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ABSTRACT 

Forest ecosystems constitute large amount of biomass and thus it plays a major and important role in carbon 

sequestration and global climate regulation. Tropical rainforests are known for their complex structure, rich 

biodiversity, and high density of biomass and carbon content. Therefore, UNFCC under the REDD+ has 

recommended the sound measurement, reporting and verification (MRV) methods to estimate AGB and 

carbon stock to address the climate change and carbon emission issues in tropical countries. 

 

Application of SAR radar backscatter coefficient is one of the MRV methods recommended to estimate 

AGB and carbon stocks in tropical forests. SAR remote sensing has become very useful in tropical countries 

for AGB and carbon estimation. SAR is an active sensor and operates, in any weather condition and during 

day and night and can penetrate through cloud, fog and haze. In this study, ALOS-2 PALSA-2, HH and 

HV polarization image data, which was acquired in August 26 2015 was used to predict AGB and carbon 

stock of Ayer Hitam Forest Reserve (AHFR). 

 

The aim of this study was to model and map AGB and carbon stock of Ayer Hitam Rainforest Reserve. 

Data from 27 plots were assessed. Out of these data, 17 plots were used for developing the model and other 

10 plots were retained for model validation. AGB was obtained based on plot level  using the improve 

allometric equation developed by (Chave et al., 2015). Meanwhile, backscatter coefficient from HH and HV 

polarization were retrieved and converted to sigma nought. Besides, total stand BA, average DBH and height 

were also obtained. 

 

Correlation and simple linear regression analysis was done separately between observed AGB and 

backscatter coefficient of ALOS-2 PALSAR-2, HH and HV polarization. Results of the analysis showed a 

positive and strong relationship (R²=0.817) between AGB and HV polarized backscatter. About 82% of the 

variability in AGB was explained by the HV backscatter coefficient. The 10 independent data were used to 

validate the model. The predicted AGB were plotted against the observed AGB. A strong correlation was 

identified with R² of 0.796. The correlation was significant at 99% and 95% confidence level. AGB of the 

study area was estimated using the simple linear regression developed with HV backscatter and AGB. The 

AGB and carbon stock map of the Ayer Hitam Forest Reserve was produced. Carbon stock values were 

calculated using 0.5 conversion factor. 

 

The observed amount of AGB of AHFR obtained from the measured data using the allometric equation 

ranges from 60.17 – 367.07 while the estimated AGB using the simple linear model with HV polarized data 

ranges from 20 – 576.42 ton haˉ¹. Average AGB for observed and estimated was 208.79 ton haˉ¹ and 257.98 

ton haˉ¹ respectively. The total estimated AGB of the whole study area of AHFR derived from HV 

backscatter is. 321,966.28 ton while the total AGB observed is 260,574.27 tons. Average estimated carbon 

stock of AHFR is 128.99 ton haˉ¹ and the total estimated carbon stock is 160,983.14 ton. 

 

Present study found that the average value of AGB per haˉ¹ obtained in AHFR agrees with several similar 

studies which were carried out in tropical countries as well in Malaysia using ALOS PALSAR. This indicate 

that, ALOS-2 PALSAR-2 is able to estimate AGB accurately in tropical countries. Further study is                                                                                                                                                                                                                         

needed to be undertaken in saturation sensitivity analysis of ALOS-2 PALS-2 in tropical forest with high 

density of biomass. 

 

 
Key-words: HH and HV Polarization; radar backscatter; ALOS-2 PALSAR-2, REDD+; Above Ground 
Biomass (AGB); carbon stock; tropical forest, regression, allometric equation, correlation, linear 
regression, estimation, mapping.  
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1. INTRODUCTION  

1.1. Background  

The topic of climate change had become a paramount concern and received a lot of attention from the 

international communities over the recent years. The United Nations Framework Conversion on Climate 

Change (UNFCCC) stated that, change of climate is due to direct or indirect alteration of the global structure 

by anthropogenic activities. Eventually, the consequences in variability in natural climate have been observed 

over a long period of time (IPCC, 2001). At present time, climate change is associated with forest and it is 

dealt with as policy issues at the policy level (Buizer et al., 2014). In a climate change synthesis report, 70% 

increase in global greenhouse gas (GHG) emission was recorded between the years 1970 and 2004 

(Bernstein et al., 2008). Carbon dioxide as the principal anthropogenic GHG increased by 80% annually 

between the said years.  

 

Forests act as the sink and reservoir of carbon dioxide and regulate the global climate. Apparently, tropical 

forests are the primary carbon sink ecosystem. They are very complex in structure and cover approximately 

fifteen percent (15%) of earth’s surface (FAO, 2009). Mature tropical forests consist of several layers which 

make them rich in biomass. Tropical forests store approximately 56% of carbon in biomass and 32 % in 

forest soil (Pan et al., 2011). Recently biomass and carbon stock estimation in the tropical forest have gained 

much interest because carbon plays an important role in earth’s carbon cycle (Basuki et al., 2013).  

 

Regardless of its ability to sequester a large amount of carbon, these forests are vulnerable to deforestation 

and degradation. Deforestation in tropical countries add one-fifth of the total human-induced carbon 

dioxide emissions to the atmosphere (Gibbs et al., 2007). Besides, total land use change  accounts for about 

20% of the total greenhouse gas emission annually (Angelsen, 2008; Corbera and Schroeder, 2011). It is 

recorded as the second biggest emission source after fossil fuel (Hirata et al., 2012). Consequently, this has 

triggered a threat on the global climate and thus has attracted attention from the scientists and policy makers 

across the globe to develop a potential strategy to address the rate of deforestation and degradation in 

developing tropical countries. 

 

Accordingly, the UN-REDD Programme, which is the United Nations collaborative initiative on Reducing 

Emissions from Deforestation and Forest Degradation (REDD) in developing countries was initiated. Its 

main  purpose was to reduce emissions from loss of forests to combat climate change (Næsset et al., 2011). 

REDD contributes significantly to address mitigation and adaptation to climate change. It substantially aids 

in the sustainable development and forest management in developing countries (Cosslett, 2014). Eventually, 

Conference of the Parties (COP) of UNFCCC at its 16th meeting in Cancun in 2010 expended REDD to 

REDD – Plus (REDD+). The name was adopted because it included other factors such as sustainable forest 

management, enhancement of forest stand stocks, biodiversity and conservation (Sukhdev., 2012). REDD+ 

is mainly focused on paying incentives to the forest owners and countries that are concerned about 

conserving their forests to reduce emissions from forest destructions (Angelsen, 2008). REDD+ is also 

perceived as a potential approach to generate extensive benefit apart from reducing GHG emissions. 
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In order to monitor and implement REDD+ activities in the tropical forests, it is crucial to establish a 

monitoring scheme. Monitoring the changes in forest cover over time and making an accurate measurement 

in forest biomass and carbon stock is important in both national and international level. Therefore, 

UNFCCC requested for an appropriate, transparent and robust method to be developed and applied in 

developing countries to boost the national monitoring system (Hirata et al., 2012). Subsequently, the 

industrialized countries are required to pay for emitting the GHG through REDD+ program. Therefore, 

the concept of Measurement, Reporting and Verification (MRV) was initiated at COP 13 in Bali in 2007.  

 

With the aim of estimating more accurate and stable measurements of forest biomass, carbon stock, 

greenhouse gasses (GHG) and forest cover change; it is essential to incorporated remote sensing with 

ground-based monitoring systems (Kiyono et al., 2011). Hence, it is crucial to make sure that MRV is 

accurate, transparent and reliable because credits for REDD+ will be delivered based on this measurement 

outcome.  

 

The fundamental concern for implementing MRV for the REDD+ activities is to achieve the highest 

accuracy in forest biomass and carbon stock estimation in tropical forests. Consequently, radar 

backscattering using Synthetic Aperture Radar (SAR) is one of the methods recommended for estimating 

carbon stock before REDD+ becomes operational in 2020. Kiyono et al., (2011) recommended Advanced 

Land Observation Satellite Phased Array L-band Synthetic Aperture Radar (ALOS PALSAR) data because 

it has an upper hand over other remote sensing (RS) systems including Very High Resolution (VHR) and 

Lidar systems. Radar is a microwave sensor system and has very high potential to acquire data under any 

weather conditions and during day and night (Kiyono et al., 2011). 

 

Radar penetrates into clouds to obtain data thus allowing regular monitoring in tropical rainforests. Most 

importantly, there is a direct relation between radar backscatter and forest Above Ground Biomass (AGB) 

(Mitchard et al., 2012). This is because the radar energy, which is transmitted as pulse of microwave in the 

direction of the land cover, penetrates through vegetation and will have a multiple or volume scattering, 

especially in the cross polarization energy. Later it will be scattered back to the radar antenna as a function 

of the amount of biomass/carbon stock (Mitchard et al., 2012). In addition, use of spaceborne radar data is 

gradually becoming essential in assessing biomass and carbon stock in tropical forests on a larger scale 

(Thapa et al., 2015; Hamdan et al., 2015).   

  

1.2. Problem statement and justification 

Tropical rainforest has multiple tree layers and complex structure. Starting from the top or emergent layer 

to the canopy layer, understory, and down to the forest floor. The composition and diversity of tree species, 

density of trees and the irregular shapes and sizes of the tree crowns affect the canopy structure (Song et al., 

1997). In addition, the higher and lower layers of the forest structure change considerably due to tree species 

composition. They are exceedingly heterogeneous and intact in biomass, hence, it is challenging to obtain 

high accuracy of forest AGB. Therefore, it is important to understand and take into consideration 

complexity of the forest structure to accurately assess and estimate forest AGB (Hamdan et al., 2014).  

 

Goh et al., (2013); Morel et al., (2011); Le Toan et al., (2004); Sinha et al., (2015) indicated that radar 

backscatter saturates and remain constant when the level of biomass increases to a certain point. Radar 

backscatter depends on the amount of biomass and the characteristic of the forest. In a tropical forest, AGB 

estimation can be limited to the lower saturation level at as low as 30 ton haˉ¹ at C-band, 50 ton haˉ¹ at L-

band and 150-200 ton haˉ¹ at P-band (Le Toan et al., 2004). 
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However, SAR data with a longer wavelength, L-band appears promising because of its ability to penetrate 

through the forest canopy and reach the forest floor (Hamdan et al., 2011; Goh et al., 2013; Thapa et al., 

2015). SAR backscatter has a reasonable relationship with the forest stand parameters (e.g., DBH, Height, 

basal area, timber volume, biomass and carbon stock (Sinha, et al., 2015). 

 

Several studies including, Mitchard et al., 2012; Basuki et al., 2013; Goh et., 2013; Kumar et al., 2012 fused 

radar image with either lidar or optical multispectral  image data acquired from another sensor to estimate 

AGB. In addition, several studies similar to this study were also done in tropical forest, however, they were 

conducted in the homogeneous and less dense forest. Some more related studies including, Michelakis et 

al., 2014; Carreiras et.al., 2012; and Carreiras et al., 2013 were also conducted in tropical rain forests. Hamdan 

et al., (2011) and Morel et al., (2011) carried out similar studies using PALSAR forests in Malaysia, but the 

forests were not entirely natural. The forests were either partially planted or logged-over secondary forests.  

Otukei and Emanuel (2015) stated that usage of ALOS PALSAR in complex forest types in tropics for 

biomass estimation is less known. 

 

A review paper on estimating biomass using radar by Sinha et al., (2015) also revealed that, limited number 

of studies were conducted in tropical forests. Consequently, this study is conducted in a natural tropical 

rainforest and at a different geographical location. Additionally, result from the literature search showed that 

ALOS-2 PALSAR data has not yet been used in any studies to assess the accuracy of the biomass estimation, 

therefore this is an opportunity to do a study using ALOS-2 PALSAR-2 data with HH and VH polarization 

to estimate AGB of tropical rainforest with reasonably high accuracy.  

 

Meanwhile, UNFCC under the REDD+ program recommended a monitoring system that combines remote 

sensing and ground-based inventories for estimating forest biomass, carbon stock and greenhouse gas 

emission (Hirata et al., 2012). Therefore, MRV methods are very crucial. The methods recommended for 

estimating carbon stock for per unit area are either directly by establishing permanent sample plots or 

indirectly using estimation model for predicting stand carbon stock. The indirect method includes, over 

story height modelling, crown diameter model, community age model and radar backscattering coefficient 

which is using the SAR backscatter (Hirata et al., 2012). 

 

The first three indirect methods basically use lidar or optical remote sensing technique to estimate AGB. 

The overstory height model uses tree heights measured from airborne lidar and field-based biomass 

measurement to develop the relationship between the height and biomass assuming that they are directly 

proportional. Extrapolation of the result obtained from this model from one area to another is impossible 

(Hirata et al., 2012). The basal area obtained from the ground measurement can be combined with the digital 

height measured by the lidar to estimate AGB (Bhattarai et al, 2015). Crown diameter approach is achieved 

by using an aerial photograph or high to very high-resolution image to delineate tree crown based on 

individual tree crown diameter to estimate biomass. This method substitutes the crown projection area for 

the DBH measurement to estimate AGB and carbon stock. Information only for upper canopy trees is 

yielded for this method (Hirata et al., 2012).  

 

On the other hand, SAR has the advantage over the optical and infrared RS because SAR can operate during 

the day and night and in all-weather condition. SAR transmits the microwave signals and measures the 

backscatter signals that is returned back to the sensor from volume scattering in the forest canopy (Pons, 

2010). Therefore, it is recognized to be the only sensor which can measure the volume of the vegetation and 

is suitable for estimating and mapping AGB and other biophysical parameters (Pons, 2010; Sandberg et al., 

2011). It can penetrate through clouds and acquire data in large scale with reasonable resolution. Essentially, 

SAR has been used to retrieve forest AGB and other biophysical parameters (Santoro et al., 2002).  
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Synthetic Aperture Radar (SAR) backscatter has a correlation with the AGB up to a certain saturation point 

(Hirata et al., 2012). Correlation between AGB and radar backscatter coefficient is high for L-band. Hence, 

PALSAR is recognized as a promising methods to accurately measure the parameters of the forest structure, 

AGB and carbon stock (Sandberg et al., 2011; Santoro et al., 2002). Carbon stock can be measured directly 

by modelling the relationship between the AGB and the backscatter coefficient. This method is suitable for 

estimating and mapping AGB and carbon stock over a large area and is suitable for tropical forests (Hirata 

et al., 2012).  

 

Since SAR is the most recommended remote sensing technique suitable for tropical forest for REDD+ 

initiatives, it is essential to use ALOS-2 PALSAR in this study. Therefore, the main focus of this study is to 

assess, estimate, and develop a model and map AGB and carbon stock of tropical rain forest accurately 

using ALOS-2 PALSAR.-2 ALOS-2 is an improved version of the original ALOS PALSAR with the 

enhanced specification (Shimada, 2009).  

 

1.3. Research Objectives 

This section includes the general objective of the study, the specific objectives, research questions and the 

research hypothesis. 

 

1.3.1. General Objective 

The main objective of this research is to develop a model to estimate and then map AGB and carbon stock 

using ALOS-2 PALSAR HH and HV polarized radar images in tropical rainforest reserve of Ayer Hitam in 

Malaysia. 

 

1.3.2. Specific objectives 

1. To analyse the relationship between AGB and radar backscatter of ALOS-2 PALSAR-2, HH, and 

HV polarization using regression analysis.  

2. To analyse the relationship between forest stand parameters such as basal area (BA), DBH and 

height with backscatter of PALSAR -2 HH and HV polarized image data. 

3. To model and validate AGB for Ayer Hitam Forest Reserve based on regression model developed 

using cross polarised (HH, HV) PALSAR image data. 

4. To assess biomass and carbon stock estimates per unit area (ha) using field data. 

5. To map AGB and carbon stock of Ayer Hitam tropical rainforest reserve.  

 

1.3.3. Research Questions 

1. What is the relationship between AGB and radar backscatter of ALOS-2 PALSAR-2, HH, and HV 

polarization? 

2. How can AGB be modelled using PALSAR HH and HV polarizations? 

3. What is the accuracy of AGB derived from radar backscatter of ALOS-2 PALSAR, HH, and VH 

polarization? 

4. What is the AGB of tropical rain forest of Ayer Hitam per unit area in ton/ha derived from field 

data? 

5. How can biomass and carbon stock derived from radar backscatter of ALOS-2 PALSAR, HH, and 

VH polarization be mapped? 
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1.3.4. Research Hypothesis  

1. Ho: There is no strong positive relationship between ABG and radar backscatter PALSAR-2, HV 

polarization compared to HH polarization. 

Ha: There is a strong positive relationship between AGB and radar backscatter PALSAR-2, HV 

polarization compared to HH polarization. 

 

2. Ho: The relationship between AGB and radar backscatter cannot be accurately  

(< 75%) estimated and modelled and mapped at 95% confidence interval.  

Ha: The relationship between AGB and radar backscatter can be accurately (< 75%) estimated, 

modelled and mapped at 95% confidence interval. 

 

1.4. Concepts of the study 

1.4.1. Synopsis of biomass and carbon stock and estimation techniques 

Biomass can be defined as the living material including plant and animal that are found above the ground 

and below the ground. Biomass is usually expressed as dry weight (Sinha et al., 2015). All biomass that is 

above the soil including vines, lianas, tree stumps, stem, branches, fruits, leaves, flowers and seeds are 

categorized as above ground biomass (AGB) while the roots and other materials found in the soil are termed 

as below ground biomass (BGB) (Sinha et al., 2015). Biomass is of paramount importance because it is 

related to the structure of the vegetation and consequently it has an influence on the biodiversity. The 

amount of carbon emitted into the atmosphere is determined by the amount of biomass that is burned, 

decayed or disturbed based on per unit area (Houghton et al., 2009). In addition, biomass is also associated 

with the management of water, fire and soil (Houghton et al., 2009).  

 

The significant part of the total biomass is found in forest ecosystems. Trees in tropical rainforests contain 

a large amount of biomass, thus they sequester and store more carbon (Bhattarai et al., 2015). Nevertheless, 

deforestation and degradation of tropical forest have a direct impact on the main carbon pool that is stored 

in forest ecosystem (Gibbs et al., 2007). Thapa et al., (2015) further stated that assessing forest AGB is 

crucial for carbon quantification in any forest type because about 47-50% of the carbon is stored in the 

forest AGB. Besides, Okuda et al., 2004 specified that, when assessing carbon stocks and carbon 

sequestration, it is highly significant to estimate forest biomass in the tropical forest. Forest biomass is 

considered an important key variable in the terrestrial cycle and more information is needed for quantifying 

it (Hamdan et al., 2011). 

 

Aboveground biomass in tropical forest is the main actor in the climate change issue. In addition, an 

increasing importance in REDD+ contemplates accurate quantification of AGB and carbon stock on the 

local, regional and global scale (Boudreau et al., 2008). Monitoring carbon stock is essential among other 

parameters of REDD+. Therefore, MRV systems for forest carbon changes must consider and very reliable 

and accurate method. In addition, uncertainties in forest carbon stock can be reduced with improved MRV 

systems (FAO, 2009). 
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There are four main techniques used to estimate live AGB and carbon stock. Destructive sampling is one 

way whereby biomass is measured directly and the most accurate method. But it is applicable only in the 

small area. It requires a lot of time, efforts, labour and cost to achieve it (Sessa, 2009). The second method 

is non-destructive sampling by which, parameter of the trees are measured and the allometric equation is 

used to estimate the biomass. The third method is estimating biomass using remote sensing techniques and 

the fourth method is developing models whereby, biomass estimates are derived by integrating remote 

sensing and field measurement. This method can be applied to a larger area because allometric equations 

are used to extrapolate to larger scale (Sessa, 2009).   

 

Moreover, estimation of carbon stock per unit area of forest is of paramount interest. Forest carbon is 

assessed either by, one; directly, by the establishment of permanent sample plots (PSP) and two; indirectly, 

by modelling the stand carbon stock (Hirata et al., 2012) which involves four methods. The first one is over 

story height model, second, crown diameter model, third, community age model and fourth, radar 

SAR).backscattering coefficient ( 

 

 Gibbs et al., (2007); Bhattarai, et al., (2015) have categorized these carbon estimation methods 

corresponding to the former as a traditional method (PSP), and the latter as optical RS, VHR imagery, lidar 

and radar. Apart from the other remote sensing sensor systems, radar was preferred for MRV system 

because of its numerous advantage in acquiring data in tropical forest (Goh et al., 2013; Hamdan et al., 2011; 

Morel et al., 2011; Gibbs et al., 2007).  Figure 1 shows the illustration of the concept of the study. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Concept diagram of this study 
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2. LITERATURE REVIEW 

2.1. Mapping Above Ground Biomass and Carbon Stock 

Mapping AGB in tropical forest is challenging due to the fact that tropical forests are very complex in 

structure. They consist of a diversity of species and has a high density of biomass. In addition, frequent 

cloud cover over tropical forests limits the data acquired from the optical sensors and mountainous and 

steep topography limits radar sensors (Mitchard et al., 2012). All these lead to a challenge of estimating and 

mapping AGB and carbon using remote sensing. However, it is vital for the implementation of carbon credit 

scheme and REDD+(Morel et al., 2011). Despite its challenges, estimation of forest biomass and carbon 

stock has become increasingly useful in recent years because remote sensing data is available for forest areas 

that are inaccessible and in larger scale (Goh et al., 2013). Mapping and monitoring biomass and carbon 

stock in tropical countries attracted scientists around the world. Deforestation and forest degradation 

accounts for 30% of the carbon emitted by anthropogenic activities (Goetz et al., 2009).  

 

According to Amini and Sumantyo,( 2009), remotely sensed data have the advantage over the traditional 

method of biomass and carbon estimation. This is because data can be collected in the same area repeatedly 

and are available in digital format. These data can be processed faster to produce biomass and carbon maps. 

Production of such maps is necessary as it provides essential information on the increase and decrease of 

forest biomass so as the loss and gain in carbon. This will complement the effort that the global community 

is exerting in combat climate change through the REDD+ initiatives (Mitchard et al., 2012). 

 

Monitoring change in forest cover and estimation of biomass and carbon can be achieved through satellite 

remote sensing. Baseline information on the rate of deforestation and degradation can be determined using 

satellite data as long as an assessment of the forests cover are accurately conducted and validated (Goetz et 

al., 2009). Optical remote sensing techniques and sensors are employed in acquiring data on forest cover 

and biomass. However, radar remote sensing has the advantage over the optical satellite sensors because it 

is the only sensor that can provide information on forest canopy in the tropical regions as it is able to 

penetrate through clouds and acquire images regardless of any weather conditions (Hamdan et al., 2011). 

Therefore, radar remote sensing has a significant role to play in continuous observation of tropical forests. 

 

2.2. An Overview on RADAR, SAR and ALOS PALSAR 

2.2.1. RADAR 

RADAR is an abbreviation derived from Radio Detection and Ranging. Radar is simply transmitting pulse 

to the direction of the distant object and receiving waves that are reflected or scattered back to the sensor. 

Basically, the pulse of electromagnetic radiation is generated and transmitted by the radar antenna in the 

direction of the surface object that is far off (Ager, 2011). As soon as the wave hits the object, it can penetrate 

through the object, scattered from its surface or reflected back to the radar antenna. All these depends on 

the wavelength, polarization, incidence angle, object geometric and dielectric properties and topography 

(Ager, 2011). A portion of this pulse is refracted and reflected away while a portion returns back to the 

sensor as radar backscatter. As the result of the backscatter, the object is detected and its position is 

determined. In addition, the travel time of this pulse is recorded to define the range or the distance between 

ground and radar antenna (Ager, 2011).   
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Radar is an active sensor system that operates in the microwave part of the electromagnetic spectrum. The 

wavelength ranges from 1 mm to 100 cm. The radar imaging system has about nine bands. However, the 

most commonly used bands now are: X-band (2.4 – 3.75 cm 𝜆), C band (3.75 – 7.5 cm 𝜆), L band (15 – 30 

cm 𝜆) and P band (30 – 100 cm 𝜆) (Henderson, 1998). The full detail on the radar bands and frequency is 

described in Henderson and Lewis, (1998). In Radar imaging, it is crucial to understand the fundamental 

issues that determines the radar returns. Table 1 shows the list of the parameter that affects radar returns.  

 

Table 1: Important parameters that influence radar return or radar power return (PR)  (Henderson and Lewis  1998). 

 

The significant characteristic of radar include day and night operation, has a longer wavelength and lower 

frequency. Hence, it has an advantage to penetrate through the cloud, haze, snow, dust and surficial materials 

(e.g. sand, vegetation canopy etc.). It can also be operational in all-weather condition. Additional advantages 

of radar are stated in Ager, (2011). Radar was significantly used in areas where there are frequent snow and 

clouds such as in the polar and the tropical regions (Smith, 2012; Henderson and Lewis 1998). Besides, it is 

extensively used in traffic control, navigation of ship and aeroplanes and was applied in numerous scientific 

fields including geology, agriculture, meteorology, hydrology, forestry and biomass assessment and other 

more (National Academy of Sciences, 2015; Henderson and Lewis, 1998). 

 

2.2.2. Synthesis Aperture Radar (SAR)  

Synthetic Aperture Radar (SAR) came into existence after Side Looking Aperture Radar (SLAR) in the mid-

1960s. SAR was introduced to obtain a better resolution of radar by using signal processing. SAR became 

very useful because it is able to achieve better resolution by using longer wavelength (Chan and Koo, 2008). 

SAR is beneficial in tropical countries because it can penetrate through clouds, fogs and haze. Therefore, it 

is used to monitor and detect land cover changes is frequently applied in natural resource and environmental 

studies (Chan and Koo, 2008). SAR is one of the senor type that operates in the microwave frequency which 

has been commonly and significantly employed in monitoring forest, forest AGB studies and carbon stock 

accounting (Sinha, et al., 2015). SAR has its limitations with energy attenuation in high biomass content 

vegetation, speckle, and shadowing (Sinha et al., 2015). Nevertheless, it can penetrate through clouds to 

discriminate between different vegetation types( IPCC, 2006) and is able to measure biomass in dense 

tropical forest, (Thapa et al., 2015; Mermoz, 2014; Goh et al., 2013; Sinha et al., 2015 ) and derive biomass 

information (Hamdan, et al., 2011).  

 

Fundamental System and Target Parameters that Influence Radar Power Return (PR) 

 

Systems Parameters 

 

Target Parameters 

1. wavelength or Frequency 

2. Polarization 

3. Look Angle 

4. Look Direction 

5. Resolution 

1.Surface Roughness 

2.Complex Dielectric 

3. Slope Angle and Orientation 

 

        Direct Interplay of System and Target Parameters 

 

1.Surface Roughness – defined in terms of system wavelength 

2. Look Angle (∅)and Slope Angle(α) – combine to determine Incident Angle(θ) 

3. Look Direction and Slope (or target) Orientation – influence the area and geometry of the target presented to the radar 
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The interaction of the pulse transmitted by radar and the vegetation cover is complex. That is because the 

penetration of the microwave energy into the forest canopy cover depends on the wavelength, polarization 

and the incidence angle of the radar and the biomass and moisture content of the vegetation (National 

Academy of Sciences, 2015). When the transmitted pulse interacts with the canopy, it either penetrates and 

scatters or directly scatters and part of it is returned to the radar antenna as backscatter. The essential features 

that make SAR unique from optical remote sensing are, dielectric constants, the texture of the surface, 

different incident angles, like and cross polarisation and ability to penetrate through surficial objects (Sinha 

et al., 2015).  

 

Biomass estimation using SAR is categorised into two main classes. The first one is by using the backscatter 

values while the second is by using interferometry technique (Ghasemi et al., 2011). Studies have confirmed 

that there is a strong and positive relationship existing between biomass/carbon stock and the longer 

wavelengths (L- and P-band) with cross-polarised radar backscatter (HV and VH) (Ghasemi et al., 2011). 

The X and C band in the shorter wavelength with like-polarised radar backscatter (HH or VV) have a weak 

relationship (Dobson et al., 1992; Le Toan et al., 1992). Hussin et al., (1991) also revealed in his study, 

positive relation between Slash-Pine parameter including biomass with L-band with HV polarisation.  

 

2.2.3. Advanced Land Observation Satellite, Phased Array L-band SAR (ALOS-PALSAR) and ALOS -2 PALSAR-2    

The Advanced Land Observation Satellite (ALOS) is a Japanese Satellite launched in January 2006. 

Unfortunately, it has failed to operate in May 2011. ALOS carried on board the Phased Array L-band 

Synthetic Aperture Radar (PALSAR), an adjustable resolution polarimetric sensor (PASCO Coperation, 

n.d.). On board ALOS were two other sensors, the Panchromatic Remote Sensing Instrument for Stereo 

Mapping (PRISM) and the Advanced Visible and Near-Infrared Radiometer type2 (AVNIR-2) (Hamdan et 

al., 2011). ALOS was positioned at 691 km in a sun-synchronous orbit that made one full coverage of the 

Earth or revisit in 46 days (PASCO Coperation, n.d.).  

 

The PALSAR on board ALOS was a stationary instrument. It was faced in the lower direction of the satellite 

and observed the earth surface in only one position which is towards the direction of the moving satellite. 

The PALSAR consisted of a High-Resolution mode and a Scan SAR mode and operated in the L-band with 

a wavelength of 23.6 cm (1270 –MHz) which had a bandwidth frequency between 14 - 28 –MHz (Rosenqvist 

et al., 2007; PASCO Coperation, n.d.). Besides, it had the highest resolution of 10 m and scanned at a swath 

width of 250-350 km. Several studies including Goh et al., 2013; Mermoz, 2014; Thapa et al., 2015; Morel 

et al., 2011; Carreiras, et al., 2012 were conducted using PALSAR to estimate biomass and carbon stock in 

tropical forests. A similar study to this was carried out using ALOS PALSAR in Malaysia (Hamdan et al., 

2011). However, it was done in a different geographical location. Besides, this study used ALOS-2 PALSAR-

2 image data. 

 

Advanced Land Observation Satellite-2 (ALOS-2) is a successor Satellite mission of ALOS with improved 

instruments compared to ALOS. The essential improvement that ALOS has includes high resolution and 

rapid time of revisit. Visit time is fast and it observes the earth at a higher angle of incident (PASCO 

Coperation, n.d.). ALOS-2 is also equipped with three sensors, however, it is aimed at SAR instrument. 

ALOS-2 has an enhanced resolution of 1 m, 3 m and 10 m. It has a dual antenna that observes at wider 

swath width compared to ALOS with one fixed antenna. It has a faster revisit time of 14 days compared to 

the 46 days by ALOS (PASCO Coperation, n.d.). ALOS-2 was launched in May 2014, therefore, literature 

search showed no records of studies relating to forest biomass estimation using image data acquired from 

ALOS-2. Therefore, there is an opportunity to utilize ALOS-2 PALSAR-2 data for this study. 
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2.2.4. Polarization and Backscatter 

The characteristic of the electromagnetic waves is described by Polarization and is referred to as the direction 

of the electric field. Synthetic Aperture Radar (SAR) sensor is designed in a way to transmit and receive 

either horizontal or vertical polarized pulse (Ghasemi et al., 2011). Therefore, if the electric wave is 

transmitted by the SAR sensor horizontally and received horizontally, the signal is said to be horizontally 

polarised (HH), and if the wave is transmitted vertically and received by the sensor vertically, the signal is 

said to be vertically polarised (VV) (Ghasemi et al., 2011; JAXA, n.d.). The electric pulse can also be sent 

horizontally and received vertically (HV) or can be sent vertically and received horizontally (VH). PALSAR 

is able to send and receive horizontal and vertical polarised pulses. In addition, the polarized image of 

PALSAR can reveal the various trend between different polarizations  (JAXA, n.d.).  

 

A polarimetric SAR data is used in estimation of forest biomass, basal area and many other studies including 

mapping of flood and many more. A complete polarimetric SAR data consists of four bands of two like 

polarization HH and VV and two of cross polarization HV and VH (Maitra et al., 2012). Characteristics of 

polarization change from one object to another and to different shape and size of an object. Subsequently, 

the backscatter of the radar signals depends on the polarisation properties of the surface material. The 

roughness of the surface material determines the pulse that is measured by the sensor. (Maitra et al., 2012). 

 

There are three main scattering mechanisms that contribute to the backscattered energy. The scattering 

mechanism of incident wave on vegetation is known as volume scattering because the reflection from the 

vegetation such as forest canopy is diffused or scattered (Joshi et al., 2015). Volume scattering is one of the 

three main scattering mechanism apart from single bounce which is from a smooth surfaces such as water 

and double bounce which is from the edges of the building or on grounds and tree trucks of forest (Joshi 

et al., 2015). Generally, the backscatter depends on the wavelength and the size of the object. Larger the 

object the bigger the backscatter. Refer to Figure 3 for volume scattering in relation to polarization (JAXA, 

n.d.). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Scattering with respect to polarization (JAXA, n.d.). 
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2.3. Works related to the present study 

There are several ways to collect ground data to estimate aboveground biomass and the carbon. Plot based 

technique is one of the techniques that is widely used in forest inventory because it is cost-effective and 

simple to implement. The important parameters measured in a set of sample plots are tree diameter at breast 

height (DBH), usually at 1.3m from the ground and the tree height. The DBH and the heights are used to 

calculate the biomass of given forest using an appropriate allometric equation (Bhattaraiet al., 2015). Carbon 

content in the biomass is approximately 50% of the dry biomass, thus, biomass is multiplied by 0.5 to get 

the carbon (Houghton, 2003).  

 

Conducting field measurements such as forest inventory can complement the remote sensing techniques as 

they are essential for validating the accuracy of the satellite data. Several studies including Lu et al., 2012 and 

Karna et al., 2013 have used circular plots of 0.05 ha for field data collection to complement the study on 

estimating aboveground biomass and carbon by integrating lidar and other optical remote sensing. Other 

studies including, Otukei and Emanuel, 2015; Goh et al., 2013; Carreiras et al., 2013 used ALOS PALSA 

data to estimate the above ground biomass and carbon. A circular plot design was used for the field data 

collection, however, different radius of 15 m, 25 m and 20 m were used respectively. Hamdan et al., (2015) 

and Hamdan et al., (2014) carried out a similar study using L-band ALOS PALSAR in a Dipterocarp forest 

in Peninsular Malaysia and Mangrove forest in Malaysia respectively. However the sample size they used for 

field data collection was a square plot 30 m x 30 m and rectangular size plot of 20 m x 50 m accordingly.  

 

There are two techniques used to retrieve the backscatter values to estimate the biomass using the radar 

data. This is achieved by using the SAR that is commonly known as SAR backscatter or by Polarimetric 

Aperture Radar Interferometry or PollnSAR (Otukei and Emanuel, 2015). The most commonly used 

technique in retrieving backscatter from the radar data particularly ALOS PALSAR data can be 

accomplished through converting digital number (DN) values or pixel values to backscatter (values) 

coefficient (Otukei & Emanuel, 2015). The related studies mentioned previously that used ALOS PALSAR 

data used the former technique to estimate forest biomass and carbon. 

  

This study used data acquired from the recently launched ALOS-2 PALSAR -2 to estimate and map forest 

biomass and carbon of Ayer Hitam forest in Malaysia. The SAR backscatter technique was used to retrieve 

the backscatter values for estimating AGB. Circular plot of 500m² with a radius of 12.62 meters was used 

for this study for field data collection. 
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3. STUDY AREA, MATERIALS AND METHODS 

This chapter describes the study area and the processes applied in this research from field work preparation 

to executing the field work in Ayer Hitam Forest Reserve (AHFR). It also includes the processes in pre-

processing the PALSAR-2 radar data and analysis of both the field data and the PALSAR-2 radar data to 

obtain accurate results. The materials and equipment used are also listed and described in this chapter. 

3.1. Study Area 

3.1.1. Geographical Location 

This study was conducted in Ayer Hitam tropical rainforest. It is a Forest Reserve located in Puchong, 

Selangor State of Malaysia. The total area of the forest is 1248 hectares and is surrounded by urban 

developments. Ayer Hitam is managed by University Putra Malaysia and it is often utilised for education 

and research purposes (Awang et al., 2007). It was categorised as a research site in 1984 (Ghani et al., 1999). 

Therefore, it is directly used by researchers and scientists with an interest in studying tropical forest 

ecosystem.  

 

Geographically, Ayer Hitam is located between latitude of 20 57’ N to 03º 04’N, and longitude between 

101º 38’ E to 101º 38’E (Figure 2). The Malaysian capital city, Kuala Lumpur is located in the Northeast 

direction from Ayer Hitam forest and is approximately 6 kilometres away from the University of Putra 

Malaysia (Jusoff and Hasmadi, 2015). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Map showing study area of Ayer Hitam Rainforest Reserve in Malaysia. 
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3.1.2. Vegetation type and topography 

Ayer Hitam forest has a typical tropical rainforest characteristic of undulating topography. It has  an average 

slope of 20% with an elevation ranging from 15 to 157 meters above sea level (Jusoff and Hasmadi, 2015). 

Generally, AHFR is highly dense with a diversity of unique flora and fauna. The heterogeneous forest 

structure makes it an interesting site for education and training especially for the Faculty of Forestry in 

University Putra Malaysia and international researchers and scientists. Ayer Hitam is dominated by 

Dipterocarp tree species. It is one of the few lowland forest remaining.(Nurul-Shida et al., 2014).  

 

3.1.3. Climate 

The monthly temperature of AHFR ranges from 22.6 degree Celsius minimum to maximum of 32.0 degree 

Celsius. The mean temperature is 28.36 degree Celsius with a mean relative humidity of 87.6%. The annual 

rainfall of AHFR ranges between 2316.5mm - 4223.4 mm. The highest rainfall is recorded in the month of 

May while August records the lowest rainfall ( Jusoff and Hasmadi 2015). 

3.2. Materials 

Materials including software, image datasets and field equipment are an important part of any research. 

Therefore, this section introduces the list of materials used in order to conduct this research. 

 

3.2.1. Satellite data set, ALOS-2 PALSAR-2 radar data 

Phase Array L-type Synthetic Aperture Radar (PALSAR) 2, is a SAR sensor on board the Advanced Land 

Observation Satellite 2 (ALOS-2). The image data of PALSAR-2 used for this study was acquired online 

from JAXA, the Japan Aerospace Exploration Agency through PASCO cooperation (PASCO Coperation, 

n.d.). The scene was observed and captured on June 10th 2015 and was processed by JAXA on August 25th, 

2015. PALSAR-2 is a Fine Beam Dual Polarization (HH and HV), and a high spatial resolution of 10 m and 

pixel size of 6.25 m x 6.25 m with 24 cm radar wavelength. The observation mode of PALSAR-2 is Strip 

Map having observation width of 70 km at an off-nadir angle of 36.6º (PASCO Coperation, n.d.). This data 

was acquired by ITC-University Twente for this study on August 26th, 2015. Specification of ALOS-2 and 

other PALSAR products can be seen on this website (http://en.alos-pasco.com/). Table 2 list the 

specification of PALSAR-2 sensor data. 

 

Table 2: Detailed specification of PALSAR-2 data used in this study. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PALSAR-2 Specifications 

Observation Mode Strip Map / High resolution 

Calibration Factor -83 

Spatial Resolution 10 m 

Pixel Spacing 6.25 m (2 looks) 

Observation width -  70 km 

Product Processed Level 1.5 

Range Resolution 9.1 m 

Azimuth Resolution 5.3 m 

Polarization HH, HV (Fine Beam Dual Polarization) 

Wavelength 0.242 m ( 24 cm) 

Off Nadir angle 36.6º 

Incident angle at centre scene 40.55º 

http://en.alos-pasco.com/
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3.2.2. Software 

Several software were used in this research. One of them was SNAP, which is an abbreviation for Sentinels 

Application Platform 2, a Sentinel1 Toolbox. It is an open source software that was developed for European 

Space Agency (ESA). It consists of several processing tools that can assist in analysing data from ESA SAR 

and also SAR data from ALOS PALSAR (European Space Agency, n.d.). PALSAR-2 data was obtained in 

the RUD format and was able to open in SNAP. ArcGIS, ArcMap 10.3 was used for all the GIS analysis as 

well as retrieval of the radar backscatter. Statistical analysis was done using both Microsoft Excel and 

RStudio software. Finally, Microsoft Word, PowerPoint and Excel were used for writing and presentation. 

Table 3 list all software use in this study. 

 

Table 3: Software and their uses 

 

3.2.3. Field Equipment 

Apart from the satellite datasets and the software used, field equipment was also considered important for 

conducting this research. The field equipment that were used in this study to collect field data in Ayer Hitam 

Forest are listed in Table 4.  

 

Table 4: Equipment/materials used for field work, data collection 

 

Software Use 

Sentinels Application Platform 2 (SNAP) - Calibration of PALSAR-2 data 

- Conversion of DN values to radar backscatter 

- D-speckling of PALSAR-2 data 

ArcGIS- ArcMap 10.3 - Geo-correction and rectification 

- Geo-referencing & re-projecting  

- Extracting subset of study area from the whole image 

- Retrieving radar backscatter 

- Producing AGB and Carbon Map 

R –RStudio and SPSS 

 

 

- Correlation analysis  

- Linear regression analysis 

- Modelling and validating  

- Accuracy check 

Microsoft Excel - Manual preliminary  analysis of biometric data 

Microsoft Word - Proposal and Thesis write up 

Microsoft PowerPoint - Proposal and Thesis presentation 

Equipment Use 

Diameter Tape (5m) Measuring diameter (dbh) of trees 

Leica Disto, Laser Measuring tree heights 

Densitometer Measuring the canopy % cover 

IPad/GPS Navigation in the forest and for recording GPS location 

Distance meter tape (30m) Measuring the plot radius/area 

Sunnto Clinometer Measuring the slope 

Field sheets/pencils Recording field data 

Hard copy of Google and Topo Map Assist with locating next site for sampling 

World View 3 Image Digitizing study area boundary 

ArcGIS Base Map Geo-referencing 

Radar Footprint on Google Map Confirming the coordinates of radar image data for georeferencing 
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3.3. Research Methods 

Research methods are the crucial part of any research. It indicates the study approaches used to collect, pre-

process and analyse data to achieve a suitable result. In this study, the research methods consisted of four 

different processes. These processes refer to field data collection, processing of biometrics data and 

PALSAR data, statistical analysis of the data including correlation and regression analysis, and finally 

modelling and producing the aboveground biomass and carbon map of AHFR. Figure 3 is the flow chat of 

the main processes done in this study.  

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 4: Flow Chart of the study  
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3.3.1. Field Work 

This section includes the field sampling design, determination of plot size and data collection. Field data 

analysis for AGB and stand basal area (BA) were done and discussed in this section. 

 

3.3.1.1. Field Sampling Design 

Sampling is very important in obtaining data or information that is representative of a population and is a 

vital part especially in forest richness and biodiversity studies (You, 2011)(You, 2011). The purpose of 

sampling is to obtain reliable and quantitative information about a population to make an inference. In 

remote sensing, accuracy assessment and model validation are performed based on ground data that are 

collected from sample plots (Stehman, 1999). Thus, in order to obtain reliable data, appropriate sampling 

designs are required based on the research objectives. For example, in forest research, direct and accurate 

data is acquired from establishing sampling plots (van Laar, and Akça, 2007) because it is important to make 

inference with confidence about a study on a forest population. 

 

According to (Nurul-Shida et al., 2014), AHFR is a logged-over forest in which the three layers of the forest 

is conspicuous and can be clearly differentiated. However, based on Very High Resolution (VHR) World 

View (WV) 3 Satellite Image of AHFR that was acquired by ITC for this study, the forest appeared to be 

generally homogenous. This WV3 image was pan-sharpen before it was used. Thus, the forest could not be 

differentiated using satellite image. Consequently, prior to the field work, systematic sampling was preferred. 

Therefore, grids were marked on the WV 3 image and sample plots were generated inside the grids 

systematically.  

 

However, based on the situation on the ground including the accessibility of the forest, finally, a purposive 

sampling design was applied. It was more appropriate to apply purposive sampling because of the undulating 

topography and inaccessibility of most of the forest area. In addition the weight of the Terrestrial Lidar 

Scanner (TLS) and the accessories was also taken into consideration as they weigh over 25 kilograms. Sites 

for establishing the sample plots were subjective at a location assuming that, it is representative of the forest 

population and the plots were sampled at a distance of >50 m apart from each other. Plots for TLS scanning 

was chosen based on density of the forest undergrowth because clearance needed to be done to avoid 

occlusion.  

 

To have a representation of the population, the stratification that was used by UPM in their management 

plan of this forest was adopted. The forest was divided into three strata: 1) undisturbed forest with trees 

highly dense, 2) burned and degraded forest and 3) high elevation forest with highly dense trees. Six (6) plots 

were sampled in undisturbed forest, five (5) in burned and disturbed forest area and (21) plots were sampled 

in forest areas at elevation of 25 meters or greater. Twenty six (26) plots were sampled for TLS while other 

6 plots were sampled for collecting only the biometric data. Total of thirty-two (32) plots were sampled. 

 

3.3.1.2. Determining plot size  

Determining shape and size of the plot depend on the objective and the purpose of the research. Sampling 

plots can be of any size and shape. It can be either square, circle or rectangle. However, circular plots are 

commonly used in forest inventory (Wenger, 1984). Circular plots are easy to establish because only one 

point, the centre of the plot is defined and the radius of the plot is measured from the centre and the 

parameter is determined. However, in a rectangle or square plots, four corner points are defined and this 

can lead to high chances of error.  
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In this study, a circular plot of 500 m² with a radius of 12.62 m from the centre of the plot was established. 

Inventory of the forest parameters especially measuring the diameter at breast height (DBH) and height of 

all trees were done within the plot. Figure 5 is an example of a circular plot. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Circular plot of 500 m² 

 

3.3.1.3. Field Data Collection 

Data required for estimating aboveground biomass and carbon of a forest is no difference to that of volume 

estimation from forest inventories. Height and DBH measurements have been the key parameters in forest 

inventory over the years in forestry and it is useful as well in AGB estimation (Brown, 1997).  

 

The procedure of data collection is crucial in the field. Consequently, measurement of DBH, height and 

species identification of all trees crown cover percentage and sample centre coordinates were recorded in 

every sample plots. Prior to plot establishment, a general observation of the area was made to cater for slope 

correction. In a generally flat forest area, the radius of 12.62 m² was measured from the centre of the plot.  

However, in an undulating area, slopes were measured using Suunto Clinometer before establishing a radius. 

Then slope correction was applied to correct the slope to adjust from elliptical to the horizontal shape. This 

is done because, when the plot is established on a slope, it is more an ellipse than a circle, therefore, slope 

correction is needed (van Laar, and Akça, 2007). A slope correction table (Appendix 5) was used to adjust 

the radius of the plot.  

 

The coordinates of the centre of the plots were recorded using the GPS. Following that, all the tree species 

with a diameter at breast height (DBH) of 10 cm and above that were found within the plot boundary and 

their heights were measured. The diameter was measured at 1.3 m height from the base of the tree. A 

standard size stick of 1.3 m was used to minimise variation in DBH measurement and to be consistent with 

the point of measurement. For trees standing on slopes and higher ground, DBH was measured from the 

higher ground. Dead litters and debris under the tree were cleared before measuring the DBH. The 

densiometer was used to measure the crown cover percentage. Five crown cover readings were taken. One 

taken in the centre of the plot and four in the different directions (N, S, E & W). The final reading was 

calculated from the average of the five measurements to get a precise and representative canopy cover. Leica 

Disto Laser height measuring instrument was used to measure the tree heights. All these data were recorded 

in the field sheet (Appendix 6) and entered in the in Microsoft Excel for analysis. 
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3.3.1.4. Field Data Analysis of AGB and Basal Area (BA) 

To estimate aboveground biomass, wood density is required. Therefore, an FAO default wood density value 

of 0.57 tons m³ was used for all the species. This value is applicable for the tree species in a tropical forest 

in Asia (Hirata et al., 2012). Unfortunately, wood density from Global Wood Density database (Mitchard et 

al., 2012) was not used because not all trees were identified to species or genera level in order to use species-

specific wood density to calculate  the biomass.  

 

The allometric equation is the main approach used to estimate above ground biomass. There are many 

allometric equations available for estimating aboveground biomass for all kinds of forests and many studies. 

Basuki et al., (2009) used equation specifically for Dipterocarp tropical forest in Indonesia while Tanase et 

al., 2014 used the allometric equation for Cypress Pine dominated forest in Australia. For this study, a revised 

and improved Allometric Equations adopted from Chave et al., 2015 specifically for tropical forest trees 

was used to estimate aboveground biomass and carbon in Ayer Hitam Forest Reserve. Refer to Equation 1 

(Chave et al., 2015). 

 

Equation 1:  Allometric Equation 

  𝐴𝐺𝐵𝑒𝑠𝑡 = 0.0673 ∗ (𝜌 𝐷2𝐻)0.976  

Where:   𝐴𝐺𝐵𝑒𝑠𝑡 is aboveground biomass estimate in kilogram 

   D is diameter at breast height in centimetre 

   H is height in meter 

  𝜌 is wood density in gcm³ 

  0.0673 and 0.976 are constants                     

 

Total above ground biomass for individual plots was computed using Equation 1 and then converted to 

tons per hectare (ton ˉ¹ha). Subsequently, carbon was calculated from the aboveground biomass using the 

conversion factor of 0.5. Carbon was calculated using Equation 2. Approximately 50 % of the biomass is 

stored as carbon (Hirata et al., 2012).  

 

Equation 2: Carbon Equation 

C= B * CF 

Where:   C is the carbon stock in ton C 

  B is the dry biomass 

  CF is the carbon fraction (0.5) 

 

Basic statistics such as average height and DBH per plot was computed. Total basal area per hectare (BA/ha) 

were also calculated using Equation 3 (Missourie education., n.d.).The basal area was calculated to analyse 

the correlation between the radar backscatter coefficients of HH and HV polarization. Basal area is the area 

of the cross section of the stem at breast height. Basal area per hectare considered as a measure of stocking 

or density of forest stand.  

 

Equation 3: Basal Area  

BA = 0.00007854 * DBH² 

 

Where:  0.00007854 is the constant of 𝜋 which 3.14 

BA is the basal area per square meter (m²)  

  DBH is diameter at breast height in centimetres 
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3.3.2. PALSAR-2 Data Pre-processing 

Processing of data is another vital component of research. In this study, PALSAR data was pre-processed 

before the backscatter coefficient (dB) was retrieved to estimate the biomass of the study area. 

 

Pre-processing is normally done to correct for distortion or degradation in the image to produce a more 

meaningful data that represents the scene of which the image is captured. In addition pre-processed images 

are more appropriate to work with (Frulla et al., 1998). Before applying further analysis and processes to the 

data, it is essential to perform geometric and radiometric calibration to radar images (Frulla et al., 1998). 

Geometric correction is applied to the SAR to determine its pixel position by allocating its geodetic 

coordinates in latitude and longitude (Shimada et al., 2009). Conversion of slant range to ground range and 

multi-look and azimuth compression are part of the geometric correction process. On the other hand, 

radiometric correction refers to distortion associated with the sensor. In radar remote sensing, especially 

when dealing with SAR radar image, this process is associated with the conversion of the DN values to 

NRCS or backscatter coefficient (Shimada et al., 2009).  

 

3.3.2.1. Data Pre-processing - Calibration and Filtering 

The PALSAR-2 radar data used for this study was obtained in as Process Level 1.5 data. At this level, most 

of the radiometric calibration and geometric correction processes were applied prior to acquiring the data. 

Besides, the map is georeferenced or geocoded (Shimada et al., 2009). Backscatter conversion is possible 

with data at this level ((Joshi et al., 2015; Kim, 2012).   

 

PALSAR-2 data came in BEAM-DIMAP format and was not possible to open in either ArcGIS or ERDAS, 

however, it was possible to be opened in SNAP software. In SNAP, backscatter calibration and filtering 

processes were applied. Backscatter calibration is a process where the PALSAR-2 radar data is calibrated 

using the Sigma Nought calibration to backscatter coefficient (𝜎°) (Sun et al., 2011). This process was 

applied to HH and HV polarized data. The digital number (DN) values of the data were automatically 

converted to radar backscatter coefficient also known as Normalized Radar Cross Section (NRCS) (Sun et 

al., 2011). Calibration was done to correct the HH and HV polarized data so that the DN values represent 

true radar backscatter of the reflecting surface object (Sun et al., 2011).  

 

Speckle filtering was also applied to the image data after calibrating the image. Speckle filtering is applied to 

the image to remove the salt and pepper like appearance on the image that is caused by high frequency 

energy waves caused by reflection of objects on the ground (Joshi et al., 2015). Speckles is one of the 

common radiometric distortion that randomly appear on all SAR images. The relationship between the 

surface object and the received backscatter interactions can be influenced by the speckles (Joshi et al., 2015).  

 

Filtering is essential because it reduces speckles in the image and improves the texture of the image (Amini 

and Sumantyo, 2011) In this study, Mean Filter of 3 x 3 pixel size was applied to both like polarised and 

crossed polarised images. This method was used to retain the original information of the data. Here, the 

average of the DN values of the 9 pixels is calculated (Amini and Sumantyo, 2011). The new average value 

replaces the original centre pixel value. Apart from mean or average filtering method, there are other filters 

such as median, Lee, Frost, and Gamma available to process SAR images (Babu, 2013)  depending on the 

objective of the study.  
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3.3.2.2. Data processing- Geo-referencing and Re-projecting. 

The pre-processed image was saved in GEOTIFF format and exported to ArcGIS for further processing. 

The image was georeferenced and re-projected to the universal transverse Mercator (UTM) coordinate 

system in ArcGIS.  Geo-referencing was applied to HH and HV polarized data to convert the coordinate 

of the image file to a specific map coordinate system and datum. The upper-left, upper right, lower right 

and lower left coordinates from the footprint of the PALSAR -2 data in the Google Earth Map was used to 

georeference the data. An ArcGIS online base map was also used as a reference map for geo-referencing 

the PALSAR-2 image.  

 

Once, the four points on the reference coordinates were assigned to the image file, it was rectified and a 

new image with map coordinates in degree decimals was produced. The geo-referencing process was 

updated and the image was displayed with new map coordinates (Zhu et al., 2007). In this case, the image 

was spatially georeferenced to the geographical coordinate system using the World Geodetic System 84 

(WGS_1984) in decimal degree. Subsequently, the map was re-projected to Universal Transverse Mercator 

(UTM) coordinate system with the appropriate zone. The final image map has the following spatial reference 

information WGS_1984_UTM_Zone_47N. 

 

Meanwhile, the WV 3 image of the study area with the same spatial reference was digitised and the boundary 

of the study area was clipped. The study area boundary was overlaid on the PALSAR-2 image map and the 

subset of the study area, (AHFR) was extracted from the whole image.  

 

3.3.3. Retrieval of radar backscatter coefficient 

Radar backscatter coefficient from the HH and HV polarized images were retrieved using two approaches. 

The first was achieved in SNAP when applying calibration process where DN values were automatically 

converted to backscatter coefficient. The second approach was manually done in ArcGIS by extracting the 

DN values and converting them to backscatter coefficient using Equation 4. The DN values do not 

represent radar backscatter of the surface object, therefore, they were converted to backscatter. Equation 4 

is used specifically for ALOS PALSAR for extracting radar backscatter coefficient for a product level 1.5 

(Shimada et al., 2009). 

 

Equation 4: Backscatter coefficient conversion 

 

   𝑁𝑅𝐶𝑆 (𝑑𝐵) = 10 ∗ 𝑙𝑜𝑔10(𝐷𝑁2) + 𝐶𝐹    

Where:   NRCS = Normalized Radar Cross Section      

  DN = Digital Number value 

CF = Calibration Factor of -83 

 

Retrieval of backscatter took into consideration field sample size the pixel size of the image. The HH and 

HV polarized image have a pixel size of 7 m x 7 m and the field sample plot was a circular plot of 500 m² 

with a standardized radius of 12.62 m. The plot size could approximately fit in the 9 pixels with the 

dimension of 3 x 3-pixel window. Since the radius of the plot was 12.62, the diameter of the whole plot was 

approximately 25 m (i.e.: 12.62 +12.62m) which can approximately fit with 9 pixels (i.e.; of 3 pixels * 7 m 

=21 m). Moreover, taking an average of 9 pixels gives more representation of the backscatter values (Figure 

6). A similar approach was applied in a biomass estimation study (Hamdan et al., 2011). However, a plot 

size of 50 m x 50 m was sampled and 16 pixels of 4x4 pixels were used to retrieve the DN values then 

convert to backscatter value.  
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Figure 6: Graphical representation of fitting sample plot with the 9 pixels 

 

Apparently, not all GPS coordinates recorded in the centre of the sample plots perfectly fitted in the centre 

of the pixel. There were some centre points that were at the edge of two pixels or between two pixels (Figure 

7). This has created a problem in identifying the true pixel to consider as the centre pixel to establish the 

3x3 pixel window. To address this problem, a different approach was taken.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Two different situation in the location of centre points of the plots 

 

Basically, an average of four, 3 x 3-pixel windows was obtained to determine the final pixel value in a plot. 

First a pseudo point was placed in the centre of the pixel where the original point was located. Next a pixel 

window of 3 x 3 was established and the average backscatter of the first 9 pixels was calculated. The same 

was done by placing pseudo points in the centre of 3 other pixels and again an average of the 9 pixels was 

calculated. Average of the four averages was calculated to use as the final backscatter value to run the model. 

This process is illustrated in Figure 8. The average backscatter obtained from 9 pixels and average were 

compared by running the regression model with the AGB to accept the approach that gives the strong R² 

to estimate the AGB and carbon stock of the whole study area. 
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Figure 8: Illustration to determine centre pixel  

 

3.3.4. Correlation analysis 

Correlation analysis is an important process in any research because it expresses something about the 

relationship between two or more variables. In addition, correlation analysis allows one to understand the 

strength of the relationship between the variables, whether the relationship is weak, strong negative or 

positive. The correlation coefficient values range between -1 and +1 (Stein, 2002). The value -1 indicates 

that there is a very strong negative relationship between two variables, and +1 indicates that there is a very 

strong relationship between the variables. A value of 0 indicates that there is no relationship between the 

variables (Stein, 2002). 

 

In this study, correlation analysis was carried out between the forest parameters and the radar backscatter 

coefficient of HH and HV polarized image data. The main focus was to observe the relationship between 

the AGB and the radar backscatter coefficient. Therefore, initially, a scatter graph was plotted between the 

variables. Afterwards, Pearson’s product – moment correlation coefficient was used to determine the 

relationship between radar backscatter and AGB and stand basal area (BA). Similarly, a relationship between 

the field measured AGB and predicted AGB was also assessed to see the variability in the variables. This 

was executed after the model was developed and validated.  

 

3.3.5. Regression Analysis  

A relationship between one dependent variable and one or more independent variables can be identified 

using regression analysis. The two commonly used regression models are, simple linear and multiple linear 

regression models (Quinn & Keough, 2002). Researchers widely use linear regression model because the 

model describes the linear relationship between the independent (x) and dependent (y) variables. It defines 

the variation in y with a change in x and a new y value can be predicted from a new value of x (Quinn & 

Keough, 2002). Multiple linear regression is used to assess the relationship between a single dependent 

variable and more than one independent variable.  
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Regression models including linear models are some of the main techniques used to predict AGB apart from 

K nearest neighbourhood and neural network (Lu 2006). Both simple linear and multiple linear regression 

was performed to assess the relationship between radar backscatter coefficient of HH and HV polarized 

backscatter coefficient with the AGB. In linear regression analysis, AGB was used as the dependent variable 

and HV was used as the independent variable to determine the change in the AGB as HV changes. A strong 

coefficient of determination (R²) was obtained from this relationship. On the other hand, a multiple linear 

regression was performed considering AGB as a dependent variable and HH and HV as independent 

variables. Again, a strong correlation and R² was obtained. Simple linear regression between the HH and 

HV backscatter and other forest parameters including DBH, height and stand BA were also performed.  

 

3.3.6. Model Development and Validation 

A total of 27 plots observed in the field were used for model development and validation. These plots were 

randomly distributed into two sets. 17 plots (60%) was used for developing the model while 10 plots (40%) 

were retained to validate the model. The backscatter of HV polarized image was correlated with the 

calculated AGB using linear regression. HV was considered as the independent variable and AGB as the 

dependent variable. The empirical model produced from this process was used to estimate the AGB and 

carbon stock of the whole study area. The relationship between the HV backscatter and the AGB is 

expressed as a linear regression function (Equation 5). 

 

Equation 5: Linear regression function  

 𝒀 =  𝜷𝟎 + 𝜷𝟏𝑿                 

Where:   Y is the predicted biomass 

  𝛽0 and 𝛽1 are model coefficients  

  X   is the HV backscatter value 

 

A validity check is performed to measure the prediction accuracy (Snee, 1977). Thus, validation process is 

essential before any model can be used. In this study, 40% (10 plots) of the data, which is independent of 

the model development data was used to validate the linear regression model. The predicted AGB obtained 

from the model was correlated with the calculated AGB to observe the coefficient of determination (R²) of 

model validation. Furthermore, the Root Mean Square Error (RMSE) was calculated using Equation 6 

(Deng et al., 2014).   

 

Equation 6: Root Mean Square Error calculation 

    

RMSE =  

Where:  RMSE is Root Mean Square Error 

  Y is biomass observed or calculated using allometric equation 

  �̂� is biomass predicted or derived from the radar backscatter using the model 

  n is the number of validating plots 
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3.3.7. Mapping aboveground biomass (AGB) and carbon stock 

The simple linear regression model developed from HV backscatter and AGB was accepted to estimate the 

AGB and carbon stock for the study area. The model was chosen after validating its accuracy and the AGB 

map of the whole study area was produced in ArcGIS. The HV polarized raster map was used to map AGB  

 

Raster calculator is a tool in the spatial analyst toolbox in ArcGIS software that was applied to process the 

AGB map. In raster calculator, the HV raster map was selected in algebra map expression, and the model 

equation (Equation 8) was applied. The raster calculator takes every pixel value that is the HV backscatter 

value in the raster map and converts it to the biomass accordingly. The backscatter values are converted to 

AGB values and estimation is based on pixel basis (Hamdan et al., 2015). Negative values were assigned to 

those areas without AGB. Consequently, values were arranged logically in the category (eg, 0 - 80, 80 - 160 

etc.) and colours were assigned to the values that represented biomass values. After quantification of the 

biomass, carbon stock was calculated using equation 2. Consequently, a map showing the distribution of 

AGB and carbon stock for AHFR was produced.  
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4. RESULTS 

4.1. Descriptive analysis of field data 

Forest parameters measured in the field were tree height, diameter at breast height (DBH) and crown cover 

percentage. Species identification was also done in the field. The mean AGB and stand basal area (BA) per 

ha is 208.79 ton haˉ¹ and 29.47 m³ haˉ¹ respectively. Table 5 presents the descriptive statistic for the overall 

plots (27 plots). About 193 tree species were enumerated. AGB and carbon stock based on per plot and per 

hectare were calculated and presented in Appendix 1, Table A. Summary statistics of other forest parameters 

were also assessed and summarized in the same table.  

 

Table 5 Descriptive statistic of forest parameters. 

  

N Minimum Maximum Sum Mean Std. Deviation 

Statistic Statistic Statistic Statistic Statistic Std. Error Statistic 

AGB( ton) 27 60.17 367.07 5637.41 208.79 15.29 79.44 

BA (m³) 27 9.92 42.93 795.76 29.47 1.61 8.38 

DBH (cm) 27 17 28 - 22.49 0.55 2.85 

Height (m) 27 10.76 18.65 - 14.37 0.40 2.08 

Tot Tree /plot 27 17 45 778 28.81 1.32 6.85 

Crown Cover% 27 70 95 - 86.67 1.10 5.72 

 

Variation in biomass estimation is also influenced by the tree diameter size. Therefore, trees measured in 

the field were classified according to their diameter class. Table 6 shows the total number of trees, basal 

areas and above ground biomass recorded per diameter class. Average height and DBH per diameter class 

were also calculated. Trees in the diameter class of 30-39 cm DBH constitutes more than 1200 tons of AGB 

based on the 27 plots inventoried. Nevertheless, more trees were found in diameter class 10-19 cm as 

expected in a natural forest with the least AGB of 649.86 tons (Figure 9).  

 

Table 6: Summary per diameter class  

DBH class 10-19 20-29 30-39 40-49 50-59 >60 

No. of trees 429.00 179.00 96.00 35.00 25.00 14.00 

Total BA (m³ haˉ¹) 6.72 8.18 8.87 5.68 5.60 4.45 

Total AGB (tonˉ¹ha) 649.86 1062.06 1232.87 928.35 914.38 789.61 

Mean height (m) 11.55 16.04 17.60 16.81 21.97 22.70 

Mean DBH (cm) 13.87 23.88 32.61 45.09 53.88 66.45 
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Figure 9: Total amount of biomass per diameter class 

 

4.1.1. Common tree species in Ayer Hitam Forest Reserve  

Species identification and enumeration were also carried out in the field. A total of 778 individual trees were 

recorded. About 768 species from 717 families were identified. The most occurring species and families are 

presented in Table 7 and Figure 9 respectively. Dipterocarpaceae is the dominant tree family in AHFR. 

Three frequently occurring species Hopea sulcata, Shorea macroptera and Dipterocarpus costulata are from 

Dipterocarpaceae family. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10: Four dominant tree family in AHFR 
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Table 7: Most occurring species at AHTF sampled sites 

Species Family Occurrence 

Streblus elongatus  Moraceae 50 

Syzygium spp  Myrtaceae 39 

Hopea sulcata  Dipterocarpaceae 32 

Endospermum diadenum Euphorbiaceae 30 

Shorea macroptera  Dipterocarpaceae 21 

Dipterocarpus costulatus  Dipterocarpaceae 20 

 

4.2. Descriptive analysis of the PALSAR-2 backscatter 

Prior to any pre-processing of the radar data, it is essential to visually analyse the data. The PALSAR HV 

and HH polarized data can be distinctively differentiated based on the backscatter. That is, HV appears 

brighter than HH data. In this case, the forest appears light grey in HV and dark grey in HH polarized image. 

Figure 11 shows the appearance of the HH and HV image data before and after pre-processing in SNAP. 

Even after applying calibration and filtering, there is a district difference between the two polarizations. The 

raw image data of the whole image in appended in Appendix 4, images A and B. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11: Appearance of PALSAR-2 HH, HV polarised image data before and after retrieving the backscatter values 

 

4.2.1.  Correlation of AGB and HH and HV polarized backscatter  

Calibration of radar backscatter from digital number (DN) values to backscatter coefficient or sigma noughts 

was achieved in SNAP software. It was automatically converted from DN values to backscatter coefficient 

for the HH and HV polarized image. The backscatter were extracted using the 3 x 3 pixel window and the 

average backscatter was calculated automatically based on the coordinates of the plots. On the other hand, 

the calibrated image was exported to ArcGIS and backscatter was extracted manually using 3 x 3 pixel 

window and 4 of 3 x 3 pixel window to obtain the average and average of average pixel values (Figure 6, 7 

and 8). HV and HH backscatter retrieved using these different ways were correlated with AGB. The 

correlation analysis is shown in Table 8.  
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Table 8: Correlation between AGB and backscatter  

 

Correlation analysis result showed that the backscatter retrieved from the HV polarised image using the 

average of average (i.e. mean of means) approach correlated well with AGB, having r of 0.904 and a R² of 

0.81. Therefore, backscatter retrieved from this approach was used to develop the model to estimate the 

AGB and carbon stock. The backscatter coefficient retrieved using these approaches are appended in 

Appendix 2, Table A and B. 

4.3. Correlation Analysis of HH and HV polarized backscatter and forest parameters                                                

The Pearson’s product moment correlation was used to observe the correlation between HH and HV 

polarized radar backscatter and AGB separately. HH and HV backscatters were also correlated with other 

forest parameters. There was a strong correlation between HV and AGB at R = 0.90 and HV and basal area 

at R = 0.82 at 95 % confidence level (Table 9). HH polarization also correlates to AGB and stand BA at 

0.65 and 0.68 respectively. Height has the weakest correlation with both HV and HH polarized backscatter. 

Correlation analysis between AGB and all other forest parameters are appended in Appendix 1, Table C. 

 

 Table 9: Correlation between the HH and HV Polarization with basal area, DBH and height 

 

 

 

 

 

 

 

 

 

 

 

**. Correlation is significant at the 0.01 level (2-tailed). 

*. Correlation is significant at the 0.05 level (2-tailed). 

 

The relationship between HH and HV backscatter coefficient and stand BA was also assessed. A positive 

and moderate correlation was seen with HV backscatter with R² of 0.672 (Figure 12). There was a weak 

relationship observed between HH backscatter and stand BA (Figure 13). The regression statistics of HV 

polarized backscatter and stand BA is found in Table 10. At 95% confidence level, HV backscatter can 

explain about 67% of stand BA. Only 45% of the stand BA is described by HH backscatter. 

 

 

 

 

  

AGB 

 ton haˉ¹ 

HV 

Mean of 

Means 

HH 

Mean of 

Means 

HV_ 

Mean 

HH_ 

Mean 

HV_SNAP 

Mean 

HH_SNAP 

Mean 

Pearson 

Correlation 

AGB 

ton haˉ¹ 
1 0.904** 0.652** 0.870** 0.660** 0.71 0.142 

Sig. (2-

tailed) 
 6.526E-07 0.005 5.757E-06 0.004 0.787 0.587 

N 17 17 17 17 17 17 17 

Stand Parameters/                               Backscatters HV HH 

AGB(ton/ha) 
Pearson Correlation 0.904** 0.652** 

Sig. (2-tailed) 6.5261E-07 0.005 

BA(m³/ha) 
Pearson Correlation 0.819** 0.670** 

Sig. (2-tailed) 5.687E-05 0.003 

Mean DBH 
Pearson Correlation 0.321 0.313 

Sig. (2-tailed) 0.209 0.221 

Mean height 
Pearson Correlation 0.463 0.231 

Sig. (2-tailed) 0.061 0.372 
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Figure 12: Relationship between basal area (BA) and HV backscatter coefficient 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13: Relationship between basal area (BA) and HH backscatter coefficient 
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Table 10: Regression analysis of HV and stand BA 

Regression Statistics       

Multiple R 0.819     

R Square 0.672     

Adjusted R Square 0.649     

Standard Error 4.353     

Observations 17     

 

 Coefficients P-value    

Intercept 73.698 6E-08    

HV 2.676 5.69E-05    

 

ANOVA      

  df SS MS F Significance F 

Regression 1 581.205 581.205 30.668 5.6873E-05 

Residual 15 284.269 18.951   

Total 16 865.474       

 

AGB has a positive relationship with stand BA, DBH and height (Table 11). A strong relationship was 

noticed between AGB and stand BA, and height, but correlates weakly with DBH. The relationship of AGB 

and stand BA was plotted on the scatter graph (Figure 14). About 71% of AGB can be explained by the 

stand BA. The summary output of the regression analysis of HH and AGB, HH and BA and AGB and BA 

are attached in Appendix 3, Tables A, B and C. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14: Correlation between AGB and basal area (BA) 

 

 

 

A
G

B
 (

to
n

 h
a
ˉ¹

) 



MODELLING AND MAPPING ABOUVEGROUND BIOMASS AND CARBON STOCK USING ALOS-2 PALSAR DATA IN AYER HITAL TROPICAL RAINFOREST RESERVE IN 

MALAYSIA 

 

31 

Table 11: Correlation between AGB and other forest stand parameters 

 

 

 

 

 

 

**. Correlation is significant at the 0.01 level (2-tailed). 

*. Correlation is significant at the 0.05 level (2-tailed). 

4.4. Regression Analysis of AGB and Palsar-2 backscatter – HH and HV Polarization 

Regression analysis was applied to observe the relationship between the HV and HH polarized PALSAR 

backscatter with aboveground biomass and basal area. Simple linear regression and multi-linear regression 

was employed. 

 

4.4.1. Developing Regression Model 

Linear regression model was used to estimate the AGB with HV polarised backscatter.  The summary output 

of the regression is presented in Table 12 and the graphical representation of the result is shown in Figure 

15. The regression result showed a very high R² of 0.817 with a standard error of 30.902 tons haˉ¹ of AGB 

using data from 17 plots. Approximately 82% of the AGB was explained by HV backscatter.  

 

Table 12: Statistics of linear regression of AGB and HV polarized backscatter 

Regression Statistics       

Multiple R 0.9038     

R Square 0.8169     

Adjusted R Square 0.8047     

Standard Error 30.9017     

Observations 17     

    

  Coefficients P-value    

Intercept 672.3961 2.03682E-09    

HV 28.0593 6.52608E-07    

      

ANOVA      

  df SS MS F Significance F 

Regression 1 63917.6536 63917.654 66.935321 6.526E-07 

Residual 15 14323.75 954.91667   

Total 16 78241.4037       

 

 

 

 

 

 

 

 

 

  Mean DBH (cm) 
Mean 

height(m) 

Basal Area 

(m³ haˉ¹) 

AGB (ton haˉ¹) 

Pearson Correlation 0.495* 0.666** 0.843** 

Sig. (2-tailed) 0.044 0.004 
2.12138E-05 
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y=28.059 + 672.39 
R² Linear = 0.817 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15: Relationship between AGB and HV backscatter coefficient 

 

A linear regression model was also performed with the HH polarized PALSAR backscatter and the AGB. 

Nonetheless, the outcome was very weak with R² of 0.425 (Figure 16). Ultimately, the model was developed 

using backscatter retrieved from HV polarization and field measured AGB to model and estimate the AGB 

of Ayer Hitam Forest Reserve.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16: Relationship between AGB and HH backscatter coefficient 
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4.5. Validating the Model and Accuracy Assessment 

4.5.1. Validation data 

The 40% of the dataset (10 plots) was used for model validation to measure the predictive accuracy. The 

validation dataset was independent of the 60% of the dataset (17 plots) used for developing the model. The 

data for model development and validation are appended in Appendix 1, Table B and C. 

 

4.5.2. Model validation and accuracy assessment 

Simple linear regression model was developed from the 60% of the data (17 plots). The correlation between 

the estimated and observed AGB gave a strong coefficient of determination, R² of 0.796. The scatter graph 

of the estimated and observed AGB is presented in Figure 18. The regression analysis results of model 

validation are shown in Table 13. Approximately 80% of the observed AGB was explained by the estimated 

AGB according to this model (Figure 17). 

 

Equation 7:  Model Equation 

 𝑌 =  𝛽0 + 𝛽1𝑋               𝑌 = 672.40 + 28.06𝑋             

Where:   Y is the predicted biomass 

  𝛽0 is the y intercept which is 672.40 

  𝛽1 Is the slope which is 28.06 

  X   is the HV backscatter value 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17: Predicted AGB is plotted against the observed AGB to check model validity 
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Table 13: Regression analysis of model validation using 10 plots 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The root mean square error (RMSE) was calculated based on the validation data (n=10). The result of the 

RMSE was very with the value of 135.136. Nevertheless, the simple linear model gave a strong R² of 0.82. 

Such high RMSE is also obtained by Goh et al., 2013 by combining ALOS PALSAR and SPOT 5 images 

to estimate AGB. He also used 10 plots to validate the regression model. He obtained an RMSE of 150 and 

152 ton haˉ¹ and R² of 0.46 and 0.47 respectively. Table of RMSE calculation is attached in Appendix 1, 

Table D. 

4.6. Proving the Model with other regression analysis 

Besides, multi-linear regression analysis was also performed to test the model. The combination of HH and 

HV polarized backscatter was used with the observed AGB and the result is presented in Table 14. The 

regression result shows a R² of 0.83 and a standard error of 30.902 ton ha-1 at a confidence level of 95%.  

The regression line plotted against estimated and observed AGB using this model is shown in Figure 18.   

 

Table 14: Result of the multi-linear regression of AGB with combination of HH and HV polarization 

Regression Statistics       

Multiple R 0.9106     

R Square 0.8291     

Adjusted R Square 0.8047     

Standard Error 30.9023     

Observations 17     

  Coefficients Standard Error t Stat P-value  

Intercept 699.8140 59.7163 11.7190 1.27E-08  

HV 32.5630 5.6619 5.7512 5.01E-05  

HH -3.9959 3.9971 -0.9997 0.3344  

      

ANOVA      

  df SS MS F Significance F 

Regression 2 64872.069 32436.035 33.966 4.25316E-06 

Residual 14 13369.334 954.952   

Total 16 78241.404       

Regression Statistics     

Multiple R 0.892     

R Square 0.796     

Adjusted R Square 0.771     

Standard Error 19.238     

Observations 10     

  Coefficients P-value    

Intercept 193.394 3.42616E-06    

AGB ton haˉ¹ 0.593 0.000514    

      

ANOVA      

             df SS MS F Significance F 

Regression 1 11578.285 11578.285 31.284 0.000514 

Residual 8 2960.866 370.108   

Total 9 14539.151       
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R² = 0.8291
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Figure 18: Estimated AGB plotted against observed AGB.  Estimated AGB derived from multi-linear regression 

model developed using AGB and combination of HH and HV. 

 

A regression analysis was formulated by combining stand BA and height with HV. The regression result 

showed a strong R of 0.863 and R² of 0.745 at a significant level of 95% (Table 15). A strong R² is obtained 

in this multi-regression analysis because both BA and height are a function of radar backscatters. Hussin et 

al., (1991) stated, systems of equations in which these forest stand parameters including AGB can be 

estimated from radar backscatter directly. This regression analysis supports the validity of the linear 

regression model used for estimating the AGB of the study area. 

 

Table 15: Multiple regression of HV backscatter coefficient and stand BA and Height 

Regression Statistics       

Multiple R 0.8633     

R Square 0.7452     

Adjusted R Square 0.7088     

Standard Error 1.2765     

Observations 17     

  Coefficients Standard Error t Stat P-value  

Intercept -28.3711 2.4809 -11.4360 1.731E-08  

Mean Height 0.3534 0.1549 2.2816 0.0386778  

BA m³haˉ¹ 0.2361 0.0446 5.2983 0.0001125  

      

ANOVA      

  df SS MS F Significance F 

Regression 2 66.7180 33.3590 20.473328 6.9712E-05 

Residual 14 22.8114 1.6294   

Total 16 89.5294       
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Further correlation and regression analysis was done between combination of stand BA and the height, with 

AGB. Multi-linear regression was performed using these forest parameters. The outcome of the regression 

result showed a very strong R² of 0.974 and the relationship between these forest parameter were very strong 

(Table 16). AGB correlates very well with BA and height because, AGB is a function of BA and height 

(Hussin et al., 1991). 

 

Table 16: Regression analysis of AGB and stand BA and height 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 19:  Estimated AGB plotted against observed AGB.  Estimated AGB derived from multi-linear regression 

model developed using AGB and combination of stand BA and height. 

. 

Regression Statistics        

Multiple R 0.9738      

R Square 0.9482      

Adjusted R Square 0.9409      

Standard Error 17.0071      

Observations 17      

  Coefficients Standard Error t Stat P-value   

Intercept -234.2207 33.0538 -7.0861 5.45515E-06   

BA m³haˉ¹ 6.9294 0.5938 11.6691 1.33802E-08   

Mean Height 16.5305 2.0635 8.0111 1.34755E-06   

       

ANOVA       

  df SS MS F  Significance F 

Regression 2 74191.988 37095.994 128.253  9.9463E-10 

Residual 14 4049.376 289.241    

Total 16 78241.364        
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4.7. Mapping Aboveground biomass and Carbon stock of Ayer Hitam Forest Reserve 

Estimation of aboveground biomass for the whole study area was done using Equation 4. An AGB and a 

carbon stock maps were produced and shown in Figure 20 and 21 respectively. Carbon stock of the study 

area was calculated based on the conversion factor of 0.5 because about 50% of the forest biomass is stored 

as carbon (Watson, 2009; Hirata et al., 2012) 

  

Based on the result of the AGB estimation shown on the map. It can be seen that the amount of AGB 

ranges mostly from 240 tons haˉ¹ to greater than 320 ton haˉ¹. Areas with AGB less than 80 ton haˉ¹ are 

those areas close to the boundaries of urban areas. The areas with undulating topography had higher AGB 

because it is not easily accessible. In addition, biomass is higher in the undulating  terrain because of double 

bounce scattering which is contributed by the tree trunks and branches especially in forests with high 

biomass that is over 200 ton haˉ² ( Le Toan et al., 2012). This is true for the present study because according 

to the AGB estimation map, the estimated biomass in the hilly terrain is 200 ton haˉ¹ and greater as well as 

in primary forests and undisturbed forests. 

 

Subsequently, the carbon stock map follows a similar pattern of the AGB map because the total amount of 

forest AGB was dived by 2 (50% of the AGB) to produce it. Consequently, there is a high content of carbon 

in areas where the amount of AGB is high. 
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Figure 20: Map of estimated AGB in the study area, AHFR 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 21: Carbon stock map of Ayer Hitam Forest Reserve  
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5. DISCUSSION 

5.1. Data for Aboveground biomass estimation 

It is essential to have reliable AGB values in order to effectively estimate and map AGB and carbon stock 

of a forest area. Taking into consideration, the calculation of AGB of individual tree, the choice of wood 

density and also the allometric equation is also important. Appropriate allometric equation suitable for a 

particular forest type should be used. For example, the Asian tropical forest types are characterised with tall 

trees and therefore allometric equation developed for tropical forests in other tropical region such as 

Americas cannot best describe the AGB in Asian forest (Morel et al., 2011). Therefore, an appropriate 

allometric equation suitable for this forest type (AHFR) is needed to calculate AGB.  

 

The data for estimating AGB were collected from 27 sampled plots in AHFR in October 2015. Diameter 

at breast height, height, forest canopy cover in percentage and tree species were recorded. AGB was 

calculated based on improved allometric equation for tropical forests (Chave et al, 2015). This equation is 

appropriate for application for estimating AGB in tropical forest in Asia including Malaysia. This allometric 

equation (Equation 1) requires the use of wood density, therefore, default wood density value for Asia 

(Hirata et al., 2012) was used to calculate the AGB. The default value was used because, all the tree species 

that were recorded in the field were not identified to the species or genera level. Some of the trees were 

identified by the common name in Malay and some were identified only to the family level. About 21% of 

the trees were not identified, therefore, the default wood density was preferred over specific wood density. 

Since, DBH and height were measured and the wood density was decided with an appropriate allometric 

equation, the AGB was calculated to be correlated with PALSAR-2, HH and HV polarized backscatter 

coefficient. 

 

On the other hand, the PALSAR-2, HH and HV polarized data were pre-processed and analysed to retrieve 

the backscatter coefficient in sigma nought ( 𝜎0). Two approaches were applied to retrieve the backscatters, 

which is (1) automatically using SNAP software and (2) manually in ArcGIS. Average backscatter coefficient 

from 9 pixels and mean of means of (4) 9 pixels were calculated. The average values were used to correlate 

with the AGB and other forest stand parameters. The mean of means backscatter value exhibited a strong 

correlation with the AGB and it was accepted for further relationship assessment (Table 8).    

 

Consequently, the observed AGB was then related to the HH and HV polarized backscatter coefficient. 

This correlation is further discussed in section 5.3. AGB was correlated with other forest stand parameters 

including stand BA, height and DBH. A strong correlation was observed between AGB and the stand BA 

compared to height and DBH. However, a very strong correlation was observed in a multi-linear correlation 

between AGB and combination of stand BA and height. Relationship between AGB and other forest stand 

parameters is discussed in section 5.2. 

5.2. Correlation between AGB and Forest Parameters 

Aboveground biomass (AGB) of a forest is a function of several forest stand parameters including height, 

DBH, stand BA and wood density. AGB also relates directly to stand volume (Hussin, 1990). To know 

AGB of an area, an allometric equation suitable for that particular area must be used. Therefore, in the 

present study Equation 1 was used. Average height and DBH and total BA per hectare was also calculate to 

assess their relationship with the AGB. 
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Pearson’s product-moment correlation was used to assess the relationship of AGB with the other forest 

parameters (Table 11). Correlation of AGB with BA was significant at 99% and 95% confidence level with 

a very high R2 of 0.84 and followed by average height with R2 of 0.66. However, relationship of DBH was 

weak with R2 of 0.495 but significant at 95% confidence level. Furthermore, a simple linear regression 

analysis was formulated to relate AGB to BA (Figure 14). A strong R² of 0.71 was observed. In other words, 

AGB ton haˉ¹ can be described by 71 percent of BA m³haˉ¹. Stand BA correlated well to the AGB because 

BA is known to be the better estimator of AGB  (Le Toan et al., 1992). 

 

To further assess the relationship of AGB with height and BA, multi-linear regression analysis was 

formulated. Combination of height and BA were tested with AGB. The regression showed a very strong R² 

of 0.948 and an r of 0.97 and standard error of 17 ton haˉ¹. Almost 95 percent of the AGB is explained by 

height and stand BA. This is not a surprise because AGB correlates strongly with these two parameters 

individually. Besides, AGB is a function of stand BA and the height (Hussin et al., 1991).  

5.3. Correlation between AGB and PALSAR-2 HH and HV polarized backscatter 

Field data of 27 plots were used in this study. Seventeen (17) plots were used for developing the model while 

the other ten (10) plots were used to validate the model. Observed AGB was used to assess its relationship 

with the PALSAR-2, HH and HV polarised backscatter coefficient separately. Pearson product-

moment correlation was used for correlation analysis.  

 

Meanwhile, backscatter from an average of 3 x 3 pixels and mean of mean backscatter (backscatter calculated 

from 4 of 3 x 3 pixels) were assessed to consider the backscatter value that correlates well with the AGB to 

run the model. Besides, backscatters retrieved from unfiltered HH and HV polarized data and the 

backscatter retrieved automatically using SNAP software were also assessed. The mean of mean backscatter 

coefficient showed a strong correlation with AGB. A very strong relationship was observed between AGB 

and HV polarized backscatter with an r of 0.904. The relationship was significant at 99% and 95% 

confidence level. AGB in relation to HH polarized backscatter was moderate with the r of 0.652 at both 

99% and 95% confidence level.  

 

Consequently, regression analysis was done to further assess the relationship between the AGB and HH 

and HV separately. In addition, AGB was also plotted against the HH and HV separately. According to the 

regression analysis and the scatter plot, HV appeared to have a strong relationship with AGB. HV polarized 

backscatter had a R² of 0.817. This indicates that approximately 82% of the AGB is explained by the HV 

backscatter. Alternatively, HH backscatter had a weak R² of 0.425. Approximately, 43% of AGB was 

explained by HH backscatter. Several studies including Carreiras et al., 2012; Le Toan et al., 2011 also 

revealed positive and strong relationship between AGB and HV polarization . A study carried out by Hussin 

et al., 1991 on estimating biomass of slash pine using the L-band HV polarized data obtained from an aircraft 

also reported a positive and very strong relationship between HV polarized backscatter and biomass and 

other forest stand parameters. Mitchard et al., (2009) found stronger relationship exists between AGB and 

HV backscatter in his study in four different landscapes in Africa.  

 

The strong association between HV polarized backscatter and AGB is because of multiple volume 

scattering. The forest is characterized by highly dense woody vegetation especially trees and diversity of tree 

species with a multi-layered structure, therefore HV polarization reflects volume scattering. The PALSAR 

HV polarization, penetrates through the forest canopy, hence, they react well to forest stand volume and 

biomass ( Basuki et al., 2013). Le Toan et al., (2011) stated that HV is strongly related to AGB because HV 

backscatter is dominated by volume scattering in the forest canopy. HH polarization is weak because radar 

signal becomes weak as it penetrates through the forest canopy.  
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In addition, HH polarisation is dominated with surface scattering and interacts strongly with trunk and 

stems and the backscatter return to the sensor is low (Le Toan et al., 2011). This results in weak relation 

with the forest biomass. Furthermore, a weak relationship between the HH polarised radar backscatter and 

AGB is also due to the complexity and the density of the forest ( Carreiras et al., 2012).  The HH polarization 

has been proven to be a poor estimator of AGB (Morel et al., 2011). Morel et al., (2011) further stated that 

depolarization of the radar signal on the forest canopy results in the reflection of HV backscatter, therefore, 

HV backscatter is strongly correlates with AGB than HH. Scattering in the forest is generally illustrated in 

Figure 22.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 22: Different types of scattering in the forest. Source: (LeToan, 2005) 

  

On the other hand, combination of HH and HV backscatter and AGB was assessed using multi-linear 

regression analysis. The analysis showed a promising result with a strong coefficient of determination (R²) 

of 0.829. This indicates that, about 82% of the variation of AGB can be described by the regression model 

developed. The standard error of the multi-linear regression is 30.902 ton haˉ¹. This standard error (SE) 

value gives an idea on how much, observed AGB differs from the estimated AGB. However, the ideal 

equation for modelling was a simple linear regression (Equation 7) because it has a lower RMSE compared 

to the multi-linear regression. RMSE is further discussed in section 5.6. 

 

5.4. Correlation between PALSAR-2 HV polarized backscatter and forest parameter (DBH, BA, 
height) 

In order to determine the correlation between the PALSAR HH and HV polarisation and the forest stand 

parameters, data collected from the 17 plots were used. Average DBH, height and total stand basal area 

(BA) per hectare was correlated with HH and HV polarized backscatter.  

 

The Pearson product –moment correlation was performed between the liked-polarised (HH) and the cross-

polarised (HV), and the forest stand parameters. Correlation results indicated that generally the HV 

polarization had a higher correlation with the forest stand parameter compared to HH polarization.  
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A positive but very weak relationship between HV polarization and DBH and height measurement was 

recorded with r of 0.321 and 0.463 respectively (Table 9). There is a weak correlation between DBH and 

HV polarization because the correlation is made based on unit area, which is on per ha basis. The 

relationship was not based on DBH of a single tree and HV backscatter, it was based on the average DBH 

of the forest stand and HV polarized backscatter. Therefore the weak result was obtained. The same can be 

explained for the relationship between average height and the HV polarized backscatter.  

 

This is confirmed by Zhang et al., 2014, where he also revealed very weak relation between SAR backscatter 

and forest parameters at stand level. His study was on forest on correlation analysis between ALOS PALSAR 

and forest parameters based on stand level. He found that correlation of mean height and DBH with HV 

was very weak with lowest R² of 0.0.304 and 0.0.254 respectively. In addition, Iizuka and Tateishi, 2014 

correlated average DBH and the average height of Cryptomeria japonica (Sugi) with L-band HV backscatter 

and a low relationship of R² of 0.177 for DBH and R² of 0.214 for height was observed . Main parameters 

that contribute to AGB is height and BA, therefore, average stand height alone does not correlate well with 

HV backscatter but the AGB relates well with HV backscatter. 

 

The weak correlation between HV polarized backscatter and DBH and height is also due to volume 

scattering because of the dense canopy cover of the forest. The mean canopy cover percentage is 

approximately 90% in the study area. Due to very high percentage of crown cover, the penetration of the 

radar L-band signal attenuates to interact with individual trees (Hussin et al., 1992). Figure 23 shows the 

illustration.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 23: Volume scattering in the dense forest canopy. Backscatter is scattered and absorbed and 

attenuates in the crown canopy as it penetrates into the canopy to react with other parameters. 

 

 The stand basal area (BA) correlated strongly with HV polarization, having r of 0.891 at the confidence 

level of 95% (Table 9). According to  Le Toan et al., (1991), stand BA correlated well with L-band HV 

polarization having R² of 0.91. This indicates that HV associates very well with the basal area rather than 

DBH and height. HV polarized backscatter relates well with stand BA because BA is the cross section of 

trees in a stand which is measured at breast height and expressed as per unit area of land (per hectare basis). 

Moreover, correlation is strong because stand BA is based on per unit area and not on individual tree basis. 

The simple linear regression (Table 14) analysis was performed between HV and stand BA and a R² of 0.671 

was obtained. This result shows the close association between BA and HV and is supported by (Hussin et 

al., 1991).  
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A study conducted by Le Toan, (1991) showed very strong R2 of 0.91 from correlating stand BA and L-

band HV polarization by relating forest parameter to SAR data, This is because the woody vegetation 

especially, the branches, stems and the truck of the forest trees contribute mainly to the backscatter. Hussin 

et al., (1991) observed a strong and positive correlation between L-band HV polarized backscatter and forest 

stand parameters per ha including, biomass, height, and BA. Besides, radar backscatter can describe the 

basal area and height using systems of equations that can be used to estimate the forest parameters namely, 

height, basal area and biomass from the radar backscatter (Figure 23) ( Hussin et al., 1992). 

 

 

 

 

 

 

 

 

 

 

Figure 24: Basal area (BA) and height (H) as a function of radar backscatter (RB) and biomass (B) as a function of 

basal area and height (Hussin et al., 1992) 

 

Hussin et al., (1992) revealed strong positive relationship exists with L-band HV radar backscatter and stand 

parameter including DBH and height according to their study on assessing the effect of polarization on 

radar backscatter to slash pine stand. Nga, (2010) also observed correlation between the HV and DBH with 

r of 0.69 in the natural forest of Afram Headwater Forest Reserve in Ghana. She also observed a strong R² 

using multi-linear regression model to test AGB against a combination of HH and HV. Figure 25 shows the 

regression line of estimated AGB plotted against the observed AGB.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 25:  Model adjustment result adopted from (Nga, 2010) 
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5.5. Regression and Estimation of AGB 

Having reliable AGB values is important to effectively produce an AGB and carbon map. Therefore, it is 

essential to have reliable field data and the appropriate allometric equation for calculating AGB (Morel et 

al., 2011). The AGB values derived from the measured forest parameters can be used to develop several 

models to estimate AGB and carbon stock of the study area.  

 

Regression models are often used to describe the relationship between one or more independent (x) variable 

and a dependent (y) variable. The regression models are normally linear (Equation 9). Non-liner models are 

also developed and applied in many studies (Snee, 1977). Linear regression model was used in several studies 

including Goh et al., 2013a; Nizalapur, et al., 2010; Deng et al., 2014; Nga 2010; Morel et al., 2011; Hussin, 

et al., 1990 to estimate AGB using PALSAR image data. Le Toan et al., (1992) used both linear and non-

linear regression in her study. 

 

Equation 8:  Multi-linear regression equation  

𝐸(𝑦) =  𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + ⋯ 𝛽𝑃𝑋𝑃    

Where   β is the coefficient which is estimated from the measured data 

  E(y) is the predicted y value or dependent variable 

  X is the independent variable 

 

In this study, a simple linear regression model was developed using the HV polarized backscatter as the 

independent variable and the measured AGB as the dependent value. Linear regression was used to assume 

that a relationship between HV backscatter and AGB is represented by a straight line. The outcome of the 

simple linear regression model showed a very strong R². At 95% confidence level, the relationship between 

AGB and HV polarized backscatter was significant in which almost 82% of HV backscatter can describe 

the AGB observed from the field. Thus, this model was accepted for estimating the AGB. 

 

5.6. Validation and Accuracy Assessment of Linear Regression Model 

Model validation and accuracy assessment is essential to know how well a model can perform. Lu, (2006) 

reported that, many research that were conducted previously failed to validate and assess the accuracy of 

their models due to lack of field data collection. Assessing the accuracy of the predicted values and evaluating 

the performance of the developed model is crucial. The two most often used methods to evaluate the 

performance of the model are; 1) Assessing the R² from either simple linear or multi-linear regression 

analysis and 2) assessing the RMSE. Generally, low RMSE or a high R² specifies the reliability of the model 

with the field measurement data (Lu, 2006). 

 

The regression model was validated using ten (10) plots. R² of the model was 0.817 with an RMSE of 135.14 

ton haˉ¹. The high RMSE was due to lack of appropriate number of sample plots or the ground truth for 

both model development and model validation. This statement is confirmed by Englhart et al. 2011 stating 

that a large number of sample plots can improve the accuracy of the regression models for estimating 

biomass. Nevertheless, the correlation between the estimated and observed AGB gave a strong coefficient 

of determination (R²) of 0.796 with standard error of 19.23 ton ha ˉ¹. Approximately, 80% of the estimated 

AGB was explained by the observed AGB. This indicates that this model is reasonable to estimate AGB 

and carbon stock accurately.  
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To justify the validity of the regression model, several other linear models were developed to observe the 

relationship of AGB with other parameters. A multi-linear regression model was developed by combining 

HH and HV polarized backscatter as the independent variable and measured AGB as the dependent variable 

(Table 14). The model assessment resulted with a R² of 0.829. The accuracy assessment of the estimated 

value resulted in having RMSE of 138.86. 

 

Similarly, a combination of total stand BA and average height were correlated with HV backscatter. A multi-

linear regression analysis returned a high R² of 0.745 with a reasonably low standard error of 1.276 ton haˉ¹. 

Stand BA and height was tested with HV to assess if the model will give a good fit because both BA and 

height are a function of AGB (Hussin et al., 1992). Additional multi-linear regression analysis between AGB 

with combination of height and BA was performed to observe the relationship and model showed a very 

strong R² of 0.948 at 95% significance level. Almost 95 % of AGB is described by height. This is not 

surprising because AGB can be derived directly from BA and height as long as these two parameters are 

known (Hussin et al., 1992). All three multi-linear regression gave a strong R², therefore, they support the 

validity of the simple linear regression model.  

 

In line with  the high RMSE which resulted from this study, Nga, (2010) also obtained an RMSE of 179 ton 

haˉ¹ for natural forest and a R² of 0.65 using multi-linear regression model in a similar study she conducted 

in Afram Headwaters Forest in Ghana. Goh et al., (2013a) estimated biomass in the humid tropical forest 

by combining ALOS PALSAR and SPOT 5 images where he obtained RMSE of 150 and 152 ton haˉ¹ with 

R² of 0.46 and 0.47 respectively. He used 10 plots for validating two multi-linear regression model that he 

developed. Morel et al., (2011) produced an AGB map with a model that resulted with an R² of 0.35 and an 

RMSE of 125 Mg haˉ¹. The study was conducted to estimate AGB in Sabah Malaysia using ALOS PALSAR 

and the total estimated AGB was greater than 450 Mg haˉ¹. Comparing, the accuracy result of these studies 

to the present study, it can be seen that, all these three studies had RMSE of over 100 ton haˉ¹ and weak R². 

The present study has a high R² of 0.871 despite the large RMSE of 135.136 ton haˉ¹. Hence, AGB and 

carbon stock can be map accurately using the regression model.   

 

5.7. Mapping AGB and Carbon Stock 

The extrapolation and estimation of AGB were done in ArcGIS using the raster calculator. The HV 

polarized backscatter raster map was used for mapping the AGB and the carbon map. The raster map has 

already been calibrated whereby the DN values were converted to backscatter values representing each pixel 

(Morel et al., 2011). The regression coefficients which was derived from the linear regression analysis was 

substituted in the linear regression equation in raster calculator. Since the HV backscatter value is the x 

variable in the equation, the computer automatically calculates and estimates AGB based on per pixel 

(backscatter) value (Uidaho.edu/nrgis, n.d.). The output is a pixel with AGB values. Hamdan et al., (2015) 

applied a similar technique whereby distribution of AGB for the whole study was predicated using the model 

that was developed. The estimated AGB were based on pixel values which were converted to AGB values.  

 

Raster calculator tool in ArcGIS was also used by Marcus et al., (2012) to map AGB, stand volume and 

stand BA in a Western Brazilian Amazon forest. He obtained average estimated AGB estimated f of 231.6 

Mg haˉ¹. However, he used airborne scanning lidar to estimate the forest AGB and identify low-intensity 

logging sites. Andersen et al.,(2014) also used raster calculator to map areas with canopy with different 

canopy heights in his study. Ultimately the estimated AGB was mapped. Afterwards, carbon stock map was 

calculated and mapped using the conversion factor of 0.5 (Hirata et al., 2012).  
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5.7.1. Distribution of AGB in the Study Area 

Based on the AGB observed from the 27 sample plot, the highest AGB was recorded in Plot 5 and 19 with 

total AGB of 367.071 ton haˉ¹ and 345.040 ton haˉ¹ respectively. The lowest AGB, which is below 100 ton 

haˉ¹ was recorded in plots 27, 10 and 1 with 60.170 ton haˉ¹, 84.040 ton haˉ¹ and 88.003 ton haˉ¹ respectively. 

Average AGB measured was about 208.793 ton haˉ¹. About 44.4% of the 27 plots have AGB ranging from 

200-300 ton haˉ¹. The other 37% of the plots had biomass ranging from 100-199 ton haˉ¹. Summary of the 

descriptive statistic of all the other parameters based on plots are appended in Appendix 1. Table 17shows 

the summary of total AGB ton ha ˉ¹, BA m³ haˉ¹, mean DBH and mean heights of these plots.  

 

There were similar studies conducted in tropical forests that recorded AGB around the same value as the 

AGB value obtained in present study. For example, Mermoz et al., (2014) carried out a study on biomass of 

dense forest related to L-band radar data in several African tropical forests and found AGB ranging from 

150-550 ton haˉ¹, while Goh et al., 2013 reported approximately 360 ton haˉ¹ of AGB his study conducted 

in Central Nature Reserve in Singapore. Hamdan et al., (2015) obtained AGB of greater than 200 Mg haˉ¹ 

in Dipterocarp forest in Peninsular Malaysia. He stated that a strong relationship was observed between 

AGB and the HV polarization with an average AGB of 342 Mg haˉ¹ and AGB ranging from 21 to 578 Mg 

haˉ¹. The observed, AGB for the present study ranges from 60.17 – 367.07 ton haˉ¹, while estimated AGB 

ranges from 20 - 576.14 which are  in line with these studies done in tropical forest using ALOS PALSAR 

radar  image data. 

 

Table 17: Summary of Highest and lowest AGB based on plots 

 

Based on Table 17 explanation can be made regarding why these plots are having less or more AGB than 

the other. DBH and height can influence the AGB enormously. A number of trees in a plot can have little 

influence because DBH and height determine the overall AGB. Plot 19 has less AGB and more BA than 

plot 5 because the total number of trees found in plot 19 are higher than plot 5. However, it is limited to 

the diameter class, as more than 50% of the trees in plot 19 are found between DBH class of 10 -20 cm. In 

plot 5, about 39% of the trees were found in diameter class between 30 and 60>, 22 % in diameter class 20-

30 and 39% of the trees fall in DBH class below 20 cm. More than half of the trees in plot 5 have over 20 

cm DBH, therefore, contributes to higher mean DBH compared to plot 19. The plot with the lowest AGB 

has the least value in the total number of trees, total BA, mean DBH and mean height. Despite having low 

mean height value, plot 10 has high values in other parameters compared to plot 27.  

 

 

 

 

 

 

 

 

 

  AGB ton haˉ¹ Plot ID 

No. of 

trees 

Total BA 

m³ haˉ¹ 

Mean DBH 

(cm) 

Mean 

height (m) 

>300 367.071 5 23 39.103 28.35 18.65 

 345.04 19 35 42.925 23.69 17.53 

<100 88.003 1 18 15.123 21.23 13.32 

 84.04 10 25 17.858 19.8 10.73 

 60.17 27 17 9.924 18.35 13.29 
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Table 18: AGB  estimation in Malaysia (Majid, 2015) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Majid (2015 ) included a table (Table 17) which contained a list of areas and forest types in Malaysia with 

corresponding AGB for those areas. There were four researchers who carried out studies in Ayer Hitam 

Forest. According to the AGB estimation table, the researchers estimated different amount of AGB in 

AHFR in different years. The average AGB values obtained were 209-222 ton ha¹, 355 ton haˉ¹, 278 ton 

haˉ¹ and 83.7-232.4 ton haˉ¹. The present study has observed the average AGB per hectare be 208. 79 ton 

ha-1 and average estimated AGB of 257. 98 ton ha-1 which are within the range of 200 -300 ton haˉ¹. 

5.8. Errors and Uncertainties in Research 

In most research, errors and uncertainties exist. Therefore, it is important to take into consideration the 

factors leading to this issue when conducting a research. 

5.8.1. Errors and uncertainties associated with field measurement 

One of the important factor to take into consideration is the sample size, especially when the purpose of 

the field data collection will be related to the SAR backscatter Morel et al., (2011). He further, stated that 1 

ha plot size appeared to be the most reliable compared to the other plot size. It has proven to show very 

strong correlation with PALSAR backscatter. Besides, errors related to parameter measurement are more 

likely to be less because the measurement is taken in a wider scale.  
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Taking measurement and recording of field measurement is crucial as well. Especially when measuring the 

height of the trees. Tree height is important for estimating the AGB. The height of one tree can be mistaken 

for the other tree when the tree crowns overlap each other. Measurement of tree heights depend on the 

forest condition and the experience of the person taking the measurement. It is often difficult to take an 

accurate height measurement of a very tall tree specifically in a dense tropical forest (Hunter et al.,2013).  

 

Height measurement is challenging especially in the natural forest because the understory is densely 

populated with mixed vegetation and tall and closed dense canopy. Hunter et al., (2013) revealed five 

uncertainties associated with height measurement; 1) offset in height between measured distance and crown-

top position, 2) tree top occlusion 3: ground slope 4) obstacles for distance measurement and 5) instrument 

operator error. Hunter et al.,( 2013) explains in detail about these 5 uncertainties in tree height measurement. 

Measuring tree heights in a tropical forest are laborious and can have a high error associated with it.  

 

Diameter at breast height (DBH) is often the easiest and direct measurement compared to height and errors 

associated with it (Magalhães et al., 2015). However, it has errors associated with it. DBH measurement 

errors can arise from reading taken from the dbh tape, recording the reading in the field sheet, inconsistency 

in point of measurement (1.3 m) which is easily overlooked, tension on the tape after using it for some time 

and placing of the tape on the tree at point of measurement when taking the measurement (Elzinga, et al., 

2001). To minimize the error associated with the point of measurement, a standard stick of 1.3 m was made 

to be used by different persons. Trees with buttress are a problem, especially in the primary tropical forest. 

Most often the trees with buttresses are big trees and extend some meters above the ground which makes 

it difficult for DBH measurement (West, 2009).  

 

5.8.2. Errors and Uncertainties associated with use of Wood Density Value 

Use of wood density can also pose errors. Chave et al., (2005) mentioned that use of specific wood density 

is important because it leads to improvement in models developed for estimating AGB. In this study, a 

default value of 0.57 recommended for Asia by Hirata et al., 2012 was used because most trees were not 

identified to the species or genera level in order to use their specific wood density. Ketterings et al., (2001) 

used mean wood density estimated from a combination of measured and reported wood density data 

because specific wood density for the trees he used in his study were not obtained. He further recommended 

that wood density can also be estimated from published data for the tree species occurring at that particular 

geographical location.  

 

5.8.3. Errors and Uncertainties associated with Radar data Processing 

Processing of the radar data is critical. It is important to make sure that the image data and the field data are 

well registered prior to estimating AGB. Errors can be introduced when applying the different processes 

such as geo-referencing, filtering, calibration and geometric corrections. Even errors propagate when 

importing and exporting data from one software to another. All these errors accumulates and eventually 

results in high RMSE. Errors are also introduced through the acquisition of the image data, techniques 

involved in data processing, atmospheric corrections until registration of the image data with the field sample 

plot (Lu, 2006).  
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6.  CONCLUSION 

The ALOS -2 PALSAR-2, dual polarization of HH and HV bands and field data collected from 27 plots 

were used in this study. A correlation analysis between the AGB derived from the field data and the HH 

and HV polarized backscatter was employed to assess the strength in their relationship. The analysis showed 

a strong relationship between AGB and the HV polarization. Therefore, HV backscatter and AGB were 

used to develop the linear regression model to estimate the AGB and carbon stock of AHFR, Based on the 

results obtained from this research, conclusions were made to address the research questions. 

 

Research Question 1 

What is the relationship between AGB and radar backscatter of ALOS-2 PALSAR-2, HH, and HV 

polarization? 

 The result of correlation assessment proved that there was a strong relationship between AGB and 

liked polarized (HH) backscatter (r=0.652). However, a very strong correlation was observed 

between the cross-polarized (HV) backscatter (r=0.904). The correlation was significant at 99% and 

95% confidence level.  

  

Research Question 2 

How can AGB be modelled using PALSAR HH and HV polarizations? 

 A simple linear regression analysis was done for the observed AGB and HH and HV polarized 

backscatter separately. Regression result showed a weak correlation coefficient of determination (R² 

=0.425) for HH but a strong correlation coefficient of determination (R² =0.817) for HV polarized 

backscatter.  

 Therefore, HV was chosen for model development. Simple Linear regression model was developed 

using the AGB and HV polarized backscatter to estimate the AGB.  

 

Research Question 3 

What is the accuracy of AGB derived from radar backscatter of ALOS-2 PALSAR, HH and HV 

polarization? 

 The simple linear regression model was validated with 10 independent data sets. The estimated 

AGB was plotted against the observed AGB and approximately 82% of the estimated AGB was 

explained by observed AGB.         

 Multi-linear regression analysis between observed AGB and combined HH and HV backscatter 

gave a R² of 0.829. This confirms the strong relationship between the AGB and the radar 

backscatter and the accuracy of the AGB estimation. 

 Since AGB is a function of stand BA and height, a multi-linear regression was employed between 

these two parameters and observed AGB. A very strong R² of 0.942 was obtained.  

 The RMSE resulted from estimated AGB was 135.136 ton ha ˉ¹. Even though the RMSE is big, 

the R² was strong. Besides, such a large RMSE is obtained in similar other studies explained in 

section 5.6.  
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Research Question 4 

What is the AGB of tropical rain forest of Ayer Hitam per unit area in ton/ha derived from field 

data? 

 The minimum and maximum total AGB derived from the field data was 60.17 ton haˉ¹ and 367.07 

ton haˉ¹ respectively 

 The total AGB for the whole study area of AHFR is 260,574.27tons.and the average AGB derived 

from the field data was 208.79 ton haˉ¹. Total carbon stock is 130,287.08 ton and average carbon 

stock is 104.39 tons haˉ¹. 

 

Research Question 5 

How can biomass and carbon stock derived from radar backscatter of ALOS-2 PALSAR, HH, and 

VH polarization be mapped?  

 Since the R² value obtained from the simple linear model was higher, the coefficients obtained from 

this model was used to estimate the AGB. Carbon stock was calculated from the AGB. Both AGB 

and carbon stock were mapped using ArcGIS.  

 The maps were produced from AGB derived from HV backscatter because HV gave a strong R² 

compared to HH backscatter. 

 The total AGB of AHFR derived from HV is 321,966.28 tons and total carbon stock is 160,983.14 

tons  

 Average AGB derived from HV is 257.98 ton haˉ¹ and average carbon stock is 128.99 ton haˉ¹. 

 

In conclusion, ALOS-2 PALSAR-2 HH and HV polarization had a positive correlation with AGB, however, 

HV polarized backscatter had a stronger relationship with AGB compared to HH. The AGB obtained from 

this study is in line with results from several similar studies conducted in tropical forests. Finally, the AGB 

and carbon stock can be estimated and accurately mapped for Ayer Hitam Forest Reserve. 
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8. APPENDIX 

Appendix 1: Results of Data Analysis 

Table A: Summary of forest parameters based on per plot 

 

 

 

 

 

 

 

 

 

 

 

 

Plot 

ID 

Tot 

Tree 

/plot 

Mean 

DBH 

Mean 

height 

Total 

AGB/plot  

Total 

AGB 

(ton)/ha 

Carbon 

stock 

Mg C 

Total 

BA/plot BA(m³/ha) 

Mean 

CC(%) 

1 18 21.23 13.62 4.40 88.00 44.00 0.76 15.13 90 

2 33 20.24 14.08 8.59 171.85 85.92 1.36 27.15 95 

3 29 24.93 16.72 14.17 283.33 141.67 1.81 36.17 90 

4 29 23.93 14.26 9.85 197.06 98.53 1.59 31.83 80 

5 23 28.35 18.65 18.35 367.07 183.54 1.96 39.10 85 

6 31 20.32 15.26 9.30 186.03 93.01 1.30 25.90 90 

7 29 20.59 12.90 7.03 140.56 70.28 1.15 22.98 90 

9 31 22.65 11.95 9.37 187.47 93.73 1.58 31.70 90 

10 25 19.80 10.76 4.20 84.04 42.02 0.89 17.86 90 

11 29 22.52 11.90 8.27 165.38 82.69 1.39 27.83 90 

13 25 21.16 11.58 7.11 142.17 71.09 1.21 24.22 90 

14 35 19.34 14.86 9.20 183.95 91.97 1.31 26.23 95 

17 36 16.86 12.71 5.11 102.12 51.06 0.91 18.12 85 

18 37 22.97 12.81 12.57 251.34 125.67 2.12 42.48 90 

19 35 23.69 17.51 17.25 345.04 172.52 2.15 42.93 80 

20 24 24.04 15.58 11.00 220.08 110.04 1.42 28.48 90 

21 45 20.69 13.78 12.57 251.50 125.75 1.97 39.39 85 

22 41 21.20 15.93 14.56 291.29 145.64 1.76 35.25 80 

23 31 23.16 16.45 14.40 287.91 143.96 1.72 34.39 70 

24 26 26.62 15.38 13.78 275.52 137.76 1.94 38.90 85 

25 25 23.68 14.42 10.38 207.69 103.84 1.48 29.52 80 

26 28 20.25 12.21 6.88 137.56 68.78 1.15 22.91 80 

27 17 18.35 13.29 3.01 60.17 30.08 0.50 9.92 90 

28 17 28.18 18.32 13.45 269.00 134.50 1.40 28.10 90 

29 29 23.48 13.00 13.50 270.10 135.05 1.85 36.98 80 

30 30 22.03 13.90 13.38 267.67 133.83 1.73 34.52 90 

32 20 26.95 16.20 10.18 203.52 101.76 1.39 27.76 90 
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Table B: Data used for Model development 

 

Plot ID 

HV-Filt     

(4,3x3) M 
 AGB (ton 

ˉ¹ha) 
BA(m³/haˉ¹) Mean height 

Mean 

DBH 

1 -20 88 15.13 13.62 21.23 

3 -15 283.33 36.17 16.72 24.93 

5 -12 367.07 39.1 18.65 28.35 

6 -17 186.03 25.9 15.26 20.32 

9 -15 187.47 31.7 11.95 22.65 

13 -20 142.17 24.22 11.58 21.16 

18 -14 251.34 42.48 12.81 22.97 

19 -13 345.04 42.93 17.51 23.69 

20 -15 220.08 28.48 15.58 24.04 

21 -15 251.5 39.39 13.78 20.69 

22 -14 291.29 35.25 15.93 21.2 

23 -13 287.91 34.39 16.45 23.16 

24 -15 275.52 38.9 15.38 26.62 

25 -17 207.69 29.52 14.42 23.68 

28 -14 269 28.1 18.32 28.18 

29 -13 270.1 36.98 13 23.48 

32 -18 203.52 27.76 16.2 26.95 

 

 

Table C: Data used for model validation 

Plots ID 

HV-Filt     

(4,3x3) M 
 AGB (ton 

ˉ¹ha) 
BA(m³/haˉ¹) Mean height Mean DBH 

2 -13 171.85 27.15 14.08 20.24 

4 -12 197.06 31.83 14.26 23.93 

7 -14 140.56 22.98 12.9 20.59 

10 -16 84.04 17.86 10.76 19.8 

11 -15 165.38 27.83 11.9 22.52 

14 -13 183.95 26.23 14.86 19.34 

17 -14 102.12 18.12 12.71 16.86 

26 -15 137.56 22.91 12.21 20.25 

27 -16 60.17 9.92 13.29 18.35 

30 -11 267.67 34.52 13.9 22.03 
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Table C: Correlation of all parameters 

*. Correlation is significant at the 0.01 level (2-tailed). 

*. Correlation is significant at the 0.05 level (2-tailed). 

 

 

 

 

 

 

   Correlations      

  HV HH 

AGB 

(ton haˉ¹) 

BA 

(m³ haˉ¹) 

Mean  

DBH 

Mean  

height CC(%) 

Tot Tree 

/plot 

HV Pearson 

Correlation 
1 .796** .904** .819** 0.32103 0.46274 -0.42793 0.43469 

  Sig. (2-

tailed) 
  0.000134 

6.52608E-

07 

5.68728E-

05 
0.20897 0.06143 0.08661 0.08121 

  N 17 17 17 17 17 17 17 17 

HH Pearson 

Correlation 
.796** 1 .652** .670** 0.31307 0.23117 -0.08907 0.34563 

  Sig. (2-

tailed) 
0.00013   0.00454 0.00328 0.22112 0.37201 0.73389 0.17419 

  N 17 17 17 17 17 17 17 17 

AGB(ton 

haˉ¹) 

Pearson 

Correlation 
.904** .652** 1 .843** .495* .666** -0.31096 0.32612 

  Sig. (2-

tailed) 
6.526E-07 0.004545   

2.12138E-

05 
0.04356 0.00353 0.22442 0.20143 

  N 17 17 17 17 17 17 17 17 

BA(m³ 

haˉ¹) 

Pearson 

Correlation 
.819** .670** .843** 1 0.22511 0.22763 -0.33221 .625** 

  Sig. (2-

tailed) 
5.687E-05 0.00328 

2.12138E-

05 
  0.38501 0.37958 0.19265 0.00733 

  N 17 17 17 17 17 17 17 17 

Mean 

DBH 

Pearson 

Correlation 
0.3210286 0.3130732 .495* 0.22511 1 .651** 0.16109 -.564* 

  Sig. (2-

tailed) 
0.20897 0.22112 0.04356 0.38501   0.00466 0.53680 0.01826 

  N 17 17 17 17 17 17 17 17 

Mean 

height 

Pearson 

Correlation 
0.462742 0.231171 .666** 0.22763 .651** 1 0.03093 

-

0.22204 

  Sig. (2-

tailed) 
0.06143 0.37201 0.00353 0.37958 0.00466   0.90620 0.39172 

  N 17 17 17 17 17 17 17 17 

CC(%) Pearson 

Correlation 
-0.4279 -0.0891 -0.3110 -0.3322 0.1611 0.0309 1 

-

0.37449 

  Sig. (2-

tailed) 
0.0866 0.7339 0.2244 0.1927 0.5368 0.9062   0.13862 

  N 17 17 17 17 17 17 17 17 

Tot Tree 

/plot 

Pearson 

Correlation 
0.43469 0.34563 0.32612 .625** -.564* -0.222035 

-

0.374485 
1 

  Sig. (2-

tailed) 
0.08121 0.17419 0.20143 0.00733 0.01826 0.39172 0.13862   

  N 17 17 17 17 17 17 17 17 
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Appendix 2: Backscatter coefficient retrieved using different approaches per plot. The mean of means (4, 3x3) HV 
polarized back scatter coefficient retrieved manually was used. 

 

Table A: Backscatter coefficient for 17 plots used for model development.  

 

Plot ID 
HH  HV  HH-Filt_ HV_Filt HV-Filt HH_Filt HH-3x3 HV-3x3 

No Filt No Filt SNAP SNAP (4,3x3) M (4,3x3) M  Manual Manual 

1 -11 -13 -10 -14 -20 -17 -18 -21 

3 -10 -15 -11 -17 -15 -10 -10 -15 

5 -11 -14 -10 -13 -12 -8 -8 -13 

6 -8 -14 -7 -12 -17 -12 -14 -20 

9 -12 -22 -13 -21 -15 -6 -5 -15 

13 -10 -16 -11 -16 -20 -14 -14 -20 

18 -10 -12 -8 -13 -14 -7 -8 -14 

19 -12 -17 -9 -15 -13 -9 -9 -15 

20 -15 -19 -9 -16 -15 -10 -10 -16 

21 -8 -14 -10 -14 -15 -12 -12 -15 

22 -8 -11 -7 -11 -14 -7 -6 -13 

23 -12 -17 -13 -17 -13 -11 -10 -13 

24 -12 -19 -13 -16 -15 -8 -7 -15 

25 -14 -18 -14 -17 -17 -15 -16 -18 

28 -9 -14 -6 -13 -14 -8 -8 -15 

29 -7 -15 -7 -15 -13 -10 -9 -13 

32 -7 -11 -8 -11 -18 -13 -14 -18 

 

Table B: Backscatter coefficients for 10 plots used for model validation 

 

Plots ID 
HH  HV  HH-Filt_ HV_Filt HV-Filt HH_Filt HH-3x3 HV-3x3 

No Filt No Filt SNAP SNAP (4,3x3) M (4,3x3) M  Manual Manual 

2 -12 -19 -11 -17 -13 -10 -10 -14 

4 -9 -15 -10 -14 -12 -8 -8 -12 

7 -10 -14 -11 -17 -14 -9 -9 -14 

10 -12 -21 -11 -16 -16 -13 -14 -17 

11 -7 -13 -10 -16 -15 -11 -10 -16 

14 -12 -17 -12 -17 -13 -8 -8 -13 

17 -8 -11 -8 -11 -14 -12 -13 -14 

26 -12 -15 -12 -16 -15 -8 -8 -15 

27 -11 -13 -8 -12 -16 -9 -9 -16 

30 -14 -16 -13 -14 -11 -9 -9 -11 
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Appendix 3: Summary output of regression statistics  

Table A: HH backscatter and AGB 

 

 

Table B: HH backscatter and stand BA 

 

Regression Statistics       

Multiple R 0.66953     

R Square 0.44827     

Adjusted R Square 0.41149     

Standard Error 5.64213     

Observations 17     

      

ANOVA      

  df SS MS F Significance F 

Regression 1 387.9686 387.9686 12.1874 0.00328 

Residual 15 477.5049 31.8337   

Total 16 865.4735       

      

  Coefficients Standard Error  P-value  

Intercept 48.7731 4.7949  3.9915E-08  

HH 1.5433 0.4421  0.00328  

 

 

 

 

 

 

Regression Statistics       

Multiple R 0.652     

R Square 0.425     

Adjusted R Square 0.387     

Standard Error 54.745     

Observations 17     

      

ANOVA      

  df SS MS F Significance F 

Regression 1 33285.473 33285.473 11.106 0.004545 

Residual 15 44955.930 2997.062   

Total 16 78241.404       

      

  Coefficients Standard Error  P-value  

Intercept 391.367 46.525  4.61446E-07  

HH 14.295 4.289  0.00454  
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Table C: AGB and stand BA 

 

Regression Statistics     

Multiple R 0.8432     

R Square 0.7110     

Adjusted R Square 0.6917     

Standard Error 38.8262     

Observations 17     

      

ANOVA      

  df SS MS F Significance F 

Regression 1 55629.220 55629.22 36.902 2.12633E-05 

Residual 15 22612.144 1507.4763   

Total 16 78241.364       

      

  Coefficients Standard Error P-value   

Intercept -19.6271 44.2092 0.6634095   

BA m³haˉ¹ 8.0171 1.3197 2.126E-05   

 

 

Table D: Calculation of RMSE 

 

 

 

 

 

 

 

 

 

 

 

Plot ID AGB_Obsv AGB_Pred Obsv-Pred (Obsv-Pred)² 

2 171.8 294.38 122.5 15013.679 

4 197.1 332.21 135.1 18264.797 

7 140.6 292.24 151.7 23004.410 

10 84.0 235.02 151.0 22793.704 

11 165.4 258.08 92.7 8593.979 

14 183.9 306.40 122.4 14993.584 

17 102.1 277.31 175.2 30689.686 

26 137.6 252.75 115.2 13268.633 

27 60.2 230.31 170.1 28948.396 

30 267.7 351.62 83.9 7047.242 

n =10  Sum (Obsv-Pred)² 182618.109 

  Sum (Obsv-Pred)²/n 18261.811 

  Sqrt (Sum (Obsv-Pred)²/n) 135.1362679 

  RMSE   135.136 
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Appendix 4: Image data (ALOS-2 PALSAR-2) and image footprint from Google Earth 

Image A: Raw image data 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Image B: ALOS-2 PALSAR-2 Image footprint from Google Earth Map 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

HH Polarization Image Data HV Polarization Image Data 
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Appendix 5: Slope correction Table 

 

 

 

Slope correction table      

Plot size 500 m2      

        

Slope% Radius(m)  Slope% Radius(m)  Slope% Radius(m) 

0 12.62       

1 12.62  36 13.01  71 13.97 

2 12.62  37 13.03  72 14.00 

3 12.62  38 13.05  73 14.04 

4 12.62  39 13.07  74 14.07 

5 12.62  40 13.09  75 14.10 

6 12.63  41 13.12  76 14.14 

7 12.63  42 13.14  77 14.17 

8 12.64  43 13.16  78 14.21 

9 12.64  44 13.19  79 14.24 

10 12.65  45 13.21  80 14.28 

11 12.65  46 13.24  81 14.31 

12 12.66  47 13.26  82 14.35 

13 12.67  48 13.29  83 14.38 

14 12.68  49 13.31  84 14.42 

15 12.69  50 13.34  85 14.45 

16 12.70  51 13.37  86 14.49 

17 12.71  52 13.39  87 14.52 

18 12.72  53 13.42  88 14.56 

19 12.73  54 13.45  89 14.60 

20 12.74  55 13.48  90 14.63 

21 12.75  56 13.51  91 14.67 

22 12.77  57 13.53  92 14.71 

23 12.78  58 13.56  93 14.74 

24 12.79  59 13.59  94 14.78 

25 12.81  60 13.62  95 14.82 

26 12.82  61 13.65  96 14.85 

27 12.84  62 13.68  97 14.89 

28 12.86  63 13.72  98 14.93 

29 12.87  64 13.75  99 14.97 

30 12.89  65 13.78  100 15.00 

31 12.91  66 13.81  101 15.04 

32 12.93  67 13.84  102 15.08 

33 12.95  68 13.87  103 15.12 

34 12.97  69 13.91  104 15.15 

35 12.99  70 13.94  105 15.19 

        

de Gier – 2000  
(Source: Yousif 2015, lecture notes)       
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Appendix 6: Field Data Sheet 
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Appendix 7: Field Pictures  

 

 

 

 

 

 


