed on these spatial features where another intrinsic CV process is used to determine the lambda 𝜆 

parameter in LASSO with one-standard-error rule. The spatial features with non-zero coefficients are 

combined with original features. The random forest model is trained with the combined feature set and a 

specific hyper-parameter setting. In this case, we only consider the number of features for node splitting. 

After fitting to the inner training folds, the selected spatial features are generated for the inner testing fold. 

The model predicts on inner testing samples, and the assessment metric is calculated. This inner process is 

iterated for every inner fold. For every hyper-parameter candidate setting, the assessment values from all 

inner folds are averaged. The candidate with the best average metric value is considered as the best hyper-

parameter for outer training folds. Now the spatial features are re-constructed and re-selected from the 

outer training folds. A random forest model is trained with the best hyper-parameter identified from the 

inner CV. Evaluation is conducted on the outer testing fold. The final generalized performance is the 

averaged metric value across all outer folds. 

 

The nested cross-validation process used in this study is further summarized as follows: 

a) Split the dataset into K outer folds. 

b) For each outer fold k=1, 2, …, K: outer loop for model evaluation  

1) Take fold k as outer testing set outer-test; take the remaining folds as outer training set outer-

train. 

2) Split the outer-train into L inner folds. 

3) For each inner fold l=1, 2, …, L: inner loop for hyper-parameter tuning  

i. Take fold l as inner testing set inner-test and the remining as inner-train. 

ii. Calculate spatial features on inner-train.  
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iii. Perform cross-validated LASSO on inner-train with spatial features, and 

determine the lambda 𝜆 with ‘one-standard-error’ rule; Select the spatial features 

with non-zero coefficients. 

iv. For each hyper-parameter candidate, fit a model on inner-train with the combined 

feature set. 

v. Calculate the selected spatial features on inner-test.  

vi. Evaluate the model on inner-test with the assessment metric. 

4) For each hyper-parameter candidate, average the assessment metric values across L folds, and 

choose the best hyper-parameter. 

5) Calculate spatial features on outer-train.  

6) Perform cross-validated LASSO on outer-train with spatial features, and determine the lambda 

𝜆 with ‘one-standard-error’ rule. Select the spatial features with non-zero coefficients. 

7) Train a model with the best hyper-parameter on outer-train. 

8) Calculate the selected spatial features on outer-test.  

9) Evaluate the model on outer-test with the assessment metric. 

c) Average the metric values over K folds, and report the generalized performance. 

 

To retrieve a final model that can be used, the four major processes (i.e. spatial feature construction, 

spatial feature selection, hyper-parameter tuning and evaluation) have to be conducted on all the samples 

in the dataset. The final model is tuned and trained on the whole dataset. The accuracy value calculated 

from the final model demonstrates how well the model fits this specific dataset, while the accuracy 

estimate from nested CV can be considered as an indication of how the final model would perform on 

potential unseen data.  

 

Various metrics are available to evaluate a model’s accuracy. This study employs the commonly used root 

mean square error (RMSE) which is formulated as: 

 𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝑖 − 𝑦�̂�)

2𝑛
𝑖

𝑛
 (3.3) 

The actual value and predicted value of a sample are denoted as 𝑦𝑖 and 𝑦�̂� respectively. The difference 

between the actual value and predicted value, i.e. (𝑦𝑖 − 𝑦�̂�), is denoted as residual. 𝑛 is the number of 

samples. 

 

3.3.3. Spatial autocorrelation evaluation 

Apart from the RMSE for prediction accuracy, another essential aspect for evaluating spatial models is to 

investigate whether spatial autocorrelation is successfully considered. Traditional prediction models like 

linear regression assume an independent and normally distributed error or noise term. When such models 

are directly applied to spatial data without considering spatial effects, the residuals will retain as spatially 

autocorrelated. Based on this property, the effectiveness of the final spatial models can be examined 

through the mitigation or elimination of spatial autocorrelation in model residuals (Behrens et al., 2018; 

Ganapathi Subramanian & Crowley, 2018; Schratz et al., 2019; Zhang et al., 2018). Thus, Moran’s I can be 

used to detect and quantify global spatial autocorrelation in residuals. LISA clusters of residuals are 

utilized to further examine the existence of local patterns. Both the global Moran’s I and LISA are tested 

under Monte Carlo simulation (Anselin, 1995). In theory, a significant spatial autocorrelation should be 

observed in residuals from the non-spatial model. The spatial autocorrelation of the residuals from the 

spatial counterpart is supposed to approximate zero. 
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3.4. Expriment summary 

This study involves experiments of different spatial features on two datasets. Although the tests on two 

datasets follow similar procedures as indicated in section 3.2 and 3.3, it is necessary to further provide a 

clear description of all the experiments. Each dataset involves the evaluation of three models (non-spatial, 

spatial lag, and ESF). The experiments of this study use the 5x3 nested CV (5 outer folds, 3 inner folds) to 

test the generalization ability. 5-fold CV is used for tuning the final models. Additionally, all the 

experiments are conducted twice with normal CV and spatial CV separately. In order to examine spatial 

autocorrelation, the global Moran’s I of the model residuals is assessed, and then local patterns are further 

tested as well based on LISA clusters. 

Table 3.3. Experiment specification 

  Models 

 
 

Non-spatial 

model 
Spatial lag model ESF model 

Data Meuse • Normal 

CV, spatial 

CV  

• K-nearest neighbor  

(k = 5, 10, 15) 

• Normal CV, spatial 

CV 

• Exponential kernel 

• Normal CV, spatial 

CV 

California 

housing 

• Normal 

CV, spatial 

CV 

• K-nearest neighbor  

(k = 5, 10, 15, 50) 

• Normal CV, spatial 

CV 

• Exponential kernel 

• Normal CV, spatial 

CV 

3.5. Software & tools 

The implementation of the method is mainly conducted in R 3.6.1 (R Core Team, 2019). The major 

external R packages utilized in this study are listed in the following table. Python packages from PySAL 

library are used for calculating local Moran’s I.  

 

Table 3.4. Tools and packages 

 Name Package version Usage 

R FNN 1.1.3 K nearest neighbor 

 foreach 1.4.8 Parallel computing 

 glmnet 3.0-2 LASSO 

 mlr 2.17.0 Spatial cross-validation 

 ranger 0.12.1 Random forest 

 sf 0.8-1 Spatial data processing 

 spdep 1.1-3 Global Moran’s I 

 spmoran 0.1.7.2 Eigenvector spatial filtering 

Python libpysal 4.0.1 Spatial weights 

 esda 2.0.0 Local Moran’s I 

3.5.1. Reproducibility 

Interactive notebooks, such as Jupyter notebooks, are gaining popularity in both science and industry to 

facilitate reproducible studies (Perkel, 2018; Shen, 2014). The approaches of communicating procedures 

and outcomes in geoscientific research should be similar to the overall guidelines of reproducibility 

regardless of distinguishable characteristics of geographic data (Kray, Pebesma, Konkol, & Nüst, 2019).  
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Jupyter notebooks with R extensions are used in this study to document the implementing details. All the 

scripts are available on GitHub (Figure A3 in appendix). The datasets of this project only involve publicly 

available ones and are under open license which eliminates the obstacles of data availability when 

rerunning the code. 
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4. RESULTS & DISCUSSION 

This chapter illustrates the performance of the methods and models described in chapter 3. The results on 

two spatial datasets are presented separately, but they follow the same structure. The first two sections (4.1, 

4.2) present the results of three models (non-spatial, spatial lag and ESF) for both datasets. Section 4.3 

summarizes the results from two datasets and compares the performance of different models. 

 

4.1. Meuse river dataset 

Figure 4.1 shows the distribution and Moran’s I value of the zinc concentration for reference. The 

following sub-sections are dedicated to three models respectively. Within each model, normal cross-

validation and spatial cross-validation are both presented. The fold division is random in normal cross-

validation while spatial cross-validation considers the geographic distribution of the samples during 

splitting. The resulting folds from spatial CV are spatially contiguous regions without overlapping. An 

illustration of the 5 outer folds in nested CV is presented in Figure 4.2. To ensure comparability, the same 

splitting folds are maintained across the three models, which means the models are tuned and evaluated 

on the same subset of samples.  

 

 

Figure 4.1. Spatial characteristics of Meuse data (quantile breaks). The integer in parentheses refer to the 
number of samples within each category. 
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Normal CV (5 folds) Spatial CV (5 folds) 

Figure 4.2. Cross validation of Meuse data 

4.1.1. Non-spatial model 

In this setting, no spatial features are incorporated. Only the original feature set is used for building the 

model. Table 4.1 illustrates the results from the nested CV. The generalized error is the averaged RMSE 

over the outer folds. The RMSE of each outer fold from spatial CV and normal CV is listed together for 

illustration. It by no means indicates that the samples from normal CV are the same as those in the same 

fold from spatial CV. The generalized error from spatial CV is higher than that from normal CV, which 

indicates potential over-optimistic estimate of normal CV.  

Table 4.1. Accuracy evaluation of non-spatial models (Meuse) 

 Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Generalized error 

Normal CV 179.54 123.25 191.55 201.07 259.77 191.04 

Spatial CV 265.47 229.24 151.72 268.66 172.75 217.57 

 

The hyper-parameter of the final model is tuned on all the samples available using non-nested cross-

validation. The final model is fitted with the best hyper-parameter. ‘mtry’ represents the number of 

variables randomly selected as candidates at each split. The training error is the RMSE of the final model. 

The Moran’s I of the residuals is calculated under a spatial matrix of 5-nearest-neighbour. P-value of the 

Moran’s I listed in parenthesis (Table 4.2) is approximated under Monte Carlo simulation of 1000 times. 

Random forest involves an intrinsic bootstrapping procedure. Usually, the random forest model will be 

different when retrained each time, even with the same parameter setting. For consistency, we set a sample 

seed when training the final model, which denotes that the model should be exactly the same whenever 

the same hyper-parameter, training samples and feature set are used.  
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Table 4.2. Final evaluation of non-spatial models (Meuse) 

 Optimal mtry Training error 
Moran's I  

of residuals 

Normal CV 5 83.59 0.20 (0.001) 

Spatial CV 4 86.58 0.18 (0.001) 

P-value of the Moran’s I listed in parenthesis is approximated under Monte 

Carlo simulation of 1000 times. 

 

Table 4.2 indicates that the best ‘mtry’ values given by normal CV and spatial CV are slightly different. The 

residuals from both models still exhibit significant spatial autocorrelation. To investigate the spatial 

patterns of residuals, the LISA clustering map is presented in Figure 4.3 together with the distribution of 

predictions and residuals from the final models. The significance level of LISA clustering is set to 5%. All 

the distributions from the two final models are similar as shown in Figure 4.3. 

 

  

a) Prediction - Normal CV b) Prediction - Spatial CV 

  

c) Residual - Normal CV d) Residual - Spatial CV 
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e) LISA cluster - Normal CV f) LISA cluster - Spatial CV 

Figure 4.3. Spatial evaluation of non-spatial models (Meuse). The integer in parentheses refer to the 
number of samples within each category. 

 

Feature importance of the final model is illustrated in Figure 4.4. Distance to the river has the largest 

influence on the model and elevation comes at the second place. The soil type has the least influence in 

the final model. 

 

  

a) Non-spatial (normal CV) b) Non-spatial (spatial CV) 

Figure 4.4. Feature importance of final non-spatial models (Meuse). Relative feature importance is 
obtained by scaling the original values to 0-100%. 

4.1.2. Spatial lag model 

Three spatial lag features are constructed initially with the number of nearest neighbors equal to 5, 10, 15 

respectively. These lag features are then fed to LASSO for selection. As stressed earlier, the same CV 

division is retained across three model settings, i.e. the same folds are used for spatial models and the non-

spatial counterpart. Table 4.3 and 4.4 describe the results of the nested CV and final lag model respectively. 
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To avoid potential confusion, it should be noted that the final lag model from normal CV incorporates 

spatial lag features and is different from the non-spatial model shown in Table 4.2 although the best ‘mtry’ 

values are both equal to 5.  

Table 4.3. Accuracy evaluation of spatial lag models (Meuse) 

 Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Generalized error 

Normal CV 181.05 120.44 195.43 187.23 229.00 182.63 

Spatial CV 250.13 218.40 135.15 284.00 227.22 222.98 

 

Table 4.4. Final evaluation of spatial lag models (Meuse) 

 
Constructed 

spatial 
features 

Selected 
spatial 

features 

Optimal 
mtry 

Training 
error 

Moran's I  
of residuals 

Normal CV 
lag_k5, lag_k10, 

lag_k15 
lag_k5 5 79.69 0.029 (0.227) 

Spatial CV 
lag_k5, lag_k10, 

lag_k15 
lag_k5 2 97.85 0.12 (0.006) 

The spatial lag features are differentiated by the k value used for k-nearest-neighbour spatial weight matrix. 

For instance, 5-nearest-neighbour is used to build “lag_k5”. P-value of Moran’s I listed in parenthesis is 

approximated under Monte Carlo simulation of 1000 times. 

 

Nested CV results with spatial CV indicate a higher generalized error. The p-value of the final model 

tuned from normal CV is too large to reject the null hypothesis. There is not enough evidence to claim the 

residuals have significant spatial autocorrelation for the final model from normal CV in this case. However, 

the final model with the spatial CV setting still demonstrates an evident spatial autocorrelation in residuals. 

The residuals of the normal CV model are less skewed than those of the spatial CV when we compare the 

sample sizes in different intervals (Figure 4.5). The LISA map from normal CV also presents a slight 

decrease in the size of HH and LL clusters. 

 

  

a) Prediction - Normal CV b) Prediction - Spatial CV 
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c) Residual - Normal CV d) Residual - Spatial CV 

  

e) LISA cluster - Normal CV f) LISA cluster - Spatial CV 

Figure 4.5. Spatial evaluation of spatial lag models (Meuse). The integer in parentheses refer to the number 
of samples within each category. 

 

Distance to the river is still dominant in spatial lag models (Figure 4.6). The importance of the selected 

spatial lag feature (lag_k5) is approximately at the same level with variable elevation and organic matter.  
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a) Spatial lag (normal CV) b) Spatial lag (spatial CV) 

Figure 4.6. Feature importance of final spatial lag models (Meuse). Relative feature importance is obtained 
by scaling the original values to 0-100%. 

4.1.3. Eigenvector spatial filtering model 

An exponential kernel is used to construct semi-definite weight matrix as described in Section 3.2.2. 

Meuse dataset contains less than 200 samples, so the eigenvalues of the weight matrix are not 

approximated but rather precisely calculated. The ESF features are then selected by LASSO. Although the 

eigenvectors for training samples are calculated explicitly, the eigen-features for testing samples can only 

be approximated through Nyström extension. The accuracy evaluation of ESF models is presented in 

Table 4.5 and 4.6. The tuned ‘mtry’ value through normal CV is still the same with non-spatial and lag 

models, but it must be mentioned that these three models are distinct as they are trained on different 

feature sets. Non-spatial models do not include any spatial features; spatial lag models incorporate spatial 

lag features; ESF models involve eigenvector features. 

Table 4.5. Accuracy evaluation of ESF models (Meuse) 

 Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Generalized error 

Normal CV 149.87 109.02 182.29 176.88 241.04 171.82 

Spatial CV 265.47 229.24 151.72 268.66 172.75 217.57 

 

Table 4.6. Final evaluation of ESF models (Meuse) 

 
Constructed 

spatial 
features 

Selected 
spatial  

features 

Optimal 
mtry 

Training 
error 

Moran's I  
of residuals 

Normal CV ev1 ~ ev152 ev8, ev11, ev12 5 75.52 0.19 (0.001) 

Spatial CV ev1 ~ ev152 
ev8, ev11, ev12, 

ev34 
6 78.10 0.15 (0.001) 

Eigenvector features are indicated by “ev” and a number. “ev1” represents the eigenvector corresponding to the 

largest eigenvalues, and likewise. P-value of the Moran’s I listed in parenthesis is approximated under Monte 

Carlo simulation of 1000 times. 
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The generalized error for nested spatial CV is still larger. The spatial autocorrelation of the residuals is 

significant for both the final ESF models. Similarity is observed in the spatial distributions of predictions, 

residuals and LISA clusters (Figure 4.7).  

 

  

a) Prediction - Normal CV b) Prediction - Spatial CV 

  

c) Residual - Normal CV d) Residual - Spatial CV 
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e) LISA cluster - Normal CV f) LISA cluster - Spatial CV 

Figure 4.7. Spatial evaluation of ESF models (Meuse). The integer in parentheses refer to the number of 
samples within each category. 

 

The top three important features of ESF models are the same as non-spatial models (Figure 4.8). The ESF 

features are not that influential when fitting the models.  

 

  

a) ESF (normal CV) b) ESF (spatial CV) 

Figure 4.8. Feature importance of final ESF models (Meuse). Relative feature importance is obtained by 
scaling the original values to 0-100%. 

4.2. California housing dataset 

This section presents the results for California housing dataset in the same structure as the Meuse models. 

Figure 4.9 shows the distribution of housing prices and the Moran’s I. Non-spatial models are firstly 

described followed by spatial lag and ESF models. The generalized performance is evaluated by 5x3 nested 

CV and the final model is tuned by 5-fold CV. The division of outer folds are presented in Figure 4.10. 
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Figure 4.9. Spatial characteristics of California housing data ($10,000). The intervals are determined by 
quantile breaks. The integer in parentheses refer to the number of samples within each category. 

 

  

Normal CV (5 folds) Spatial CV (5 folds) 

Figure 4.10. Cross validation of California housing data 

 

4.2.1. Non-spatial model 

The non-spatial model is built with the explanatory variables except the latitude and longitude as shown in 

Table 4.7. The final model is fitted on all data samples (Table 4.8). The generalized errors from the two 

CV methods are approximately at the same level. However, the RMSEs from outer folds in spatial CV 

show more volatility while the RMSEs from normal CV remains stable. The spatial autocorrelation 

persists in residuals of the two final models.  
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Table 4.7. Accuracy evaluation of non-spatial models (CA) 

 Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Generalized error 

Normal CV 65589.35 64799.53 66965.33 68654.93 63721.71 65946.17 

Spatial CV 47419.24 58712.81 72584.38 75477.13 71218.24 65082.36 

 

Table 4.8. Final evaluation of non-spatial models (CA) 

 mtry Training error 
Moran's I  

of residuals 

Normal CV 2 29857.57 0.42 (0.001) 

Spatial CV 3 29086.55 0.40 (0.001) 

 

Figure 4.11 demonstrates the distribution of predictions, residuals and LISA clusters from the final model. 

The patterns are essentially similar. The coastal region presents more clusters of high housing prices (HH). 

The LL clusters are dispersed across eastern areas. 

 

  

a) Prediction ($10,000) - Normal CV b) Prediction ($10,000) - Spatial CV 
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c) Residual ($10,000) - Normal CV d) Residual ($10,000) - Spatial CV 

  

e) LISA cluster - Normal CV f) LISA cluster - Spatial CV 

Figure 4.11. Spatial evaluation of non-spatial models (CA). The integer in parentheses refer to the number 
of samples within each category. 

 

In Figure 4.12, income has a major impact on the final model. The other variables are much less influential 

compared with income. 
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a) Non-spatial (normal CV) b) Non-spatial (spatial CV) 

Figure 4.12. Feature importance of final non-spatial models (CA). Relative feature importance is obtained 
by scaling the original values to 0-100%. 

4.2.2. Spatial lag model 

For the spatial weight matrix, lag features of 5, 10, 15, 50 nearest neighbors are employed. When training 

the final model, the identical lag features are selected from the two CV methods and the optimal hyper-

parameters are also the same (Table 4.10). Consequently, the final models from these two settings share 

the same results. The generalized error from nested spatial CV is nearly twice the error from normal CV 

(Table 4.9). The RMSEs of outer fold 4 and 5 in spatial CV are extremely high when these two folds are 

evaluated as testing samples. These two folds correspond to the regions of San Francisco and Los Angeles 

respectively where the samples are more densely distributed (Figure 4.9, 4.10). In terms of final models, 

the training error of the final spatial lag model is lower than that of the non-spatial one indicated in section 

4.2.1. Besides, the residuals do not show significant spatial autocorrelation anymore. The residuals appear 

to be more symmetrically distributed in statistics (Figure 4.13b). The HH and LL clusters are greatly 

reduced as well (Figure 4.13c).  

 

Table 4.9. Accuracy evaluation of spatial lag models (CA) 

 Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Generalized error 

Normal CV 44018.01 43306.16 45092.36 44457.47 43300.77 44034.95 

Spatial CV 44206.38 76967.17 60853.46 135877.61 104218.33 84424.59 

 

Table 4.10. Final evaluation of spatial lag models (CA) 

 Constructed 
spatial features 

Selected 
spatial 

features 

Optimal 
mtry 

Training 
error 

Moran's I 
of residuals 

Normal CV 
lag_k5, lag_k10, 

lag_k15, lag_k50 

lag_k5, 

lag_k10, 

lag_k15 

6 17949.20 0.023 (0.999) 

Spatial CV lag_k5, lag_k10, lag_k5, 6 17949.20 0.023 (0.999) 
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lag_k15, lag_k50 lag_k10, 

lag_k15 

The spatial lag features are differentiated by the k value used for k-nearest-neighbour spatial weight matrix. 

For instance, 5-nearest-neighbour is used to build “lag_k5”. P-value of Moran’s I listed in parenthesis is 

approximated under Monte Carlo simulation of 1000 times. 

 

  

a) Prediction ($10,000) b) Residual ($10,000) 

 

 

c) LISA cluster  

Figure 4.13. Spatial evaluation of spatial lag models (CA). The integer in parentheses refer to the number 
of samples within each category. The final spatial lag models tuned from normal and spatial CV are 
equivalent. 

 

The spatial lag feature built from 5 nearest neighbor demonstrates dominance in the final model (Figure 

4.14). The other two lag also rank above original explanatory features except for income. 
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a) Spatial lag (normal CV & spatial CV) 

Figure 4.14. Feature importance of final spatial lag models (CA). Relative feature importance is obtained 
by scaling the original values to 0-100%. 

4.2.3. Eigenvector spatial filtering model 

As the dataset contains more than 20,000 samples, it is impractical and unnecessary to calculate 

eigenvalues of the full spatial weight matrix. 200 eigenvalues are approximated from the exponential kernel 

matrix (Murakami & Griffith, 2018). Due to the content limits, the selected ESF features are shown in the 

appendix (Table A5). The final models tuned from two CV methods are still equivalent (Table 4.12). 

Similar observations can be made from the ESF models compared with the spatial lag ones. The nested 

spatial CV presents a higher generalized error, and the training error is lower than that of the non-spatial 

models (Table 4.11). The p-values of Moran’s I approach 1 which indicates the spatial autocorrelation is 

not statistically significant. Additionally, the size of HH and LL clusters decreases considerably (Figure 

4.15), which denotes weakening local patterns. 

Table 4.11. Accuracy evaluation of ESF models (CA) 

 Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Generalized error 

Normal CV 70264.71 67756.02 66949.00 66348.53 69475.80 68158.81 

Spatial CV 68705.30 88940.59 108915.96 110953.71 95698.05 94642.72 

 

Table 4.12. Final evaluation of ESF models (CA) 

 Optimal 
mtry 

Training 
error 

Moran's I  
of residuals 

Normal CV 6 20825.50 0.019 (0.999) 

Spatial CV 6 20825.50 0.019 (0.999) 

The constructed and selected ESF features are listed in appendix (Table A5). 

P-value of the Moran’s I listed in parenthesis is approximated under Monte 

Carlo simulation of 1000 times.  
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a) Prediction ($10,000)  b) Residual ($10,000) 

 

 

c) LISA cluster  

Figure 4.15. Spatial evaluation of ESF models (CA). The integer in parentheses refer to the number of 
samples within each category. The final ESF models tuned from normal and spatial CV are equivalent. 

 

The income variable shows the highest features importance value (Figure 4.16). The eigenvector with the 

largest eigenvalue (ev1) ranks second. Other ESF features exhibit varying levels of impact on the final 

model.  
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a) ESF (normal CV & spatial CV) 

Figure 4.16. Feature importance of final ESF models (Meuse). Relative feature importance is obtained by 
scaling the original values to 0-100%. Only the top ten ranks are listed for conciseness. 

4.3. Model comparison 

Two spatial models (i.e. spatial lag and ESF) and the non-spatial counterpart are implemented in this study 

with two different cross-validation settings. The models are developed on two spatial datasets with 

different sizes. The evaluation consists of two parts: accuracy evaluation (Table 4.13) and spatial 

evaluation (Table 4.14).  

Within the accuracy evaluation, the training error of the final model assesses how well the model can fit on 

existing data. The generalized error obtained from nested cross-validation estimates the model 

performance on future unseen data. Figure 4.17 further elucidates the training and generalized errors for 

the ease of comparison. 

Table 4.13. Accuracy evaluation of different models 

 Meuse California housing 

 
Optimal 

mtry 

Training 

error 

Generalized 

error 

Optimal 

mtry 

Training 

error 

Generalized 

error 

Normal CV + 

Non-spatial 
5 83.59 191.04 2 29857.57 65946.17 

Normal CV + 

Spatial lag 
5 79.69 182.63 6 17949.20 44034.95 

Normal CV + 

ESF 
5 75.52 171.82 6 20825.50 68158.81 

Spatial CV + 

Non-spatial 
4 86.58 217.57 3 29086.55 64995.47 

Spatial CV + 

Spatial lag 
2 97.85 222.98 6 17949.20 84424.59 
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Spatial CV + 

ESF 
6 78.10 230.50 6 20825.50 94642.72 

 

  

a) Traning error - Meuse b) Traning error - CA 

  

c) Generalized error - Meuse d) Generalized error - CA 

Figure 4.17. Accuracy evaluation of different models 

 

For spatial evaluation, both global and local spatial autocorrelation are inspected on residuals. The number 

of residuals with non-significant LISA values under the level of 0.05 is listed in Table 4.14 as another 

indicator of how well the local patterns are reduced.  

Table 4.14. Spatial evaluation of different models 

 Meuse California housing 

 
Moran’s 

I 

# LISA cluster 

(not signif.) 

Moran’s 

I 

# LISA cluster 

(not signif.) 
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Normal CV + Non-spatial 0.20*** 126 0.42*** 15381 

Normal CV + Spatial lag 0.029 134 0.022 18941 

Normal CV + ESF 0.19*** 130 0.019 19514 

Spatial CV + Non-spatial 0.18*** 127 0.40*** 15643 

Spatial CV + Spatial lag 0.12** 128 0.022 18941 

Spatial CV + ESF 0.15*** 131 0.019 19514 

# LISA cluster (not signif.): the number of samples with a non-significant local Moran’s I under the 

level of 0.05. *: p ≤ 0.05, **: p ≤ 0.01, ***: p ≤ 0.001.  

 
The difference across models are compared from two perspective: the type of spatial features (Table 4.15) 

and the type of cross-validation methods (Table 4.16). The difference value is calculated as percentage. 

When comparing the type of spatial features (Table 4.15), the mean results from the two CV methods on 

generalized error are not provided. Normal and spatial CV are distinct ways for estimating model 

performance. Averaging the generalized error over two CV methods does not yield a more objective and 

unbiased view of how the spatial features generally perform.  
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Table 4.15. Comparison based on the type of spatial features 

 Meuse California housing 

 
Training 

error 

Moran’s 

I 

# LISA 

cluster 

(not signif.) 

Generalized 

error 

Training 

error 

Moran’s 

I 

# LISA 

cluster 

(not signif.) 

Generalized 

error 

Spatial lag vs. 

non-spatial 
  

 
     

Normal CV -5% -86% +6% -4% -40% -95% +23% -33% 

Spatial CV +13% -33% +1% +2% -38% -95% +21% +30% 

Mean +4% -59% +4% - -39% -95% +22% - 

ESF vs. non-

spatial 
  

 
     

Normal CV -10% -5% +3% -10% -30% -95% +27% +3% 

Spatial CV -10% -17% +3% +6% -28% -95% +25% +46% 

Mean -10% -11% +3% - -29% -95% +26% - 

The positive sign (+) indicates spatial lag/ESF has a higher value compared to the non-spatial one. Likewise, the negative sign (-) indicates a lower 

value of spatial lag/ESF. For instance, the final spatial lag model tuned from normal CV on the Meuse data has a lower training error than the non-

spatial model tuned from normal CV with a difference of around 5%. The decimals are rounded to the integer level. 
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Table 4.16. Comparison based on the type of cross-validation methods 

 Meuse California housing 

 
Training 

error 

Moran’s 

I 

# LISA 

cluster 

(not signif.) 

Generalized 

error 

Training 

error 

Moran’s 

I 

# LISA 

cluster 

(not signif.) 

Generalized 

error 

Spatial CV vs. 

normal CV 
        

Non-spatial +4% -10% +1% +14% -3% -5% +2% -1% 

Spatial lag +23% +314% -4% +22% 0 0 0 +92% 

ESF +3% -21% +1% +34% 0 0 0 +39% 

Mean +10% +94% -1% +23% -1% -2% +1% +43% 

The positive sign (+) indicates spatial CV has a higher value compared to normal CV. Likewise, the negative sign (-) indicates a lower value of spatial 

CV. For example, the final non-spatial model tuned from spatial CV on Meuse data has a higher training error than the non-spatial model tuned from 

normal CV with a difference of 4%. The decimals are rounded to the integer level. 
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The following subsections discuss the comparison results from two perspectives. Section 4.3.1 examines 

the influence of two spatial features on model performance. The second subsection 4.3.2 analyzes how 

different tuning methods (normal and spatial CV) affects the models. 

4.3.1. Effects of spatial features 

From the perspective of spatial features, the major results are as follows: 

1. For most experiments of our study, incorporating either spatial lag or ESF features helps the 

model to fit better on all the data samples, which is reflected by the lower training error (Table 

4.13, 4.15). 

1.1. An anomaly is observed for spatial lag model in Meuse data. The final model built from 

spatial CV shows a much higher training error than the non-spatial counterpart.  

2. Global Moran’s I value of residuals in spatial models decreases, and the number of non-significant 

LISA values increases (Table 4.14, 4.15). Both of the two spatial features are capable to reduce 

global and local spatial autocorrelation in residuals.  

2.1. The decrease of global Moran in residuals is limited in the Meuse case except for the spatial 

lag model from normal CV (Table 4.14). 

2.2. The local spatial patterns of residuals display significant changes mostly in HH and LL 

clusters. The HL and LH patterns are persistent although ESF models show slightly better 

effects than spatial lag models on these two clusters.  

 

The results above accord with our expectation that the inclusion of spatial information is supposed to be 

helpful in capturing the spatial autocorrelation and increasing fitting accuracy. These results share a 

consensus with previous research where spatial features are included as well (Kiely & Bastian, 2019; Li et 

al., 2017; Zhang et al., 2018; Zhu et al., 2019). The observations in 1.1 and 2.1 only pertain to the Meuse 

dataset. Meuse has a limited number of samples and illustrates a less stable outcome compared with the 

California housing data. For the spatial lag model of Meuse, different hyper-parameters result in significant 

divergence in terms of training errors and the global spatial autocorrelation despite that the same spatial 

feature is selected (Table 4.4, 4.13). The data size could be the main contributor to this anomaly in 

observation 1.1. Additionally, the feature importance results show that some original features in Meuse 

(such as distance to the river and elevation) have higher importance values than either spatial lag or ESF 

features (Figure 4.6, 4.8). For the California housing data, spatial lag and eigenvectors features are much 

more dominant in final models than original features in terms of features importance (Figure 4.14, 4.16). 

The influence of spatial feature in Meuse is not as powerful as that in California housing data. Different 

spatial mechanisms between zinc concentration and housing price could be another explanation for 

observation 2.1. Investigation on more datasets with varying data sizes would uncover a more complete 

understanding of the performance of the two proposed spatial features. 

 

Observation 2.2 is a common issue for both the two datasets. HH and LL represent a positive spatial 

autocorrelation with the clustering of similar values which is of the major concern for most spatial 

problems. Spatial lag features essentially express the quantitative characteristics of surrounding regions. 

When positive spatial autocorrelation dominates a spatial process, which is usually the case in the real 

world, the spatial lag features helps the model to learn the property of homogeneous clusters. The HL and 

LH information encoded in spatial lag can lead to confusion in the model which consequently performs 

worse on these clusters. Although ESF can generate eigenvectors representing both positive and negative 

spatial autocorrelation, the approximation only produces the first 200 eigenvectors for a large dataset due 

to computational concerns. Additionally, the subsequent LASSO selection procedure may eliminate the 

eigenvectors representing negative spatial autocorrelation. Thus, the ESF model does not effectively help 

with the local heterogeneity (HL and LH) either. Current experiments show the effectiveness of the two 

spatial features in capturing global spatial autocorrelation. How to represent the underlying local patterns 
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requires further research. It is promising that representing the regional negative spatial autocorrelation in a 

more explicit manner would help models fit better on spatial data. 

4.3.2. Effects of cross-validation methods 

From the perspective of tuning spatial models, two main observations are derived: 

1. Generalized error from normal CV is usually lower than the error from spatial CV (Table 4.13, 

4.16). 

1.1. For California housing data, the generalized error of non-spatial model from normal CV is 

slightly higher than the value of spatial CV.  

2. The influence of different CV methods on final models (training error, Moran’s I, and LISA 

clusters) are not obvious (Table 4.16). 

3. In normal CV, spatial models with lag or ESF usually show lower generalized errors (Table 4.13, 

4.15). 

3.1. For California housing data, the ESF model from normal CV presents a higher generalized 

error than the non-spatial model.  

4. In spatial CV, the generalization ability of spatial models decreases considerably and the non-

spatial model displays the lowest generalized error (Table 4.13, 4.15). 

 

These results illustrate the distinction between normal CV and spatial CV. In normal CV, the random 

sampling leads to the mixture of training and testing samples in geographical space (Figure 4.2a, 4.10a). 

Spatial CV considers the spatial distribution of data samples which divides the dataset into spatially 

disjoint regions (Figure 4.2b, 4.10b). The model is trained and tested on separate areas. In that sense, 

spatial CV is analogous to the procedure of extrapolation while normal CV is more consistent with 

interpolation.  

 

Many studies (Brenning, 2012; Pohjankukka et al., 2017; Schratz et al., 2019) have found that normal CV 

would give overoptimistic estimates when spatial autocorrelation exists. Observation 1 reflects the design 

principles of spatial CV and consolidates the claim by previous research. However, observation 1.1 

demonstrates an opposite effect of the claim. In appendix Table A3 and A4, the RMSE values of outer 

fold 1 and 2 have decreased for non-spatial models from normal CV to spatial CV. The errors of outer 

fold 3, 4, 5 do not change extremely. It could be argued that the original features possess certain abilities in 

explaining the regional variations of housing prices. When the results are averaged, the generalized errors 

of non-spatial models from the two CV methods roughly remain at the same level for California housing 

data. Previous research pointed out that this counter result is also possible and spatial CV would possibly 

present better outcomes than normal CV depending on data properties (Schratz et al., 2019). Although 

normal CV and spatial CV demonstrate substantial differences in terms of estimating generalized errors, 

observation 2 shows that no obvious differentiations are present when these two methods are used to 

tune the final models. For California housing data, the optimal ‘mtry’ values are relatively consistent (Table 

4.13). The changes between two CV methods are minimal on training error, Moran’s I and LISA clusters 

(Table 4.16). For Meuse, the mean changes on training error, Moran’s I and LISA clusters are distorted by 

the final spatial lag model tuned from spatial CV. The effects of different cross-validation methods on 

tuning the hyper-parameters of final models need experiments on more datasets for future studies.  

 

The training and testing samples in normal CV still share similar spatial properties because they are 

randomly scattered in space. Compared with non-spatial models, spatial models have learnt additional 

spatial information of the same area from training samples. The generalized errors of spatial models, 

therefore, are expected to be lower than non-spatial ones, which is represented by observation 3. The 

result of observation 3.1 is inconsistent with the outcomes from Meuse dataset. It is hard to conclude the 

exact cause with experiments on just two datasets. The incorporation of ESF features shows a lower 
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training error than non-spatial models for California housing. The generalized error is supposed to be 

lower in normal CV as seen in the Meuse case. But the RMSEs of outer folds do not decrease in Table A3 

compared with non-spatial models. The errors are calculated when the outer fold is considered as the 

testing set. The eigenvectors for testing samples cannot be explicitly calculated. More than 4000 samples 

are contained in every fold for California housing, while the outer fold from normal CV in Meuse data has 

around 30 samples. The overall inaccuracy may increase when this approximation is applied to too many 

locations. Further research with other datasets is critical to understand the robustness of ESF methods for 

spatial prediction. 

 

Observation 4 demonstrates the exaggerated effects of spatial CV on spatial models. Spatial CV splits the 

study area into different sub-regions. The segregation would potentially disrupt the spatial properties of 

training and testing samples. The spatial information encoded in training regions is likely to be different 

from testing regions, which indicates spatial models may not generalize well. As the features used in non-

spatial models are more spatially-agnostic in contrast with explicit spatial features, the influence of spatial 

CV is less drastic for non-spatial models. This differentiation between normal CV and spatial CV is more 

notable in the California housing case where the RMSE across different outer folds manifest substantial 

variance in spatial CV settings. When examining spatial lag model from nested normal CV, the error 

values are approximately uniform across different outer folds (Table A3). By contrast, the errors in nested 

spatial CV demonstrates substantial variations (Table A4). For instance, the fold 4 and 5 are the regions of 

two major cities (San Francisco and Los Angeles) where high housing prices are more likely to present. 

When these two folds with unique characteristics are used as testing sets, the model trained on other areas 

cannot generalize well to patterns that have not been seen during training. Besides, the random forest 

algorithm could be another source of high extrapolation error. Decision-tree based methods cannot 

generate predictions that exceed the value range of existing data (Hengl et al., 2018). Other algorithms 

could possibly exhibit better performance in extrapolation tasks. 
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5. CONCLUSION 

5.1. Conclusion 

This study investigated the incorporation of two spatial features, i.e. spatial lag and eigenvector spatial 

filtering, in machine learning to account for spatial autocorrelation. We compared the proposed methods 

against non-spatial equivalents using random forest on two public spatial datasets (Meuse dataset, and 

California housing dataset). Moreover, two approaches of cross-validation (normal CV and spatial CV) 

were explored to tune the hyper-parameters and estimate the model performance. The models were 

evaluated from both accuracy and spatial perspectives. For accuracy evaluation, generalization and fitting 

ability were assessed by generalized error from nested CV and training error respectively. For spatial 

evaluation, global Moran’s I and LISA clusters were used to examine the global and local patterns in 

residuals. The experiments show that the training errors of spatial models are mostly lower than the non-

spatial ones. The incorporation of spatial features helps the model to fit better on the data. The 

generalized errors of spatial models from spatial CV are higher than the values from normal CV. Normal 

CV yields over-optimistic error estimates than spatial CV, which is in agreement with the findings of 

previous studies (Ruß & Brenning, 2010; Schratz et al., 2019). From the spatial perspective, the global 

spatial autocorrelation in residuals has been decreased in spatial lag or ESF models. The homogeneous 

clusters of local spatial autocorrelation are reduced as well. Spatial features enable machine learning 

models to capture the spatial autocorrelation. The outcomes in general are within the expectation. In 

retrospect of the research questions, the answers are can be explained as follows. 

 

Q 1.1: What spatial features can be constructed to potentially account for spatial autocorrelation? 

Two spatial features are investigated in this study: spatial lag and eigenvector spatial filtering (ESF). Both 

the features have been used to capture spatial autocorrelation in linear regression (Anselin, 1988; Arbia, 

2014; Getis & Griffith, 2002; Griffith & Chun, 2014). This study extends these two approaches to 

machine learning and incorporates each of these features as additional variables. Spatial lag represents the 

average value of surrounding areas. ESF uses the eigenvectors from the spatial weight matrix as auxiliary 

features. 

 

Q 1.2: How can the spatial features be properly configured?  

Rather than one single spatial lag feature used by previous studies (Kiely & Bastian, 2019; Li et al., 2017; 

Zhu et al., 2019), multiple spatial lag features are constructed for our experiments. Various k values of the 

k-nearest-neighbor are used to indicate different possibilities of spatial weight matrix. A data-driven 

LASSO procedure is introduced to select the most informative subset of spatial lag features. For ESF 

features, a classic exponential kernel is employed to create a positive semidefinite weight matrix 

(Murakami & Griffith, 2018). The eigenvectors extracted from the weight matrix represent varying map 

patterns. To reduce the number of eigenvectors, the same LASSO procedure is adopted to select a 

parsimonious subset of ESF features (Seya et al., 2015). 

 

Q 2.1: What effects do cross-validation have on the performance of models with spatial features? 

As regular cross-validation may be biased by spatial autocorrelation (Brenning, 2012; Pohjankukka et al., 

2017; Ruß & Brenning, 2010), we applied the spatial cross-validation method developed by Brenning 

(2012). The spatial CV considers the locations of data samples and splits the data into disjoint regions 

based on the k-means algorithm. Normal CV resembles the process of interpolation within the same 
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region while spatial CV is similar to extrapolation. Both normal CV and spatial CV are employed in the 

experiments to examine their potential differences. The generalized error of spatial models in spatial CV 

increases up to 92% compared to that in normal CV. Overall, normal CV generates optimistic estimates 

than spatial CV, which agrees with previous research (Brenning, 2012; Schratz et al., 2019). This difference 

between normal and spatial CV becomes more significant when spatial features are included. The purpose 

of the model should be taken into consideration with respect to the choice of CV methods for 

performance estimation especially when spatial features are included.  

 

Q 3.1: Which spatial features can help to capture spatial autocorrelation and improve prediction 

accuracy? 

The global spatial autocorrelation is successfully reduced in residuals (up to 95% in the California housing 

case) when either spatial lag or ESF is applied. The size of high-high and low-low clusters has shrunk, and 

the number of non-significant LISA values have increased. The training errors of spatial models has 

dropped for most of the experiments. The incorporation of spatial features helps the model to fit better 

on existing data in general. The generalization ability of the spatial model is influenced by which CV 

method is employed for evaluation. Spatial CV gives a less optimistic estimate. Spatial models present 

lower generalized error in normal CV than non-spatial models, while the generalization ability of spatial 

models considerably decreases if spatial CV is utilized for evaluation.   

 

Q 3.2: What variations, if any, do the proposed spatial features have on small and large datasets in 

terms of the abilities to help with spatial autocorrelation and model accuracy? 

Although our experiments demonstrate the expected ability of both the spatial features in capturing spatial 

autocorrelation and improving fitting accuracy, different characteristics of the datasets can influence the 

effectiveness of these spatial features. In Meuse dataset, the reduction of spatial autocorrelation is not 

substantial in residuals. The original features are more dominant than either spatial lag or ESF features in 

terms of feature importance in final models. Moreover, Meuse contains limited samples. The results of 

spatial autocorrelation and training error are closely related to the choice of hyper-parameters. California 

housing has a much larger number of samples than Meuse. The feature importance results show that 

spatial features are more influential in the final models. The effects of reducing spatial autocorrelation in 

residuals are more obvious and consistent. The global spatial autocorrelation in residuals decreases more 

than 90% and is not significant anymore. The training error of final models also demonstrates great 

improvements with the average 39% and 29% decrease for spatial lag and ESF respectively. 

5.2. Future work 

The presence of spatial autocorrelation introduces lurking problems in data analysis when the spatial 

effects are not explicitly addressed. Incorporating spatial features that express spatial properties represents 

a promising and extensible approach, which enables the original non-spatial models to account for spatial 

autocorrelation. Two existing spatial features are extended and the effects of cross-validation are 

emphasized in this study. Since only two spatial datasets with relatively extreme sizes are investigated, 

future research is recommended for more representative outcomes. Further studies on the following 

directions may contribute to more profound insights. 

a) This study shows spatial lag or ESF demonstrates the ability of capturing global spatial 

autocorrelation. Homogeneous local patterns are greatly reduced as well. However, the effects on 

reducing heterogeneous local clusters (HL and LH clusters in LISA) are marginal. The regional 

negative spatial autocorrelation still persists. How to explicitly express local negative spatial 

autocorrelation remains unexplored and requires further research.  

b) The generalized error has increased dramatically in spatial CV when the model incorporates 

spatial features. This study alone is not enough to realize the comprehensive effects of spatial CV. 
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For instance, since k-means is involved in spatial CV, different choices of k and initialization 

would divide the data into different regions. Experiments with varying configurations of spatial 

CV would help to understand how the estimates of spatial CV would change under different 

settings.  

c) Spatial lag and ESF features allow the incorporation of spatial autocorrelation in machine learning 

when used individually. Spatial lag is easy to calculate and effective in capturing global spatial 

autocorrelation, and ESF has the potential to represent negative spatial autocorrelation by certain 

eigenvectors. It is worth the effort for future studies to explore whether the combination of 

spatial lag and ESF features would yield a better model performance.  

d) In this study, the spatial features are tested on two public datasets with different sizes. Variations 

of model performance are observed among the two datasets. In addition, random forest is chosen 

for our experiments because of its wide application and general accuracy. New application studies 

with other machine learning algorithms (like support vector machine, neural networks) and more 

spatial datasets are needed to understand the robustness of the two spatial features. 

 

  



INCORPORATING SPATIAL AUTOCORRELATION IN MACHINE LEARNING   

50 

 

 



 

51 

LIST OF REFERENCES 

Anselin, L. (1988). Spatial Econometrics: Methods and Models (Vol. 4). Dordrecht: Springer. 

https://doi.org/10.1007/978-94-015-7799-1 

Anselin, L. (1995). Local Indicators of Spatial Association-LISA. Geographical Analysis, 27(2), 93–115. 

https://doi.org/10.1111/j.1538-4632.1995.tb00338.x 

Arbia, G. (2014). A Primer for Spatial Econometrics. London: Palgrave Macmillan UK. 

https://doi.org/10.1057/9781137317940 

Bauman, D., Drouet, T., Dray, S., & Vleminckx, J. (2018). Disentangling good from bad practices in the 

selection of spatial or phylogenetic eigenvectors. Ecography, 41(10), 1638–1649. 

https://doi.org/10.1111/ecog.03380 

Behrens, T., Schmidt, K., Viscarra Rossel, R. A., Gries, P., Scholten, T., & MacMillan, R. A. (2018). Spatial 

modelling with Euclidean distance fields and machine learning. European Journal of Soil Science, 69(5), 

757–770. https://doi.org/10.1111/ejss.12687 

Bivand, R. S., Pebesma, E., & Gómez-Rubio, V. (2013). Applied Spatial Data Analysis with R. New York, 

NY: Springer New York. https://doi.org/10.1007/978-1-4614-7618-4 

Breiman, L. (2001). Random forests. Machine Learning, 5–32. https://doi.org/10.1023/A:1010933404324 

Brenning, A. (2012). Spatial cross-validation and bootstrap for the assessment of prediction rules in 

remote sensing: The R package sperrorest. In 2012 IEEE International Geoscience and Remote Sensing 

Symposium (pp. 5372–5375). Munich, Germany: IEEE. 

https://doi.org/10.1109/IGARSS.2012.6352393 

Brunsdon, C., Fotheringham, A. S., & Charlton, M. E. (1996). Geographically Weighted Regression: A 

Method for Exploring Spatial Nonstationarity. Geographical Analysis, 28(4), 281–298. 

https://doi.org/10.1111/j.1538-4632.1996.tb00936.x 

Cawley, G. C., & Talbot, N. L. C. (2010). On Over-fitting in Model Selection and Subsequent Selection 

Bias in Performance Evaluation. Journal of Machine Learning Research, 11(70), 2079–2107. Retrieved 

from http://jmlr.org/papers/v11/cawley10a.html 

Chen, L., Ren, C., Li, L., Wang, Y., Zhang, B., Wang, Z., & Li, L. (2019). A Comparative Assessment of 

Geostatistical, Machine Learning, and Hybrid Approaches for Mapping Topsoil Organic Carbon 

Content. ISPRS International Journal of Geo-Information, 8(4), 174. https://doi.org/10.3390/ijgi8040174 

Cupido, K., Jevtic, P., & Paez, A. (2019). Spatial Patterns of Mortality in the United States: A Spatial 

Filtering Approach. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3359353 

Debarsy, N., & LeSage, J. (2018). Flexible dependence modeling using convex combinations of different 

types of connectivity structures. Regional Science and Urban Economics, 69, 48–68. 

https://doi.org/10.1016/j.regsciurbeco.2018.01.001 

Deng, J., Dong, W., Socher, R., Li, L.-J., Kai Li, & Li Fei-Fei. (2009). ImageNet: A large-scale hierarchical 

image database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition (pp. 248–255). 

IEEE. https://doi.org/10.1109/CVPR.2009.5206848 

Dormann, C. F., McPherson, J. M., Araújo, M. B., Bivand, R., Bolliger, J., Carl, G., … Wilson, R. (2007). 

Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. 

Ecography, 30(5), 609–628. https://doi.org/10.1111/j.2007.0906-7590.05171.x 

Foresti, L., Pozdnoukhov, A., Tuia, D., & Kanevski, M. (2010). Extreme Precipitation Modelling Using 

Geostatistics and Machine Learning Algorithms. In P. Monestiez, D. Allard, & R. Froidevaux (Eds.), 

geoENV VII – Geostatistics for Environmental Applications (Vol. 16, pp. 41–52). Dordrecht: Springer 

Netherlands. https://doi.org/10.1007/978-90-481-2322-3_4 

Fouedjio, F., & Klump, J. (2019). Exploring prediction uncertainty of spatial data in geostatistical and 

machine learning approaches. Environmental Earth Sciences, 78(1), 1–24. 



 

52 

https://doi.org/10.1007/s12665-018-8032-z 

Friedman, J., Hastie, T., & Tibshirani, R. (2010). Regularization Paths for Generalized Linear Models via 

Coordinate Descent. Journal of Statistical Software, 33(1), 1–22. Retrieved from 

http://www.ncbi.nlm.nih.gov/pubmed/20808728 

Getis, A. (2008). A History of the Concept of Spatial Autocorrelation: A Geographer’s Perspective. 

Geographical Analysis, 40(3), 297–309. https://doi.org/10.1111/j.1538-4632.2008.00727.x 

Getis, A., & Griffith, D. A. (2002). Comparative Spatial Filtering in Regression Analysis. Geographical 

Analysis, 34(2), 130–140. https://doi.org/10.1111/j.1538-4632.2002.tb01080.x 

Goodchild, M. F. (1992). Geographical information science. International Journal of Geographical Information 

Systems, 6(1), 31–45. https://doi.org/10.1080/02693799208901893 

Goodchild, M. F. (2013). The quality of big (geo)data. Dialogues in Human Geography, 3(3), 280–284. 

https://doi.org/10.1177/2043820613513392 

Griffith, D., & Chun, Y. (2014). Spatial Autocorrelation and Spatial Filtering. In Handbook of Regional Science 

(pp. 1477–1507). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-

642-23430-9_72 

Harrison, D., & Rubinfeld, D. L. (1978). Hedonic housing prices and the demand for clean air. Journal of 

Environmental Economics and Management, 5(1), 81–102. https://doi.org/10.1016/0095-0696(78)90006-

2 

Hengl, T., Heuvelink, G. B. M., Kempen, B., Leenaars, J. G. B., Walsh, M. G., Shepherd, K. D., … 

Tondoh, J. E. (2015). Mapping Soil Properties of Africa at 250 m Resolution: Random Forests 

Significantly Improve Current Predictions. PLOS ONE, 10(6), e0125814. 

https://doi.org/10.1371/journal.pone.0125814 

Hengl, T., Heuvelink, G. B. M., & Rossiter, D. G. (2007). About regression-kriging: From equations to 

case studies. Computers & Geosciences, 33(10), 1301–1315. 

https://doi.org/10.1016/j.cageo.2007.05.001 

Hengl, T., Nussbaum, M., Wright, M. N., Heuvelink, G. B. M., & Gräler, B. (2018). Random forest as a 

generic framework for predictive modeling of spatial and spatio-temporal variables. PeerJ. 

https://doi.org/10.7717/peerj.5518 

Hoffmann, J., Bar-Sinai, Y., Lee, L. M., Andrejevic, J., Mishra, S., Rubinstein, S. M., & Rycroft, C. H. 

(2019). Machine learning in a data-limited regime: Augmenting experiments with synthetic data 

uncovers order in crumpled sheets. Science Advances, 5(4), eaau6792. 

https://doi.org/10.1126/sciadv.aau6792 

Kanevski, M., Timonin, V., & Pozdnukhov, A. (2009). Machine Learning for Spatial Environmental Data. 

EPFL Press. https://doi.org/10.1201/9781439808085 

Kiely, T. J., & Bastian, N. D. (2019). The Spatially-Conscious Machine Learning Model. Retrieved from 

http://arxiv.org/abs/1902.00562 

Kitchin, R. (2013). Big data and human geography. Dialogues in Human Geography, 3(3), 262–267. 

https://doi.org/10.1177/2043820613513388 

Kleijnen, J. P. C., & van Beers, W. C. M. (2018). Prediction for Big Data Through Kriging: Small 

Sequential and One-Shot Designs. CentER Discussion Paper, 2018–022. 

https://doi.org/10.2139/ssrn.3210567 

Klemmer, K., Koshiyama, A., & Flennerhag, S. (2019). Augmenting correlation structures in spatial data 

using deep generative models. Retrieved from http://arxiv.org/abs/1905.09796 

Kray, C., Pebesma, E., Konkol, M., & Nüst, D. (2019). Reproducible Research in Geoinformatics: 

Concepts, Challenges and Benefits (Vision Paper). In S. Timpf, C. Schlieder, M. Kattenbeck, B. 

Ludwig, & K. Stewart (Eds.), 14th International Conference on Spatial Information Theory (COSIT 2019) 

(Vol. 142, pp. 8:1--8:13). Dagstuhl, Germany: Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik. 



 

53 

https://doi.org/10.4230/LIPIcs.COSIT.2019.8 

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444. 

https://doi.org/10.1038/nature14539 

Li, J., Heap, A. D., Potter, A., & Daniell, J. J. (2011). Application of machine learning methods to spatial 

interpolation of environmental variables. Environmental Modelling and Software, 26(12), 1647–1659. 

https://doi.org/10.1016/j.envsoft.2011.07.004 

Li, T., Shen, H., Yuan, Q., Zhang, X., & Zhang, L. (2017). Estimating Ground-Level PM 2.5 by Fusing 

Satellite and Station Observations: A Geo-Intelligent Deep Learning Approach. Geophysical Research 

Letters, 44(23), 11,985-11,993. https://doi.org/10.1002/2017GL075710 

Löchl, M., & Axhausen, K. W. (2010). Modelling hedonic residential rents for land use and transport 

simulation while considering spatial effects. Journal of Transport and Land Use, 3(2), 39–63. 

https://doi.org/10.5198/jtlu.v3i2.117 

Meyer, H., Reudenbach, C., Wöllauer, S., & Nauss, T. (2019). Importance of spatial predictor variable 

selection in machine learning applications – Moving from data reproduction to spatial prediction. 

Ecological Modelling, 411, 108815. https://doi.org/10.1016/j.ecolmodel.2019.108815 

Miller, H. J. (2000). Geographic representation in spatial analysis. Journal of Geographical Systems, 2(1), 55–60. 

https://doi.org/10.1007/s101090050030 

Mueller, E., Sandoval, J. S. O., Mudigonda, S., & Elliott, M. (2018). A Cluster-Based Machine Learning 

Ensemble Approach for Geospatial Data: Estimation of Health Insurance Status in Missouri. ISPRS 

International Journal of Geo-Information, 8(1), 13. https://doi.org/10.3390/ijgi8010013 

Murakami, D., & Griffith, D. A. (2018). Eigenvector Spatial Filtering for Large Data Sets: Fixed and 

Random Effects Approaches. Geographical Analysis, 51(1), 23–49. 

https://doi.org/10.1111/gean.12156 

Murakami, D., Tsutsumida, N., Yoshida, T., Nakaya, T., & Lu, B. (2019). Scalable GWR: A linear-time 

algorithm for large-scale geographically weighted regression with polynomial kernels. Retrieved from 

http://arxiv.org/abs/1905.00266 

Oshiro, T. M., Perez, P. S., & Baranauskas, J. A. (2012). How Many Trees in a Random Forest? In P. 

Perner (Ed.), Machine Learning and Data Mining in Pattern Recognition (pp. 154–168). Berlin, Heidelberg: 

Springer Berlin Heidelberg. 

Pace, R. K., & Barry, R. (1997). Sparse spatial autoregressions. Statistics & Probability Letters, 33(3), 291–

297. https://doi.org/10.1016/S0167-7152(96)00140-X 

Paez, A. (2019). Using Spatial Filters and Exploratory Data Analysis to Enhance Regression Models of 

Spatial Data. Geographical Analysis, 51(3), 314–338. https://doi.org/10.1111/gean.12180 

Pebesma, E. J. (2004). Multivariable geostatistics in S: the gstat package. Computers & Geosciences, 30(7), 

683–691. https://doi.org/10.1016/j.cageo.2004.03.012 

Perkel, J. M. (2018). Why Jupyter is data scientists’ computational notebook of choice. Nature, 563(7729), 

145–146. https://doi.org/10.1038/d41586-018-07196-1 

Pohjankukka, J., Pahikkala, T., Nevalainen, P., & Heikkonen, J. (2017). Estimating the prediction 

performance of spatial models via spatial k-fold cross validation. International Journal of Geographical 

Information Science, 31(10), 2001–2019. https://doi.org/10.1080/13658816.2017.1346255 

Probst, P., & Boulesteix, A.-L. (2017). To tune or not to tune the number of trees in random forest? 

Journal of Machine Learning Research, 18, 1–18. 

R Core Team. (2019). R: A Language and Environment for Statistical Computing. Vienna, Austria. 

Retrieved from https://www.r-project.org/ 

Reichstein, M., Camps-Valls, G., Stevens, B., Jung, M., Denzler, J., Carvalhais, N., & Prabhat. (2019). 

Deep learning and process understanding for data-driven Earth system science. Nature, 566(7743), 

195–204. https://doi.org/10.1038/s41586-019-0912-1 



 

54 

Ruß, G., & Brenning, A. (2010). Spatial Variable Importance Assessment for Yield Prediction in Precision 

Agriculture. In P. R. CohenNiall, M. AdamsMichael, & R. Berthold (Eds.), Advances in Intelligent Data 

Analysis IX (pp. 184–195). Tucson, AZ, USA: Springer, Berlin, Heidelberg. 

https://doi.org/10.1007/978-3-642-13062-5_18 

Ruß, G., & Kruse, R. (2010). Regression Models for Spatial Data: An Example from Precision Agriculture. 

In P. Perner (Ed.), Advances in Data Mining. Applications and Theoretical Aspects. ICDM 2010. Lecture 

Notes in Computer Science, vol 6171 (pp. 450–463). Springer Berlin Heidelberg. 

https://doi.org/10.1007/978-3-642-14400-4_35 

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., … Fei-Fei, L. (2015). ImageNet Large 

Scale Visual Recognition Challenge. International Journal of Computer Vision, 115(3), 211–252. 

https://doi.org/10.1007/s11263-015-0816-y 

Schratz, P., Muenchow, J., Iturritxa, E., Richter, J., & Brenning, A. (2019). Hyperparameter tuning and 

performance assessment of statistical and machine-learning algorithms using spatial data. Ecological 

Modelling, 406(April 2018), 109–120. https://doi.org/10.1016/j.ecolmodel.2019.06.002 

Seya, H., Murakami, D., Tsutsumi, M., & Yamagata, Y. (2015). Application of LASSO to the Eigenvector 

Selection Problem in Eigenvector-based Spatial Filtering. Geographical Analysis, 47(3), 284–299. 

https://doi.org/10.1111/gean.12054 

Shekhar, S., Jiang, Z., Ali, R., Eftelioglu, E., Tang, X., Gunturi, V., & Zhou, X. (2015). Spatiotemporal 

Data Mining: A Computational Perspective. ISPRS International Journal of Geo-Information, 4(4), 2306–

2338. https://doi.org/10.3390/ijgi4042306 

Shen, H. (2014). Interactive notebooks: Sharing the code. Nature, 515(7525), 151–152. 

https://doi.org/10.1038/515151a 

Stojanova, D., Ceci, M., Appice, A., Malerba, D., & Džeroski, S. (2013). Dealing with spatial 

autocorrelation when learning predictive clustering trees. Ecological Informatics, 13, 22–39. 

https://doi.org/10.1016/j.ecoinf.2012.10.006 

Tibshirani, R. (1996). Regression Shrinkage and Selection Via the Lasso. Journal of the Royal Statistical Society: 

Series B (Methodological), 58(1), 267–288. https://doi.org/10.1111/j.2517-6161.1996.tb02080.x 

Tobler, W. R. (1970). A Computer Movie Simulating Urban Growth in the Detroit Region. Economic 

Geography, 46, 234. https://doi.org/10.2307/143141 

Wheeler, D. C. (2014). Geographically Weighted Regression. In Handbook of Regional Science (pp. 1435–

1459). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-23430-

9_77 

Zhang, J., Li, B., Chen, Y., Chen, M., Fang, T., & Liu, Y. (2018). Eigenvector Spatial Filtering Regression 

Modeling of Ground PM2.5 Concentrations Using Remotely Sensed Data. International Journal of 

Environmental Research and Public Health, 15(6), 1228. https://doi.org/10.3390/ijerph15061228 

Zhu, X., Zhang, Q., Xu, C.-Y., Sun, P., & Hu, P. (2019). Reconstruction of high spatial resolution surface 

air temperature data across China: A new geo-intelligent multisource data-based machine learning 

technique. Science of The Total Environment, 665, 300–313. 

https://doi.org/10.1016/j.scitotenv.2019.02.077 

 



 

55 

APPENDIX 

 

Table A1. Results of Meuse data from normal cross-validation 

 Final model Nested CV (RMSE) 

 mtry 
Training 

error 

Moran of 

residuals 
Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 

Generalized 

error 

Non-spatial 5 83.59 0.20*** 179.54 123.25 191.55 201.07 259.77 191.04 

Spatial lag 5 79.69 0.029 181.05 120.44 195.43 187.23 229.00 182.63 

ESF 5 75.52 0.19*** 149.87 109.02 182.29 176.88 241.04 171.82 

*: p ≤ 0.05, **: p ≤ 0.01, ***: p ≤ 0.001. The minimum of a column is indicated in bold. 

 

Table A2. Results of Meuse data from spatial cross-validation 

 Final model Nested CV (RMSE) 

 mtry 
Training 

error 

Moran of 

residuals 
Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 

Generalized 

error 

Non-spatial 4 86.58 0.18*** 265.47 229.24 151.72 268.66 172.75 217.57 

Spatial lag 2 97.85 0.12** 250.13 218.40 135.15 284.00 227.22 222.98 

ESF 6 78.10 0.15*** 270.09 220.03 141.22 293.41 227.77 230.50 

*: p ≤ 0.05, **: p ≤ 0.01, ***: p ≤ 0.001. The minimum of a column is indicated in bold. 

 

 

 
 



 

56 

Table A3. Results of California housing data from normal cross-validation 

 Final model Nested CV (RMSE) 

 mtry Training error 
Moran of 

residuals 
Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Generalized error 

Non-spatial 2 29857.57 0.42*** 65589.35 64799.53 66965.33 68654.93 63721.71 65946.17 

Spatial lag 6 17949.20 0.022 44018.01 43306.16 45092.36 44457.47 43300.77 44034.95 

ESF 6 20825.50 0.019 70264.71 67756.02 66949.00 66348.53 69475.80 68158.81 

*: p ≤ 0.05, **: p ≤ 0.01, ***: p ≤ 0.001. The minimum of a column is indicated in bold. 

 

Table A4. Results of California housing data from spatial cross-validation 

 Final model Nested CV (RMSE) 

 mtry Training error 
Moran of 

residuals 
Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Generalized error 

Non-spatial 3 29086.55 0.40*** 47419.24 58712.81 72149.94 75477.13 71218.24 64995.47 

Spatial lag 6 17949.20 0.022 44206.38 76967.17 60853.46 135877.61 104218.33 84424.59 

ESF 6 20825.50 0.019 68705.30 88940.59 108915.96 110953.71 95698.05 94642.72 

*: p ≤ 0.05, **: p ≤ 0.01, ***: p ≤ 0.001. The minimum of a column is indicated in bold. 
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Table A5. Selected spatial features of final models (Meuse) 

 Constructed spatial features Selected spatial features 

Normal CV + Non-spatial - - 

Normal CV + Spatial lag lag_k5, lag_k10, lag_k15 lag_k5 

Normal CV + ESF ev1 – ev152 ev8, ev11, ev12, ev34 

Spatial CV + Non-spatial - - 

Spatial CV + Spatial lag lag_k5, lag_k10, lag_k15, lag_k50 lag_k5 

Spatial CV + ESF ev1 – ev152 ev8, ev11, ev12 

“ev” stands for “eigenvector”. 

 

Table A6. Selected spatial features of final models (California housing) 

 Constructed spatial features Selected spatial features 

Normal CV + Non-spatial - - 

Normal CV + Spatial lag lag_k5, lag_k10, lag_k15, lag_k50 lag_k5, lag_k10, lag_k15 

Normal CV + ESF ev1 - ev200 ev1, ev4, ev8, ev10, ev14, ev19, 

ev21, ev23, ev30, ev33, ev38, 

ev40, ev43, ev50, ev51, ev53, 

ev55, ev57, ev58, ev62, ev63, 

ev64, ev70, ev76, ev79, ev80, 

ev81, ev82, ev83, ev88, ev90, 

ev91, ev98, ev100, ev101, ev103, 

ev108, ev109, ev110, ev113, 

ev114, ev115, ev116, ev119, 

ev120, ev121, ev123, ev128, 

ev130, ev131, ev132, ev135, 

ev136, ev139, ev140, ev147, 

ev149, ev150, ev153, ev156, 

ev157, ev159, ev161, ev162, 

ev166, ev170, ev172, ev174, 

ev175, ev178, ev182, ev183, 

ev184, ev190, ev191, ev195, 

ev197 (77 features) 

Spatial CV + Non-spatial - - 

Spatial CV + Spatial lag lag_k5, lag_k10, lag_k15, lag_k50 lag_k5, lag_k10, lag_k15 

Spatial CV + ESF ev1 - ev200 Same as “Normal CV + ESF” 

“ev” stands for “eigenvector”. 
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a) Non-spatial (normal CV) b) Non-spatial (spatial CV) 

  

c) Spatial lag (normal CV) d) Spatial lag (spatial CV) 
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e) ESF (normal CV) f) ESF (spatial CV) 

Figure A1. Feature importance of final models (Meuse). The feature importance is scaled to 0-100%. 
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a) Non-spatial (normal CV) b) Non-spatial (spatial CV) 

  

c) Spatial lag (normal CV & spatial CV) d) ESF (normal CV & spatial CV) 

Figure A2. Feature importance of final models (California housing). The feature importance is scaled to 0-

100%. The final spatial lag models from normal CV and spatial CV are identical. The same holds for ESF 

models. 
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Figure A3. Example of the Jupyter notebook uploaded on GitHub (https://github.com/xj-liu/Thesis). 
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