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ABSTRACT

Tropical rain forests are one of the main terrestrial ecosystems that are playing an important role in the
mitigation of global climate change through carbon sequestration. In recent years the application of
airborne LiDAR (Light Detection and Ranging) and Terrestrial Laser Scanner (TLS) has been increasing in
the measurement and extraction of forest biophysical parameters and characteristics and, estimation of
aboveground biomass (AGB) and carbon stock. so far few studies have been done on the use of
Terrestrial Laser Scanner (TLS) in a tropical rain forest ecosystem. Thus the main objective of this study is
to assess how the Terrestrial Laser Scanner and airborne LIDAR perform in tropical rain forest in the
estimation of aboveground biomass and carbon stock.

A Canopy Height Model (CHM) was generated from the airborne IiDAR data by subtracting Digital
Terrain Model (DTM) from the Digital Surface Model (DSM). Using a multi-resolution segmentation the
CHM of airborne LIDAR was segmented. Manual delineation of the upper tree crowns and segmentation
accuracy assessment of was done by the measure of D “measure of goodness of fit” approach and an
accuracy of 68.6% was obtained.

Using Terrestrial Laser Scanner (TLS) point cloud data was collected through multiple scan positions.
After registration of the point cloud data (with error of 0.016m) out of 779 trees 627 trees (80.5%) were
extracted and 152 trees (19.5%) were missed. Tree parameters, Diameter at Breast Height (DBH) and
Height were derived from the extracted tree and a correlation analysis was done with the corresponding
field measured parameters and also with the height derived from airborne LiIDAR.

The coefficient of determination (R?) for the field measured DBH and TLS derived DBH was 0.98. field
measured height and TLS derived height was 0.70, which is a reasonably good relationship especially in
the case of DBH measurement. Also the relationships between the heights detived from the airborne
LiDAR and heights from the field and TLS were calculated with R? of 0.65 and 0.87 respectively however,
a regression analyses was done between the delineated Canopy Project Area (CPA) of the delineated trees
and with field measured DBH the result of the R2 was 0.3 which shows a poor relationship between these
parameters.

Thus, in this study the Terrestrial Laser Scanner (TLS) was able to estimate DBH and height in a
reasonable accuracy in a tropical rain forest. However, in the case of height there was a slight
underestimation due to occlusions of the overlaying tree canopies. Airborne LiIDAR was able to measure
the tree heights only of the upper canopy layers with good accurately, but the lower layers could not be
detected. Generally this study reveals that Terrestrial Laser Scanner and airborne LiDAR are very
promising in the estimation of above ground biomass and carbon stock in tropical rainforest ecosystems.

Keywords: Terrestrial Laser Scanner (TLS), Air borne LIDAR (ALS), multiple scans, Point cloud Data,
Canopy Height Model (CHM), Segmentation, Canopy Project Area (CPA), DBH, Allometric equation,
Aboveground Biomass (AGB)
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AIRBORNELIDAR AND TERRESTRIAL LASER SCANNER (TLS) IN ASSESSINGABOVE GROUND BIOMASS/CARBON STOCK IN TROPICAL RAINFOREST OF AYER
HITAM FOREST RESERVE, MALAYSIA

1. INTRODUCTION

1.1. Background

Global climate change is mainly caused by the increase of greenhouse gases (GHGs) specifically the
emission of carbon dioxide (CO») in the atmosphere. Terrestrial forest ecosystems are playing a crucial
role in the sequestration and storage of carbon(Gibbs et al., 2007). Carbon which is stored in the forest
can be released in to the atmosphere in the form of CO,. In tropical forests deforestation and forest
degradation is the main source of CO?2 emissions after burning of fossil fuels (Zhang et al., 2003).
According Malhi et al., (2000) tropical forest comprises approximately 50% of the total global forest area.
Annually about 1- 2 billion tons of carbon was released from tropical deforestation in the 1990s, which is
about 15-25% of the annual global Greenhouse Gases (GHGs) emission. (Malhi & Grace, 2000;
Fearnside, 2000) .

The United Nations Frame work Convention on Climate Change (UNFCCC) was established in 1992 to
reduce the emission of greenhouse gases (GHGs). On December 1997 the United Nations adopted the
Kyoto protocol (KP) in Japan, and set a target to reduce the greenhouse emissions by 5% of the level of
1990 in the period of 2008 to 2012. Moreover, it set binding quantitative obligations to all parties to meet
the target of emission reduction (UNFCCC, 1998). According to this protocol countries are obliged to
report regularly on the amount of carbon emitted and sequestered from their forest areas on national level
using more effective and feasible mechanisms and methods(Gupta et al., 2003). In 2012 an amendment
was made to the Kyoto protocol in Doha, Qatar. Accordingly, parties committed to reduce the level of
greenhouse gases (GHGs) emission by 18% below the 1990 levels, in the period from 2013 to 2020
(GOV.UK, 2015).

The Bali action plan, which was adopted in the year of 2007, came with the impressive idea to support and
give financial incentives to the developing countries to stimulate in the reduction of carbon emission from
deforestation and forest degradation so called REDD(UN-REDD, 2008; REDD+ Cookbook, (2012).
After the fifteenth conference of the parties in the year 2009, the “REDD” was expanded in to ’REDD-
plus”/REDD-plus (kanninen et al., 2009). The REDD —plus comprised a mechanisms for conservation,
sustainable management of forest and enhancement of the carbon stock of forests. Developing countries
are expected to estimate their forest carbon stock. Therefore if there is an increase in the carbon stock
they can expect a financial incentives or carbon credits from REDD (Dhital, 2009).

Above ground biomass (AGB) refers to the total amount of biomass above the ground. Approximately
about 47-50% of the total biomass of forest is assumed to be carbon stock (Malhi & Grace, 2000). The
best approach of estimating of woody forest biomass is by measuring the biophysical parameters of the
tree such as height, diameter at breast height (IDBH), tree volume and wood density and calculating the
biomass using algometric equations.

Remote sensing technology plays an important role in forest’s carbon stock estimation; forest monitoring
and can play a vital role in forest biomass estimation and forest management (Nilsson, 1994). According
to Gibbs, (2007) the different approaches and methods of remote sensing for the estimation of above
ground carbon stock resulted with different uncertainties from high to medium and low. Basically this
depends on the type of remotely sensed data and optical remote sensors. He explains that a combination
of remotely sensed data with the ground measurements can result in a relatively high accuracy of carbon
stock estimation. Light Detecting and Ranging (LIDAR) is one of the remote sensing techniques that has a
good potential and capability in the forest carbon stock estimation as it can provide 3D perspective of the
forest structures and accurate measurement of the tree parameters, specially height (Montaghi et al., 2013;
Patenaude et al., 2004).
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1.2. Problem statement and justification

Accurate estimation of forest carbon stock in a sustainably managed forest ecosystem in the countries
committed to the REDD + is one of the main concerns of REDD-plus programs before the financial
incentives are issued (REDD+Cookbook1, 2012). The UNFCCC emphasized the necessity of measuring,
reporting and verification (MRV) of forest carbon stock, and in COP15 it adopted a scientific approach
with the application of remote sensing data and field data(UN-REDD,2008; REDD+Cookbook1, 2012;
Vaglio Laurin etal., 2014).

Although different approaches and methods for estimation of the carbon stock in the tropical forest are
used or applied (Gibbs et al., 2007). it still remains a challenge to find the most feasible and accurate
method of estimating forest biomass in tropical rain forests (Steininger, 2010) According to Lu, (2006),
Luther et al., (2000), and Lu et al., (2012) different optical remote sensing data with different spatial
resolution ,have been used in estimation of biomass. However their studies reveal that optical remote
sensing data are unable to extract the forest parameters and forest structures directly (Lu et al., 2014). Also
Lu, (2006) mentioned that the cloud and atmospheric conditions in most areas and especially in the
tropical forests limits the acquisition of good data from optical sensors. Second problem of optical remote
sensing especial in tropical rain forests, where there is high biomass density and complex structures, is data
saturation (He et al., 2013; Lu, 2000).

Airborne LIDAR data has been used to estimate the above ground biomass of different geographical and
ecological forest systems (Lovell et al., 2003; Garcia et al., 2010; Hilker et al., 2010). Unlike the optical
remote sensing systems, LIDAR has a capability of detecting the individual trees and provide three
dimensional (3D) measurement (vertical and horizontal) of the essential - forest structures (Lovell et al.,
2003; St-Onge et al., 2008). Tree canopy can be extracted from airborne LIDAR which is also considered
as an advantage over satellite and aerial images as it is based on height information. Tree height is an
important parameter in estimation of aboveground biomass and carbon stock. However, in tropical forest
tree height measurement in the field is not easy due to dense understories, tall canopies and overlapping
canopies (Hunter, et al., 2013). Airborne LIDAR (ALS) which has higher accuracy could be a solution
(Hilker et al., 2010). However, it is not known how it will perform for canopy areas, especially in tropical
forest. solve this problem of height.(O’Beirne, 2012; Sexton, et al., 2009; C. Wang, etal., 2008).

Terrestrial laser scanner (TLS), relatively a new technology, has been used to extract the forest parameters
with high accuracy though observations from the ground. This technology has a potential to replace the
traditional time consuming and costly way of collecting forest inventory parameters(Hopkinson et al.,
2004). However, most of the previous studies which have been conducted with this instrument were in
the temperate forests and wood lands (Hopkinson et al., 2004; Watt et al., 2005; Garcia et al., 2010) it is
still unknown how this instrument will perform in the tropical forest with its complex structure and
intermingling crowns.

Therefore, this study is aims to assess how airborne IiD AR and Terrestrial Laser scanner will perform in
in assessing AGB in the tropical rain forest ecosystem.
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1.3. Research Objectives

General Objective

The general objective of this research is to assess the performance of Airborne LiIDAR and Terrestrial
laser scanner for the assessment of above ground biomass/catbon stocks in Tropical Rain Forest Reserve
of Ayer Hitam, Malaysia.

Specific objective

1. To assess the relationship between height and DBH derived from TLS and the manually measured
height and DBH in the field.

2. To assess the relationship between heights derived from LIDAR with TLS measured height.

3. To assess the relationship between heights derived from LIDAR with field measured height.

4. To assess the accuracy of detecting and measuring individual tree crowns based on airborne LIDAR in
Tropical rain forest.

5. To assess accuracy of airtborne LIDAR for estimating DBH, as compared to field measured DBH.

6. To estimate aboveground biomass/carbon stock using TLS and LiDAR detived parametets.

Research Questions

1. Is there a significant difference between Heights derived from TLS with the manually field measured
height?

2. Is there a significant difference between DBH derived from TLS with the manually field measured
DBH?

3. Is there a significant difference between height derived from Airborne LiDAR and TLS derived height?
4. Is there a significant difference between height derived from Airborne LIDAR and field measured
height?

5. How accurately can tree crowns of a tropical rain forest be identified and measured from airborne
LiDAR data?

6. How accurately can DBH be estimated from airborne LIDAR?

7. Is there a significant difference between the aboveground biomass/catbon stock estimated from TLS
and airborne LiDAR?
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Research Hypotheses

1. Ho: There is no significant difference between Heights derived from TLS with the manually field
measured height.

Ha: There is significant difference between Height derived from TLS with the manually field measured
height.

2. Ho: There is no significant difference between DBH derived from TLS with the manually field
measured DBH.

Ha: There is significant difference between DBH derived from TLS with the manually field measured
DBH.

3. Ho: There is no significant difference between Heights derived from Airborne LIDAR and TLS derived
heights.

Ha: There is a significant difference between Heights derived from Airborne LIDAR and TLS derived
from TLS.

4. Ho: There is no significant difference between Height derived from Airborne LiDAR and field
measured height.

Ha: There is significant difference between Height derived from Airborne LiIDAR and field measured
height.

5. Ho: The CPA derived from Airborne LiDAR of a tropical rain forest cannot be segmented with an
accuracy of >70%
Ha: The CPA derived from a tropical rain forest can be segmented with an accuracy of > 70%.

6. Ho: There is no significant difference between DBH measured in field and DBH estimated from
airborne LiDAR.

Ha: There is significant difference between DBH measured in field and DBH estimated from airborne
LiDAR.




2. LITERATURE REVIEW

21. Concepts and Definitions

This section includes on the working principle of the airborne LiDAR and the terrestrial Laser Scanner
(TL) in the field of forestry and the extraction of tree parameters. Moreover, estimation of aboveground
biomass and the use of the allometric equation with its main parameters for the assessment of carbon

stock are addressed.

2.1.1. Biomass and Carbon

Biomass refers to the mass of living or dead biological material in a unit area (Janetos et al., 2009).
According Gschwantner et al,, (2009) tree biomass can broadly be categorized as aboveground
biomass(AGB) which includes the stem, branches , leaves , bark, foliage and seeds; and below ground
biomass which is mainly the root below the ground (Figure1). Estimation of above ground biomass is very
important as it affects the different climate variables and plays a crucial role in the climate changes
(Janetos etal., 2009). Out of the total biomass approximately 50 % is estimated to be carbon.

Figure 1: Above ground and below ground biomass

21.2. Allometric Equations

Allometric equations are equations which are developed by the relationships of the biophysical parameters
of a tree to accurately estimate above ground biomass(AGB) (Beets et al., 2012; Picard, 2012; Ketterings et
al., 2001). They are the common and widely approach and method of estimating above-ground biomass in
which diameter at Breast height (DBH) and height of a tree are the main input parameters (Ketterings et
al., 2001). Allometric equations are expressed as a function of diameter at breast height (DBH), height and
wood density (equation 1). Allometric could be generic equation or local one. In the former it can be
applicable in many areas where the forests are the same type. While the second it is used to only forests
within the same land scape or species. However in forest ecosystems like the tropical rain forests it is
difficult to use species-specific allometric equations “as the numbers of species per unit may be as many as
300 many species. Therefore to solve this IPCC adopted a generic equation based on the ecological and
forest types of different regions (Chave et al., 2005; Aalde et al., 2000).




Biomass = [VXWD] ..................................................... Equationl

Whete V is volume stand volume (m?) and WD wood density (kg/m?

2.2, Overview of Above ground biomass estimation methods and remote sensing techniques

Considering the forest ecosystem as the main carbon sink through sequestration and carbon source due to
deforestation and degradation in the terrestrial biosphere, it is very important to measure the changes in
carbon stock and flux of these forest ecosystems (Gibbs et al., 2007; Zhang et al., 2003).

Among the different methods and approaches for estimating of above ground biomass the destructive
(harvesting) method is most accurate as it weights the dried carbon stock (Woods and Hole, 2001).
However this method is very destructive and time consuming and is generally applied in a very small area.
Over the past years a number of studies using different remote sensing techniques in estimation of carbon
stock have been done (DeFries et al., 2007; Drake et al., 2013; Lu, 2006) however the issue of accurately
estimation of aboveground carbon stock is still there. In a structurally complex ecosystem of tropical
forests, the saturation of the signals (eg. In Synthetic aperture radar) tends to saturate approximately at 50
— 100 t C/ha; which affects the accuracy of the carbon stock estimation (Gibbs et al., 2007). Lu et al.,
(2012); and Foody et al., (2003) also explains that the statistical relationship of the optical satellites data’s
and the ground measurements underestimate the aboveground biomass. This was due to incapability and
limitation of the optical sensors in dense canopy structures.

LiDAR (Light Detecting and Ranging), an active, sensor unlike the optical sensors has an advantage of the
detecting the tree parameters in 3D which improves the accuracy of biomass estimation(Drake et al.,
2003). Hilker et al., (2010) worked on comparing canopy metrics derived from airborne laser scanning
(ALS) and TLS in a Douglas-fir dominated forest stand. Accordingly both (ALS) and TLS were able to
determine the height with change of height<2.5m. Moreover he recommended that multiple TLS scanning
could improve estimation of below canopy carbon stock. In a multiple- scan position a tree is scanned
from different direction and can be represented in 3D. Antonarakis, (2011) evaluated the forest biometric
measurements obtained from TLS in the Riparian forest, and he noted that the diameter at breast height
(DBH) derived from TLS were almost similar to field measured parameters (with a mean biases of 0.3-
0.4cm). However for the tree heights due to the limitation of the scan to detect the top edges of the trees
the mean bias was around 2m. As it is previously explained, measurement of tree height parameter is
important for estimation of aboveground biomass and is an input for the allometric equation.

2.3. Overview of Laser Scanning

LiDAR is a comparatively recent active remote sensing technology (Patenaude et al., 2004) which uses
laser light pulses to detect target objects or features (Jamie et al., 2012). This emerging technology has the
ability of measuring accurately the three- dimensional forest structures and is contributing much to the
forest carbon stock estimation. The height or distance of a target object is obtained by taking half of the
time elapsed for the laser pulse from the sensor and back to the sensor and multiplying by the speed of
light (Lefsky et al., 2002). LiDAR sensors work in the near infrared of the electromagnetic spectrum
ranging from 900nm to 1064nm, where there is high reflectance of vegetation. LIDAR can be categorized
discrete — return and waveform based on the type or form of returning pulse signals (Figure2). The former
measures either one (single-return system) or a number (multiple-return system), usually 1- 5, of heights




from the return signals with peak returns. Whereas the waveform recording device records the complete
waveform of the returning pulses and produce multiple returns between the first and last returns. Hence
its main application is designed particularly for vegetation studies (Lefsky et al., 2002; Mallet and Bretar,
2009).

First Return  Multiple Return
Distance Distance 1

Multiple Return
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Multiple Return
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2 140 4

Figure 2: Illustration of the conceptual difference
between discrete-return and waveform recording devices

2.4, Overview of Terrestrial laser Scanner

Terrestrial laser scanners are a ground based laser scanning instruments which enables a rapid collection of
forest inventory measurement parameters and precise three dimensional (3D) point clouds data composed
of millions of points which represent the surface of a scanned tree (Dassot et al., 2011). The device is
mounted on a tripod and takes a hemispherical scanning by rotating a complete horizontal rotation and
the rotating mirror scanning in the vertical plane (Figure3) (Dassot et al., 2011). In some terrestrial laser
scanners a digital single-lens reflex cameras (DSLR) is mounted on top. This camera provides colored
images which helps to display the point cloud data in RGB colors (RIEGL, 2014). A mid-range terrestrial
laser scanner can measure a range from 2m to 800m (Kankare et al., 2013)

Terrestrial laser scanning

Figure 3: Working principles of TLS(source: Dassot et al., 2011)




In Terrestrial Laser scanners (TLS) two methods or mechanisms of scanning can be applied: single
scanning or multiple scanning. In a single scanning method the scanner is placed in a single place as a
result only one dimension or side of the tree or an object can be scanned, however in multi scanning
method the scanning can be done from different positions (3 or 4) positions (Figure4). Hence, this

method gives a chance for a single tree to be scanned in all directions (Dassot et al., 2011).

S & '-\

\/’ A4

S position of the scanner

® tree

Figure 4: Single and multiple scanning method

Source: (Bienert etal., 2006)

In this study Riegl VZ-400, was the type of the terrestrial laser scanner that is used (Figure4). This scanner
records a multiple returns (up to four per emitted pulse) (Calders et al., 2013) and has a high accuracy
capability and measuring a long range measurements more up to 600m.This accuracy is based on RIEGL,s
exceptional full wave and the online processing. Moreover the camera on this type of scanner which can
be fixed on the top of the instrument enabled the instrument to acquire images in RGB (RIEGL, 2014).
The photos of the camera enables for coloring the point cloud data and result photorealistic 3D data.

Some of the basic specification of the RIEGL VZ-400 terrestrial laser scanner is mentioned in Table 1.




Table 1 Specification of RIEGL VZ- 400 Terrestrial Scanner

Description Terrestrial Laser

scanner Type

Riegl VZ-400
Max. Range 600
Scan Angle Vertical(+60°/-
(vertical and 40°)=100° and
horizontal) Hornzontal 360°
Accuracy(mm) 5
Beam divergence 0.3
(mrad)
Min. range 1.5
Wave type/ Near-

wavelength(nm) infrared(1,530)

Weight(kg) 9.6




3. STUDYAREA, MATERIALS AND METHODS

3.1. Study Area

The study was carried out in Malaysia in the state of Selangor in the tropical rain forest of Ayer Hitam
Forest Reserve (AHFR) with a geographical location between 2° 56’ to 3°16’ north latitude, and 101°30” to
101046 eastern longitude (Figure5). The topography of the forest area is undulating between 15 to 157m
above mean see level. It is about 20km from University of Putra Malaysia(lUPM) and 45 km from city of
Kuala Lumpur(I et al., 2008). It has an area of about 1248 hectares. Initially the total area was about 3500
hectares, however due to socioeconomic developments, infrastructures, oil palm plantation, housing
projects and other developments it has lost its area. As a consequent of this many animal species including
large mammals have disappeared or reduced in number (Ehsan, 1999).

3141, Climate

The climate of the study area is a tropical monsoon climate with annual rain fall of 2178mm, maximum
and minimum temperature of 27.7°C and 22.9°C respectively and a relative humidity (77.4%-97.8%)
(Ehsan, 1999) The area is 202.5 above sea level with a maximum elevation of 233m (I et al., 2008).

3.1.2. Vegetation

This tropical rain forest of the study area is classified as a rich lowland Dipterocap forest of Kempas —
kedondong. This forest area is a secondary forest as it has been logged in 1930s (Ainuddi, 1999). According
Hanum et al., (1999) and Ehsan, (1999), about 430 different plant species, out of these 177 are tree
species, have been identified. The dominant tree species are Dipterocarpaceae. More over from field

observation there are also considerable under growing palm trees and climbers (Liana) in the study area.




Ayer Hitam Forest Reserve, Malaysia

Figure 5: Location map of the study area.

3.2. Materials

3.21. Field instruments and data used for the study

The field instruments listed below in table 2 were used during the field work. These different field

instruments have been used for navigating sample plots, measuring and collecting of tree parameters.




Table 2: List of instruments used in the field

Sn | Type of instrument Used for

1 Terrestrial Laser Scanner Scanning Trees (Point cloud data)

2 Measuring tape (30) Measuring plot diameter

3 Diameter tape(5m) Measuring tree diameter

4 Suunto Clinometer Measuring Slope

5 Suunto Compass Measuring bearing

6 iPAQ For navigation ( Couldn’t function propetly)
7 GPS Coordinates ( Couldn’t function properly)
8 1 pad Navigation

9 Field work data sheet Recording field data

10 | Densitometer Measuring canopy density

11 | Chalk Marking DBH

12 | Pencils and eraser Writing the field data

3.21.1. Datasetused

Airborne LIDAR data which was acquired on 23 July, 2013 and a Terrestrial Laser scanner point cloud
data that was obtained from the field using a Riegl VZZ-400 scanner are the data used in this study. Table 3

shows the airborne laser scanning information.

Table 3: Characteristics of the LiteMapper 5600 system

Pulse rate Range between 70 kHZ and 240Khz (normal
70kHz)

Scan angle 600

Scan pattern Regular

Effective rate 46,667Hz

Beam divergence 0.5mrad

Line/sec Max 160

A/c ground speed 90Kts

Target reflectivity

Min 20% max 60% (vegetation 30%, cliff 60%)

Flying height

700m -1000m

Laser point/m?

0.9 to 1.2 points with swath width 808m to 1155m

Spot diameter (laser)

0.35 to 0.50m

Max (above ground level)

1040 m (3411ft)




3.21.2. Software used

The research used different software according to their specific purpose and use. Table 4 below shows the
list of software used.

Table 4: Software used in this research

Software Purpose

RiSCAN PRO v 2.1 Registration (coarse registration and Multi-station
Adjustment, MSA), visualization with different
viewer modes, tree extracting and manual
measurements.

Arc Map 10.2 GIS analysis

Erdas Imagine 2013 Image processing

LAS tools ALS data processing

eCognition Segmentation of tree crowns

R studio, SPSS and Microsoft excel Statistical analysis

MS Office 2010 Thesis writing and presentation

3.3. Methods

In this research four main processing parts can be described. These parts include the processing of the
Airborne LiDAR data, Terrestrial Laser Scanner (TLS), field measured data and statistical analysis.
Accordingly in the field biometric parameters of the trees such as DBH, tree height, and crown density (at
plot level) have been recorded and also multiple scans of 26 plots using TLS have been carried out. Finally
a statistical analysis was done to analyze the relationship between the dependent and independent
parameters different measurements. The detailed research methodology and processes is shown in flow

chart in Figure 6, and following sections.




Manual
delineation

Delineated
CPA

Segmentation

Airborne Lidar

Data 5-6 points /sq.

meter

/

Rasterizing

/=

/DSM // DTM

Field measurement

TLS-RIEGLVZ 400

{Manual) Multiple scanning
DBH, Height, .
D, XY / Point Cloud /

corr,Species |

/

Extractmg CHM

model :
Al \
CHM Correlation
Analyses

Segmentation

CPA

Regression

accuracy
Assessment
Validation
‘-'
Validated /
Model
yr

RQ1,2
384

Registration

AEHOUH;;:: Registered
: Point cloud
A Extract Tree
measurements
ﬁ/ DBH, Height /
AGB/Carbon ﬁ\pplyalnametric

equation

AGB/Carbon E

ResearchQuestion

Apply Validated Model

7" AGB/Carbon  J/——

Figure 6: Flowchart of research methodology.

3.3.1.

Pre-field work

1 Correlation >
1 Analyses |

Prior to field work a number of preparatory tasks had been done;

e Field data collection sheet was prepared (recording sheet.) (Appendix 1).

e Different field instruments, including the TLS, were collected from ITC and their condition was
checked.

e Preparing map of the study area from worldview_2 image and uploaded in to iPAQ,

for navigating in the forest to sample plots.




3.3.2. Sampling design and Determination of sampling plot

In this study a purposive sampling approach was used. Purposive sampling method is a none probability
method where samples are chosen from a population based on the judgment of the researcher. Therefore,
in this study, considering the terrain of the study area and the weight of the Terrestrial Laser Scanner
(TLS) also limited time available a purposive sampling method was used. Circular plot with a radius of
12.62 m (500m?) was used as sampling unit. The use of this circular plot is very advantageous in forest
areas as it makes measuring the dimension more accurate and has minimum perimeter as compared to a
rectangular or square shaped of the same area. This can minimize the number of trees on edges
(Lackmann, 2011). Moreover, 500m? — 600m? is the maximum sample plot size in estimating forest
structure attributes using LIDAR point cloud (Ruiz, et al. 2014). In slopping areas (greater than 5%), a
slope correction of the plot radius was done according the correction factor using the slope correction
table (Appendix 2 ). Note that, sample points were common for all the team members and worked in

team.

3.33. Field Data Collection

3.3.3.1. Biometric Data

After delineation of plot biometric measurements of all the trees with in the plot was taken, that is tree
height, DBH, species and canopy density of the plot. Trees only with DBH of greater than 10cm were
measure according to Brown, (2002) trees with a DBH less than 10 cm have insignificant contribution to
the total above ground biomass(AGB)/carbon stock. Trees wete tagged with unique tree numbers and
accordingly their heights were measured using a laser distance meter and DBH at 1.3 m using a diameter

measuring tape. Moreover the canopy density of plots was measured using a densitometer.

3.3.3.2. TLSscanning

In a process of scanning of trees by the TLS, it is advisable to avoid movement of people. This helps to
reduce unwanted point cloud data (noise) and occlusion of trees. However, since the scanning of a plot
(four different scan positions) required more time than the manual measurement, TLS scanning and

manual measurements was done simultaneously. The following steps were followed for TLS scanning.

Determination of center of plot and tree numbering

After identifying a sample plot the center of the plot was selected in such a way that tree stems and
undergrowth will not cause occlusion or at least minimize its effect. Trees or other undergrowth very close
to the scanner can create a large area shadow behind (Liang et al., 2012) the center point and the other
three outer scans of all the plots were identified with ocular judgments. Then after identifying the plot
center and plot radius trees within this radius were tagged with tree numbers (Figure7). Later in the
process the extraction of trees from the point cloud data of each plot was done with help of these

numbers.




Figure 7: Tree numbering

Setting of the TLS

The Terrestrial Laser scanner (TLS) used in this study was the one that works being mounted in tripod set.
This helps the scanner to be fixed firmly at a certain height from the ground and have a good view
(vertical and horizontal) of the plot. Therefore after fixing the scanner on the tripod and setting the
instrument the pitch, roll and yaw angles of the TLS was adjusted to a minimum values using the tripod
legs.

Scan Position set up

In this study multiple scan positions method was used. Accordingly each plot was scanned one from the
center of the plot and other three scans from outside of the plot at 120 degree apart from each other
(Figure8). Though its time consuming multiple scan position can with a good 3D representation of all the
trees in the plot that’s why it was chosen. In a single scan position, mostly from the center of a plot, only

one side of tree scanning can be scanned.

(&) Position of the scanner ® tree

Figure 8: Multiple scan position
(Anne Bienert, 2006)




Setting tie points

To be able to co registrer the multiple scans after field work tie points were used. In this study a total of
15 tie points (reflectors), 12 cylindrical and 3 circular reflectors were used in a plot (Figure9). The
cylindrical ones are 3-dimention with 10 cm length and 10 cm diameters. The circular reflectors are 2
dimensional reflectors which were pinned on the stem of the trees whereas the cylindrical were positioned
on top of a stick with height of 1 — 1.5 m at a distance of 2 — 3 m from each of the three outer scan

positions these reflectors should be seen clearly from the scan positions.

@ (®)
Figure 9: Cylindrical (a) and circular (b) reflectors from in the field

3.34. Post fieldwork

3.34.1. Preprocessing of point cloud data

Registration is a process of merging all the scans in to single point cloud. The software used for the
registration and preprocessing of the point cloud data was RiISCAN PRO v 2.1 software which was
provided by RIEGL. In registration process the multiple scans, the tree outer scans, are registered to a
common scan position that is to the center scan position. Therefore for every registration of one outer
scan position (2, 3 or 4) with a central scan position a five (5) tie points were used. In FigurelO,
registration of scan position one with scan position two of plot 7 is shown. Corresponding tie point,
shown in red color, were identified in both scan positions and numbered with the same number. After
manual registration, also called course registration, using these tie points, a Multi Station Adjustment
(MSA), was done. MSA is a powerful tool which allows multiple scans to bring in one scan position. In
Figure 11, a registered sample plot is shown where four different colors from four scan positions form a

complete 3D visualization of a tee.
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Figure 10: Registration of scans with tie points, circular reflector (left) and cylindrical reflectors (right), in
RiSCANPRO software

Figure 11: A sample of registered plot (Four different colours representing four scan potions)

3.34.2. Extraction of Plot

The next step after registration of the multiple scans is extraction of plots with radius of 12.62m from the
center scan position. During scanning in the field point clouds from outside the mentioned radius or plot
were involuntarily collected, therefore filtering of these unwanted point clouds was done in a RiISCAN

PRO using the range function.




3.3.4.3. Extraction ofIndividual Trees

In the field, all measured trees (DBH> 10cm) were tagged with a unique identifying number. Therefore,
with the help of these tree numbers the extraction of trees was done using the ‘selection tool’, in RISCAN
PRO software. All point cloud data associating to a single tree, with maximum crown diameter and

maximum height, were selected. Figure 12 is an example of how an extracted tree looks like.

Figure 12: Sample of Extracted trees from point cloud data

3.34.4. Measurementof Tree Height and DBH

The measurement of tree height and Diameter at Breast Height (DBH) was determined in RiSCAN PRO.
DBH is measured at a height of 1.3m on the stem of the tree from the ground. Likewise height was
measured from the lowest point of the stem on the ground to the highest top of the tree. Figure 13 shows

how tree height and DBH measurement was done.

]
10260 m

@

Figure 13: Tree height (a) and DBH (b) measurement




3.35.  Generating Pit free Canopy Height Model (CHM)

The creating of tree canopy height model (CHM) was done by computing the difference between digitals
surface model (DSM) and the digital terrain model (DTM). In the a LIDAR point cloud data there are 5
returns per point, the first and the last returns are used to generate the DSM and DTM in Las tool
software. Therefore raster calculator in ArcGIS was used to subtract the DTM from DSM and get the
CHM. In this process pits which are created due to penetrating of LiD AR beams down the lower canopies
before creating first return, were removed (Figurel4) using an algorithm developed by (Anahita, et al.,
(2014). The methodology diagram of the pit-free algorithm is presented in appendix 3.

Figure 14: Canopy Height Model (CHM) with pits (a) and without pits (b)

3.3.6. Segmentation

The term image segmentation is the name given to the process of segmenting and partitioning of an image
in to meaningful homogeneous units or objects based on the color, shape, texture, size, compactness and
context of the image (Ryherd & Woodcock, 1996; Clinton, et al; 2010). In the process of object image
segmentation, shape and size form the main blocks for further processes. Segmentation can be done using
two approaches or techniques namely bottom-up or top-down techniques. In the bottom up algorism
smaller object primitive merges to get larger image objects. Where as in the top-down large objects, or the
entire images, are divided in to smaller objects. Chessboard and quad tree segmentation are examples of

top down approach.
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3.3.6.1. Multi-resolution Segmentation

Multi-resolution Segmentation is a segmentation technique offered by eCognition software which is based
on bottom-up technique and is region-based algorithm (Saha, 2008). In the algorism each pixel is
considered as a single and separate image object. Subsequently, according to user- defined thresholds; it
begins to merge the surrounding small units based on local homogeneity. Accordingly the entire image can

be segmented in to large image objects having less heterogeneity (Figurel5).

Pixel level

Figure 15: An Illustration of multi-resolution structure
in eCognition. Source :(Benz et al., 2004)

3.36.2. Segmentation Parameters

Scale parameters determine the size of image objects by modifying their values. It limits the maximum
heterogeneity of a segmented image object. In a heterogeneous data a smaller values of scale parameters
are used as compared to a homogeneous data. In smaller scale values fewer pixels are merged. Thus, as
result small image objects are produced (Saha, 2008). The homogeneity of an object defined by criterion
color which refers to the spectral response the object, and shape which is divided in two equally exclusive
properties: smoothness and compactness (Figure 16).The values of these parameters ranges from 0 - 1.
Decreasing the value of color increases the value of shape (color +shape = 1) the same for the criteria

smoothness and compactness. In this study the values used for color and shape are 0.7 and 0.3

respectively.
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Figure 16: Multi-resolution Concept flow diagram

(Definiens, 2007)
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3.3.6.3. Estimation of scale Parameters (ESP tool)

ESP tool which enables to estimate suitable scale parameters in the Definiens software for a multi-
resolution segmentation (Drdgut et al., 2010). ESP tool is based on the local variance (LV) of an image at
multiple scales. It segments the data and calculates the local Variance (LV) of the image objects obtained
through segmentation. Therefore the rate of change of local variance from one object level or scale to
another indicates the level or scale at which the object can be segmented in a more meaningful and
appropriate manner. In the ESP graph (Figure 17) the peaks of the ROC between the segmented objects

specifies the suitable level at which an image can be segmented.
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Figure 17: ESP graph for estimating scale parameter

(Definiens, 2007)

3.3.6.4. Watershed Transformation

Watershed transformation is an algorism which is used to separate image objects. In tropical rain forests,
where there is intermingling of tree canopies, this algorithm is widely used to separate the individual tree
crowns. Field measured tree crowns and expert knowledge are the bases for setting thresholds of splitting.
In this algorism the study area is considered to be an inverted topographic surface where tree tops are
valleys and gaps between trees are the peaks. (Figure18). In an inverted image the local maxima are those
local minima in the original image and vice versa (Definiens, 2007). The Inverted image resembles to a
watershed catchment. The minima are gradually flooded by increasing the water level. The image objects

are split where water basin, touch each other.
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Figure 18: Watershed transformation illustration (Beucher, 1992)

3.36.5. Morphology

Morphology is a pixel based operation used for smoothing of image objects. This processing step has two
operations namely opening and closing image objects. In an open image object process pixels are removed
to have a smoother surface where as in close image object pixels are added to it to fill the gaps (Definiens,

2007). In this study tree crown is the main image object, therefore a close image object was used.
3.3.7 Validation and accuracy of Segmentation

Validation of the digitally segmented tree crowns was done to assess and evaluate how these segmented
tree crowns fit compared to known objects. According Méller et al. (2007) the quality of segmentation has
a direct relation with the type and quality of data (e.g., noise, spectral and spatial resolution) and also the
optimal customization of parameters. Validation of segmentation can be done in various methods.

However, in object- based segmentation the geometric and topological relationship should be considered.

A segmentation accuracy assessment approach developed by Clinton et al., (2010) is based geometrical
accuracy of the segmented tree crowns compared with the manually delineated tree crowns. Accordingly
the over segmentation and under segmentation is calculated using Egs.1 and Eqs.2 respectively, and “D”
value “goodness of fit” Eqs.3 where its value ranges from 0 to 1. Values close to 0 indicates high matching

wheteas values close to 1 indicates minimum match.

i area (xiNyj | e Equation2
Over segmentation =1 - ——— yi  ¥i
area (xi)
are@ (XINY[ e Equation 3
Under segmentation = 1 - ——— ,yi e ¥{'

area (yi)

Where: xi reference object (manually digitized) and yj its corresponding segmented object.

[ T e Equation4
Oversegmentationj; + Undersegmentation]

D.'J' ‘J 2
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3.3.7. Comparison of DBH and height from field, TLS and Airborne LiDAR (ALS)

The correlation analysis of the tree parameters (DBH, height and CPA) both from the field measured and
TLS derived measurements was done. To test the significances between these parameters derived from the
field, TLS and airborne LIDAR measurements a paired t-test was performed. A test between DBH and
Heights from TLS and field, and between airborne LIDAR derived height with field and TLS heights.
Moteover a normality test of the TLS observation, Airborne LiIDAR height and field height was done.

3.38. Allometric equation for estimation Above Ground biomass and Carbon Stock Calculation

Allometric equations are equations used to estimate the aboveground biomass (AGB) and carbon stock. A
number of allometric equations for the estimation of above-ground biomass in tropical rainforest are
available. Therefore choosing an appropriate allometric equation is very important to generate more
reliable estimation of above-ground biomass. In this research an allometric equation which is developed
by Chave et al. (2005) is applied for the estimation of AGB. This equation (equation 5) is recommended
by IPCC guidelines for estimation of above-ground biomass and carbon stock (Equation6) in tropical
rainforests.

AGB — 0.0509 X pD2 H .......................................................... Equation 5

Where:

AGB: Above-ground biomass (Kg)

p:  Specific wood density (g/cmd)

D2: Diameter at breast height (DBH) (cm)
H: Height of tree (m)

For Calculating the carbon stock the AGB can be multiplied by a conversion factor (CF) of 0.47 (IPCC,
2007). Therefor carbon stock is calculated using:

C = AGB X CE  totreeersaemmei ettt Equation 6

Where,

C: Carbon stock (Mg C)

AGB: Above ground biomass

CF: Fraction of above ground biomass (0.47)
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4. RESULTS

41. Descriptive statistics

Throughout all the plots six different species, which were occurring more than twenty times were
identified. Tree species of Streblus elongate (26%), Syziyginm spp (20%) were the dominant species in terms of
species whereas as family Dipterocarpaceace family where the dominant trees family in the study area. The

occurrence of the species is presented graphically in Figure 19.
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Figure 19: Species occurrence in the study area

In the field a total of 26 plots were sampled and a manual field measurements and a multiple scanning by
TLS was done. Out of all 627 trees 228 trees, which could be easily identified both on the point cloud data
of the TLS and the airborne LiIDAR data were used for further analysis. The descriptive statistics of the
stand parameters (DBH and tree height) of the field, TLS and ALS measurements are presented in Table5.
Also box plot of field DBH and TLS DBH is shown in Figure20 (a) and box plot of heights from field,
TLS and ALS in Figure21 (b).
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Table 5: Summary descriptive statistics of measurements

Tree Min. Max Mean Standard | Standard | Skewness | Kurtosis
Parameter Deviation | Error
Field 10 150 3072 16.51 1.09 22 11.3
DEH
TLS 10 108 30.64 154 1.02 1.25 268
DBH
Field 6 42 17.05 5.89 0.39 0.85 1.64
Height
TLS 7.61 38 2022 6.10 0.40 043 025
Height
ALS 843 384 22.39 6.37 0.42 0.26 -0.297
Height
a) (b)
Lrig|
- .Isi,
bl i 190 220
; g: ,:&1: T
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Feeld DBH TLS DEH Field Herwht  TLS Heicht  ALS Height

Figure 20: Box plot of DBH of field and TLS (a) Box plot of heights from Field, TLS and ALS (b)

The descriptive statistic summary shows that the measurement values from the field and TLS scanner
seems to be more in agreement (Table 5). Calculation of the Root Mean Square Error (RMSE) of the field
and TLS was done to see how these measurements deviate. For the DBH measurement the RMSE was
1.7cm. While in the height measurement the RMSE was 3.01m. Likewise the RMSE of the height
measurement of TLS and airborne LIDAR (ALS) was 2.15m.Which shows underestimation of tree heights
measurements by TLS as compared to ALS.

Normality test of the data was evaluated in SPSS statistics software. Accordingly the measurements of
DBH and Height from TLS were not normally distributed, the value of ShapiroWilk (p _value) is smaller
than 0.005 (T'able 6). The distribution pattern of the TLS measurements of DBH, is highly skewed to the
right (positively skewed) whereas TLS height is less skewed (Figure 21).

For the Field observations (DBH and Height) and Height from ALS it is provided in Appendix 4.
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Table 6: Normality test of TLS Observation

Kolmogorov-Smirnov: Shapiro-Wilk
Statistics | df Sig. Statistics | df Sig
TLS_DBH .088 228 | .000 | .918 228 | .000
TLS Heioht | 054 | 228 | .000 |.980 [228 | .000
Histogram Histogram
0 : m o
’ TLS_DBH ) TLS_H:ighl

Figure 21: Distribution of DBH and Height measurements from TLS

4.2. Registration

All the multiple scan positions of all the plots were registered to the corresponding centre scan position.
Figure 23 shows sample of a registered tree stem represented by different colours of the different scan

positions. The standard deviation error of registration of all the multiple scans of twenty six plots ranges
between 0.0127m — 0.0206m, with average of 0.016m see Table7. Also a reader can refer Appendix5 to see
an example for the result of Multi-station Adjustment of sample plot 19.

Scan Position 1

Scan Position 2

Scan Position 3

Scan Position 4

Figure 22: Sample of registered tree stem from four different

scan positions
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Table 7: Standard deviation, (Error) in meters of multiple-scan registration of all the plots

Flot 1 2

(™
.
un
=8

7 B 9 10 i 12 13

Error(m) 0.018 | 0.0162 | Q.02 0.0133 | 0.016 [ 0.0138 | 0.0149 | 0.014 | 0.0201 | 0.0149 | 0.0127 | 0.0146 | 0.0163

Flot 14 1 16 17 i8 19 20 21 22 23 24 25 26

L

Error(m) 0.015 | 0.0206 | 0.0177 | 0.0224 | 0.01535( 0.0179 | 0.0195 | 0.0206 | 0.0158 | 0.0184 | 0.0148 | 0.0169 | Q.0138

4.3. Individual Tree identification and Extraction

Identification of trees was done by detecting point clouds belonging to a single tree stem (Liang, et al.,
2011). A tree trunk is assumed to form concentrated enclosed circular point cloud that continues to a
certain height. After identifying the individual trees, manual extraction of individual trees was done in
RiSCAN PRO software with the help of tree tags. From twenty six plots a total of 779 trees were
measured in the field. And out of this 627 trees were in the point cloud data of the TLS and (152) trees
were missed. The number of missed trees differs from plot to plot. The total number of extracted trees
and missed trees and their percentage is shown in Table 6. The extraction of trees is a time consuming
process, hence the TLS data was shared among other two team mates for the extraction of all the
mentioned number of trees.

Table 8: Number of tree measured in the field and extracted trees from the point cloud of TLS

Plot Mo | Field TLS TLS Missing | Plot | Field TLS TLS Missing
Messuzred | DERIVED | Desived | Toees No MMessured | Dedved | Dedwved Tzee
o o
1 1 16 94 1 14 35 16 457 19
2 25 23 92 2 15 38 20 52.6 18
3 30 27 20 3 16 30 17 36.7 13
4 25 24 96 1 17 36 22 61 14
3 23 21 21 2 18 37 37 100 0
[ 26 26 100 0 19 33 pat) 82.9 ]
7 29 26 897 3 20 2 22 88 3
8 26 25 26 1 21 45 43 93.6 2
9 31 28 20.3 3 22 41 39 93 2
10 25 12 48 13 23 31 17 348 14
11 29 20 69 9 24 26 26 100 0
12 36 18 30 18 23 23 23 9z 2
13 23 23 32 12 26 28 27 96.1 1
TOTAL | Plots Field TLS Mlizsed trees TLS MISEED
hleasured Dresived Denved TREES
o o
26 779 627 152 80.5 19.5
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44. Plot-wise comparison of Field and TLS measured DBH

In order to have a good image on the individual sample plots and see the variation between the fields
measured DBH and the TLS derived DBH of all the 26 plots a plot wise assessment of these
measurements was done (Table9). The result shows a very high correlation between these two DBH
measurements. Figure 23, shows sample plots with high R2. On the other hand plots 14 and 15 (Figure 24)
have R? of 0.85 and 0.91 which is relatively lower value. The main cause for this value is plots 14 and 15

had too much understory which affected to the accuracy of DBH measurement. The scatter plots of the

remaining plots are Appendix 0.

Table 9: Summary of relationship between field measured DBH and TLS derived DBH
Flot |1 2 3 4 5 G 7 E 9 10 11 12 13
R 099 | 097 | 097 |099 099 |099 [099 | 099 |099 |098 |08 |098 | 098
RMSE | 057 | 805 | 194 |006 |14 |006 |0.04 | 014 |013 | 027 | 059 |02z | 050
Flot | 14 15 16 17 18 19 20 2 5 4 5 2
R 091 | 085 | 091 |098 099 |098 |099 | 099 | 098 | 099 | 099 59 | 0.99
RAMSE | 210 | 096 | 117|014 |043 |075 | 028 | 024 |029 |025 | 038 |037 | 026
Plot 1 R?=0.9797
RMSE=0.57 Plot4  pz-0.9993
20 -
T 60 RIVISE=0.06
8 10 Z 30
5 [a]
E ﬂl 15
T T T T T 1 F 0 - T - T !
0 10 20 30 40 50 0 15 30 45 60
Field_DBH({cm) Field_DBH(cm)
R? = 0.9895
Plot 17 Plot26  gz-
40 © RMSE=0.14 20 ° R"=09913
= 10 RMSE=0.26
E E60
= o
z % 40
8, 10
o 0,20
= 0+ T T T T 1 E 0
0 10 20 30 40 50 ' ' ' ' '
0 20 40 60 80
Field_DBH{cm) Field_DBH(cm)

Figure 23: Sample Plots having high values of R? in comparison of the field measured

DBH and TLS derived DBH
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Figure 24: Sample plots with lower R? value due to much understory coverage in the

plots
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4.5, Plot-wise comparison of Field and TLS measured Height

Pot wise assessment of the field measured tree heights and the TLS derived heights was also done to see
the variations and relationship of these measurements among the plots. Table 10, shows the result values
for R2 and RMSE of all the sample plots. Plots 8, 10, 16 and 26 are sample plots with higher R2 values of
0.82, 0.7, 0.97 and 0.82 (Figure 25). However in plots 1, 4, 17, 19, 22 and 24 (Figure 20) the relationship
between these heights is not strong which is mainly caused due to the overlapping of tree crown and high
density undergrowth in the plots. The scatter plots of all the remaining plots are presented in Appendix 7.

Table 10: Summary of relationship between field measured Height and TLS derived Heights

Plot 1 2 3 B 5 [ 7 ] g 10 11 12 13
B= 032 0.69 0735 043 0.64 032 091 0.82 074 077 0.35 073 | 033
FAISE | 293 373 237 277 37 266 112 41 26 197 236 206 | 204
Plot 14 13 16 17 13 19 20 21 22 23 24 3 26
B= 074 0.69 097 023 044 0.31 063 073 004 074 [ 01Z2 032 | 0R2
FAISE [ 12 168 073 117 223 137 21 149 23 23 137 319 | 103
2z =
Plots R?=0.8799 Plot1o 1 - 07713
20 25
-E 15 "/‘,. E ig * e
i - -t
.20 =
310 T
9 5 n 5
= o . . . . F oo T T T )
0 5 10 15 70 0 5 10 15 20
Field height(m) Field height(m)
40 Plottg R =09774 L, Plot26 R?=0.8217
E 30 —_
x Eag “'.
250 =
LY -
T 210
» 10 T
= 0 T T T 1 3 0 T 1
=
0 10 20 30 0 g 20 40
Field DBH{m) Field Height(m)

Figure 25: Sample plots having relatively higher R? value of the comparisonin
the field and TLS height
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Figure 26: Sample plots having low R2 value in the comparison of the field and TLS Height

4.6.

Relationship between field and TLS measurements of DBH and Heights of individual Trees

The relationship between the DBH and height measured from the field and the corresponding
measurements of DBH and height derived from the point cloud data of the TLS was done by plotting the
data in excel (Figure 10). The relationship of the height and DBH, from the field and TLS, measurements
was a linear positive relationship. Accordingly for DBH and height measurements values of R? 0.986 and
0.70 and RMSE of 1.7cm and 3.01m was recorded respectively. (Figure 27). Therefore from this result the
relationship between the field DBH and TLS DBH is a stronger linear positive relation as compared to the
height measurement of field and TLS. TLS was measuring slightly higher than field. A reader can notice
that in the case of DBH (Figure 26), the line goes almost through the origin indicating that the intercept is

almost zero and slope approximately one, which shows a good relation between the two variables.
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Figure 27: Scatter plot of field and TLS DBH (a) and field and TLS Height(b)
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47. Paired t-test for the means of DBH and Height from the field and TLS.

According to research questions of one and two a paired T-test analysis was done at 95% (x= 0.05) of
significant level to see the significance of the relationship between field and TLS measurements of DBH
and Height. Accordingly the result of the t-test shows that there is no significant difference between the
field measured DBH and heights from the TLS. Therefore the null hypothesis stating that there is no
significant difference between field and TLS derived measurements of DBH and Height is accepted as t-
calculate is greater than t- critical. (Table 11)

Table 11: Summary statistics of paired t- Test for the field and TLS measured DBH and Height

Field TLS Field TLS
DEH DEH Height | Height
Observations | 228 228 228 228
Mean 30.7 30.6 17.05 20.22
df 227 227 227 227
t Stat 0.27087 9.4705
P(T<=t) 0.7867 3.8E-18
two-tail
t Critical 1.9704 1.9704
two-tail

4.8. Canopy Height Model (CHM) and Pit Removal

In order to be able to answer research question three, a Canopy Height Model with a spatial resolution of
1 metre was created by subtracting the DTM from DSM (Figure 27). In this process all points less than
1m and also all points greater than 50 m were removed, assuming that any point cloud above that can’t be
a tree. According the field height measurements the maximum measured tree was 42 m. Pits in Canopy
Height Model (CHM) can negatively affect in the identification of individual trees (crowns). Hence
decreases the accuracy of tree detection. A portion of the CHM is shown with pits and pit- free Figure28).

Figure 28: Sample of CHM generating
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@) (b)
Figure 29: CHM with pits (a) and without pits (b)

49. Relationship between LiDAR dirived heights and TLS heights

To address research question three of this study, an assessment on the relationship between the heights derived
from CHM of LIDAR of the 228 manually delineated tree crowns and the corresponding height measured from
the TLS scanner was done by plotting these two variables. The relation was a positive linear relationship with R?
of 0.87 and RMSE of 2.15m (Figure 30).
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Figure 30: Scatter plot of ALS and TLS Height

To test the significance of the relashionship between these measurements a paired T-test was done. Result
of the t-test shows that is no significant difference between these measurements. The t-calculated was
greater than t-critical. Therefore the null hypothesis stating there is no significant difference between
heights derived from CHM of LIDAR and TLS derived heights is accepted. Table 12 is showing the result
of t-test between heights derived from ALS and TLS.
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Table 12: Summary statistics of paired t- Test for the ALS and TLS Heights

4.10.

ALS_Height | TLS_Height
Observations | 228 228
df 227 227
t Stat 11.52
P(T<=y) 1.7E-24
two-tail
t Critical 1.9704
two-tail

Relationship between Airborne LiDAR (ALS) derived heights and Field measured heights

In this regard, based on the research question number four, tree heights derived from LIDAR (ALS) and
field measured heights were taken and analyzed their relationship by plotting these two variables (Figure
31). The R? value and RMSE were calculated as 0.65 and 3.5m respectively. This relationship revealed that
there is not strong relation. Normality test was done for both data measurements (Appendix 8). LIDAR

heights were normally distributed whereas the field measurements were not. However, to test the

significance of the two measurements a paired t-test was done at 95% of confidence interval, assuming the

variance of these variables equal. Table13 shows result of t-test and the t-calculated was found to be

greater than the t- critical, therefore there is significant difference between these two measurements. Thus,

the null hypothesis is not rejected and there is no significant difference between these two measurements.
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Figure 31: Scatter plot of ALS and Field Height
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Table 13: Summary statistics of paired t- Test for the field height and ALS height

Field Height | ALS Height
Observations | 228 228
df 227 227
t Stat 14.96
P(T<=v) 1.109
two-tail
t Critical 1.97
two-tail
4.11. Image Segmentation

Digital (automatic) image segmentation of the LiIDAR derived Canopy Height Model (CHM) was done
using multi-resolution segmentation algorithm.

Estimation of Scale parameter (ESP), which is embedded in the eCognition software, was used to identify
the most appropriate scale parameter for segmentation (Figure 32).

ESP - Estimation of Scale Parameter

—c— Local Variance —— Rate of Change |

Local Variance
L]
Rate of Change

Figure 32: ESP tool of CHM of the Airborne LiDAR.

Therefore a multi-resolution segmentation with a scale parameters obtained from ESP was used for the
segmentation. Firstly scale parameter 17 was tried however it resulted on under segmentation of the tree
crowns. Scale parameter 12 gave a reasonable segmentation result therefor; finally this value was used for
the multi-resolution segmentation with 0.3 and 0.6 values for shape and compactness respectively. After
segmentation it appeared that only the top crowns were properly segmented, the lower canopy is partially
hidden and covered by the upper canopies which lead to smaller crowns than the reality. This scale

parameter resulta reasonable over and under segmentation of the upper canopy crowns (Figure 33).
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Figure 33: A portion of the final result
segmentation CHM

412. Validation of Segmentation CPA

Tree crown validation was done to address research question number five, using accuracy assessment
measures of D using manually delineated tree crowns as a reference tree crowns. (Figure34). As the D-
value “measure of goodness” was done the over and under segmentation values for the scale parameter of
12 are 0.11 and 0.42 respectively. The D value was 0.314. Therefore the total accuracy of the crown
delineation was 68.6%, which means a segmentation error of 31.4%.

Table 14: Segmentation accuracy

Oversegmentation | Undersegmentation | D_value

Goodness of fit 0.11 0.42 0.314

68.6%

Total accuracy
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413, Relationship between Canopy Projection Area (CPA)and DBH

According to research question six, assessment of a relationship between the DBH, estimated based on
the manually delineated CPA of the segmented tree crowns and diameter at breast height (DBH) from the
field was performed. Hence, to see how accurately the DBH can be estimated from the CPA of the trees
from the CHM of LiIDAR, a regression analysis was performed. However, the result of the relationship
between these two variables was very low with R2 of 0.303.

In addition to that another regression analysis was done using the automatic (digitally) generated polygons
from eCognition Developer software (Appendix 9a and 9b), but still the relationship was very poor with
R2 of 0.0036 (Figure 35b). The result of the regression analysis of the field DBH and CPA (both manually

delineated and digitally derived) is presented in Figure35 (a) and (b) respectively. Note that a reader can
see in Appendix 10 toFigure 34: Reference polygons (yellow lines) and digital
segmented polygons (red lines)
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Figure 35: Scatter plot of a relationship between field DBH and CPA of manually segmented (a) and CPA of digitally
segmented.

414, Above ground biomass (AGB) and Carbon Estimation

In this research the AGB was computed based on TLS derived parameters and also using the field
measured DBH and height from CHM of airborne (ALS). Hereafter AGB_ALS refers to AGB estimated
from a combination of ALS and DBH field measurements. Therefore applying an allometric  equation
given in (Equation4) of Chave et al., (2005) and a conversion factor given in Equation 5, AGB and carbon
stock were calculated respectively. To assess the relationship between the AGB estimated from TLS and
ALS combined with field DBH scatter plot was made (Figure36) and the R? and RMSE were 0.96 and
190.6kg (22.9% of the mean AGB) respectively.
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Figure 36: Scatter plot of a relationship between AGB
estimated from ALS and TLS

Based on the research question of number 6, a t-test was done to sce the significance of AGB derived
from TLS and AGB estimated from ALS (Table 11). Based on the result there was no a significance
difference between these two AGB so both approaches are equally accurate. Thus the null hypothesis was
accepted since the t-calculated is greater than t-critical.

Table 15: Paired t-test of AGB estimated from ALS and TLS

AGB_ALS | AGB_TLS
Observations | 228 228
df 227 227
Mean 831.06 769.00
t Stat 4.69
P(T<=t) 2.26E-06
two-tail
t Critical 1.9704
two-tail

In order to have a good visualization of the difference between the estimated amount of aboveground
biomass (AGB) and Carbon stock from Air borne LiDAR and Terrestrial Laser scanner (TLS) a graphical
representation is presented in Figure37 and Figure 38. Almost in all the plots the estimated above ground
biomass (AGB) by ALS is slightly higher than the AGB estimated by the TLS. This difference could be

due to underestimation of height measurements by the TLS.
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Figure 37: Comparison of AGB (of the most top trees) estimated from ALS and TLS
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Figure 38: Comparison of AGC (of the most top trees) estimated from ALS and TLS
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5. DISCUSSION

5.1. Individual Tree Identification and Extraction

The extraction of individual trees from the point cloud of all the plots of 779 trees 627 trees that is 80.5%
were extracted (Figure39) and 152 trees (19.5%) were missed. This extracting of tree varied from plot to
plot depending on the amount of undergrowth and density of tree trunks and leafy material of the plots.
Plots 10 and 16 are some of the plots where lowest rate of tree detection and extraction occurred because
of the dense undergrowth (Figure39). This study was conducted in a tropical rain forest where much
undergrowth and overlapping of trees occurs. In previous study done by Antonarakis ( 2011) all 166
(100%) trees were detected in the natural riparian forest along the Garonne River (France), were there is
little undergrowth using a ground scanner.

Some of the reasons for missing trees were due to occlusion and blocking of tree numbers and density of
point cloud data. The farthest the tree the lower the detection percentage of the tree (Antonarakis, 2011;
Liang, et al., 2011).

Figure 39: Sample of Extracted
trees (Plot 18, trees 20,7 and 14

Figure 40: Point cloud data of Plot 10 with dense undergrowth and occlusion of trees and tree numbers
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5.2. TLS Tree Parameters

The data distribution of the tree measurements of Diameter at breast Height (DBH), at 1.3m, derived
from TLS was skewed the right (positively) while for the height measurement it’s approximately normally
distributed (Figure 21). In statistics skewness measures the asymmetry of the distribution of a data. It can
be skewed to the right (positive) or to the left (negative) (Figure41). The main reason for the skewness of
the DBH measurements to the right or positively skewed is because all the measurements where taken a
DBH of 10cm and above.

Skewed Left Symmetric Normal Skewed Right
Long tail points left Tails are balanced Long tail points right
T ™ 3
7/ l‘\ / \ N\

2 " V4 N Ry
Mean < Median < Mode Mean = Median = Mode Mode < Median < Mean

Figure 41: Sketches showing the distribution ofa data (skewness) (Doane et al., 2011)

5.3. Plot-wise comparison of Field and TLS measured DBH and Height

Initially this study intended to carry out a plot based assessment. However, after initial analyses it became
clear that due to occlusions and overlapping of the canopies and understory (Figure43) all trees within a
plot couldn’t be found both in airborne ILiD AR and TLS. Top canopy tree can be seen on ALS whereas
lower canopy trees can only be seen on TLS. Further analyses were done on those trees which were visible
clearly on both the ALS and the TLS. Figure 42 shows an illustration about tropical rain forest structure and
how TLS and ALS perform.

In the plot wise comparison plot number 14, 15 and 16 have a relatively low value of R20.91, 0.85 and
0.91 while in the rest of the plots R?2was minimum of 0.97 for the DBH measurements. In regard to the
height comparison, plots 1, 4, 17, 19, 22 and 24 were among the plots in which R? of 0.32, 0.45, 025, 0.31,
0.31 and 0.12 values were respectively obtained. The main reason for this was these plots had much of
undergrowth and understory especially the palm trees and the Lianas (climbers) (Figure 42). Some climbers
were really difficult to remove and where problematic as they grew in the tree canopies and send their
roots to the ground.
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Figure 42: lllustration of a tropical rain forest structure with understory and overlapping of
canopies. (http://www.wettropics.gov.au/rainforest-structure)

Figure 43: Overlapping of tree crowns of the study area (a) and Undergrowth plant and climbers affecting tree

detection and DBH measurements (b)
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5.4. Relationship between Field and TLS measurements of DBH and Height

As mentioned in the above section further analysis was based on the 228 tree which could be identified
clearly both in ALS and TLS. Accordingly a regression analysis and a statistical t-test of paired two sample
for mean of the tree heights and DBH as well as heights from ALS was performed to see and asses their
significance diffferences.

5.4.1. Tree Height measurments

In airborne LiID AR, tree heights can be estimated more accurately as it scans from above and tree tops can
be easily detected and the LiIDAR also penetrates to the ground so the full height of a tree can be detected.
In this study heights measured by ALS are assumed to be the correct measurements (O’Beirne, 2012).
Other studies also show that an airborne LIDAR (ALS) can describe the top canopy in more details as
compared to the TLS (Hilker et al., 2010). Hodgson & Bresnahan, (2004) did an accuracy of airborne
LiDAR derived heights on evergreen forests and deciduous forests in which they got a RMSE of 17 to 19
cm and 26cm respectively. Tree height measurement by TLS a result of coefficient of determination (R2)
and RMSE were 0.87 and 2.15m (9.6% of the average tree height of ALS) respectively. Hilker et al. (2010)
compared the heights of old coniferous forest in Canada from TLS and ALS and obtained R? of 0.86
which is almost the same to the result obtained in this study.

A study done by Hopkinson et al. (2004) explains an error of 1.5m(7% of the mean). This result is less
than the result obtained in this study. This difference could be due to the different forest characteristics as
Hopkinson et al. (2004) did his study in a matured red pine and multitier mixed deciduous tree, with no
understories in southern Ontario and forest which is different from this study. Nevertheless in both cases
tree height were underestimated by TLS. The underestimation of tree heights by TLS is mainly due to the
overlapping and intermingling of tree canopies in the study area. TLS does upward shooting from the
ground therefore the pulses get obscured and intercepted by the underneath canopies and foliage. In such
forests it is difficult to determine the top of the trees. This was also the case in the study area in Malaysia.
The underestimation of tree heights by TLS is due to much understory and ovetlapping of canopies. In
most cases of the tall trees their top part was not scanned properly due to shadowing or overlapping
(Figure 33) with other tree canopies. This caused a very low density of point cloud data or totally blockage

of pulse and ultimately underestimation in the height measurement (Figure 44

Figure 44: Less point cloud data
density on the top of trees
affecting tree height accuracy

The variation in the manual field height measurements could be attributed due to the random error in the
field measurements. This error can be higher due to the nature of the forest area, especially in tropical rain
forests where it is difficult to determine the most top of trees. Secondly tree heights derived from TLS
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could be undetrestimated due to upward shooting from the ground and obstruction of the pulse reflection

by the foliage.

In the field, trees that have large crown and are tall are difficult to point out exactly their true top from the
ground. Therefore, this leads to a measurement of tree heights at larger angle which will measure false
overestimated tree heights. Some errors were also occurring due to the intervening foliage blocking of the
view of the bottom and top of the trees which possibly can cause underestimation of the tree heights. Also
some errors were due to misreading of the actual tree heights of tilted trees (Figure45).

In estimation of the above Ground biomass and carbon stock in sample plots of 3, 4, 5, 24 and 25

there was high underestimation of tree heights plots due to canopy overlapping which resulted in
underestimation of aboveground biomass by the TLS as compared to other plots.
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Figure 45: Figure45: Errors in tree height measurements
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(Source: http:/ /wiki.awf.forst.uni-goettingen.de/wiki/index.php/Tree_height)

5.4.2. DBH measurments

Measurement of tree Diameter at Breast Height (DBH) is very important in above ground biomass and
carbon stock estimation. According to Brown, (2002). About 94% Variation in above ground biomass of
trees can be explained by DBH. The correlation analysis between the field measured DBH and DBH from
TLS resulted a very high relationship with coefficient of determination (R2?) of 0.985 and RMSE of 1.7cm
were obtained. A study done by Maas et al. (2008) got a R2of 0.975 and RMSE of 1.8cm with a multiple
scan data. Similarly Simonse et al. (2003) also compared DBH from field and TLS and got an error of
1.7cm. Watt & Donoghue, (2005) reported a variance of 1.5cm with R? of 0.92. The multi- scan mode and
the low error in point cloud registration (Table 5) in this study can be one of the reasons for high
agreement between the measurement of the field and the TLS DBH. Moreover, Maas et al. (2008) got a
low RMSE of DBH as he compared accuracy of the DBH of trees from three plots which were scanned
with single scan-set up and another plot scanned with multi-scan set up. The number of scan positions
has an effect on the accuracy of DBH measurements (Figure 48).

Measuring DBH exactly at a height of 1.3m from the tree base in the field is not simple and practical.
Different people determine breast height at different heights according to their own height. In addition to
that the base of the trees is not always levelled, therefore because of these reasons the DBH of the trees
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could be measured at height of more or less than 1.3m. Therefore in this study to avoid this differences a
stick with a length exactly 1.3 m was used to mark the trees from their base in the sample plots. During
extracting of DBH measurements from the point cloud data unfortunately in some plots tree numbers
were paced exactly where the 1.3 measurement is (Figure46). This led to a low density of point cloud data

at that section of the tree which ultimately affected to the accuracy of DBH measurements. Moreover,
some trees were too close together so it was difficult to measure their DBH more accurately (Figure 47).

@ ()

Figure 46: Tree number causing less point cloud density (a) and too close trees affecting DBH
measurements (b).

Figure 47: Sample -Multiple scanned trees, increasing
the accuracy of DBH measurement. (Each colour
representing scans from different positions).

5.5. Delineation of Tree Crowns and Segmentation Accuracy

In this study, multi- resolution segmentation was used. This approach gives a meaningful image objects,
especially from high resolution imagery (Baatz, 2000). Moreover according Lamonaca et al., (2008) a
multi-resolution segmentation is the most applicable method in a heterogeneous and complex forest
structures specifically with high resolution data. This is due to the capably of multi-resolution
segmentation to segment scale dependent patterns of a heterogeneity of a forest structure. The accuracy of
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segmentation obtained in this study using the goodness of fit approach was 68.6% with 0.314 D value.
This result is based only on the upper canopy crowns. This is because trees under the top canopy wete not
included because they were not fully visible. Airborne LIDAR do not have any spectral information, it is
just point cloud hanging in the air based on the height with black and white, and do not give further
detailed visualization of the forest.

The segmentation accuracy was based on the relative intersection area between the manually delineated
trees , as a reference, and the digitally segmented tree crowns (Moller et al., 2007). An accuracy result
obtained by Kwak, et al. (2007) was 67.4% which is almost the same to the result obtained in this study
The result is less than the accuracy of 74.4% and 75.6% obtained by Karna et al. (2015) and Wang et al.
(2004) respectively. The accuracy obtained by Wang et al. (2004) was in a white spruce (Picera glauca) and
Douglas fir (Psendotsuga menziesiiy However these results were from integration of airborne LIDAR and
satellite imagery and a high- spatial resolution aerial imagery (Figure49). Holmgten, et al. (2008) obtained
an improvement of 8% in tree crown segmentation based on LiDAR data and optical satellite imagery
data.

Figure 48: High- spatial resolution aerial imagery

Identification of individual trees (crowns) using airborne LiDAR data in a tropical rain forest is not easy
due to the ovetlapping of the top tree canopies over the underneath canopies. Based on heights of the
Canopy Height Model (CHM) eCognition was able to separate the tree crowns especially the upper trees,
based on height information, however the under canopies were partly hidden and couldn’t be separated
propetly. (Figure50). The manual delineation of crowns was also done on those upper tree crowns that

seen clearly.
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Figure 49: CHM: with cleatly seen upper canopy trees (circled with blue line) and lower canopy trees (yellow dots)
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Figure 50: eCognition segmented upper crowns




5.6. Modelling the Relationship between Crown project Area (CPA) and DBH

According to the objective number five (5) of this study, a relationship between the segmented tree
crowns and the field measured DBH was to be developed. Therefore a regression model was developed
(section 4.13) based on the 228 manually delineated trees and digitally segmented ones. Nevertheless, the
relationship (nonlinear relationship) was poor with coefficient of determination (R2) of 0.3 and 0.003 for
the manually delineated and digitally segmented polygons respectively which couldn’t estimate the DBH
accurately. In some tree with different DBH measurements have same size of crowns (Figure51a). Also in
some observations trees with different DBH measurement (from15cm to 54cm) are having the same
crown size of 24m? labelled in green colours. In the case of the relationship between digitally segmented
(eCognition) and DBH, the observations are clustered in the CPA range of 25m? and 60m?. There is no
pattern within any ranges of CPA. To assess the effect and role of species diversity in this poor
relationship most frequent occurring species Shorea was taken (Figure 52) the result was R? of 0.4 which
still poor relationship. The possible reason for this poor relationship between these parameters (CPA and
DBH) in both cases could be due to the number of species. In this study as it’s a tropical rain forest 100
plus tree species were recorded in the field. Different trees and tree species have different growth rate,
canopy structure, and different tropisms to ward resources. Had the relation been done per species the
result would probably have been better. Moreover in certain plots some trees with big trunk were having
small tree crowns and vice versa. In a previous study done by Aliet al. (2010) a linear relationship between
CPA and DBH was obtained with R2 of 0.63, 0.69 and 0.74 was obtained for the tree species of Schima
wallichii, Shotrea robsta and Temuinalia alata, respectively. However, the study used a very high resolution

Geoeye satellite images.
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Figure 51: Relationship between Field DBH and manually delineated CPA (a) and between Field DBH and digitally
segmented CPA(b)

2 _
o g F-oas
60 -
50 - L
40 -
30 -
20 -

(cm)

Field DBH

o T T T T T T 1
0 10 20 30 40 50 60 70
CPA_delinated(m2)

Figure 52: Relationship between Field DBH and
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48



6. CONCLUSION AND RECOMMENDATION

The main objective of is study was to evaluate and assess the performance of the airborne LiD AR and the
Terrestrial laser Scanner (TLS) in the assessment of the above ground biomass in the tropical rainforest of
Ayer Hitam forest reserve (AHFR). To achieve this regression and correlation analysis among the tree
parameters of Diameter at Breast Height (DBH), tree height and Canopy Project Area (CPA) derived
from field measurements, TLS and aitborne LiIDAR. According to the research objective and research

questions the following conclusions were made:

1. Is there a significant difference between Heights derived from TLS with the manually field
measured height?

The relationship between tree height derived from TLS and manually measured in the field was with R2 of
0.70. The statistical analyses of a paired t- test was conducted and the result reveals that at a confidence
interval of 95% significance level there is no significant deference between the two tree height means from
field and TLS derived one. Thus the null hypothesis was accepted as the t- calculated was less than t-
critical.

2. Is there a significant difference between DBH derived from TLS with the manually field
measured DBH?

Measurement of DBH Derived from TLS and the field measured DBH are highly correlated with R? of
0.98. According the resultof significance test, there is no significant difference between these two DBHs
measurements. Therefore the null hypothesis was not rejected.

3. Is there a significant difference between height derived from Airborne LiDAR and TLS derived
height?

Airborne LIDAR (ALS) and TLS derived tree heights were relatively highly correlated with coefficient of
determination (R2) of 0.87. Based on the result of the t-test, the null hypothesis was accepted. as the t-
calculated was less than t-critical. Therefore, there is no significant difference between the means of these

height measurements at 95%e level of significance.

4. Is there a significant difference between height derived from Airborne LiDAR and field
measured height?

The relationship between the manually field measured height and height derived from Airborne LIDAR
was assessed with R2 of 0.65. And the result of the statistics showed a significance relationship. The null
hypothesis was accepted as t-calculated was greater than t-critical.

5. How accurately can tree crowns of a tropical rain forest be identified and measured from
airborne LiDAR data?

Accuracy of delineated tree crowns was assessed trough measure of goodness of fit (D-value). The result
was 068.6%. This result is generally in agreement as compared to previous studies considering that only
airborne LiDAR is used in this study.
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6. How accurately can DBH be estimated from CPA of aitborne LiDAR?

In this study the regression model of the CPA of LiDAR and field measured DBH was weak. Thus the
DBH estimated from the crown of airborne LiDAR was significantly different from the field measured
DBH. The null hypothesis was not rejected since t-calculated was greater than t- critical. Therefore, the
estimated DBH was not enough good to estimate the above ground biomass.

7. Is thete a significant difference between the aboveground biomass/catbon stock estimated
from TLS and airborne LiDAR (ALS)?

The above ground biomass (AGB) estimated from ALS and TLS were highly correlated with coefficient
of determination (R2) of 0.968. The t-calculated was greater than the t- critical therefore the null
hypothesis was accepted.

In general conclusion tree parameters (DBH and Height), derived from the Terrestrial Laser Scanner
(TLS) are highly correlated especially in terms of DBH with the field measured ones. Thus, the
aboveground biomass (AGB) and carbon Stock (AGC) can be estimated in a reasonably accuracy in
tropical rain forest using Terrestrial Laser Scanner (TLS) and Airborne LiDAR (ALS). In the case of
airtborne LiIDAR the CPA of the LiIDAR was not adequate enough to predict the DBH accurately.
Moreover, from this study it can be conclude that identification of individual tree crowns is not easy in
such tropical rain forest using only Airborne LiDAR data.

Recommendation

1. The application of Terrestrial Laser Scanner (TLS) in a tropical rain forest is not fully discovered,
therefore a further studies in a similar forest structures landscapes should be done to see the
results of this study and for additional new discovers.

2. Multiple scanning, especially in a tropical rainforest with high tree density and undergrowth is
more recommended to improve the rate of tree identification and extraction.

3. To minimize error in the measurement of DBH it is more advisable to tie a tree at exactly 1.3
meter with a reflecting ribbon which can be easily detected and safe time while measuring DBH
from the point cloud in RiSCAN PRO software.

4. Considering the weight of TLS instrument is that it is a little bit heavy instrument to carry it in
undulating and sloppy landscape forest areas, like Ayer Hitam Forest. So it would have been easy
to carry it if the weight was less.
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LIST OF APPENDICES

Appendix 1: Field data collection sheet used in the study area
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Appendix 2: Slope Correction Table

Slope comection table

Plot size 500 m*

Slopet Radius{m) Slope% Radius{m) Slope% Radius{m)

a 12.62
1 12.62 35 13.01 71 13.97
2 12.62 T 13.03 T2 14.00
3 12.62 38 13.06 T3 14.04
4 12.62 38 13.07 T4 14.07
] 12.62 40 13.08 75 14.10
6 12.63 41 13.12 75 14.14
T 12.63 42 13.14 T 1417
] 12.64 43 13.18 T8 14.21
e 12.64 44 13.18 T8 14.24
10 12.65 45 13.21 20 1428
11 12.65 45 13.24 21 1431
12 12.66 T 13.26 g2 14.35
13 12.67 45 13.29 83 1438
14 12.68 415 13.31 B4 14.42
15 12.69 50 13.34 25 14.45
16 12.70 a1 13.37 26 14.49
T 12.71 52 13.38 T 14.652
18 12.72 53 13.42 g8 14.56
18 12.73 54 13.45 83 14.60
20 12.74 55 13.48 aa 14.63
21 12.75 56 13.51 31 14.67
22 12.77 T 13.53 52 14.71
23 12.78 58 13.56 83 1474
24 12.78 58 13.58 94 1478
25 12.81 &0 13.82 85 14.82
26 12.82 &1 13.65 L] 14.85
T 12.84 62 13.68 T 14.89
28 12.86 63 13.72 98 1483
28 1287 G4 13.75 94 14.87
h 12.88 G5 13.78 100 15.00
31 12.91 G 13.81 101 16.04
32 12.83 T 13.84 102 15.08
33 12.895 68 13.87 103 15.12
34 12.97 &4 13.91 104 15.15
35 12.898 7o 13.94 105 16.19
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Appendix 3: Methodology diagram of the pit-free algorithm

Height-normalized

CHMyg: all first returns (standard CHM with pits).
CHMy;: first returns with a height of 2 meter and above.
CHMy: first returns with a height of 5 meter and above.
CHM,: first returns with a height of 10 meter and above.
CHM;: first returns with a height of 15 meter and above.
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Appendix 4: Distribution DBH (a) and Height (b) from Field, and Height from ALS.
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Appendix 5: Sample result of Multi-station Adjustment of plot 19 in RiISCAN PRO
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Appendix 6: Scatter plot of Field measured DBH and TLS derived DBH comparing

relationship
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Appendix 7: Scatter plot of plots heights measured from the field and derived from TLS
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Appendix 8: Normality Test for the Field measured heights and ALS derived heights

Tests of Normality

Kolmogorov-Smirnov* Shapiro-Wilk
Statistic df Sig. Statistic df Sig.
Field_Height .094 228 .000 959 228 .000
ALS_Height .043 228 2007 .989 228 .084

* This is alower boundofthe true significance.

a. Lilliefors Significance Correction

Appendix 9: (a) Regression analysis of the Field DBH and manually delineated CPA and automatically

generated CPA (b)

(@)
SUMMARY OUTPUT
Regression Statistics

Multiple R 0.550 | _I
R Square 0.303
Adjusted R Square 0.287
Standard Error 12.411
Observations 46.000
ANOVA

df 55 Ms F ignificance F
Regression 1 29447 29447 19.11605 7.42E-05
Residual 44 ©777.908 154.0434
Total 45 9722.609

Coefficientsandard Errc  t Stat P-value Lower 95%Upper 95%ower 95.0% pper 95.0%

Intercept 14.99 4.89 3.06 0.00 5.13 24.85 5.13 24.85
X Variable 1 0.55 0.13 4.37 0.00 0.30 0.81 0.30 0.81
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SUMMARY OUTPUT

Regression Statistics

Multiple R 0.060
R Square 0.004
Adjusted R -0.013
Standard B 13.667
Observatic  63.000

(b)

ANOVA
df S5 MS F ignificance F

Regressior 1 40.935 40.935 0.219 0.641
Residual 61 11393.668 186.781
Total 62 11434.603

Coefficientstandard Erro  t Stat P-value Lower 95%Upper 95%ower 95.0%pper 35.0%
Intercept 30.727 4,423 6.947 0.000 21.882 39.572 21.882 39.572
X Variable 0.040 0.085 0.468 0.641 -0.131 0.211 -0.131 0.211

Appendix 10: Histogram of a manually delineated CPA
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Appendix 11: Field work and study area Photos
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