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ABSTRACT 

Inland lakes provide great variety of services in the Netherlands. This is evident by the numerous lakes 

created by the Dutch at various sections of their cities. In-situ underwater and above water radiometric 

measurements were done at different lakes between September, 2015 and October, 2015 using TriOs 

RAMSES sensors. Water samples were also taken at different points of measurements for the different lakes 

and later analysed in the laboratory following standard water quality measurement protocols. The in-situ 

radiometric measurements were used in computing above water remote sensing reflectance (Rrs), 

underwater remote sensing reflectance (rrs) and diffuse attenuation coefficient (Kd). In-situ derived Kd values 

ranged from 0.027-13.675 m-1 in Binnenschelde, 0.215-23.099 m-1 in Markiezaatsmeer, 0.030-11.971 m-1 in 

Hulsbeek and 0.139-19.867 m-1 in Kristalbad. The Spectral Angle Mapper (SAM) method was used for the 

delineation of Submerged Aquatic Vegetation (SAV) using spectral libraries of field collected end members 

of SAV in the Binnenschelde Lake. An overall accuracy of 89.53% was obtained when ground truth regions 

of interest were used to assess the accuracy of the classification. The spatiotemporal variability of SAV was 

then analysed and Normalised Difference Vegetation Index (NDVI) was explored to estimate the extent 

and abundance of SAV coverage. After the SAM classification of SAV, linear spectral unmixing was 

performed to ascertain the fractions of pure and mixed pixels of SAV and water in the multispectral images. 

Inherent Optical properties (IOPs) of the lakes were derived using the laboratory measured water quality 

variables. The contribution of bottom reflectance was highly significant because the lakes were optically 

shallow. Derived IOPs (total absorption coefficient (a) and total backscattering coefficient (bb)) were used 

in computing the bottom reflectance (rB
rs), water column reflectance (rC

rs) and bottom albedo (𝜌) of each 

lake at each site. Attenuation coefficient of Photosynthetically Active Radiation (Kd(PAR)) was also derived 

from the in-situ radiometric measurements. Using Kd(PAR), the euphotic depth (Zeu) of each lake was then 

computed. Zeu ranged from 1.16 to 2.93, 0.53 to 2.59, 1.42 to 6.12 and 1.51 to 1.79 m for Binnenschelde, 

Markiezaatsmeer, Hulsbeek and Kristalbad respectively.  
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 INTRODUCTION 

1.1. Research Problems 

 
(a) The spatial extent and density of SAV in the Binneschelde Lake are largely unknown.  

(b) Challenges of RS methods in recognizing SAV in shallow inland lakes. 

(c) The euphotic depth of each lake is also unknown. 

1.2. Research Objective 

 
The main objective of this study is to detect, delineate and quantify submerged aquatic vegetation (SAV), 

analyse their spatiotemporal variability using in-situ radiometric measurements and multi-spectral sensors in 

the Binnenschelde, the Netherlands. 

1.2.1. Sub-objectives 

The sub-objectives of this research are to; 

 

 Derive Inherent Optical Properties (IOPs) using in-situ radiometric measurements as well water 

quality variables of optically shallow inland waters in the Netherlands. 

 Investigate the bottom albedos and contribution of bottom reflectance of optically shallow inland 

waters. 

 Derive euphotic depths of inland waters using in-situ radiometric measurements. 

1.3. Background 

 
Submerged aquatic vegetation (SAV) are rooted plants that grow only in shallow water to allow sufficient 

light harvesting without emerging from the water surface. Aquatic vegetation influences physical, chemical 

and biological processes in water bodies and affects the services of aquatic ecosystem (Shekede et al., 2008).   

SAV in particular provides an important source of food and habitat to small fish, shellfish and many other 

species (for example birds). SAV also contributes to improving water clarity by absorbing nutrients, 

producing oxygen and trapping suspended sediment in the water and preventing resuspension of bottom 

sediments (Pu et al., 2012). However, there is reported decline of SAV in the Netherlands (Giesen et al., 

1990). Therefore, for efficient management of  aquatic ecosystem in shallow water, there is the need for 

accurate knowledge of  SAV distribution and abundance  (Diaz et al., 2004; Jones et al., 2009). 

 

The use of conventional methods lack the spatial representativeness of SAV distributions limiting the 

optimized management of inland waters (Zhao et al., 2012). Most managers of water bodies are only able 

to locate SAV on point basis without any information on their spatial extent. The use of aerial photography 

(Stankelis et al., 2003; Meehan et al., 2005; Rybicki & Landwehr, 2007) in mapping SAV on a large scale is 
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highly labour intensive, time consuming and inaccurate. According to Yuan & Zhang (2008), this is due to 

the restrictions in working in aquatic environments and difficulty in taking enough samples in larger water 

bodies. Spatial detection of the extent, density and diversity of SAV is by far the major challenges facing the 

Water Board of Brabantsedelta in managing the Binnenschelde Lake, the Netherlands. 

 

Remote sensing (RS) techniques have proven to be highly effective in monitoring and assessing the spatial 

extent as well as abundance of submerged aquatic weeds, though more effective in mapping terrestrial 

vegetation (Silva et al., 2008; Hunter et al., 2010). The increase in spatial resolution of multi-spectral sensors 

makes them even more effective for the fine scale detection of SAV (Schmidt & Witte, 2010). However, to 

be useful,  remote sensing methods should provide accurate representation of the inherent spatial 

heterogeneity of SAV and be repeatable over space and time (Hestir et al., 2008). The major challenge in 

mapping SAV with remote sensing (RS) techniques is light attenuation in the water due to phytoplankton 

which could resemble the spectral signature of SAV (Gilvear et al., 2007). Another challenge is 

discriminating SAV from above water aquatic vegetation.     

 

A number of studies have been conducted to assess the feasibility of using RS in mapping the spatial extent 

and density of SAV. Valley et al., (2005) evaluated the use of interpolation techniques in mapping the 

percentage of water volume occupied by submerged aquatic vegetation in three lakes in the USA. Aerial 

photographs have also been widely used in the delineation of SAV (Kirkman, 1996; Orth et al., 2000)          

and further quantifying their density with time. Also, Visser et al., (2013) investigated the possibility of using 

optical remote sensing for the detection and mapping of SAV with spatial and textural information, as well 

as the possibility of discriminating different species of SAV. 

 

 Azzella et al., (2013) used current (in situ measurements) and historic (from previous studies) data in 

detecting changes in aquatic plants species richness, distribution and occurrence in the last century in the 

Italian volcanic lake system, central southern Italy. Again, Flynn & Chapra (2014) used Unmanned Aerial 

Vehicle (UAV) in mapping the spatial distribution of SAV in Clark Fork river, western Montana. A series 

of RS images with spatial resolutions of 30m were collected and used by Luo et al., (2015) to map the 

distribution of different types of aquatic vegetation in the Taihu lake, China. However, in terms of 

comparatively analysing field spectral characteristics alongside remotely sensed images, there is still a lot to 

explore. 

 

The aim of this research was to detect, classify and quantify SAV in the Binnenschelde Lake using 

Multispectral Sensors. Spectral Angle Mapper (SAM) algorithm (Boardam et al., 1994) was used in a 

supervised classification of SAV. Normalised Difference Vegetation Index (NDVI) by Rouse et al., (1974) 

was explored to estimate the spatial extent and density of the SAV. For all the study areas, Inherent Optical 

properties (IOPs) were derived from in-situ radiometric measurements. Euphotic depths (Zeu) were also 
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investigated using the attenuation coefficients of photosynthetically active radiation (Kd(PAR)) in each study 

area. The structure of this thesis work is outlined in figure 2. 

 
 

 

                                     

 

 

 

 

 

 

 

Figure 1. Submerged Aquatic Vegetation in Binnenschelde 

1.4. Research Questions  

 

(a) What is the spectral signature of SAV in the Binnenschelde Lake? 

(b) What is the impact of turbidity and attenuation coefficient on the spatiotemporal distribution of SAV 

in the Binneschelde? 

(c) Can we derive IOPs from in-situ radiometric measurements in inland waters? 

(d) What are the euphotic depths of the lakes? 
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Figure 2. Outline of thesis work. 
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 STUDY AREAS 

2.1. Binnenschelde and Markiezaatsmeer 

 
Binnenschelde is located in the south-western part of the Netherlands (approximately at N 51º 29’; E4º17' 

WGS 1984 Geographic) and relatively small compared to Markiezaatsmeer. It borders the residential area 

of Bergen op Zoom and separated from Markiezaatsmeer Lake by Plaatvliet. According to Gulati & Van 

Donk (2002), Binnenschelde  has a surface area of about 1.78 km2, with an average  depth of 1.5 m and a 

maximum depth of 3.5 m. It was created within the Eastern Scheldt estuary in the South West Province of 

Zeeland for the purpose of recreation.  

 

Markiezaatsmeer on the other hand is located approximately at N 51º 29’; E4º17' WGS 1984 Geographic 

and separated from the Oosterschelde Estuary by the Scheldt Rhine Canal; it has a surface area of about 18 

km2, and 3.9 km2 of marshes. Markiezaatsmeer has an average depth of 2.1 m and a maximum depth of 3.0 

m. Its soil  has transformed from Pleistocene to Holocene soils; a unique situation that is rarely found 

(Tosserams et al., 2001). One of the major challenges for the authorities of both Binnenschelde and 

Markiezaatsmeer has been water quality management. Since 1996, the concentrations of nitrogen and 

phosphorus compounds are  much higher than the national limits (Withagen, 2000). The spatial detection 

of SAV is by far the major challenge facing the Water Board Brabantse Delta in managing the Binnenschelde 

lake. This is because the growth of aquatic plants is triggered by excessive nutrient loading of water bodies 

(Kiage & Walker, 2009). Figure 3 shows SPOT 6 image of Binnenschelde (A) and Markiezaatsmeer (B). 

2.2. Hulsbeek and Kristalbad 

 
Hulsbeek is an artificial lake created mainly for recreation. It is located at latitude 52.181 and longitude 6.530 

(WGS 1984 Geographic) in the province of Overijssel, the Netherlands. According to Abbenhues (2003), 

Hulsbeek is included in the top three most visited lakes in that province; it has a surface area of 250,000 m2 

hectares and a maximum depth of 6 m. Swimming, surfing and playing of several other games usually take 

place there. For this reason, water quality is of great importance to the management of Hulsbeek. 

Kristalbad is an artificially created wetland on the border of Enschede and Helgelo, north of the Twente 

canal, the Netherlands. Kristalbad can be found approximately at 520 14' N; 60 49' E (WGS 1984 

Geographic) with a surface area of about 400,000 m2 and 187,000 m2 area for water storage. This wetland 

was created in 2002 for water purification and recreation. Figure 4 shows SPOT 6 image of Hulsbeek. 
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Figure 3. Spot 6 image showing the location of Binnenschelde (A) and Markiezaatsmeer (B). Source (SPOT 6, 12th 

December, 2015). 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

Figure 4. Location map of Hulsbeek. Source (SPOT 6, 12th December, 2015). 
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 DATA SETS 

3.1. Field Measurements 

  
Field measurements were carried out in the four water bodies from 24th September, 2015 to 1st October, 

2015. Days of field measurements were selected based on suitable weather conditions and time of satellite 

overpass was also taken into consideration. The number of points sampled for each water body was 

dependent on the size of the water body. Motor boats were used to cruise the water bodies in the sampling 

process except for the Kristalbad wetland. A total of 51 points were sampled. The position for each sample 

point was recorded using a hand-held GPS receiver unit. The measurements are summarised in table 1. 

Sample points were selected to cover the whole water body in order to obtain a representative sampling. 

For each sample site, spectral measurements and in-situ water quality variables measurements were done. 

Water samples were also taken for 22 of the sample points. The sampling bottles used were wrapped with 

aluminium foils to avoid interaction of light with the water samples. After taking the each water sample, a 

few drops of magnesium carbonate (MgCO3) were added to it to avoid the degradation of the chlorophyll 

content and help preserve the samples. 

 
Table 1. Summary of field measurements in the study areas. 

 
 

Sampling at Kristalbad wetland was done only at the banks of the ponds because of limited access given to 

us by authorities of the wetland. The locations of field sampling points for each study area are shown in 

figure 5. 

 

 

 

 

 

Study area Type of 

Water body 

No. of  

points 

sampled  

No. of water 

samples 

taken 

Date of 

measurement 

Period of 

measurement 

(CET) 

Binnenschelde Lake 14 4 24/09/15 12:01 pm to 

15:06 pm 

Markiezaatsmeer Lake 20 6 25/09/15 10:09 am to 

13:30 pm 

Hulsbeek Lake 11 6 28/09/15 11:41 am to 

12:46 pm 

Kristalbad Wetland 6 6 01/10/15 11:21 am to 

13:24 pm 
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Figure 5. Locations of points sampled (yellow dots) in Markiezaatsmeer & Binnenschelde (a) and Hulsbeek (b). 

Source (SPOT 6, 12th December, 2015). 

3.1.1. Spectral Data Measurement 

For each sampling location, radiometric measurements were performed using three TriOs RAMSES 

sensors. One sensor measured the downwelling irradiance (Ed(λ)) from the sun and the sky, and another 

sensor measured the upwelling radiance (Lu(λ)) from the target. The third sensor measured microFlu-CDOM 

at each point in µg/l. Both the radiance and irradiance sensors measure a spectral range from 318 to 951 

nm with a sampling interval of 3.3 nm. Downwelling irradiance beneath the water surface and at different 

depths was also measured in order to quantify the light intensity and the attenuation coefficient of the water. 

Measurements were done with precaution. Water surfaces with shadows cast on them or specular reflectance 

were avoided as much as possible. Figure 6. Shows how measurements were done in the field.  
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Figure 6. Schematic representation of radiometric measurements carried out in the field. 

 
Where:  

(a) is upwelling radiance above the water surface (Lu+0), (b) downwelling sky radiance (Ld_sky),    (c) 

downwelling irradiance (Ed+0), (d) underwater downwelling irradiance at different depths (z1 and z2) just 

above SAV (Ed-z). 

3.1.2. In-situ measurement of water quality variables 

Water quality variables were also measured in-situ using HACH HQ40d multi-parameter-meter. These are 

the water body temperature, pH and dissolved oxygen at each sample point. At some sampling points, water 

surface temperature (WST) was also measured with a hand held Testo 830-T2 thermometer. 

3.2. Laboratory Measurement of water Quality Variables 

 
Water samples collected were put in a refrigerator at a temperature of 5oC. All samples were analysed for 

Suspended Particulate matter (SPM), Chlorophyll a, Turbidity and Coloured Dissolved Organic matter (C-

DOM). Analysis of all samples was done at the Geo-Information Science Laboratory of the Faculty of Geo-

Information Science and Earth Observation, University of Twente, the Netherlands. 

3.2.1. Suspended Particulate Matter  

Gravimetric analysis method was used in measuring the Suspended Particulate Matter (SPM). The setup (see 

figure 7) used for the measurement of SPM consist of: Sartorius 1872 electronic balance (highly sensitive 

and measures four digits after the decimal place), petri dish, Whatman GF/F filters (pore size of 0.45 µm), 
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vacuum pump, filtration system, graduated cylinders, forceps (used to handle filter and petri dish), oven and 

distilled water. Each dry Whatman glass fibre filter was weighted with the electronic balance twice and the 

average taken as the dry weight of the filter. Volumes of water samples filtered are 25 ml for less turbid 

samples (relatively clear water) and 20 ml for turbid samples. After filtration of each sample, the filtrate with 

the filter was put in the oven overnight to dry at a temperature of 105o C. When the filter was finally removed 

from the oven, it was cooled at room temperature and the final weight taken again. To obtain the total 

suspended solids in mg/l, eq. (1) was used. 

 

𝑇𝑜𝑡𝑎𝑙 𝑠𝑢𝑠𝑝𝑒𝑛𝑑𝑒𝑑 𝑠𝑜𝑙𝑖𝑑𝑠 (
𝑚𝑔

𝑙
) =

𝑓𝑖𝑛𝑎𝑙 𝑤𝑒𝑖𝑔ℎ𝑡 (𝑚𝑔)−𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑑𝑟𝑦 𝑤𝑒𝑖𝑔ℎ𝑡 (𝑚𝑔)∗1000

𝑠𝑎𝑚𝑝𝑙𝑒 𝑣𝑜𝑙𝑢𝑚𝑒 (𝑚𝑙)
                                (1) 

  

(a)                                                      (b)                                                     (c) 

   Figure 7.  Laboratory setup; (a) Filtration system, (b) filters in oven, (c) Electronic balance. 

 

3.2.2. Chlorophyll a concentration 

Absorption of chlorophyll a was measured using chlorophyll a measurement protocol adapted by Elizabeth 

J. Arar (U.S.Environmental Protection Agency, 1997). Collected samples were filtered using whatman glass 

fibre (G/F) filters of 0.45 µm pore sizes and 55mm diameter to extract phytoplankton pigments. Relatively 

clear samples were filtered using 70 ml whiles the turbid samples were filtered using different volumes 

ranging from 40 ml to 60 ml. Petri dishes were used to transport the sample with forceps. 90% acetone (has 

high efficiency in extracting chlorophyll a from most types of algae) was used as extraction solvent. The 

filters with filtrates were grinded using a tissue grinder and pestle. Following the measurement protocol, a 

total volume of 10 ml of 90% acetone was used to dissolve and dilute each grinded filter. The grinded filter 

with 10 ml acetone was transferred to centrifuge tube and centrifuged for 5 minutes at speed of 1000 rpm. 

The extract was then clarified by the centrifuge.  For each extract, 2 ml was transferred to a cuvette of optical 

path length 1cm. The cuvette was put in a spectrophotometer (UV-6300PC) and scanned at selected wave 

lengths (750 nm, 664 nm, 647 nm and 630 nm). A general scan from 300 nm to 1100 nm wave length range 

at an interval of 1 nm was also done separately to analyse the absorbance of each sample at those wave 

lengths. Jeffrey and Humphrey's Trichromatic equations (Eq. 2) were used to calculate the concentration 

(mg/L) of chlorophyll a in the extraction solution analysed. To obtain this, the absorbance value at 750 nm 
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was first subtracted from the absorbance at 664 nm, 647 nm and 630 nm to obtain 750 nm corrected 

absorbance values. The corrected values were then put in eq. (2). 

 

𝐶𝐸,𝑎 = 11.85(𝐴𝑏𝑠 664) − 1.54(𝐴𝑏𝑠 647) − 0.08 (𝐴𝑏𝑠 630)                                                       (2) 

 
Where: 
 CEa= concentration (mg/L) of chlorophyll a in the extraction solution analysed 

  Abs 647= corrected absorbance of 647 nm 

  Abs 664= corrected absorbance of 664 nm 

  Abs 630= corrected absorbance of 630 nm 

To finally calculate the concentration of chlorophyll a pigment in the whole sample, a generalized equation 

(eq. (3)) was used. 

 

𝐶𝑠 =
𝐶𝐸,𝑎   𝑋  𝑒𝑥𝑡𝑟𝑎𝑐𝑡 𝑣𝑙𝑢𝑚𝑒 (𝐿) 𝑋 𝐷𝐹

  𝑠𝑎𝑚𝑝𝑙𝑒 𝑣𝑜𝑙𝑢𝑚𝑒 (𝐿) 𝑋 𝑐𝑒𝑙𝑙 𝑙𝑒𝑛𝑔𝑡ℎ (𝑐𝑚)
                                                                                      (3) 

 

Where:  

 Cs= concentration (mg/L) of pigment in water sample. In this case, the concentration of         

chlorophyll-a pigment in the sample.  

Extract volume= volume (L) extracted before dilution was done (typically 0.0104) 

Cell length= optical path length (cm) of cuvette used (1cm=0.01m in this case) 

Sample= whole volume (L) of sample that was filtered 

DF= the dilution factors used. 

(a)                                                                                (b) 

 
 
 

 

 

 

 

 

 
   Figure 8. (a) Spectrophotometer (UV-6300PC), (b) Sample scan in the spectrophotometer. 

 

3.2.3. Turbidity 

In the laboratory, HACH 2100P Turbidimeter was used to measure turbidity of the water samples. This 

measures in NTU (Nephelometric Turbidity Units) and was set to automatic range and signal averaging 

mode. Calibration was done with three standards provided (see figure 9). These are Gelex Second Turbidity 

Standard 0-10 NTU, 10-100 NTU and 100-1000 NTU. The sample cell was filled to the line with the water 

sample. Before inserting each sample cell, it was cleaned with two drops of silicon oil and a soft lint-free 
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cloth provided to increase the accuracy of measurements. Readings of each sample were carefully taken five 

times after which the average reading was recorded as the turbidity of that sample. 

(a)                                                                                     (b) 

    Figure 9. (a) Gelex Second Turbidity Standards, (b) HACH 2100P Turbidimeter. 

 

3.2.4. Coloured Dissolved Organic Matter 

Apart from the in situ measurement of CDOM with the TriOs RAMSES sensor, CDOM which is also 

known as yellow substances or Gelbstoff was also measured in the laboratory. Filtering of water samples 

was done with whatman G/F filters (0.45 µm pore size, 55 mm diameter). A second filtering was done using 

a 0.2 µm filter and string. One filter was used for each sample. The string was however cleaned thoroughly 

with distilled water before filtering each sample. After filtration was done, 2 ml of each sample was 

transferred to a cuvette of optical path length 1 cm for scanning in the spectrophotometer (UV-6300PC). 

A fixed wavelength (440 nm) scan was done after which a general wave length (300nm to 1100nm) scan at 

an interval of 1 nm was also done. A blank distilled water sample was also scanned at 440nm. Before each 

scan, the cuvette was cleaned with lint free wipes. The spectral absorption coefficient of the CDOM was 

calculated from the measured absorbance using eq. (4). Absorbance of the blank (Ablank(440)) was subtracted 

from the absorbance of each sample at 440nm. 

 

𝑎∗(𝜆) = 2.303 𝐴(𝜆)/𝑙                                                                                                             (4) 

Where: 

 𝑎∗(𝜆) =Spectral absorption coefficient of CDOM 

A(𝜆) =corrected absorbance value of CDOM (A(440)- Ablank(440)) 

l=optical length of cuvette=1cm  

3.2.5. Lansat-8 OLI and SPOT 6 MS Data set 

 
Landsat-8 Operational Land Imager (OLI) images were downloaded from (http://earthexplorer.usgs.gov/) 

for a period of April 1, 2015 to October 31, 2015. This period returned six (20% cloud cover) images 

covering Binnenschelde and Markiezaatsmeer study areas only. The other two study areas were left out 

http://earthexplorer.usgs.gov/
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because of the relatively course spatial resolution of Landsat 8 OLI spectral bands. The spectral bands of 

Landsat 8 Oli and their wavelengths are shown in table 2 

(http://landsat.usgs.gov/band_designations_landsat_satellites.php). 

 

Table 2. Landsat 8 OLI spectral bands and Wavelengths.  

             Bands 
Wavelength 

(micro meters) 
Resolution  (meters) 

Band 1 - Coastal aerosol (OLI) 0.43 - 0.45 30 

Band 2 – Blue (OLI) 0.45 - 0.51 30 

Band 3 – Green (OLI) 0.53 - 0.59 30 

Band 4 – Red (OLI) 0.64 - 0.67 30 

Band 5 - Near Infrared (NIR) (OLI) 0.85 - 0.88 30 

Band 6 - SWIR 1 (OLI) 1.57 - 1.65 30 

Band 7 - SWIR 2 (OLI) 2.11 - 2.29 30 

Band 8 – Panchromatic (OLI) 0.50 - 0.68 15 

Band 9 – Cirrus (OLI) 1.36 - 1.38 30 

Band 10- Thermal Infrared (TIRS) 1 10.60 - 11.19 100 * (30) 

Band 11- Thermal Infrared (TIRS) 2 11.50 - 12.51 100 * (30) 

 

Further processing of the downloaded data was done with standard parameters of the Landsat 8 data 

products as summarised in table 3. 

 

 

Table 3.  Landsat 8 Standard data product Processing Parameters [UTM, Universal Transverse
 Mercator; WGS, World Geodetic System; OLI, Operational Land Imager; TIRS,
 Thermal Infrared Sensor] 

Product Type Level 1T (terrain corrected) 

Data Type 16-bit unsigned integer 

Output format GeoTIFF 

Pixel Size 15meters/30meters/100meters(panchromatic/multispectral/thermal) 

Map Projection 
UTM (Polar Stereographic for Antarctica) 

Datum WGS 84 

Orientation North-up (map) 

Resampling Cubic convolution 

Accuracy 
 

OLI: 12 meters circular error, 90 percent confidence 
TIRS: 41 Meters circular error, 90 percent confidence 

 

 

http://landsat.usgs.gov/band_designations_landsat_satellites.php


Delineation and quantification of submerged aquatic vegetation (SAV) in inland lakes using multispectral sensors 

 

14 

3.2.6. SPOT 6 Multispectral Data set 

 
Spot 6 is a multispectral sensor built by the AIRBUS Defence and space. It was launched on 12th September, 

2012. The SPOT 6 multispectral images covering all the study areas were obtained from the Netherlands 

Space Office through their Satellite data Portal. For Binnenschelde and Markiezaatsmeer, two cloud free 

images (November 2, 2015 and December 4, 2015) were obtained. Two cloud free images (June 27, 2014 

and August 3, 2015) were also obtained for Hulsbeek and Kristalbad. Table 4 shows the four bands of Spot 

6, their wavelength ranges and spatial resolution (http://www.satimagingcorp.com/satellite-sensors/spot-

6/). 

 
Table 4. SPOT 6 multispectral bands and Wavelengths. 

Bands 
Wavelength 

(micro meters) 
Resolution  

(meters) 

Band 1 – Blue 0.455-0.525 6.0 

Band 2 – Green 0.530-0.590 6.0 
Band 3 – Red 0.625-0.695 6.0 
Band 4 – Near-Infrared 0.760-0.890 6.0 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.satimagingcorp.com/satellite-sensors/spot-6/
http://www.satimagingcorp.com/satellite-sensors/spot-6/
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 METHODOLOGY 

4.1. Image Processing 

4.1.1. Atmospheric correction of Landsat 8 OLI images 

 
For accurate investigation of the spectral properties (reflectance) of the earth’s surface, atmospheric 

correction is very crucial because of the absorption and scattering effects of the atmosphere. With 

atmospheric correction, ground features of an image can better be separated (Sharma et al., 2009). 

Atmospheric correction of Landsat 8 OLI images was done using the QUick Atmospheric Correction 

(QUAC) method. Without axillary information, QUAC directly determines the atmospheric compensation 

parameters from observed pixel spectra (Guide, 2009). This method assumes linear relationship between 

spectral reflectance and measured radiance similar to the Empirical Line Method (ELM)) using the standard 

radiance equation (Bernstein et al., 2005a); 

 

𝜌𝑗(𝜆) = 𝐴(𝜆) +
𝐵(𝜆)

1−𝑆(𝜆)<𝜌(𝜆)>
𝜌𝑗

0(𝜆) +
𝐶(𝜆)

1−𝑆(𝜆)<𝜌(𝜆)>
< 𝜌(𝜆) >                                                            (5) 

Where: A, B, C and S are coefficients describing the transmission and scattering effects of the atmosphere, 

𝜌j is the reflectance observed (normalised radiance by the surface normal component of the solar flux) for 

the j’th pixel at a spectral band with central wavelength 𝜆, 𝜌𝑗
0 represents the actual surface reflectance and 

<𝜌> is the surface reflectance that is spatially averaged. 

 

Assuming the conditions that (1) S<𝜌> is small and when either, (2) the diffuse and the direct transmittance 

terms can be combined with a single reflectance variable, or (3) the diffuse and backscattering terms can be 

combined, then eq. 5 is reduced to a linear form as; 

 

𝜌𝑗(𝜆) = 𝐴(𝜆) + 𝐵(𝜆)𝜌𝑗
0(𝜆) + 𝐶(𝜆) < 𝜌(𝜆) >                                                                                  (6) 

𝜌𝑗
0(𝜆) =

𝜌𝑗(𝜆)−𝜌𝑏(𝜆)

𝑔𝑜𝜎𝜌(𝜆)
                                                                                                                             (7) 

Where: go is the normalisation factor and 𝜎𝜌 is the correction factor B. To retrieve the actual surfaces 

spectral reflectance, eq. 6 is rearranged to obtain eq. 7 using extracted compensation parameters that are in-

scene-determined. One advantage of QUAC is that, its approach for retrieving aerosol optical depth does 

not depend on the presence of dark pixels like most methods do (Bernstein et al., 2005a). According to 

Bernstein et al., (2005a, 2005b), some previous results prove that QUAC yields very accurate results 

compared to more sophisticated methods of atmospheric correction.  

 

In ENVI 5.3, each image was loaded using the *_MTL.txt metadata file. With the input raw image, QUAC 

creates a surface reflectance image that is scaled into two-byte unsigned integers using a reflectance scale 
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factor of 10,000. In order to obtain a reflectance data range from 0-1, ENVI BandMath tool was used to 

divide the reflectance pixel values by 10,000 using eq. 8. The output reflectance images (see appendix 2) 

were then used for further processing. 

 

(𝐵1 𝑙𝑒 0)∗0+(𝐵1 𝑔𝑒 10000)∗1+(𝐵1 𝑔𝑡 0 𝑎𝑛𝑑 𝐵1 𝑙𝑡 10000)∗𝑓𝑙𝑜𝑎𝑡(𝐵1)

10000
                                                                    (8) 

Where: B1 represents each band of the image.                                                           

4.1.2. Atmospheric correction of Spot 6 MS images 

 
The method described in section 4.1.1 was also applied to the Spot 6 images. The only difference is that, 

Spot 6 images were loaded using the DIMAP (.XML) metadata file in ENVI (dim*.xml). Eq. 8 was also 

used to finally obtain the reflectance data range from 0-1. The output images were then used for further 

processing.  

 

4.2. Ramses Data Interpolation and Convolution 

 
For accurate comparison of measurements taken by two different sensors, it is crucial to interpolate the 

measurements of one from the other. This is because of the difference in wavelength interval and range of 

each sensor. Landsat 8 OLI has wavelength interval of 1 nm while Ramses has an interval of 3.3 nm. Ramses 

measured in-situ reflectance spectra data was interpolated to obtain new data set in 1 nm interval. The 

Relative Spectral Response (RSR) of Landsat 8 OLI was then convoluted with the spectral response of the 

Ramses. The RSR of Landsat 8 OLI, obtained from the web (http://landsat.usgs.gov//instructions.php) is 

shown in figure 10. Five of the Landsat 8 OLI bands, Coastal Aerosol (CA), Blue, Green, Red and Near 

Infra-Red (NIR) were convolved with the in-situ reflectance spectra of Ramses using the band equivalent 

reflectance (BER) equation (eq. (9)). Hence, band-weighted reflectance of Ramses (Rx) were derived for 

each band and site and used for further analysis. The same process was carried out in convolving the RSR 

of Spot 6 to the spectral response of RAMSES. However the RSR of Spot 6 could not be obtained. 

Therefore, the band widths (lower and upper wavelengths) of each band were used to compute a Gaussian 

spectral response function and taking the Full Width at Half Maximum (FWHM) values of the spectrum 

curve. The resulting SRF were then convolved with the spectral response of RAMSES to obtain Rx (eq. (9)) 

for each site. 

 

𝑅𝑥 =
∑ 𝑟𝑖𝜌𝑖

𝜆𝑚𝑎𝑥
𝑖=𝜆𝑚𝑖𝑛

∑ 𝑟𝑖
𝜆𝑚𝑎𝑥
𝑖=𝜆𝑚𝑖𝑛

                                                                                                            (9) 

 

http://landsat.usgs.gov/instructions.php
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Where: Rx is the BER for band x, 𝜆min is the minimum value of band x filtration function, 𝜆max is the 

maximum value of band x filtration function, ri is the RSR of band x at the wave length i. 𝜌i is the interpolated 

spectral response of Ramses at wavelength i. 

 

 
Figure 10. Relative spectral response of Landsat 8 OLI (USGS, 2015). 

4.3. Remote sensing Reflectance 

 

For all the study areas, the remote sensing reflectance of each location (Rrs(𝜆)) was calculated using eq. (10) 

(J.L. Mueller et al., 2003; Mobley, 2004). It is the ratio of the upwelling radiance (Lu(𝜆)) to the downwelling 

irradiance (Ed(𝜆)) for each point of measurement just above the surface of the water. Rrs is very important 

in the study of apparent optical properties as it provides significant optical properties of the water 

constituents (Salama et al., 2009). 

 

𝑅𝑟𝑠 =
Lu(λ)

Ed(λ)
                                                                                                                                      (10) 

 
Where: Rrs =water leaving reflectance [sr-1] 

           Lu(𝜆) =upwelling radiance just above the surface of the water [mw.nm-1.sr-1] 

           Ed(𝜆)) =downwelling irradiance just above the surface of the water [mw.nm-1] 

4.4. Underwater remote sensing reflectance 

 
Underwater remote sensing reflectance (rrs) is the ratio of the upwelling radiance to the downwelling 

irradiance, evaluated just below the surface of the water. This was obtained using eq. (11) (Lee et al., 1999). 

 

𝑅𝑟𝑠 ≈
0.5𝑟𝑟𝑠

1−1.5𝑟𝑟𝑠
                                                                                                                                 (11) 
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From eq. (11), 

 

    𝑟𝑟𝑠 ≈
𝑅𝑟𝑠

0.5+1.5𝑅𝑟𝑠
                                                                                                                             (12) 

Eq. (12) was used to compute the values of rrs from the in-situ derived Rrs. 

4.5. In-situ attenuation coefficient 

As solar radiation is transmitted through water, it interacts with suspended particulate matter as well as 

dissolved organic matter present in the water (Mobley, 2004). This leads to absorption and/ or scattering of 

the radiation as it moves down the water column. Using the downwelling irradiance measured at different 

depths (Z1 and Z2), in-situ diffused attenuation coefficient (Kd) was calculated using eq. (13). 

 

𝐾𝑑 = −
1

ΔZ
ln [

𝐸𝑑(𝑍2)

𝐸𝑑(𝑍1)
]:  |𝑍2| > |𝑍1|                                                                                                  (13) 

Where 𝛥Z is thickness of the water column [m],   Ed is the downwelling irradiance [Wm2nm-1]. Z1 and Z2 

are 0.1m and 0.2m respectively.  

4.6. SAM Classsification of SAV in Binnenschelde 

For all the four study areas described, SAV were visible only in the Binnenschelde Lake. The classification 

of SAV was done using the Spectral Angle Mapper (SAM) (Boardam et al., 1994). SAM is a supervised image 

classification technique that classifies an image using known spectral signatures of the classes, i.e. 

endmembers. The endmembers could be taken  from the laboratory (Park et al., 2007) or  the field (Curtarelli 

et al., 2014). It could also be extracted from an image. SAM determines the spectral similarity between the 

endmembers spectra and  the image spectra in each pixel (Kruse et al., 1993). It measures  the similarity of 

a spectrum to an endmember by computing the angle between them, disregarding their relative brightness 

values (Akkaynak et al., 2013). The higher the spectral angle, the higher the dissimilarity between the pixel 

spectra (Liu, 2013). Figure 11 shows a representation of endmember and test spectrum of a two band image 

(band 1 and band 2) in a two dimensional plot. The origin is the darkest point. This means that pixels with 

the same spectral signature will fall on the same spectral line. However the further they are away from the 

origin, the more illuminated (brighter) they are. The main disadvantage of this method is that, it is insensitive 

to illumination (Kruse et al., 1993).The spectral angle (α), is calculated using eq.15. 

For this study, spectral libraries were built from field measurements of SAV (field collected end members). 

After convolving in-situ Rrs with the SRF of Landsat 8 OLI and SPOT 6 MS sensors, the average Rrs values 

of the SAV (Rrs(SAV)) were taken. Also, the underwater remote sensing reflectance of the SAV (rrs(SAV)) 

were convolved with the RSF of both satellites. (Rrs(water), Rrs(SAV)) and (rrs(SAV)) were multiplied by 

pi( ) to convert to albedo assuming an isotropic light field. Eq. 14 was then applied to obtain two classes 
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(field endmembers) used to build the spectral libraries for SAM classification with field observation as a 

guide.  

𝑅𝑟𝑠(𝑤𝑎𝑡𝑒𝑟) = 𝑅𝑟𝑠(𝑆𝐴𝑉) − 𝑟𝑟𝑠(𝑆𝐴𝑉)                                                                                                                    (14)   

Where: Rrs(water) is the convoluted remote sensing reflectance of only water, Rrs(SAV) is the average 

remote sensing reflectance of the SAV points and rrs(SAV) is the underwater remote sensing reflectance of 

the SAV. Maximum spectral angles ranged from 0.39-0.42 radians for Landsat 8 images and 0.37-0.38 

radians for SPOT 6 images. 

 

 

 

 

 

 

 

 

 

Figure 11. Vector representation of the SAM algorithm for two bands. 

Adapted from Kruse et al. (1993). 

 

𝛼 = 𝑐𝑜𝑠−1 (
∑ 𝑡𝑖𝑟𝑖

𝑛𝑏
𝑖=1

(∑ 𝑡𝑖
2𝑛𝑏

𝑖=1 )
1/2

 (∑ 𝑟𝑖
2𝑛𝑏

𝑖=1 )
1/2)                                                                                                (15) 

 

Where 

α= spectral angle (in radians) 

nb= number of bands 

t= test (unknown) spectra 

r= reference (known) spectra 

4.7. Linear Spectral Unmixing of SAV and Water Pixels 

 

In the SAM image classification process, pixels were classified as SAV, water or fractions of SAV and water 

field endmembers depending or their spectral characteristics. It is therefore crucial to identify pixels that 

encompass a mixture of both endmembers and their relative abundance in each pixel of the multispectral 

images. Spectral linear unmixing is decomposition of a measured spectra into its constituent spectra, with 

fractions indicating the relative abundance of each endmember in the pixel (Keshava & Mustard, 2002) The 

main principle behind spectral unmixing is that, a data sample vector is assumed to be mixed by the 

endmembers present in it (Dobigeon et al., 2008). According to Boardman (1989), a linear or nonlinear 
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mixing may occur depending on whether the incident photon goes through a single or multiple scattering 

before escaping as reflected light. In this study, a linear mixing was assumed to have occurred. The linear 

spectral unmixing tool in ENVI was used to spectrally unmix the classified multispectral images. A unit sum 

constraint was assumed. This means that the sum of the fraction of the reflectance of SAV and water is 

assumed to be equal to 1 for all bands of the image. The linear spectral unmixing was done using ground 

truth Regions of Interest (ROIs) of the unclassified image. 

4.8. Normalised Difference Vegetation Index  

 
Normalised Difference Vegetation Index (NDVI) developed by Rouse et al., (1974), was explored to 

quantify the abundance of SAV. NDVI was calculated using the reflected solar radiation in the near infra-

red (NIR) and red (R) wavelength bands as shown in eq. (24). NDVI is undefined when both wavelengths 

at NIR and R are zero (Rulinda et al., 2010). Using the Landsat 8 OLI and Spot 6 images of Binnenschelde, 

NDVI maps were created with ENVI software using the BandMath tool. 

 

   NDVI =
NIR−R

NIR+R
                                                                                                                 (16) 

 

Band reflectance values were used. Where: NIR is the reflectance at the near infra-red band of Landsat 8 

and SPOT 6 whiles R is the reflectance values at the red band of Landsat 8 and SPOT 6. 

4.9. Deriving Inherent Optical Properties from In-situ Radiometric Measurements 

 
Inherent optical Properties (IOPs) are the properties of a water constituents that do not depend on the 

ambient light field that is within the water medium but the water medium only (Mobley, 2004). IOPs include 

the absorption coefficients of water molecules, phytoplankton pigments, detritus and gelbstoff which make 

up the total absorption coefficient (a(𝜆)). Also the backscattering coefficients of water molecules and 

suspended particulate matter make up the total backscattering coefficient (bb(𝜆)). (a(𝜆)) and (bb(𝜆)) are very 

important IOPs that influence the propagation of light in a column of water (Salama et al., 2009). Using the 

measurements of water quality variables described in section 3.2., the total absorption coefficient (a(𝜆)) and 

total backscattering coefficients (bb(𝜆)) were derived from the above water remote sensing reflectance (Rrs) 

as follows. First of all, Rrs was interpolated to 10 nm wave length interval because of the wavelength intervals 

of bbw(𝜆) and aw(𝜆). The underwater remote sensing reflectance was then computed using eq. 12. But from 

Lee et al., (1999); 

 

𝑢 = 𝑏𝑏(𝜆)/( 𝑎(𝜆) + 𝑏𝑏(𝜆))                                                                                                               (17) 

𝑏𝑏(𝜆) = 𝑏𝑏𝑤(𝜆) + 𝑏𝑏𝑝(𝜆)                                                                                                                  (18) 

𝑎(𝜆) = 𝑎𝑤(𝜆) + 𝑎𝜙(𝜆) + 𝑎𝑑𝑔(𝜆)                                                                                                      (19) 
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Where: bbw(𝜆) (m-1) is the backscattering coefficient from Morel (1974) and aw(𝜆) (m-1) is the absorption 

coefficient of pure water taken from Pope & Fry (1997). a𝜙 is the absorption coefficient of phytoplankton, 

adg(𝜆) is the absorption coefficient of detritus and gelbstoff and bbp(𝜆) is the backscattering coefficient of 

particulate matter.    

Also,   𝑏𝑏𝑝(𝜆) = 𝑋 (
400

𝜆
)

𝑌
                                                                                                                 (20) 

Where X=bbp(400)=SPM (b*
bp(400))P 

400 nm is the reference wavelength. Y is a spectral slope for particulate backscattering reported to be 

between 0 and 0.25 (Salama & Stein, 2009). b*
bp(400) is the specific backscattering coefficient of SPM at 440 

nm and P is the backscattering fraction which was taken as 0.0182 (Petzold, 1972). SPM is the site suspended 

particulate matter (g/m3). 

 𝑌 ≈ 3.44(1 − 3.17exp (−2.01 𝑥)),   where 𝑥 =
𝑅𝑟𝑠(440)

𝑅𝑟𝑠(490)
 

𝑎𝑑𝑔(𝜆) = 𝐺 exp (−𝑆(𝜆 − 440))                                                                                                      (21) 

𝑎𝑝ℎ = 𝑎𝑝ℎ
∗  [𝑐ℎ𝑙 𝑎]                                                                                                                             (22) 

Where G=a*
dg, which is the sum of absorption coefficient of detritus and gelbstoff at 440 nm, S is a spectral 

slope that is reported to be in the range of 0.011-0.021 nm-1 (Carder et al., 1989; Carder et al., 1991). A 

representative average was taken as 0.015 nm-1 (Lee et al., 1999). a*
ph (m2/mg) is the specific absorption 

coefficient of phytoplankton taken from Hartmann (1995) and [chl a] is the chlorophyll a concentration 

(mg/m3) of the site. 

4.9.1. Bottom Albedo of shallow inland Lakes   

 

In shallow waters, the underwater remote sensing reflectance (𝑟𝑟𝑠) signal is made up of the reflectance of 

constituents in the water column as well as reflectance from the bottom of the water. According to Lee et 

al., (1999); 

 

𝑟𝑟𝑠 = 𝑟𝑟𝑠
𝑑𝑝

(1 − exp {− [
1

cos 𝜃𝑤
+

𝐷𝑢
𝑐

cos 𝜃
] 𝜅𝐻}) +

1

𝜋
𝜌 exp {− [

1

cos 𝜃𝑤
+

𝐷𝑢
𝐵

cos 𝜃
] Κ𝐻}                              (23)  

 

However, 𝐷𝑢
𝑐, 𝐷𝑢

𝐵 and 𝑟𝑟𝑠
𝑑𝑝

, are all functions of  u (eq. 17) and were computed as follows (Lee et al., 1999); 

 

𝐷𝑢
𝑐 ≈ 1.03(1 + 2.4𝑢)0.5                                                                                                                    (24) 

 

𝐷𝑢
𝐵 ≈ 1.04(1 + 5.4𝑢)0.5                                                                                                                    (25) 

 

𝑟𝑟𝑠
𝑑𝑝

≈ (0.084 + 0.170𝑢)𝑢                                                                                                                (26) 
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Where 𝐷𝑢
𝑐  and  𝐷𝑢

𝐵  are the optical path elongation factors for scattered photons for the water column and 

bottom respectively.  𝑟𝑟𝑠
𝑑𝑝

 is the underwater remote sensing reflectance for optically deep water, k is the total 

attenuation coefficient and H is the average bottom depth of the water. Average H values of 1.5, 2.1, 3.5, 

and 1 m were used for Binnenschelde, Markiezaatsmeer and Kristalbad respectively. Θ and Θw are the 

subsurface viewing angle (300) and subsurface solar zenith angle (in radians) respectively. The bottom albedo 

(𝜌) of each lake at each site was then computed from eq. (23). 

Also,   rrs ≈ (𝑟𝑟𝑠
𝑐 ) + (𝑟𝑟𝑠

𝐵), sum of the contribution of the underwater reflectance of the water column (𝑟𝑟𝑠
𝑐 ) 

and the underwater reflectance from the bottom of the water (𝑟𝑟𝑠
𝐵) (Lee et al., 1999). Therefore, 

(𝑟𝑟𝑠
𝑐 ) and (𝑟𝑟𝑠

𝐵) were calculated using eq. (27) and (28) respectively. 

 

𝑟𝑟𝑠
𝑐 = 𝑟𝑟𝑠

𝑑𝑝 (1 − exp {− [
1

cos 𝜃𝑤
+

𝐷𝑢
𝑐

cos 𝜃
] 𝜅𝐻})                                                                         (27) 

𝑟𝑟𝑠
𝐵 =

1

𝜋
𝜌 exp {− [

1

cos 𝜃𝑤
+

𝐷𝑢
𝐵

cos 𝜃
] 𝜅𝐻}                                                                                     (28) 

 

4.10. Computing Euphotic Depth from In-situ measurements 

 
The spectral range (400-700) nm is usually used by photosynthetic organisms for the process of 

photosynthesis (Lee et al., 2005).  This spectral range is known as Photosynthetically Active radiation (PAR). 

According to Mobley (2004), the depth of penetration of the solar radiation where PAR is reduced to 1% 

of the initial value at the surface is known as euphotic depth (Zeu). In this study, euphotic depth zone was 

derived directly from the attenuation coefficient of the photosynthetically active radiation (Kd(PAR)). This 

was done by first computing the underwater irradiance at different depths for the visible range (400-700 

nm) as shown in eq. (29). The Euphotic depth zone for each site was then computed directly from the in-

situ derived Kd(PAR) by applying eq. (30).   

 

𝑃𝐴𝑅(𝑧) = ∫ 𝐸𝑑
700

400
(𝜆; 𝑧)𝑑𝜆                                                                                                              (29) 

𝑍𝑒𝑢 =
4.605

𝐾𝑑(𝑃𝐴𝑅)
                                                                                                                                    (30) 
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 RESULTS AND DISCUSSION 

This chapter presents the details of results and discussion of the major findings in this research. These are 

the spectral signatures of the lakes, diffuse attenuation coefficients, spectral signature of SAV, SAV 

distribution and NDVI of Binnenschelde. Statistics of results of laboratory measurements of water quality 

indicators are also presented here. Derived bottom albedos as well as the range of euphotic depth range of 

the inland lakes are also discussed.  

5.1. Water leaving reflectance  

 
The respective water leaving reflectances (spectral reflectance signatures) of the four study areas as described 

in section 4.3. are shown in figure 12. There is variation in water leaving reflectance with wavelength and at 

different points of measurements for all the lakes. This variation is caused by the absorption and scattering 

of the incident light at different wavelengths. This indicates the variation of IOPs and hence variation in 

absorption and scattering with wavelength for different points at the same lake. Variability of Rrs at different 

points of measurement is however higher in Markiezaatsmeer compared to the other lakes.  

 

Figure 12. Water leaving reflectance of Binnenschelde, Markiezaatsmeer, Hulsbeek and Kristalbad. 

 

The reflectance is fairly low in the blue spectral range (400-500 nm) for all the lakes. The reflectance starts 

increasing from 500 nm and peaks at about 560 nm. There is also a peak at around 705 nm, associated to 
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the absorption and scattering by water and phytoplankton (Gitelson et al., 2007; Matthews et al., 2010) 

which decreases to about 780 nm. It increases again at 820 nm and finally decreases to about 930 nm. This 

illustrates the characteristics of typical turbid and productive inland waters (Gitelson et al., 2007). These 

variations in Rrs are highly significant as it provides information regarding the optical properties of different 

constituents present in the water (Salama et al., 2009).  

5.2. Diffuse attenuation coefficients 

 

Figure 13 illustrates that there is an inverse relation between Rrs(𝜆) and Kd (𝜆) (computed at 0.1 and 0.2 m 

depth). It can clearly be seen that a trough from 400-500 nm wavelength in the Rrs (figure 12) produces a 

peak in the same wave length range in Kd (figure 13). Similarly, a peak of Rrs from 500-560 nm produces a 

trough in Kd for the same wave length range. The attenuation at about 700 nm or reflectance peak at same 

wavelength indicates the high concentration of phytoplankton (Gitelson et al., 2007; Matthews et al., 2010). 

This is especially so for Binnenschelde and Markiezaatsmeer. 

 

Figure 13. Diffuse attenuation coefficient of Binnenschelde (a), Markiezaatsmeer (b), Hulsbeek (c) and 

Kristalbad (d) derived from in-situ measurement. 
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5.3. Spectral Signature of SAV in the Binnenschelde lake 

 
 Using spectral features of SAV, different SAV species can be discriminated at some particular wavelengths 

(David et al., 2003). The focus of this study however is not on the discrimination of different SAV species. 

The in-situ measured spectral reflectance signature of SAV in the Binnenschelde is presented in figure 14. 

The wavelength range (a) 540-560 nm indicates the reflectance of green by plants which accounts for the 

green colour of plants the human eye perceives (Knipling, 1970). Also, (b) 670-690 nm is the red absorption 

range by chlorophyll, (c) 710-730 nm represents the first reflectance peak in the NIR, (d) 735-745 nm shows 

the dip in NIR and (e) 810-820 nm indicates the second dip in the NIR band (Cho et al., 2008).  

 

Figure 14. Spectral signature of SAV in Binnenschelde showing unique wavelength ranges of SAV reflectance 
measured under water. 

 

Unlike water (without SAV), SAV has a very high intensity of absorption in the blue wavelength (400-500 

nm) and around the red (675 nm) (Yuan & Zhang, 2008). Therefore, SAV can be identified by an increased 

absorption at the blue band and increased reflectance at the green band (Cho, 2007). With reference to the above 

spectral characteristics of SAV, field end members were selected and a spectral library of SAV built for the SAM 

classification. 

5.3.1. Spectral Signature of SAV and high concentration of chlorophyll a 

 
From the laboratory analysis, the highest concentration of chlorophyll a in Binnenschelde is 7.141 mg/m3. 

Though discrimination of high concentration of chlorophyll a and SAV is not the aim of this study, from 

figure 15, it can be seen that there are spectral similarities between high concentration of chlorophyll a and 

SAV. There are reflectance peaks around 540 nm to 560 nm (green) in both signatures. Also, they both have 

absorption troughs around 670nm to 690nm (red) wavelength. Separation of high concentration of 

chlorophyll a, algal bloom and SAV is very difficult because these similarities (Malthus et., 1997). However, 

some unique differences can be observed between them. For the high concentration of chlorophyll a 

signature, there is higher reflectance in the visible wavelength range and lower reflectance peak in the NIR 
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than that of the SAV signature. Similar trend was reported by Gin et al., (2002) for water with high 

concentration of chlorophyll a. 

Figure 15. Plots showing the spectral signatures of SAV (a) and high concentration of chlorophyll a (b) in the 
Binnenschelde (just below the surface of the water). 

 

5.4. Distribution and Spatiotemporal Variation of SAV in Binnenschelde 

 

The distribution and spatial variation of SAV with time using the remote sensing reflectance of SAV and 

water only classes is presented here. Classification of SAV was done using the atmospherically corrected 

images of Landsat 8 OLI and Spot 6 MS sensors. SAV growing season starts around April to October each 

year (Oyama, 1993; Court et al.,1993). The interaction of several environmental factors influences the 

growth, distribution, production and species composition of SAV (Barko & Smart, 1986). The depth and 

turbidity of the overlying water column greatly affect the accurate detection of SAV (Hunter et al., 2010). 

Growth of SAV is also affected by the supply of light and epiphytic biofilms (Köhler et al., 2010). Since the 

temporal variation SAV is much lower than that of the water, the ability of a remote sensor to ‘see’ SAV 

will depend on the IOPs of the water such us low turbidity (high clarity). For this reason, the approach we 

used in this study was to sum the classified images. Weights were then assigned to SAV pixels in the classified 

images as indicated in table 5. The classified Landsat 8 images were then summed and reclassified based on 

the weights assigned. The resultant image therefore shows the probability of finding SAV from April, 2015 

to September, 2015 (see figure 17).  

 
Table 5. Probability of occurrence and weights assigned to SAV pixels in the Binnenschelde. 

Probability of Occurrence      
(SAV pixels) 

  Assigned   Weight 

¼ 25% 

2/4 50% 

¾ 75% 

4/4 100% 
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From figure 16, it can be seen that a greater area of the lake was classified as water (blue or 0%) and the 

highest probability of SAV occurrence is 75%. This is practically not true since the temporal variability of 

SAV is very low compared to the water. It however means that some pixels of SAV have been classified as 

water and vice versa due to the temporal variability of the IOPs of water as mentioned earlier. Since we have 

only a single day of turbidity measurement, we cannot conclusively state which image was misclassified.  

 

Figure 16. SAV distribution map of Binnenschelde (20/04/15, 07/06/15, 03/08/15 and 27/09/15 classified images) 
overlaid on a SPOT 6 image. Classified images were summed and weights assigned to SAV pixels based on the 
number of images they appeared. 

 

5.4.1. Accuracy Assessment of SAM classification 

 
Confusion matrix, a post classification tool in ENVI was used to assess the accuracy of the SAM 

classification. Ground truth regions of interest (ROI) were used to do the assessment. Only the 27/09/15 

(Landsat 8) classified image was assessed because field measurement was done on 24/09/15 and ground 

truth of the classes are known. Report of the accuracy assessment is presented in table 6. There was an 

overall accuracy of 89.535 % in the classification of the 27/09/15 Landsat 8 image of Binnenschelde and a 

user accuracy values of 96% and 86.89% for SAV and water respectively. This shows a very good 

classification of the SAV and water, especially the SAV class. This is attributed to the accurate knowledge 

of the SAV location based on field observation. 
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 Table 6. Report of accuracy assessment of 27/11/15 Landsat 8 image classification (Binnenschelde). 

Overall Accuracy = (77/86)  89.53% 

Kappa Coefficient = 0.7656 

 

 Ground Truth (Pixels)   

Class              SAV_aa     water_aa     Total  

Unclassified             0            0              0   

     SAV  :C2           24            1            25   

 water  [Blue]           8           53            61   

        Total              32           54            86 

 

 

 

 Ground Truth (Percent)   

Class              SAV_aa       water_aa       Total  

Unclassified           0.00          0.00            0.00   

     SAV  :C2        75.00          1.85          29.07   

 water  [Blue]       25.00        98.15          70.93   

        Total          100.00      100.00        100.00    

 

 

 

                       Commission         Omission          Commission            Omission   

    Class              (Percent)            (Percent)              (Pixels)                   (Pixels) 

SAV  :C2              4.00                   25.00                   1/25                      8/32   

 water  [Blue]      13.11                     1.85                   8/61                      1/54    

 

 

Class                  Prod. Acc.          User Acc.             Prod. Acc.           User Acc.   

                          (Percent)             (Percent)                (Pixels)               (Pixels) 

SAV  :C2               75.00                  96.00                    24/32                 24/25   

 water  [Blue]         98.15                  86.89                    53/54                 53/61   

 

 

5.4.2. Linear Unmixing of water and SAV pixels   

 
Spectral linear unmixing was applied to the 27/09/15 Landsat 8 image because of our ground truth 

knowledge of SAV points. The spectral unmixing of the Landsat 8 image of Binnenschelde produced three 

sub-images in three bands. Band 1 is the map showing the spectrally unmixed water pixels, band 2 map of 

spectrally unmixed SAV pixels and band 3 is the root mean square (RMS) error map of the unmixing process. 

The RMS error map shows the level of error (the uncertainty) in the mixing calculations. These maps are 

shown in figures 17, 18 and 19. It can be seen that areas with high fractions of SAV (figure 17) have very 

low corresponding fractions of water (figure 18) and vice versa. With regards to the uncertainty in the 

unmixing calculations (figure 19), it can be seen that there is high error at the edges of the image.  
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This is because of the above water aquatic vegetation found at the edges of the lake. The above water 

vegetation end members were not included in the unmixing end members and hence high error in the 

unmixing process into fractions of SAV and water. 

 

Figure 17. Map showing the fractions of spectrally unmixed pixels of SAV in the unmixing process (Landsat 8, 
27/09/15). 
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Figure 18. Map showing the fractions of spectrally unmixed pixels of water in the unmixing process (Landsat 8, 

27/09/15). 

Figure 19. Map showing the RMSE (uncertainty) of the spectral unmixing process of SAV and water pixels (Landsat 

8, 27/09/15). 
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5.5. NDVI as Indicator of SAV Abundance  

 
NDVI maps were created to serve as indicators of the presence of SAV using the reflectance satellite images 

obtained after the atmospheric correction. The distinctive high reflectance values of green plants in the NIR 

band  and low reflectance in the visible band (Hyun Jung Cho & Lu, 2010) were used to obtain different 

NDVI classes. Threshold values were set in order to discriminate areas of water, SAV and above water 

vegetation as shown in table 7. Negative values represent the absence of vegetation or the lake bottom (Liira 

et al., 2010). Plants covered with water levels of 20 – 25 cm have NDVI values of about 0.15 (Beget & Di 

Bella, 2007). High positive NDVI values (greater than 0.15) were assigned to above water vegetation which 

also increase with density of the vegetation (Holben, 1986). In this study, SAV was evident in areas with 

NDVI from 0 to 0.15. 

 

Table 7. Thresholds set and wavelengths used to calculate NDVI. 

 

Index 

 

  Class Assigned             

       Wavelengths (𝜇m) 

(a) Landsat 8    (b) SPOT 6 

 

  Threshold Values 

 

 NDVI 

          Water   

(a) (0.865-0.655)/ (0.865+0.655) 

(b) (0.825-0.660)/ (0.825+0.660) 

      NDVI < 0  

           SAV 0 < NDVI < 0.15 

Above water vegetation               NDVI > 0.15 

 

The results obtained are shown in appendix 1. From the results the following observations were made: 

 

1. NDVI maps showed some similarities with pattern of the classified SAV maps. There was generally 

high NDVI and hence high density of SAV in both 20th April and 7th June Landsat 8 images in the 

western part of Binnenschelde. However, the 3th August NDVI map showed some patches of SAV 

in the middle and south eastern part of the Binneschelde Lake. This shift in density in just three 

months could largely be due to the temporal variation of IOPs of the water caused by change in 

turbidity. 

2. Areas with NDVI values greater than 0.15 were observed at the edges of the lake. These areas are 

known (from field observation) to contain above water aquatic vegetation but not SAV.  

3. All the NDVI maps of both Landsat 8 and Spot 6 showed areas of above water vegetation for all 

the different days at the edges of the lake. 

4. Even though there were still traces of SAV in November and December, 2015 NDVI maps, they 

could only be seen at the edges of the lakes as shown in the SPOT 6 NDVI images. This indicates 

the unavailability of SAV after the end of the growing season in October. 
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5.6. Water Quality Indicators 

 
Statistics of results (minimum, mean, maximum and standard deviation) of the laboratory analysis as 

described in section 3.2 are presented in table 8. SPM concentration ranges from 58-70 mg/l 

(Binnenschelde), 92-136 mg/l (Markiezaatsmeer), 7.5-27.5 mg/l (Hulsbeek) and 6-22 mg/l (Kristalbad). The 

range of Rrs values for 400-900 nm range are 0.0093-0.0330 sr-1, 0.0016-0.0509 sr-1, 0.0028-0.01670, and 

0.0001-0.0049 sr-1 for Binnenschelde, Markiezaatsmeer, Hulsbeek and Kristalbad respectively. This pattern 

shows that the concentration of SPM increased with Rrs as reported by Doxaran et al., (2003). Also, the 

variability of the reflectance spectra (see figure 12) at different points and at different lakes is supported by 

the variation in the results of the laboratory measurements of the water samples taken at those points 

(Zhongping Lee & Carder, 2004). 

 

Table 8. Statistics of laboratory measured water quality variables of all the lakes. 

Statistics 
SPM 

(mg/l) 
Turbidity 

(NTU) 

C-DOM 
absorption 
at 440 nm 

chlorophyll a 
conc. 

(mg/m3) 

Minimum 6 1.396 0.006 3.621 

Mean 49.182 11.183 0.957 9.422 

Maximum 136 27.640 3.729 25.703 

Std 42.746 10.410 1.053 5.397 
 

5.7. Spectrum of Derived Bottom Albedos 

 
In-situ derived bottom albedos of selected sites are presented in figure 20. Even though Binnenschelde and 

Markiezaatsmeer have similar bottom albedo spectrums, the bottom albedos of Markiezaatsmeer are 

generally higher. Each lake has a spectrally distinct bottom albedo even at each site. In shallow waters, 

bottom reflectance  greatly affects the remotely sensed signal (Ma et al., 2011) just as different constituents 

present in the water (Albert & Gege, 2006). The low bottom albedo values observed below the 500 nm 

wavelength and around 675 nm are associated with the presence of chlorophyll a at those sites (Maritorena 

et al., 1994). The sharp increase in the albedo value at 675 nm (Binnenschelde) is an indication of a vegetated 

bottom (Ma et al., 2011).  
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Figure 20. Selected site bottom albedos of Binnenschelde (a), Markiezaatsmeer (b), Hulsbeek (c) and Kristalbad (d). 

5.8. Variability and Standard deviation of rrs  

 
Figure 21 shows the variability of the sub-surface remote sensing reflectance (rrs) derived from in-situ 

measurements. For each lake, the error bars (black vertical lines) indicate the standard deviation of derived 

rrs from their mean values with respect to wavelength. Variability of underwater remote sensing reflectance 

is generally uniform in all wavelengths but higher in Markiezaatsmeer compared to the other lakes. The rrs 

signal is influenced by the reflectance of the water column and bottom (Lee et al., 1999). Therefore the 

variability of rrs is caused by the variation in reflectance of the water column and bottom at each point of 

each lake. 
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Figure 21. Standard deviation and variability of remote sensing reflectance evaluated just below the surface of the water 

(rrs) for Binnenschelde (a), Markiezaatsmeer (b), Hulsbeek (c) and Kristalbad (d). 

5.9. Euphotic Depth of the inland Lakes 

 
Though the average depth of Binnenschelde and Markiezaatsmeer are 1.5 m and 2.1 m respectively, 

Binnenschelde has a higher range of euphotic depth (see table 9). This means that there is higher light 

penetration in the Binnenschelde than in the Markiezaatsmeer. The clarity of Hulsbeek was so high that the 

bottom of the deepest point (about 6 m) could be seen with an unaided eye (which is within the visible range 

(400-700) nm). This has also been confirmed by its high values of euphotic depth computed. The value of 

Zeu is a highly significant water quality indicator of an ecosystem and determines the primary production in 

the water column (Zhongping Lee et al., 2007). The range of the in-situ derive euphotic depths concur with 

previous study of optically shallow in land waters (Majozi et al., 2014) aside Hulsbeek which has uniquely 

high clarity and hence high Zeu.. 

 

Table 9. Range of Kd (PAR) and Zeu. 

Study Area 
Range of Kd (PAR) 

[m-1] 
Range of Zeu 

[m] 

Binnenschelde       1.57 - 3.98 1.16 - 2.93 
Markiezaatsmeer       1.78 - 8.67 0.53 - 2.59 
Hulsbeek       0.75 - 3.24 1.42 - 6.12 
Kristalbad      2.57 - 3.04 1.51 - 1.79 
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 CONCLUSION AND RECOMMENDATION 

6.1. Conclusion 

 

The main aim of this study was to delineate and quantify submerged aquatic vegetation (SAV), analyse 

their spatiotemporal variability using multi-spectral sensors in the Binnenschelde and Markiezaatsmeer lakes 

in the Netherlands. Based on the results obtained in the study, the following conclusions were 

therefore made; 

 The classification of SAV was based on the field measured spectral signature of SAV. 

Results of the SAV classification indicate that IOPs of inland lakes highly influence the 

detection and classification of SAV. This is even more important because of the similarity 

in the spectral signature of SAV and high concentration of chlorophyll a. 

 The spatiotemporal variation of SAV cannot be accurately monitored without adequate 

knowledge of their spatial extent (ground truth) at high temporal resolution. 

 The highest Zeu was at the Hulsbeek Lake. This accurately confirmed the field observation 

made since the bottom of deepest point of that lake could even be seen with our unaided 

eyes. 

 Bottom albedos (𝜌), underwater remote sensing reflectance contribution of the water 

column ( 𝑟𝑟𝑠
𝑐 ) and bottom ( 𝑟𝑟𝑠

𝐵 ) derived from the in-situ measurement confirm the 

contribution of bottom reflectance in optically shallow lakes. This result would help in the 

development of models for optically shallow waters in the future.  

6.2. Recommendations 

 
Several factors affected the results of this research. Some of these factors could be avoided or minimised 

but others may not. On this basis, I make the following recommendations. 

 Results obtained only represent the IOPs of the lakes for the period of sampling. There is the need 

for more measurements to be carried out in future for better understanding of the IOPs of all the 

lakes as one day of field measurement is not enough to draw a reasonable conclusion on both their 

spatial and temporal variations. 

 There is the need for finer temporal and spatial resolution satellite images in mapping SAV in the 

future to provide better detail on SAV distribution. More ground truth SAV measurements should 

be done for more accurate assessment of SAV classification. 

 Due to limited access to the Kristalbad wetland, sample points taken were inadequate. Future study 

therefore should take more representative measurements.  



Delineation and quantification of submerged aquatic vegetation (SAV) in inland lakes using multispectral sensors 

 

36 

 It is highly challenging to obtain cloud free images. Future study should consider acquiring more 

images for better analysis of the delineation of SAV. 
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APPENDIX 1. NDVI MAPS OF BINNENSCHELDE LAKE 
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APPENDIX 2. ATMOSPHERIC CORRECTION 
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