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ABSTRACT 

Irrigation performance assessment is vital for effective water management especially in water-scarce areas. 

In addition, it provides information needed to monitor crop water use and related productivity in irrigation 

command areas. However, irrigation performance assessment is hampered by lack of necessary ground data 

more so in developing countries. Advances in remote sensing technology and its applications have reduced 

over reliance on ground data. This has led to a tremendous improvement in irrigation performance 

assessment and monitoring in ground data scarce areas.  

This research utilizes information derived from remote sensing to assess irrigation performance in the 

commercial irrigation farms in the Naivasha basin, Kenya for the year 2014. It aims at quantifying irrigation 

consumption by crops by use of remote sensing derived actual evapotranspiration. Consequently, irrigation 

efficiency is assessed based on the derived irrigation consumption and irrigation water abstraction data. 

The Surface Energy Balance System (SEBS) model was used together with MODIS land surface 

temperature, variables derived from Landsat 8, meteorological data and MODIS monthly 

evapotranspiration product to obtain monthly evapotranspiration estimates at 30 m spatial resolution. On 

the other hand, CHIRPS rainfall product was combined with gauge rainfall data and information derived 

from land use and land cover to derive monthly effective precipitation maps. Monthly irrigation 

consumption was then computed from the difference between the two maps. Monthly irrigation efficiency 

was finally obtained by comparing the monthly irrigation consumption to the monthly water abstraction 

data. 

Four farms were considered and the total amount of irrigation consumption in the year 2014, was found to 

be 4 364 680 m3. The highest amount of irrigation consumption (471 147 m3) was obtained in July and the 

lowest (275 467 m3) in September. Irrigation efficiency was computed for Vegpro Gorge farm only.  An 

average irrigation efficiency of 71% was obtained for 2014. Highest irrigation efficiency (88.5%) was in 

March with the lowest (44.1%) being in September.  High irrigation efficiencies were obtained for the wet 

and the dry months with low efficiencies being obtained for the transition months between wet and dry 

seasons. 

It was concluded that reliance on rainfall data only in irrigation scheduling led to low irrigation efficiencies 

during transition months. This is because the effect of soil moisture storage is not taken into account in 

irrigation scheduling thus excess irrigation water is supplied. It is recommended to incorporate indicators 

such as the aridity index in irrigation scheduling to improve the efficiency of the irrigation system. 

KEY WORDS: Irrigation performance assessment, remote sensing, SEBS, Naivasha, irrigation efficiency, 

Landsat 8, MODIS, CHIRPS. 
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1. INTRODUCTION 

1.1. Background  

Irrigation is the greatest consumer of the freshwater budget in the world. However, mainly due to poor 

management of irrigation systems the cost benefit effects of irrigation especially in water-scarce 

environments have been put into question (Perry, Steduto, Allen, & Burt, 2009).    

Demand for more food production as a result of population growth has resulted in an increase in land under 

irrigation especially in the arid and semi-arid areas. In these areas, irrigation represents the main water use 

(Akdim et al., 2014). Most of the surface water sources in these areas are inadequate and are poorly 

replenished leading to overexploitation of available ground water resources (Simons et al, 2015). As such, 

assessment and monitoring of irrigation water use and practices is vital for effective water resources 

management. However, lack of enough ground data in most areas hampers effective irrigation performance 

assessment and consequently leads to poor management of water resources. Remote sensing approaches 

require less ground data thus suited for applications in data poor areas. 

Use of remote sensing in irrigation management started in the 1980’s due to challenges in obtaining the 

necessary ground data continuously (Akdim et al., 2014). However, despite the huge potential offered by 

this technology, it is largely underutilized in this field (Singh et al., 2013). Remote sensing has the ability to 

provide the required data regularly and at the required spatial distribution for application in water resources 

management.  

Akdim et al. (2014) notes that, most of the early applications of remote sensing in irrigation focused on 

relating the water allocations to the area under irrigation. Advances in technology and research have seen 

the scope of application widen to other areas such as estimation of crop water requirements (Akdim et al., 

2014), water use mapping in irrigation (Gumma et al., 2011), estimation of crop coefficients (Gontia & 

Tiwari, 2009), irrigation performance assessment (Bastiaanssen, et al, 1999), among others. 

Irrigation performance assessment has traditionally been derived from information on water flow in canals 

an approach which is very limited in terms of the scale of its application (Bastiaanssen & Bos, 1999). On the 

other hand, evapotranspiration from an irrigated field provides a more representative picture of overall water 

consumption by crops on the field at different scales. This is essential in effective management of irrigated 

fields. Research nowadays is focused on the use of remote sensing to obtain some of the irrigation 

performance indicators which can directly be related to evapotranspiration. 

1.2. Problem statement 

Lake Naivasha is an economically and ecologically important freshwater lake in the Kenyan Rift Valley. It is 

the second Ramsar site in Kenya, signifying its importance to the delicate ecosystem  it supports (van Oel 

et al., 2013). Being a freshwater lake, coupled with a good agricultural environment, the lake supports a wide 

range of agricultural activities through irrigation, the most prominent being horticulture. In addition, the 

lake is used as a source of water for domestic and industrial use.  

The horticultural industry in this area has experienced tremendous growth over the last decade. This has led 

to an influx of people into Naivasha as a result of new income generating opportunities(Odongo et al., 
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2014). Consequently, significant land use and land cover changes have occurred in the area over the same 

period. All these factors have put a serious stress on the water resources of the lake. These have led to 

dwindling water levels in the lake, a situation aggravated by climate change and the delicate dynamics 

associated with lakes in the East African Rift system (Bergner et al., 2009). 

According to van Oel et al. (2013), water abstractions for irrigation use have adverse effects on the 

water resources of Lake Naivasha. Odongo et al. (2014) argue that irrigation and domestic water 

use account for 71% of water abstracted from the lake either directly or indirectly from the aquifer connected 

to the lake. In recent periods, the Water Resources Management Authority (WRMA) has been forced to 

impose serious restrictions on water abstractions as a consequence of water scarcity. Although, such critical 

decisions should be based on reliable information, WRMA suffers from shortage of data sound enough for 

effective management of water resources (van Oel et al., 2013).  

Efforts to improve on irrigation-related data collection have been made since the year 2008, with WRMA 

making it mandatory for all the farmers to have metered water abstractions. However, acquiring data on 

irrigation consumption and efficiency of water use remains a challenge for WRMA.  As such, data on 

irrigation performance is vital for the management of the water resources of the lake.  

1.3. Objectives  

The main objective of this research is to assess irrigation performance in commercial farms in Naivasha 

basin (Kenya) using remote sensing. 

The specific objectives of the research are to: 

 Determine actual evapotranspiration from open irrigated commercial farms in Naivasha basin from 

remote sensing images 

 Compute the irrigation water consumption 

 Determine the irrigation efficiency 

1.4. Research questions 

Based on the objectives above, the research questions were as follows: 

 Does the remote sensing derived actual evapotranspiration match the evapotranspiration defined 

from in-situ measurements? 

 How much of the actual evapotranspiration is from irrigation? 

 What is the efficiency of the irrigation system? 

1.5. Justification  

Efficient monitoring of irrigation water consumption and other aspects related to irrigation performance 

using traditional methods is expensive and challenging (Bastiaanssen & Bos, 1999).  Accurate estimation of 

evapotranspiration (ET) at a relatively low cost by use of remote sensing is increasingly improving 

monitoring of irrigation at the regional and field scale and more so in data poor areas (Singh, Senay, Velpuri, 

Bohms, & Verdin, 2014). This research exploits the availability of free remote sensing imagery to help 

improve access to information on irrigation consumption and efficiency of systems in use in commercial 

farms in Naivasha. The outcome of this research will help WRMA in the implementation of efficient 

management of the water resources of Lake Naivasha. The methodology used in this research can also be 

adopted both by WRMA and the farmers for monitoring of irrigation performance thus improving on 

decision making. In addition, information derived from the irrigation performance assessment is essential 

in the implementation of best irrigation practices by the farmers hence improving on water use efficiency 

and crop productivity. 
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2. THEORETICAL BACKGROUND 

This chapter discusses the underlying principles of the methodology adopted in this research, as presented 

in various literature sources. In addition, opinions of various researchers on the concepts and the results of 

their applications are discussed in brief.  

2.1. Irrigation performance assessment   

Traditionally, irrigation performance indicators have been generated from data related to water flow into 

irrigation command area obtained from flow measurement devices (Bastiaanssen & Bos, 1999). This limits 

the number of indicators that can be derived from classical flow measurements since other sources of water 

such as uptake from saturated zones cannot be quantified using this approach. In addition, irrigation 

performance indicators related to crop growth are impossible to quantify based on measurements of 

discharge into command area since the flow measurements do not account for other variables such as 

fertility, salinity, soil moisture and farming practices (Bastiaanssen & Bos, 1999). Moreover, in most 

irrigation command areas data necessary for quantifying irrigation performance is rarely collected and in the 

few cases where it is available, its reliability is not guaranteed (Murray - Rust, 1994). 

Most of the traditional as well as a host of other new indicators can be obtained from estimates of 

evapotranspiration via remote sensing (e.g. Menenti, Visser, Morabito, & Drovandi, 1989; Bastiaanssen & 

Bos, 1999; Er-Raki et al, 2010).  

Adequacy, which is defined as the relative evaporation, is a good irrigation indicator on the water stress. 

Bastiaanssen, Van der Wal, & Visser, (1996) successfully quantified adequacy, based on evaporative fraction 

from remote sensing in the Nile delta in Egypt.  

Equity is another important indicator that has been determined from remote sensing approaches. It is 

determined by observing the spatial variation in the latent heat flux over the irrigated fields. Alexandridis, 

Asif, & Ali (1999) used the actual ET derived from remote sensing to determine equity of water supply 

between farmers in Fordwah, Pakistan.  

Water productivity, which Bastiaanssen & Bos (1999) define as the amount of yield per unit volume of water 

consumed is another indicator that has been derived from remote sensing. Droogers, Kite, & Bastiaanssen 

(1999) were able to derive this indicator on a field scale and river basin scale in Turkey from remote sensing 

as well.  

Irrigation water use efficiency is another important indicator that has been evaluated widely using remote 

sensing data. It is defined as the ratio of the yield of crop to the volume of irrigation supply (Perry, Steduto, 

Allen, & Burt, 2009; Salama, Yousef, & Mostafa, 2015). Some of its applications are discussed extensively 

in (Wu, et al, 2015, Bashir, et al, 2009,  Bastiaanssen et al., 1996 and Akdim et al., 2014).  

Irrigation efficiency as a performance indicator has been widely adopted in the field of irrigation 

management. Jensen (1967) defined irrigation efficiency as the ratio of irrigation water consumption (the 

volume of irrigation water lost through transpiration by plants, evaporation from the soil surface in irrigated 

areas and evaporation of intercepted irrigation water) to the total volume of water supplied as irrigation. 

Van Eekelen et al. (2015) refer to the difference between the irrigation water consumption and the total 
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volume of water supplied as incremental ET. They argue that conveyance losses, loss of water in the form 

spray, run off of irrigated water and deep percolation account for the difference between incremental 

evapotranspiration and the volume of water supplied for irrigation. As such, van Eekelen et al. (2015) define 

irrigation efficiency as the ratio of incremental ET to the volume of water irrigated. Perry et al. (2009) and 

Reinders, van der Stoep, & Backeberg (2013) use the term consumed fraction as an alternative to irrigation 

efficiency. In the computation of irrigation efficiency by use of remote sensing the volume of water 

consumed by crops is estimated directly from remote sensing and compared with the volume of irrigation 

supply (van Eekelen et al., 2015). 

2.2. Evapotranspiration  

Evapotranspiration is defined as the sum of evaporation (direct conversion of water into vapour from wet 

surfaces such as soil, water bodies and plant leaves) and transpiration (loss of water from the soil through 

the leaves of plants) released into the atmosphere (Perry et al., 2009). 

2.2.1. Reference evapotranspiration (ET0) 

Allen, Pereira, Raes, & Smith (1998) define reference evapotranspiration as the evapotranspiration from a 

reference surface, usually well watered grass with a height of 0.12 m. The recommended standard method 

for the computation of reference evapotranspiration is the FAO Penman-Monteith method (Allen et al., 

1998). However, due to the large set of data needed to compute ET0 using this method, its applications is 

limited in data scarce areas (Trajkovic, 2005).  Various temperature-based empirical methods such as the 

Blaney-Criddle, Thornwaite and the Hargreaves equation have been developed to compute ET0 in data 

scarce environments. However, most of these methods require local calibration to be applicable in a wide 

range of environments but the Hargreaves method, which shows good estimates of ET0 throughout a range 

of global environments (Allen et al., 1998).  

2.2.2. Potential evapotranspiration (PET)  

Potential evapotranspiration of a particular crop refers to the reference evapotranspiration adjusted to the 

characteristics of the crop (Perry et al., 2009). The characteristics of each crop are defined by the KC factor 

as presented in Allen et al. (1998). Potential evapotranspiration thus defines the maximum amount of water 

that a specific crop can evaporate under the prevailing environment with no limitations in water supply. 

2.2.3. Actual evapotranspiration (ETa) 

Actual evapotranspiration is defined as the actual amount water that is lost to the atmosphere from vegetated 

surfaces. Under conditions of full water supply such as in fully irrigated surfaces or during wet seasons the 

actual evapotranspiration is equal to the potential evapotranspiration (Perry et al., 2009). 

Actual evapotranspiration from remote sensing can be estimated from either thermal or visible and NIR 

remote sensing images. In visible/NIR remote sensing, indicators such as the NDVI are used together with 

crop coefficients in equations such as the Penman-Monteith to obtain crop evapotranspiration (Akdim et 

al., 2014). In thermal remote sensing, land surface temperature is derived and used in energy balance models 

to estimate the turbulent fluxes of the energy balance equation. Some of the commonly used energy balance 

models for the estimation of evapotranspiration based on thermal imagery are, SEBS (Z. Su, 2002), SEBAL 

(Bastiaanssen, et al, 1998), furthermore, included but not limited to the TSEB, METRIC, Alexi, SEBI and 

ETWatch models discussed in Karimi, Bastiaanssen, Molden, & Cheema (2013).  

2.2.3.1. SEBS model 

The Surface Energy Balance System, SEBS is a single source energy balance model used for the estimation 

of turbulent energy fluxes based on the general energy balance equation (Su, 2002). It is widely used in the 
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modelling of evapotranspiration in data scarce environments since it mainly relies on remotely sensed inputs. 

Su (2002) developed and applied the model on cotton data in Arizona, grasslands in Kendall and in Barrax, 

Spain, where the model simulated the evaporative fraction and the turbulent fluxes with uncertainties 

comparable to the ones observed with in situ measurements. Su, McCabe, Wood, Su, & Prueger (2005), 

report that the model can quantify evapotranspiration with uncertainties within the range of 10-15% of in-

situ measurements. This is also supported by the work of Liou & Kar (2014) where the accuracy of most 

energy balance models is reported to be within the range of 30% of the measured ET. The model was also 

found to simulate evapotranspiration fairly well in the mainly agricultural area of the Nile delta (Elhag, 

Psilovikos, Manakos, & Perakis, 2011). In the irrigated Mahidasht plains of Iran, SEBS, SEBAL and 

lysimeter-based evapotranspiration were compared and SEBS estimates were found to match the 

evapotranspiration derived from the lysimeter fairly well (Bansouleh, Karimi, & Hesadi, 2015).  

However, according to Elhag et al. (2011) the model just like most of the other energy balance approaches 

performs poorly over some large regions due to a mix of topographic effects and meteorological 

inconsistencies. The model has also been found to overestimate ET in dry sparsely vegetated areas under 

water limited conditions (Gokmen et al., 2013, Huang, et al., 2015, van der Kwast et al., 2009). 

The model consists of tools for determining physical parameters of the land surface such as vegetation 

coverage, leaf area index and height of vegetation based on spectral reflectance and radiances from remote 

sensing observations. In addition, it also incorporates a model for estimating the roughness length for heat 

transfer (Su, 2002). Based on these, the model estimates the evaporative fraction from a surface subject to 

energy balance limiting conditions which are the wet and dry cases respectively. From the evaporative 

fraction, daily evapotranspiration is calculated.  

Based on Su (2002), the model principally comprises of the following main equations. Equation 2-1 is the 

energy balance equation, which represents the energy balance terms of the system.  

 𝑅𝑛 = 𝐺0 + 𝐻 + 𝜆. 𝐸 2-1 

Where, 𝑅𝑛 is the net radiation, 𝐻 is the sensible heat flux, 𝜆𝐸 is the latent heat flux and 𝐺0 is the ground 

heat flux. 

The ground heat flux (𝐺0) is heavily reliant on vegetation cover. As such, a ratio of the net radiation to the 

ground heat flux is used in the parameterization of the ground heat flux term. It ranges between 0.05 for 

full vegetation coverage (Γ𝑐)  and 0.315 in bare land (Γ𝑠) (Kustas & Daughtry, 1990). Based on these 

limiting ratios and the fractional vegetation coverage (𝑓𝑐) the ground heat flux term is calculated using 

Equation 2-2. 

 𝐺0 = 𝑅𝑛. [𝛤𝑐 + (1 − 𝑓𝑐). (𝛤𝑠 − 𝛤𝑐)] 2-2 

Where, 𝑓𝑐 is the fractional canopy coverage and  Γ𝑐  𝑎𝑛𝑑 Γ𝑠 is the ratio of the ground heat flux to the net 

radiation for full vegetation coverage and bare soil respectively. 

 To obtain the turbulent energy fluxes in Equation 2-1, the evaporative fraction needs to be estimated. To 

achieve this, limiting wet and dry conditions must be defined. Evaporation is at its maximum under the 

limiting wet conditions whereas the sensible heat flux tends to minimum. This situation is mathematically 

defined by Equation 2-3. 
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 𝐻𝑤𝑒𝑡 = 𝑅𝑛 − 𝐺0 − 𝜆𝑤𝑒𝑡 2-3 

Where, 𝐻𝑤𝑒𝑡 𝑎𝑛𝑑 𝐻𝑑𝑟𝑦 is the sensible heat flux at limiting wet and dry conditions respectively and 𝜆𝑤𝑒𝑡  is 

the latent heat of vaporization at limiting wet conditions 

On the other hand, latent heat under the limiting dry conditions is almost negligible whereas the sensible 

heat is at its maximum. This is formulated as shown in Equation 2-4.  

 𝐻𝑑𝑟𝑦 = 𝑅𝑛 − 𝐺0 2-4 

As such, the evaporative fraction is deduced from the limiting wet conditions and the latent heat and is as 

presented in Equation 2-5. 

 
𝛬 =

𝜆𝐸

𝜆𝐸𝑤𝑒𝑡
= 1 −

𝜆𝐸𝑤𝑒𝑡 − 𝜆𝐸

𝜆𝐸𝑤𝑒𝑡
 2-5 

Where, 𝜆𝐸𝑤𝑒𝑡 is the turbulent latent heat flux at limiting wet conditions and Λ  is the evaporative fraction 

On combining Equations 2-1, 2-2, 2-3, 2-4 and 2-5, the evaporative fraction can be derived from Equation 

2-6. 

 
𝛬 = 1 −

𝐻 − 𝐻𝑤𝑒𝑡

𝐻𝑑𝑟𝑦 − 𝐻𝑤𝑒𝑡
 2-6 

The evaporative fraction is assumed constant over the day and as such, based on equation 7, daily 

evapotranspiration can be computed. 

 
𝐸𝑑𝑎𝑖𝑙𝑦 = 𝛬24  × 8.64 × 107 ×

𝑅𝑛 − 𝐺0

𝜆𝜌𝜔
 2-7 

Where, 𝜌𝜔  is the density of water,  Λ24  is the daily evaporative fraction and  𝐸𝑑𝑎𝑖𝑙𝑦  is the daily 

evapotranspiration.  

Detailed explanation and formulations of the SEBS model is presented in Su, (2002). 

 The schema of the model is shown in Figure 1. 
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Figure 1: Schema for SEBS model 

2.3. Downscaling of evapotranspiration 

Accurate estimation of ET at the field scale is hampered by the spatial and temporal resolution of the 

available remote sensing imagery. High spatial resolution imagery such as Landsat 8 (30 m) has low temporal 

resolution 16 days. On the other hand, sensors with high temporal resolution such as MODIS (daily) have 

a coarse spatial resolution (1 km). High spatial and temporal resolution ET product can be obtained by 

combining two products of different resolutions by applying downscaling techniques (Singh et al., 2014). 

Hong, Hendrickx, & Borchers (2011) define downscaling as the improvement of spatial resolution of remote 

sensing data following disaggregation of the original data. Some of the methods used for downscaling as 

discussed in Ha, Gowda, & Howell (2012) include, among others, the  DisTrad method (Kustas, Norman, 

Anderson, & French, 2003), TsHARP (Agam, Kustas, Anderson, Li, & Neale, 2007), DisALEXI , Wavelet 

transform (Mallat, 1989). 

Thermal sharpening utilizes the relationship between land surface temperature and vegetation-related 

variables to disaggregate the land surface temperature (LST) as a dependent variable of the vegetation (Ha 

et al., 2012). The two techniques that use this approach are the DisTrad and the TsHARP. The DisTrad 

approach (Kustas et al., 2003) downscales radiometric surface temperature based on the inverse linear 

relationship between the surface temperature and NDVI. TsHARP (Agam et al., 2007) is an improvement 

of the DisTrad approach where fractional of vegetation cover is used to downscale land surface temperature 

instead of NDVI. A comparison of the DisTrad and the TsHARP algorithms indicates that the differences 

between LST derived from both algorithms is insignificant since the fractional of vegetation cover is directly 

related to NDVI (Ha et al., 2012). Application of the DisTrad method on MODIS LST using NDVI 

products at resolutions ranging from 20 m to 250 m showed accuracies within the range of 1.50 K (Kustas 

et al., 2003). Ha et al. (2012) in their review of downscaling methods report that thermal sharpened LST 

from MODIS yielded correlations of up to 0.93 with the one obtained from Landsat TM images.  
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2.4. Effective precipitation  

Jensen (1967) defines effective precipitation in the context of irrigation applications as the fraction of the 

total precipitation that is available for use by crops. It refers to the total precipitation less the amount of 

water lost as run off and deep percolation. Evaporation of water from wet soil surface and interception 

from crop canopy is assumed beneficial to the crop. Bos, et al., (2009) define effective precipitation as the 

fraction of the total precipitation available to meet the transpiration demand within a cropped area. Some 

of the widely used methods in the estimation of effective precipitation for irrigation management include 

the USDA method and the Curve Number method discussed in details in Bos, et al (2009). In addition to 

these methods, various other empirical methods used in the estimation of effective precipitation are 

discussed in Patwardhan, Nieber, & Johns (1990). 

Another empirical method for computing effective precipitation was proposed by van Eekelen et al, (2015). 

In this method, effective precipitation is computed from the ratio between actual ET from natural land use 

classes and precipitation. This ratio represents the fraction of the total precipitation that is available for 

consumption by natural vegetation. The method was successfully implemented to quantify incremental ET 

as a result of irrigation and ground water abstractions in the Incomati basin, South Africa (van Eekelen et 

al., 2015). The main advantage of this method is that effective precipitation is quantified based purely on 

remote sensing thus very applicable in areas with limited ground data availability.  
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3. STUDY AREA AND DATA COLLECTION 

3.1. Study area  

3.1.1. Location  

This research was carried out in the lower catchment of the Lake Naivasha basin in Kenya. Lake Naivasha 

is a freshwater lake situated approximately 80 km northwest of the Kenyan capital Nairobi. It is located at 

the highest elevation (1890m) of the eastern rift valley floor in Kenya with coordinates 00 45’00’’S, 360 

20’00’’E (Becht & Harper, 2002). Figure 2 shows the Lake Naivasha basin, the location of the lake and the 

lower catchment where this research was conducted. 

 

Figure 2: Location of the study area 

3.1.2. Climate  

Due to its close proximity to the equator, the climate in the catchment is influenced by the Inter-tropical 

Convergence Zone (ITCZ) resulting in two rainy seasons. The long rain season occurs between March and 

May with the shorter one occurring between October and December. The rainfall in the catchment is 

influenced by the local relief as well (Odongo et al., 2014). The higher altitude areas of the catchment in the 

Aberdare ranges to the east (more than 2500m in altitude) receive an average annual rainfall of 1100mm 
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compared to an annual average of 600mm at the lake (Becht & Harper, 2002). The daily mean temperature 

varies from 80 C in the upper parts of the catchments to 300 C at the lake.  

3.1.3. Hydrology  

Lake Naivasha is a shallow lake, 6-8 m deep that covers a surface area of 139km2. The total catchment area 

of the basin is approximately 3400 km2.The main inflow of water into the lake is from rivers Malewa and 

Gilgil which are perennial and originate from the upper wetter catchment areas in the Aberdares.  Several 

other streams flow seasonally towards the lake with Karati the only one reaching the lake during periods of 

intense rain (Odongo et al., 2014). The lake has no visible surface water outlet and its freshness is attributed 

to ground water outflow towards the southwest, feeding into the Olkaria hot springs (Ojiambo, Poreda, & 

Lyons, 2001).   

3.1.4. Irrigation  

In the last three decades, the basin has experienced tremendous growth in horticultural farming (Mekonnen, 

Hoekstra, & Becht, 2012). The upper catchment of the basin consists of small scale farmers who primarily 

rely on rainfall for farming. The lower parts of the catchments, particularly the areas around the lake, are 

occupied by large scale commercial irrigation farms. They mainly rely on freshwater from the lake for 

irrigation and their produce is mainly for export. According to Mekonnen et al. (2012) the commercial farms 

under irrigation occupy an area of 4,450 ha of which cut flowers occupy 43% of the area (characteristically 

in greenhouses), followed by vegetables with 41% and the rest is mainly fodder crop (Musota, 2008). 

Vegetables and fodder are mainly grown in open irrigation farms. 

3.2. Fieldwork and data collection 

For this research, a fieldwork was conducted between September 21 and October 9, 2015 in view of 

obtaining the necessary primary as well as secondary data. The fieldwork comprised of the following 

activities 

 Collecting of data on open commercial irrigation farms in the lower catchment of the Naivasha 

basin. 

 Obtaining data on water abstraction from the Lake and connected aquifers by the open commercial 

irrigation farms 

 Collecting meteorological data 

 Land use and land cover mapping in the lower catchment 

3.2.1. Data on open commercial irrigation farms  

The fieldwork data collection exercise was aimed at acquiring irrigation data from open commercial 

irrigation farms in the lower catchment. Some of these farms are Vegpro K. Ltd, Finlays Kingfisher farm, 

Delamere Manera farm, Loldia farm and Marula farm, among others. However, fieldwork was carried out 

in Loldia farm, Delamere Manera farm and the two farms belonging to Vegpro K. Ltd (Vegpro Gorge farm 

and Vegpro Delamere Pivots) only. Authority to carry out fieldwork in Marula farm and Finlays Kingfisher 

farm was denied.  

During the field work, GPS positions of the various irrigation blocks per farm were taken for identification 

on the GIS system and subsequent digitizing of the farms. The crop types as well as the irrigation systems 

in use per block on each farm were also identified. Data on the irrigated area, the type of irrigation systems 

in use as well as the source of water in each farm was obtained as well. An overview of the data obtained 

from the farms is shown in Table 1. Detailed data on crops grown in the farms is presented in the 

appendices.  
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Table 1: Summary of irrigation data obtained from the farms 

Farm Total 

Area (ha) 

Drip Irrigated 

Area (ha) 

Pivot Irrigated 

Area (ha) 

Crops Grown Water 

Source 

Vegpro Gorge 

Farm 

503 301 202 Assorted 

Vegetables 

Lake 

Vegpro 

Delamere 

Pivots 

179 32 147 Assorted 

Vegetables 

Borehole 

Delamere 

Manera Farm 

127 0 127 Fodder crops Borehole 

Loldia Farm 74 0 74 Assorted 

Vegetables 

Lake and 

Boreholes 

The two types of irrigation systems used in the farms are shown in the images shown in Figure 3.  

 

Figure 3: Drip irrigation system at Vegpro Gorge farm to the left and a centre pivot irrigation system at Delamere 
Manera farm to the right 

3.2.2. Water abstraction data 

Water abstraction data was obtained from both the farms and WRMA Naivasha offices. The source of water 

for each of the farm is indicated in Table 1. Full water abstraction records for the year 2014 were available 

for Vegpro Gorge farm and Loldia farm only. However lease of water to other farmers by Loldia farm made 

it difficult to ascertain the actual amount of water supplied to their farm. Vegpro Delamere pivots on the 

other hand did not have reliable water abstraction records since some of their meters occasionally 

experienced breakdowns.  As such, water abstraction from some of their boreholes was unmetered in some 

months. This was attributed to silt in the borehole water which led to constant mechanical failure in the 

metering systems. As for Delamere Manera farm, water abstraction records were unavailable owing to 

breakdown in their metering system. The monthly water abstraction records for each of the farms are shown 

in the appendix.  

3.2.3. Precipitation data 

Precipitation data was collected for the rain gauge stations within the lower catchment. Data was obtained 

for both the stations managed by WRMA and the farms. In addition, rainfall data from the gauge station at 

the eddy covariance flux (ECF) tower site at the Kenya Wildlife Training Institute (KWSTI) was also 



ASSESSMENT OF IRRIGATION PERFORMANCE BY REMOTE SENSING IN THE NAIVASHA BASIN KENYA 

12 

collected. All the farms were found to use manual rain gauges for recording rainfall. On the other hand, 

WRMA was found to use both manual and telemetric rain gauges to record rainfall. The stations for which 

data was collected, their location and type of rain gauge used are shown in the appendix. 

However, not all stations for which data was collected were used in this research. Stations with data gaps 

were identified and eliminated. As a result, only four stations were deemed reliable for use in the research. 

The daily as well as the monthly totals for the four selected stations are shown in Figure 4.  

  

Figure 4: Daily rainfall totals to the left and the monthly rainfall totals for the four stations used in this research 

3.2.4. Other meteorological data 

The four farms where fieldwork was conducted did not have stations for recording other meteorological 

variables such as air temperature, wind speed and the relative humidity. Weather data was only available 

from ECF tower site at KWSTI. The data collected from this station was for the period from January 2012 

to December 2014.  

The ECF tower is located at the KWSTI compound in Naivasha at 36027’3.142’’E, 00, 44’11.748”S at the 

floor of the rift valley. The site is equipped with both a Bowen ratio measurement instrumentation and an 

eddy covariance flux measurement system. Measurements of wind velocity, air temperature, air pressure and 

the relative humidity are carried out at two heights of 2 m and 5.5 m. The flux measurement system is 

installed on a 5.5 m high tower in a relatively flat terrain surrounded by sparse vegetation consisting mainly 

of grass and shrub land. Independent measurements of the energy balance components are taken using the 

eddy covariance instrumentation.  

To derive the daily evapotranspiration, the energy balance closure of the ECF measurement was first 

analysed and corrections applied. This was done by assessing the closure error on the energy balance 

(Equation 2-1). 

The closure error was determined by plotting the sum of the daily average turbulent heat fluxes against the 

available energy and forcing it through the 1:1 line as applied in Foken et al., (2009). 

Corrected latent heat flux was then obtained by applying equation 3-1 (Zheng et al., 2014). 

 
𝜆𝐸𝑐𝑜𝑟 = 𝜆𝐸 + 𝑅𝑒𝑠 ×

𝜆𝐸

𝐻 + 𝜆𝐸
 3-1 

Where, 𝜆𝐸 𝑐𝑜𝑟 is the corrected latent heat flux and 𝑅𝑒𝑠 is the unaccounted for energy which is given by 

equation 3-2. 
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 𝑅𝑒𝑠 = 𝑅𝑛 − (𝐻 + 𝜆𝐸 + 𝐺0) 3-2 

 

This energy balance closure correction approach is based on the assumption that the Bowen ratio is correctly 

measured by the ECF system and the closure error is associated with turbulent energy fluxes and not the 

available energy (Zheng et al., 2014). 

Evapotranspiration was then derived from the corrected latent heat flux using equation 3-3.  

 
𝐸𝑇 = (

𝜆𝐸

𝜆
) 3-3 

Where, 𝜆𝐸 is the latent heat of vaporization (2.45 MJ kg-1). 
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4. SATELLITE DATA AND PROCESSING 

Various satellite data and products were used as inputs to the SEBS model as well as in the downscaling of 

SEBS derived ET estimates and for obtaining spatially distributed rainfall estimates. These satellite data and 

products were downloaded free of charge from open source databases. The satellite data and products 

downloaded are shown in Table 2. 

Table 2: Satellite data products used and their sources 

Product Source 

Landsat 8 images http://earthexplorer.usgs.gov.   

MODIS MOD11A1 LST https://lpdaac.usgs.gov/data_access/data_pool   

MODIS MOD16A2 ET product http://www.ntsg.umt.edu/project/mod16#data-product 

LSA SAF DSSF https://landsaf.ipma.pt/products/prods.jsp 

CHIRPS Rainfall product http://chg.geog.ucsb.edu/data/index.html 

SRTM DEM http://earthexplorer.usgs.gov.   

Planetary boundary layer height http://apps.ecmwf.int/datasets/data/interim-full-daily/levtype=sfc/ 

Sunshine hours http://apps.ecmwf.int/datasets/data/interim-full-daily/levtype=sfc/ 

4.1. Landsat 8 multispectral images 

Fourteen Landsat 8 images with less than 10% cloud cover corresponding to path 169 and row 60 were 

downloaded for the year 2014. These images were in unsigned 16 bit digital number format. They were then 

converted into reflectance and radiances. Finally, the area of study was extracted by creating a sub map in 

ILWIS using the coordinates of the bounding box of the catchment shape file.   

4.1.1. Conversion to TOA reflectance and radiance 

Conversion of the images into TOA reflectance and radiances for the VIS/NIR and the TIRS bands 

respectively was implemented using equations 4-1, 4-2 and 4-3 (USGS, 2015b).  

 𝐿𝜆 = 𝑀𝐿𝑄𝑐𝑎𝑙 + 𝐴𝐿 4-1 

 𝜌𝜆′ = 𝑀𝜌𝑄𝑐𝑎𝑙 + 𝐴𝜌 4-2 

 
𝜌𝜆 =

𝜌𝜆′

𝑐𝑜𝑠 (𝜃𝑠𝑧)
 4-3 

Where, 𝐿𝜆 is the TOA spectral radiance (W m-2.srad-1.μm-1), 𝑀𝐿 is the band specific radiance multiplicative 

rescaling factor,  𝐴𝐿  is the radiance additive rescaling factor,  𝑄𝑐𝑎𝑙  is the DN value,  𝜌𝜆′ is the TOA 

reflectance (-) uncorrected for the influence of the solar angle,  𝑀𝜌  is the band specific reflectance 

http://earthexplorer.usgs.gov/
https://lpdaac.usgs.gov/data_access/data_pool
https://landsaf.ipma.pt/products/prods.jsp
http://earthexplorer.usgs.gov/
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multiplicative rescaling factor,  𝐴𝜌 is the reflectance additive rescaling factor,  𝜌𝜆 is the TOA reflectance (-) 

corrected for the solar angle and  𝜃𝑠𝑧 is the local solar zenith angle. 

The scale factors were obtained from the metadata file downloaded together with the images. 

4.1.2. Atmospheric correction 

To obtain the reflectance at the surface, the effects of atmospheric absorption and scattering were removed. 

This was achieved by applying the SMAC algorithm (Rahman & Dedieu 1994) to the radiometrically 

calibrated visible and near infra-red bands. Data on the aerosol optical thickness (AOT) at 550nm, ozone 

content, water vapour as well as the sensor coefficient file used in the process of atmospheric correction 

were obtained from the sites presented in Table 3. The atmospheric correction process was implemented 

via the SMAC extension in ILWIS. 

Table 3: Data used for Atmospheric correction and their sources 

Atmospheric Correction Data Source 

AOT 550 nm http://aeronet.gsfc.nasa.gov/.  

Ozone content [atm.cm] http://macuv.gsfc.nasa.gov/.  

Water vapour [gm.cm-2] http://giovanni.gsfc.nasa.gov/giovanni/  

Sensor coefficients http://www.cesbio.ups-tlse.fr/fr/smac_telech.htm 

4.2. Downward shortwave surface flux 

To compute the net radiation, SEBS model requires an input of the instantaneous down-welling shortwave 

radiation. The downward shortwave surface flux (DSSF), product used in this research is derived from three 

shortwave bands, in the visible, near infra-red and the shortwave infra-red of the SEVIRI instrument aboard 

the Meteosat Second Generation (MSG) weather satellite (EUMETCAST, 2015). The DSSF product is 

available at the full coverage of the MSG disc at a temporal resolution of 30 minutes. The spatial resolution 

of the product at the equator where the study area for this research lies is 3 km. The algorithm used to derive 

the DSSF product is discussed in details in Geiger et al. (2008) .   

The product was downloaded in the HDF 5 file format and an IDL script1 was used to convert the files into 

Geo TIFF format. The converted files were then imported into ILWIS raster formats. A sub map of the 

study area was then created for each file.  The files were then resampled to the spatial resolution of Landsat 

8 (30 m) using the bilinear interpolation method. 

4.3. MODIS products 

The two MODIS products used in this research were downloaded from the sites indicated in Table 2. Both 

products were obtained for the MODIS tile H21V09 within which the study area lies as indicated in Figure 

5. Both products were downloaded in sinusoidal projection. 

                                                      
1 Obtained from van der Velde, R. 

http://aeronet.gsfc.nasa.gov/
http://macuv.gsfc.nasa.gov/
http://giovanni.gsfc.nasa.gov/giovanni/
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Figure 5: Location of the MODIS tile H21V09 in the MODIS sinusoidal grid projection. Source (NASA, 2015). 

A brief description of the MOD11A1 and MOD16A2 products is provided in sections 4.3.1and 4.3.2 

respectively. 

4.3.1. MODIS land surface temperature product 

Land surface temperatures was obtained from the MOD11A1 product which is a level 3 daily product 

containing land surface temperature and emissivity at a spatial resolution of 1 km. The LST product is 

obtained using a generalized split window algorithm as described in Dozier (1996). The product has been 

widely validated over a range of temperatures and atmospheric conditions and the validation results 

published in Wang, Liang, & Meyers (2008), Coll et al. (2005) among many other works accuracies higher 

than one degree being reported in most of the studies. 

The MOD11A1 LST product was downloaded by use of the USGS bulk download application. The files 

downloaded were in HDF file format and an IDL script was used to re-project them to Geo Tiff format. 

Once projected, the maps were imported into ILWIS via the GDAL import extension. Sub maps of the area 

of study were then created. The maps were then rescaled into LST in kelvins using the scale and offset 

factors provided in the metadata file.    

4.3.2. MODIS monthly evapotranspiration product 

MODIS MOD16A2 is a monthly ET product at a spatial resolution of 1 km. It is based on the improved 

ET algorithm by Mu, Zhao, & Running (2011) which is a modification of the previous algorithm developed 

by Mu, Heinsch, Zhao, & Running (2007). The algorithm is based on the Penman-Monteith equation (Mu 

et al., 2007). The algorithm combines global meteorology data from flux towers and remote sensing data 

from MODIS to obtain a global evapotranspiration product (Mu et al., 2007). Velpuri, Senay, Singh, Bohms, 

& Verdin (2013) following their validation of the ET product in the US under different vegetation types 

conclude that the performance of the MODIS ET product is acceptable for basin scale water management 

applications. 

The MOD16A2 ET product was downloaded via the MODIS tool box extension in ArcMap software in 

TIFF format in the sinusoidal projection. Re-projection from sinusoidal to WGS 84 projection was done in 

ArcMap. The files were then imported into ILWIS and sub maps of the study area created.  
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4.4. Shuttle Radar Topography Mission (SRTM DEM) 

In this research, a digital elevation model was used as one of the inputs into SEBS. The, SRTM DEM with 

a spatial resolution of 30m (1 arc second) was used. The DEM comes already void filled by use of 

interpolation techniques and other sources of elevation data as described in USGS (2015a). The DEM was 

downloaded as a Geo TIFF. It was then imported into ILWIS where the area of study was extracted by 

creating a sub map using the corner coordinates of the catchment shape file.  

4.5. CHIRPs rainfall product 

The Climate Hazard Group Infrared Precipitation with Station (CHIRPS) rainfall product is a 0.050 spatial 

resolution quasi-global product (Funk et al., 2015). The rainfall product is available on a daily, five days and 

monthly temporal resolutions. To derive this product, thermal infra-red cold cloud duration (CCD) derived 

rainfall estimates are calibrated with monthly climatology precipitation derived from gauge data (Funk et al., 

2015).  

Toté et al. (2015)compared the performance of CHIRPS, TAMSAT and FEWS NET RFE in Mozambique 

where they found the CHIRPS product to outperform the rest especially under intense rainfall events. 

However they note that the product was not performing well under periods of light rain. Ceccherini, 

Ameztoy, Hernández, & Moreno (2015) tested downscaled TRMM 3B43, PERSIAN CDR, CMORPH, 

CHIRPS, RFE and TAMSAT in South America and West Africa and found the downscaled CHIRPS 

product to have the best performance statistics for both regions. 

Selection of the product was mainly based on its high spatial resolution (approximately 5 km) compared to 

the rest e.g. approximately 25 km for TRMM. Also, based on literature the performance of the product 

especially in tropical regions appears reasonably good. 

Daily CHIRPS rainfall maps were downloaded via the ISOD toolbox in ILWIS for the African region for 

the year 2014. A sub map of the area of study was then created for each daily map using the corner 

coordinates of the catchment shape file in ILWIS. Map lists of the daily sub maps were then created for 

each month. The map list statistics function in ILWIS was then used to sum the maps in each map list to 

obtain the monthly total precipitation maps. The annual total precipitation map was then obtained by 

summing the twelve monthly total precipitation maps.  

4.6. ECMWF ERA-Interim Data 

Data on Planetary boundary layer height (PBL) and the number of sunshine hours per day was obtained 

from the European Centre for Medium-Range Weather Forecasts (ECMWF). The datasets were obtained 

from the publicly accessible ECMWF Interim Reanalysis (ERA-Interim) data set which is available as a 

continuously updated reanalysis of the global atmosphere (ECMWF, 2015). Description of the model, 

datasets used and the performance of the various model outputs are extensively discussed in (Dee et al., 

2011). 

Both datasets were downloaded in the Network Common Data Format (NetCDF) in grids of 0.1250 

resolution. The datasets were then converted into Geo Tiff format by use of IDL scripts. The files were 

then imported into ILWIS where a sub map of the study area was created.   
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5. RESEARCH METHOD 

This chapter describes the methods implemented to answer the research questions and consequently achieve 

the objectives set in chapter 1. The methodology is summarized in the form of a flowchart as shown in 

Figure 6. 

 

 

Figure 6: Flow chart of the research method 

5.1. Evapotranspiration computation 

High spatial resolution (30 m) monthly evapotranspiration maps were used to compute the monthly 

irrigation consumption and subsequently the monthly irrigation efficiency. This sub-chapter describes in 

detail all the processes that were used to derive the monthly evapotranspiration maps.  
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5.1.1. Preparation of SEBS model inputs 

SEBS model requires three sets of inputs to accurately model evaporative fraction on a pixel at the time of 

satellite overpass and consequently the daily evapotranspiration.  

The first set consists of inputs derived from remote sensing images. Remote sensing inputs are obtained 

from the visible, near infra-red and thermal infra-red bands of multispectral images. The variables derived 

include land surface temperature, emissivity, NDVI, albedo and the FVC. 

 The second set of inputs is meteorology-related data. These data are derived from observations made at 

weather stations. The meteorological inputs required are air temperature, air pressure, wind speed and the 

specific humidity all measured at a reference height. In addition, data on short wave incoming radiation, 

sunshine hours in a day and the planetary boundary layer height are also necessary inputs into the model. 

The third set consists of inputs derived from land use and land cover maps.  Land use and land cover maps 

are needed to derive parameters related to surface roughness. These include the canopy height, the 

displacement height and the roughness height maps. This set of inputs is important since the parameters 

defined from it highly influence the turbulent heat fluxes and to a great extent the accuracy of the derived 

evapotranspiration maps. 

 The preparation of each of the inputs is described in the following sections. 

5.1.1.1. Normalized Difference Vegetation Index 

The Normalized Difference Vegetation Index was computed from band 4 and 5 of the radio metrically 

calibrated and atmospherically corrected OLI bands (Equation 5-1). Band 4 and 5 are the Red and NIR 

bands of the Landsat 8 OLI sensor respectively.  

 
𝑁𝐷𝑉𝐼 =

𝜌5 − 𝜌4

𝜌5 + 𝜌4
 5-1 

Where, 𝜌5 is the reflectance of the Near Infra-red band and 𝜌
4
 is the reflectance of the red band. 

5.1.1.2. Fraction vegetation cover 

The NDVI derived in Equation 5-1 was used to derive the fraction of vegetation cover maps based on 

Equation 5-2.  This equation requires representative NDVI values for bare soil and fully vegetated cover.  

 
𝐹𝑉𝐶 =

𝑁𝐷𝑉𝐼 − 𝑁𝐷𝑉𝐼𝑠

𝑁𝐷𝑉𝐼𝑣 − 𝑁𝐷𝑉𝐼𝑠
 5-2 

Where 𝑁𝐷𝑉𝐼𝑣 is the representative NDVI of full vegetation coverage and 𝑁𝐷𝑉𝐼𝑠 is the representative 

NDVI of bare soil. 

The values of NDVIs and NDVIv were chosen to be 0.15 and 0.9 respectively based on the work of Jiménez-

Muñoz et al. (2009) on the application of the methodology on high spatial resolution imagery. 

5.1.1.3. Land surface emissivity  

Broad band land surface emissivity was calculated empirically using Equation 5-3, which was proposed by 

Sobrino, Jiménez-Muñoz, & Paolini (2004) for Landsat imagery. 

 𝜀 = 0.004 × 𝐹𝑉𝐶 + 0.986 5-3 
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5.1.1.4. Albedo 

The shortwave albedo was computed from bands 2 to 7 of the OLI sensor which span the entire visible and 

near-infrared spectrum based on Equation 5-4 (Liang, 2001). 

 𝛼𝑠ℎ𝑜𝑟𝑡 = 0.3562𝜌2 + 0.130𝜌4 + 0.373𝜌5 + 0.085𝜌6 + 0.072𝜌7 − 0.0018  5-4 

Where, 𝛼𝑠ℎ𝑜𝑟𝑡 is the shortwave albedo and  𝜌𝑖 is the reflectance of bands 2, 4, 5, 6 and 7.  

5.1.1.5. Land surface temperature 

The USGS has raised concerns about the quality of the thermal bands in Landsat 8 and the consequent 

quality of LST derived from these bands particularly when using the split window algorithm. USGS, (2015b) 

notes that the quality of the thermal bands 10 and 11 is affected by stray light from neighbouring pixels 

especially for band 11.  

Based on these considerations, MODIS LST product was used in this research as the source of LST for 

input into SEBS model. However, due to the coarse spatial resolution (1 km) of the MODIS LST product, 

downscaling of the product was done. This was achieved by applying the principle of thermal sharpening 

(Kustas et al., 2003). Selection of the MODIS LST maps to be sharpened was based on the assumption that 

NDVI within a ten day period remains fairly unchanged. As such, cloud free MODIS LST maps were 

selected within a period of five days before and after the Landsat 8 day of satellite overpass. NDVI obtained 

from Landsat 8 at the corresponding day of overpass was then used to downscale the selected MODIS LST 

maps. 

The downscaling process involved the aggregation of the 30 m NDVI maps to the spatial resolution of the 

LST (1 km) by applying a 33 by 33 averaging filter on the NDVI map. The aggregated NDVI image was 

then classified into classes consisting of bare soil, sparsely vegetated and fully vegetated pixels. Water pixels 

were masked out since they do not conform to the NDVI-LST relationship. Pixels with NDVI values of 

0.2 and below were considered to be bare soil, 0.2 to 0.5 as mixed pixels and above 0.5 as fully vegetated 

based on recommendations presented in Kustas et al., (2003). From each class, 25 % of the pixels with the 

lowest coefficient of variation were then used to determine the relationship to be used for downscaling the 

LST (Kustas, et al, 2003). 

A first order linear regression was then derived by fitting the selected pixels to their corresponding LST. 

LST as a function of NDVI was obtained using the derived linear regression equation as shown in Equation 

5-5.    

 𝐿𝑆𝑇𝑁𝐷𝑉𝐼 = 𝑎 + 𝑏𝑁𝐷𝑉𝐼 5-5 

Where, 𝐿𝑆𝑇𝑁𝐷𝑉𝐼 is the LST derived as a function of NDVI and  𝑎 & 𝑏 = are the coefficients of the linear 

regression equation. 

This regression equation was then applied on both the native NDVI map and the aggregated NDVI map 

to obtain the LST as a function of NDVI at both the 30 m resolution and the 1 km resolution. A temperature 

change map was then obtained by use of equation 5-6. 

 ∆𝐿𝑆𝑇 = 𝐿𝑆𝑇𝑚 − 𝐿𝑆𝑇𝑁𝐷𝑉𝐼𝑎
 5-6 

Where ∆𝐿𝑆𝑇 is the LST difference map, 𝐿𝑆𝑇𝑚 is the LST from MODIS, and 𝐿𝑆𝑇𝑁𝐷𝑉𝐼𝑎
 is the LST derived 

from equation using the aggregated NDVI map. This change map accounts for the differences that may 
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exist due to other factors not captured in the NDVI-LST relationship such as differences in spatial scale, 

viewing geometry and the differences in the sensitivity of the sensors 

Finally, the downscaled LST was derived from equation 5-7.  

 𝐿𝑆𝑇30𝑚 = 𝐿𝑆𝑇𝑁𝐷𝑉𝐼𝑛
+ ∆𝐿𝑆𝑇 5-7 

Where, 𝐿𝑆𝑇30𝑚 is the LST at 30 m resolution, 𝐿𝑆𝑇𝑁𝐷𝑉𝐼𝑛
 is the LST derived from applying equation 5-5 on 

the native NDVI map and 𝑁𝐷𝑉𝐼𝑛 is the Native NDVI map (30 m) spatial resolution. 

This procedure was applied for each LST scene since the relationship varies from scene to scene (Kustas et 

al., 2003). 

5.1.1.6. Meteorological data 

Data on air temperature, pressure, wind speed and the relative humidity was obtained from the flux tower 

measurements located at the KWSTI compound. This data represents point measurements but was assumed 

to be representative to the study area (lower catchment) since the tower and the farms lie on the floor of 

the rift valley where differences in elevation are minimal. The tower lies within a radius of approximately 15 

kilometres to the irrigation farms.   

Specific humidity was derived from the measurements of air temperature, pressure and relative humidity 

measured at a height of 2 m at the flux tower. This was based on the relationship between these variables 

and the specific humidity as described in Brutsaert (2005). Hence, specific humidity was computed from 

equation 5-8. 

 𝑞 =
𝜌𝑣

𝜌⁄  5-8 

Where 𝑞 is the specific humidity (-), 𝜌𝑣 is the density of water vapour (kg m-3), 𝜌 is the total air density (dry 

and moist air in kg m-3). 

The density of water vapour was computed from equation 5-9. 

 
𝜌𝑣 =

0.622𝑒

𝑅𝑑𝑇
 5-9 

Where, 𝑒 is the vapour pressure in kPa, 𝑅𝑑  is the specific gas constant of dry air (286 J kg-1 K-1),  𝑇 is the 

air temperature in K.   

The total air density was derived from equation 5-10. 

 
𝜌 =

𝑃

𝑅𝑑𝑇
(1 −

0.378𝑒

𝑃
) 5-10 

And 𝑃 is the air pressure in Pascal’s. 

The saturated vapour pressure was then calculated using equation 5-11.  
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𝑒𝑠 = 0.6108. 𝑒𝑥𝑝 (

17.27𝑇𝑎

237.3 + 𝑇𝑎
) 5-11 

Where, 𝑒𝑠 is the saturated vapour pressure in kPa and 𝑇𝑎 is air temperature in 0C. 

Finally, vapour pressure was derived from the relationship between the relative humidity and saturated 

vapour pressure as shown in equation 5-12.   

 𝑅𝐻 = 𝑒
𝑒𝑠⁄  5-12 

Where, 𝑅𝐻 is the relative humidity (-) and  𝑒𝑠 is the saturated vapour pressure in kilo Pascal. 

Inputs of sunshine hours and the planetary boundary layer height were obtained from the maps prepared 

from downloads from the ECMWF site. Maps derived from the LSA SAF DSSF product were used as 

inputs into the model for the shortwave incoming radiation. 

5.1.1.7. Canopy height, displacement height and roughness length of momentum transfer maps 

These maps were derived from land use and land cover classification of the area. The land use and land 

cover classification used was obtained from an existing land cover map from 2011. The map classifies the 

land cover in the catchment into 12 classes at a spatial resolution of 30 m as shown in Figure 7. 

 

 

Figure 7: Land use and land cover in the study area. Source (Vincent Odongo). 

Based on this map, canopy height values, displacement height values and the roughness length of 

momentum transfer values were assigned to each class to create the respective roughness related maps. 
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These values were obtained from the paper by Wiernga (1993) on roughness parameters on homogenous 

surfaces. The respective values for each of the classes used to derive the three maps are presented in Table 

4.  

Table 4: Roughness parameter values associated with the land use map 

Land Cover Type Canopy Height 

(hc) in m 

Roughness Length for 

Momentum Transfer (Z0m) in 

m 

Displacement Height 

(d0) in m 

Irrigation/Crops 0.25 0.0400 0.163 

Aquatic 

vegetation 

0.60 0.3910 0.050 

Built up 8.00 1.2000 0.522 

Bush land 2.30 0.4500 1.500 

Fallow land 0.00 0.0040 0.000 

Farmland 0.25 0.0400 0.163 

Forest 9.00 1.2000 5.870 

Grassland 0.02 0.0300 0.013 

Green houses 3.50 0.5000 2.282 

Shrubs 1.80 0.3500 1.173 

Water 0.00 0.0004 0.000 

Woodland 7.5 0.8000 4.890 

 

Due to the constant rotation of crops in the farms, open irrigated farms were assigned a single value 

associated with the general land use class crops for each of the three maps. 

5.1.2. Daily Evapotranspiration from SEBS 

Daily evapotranspiration was computed from SEBS on the day of MODIS Terra satellite overpass by 

running the SEBS model via the SEBS extension in ILWIS. NDVI, Albedo, Emissivity and FVC maps 

derived from Landsat 8 were used constantly for all the days of MODIS overpass falling within a ten day 

period of Landsat 8 overpass. Maps of the evaporative fraction at the time of MODIS Terra overpass, daily 

evapotranspiration as well as the relative evapotranspiration were obtained. A total of forty five maps were 

obtained corresponding to all the days where downscaled MODIS LST was available. Figure 8 shows the 

SEBS interface and the inputs as applied for Julian day number 23rd corresponding to date 23/01/2014. 



ASSESSMENT OF IRRIGATION PERFORMANCE BY REMOTE SENSING IN THE NAIVASHA BASIN KENYA 

25 

 

Figure 8: SEBS interface in ILWIS showing the model inputs as applied for MODIS satellite overpass on 23/01/2014 

5.1.3. Annual ET map from SEBS 

An annual ET map based on the SEBS derived daily ET maps was obtained by applying a gap filling 

technique which assumes conservation of the ratio between the actual to the reference ET between two 

days of satellite overpass (e.g. Du, Song, Wang, Zhang, & Liu, 2013, Singh, Senay, Velpuri, Bohms, & 

Verdin, 2014). Singh et al. (2014) recommend the use of the method for the derivation of seasonal and 

annual evapotranspiration maps due to the biases introduced when the method is applied on shorter 

durations.  As such, an annual evapotranspiration map was computed rather than monthly ET Maps. The 

annual ET map was computed by summing the ET of the gaps and the SEBS derived daily ET (Equation 

5-13). 

 
𝐸𝑇𝑎 = ∑ 𝐸𝑇𝑔

𝑛

𝑖=1

+ ∑ 𝐸𝑇𝑠

𝑚

𝑗=1

 5-13 

Where,  𝐸𝑇𝑎 is the annual ET map, 𝐸𝑇𝑔 is the ET for gap k (Equation 5-14), 𝑖 is the number of gaps and 

𝐸𝑇𝑠 is the SEBS ET for day j preceding the gap.  

 
𝐸𝑇𝑔 = 𝐹𝑘 ∑(𝐸𝑇𝑜𝑘)

𝑜

𝑘=1

 5-14 

Where, 𝐸𝑇𝑜𝑘  is the reference ET for period 𝑘 (number of days in the gap) and 𝐹𝑘 is the representative actual 

ET to reference ET ratio for the corresponding period 𝑘 obtained using equation 5-15. 

 𝐹𝑘 =
𝐸𝑇𝑠

𝐸𝑇𝑜𝑠
⁄  5-15 

Where, 𝐸𝑇𝑜𝑠  is the reference ET for the day of satellite overpass preceding the gap. 
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Reference evapotranspiration was calculated using the Hargreaves method (Hargreaves, 1989) whose 

formulation is presented in equation 5-16. This method was used due to gaps in the radiation data from the 

flux tower which limited the application of the recommended Penman method. 

 
𝐸𝑇0 = 0.0023𝑅𝑎(𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛)0.5 (

𝑇𝑚𝑎𝑥 + 𝑇𝑚𝑖𝑛

2
+ 17.8) 5-16 

Where, 𝑇𝑚𝑎𝑥 is the maximum air temperature of the day, 𝑇𝑚𝑖𝑛 is the minimum air temperature of the day 

in degrees Celsius and 𝑅𝑎  is the extra-terrestrial radiation calculated based on the formulations in the 

appendix. 

5.1.4. Monthly ET maps 

To compute monthly irrigation consumption, monthly ET maps at the Landsat 8 spatial scale were used. 

These maps were obtained using equation 5-17 (Singh et al., 2014). In this algorithm, coarse spatial 

resolution ET maps at a high temporal resolution are used to introduce temporal variability in fine spatial 

resolution ET maps with poor temporal resolution. This results in a final ET map with both high spatial 

and temporal resolutions. The algorithm is based on the assumption that a linear relationship exists between 

evapotranspiration derived from coarse resolution imagery and fine resolution imagery (e.g Hong, 

Hendrickx, & Borchers, 2011, Singh et al., 2014). 

In this research, MODIS monthly ET maps were used to introduce the temporal variability in the total 

annual ET map derived from SEBS. 

 
𝐿(𝑥, 𝑦, 𝑡𝑚) =

𝑀(𝑥, 𝑦, 𝑡𝑚)

𝑀(𝑥, 𝑦, 𝑡𝑎)
 × 𝐿(𝑥, 𝑦, 𝑡𝑎) 5-17 

Where, 𝐿(𝑥, 𝑦, 𝑡𝑚)  is the monthly evapotranspiration at the Landsat 8 spatial scale for pixel (x, y), 

𝑀(𝑥, 𝑦, 𝑡𝑚) is the monthly MODIS evapotranspiration for pixel (x, y), 𝑀(𝑥, 𝑦, 𝑡𝑎) is the annual MODIS 

evapotranspiration for pixel (x, y), 𝐿(𝑥, 𝑦, 𝑡𝑎) is the annual Landsat 8 derived evapotranspiration for pixel 

(x, y) and pixel (x, y) is at the Landsat 8 spatial scale. 

   

5.1.5. Validation of evapotranspiration 

SEBS derived daily ET maps as well as the monthly downscaled evapotranspiration maps were validated for 

both irrigated and non-irrigated pixels within the study area. 

Since no measurements of actual ET were available in the irrigated fields, validation was carried out by 

comparing the SEBS estimate with potential ET calculated using a crop coefficient and the reference ET. 

This was based on the assumption that under irrigated conditions, optimal conditions for evapotranspiration 

exists. As such, the potential ET of the crops is approximately equal to the actual ET of the crops. Actual 

ET for the crops was then calculated using equation 5-18.   

 𝐸𝑇𝐶𝑟𝑜𝑝 = 𝐸𝑇0 × 𝐾𝑐 5-18 

Where 𝐸𝑇𝑐𝑟𝑜𝑝 is the actual ET for the crop under irrigation, 𝐸𝑇0 is the reference ET and 𝐾𝑐 is the crop 

coefficient for the particular crop. 
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The pixel considered for the calculation of ET crop is located in the Delamere Manera farm with coordinates 

00 40’ 40.79”S, 360 25’ 02.92”E. The crop grown in this pixel is Lucerne whose KC value is presented in the 

appendices. Delamere Manera farm was chosen since no crop rotation is carried out in the farm. This was 

done so as to ensure that the pixel chosen would be under optimal water supply conditions throughout the 

study period. In addition, an average KC value would be more applicable for a perennial crop rather than 

seasonal crops with rapidly varying KC values. This was done to ensure that a reliable estimate of ET crop 

would be obtained. However, it should be noted that ET crop may be unreliable when the crop is harvested 

since the KC value will change as a result.  

Validation in the non-irrigated pixel was done using the ECF ET for the pixel where the flux tower is 

located. The ET was derived based on the corrected latent heat flux as described in section 3.2.4.  

The statistical measures of accuracy used to assess the performance of the SEBS estimates are the coefficient 

of determination (R2), mean absolute error (MAE), root mean square error (RMSE) and the Bias. The 

formulation of the MAE, RMSE and the Bias are presented in Equations 5-19, 5-20 and 5-21 respectively. 

 

𝑅𝑀𝑆𝐸 = √
∑ (𝑋𝑚,𝑖 − 𝑋𝑜,𝑖)𝑛

𝑖=1

𝑛

2

 5-19 

 
𝑀𝐴𝐸 =

∑ [𝑎𝑏𝑠(𝑋𝑚,𝑖 − 𝑋𝑜,𝑖)]𝑛
𝑖=1

𝑛
 5-20 

 
𝐵𝑖𝑎𝑠 = [

∑ 𝑋𝑚 − ∑ 𝑋𝑜
𝑛
𝑖=1

𝑛
𝑖=1

∑ 𝑋𝑜,𝑖
𝑛
𝑖=1

] 

 

5-21 

Where, 𝑋𝑚,𝑖 is the modelled variable, 𝑋𝑜,𝑖 is the observed variable and 𝑛 is the number of observations. 

5.1.6. Sensitivity analysis of SEBS derived evapotranspiration 

Though SEBS is sensitive to all the input variables (Van der Kwast et al., 2009), sensitivity analysis was 

carried out for the meteorological variables only. Meteorological variables were selected for sensitivity 

analysis since they were used as point inputs. The sensitivity analysis aimed at analysing the uncertainty 

which would be introduced in case of spatial variations in the meteorological variables.   

Sensitivity analysis was carried out by first running the SEBS model under the normal conditions at the time 

of satellite overpass for the Julian day number 23 corresponding to the 23rd of January 2014. The 

corresponding daily evapotranspiration was then noted. The inputs were then varied between the ranges of 

-20 to 20 percent at intervals of 10 percent. The sensitivity of SEBS derived ET was then computed using 

equation 5-22.  

 
𝑆 =

𝑋−
+ − 𝑋0

𝑋0
× 100 5-22 

Where, S is the sensitivity (%), 𝑋−
+  is the ET obtained after varying each variable by +20 % to -20 % at 

intervals of 10 % and 𝑋0 is the original ET. 
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5.2. Computation of Irrigation Consumption 

To compute the monthly irrigation consumption, maps of monthly incremental ET as a result of irrigation 

were used. These maps were computed using equation 5-23.   

 𝐸𝑇𝑖𝑟𝑟,𝑚  = 𝐸𝑇𝑚 − 𝑃𝑒,𝑚 5-23 

Where, 𝐸𝑇𝑖𝑟𝑟,𝑚 is the monthly incremental ET due to irrigation in mm,  𝐸𝑇𝑚 is the monthly ET in mm and 

𝑃𝑒,𝑚 is the monthly effective precipitation in mm.  

Irrigation consumption per farm was then obtained by masking out the monthly incremental ET maps with 

the digitized shape files of the farms. The volume of irrigation consumption per pixel was then obtained as 

a product of the monthly irrigation depth (m) and the pixel area (m2). Finally, the total irrigation 

consumption volume per farm was computed by summing all the volumes for the irrigated pixels within 

each farm during the month.   

5.2.1. Computation of effective precipitation  

Monthly effective precipitation was computed by applying the method proposed by van Eekelen et al., 

(2015). In this method, the ratio between evapotranspiration from natural land use classes and rainfall is 

computed. This ratio represents the fraction of total rainfall over the period that is consumed by plants 

assuming no uptake from ground water zone. The method assumes equal effective precipitation for natural 

land use classes and cropped areas assuming no irrigation. Effects of land treatment and the differences in 

characteristics of individual plants and their response to evapotranspiration are ignored.  

However, some of the assumptions made in the method were reviewed. The effective root zone depth of 

the natural vegetation in comparison with crops was introduced so as to select the natural vegetation class 

best representative of the crops grown in the farms. After the selection of the natural land use class, effective 

precipitation was then computed using equation 5-24. 

 
𝑃𝑒,𝑖 = (

𝐸𝑛𝑙,𝑖
𝑃𝑖

⁄ ) 𝑥 𝑃𝑖 5-24 

Where  𝑃𝑒,𝑖  is the effective precipitation for the period i.e. month, season or year, 𝐸𝑛𝑙,𝑖 is the 

evapotranspiration from natural land use classes for the period under consideration and 𝑃𝑖 is the 

precipitation over the period under consideration.  

First, maps of monthly ratios of the actual evapotranspiration to the precipitation were prepared. Pixel 

values for the selected natural land use classes were extracted. These values were then interpolated to create 

maps of monthly ratios between evapotranspiration from the selected natural land use class and 

precipitation. Finally, the maps were multiplied with the respective monthly rainfall maps to obtain the 

monthly effective precipitation maps.  

5.2.2. Selection of natural land use classes 

The land cover map presented in Figure 7, was used to identify all the natural land use classes in the area. 

GPS points of the natural land use classes collected during the fieldwork exercise were used to verify the 

natural vegetation classes within the study area as presented in the land cover map. All the natural land use 

classes were then assigned representative effective root zone depth values derived from literature sources.  

On the other hand, data on crop type from the farms was used to derive the effective root zone depth for 

each crop based on the guidelines presented in the FAO 56 report on crop evapotranspiration and crop 
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water requirements (Allen et al., 1998). A representative average effective root zone depth was then 

computed for all the crops. This average root zone depth was then compared to the effective root zone 

depth from the natural land use classes to obtain the class that best matched the crops.  

On average, the effective root zone depth for crops grown in the commercial farms ranged from a minimum 

of 0.45 m for onions to a maximum of 1.5 m for Lucerne as presented in in the appendices. The average 

effective root zone depth was found to be approximately 0.9 m. On comparison, grass was found to be 

more representative of the cropped area on average with effective root zone depth ranging from 0.5 m to 

1.5 m depending on the grass type as documented in the FAO 56 report.   

However, due to the close proximity to the lake and wetland areas further analysis was needed to eliminate 

grass fields which extract water from the saturated zone. A ratio between the annual evapotranspiration to 

the annual precipitation was computed for the grass fields. All the fields with an annual ratio greater than 

one were excluded since at an annual scale the ratio should be less than one if no groundwater uptake is 

present. The average and the standard deviation of the remaining sample were then calculated. The average 

of the sample was found to be 0.79 with a standard deviation of 0.025. Using these statistics, the range of 

pixels to be included in the computation of the effective precipitation was fixed between 0.74 and 0.84 by 

taking the range of inclusion as twice the standard deviation from the mean.     

5.2.3. Precipitation 

To derive effective precipitation maps for the catchment, CHIRPS rainfall product was used. However, the 

performance of the CHIRPS precipitation product was first evaluated against the gauge-measured data prior 

to its application. This was achieved by extracting daily pixel values from the CHIRPS rainfall product 

corresponding to each of the rain gauges and analysing for various statistical measures of accuracy.  

The statistical measures for which the product was evaluated are the Bias, Root mean square error (RMSE) 

and the Mean absolute error (MAE). The formulations for the RMSE, MAE and the Bias are presented in 

section 5.1.5. In addition, the total bias was disaggregated into individual component biases namely the hit 

rain bias, missed rain bias and false rain bias. Hit rain bias is defined as the event in which both the satellite 

and the gauge record rainfall while the missed rain bias occurs in the event when the gauge records but the 

satellite does not detect rainfall. On the other hand, false rain bias occurs in the event when the satellite 

detects rainfall and the gauge does not record any rainfall. These definitions as well as their mathematical 

formulations are as presented in Habib, Larson, & Graschel (2009) and Haile, Habib, & Rientjes (2013). 

The formulation of these three bias components is presented in the following equations.   

 
𝐻𝑖𝑡 𝑏𝑖𝑎𝑠 =  ∑(𝑃𝑠,𝑖

𝑛

𝑖=1

− 𝑃𝑔,𝑖)|(𝑃𝑠 > 0 & 𝑃𝑔 > 0) 5-25 

 
𝑀𝑖𝑠𝑠𝑒𝑑 𝑟𝑎𝑖𝑛 𝑏𝑖𝑎𝑠 =  ∑ 𝑃𝑔,𝑖

𝑛

𝑖=1

|(𝑃𝑠 = 0 & 𝑃𝑔 > 0) 5-26 

 
𝐹𝑎𝑙𝑠𝑒 𝑟𝑎𝑖𝑛 𝑏𝑖𝑎𝑠 = ∑ 𝑃𝑠,𝑖

𝑛

𝑖=1

|(𝑃𝑠,𝑖 > 0 & 𝑃𝑔,𝑖 = 0) 5-27 

Where, 𝑛 is the number of days,  𝑃𝑠 is CHIRPS derived precipitation and 𝑃𝑔 is gauge precipitation. 
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Based on the results of the statistical evaluation, the satellite product was corrected for Bias on a monthly 

time step. This was achieved by computing the monthly bias factors for each station. The computation of 

the bias factors and the subsequent bias correction procedure followed the formulations presented in Habib, 

Haile, Sazib, Zhang, & Rientjes, (2014). 

 
𝐵𝐹𝑇𝑆𝑉 =

∑ 𝑃𝑠,𝑖
𝑛
𝑖=1

∑ 𝑃𝑔,𝑖
𝑛
𝑖=1

 5-28 

Where, 𝐵𝐹𝑇𝑆𝑣 is the time and space varying bias factor. 

Once the bias factors for all the stations were computed, maps of monthly bias correction factors were 

derived. An inverse distance weighted interpolation technique was adopted to generate monthly bias 

correction factor maps. Bias correction was then implemented by multiplying the monthly CHIRPS 

precipitation maps with the inverse of the bias correction factor maps of the respective months. Due to the 

inability of multiplicative bias correction approaches to correct for zero values in the satellite rainfall, the 

pixels in the bias corrected maps with values less than those of gauge derived rainfall maps were replaced 

by values of the gauge derived rainfall map. Monthly gauge derived rainfall maps were obtained by 

interpolating the monthly gauge rainfall totals for the respective months. 

5.3. Computation of Irrigation efficiency 

Irrigation efficiency was computed on a monthly basis for Vegpro Gorge farm since this was the only farm 

with reliable irrigation water abstraction data. Irrigation efficiency was computed using equation 5-29. 

 
𝐼𝐸 =

𝐼𝐶

𝐼𝐴
× 100 5-29 

Where, 𝐼𝐸 is the irrigation efficiency (%), 𝐼𝐶 is the volume of irrigation consumption (m3) and 𝐼𝐴 is the 

volume of irrigation water abstraction (m3). 

The computed irrigation efficiency as well as the irrigation consumption was evaluated by use of an indicator 

of aridity computed as a ratio between the precipitation and the reference ET using equation 5-30.  

 
𝐴𝐼 =

𝑃

𝐸𝑇0
 5-30 

Where,  𝐴𝐼 is the aridity index (mm), 𝑃 is precipitation in mm and 𝐸𝑇0 is the reference ET computed from 

Hargreaves equation (mm). 
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6. RESULTS AND DISCUSSIONS 

This chapter presents the results of the various processes applied to meet the objectives of the research. 

The results are also discussed based on the observations made and with reference to literature presented in 

section 2. 

6.1. Evapotranspiration computation 

Monthly evapotranspiration was computed from remote sensing images by use of the SEBS model. This 

was needed in the computation of the monthly irrigation consumption in the farms. This section presents 

and discusses the results of the processes carried out to arrive at monthly ET maps.  

6.1.1. Reference ET 

Reference ET was needed for gap filling in the SEBS derived daily ET maps and for the calculation of the 

aridity index. It was calculated for the years 2012, 2013 and 2014 based on the air temperature data from 

the flux tower using the Hargreaves equation. The results are presented in Figure 9. 

 

Figure 9: Hargreaves method derived reference ET 

Visual examination of the plot (Figure 9) shows that the calculated reference ET responds to the seasonality 

of the study area. High reference ET is seen mainly for the months between September and May whereas 

low reference ET is seen mainly in the period between May and August. The period between September 

and April is characterized by high temperatures. The two rainy seasons fall under this period as well. As 

such, warm and humid conditions during this period will generally result in higher reference ET. On the 

other hand, the period between May and August is generally cold and dry thus the lower reference ET.  

6.1.2. Eddy covariance flux tower data correction 

Latent heat flux from the eddy covariance flux tower was used to derive the ET used for validating the 

SEBS derived daily ET estimates as well as the monthly ET estimates. However, energy balance closure of 
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the ECF tower was first evaluated. The results of the energy balance closure of the eddy covariance flux 

tower are shown in Figure 10.  

 

Figure 10: Energy balance closure for the flux tower in Naivasha 

The slope of the plot indicates an energy balance closure of approximately 62% based on daily averaged 

data. This is below the range of 70 to 90 % suggested in Foken, (2008). Lack of closure for many sites has 

been attributed to heterogeneity of flux tower location, mismatch between the footprint of the turbulent 

fluxes with that of the energy storage terms as well as due to improper site location and instrument 

installation (Schmid, 1994, Foken, 2008, Foken et al., 2009). The energy closure gap present in the latent 

heat flux means that uncertainties of up to 40% would be introduced in the validation results of the SEBS 

ET estimates. As such, correction was carried out as described in section 3.2.4 to improve on the energy 

balance closure. 

The results of the correction were evaluated by comparing the ET obtained using the uncorrected latent 

heat with the one obtained using the corrected one. This was done by plotting them together with the 

reference ET and observing the match of each of them to the reference ET during the wet season. The 

results are shown in Figure 11. 

  

Figure 11: ET derived using uncorrected latent heat flux to the left and the one obtained after correction to the right 
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The results of the plots show that the corrected latent heat flux generates more reasonable estimates of ET 

than the uncorrected latent heat flux. The ET generated after correction matches the reference ET in most 

instances during the two wet seasons (March-May and October-December). It also indicates an overall better 

response to the seasonality depicted by the rainfall and the reference ET than the uncorrected ET. 

6.1.3. Downscaled land surface temperature 

LST from MODIS was downscaled by the help of NDVI derived from Landsat 8 before being used as input 

to the SEBS model to derive daily ET maps. A total of forty five downscaled LST maps were obtained 

spread across the year. Due to lack of in-situ LST measurements, error analysis on the downscaled LST was 

not carried out. Qualitative analysis of the downscaled LST maps was done to determine the success of the 

downscaling procedure. Figure 12, represents a comparison between the original and the downscaled LST 

map corresponding to January 23rd 2014.  

    
 

  

 

    
Figure 12: Original MODIS LST map to the left and the downscaled LST map to the right 

From the two maps, it is clear that the downscaling procedure improved the sharpness of the LST map. 
Land surface features are clearly identifiable on the downscaled map as compared to the original map. 
Irrigated areas to the north and south of the lake are clearly seen in the downscaled LST map as opposed to 
the original map. The temperature range is also bigger in the downscaled map than in the original map. For 
the downscaled LST map the range is between 284 K and 317 K. The original MODIS LST map has a 
temperature range of 293 K to 309 K. This is because the coarser resolution MODIS LST map represents 
an average value over 1 km. whereas the downscaled LST map represents an average value at 30 m. The 
averaging over a bigger pixel size subdues the maximum and minimum values narrowing down the value 
range. These results indicate a discernible difference between irrigated and non-irrigated pixels in the map. 
This shows that the ET maps derived from the downscaled LST are capable of capturing irrigation in the 
farms.     

6.1.4. Sensitivity analysis on SEBS derived ET 

Sensitivity analysis was carried out on the SEBS derived ET estimates to determine the meteorological 

variables contributing the highest uncertainty to the ET estimates.  

Average sensitivity was computed by taking an absolute sum of the four sensitivity values for each variable 

and dividing by four. SEBS ET estimates show high sensitivity to air pressure and air temperature with an 

average sensitivity of 79.20% and 27.49% respectively (Table 5). The estimates were also found to be fairly 

sensitive to the sunshine hours (9.94%) and the shortwave incoming radiation (13.9%) on average. On the 

other hand, the estimates were found to be less sensitive to changes in the planetary boundary layer height 

and the specific humidity 
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Table 5: SEBS ET sensitivity analysis results 

Change in Variable (%) -20 -10 10 20 Average Sensitivity (%) 

PBL (% Sensitivity) -0.06 -0.06 -0.06 -0.06 0.06 

Sunshine (% Sensitivity) -10.06 -5.04 4.96 9.94 7.50 

Pressure (% Sensitivity) 87.94 63.82 -64.9 -100 79.20 

Radiation (% Sensitivity) -23.15 -9.97 7.69 13.9 13.68 

Sp. Humidity (% Sensitivity) -0.17 -0.11 0.03 0.08 0.10 

Temperature (% Sensitivity) -47.02 -23.23 22.34 17.37 27.49 

Wind speed (% Sensitivity) 5.82 2.95 -3.15 -3.25 3.79 

These results are consistent with the findings by Van der Kwast et al. (2009). Similar findings are also 

documented in Wang & Parodi (2008). They, report that the model is sensitive to most of the input 

parameters apart from the specific humidity. They argue that the sensitivity of the model to air pressure 

though significant, can be resolved by use of a DEM for even relatively flat areas. Based on their findings, 

the insensitivity of the model to wind speed in this research is attributed to the fact that the range for which 

the model was varied was higher than the 0.5 m/s threshold below which the model becomes highly sensitive 

to variations in wind speed. The sensitivity plots for all the meteorological variables are shown in Figure 13. 

 

Figure 13: Plot showing the sensitivity of SEBS ET to the meteorological variables 

Based on the results of the analysis, spatial variation in the air temperature may introduce more uncertainties 

in ET estimates away from the point of measurement of the meteorological variables as compared to the 

rest of the variables. On the other hand, spatial variation in the planetary boundary layer and the specific 

humidity will have the least influence on the ET estimates.      

6.1.5. SEBS derived daily evapotranspiration 

SEBS daily evapotranspiration maps were obtained for the forty five days where LST from MODIS was 

downscaled using Landsat 8 derived NDVI. The results of the statistical error analysis carried out on the 

SEBS derived ET maps are presented in Table 6. 
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Table 6: Statistical results of the error analysis on daily SEBS estimates 

Statistical Measure Flux tower ET ET Crop 

R2 (-) 0.54 0.83 

RMSE (mm) 0.65 0.31 

MAE (mm) 0.51 0.25 

Bias (-) 0.169 0.021 

 Based on the statistical results presented in Table 6, SEBS estimates show an overall better performance 

for the validation on the ET crop pixel in comparison to the validation at the ECF ET pixel. Lower values 

of the RMSE, MAE and the bias were all obtained for the validation against the ET Crop in comparison to 

the ECF ET, indicating a better performance. A higher value of R2 was obtained for the ET Crop pixel as 

compared to the ECF ET pixel as shown in Figure 14 as well. This shows a higher correlation between the 

SEBS estimates and the ET Crop indicating a higher performance.  

  

Figure 14: Scatter plot between SEBS estimates and flux tower ET to the left and SEBS estimates and ET crop to 
the right 

The differences in the performance of the SEBS estimates for the two validation sites may be attributed to 

two main reasons.  

One may be related to the match between the spatial scale of the SEBS derived estimates and the spatial 

scale of the measured ET used for validation. Du et al. (2013), argue that validation of remote sensing 

derived evapotranspiration with ECF ET is affected by biases associated with the mismatch between the 

pixel size and the footprint of the flux tower. Flux footprints largely depend on the wind velocity, wind 

direction, atmospheric stability among other factors and thus varies spatially with time (Schmid, 1994). This 

may explain the low accuracies observed when the SEBS estimates are validated with the ECF measured 

ET. The spatial resolution of the SEBS derived ET estimate is 30 m which may only be representative of 

the footprint of the tower under the very stable atmospheric conditions. On the other hand, the ET Crop 

is less affected by mismatch between spatial scales since the main factors controlling scale are the crop and 

the reference ET which are constant within the pixel. 

The other reason may be related to the performance of the model in dry water stressed conditions. The 

model has been found to overestimate ET in such conditions especially in sparsely vegetated areas (Huang, 

Li, Gu, Lu, & Li, 2015, Gokmen et al., 2013). This is attributed to underestimate of the sensible heat flux 

by the model consequently overestimating the latent heat flux a situation that can be rectified by calibrating 

the model with soil moisture data (Gokmen et al., 2013). The location of the ECF tower used for validation 

is characterized by sparse vegetation comprising of grass and shrubs. This indicates that under water stressed 

conditions, the model may tend to overestimate ET at this location. 
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6.1.6. SEBS Annual ET map 

An annual ET map was obtained by summing SEBS daily ET estimates and gap filled ET estimates derived 

by assuming a constant reference evaporative fraction between successive days of MODIS satellite overpass. 

This annual ET map was used together with MODIS monthly ET map to derive monthly high spatial 

resolution ET maps. The annual ET map is shown on Figure 15.   

 

Figure 15: Annual total ET map 

Based on the map, higher ET is observed in the lake and the area covered by the forest on the land cover 

map. The circular patches to the north of the lake with relatively high ET compared to their surrounding 

represent the open commercial irrigation farms under pivot irrigation system. Lower ET values are observed 

in areas predominantly covered by grass and shrubs. 

Differences were computed between the total ET from the map and ET from the ECF and the ET crop to 

determine the bias in the gap filled total ET map. The bias in the annual ET map obtained after interpolation 

was 0.06 and -0.04 for the ECF and the ET Crop respectively. This represents 6% overestimation and 4% 

underestimation for the ECF and ET Crop pixels respectively. The ECF site shows significant improvement 

compared to the 19.6 % bias that was obtained for the daily SEBS estimates. This supports the argument 

by Singh et al. (2014) that over a longer period of time biases introduced in assuming constant reference 

evaporative fraction are reduced. On the other hand, the ET Crop shows slight deterioration from the 2.1% 

overestimate obtained using the daily SEBS estimates compared to the 4% underestimate obtained from the 

annual interpolated map. The less drastic changes in the bias in the ET Crop as compared to the ECF ET 

are an indication of less uncertainties in the ET Crop in comparison to the ECF ET. In addition, it proves 

that the assumption of a constant reference evaporative fraction in the temporal interpolation of daily ET 

maps is more reliable under non water limited conditions as pointed out in Singh et al, (2014) and Du et al. 

(2013).  
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6.1.7. Monthly evapotranspiration 

A ratio between the monthly and annual MODIS ET was used to distribute the total annual ET from SEBS 

temporally to derive high resolution monthly ET maps. The resulting maps are shown in Figure 17. The 

maps reflect the seasonality of the area where more ET is observed in the wetter months during the short 

and long rainy seasons whereas less ET is observed in the drier months of May, June and July. 

Table 7: Statistical results of the downscaled monthly ET 

Statistical Measure Flux tower ET ET Crop 

R2 (-) 0.56 0.89 

RMSE (mm) 9.21 7.43 

MAE (mm) 7.52 6.21 

Bias (-) 0.06 -0.04 

All the statistical measures presented in Table 7 indicate a higher performance of the SEBS estimates in the 

ET Crop pixel than the ECF ET pixel for the monthly downscaled ET maps. Interestingly, the bias for the 

downscaled ET maps is equal to the bias in the interpolated annual ET map. This is because the MODIS 

monthly ET maps used in the downscaling are only used to supply temporal variability of the total 

interpolated ET maps on a monthly basis. This is based on the pixel by pixel monthly ratio between the 

MODIS monthly ET and the MODIS annual ET, hence the total ET per pixel remains unchanged.  

The scatter plots presented in Figure 16 indicate a better estimate by SEBS in the ET Crop pixel as compared 

to the ECF ET pixel. The higher values of R2 for the ET Crop indicate a better match between the trends 

in the SEBS estimate and the ET Crop as compared to the SEBS estimates and the ECF ET. 

  

Figure 16 Scatter plots between SEBS estimates and the flux ET to the left and SEBS estimates and ET crop to the 
right 

Though the monthly ET maps show higher values of R2 for both the ECF ET and the ET crop than in the 

daily ET maps, the position of the line of fit in the monthly ET maps with respect to the one to one line 

indicates a poor performance in the monthly ET maps. This is because of the influence of the averaging 

inherent in the coarser resolution MODIS ET 
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Figure 17: Monthly ET maps 

6.2. Computation of irrigation consumption 

Irrigation consumption was computed from the difference between the monthly effective precipitation 

maps and the monthly ET maps. It was used in the computation of the irrigation efficiency. 

6.2.1. Precipitation 

To obtain effective precipitation maps needed in the computation of irrigation consumption, CHIRPS 

rainfall product was used. The performance of the product was analysed by comparing it to the gauge rainfall 

of the stations in the area. 

The scatter plots shown in Figure 18 indicate a poor performance of the product on the daily time scale for 

all the stations. Few points lie close to the one to one line indicating a poor correlation between the gauge 

rainfall and the satellite estimates at the daily time step. A majority of the points lie along either the X or Y 

axis. The points that lie above zero along the X axis indicate the instances when the satellite missed the 
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rainfall recorded in the day. On the other hand, the points that lie above zero on the Y axis represent those 

events where the satellite estimated rainfall and the gauge did not record rainfall. 

  

  

Figure 18: Scatter plots of the daily gauge rainfall versus the daily CHIRPS rainfall estimates for the four stations. 

The results of the comparison between the monthly total gauge rainfall and the monthly total CHIRPS 

rainfall estimates presented in Figure 19 indicate a better performance by the product at the monthly time 

step. This is shown by the location of the points with respect to the one to one line and along the X and Y 

axis. 

However, even at the monthly time step the satellite was found to miss the monthly rainfall totals completely 

in some of the months as indicated by the points on the X axis above zero in Figure 19. Line plots of the 

monthly gauge rainfall and the monthly CHIRPS rainfall presented in Figure 20 indicate that satellite 

systematically missed rainfall for all the stations mostly between April and July. This may be attributed to 

the algorithm used to derive the product. The algorithm uses a fixed cold cloud duration threshold of 2350K 

to determine precipitation over a pixel (Funk et al., 2015). As such, during these months precipitation may 

occur without the temperature of the clouds reaching the set threshold resulting in missed rainfall events. 
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Figure 19: Scatter plots between the monthly total gauge rainfall and the monthly total CHIRPS estimates 

  

  

Figure 20: Line plots of the monthly total gauge rainfall and the monthly total CHIRPS estimates 

Based on statistics presented in Table 8, CHIRPS product shows a good performance especially when 

considering the bias as compared to CMORPH and TRMM over the catchment. The comparison was based 

on the results of Gathecha, (2015) who in his MSc research evaluated the performance of TRMM and 

CMORPH for the same basin over a period of ten years (2001-2010). He obtained average RMSE, MAE 

and Bias of 4.21, 2.48 and -0.708 for TRMM and 5.57, 2.69 and -0.334 for CMORPH respectively. Though 

the lengths of the periods of comparison are different, the CHIRPS product shows a better performance in 

terms of bias for all the stations considered in this research.  
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Table 8: Statistical results of the analysis on the performance of the CHIRPS product 

Gauge Station RMSE (mm) MAE (mm) Bias (-) 

Delamere Pivots 6.3 2.3 -0.178 

Gorge_B11 7.6 2.6 0.135 

KWSTI 6.2 2.3 -0.112 

Yacht 7.7 2.4 0.116 

Over a longer period, biases tend to reduce and as such, the bias in the CHIRPS product would be 

significantly lower over a ten year period compared to one year. This is due to the compensation between 

the false bias and the miss bias thus improving the total bias in most cases(Haile et al., 2013). This argument 

is supported by the analysis of the results of the decomposed total bias components presented in Table 9 

and Figure 21. 

Table 9: Decomposed CHIRPS biases for the four gauge stations in 2014 

Bias (%) Gorge_B11 Delamere Pivots KWSTI Yacht 

Hit Bias 19.1 6.13 17.28 56.75 

Miss Bias -51.83 -69.04 -67.08 -73.63 

False Bias 46.23 45.12 38.6 28.47 

Total Bias 13.49 -17.76 -11.2 11.59 

Large miss biases are noted across all the four stations. A large percentage of the miss bias is as a result of 

the missed rainfall in the period between April and July as shown on Figure 20. However, the miss bias is 

less pronounced when the total bias is considered. This is because during the other months, the false and 

hit biases dominate the total bias. Consequently, the positive hit and false biases cancel out the negative miss 

bias when aggregated over the year improving the total bias. 

 

Figure 21: Decomposed CHIRPS biases for the four gauge stations in 2014 

Analysis of the results indicates that over yearly time steps or more the CHIRPS product is applicable for 

water balance simulations and water resources management without corrections for bias.  However, 
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application of the product over the daily or monthly period without bias correction would result in 

uncertainties proportional to the bias component that dominates the total bias over that period. 

6.2.2. Irrigation consumption 

The monthly as well as the annual irrigation consumption per farm computed from remote sensing derived 

ET and precipitation is presented in Table 10. The total volume of irrigation consumption in the four farms 

for the year 2014 was 4 364 680 cubic meters. Highest annual irrigation consumption was reported for 

Vegpro Gorge farm with Loldia having the lowest record. The differences in the volume of irrigation 

consumption between the farms are directly related to the differences in the area under irrigation between 

the farms as shown in Figure 22. 

The disparity noted between the area under irrigation and the irrigation consumption for Manera farm and 

Vegpro Delamere pivots is attributed to crop rotation. Manera farm is under fodder crops with no crop 

rotation thus irrigation consumption mainly varies with irrigation supply depending on the prevailing 

weather conditions. On the other hand, Vegpro Delamere pivots practise crop rotation. As such, some fields 

are not under irrigation throughout longer periods due to crop rotation hence in addition to variations in 

weather, irrigation supply and consequently the irrigation consumption varies depending on the cropped 

area. 

Comparison between the irrigation consumption and the aridity index presented in Figure 23 indicates 

higher consumption during the dry months and lower irrigation consumption during the wet months. This 

is expected since during the wet season crops mainly rely on rainfall hence less irrigation water is applied as 

opposed to the dry season.  

Table 10: Monthly irrigation consumption obtained for each of the four farms 

Month 

Irrigation Farms 

Vegpro Gorge 

Farm 

Vegpro 

Delamere 

Pivots 

Delamere 

Manera Farm 
Loldia Farm Total 

Consumption 

(m3) Consumption 

(m3) 

Consumption 

(m3) 

Consumption 

(m3) 

Consumption 

(m3) 

1 234007 81994 79100 20468 415569 

2 142096 65989 69991 21269 299345 

3 194559 65190 82264 21505 363518 

4 209808 67148 75960 20484 373400 

5 245201 74069 89604 32930 441804 

6 191097 50569 69241 26378 337285 

7 339737 42734 61902 26774 471147 

8 183146 65469 72675 27309 348599 

9 130076 53629 65096 26666 275467 

10 215499 45688 69350 26928 357465 

11 229768 62603 75353 19638 387362 

12 220411 54424 66314 22570 363719 

Totals 2465405 729506 876850 292919 4364680 
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Figure 22: Comparison between irrigated area and the irrigation consumption per farm 

 

Figure 23: Comparison between irrigation consumption and the aridity index 

6.3. Irrigation efficiency 

Irrigation efficiency was determined for Vegpro Gorge farm only. This was due to the reliability as well as 

lack of water abstraction data in the other farms as explained in section 3.2.2. The results of the irrigation 

efficiency computation are presented in Table 11.  

Table 11: Monthly irrigation efficiency in Vegpro Gorge farm in 2014 

Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Average 

Efficiency 

(%) 
75.5 83.8 88.5 56.4 67.7 76.9 79.7 65 44.1 66.9 66.6 82.2 71 

On average, the irrigation efficiency in the farm was 71%. The lowest irrigation efficiency (44.1%) was 

recorded in September with the highest (88.5%) being recorded in March. 

Further analysis carried out on the results presented in Table 11 revealed that the low efficiencies are related 

to oversupply of water during relatively non water limited conditions. 
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Figure 24: Comparison between irrigation supply and the aridity index in Vegpro Gorge farm 

This is shown in Figure 24, where the irrigation volumes in April and May are almost equal despite a higher 

aridity index in April than in May. A similar phenomenon is observed during the months of August and 

September. This indicates that higher water loss occurs due to oversupply of water in relatively water 

sufficient conditions in April and September resulting in the low efficiencies observed. Overall, higher 

efficiencies (70% and above) are observed in either the very wet or very dry months as shown in Table 11 

and Figure 24. On the other hand, low efficiencies are observed in the transition months between the wet 

and dry seasons. The plot presented in Figure 25 shows that irrigation in the farm is largely driven by rainfall. 

This means that other variables such as temperature and soil moisture which are reflected by the aridity 

index are ignored in the irrigation scheduling. This explains the lower efficiencies in the transition months 

as compared to the higher efficiencies observed during the wet and dry months. 

 

Figure 25: Relationship between rainfall and irrigation supply in Vegpro Gorge farm 
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7. CONCLUSION AND RECOMMENDATIONS 

7.1. Conclusion 

The main objective of this research was to quantify irrigation performance in the commercial farms in 

Naivasha basin, Kenya by use of remote sensing. The irrigation performance aspects evaluated are irrigation 

consumption and irrigation efficiency. The main remote sensing inputs used to achieve the objective of this 

research are Landsat 8 imagery, MODIS products and the CHIRPS rainfall product. 

The conclusions drawn from this research are as follows; 

 Thermal sharpening of MODIS LST by use of Landsat 8 derived NDVI improved the spatial 

resolution of the LST maps to the 30 m resolution of Landsat 8 enabling the computation of actual 

evapotranspiration at the field scale. LST at a fine spatial scale is a key requirement for effective 

quantification of evapotranspiration from farms such as the ones in Naivasha which are 

characterized by small farming units with frequent crop rotation. 

 Daily SEBS ET estimates performed better in the irrigated pixels than in the non-irrigated pixels. 

The values of R2 obtained were 0.83 and 0.54 whereas the percent bias was 2.1% and 16.9% upon 

comparison between the SEBS estimates and the measured ET for the irrigated and non-irrigated 

pixel respectively.        

  High resolution monthly ET maps obtained from remote sensing show consistency with the 

seasonality of the study area. The values of R2 obtained for the monthly ET maps after validation 

were 0.89 and 0.56 while the bias was -4% and 6% for the irrigated and non-irrigated pixel 

respectively. This shows an acceptable error range for application in irrigation monitoring. 

 Variations in the volume of irrigation consumption between farms depend mainly on the area under 

irrigation in each farm. However, other farming practices such as crop rotation were found to 

contribute to these variations. 

 Monthly irrigation application in Vegpro Gorge farm is driven by the monthly rainfall received 

which results in low irrigation efficiencies in transition months between the wet and dry seasons 

where aridity index is relatively high despite low monthly rainfall amounts.        

7.2. Recommendations 

 Errors in the downscaled LST maps should be quantified by comparing with measured LST to 

understand their implications on the derived ET. 

 Soil moisture data should be incorporated in the SEBS model to improve on ET estimates during 

the dry season. 

 SEBS ET estimates should be up scaled to match the foot print of the flux tower for better 

quantification of the errors in the ET estimates in the non-irrigated areas.    
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APPENDICES 

Appendix A: Rain gauge stations and their metadata 

 
Station 

Name/ID 

Location Gauge Type Coordinates (Decimal 

Degrees) 

2014 

Latitude Longitude Rainfall 

(mm) 

Gorge_B11 Gorge Farm Manual -0.84135 36.3739 627 

DP_Office Delamere Pivots Manual -0.69411 36.4316 611 

9036002 WRMA Office 

Naivasha 

Manual -0.72392 36.4362 350 

KWSTI KWSTI Tipping 

Bucket 

-0.73696 36.4509 586 

9036322 Yacht Club Manual -0.76698 36.399 534 

Manera Delamere Manera Manual -0.68485 36.4123 613 

 

 

Appendix B: Irrigation water abstraction data 

 

  

IRRIGATION WATER ABSTRACTION PER FARM (M3) 

  

Month Vegpro Gorge Delamere Manera Vegpro Delamere pivots Loldia Totals 

1 310120 N/A 171560 115474 597154 

2 169590 N/A 73050 86555 329195 

3 219930 N/A 65520 92262 377712 

4 372300 N/A 74610 130156 577066 

5 362160 N/A 97200 135975 595335 

6 248460 N/A 79000 57809 385269 

7 426370 N/A 84810 92062 603242 

8 282040 N/A 69910 93965 445915 

9 295110 N/A 60660 85205 440975 

10 322320 N/A 87930 89617 499867 

11 344840 N/A 68430 91506 504776 

12 268160 N/A 37150 65513 370823 

Total 3621400 N/A 969830 1136099 5727329 
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Appendix C: Formulation of the extra-terrestrial radiation 

Extra-terrestrial radiation (Ra) used in the Hargreaves equation was computed using Equation 7-1 (Allen et 

al., 1998).  

 
𝑅𝑎 =  

24 × 60

𝜋
𝐺𝑠𝑐𝑑𝑟[𝜔𝑠 𝑠𝑖𝑛(𝜑) 𝑠𝑖𝑛(𝛿) + 𝑐𝑜𝑠(𝜑) 𝑠𝑖𝑛(𝜔𝑠)] 7-1 

Where, 𝐺𝑠𝑐 is the solar constant (0.0820 MJm-2min-1), 𝑑𝑟 is the inverse relative distance Earth-sun, 𝜔𝑠 is the 

sunset hour angle, 𝜑 is the latitude in radians and 𝛿 is the solar declination, which is the latitude at which 

the sun is directly overhead.  

The inverse relative distance Earth-sun is calculated using Equation 7-2 

 
𝑑𝑟 = 1 + 0.033 cos (

2𝜋

365
𝐽) 7-2 

Where, 𝐽 is the Julian day of the year 

Sunset hour angle is calculated using Equation 7-3.  

 𝜔𝑠 = 𝑎𝑟𝑐𝑐𝑜𝑠[−𝑡𝑎𝑛(𝜑) 𝑡𝑎𝑛(𝛿)] 7-3 

Where, 𝜑 is latitude in radians and must be negative for the southern hemisphere 

Solar declination is computed using Equation 7-4.  

 
𝛿 = 0.409 sin (

2𝜋

365𝐽
− 1.39) 7-4 
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Appendix D: Effective root zone depth and KC Values of crops in the farms 

 

Irrigation Farm Type of 

Crops 

Effective Root Zone 

Depth (m) 

Average Crop Coefficient 

(KC) value 

Gorge farm & Delamere 

Pivots 

Runner 

Beans 

1.00 0.92 

Gorge farm, Delamere 

pivots & Loldia 

Broccoli 0.60 0.95 

Gorge farm, Delamere 

pivots & Loldia 

Baby Corn 0.80 1.15 

Delamere pivots Chili 0.80 0.90 

Delamere pivots and 

Loldia 

French 

Beans 

0.60 0.70 

Delamere Pivots Carrots 0.75 0.90 

Loldia Barley 1.25 1.15 

Delamere Manera Lucerne 1.50 1.05 

Delamere Manera Bermuda 

Hay 

1.20 0.93 

Gorge farm Asparagus 1.40 0.95 

Gorge farm and Loldia Onions 0.45 0.90 

Gorge farm, Delamere 

pivots & Loldia 

Cabbages 0.70 0.75 

Gorge farm Squash 0.80 0.85 

Average effective root zone 

depth 

- 0.85 - 

Souce: FAO Irrigation and drainage paper 56 (Allen et al., 1998) 

 


