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ABSTRACT 

This study describes the evaluation of the L-Band (1.4 GHz) brightness temperature from the microwave 

radiometer of the SMAP satellite mission by comparing it with ground-based modelled brightness 

temperature over the Maqu Soil Moisture and Soil Temperature (SMST) Monitoring network at Tibetan 

plateau. The ground-based modelled brightness temperature was calculated by CMEM (Community 

Microwave Emission Modelling Platform) model using in-situ SMST profile observations. The objectives 

of the study are: a) Model brightness temperature from soil moisture and soil temperature in-situ 

measurements in the Maqu catchment using the CMEM model; b) Use the Lv effective temperature scheme 

to understand the error characteristics of L-Band brightness temperature data from in-situ to network scale; 

c) Upscale point soil station data to field scale for matchup with SMAP satellite pixel scale; and d) Quantify 

the systematic and random errors of the SMAP brightness temperature product. 

The CMEM physics is described in the ESA ECMWF contract document that documents implementation 

of the model as the SMOS forward operator. Using Soil moisture and soil temperature in-situ measurements 

from the Maqu SMST network and other ancillary datasets (leaf area index, skin temperature, air temperature 

at 2 metres and soil texture information) brightness temperature is modelled using different effective 

temperature parameterisation schemes.  

Two methods of upscaling point soil moisture to field scale for matching with the SMAP satellite pixel scale 

are explored. The results of the study show that the simple average shows less residuals when compared to 

the weight functions as proposed by Lv. An analysis of the error contribution from each station when 

compared to the upscaled average shows that CST05 (4.6%) has less error contribution while NST08 

(33.3%) has a higher error contribution to the total error budget.  

Lv effective temperature scheme computes brightness temperature that has a better correlation with the 

SMAP satellite observation when compared to the other schemes. In the H polarization, Lv has a correlation 

of 0.25 compared to Choudhury (0.04), Wigneron (0.05) and Holmes (0.06).  In the V polarization, Lv has 

a correlation of 0.26 compared to Choudhury (0.04), Wigneron (0.06) and Holmes (0.06). This research 

recommends further studies using the Lv scheme with different parameterisations for the other different 

modules of the CMEM. This will help to understand the sources of errors in CMEM modelling when 

compared to SMAP. 
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1. INTRODUCTION 

Surface soil moisture is a critical parameter in describing the water and energy exchanges between the 

atmosphere and the land surface interface. It determines the partitioning of the energy into sensible and 

latent heat fluctuation and as a soil state variable; it controls the partitioning of precipitation between runoff 

loss and infiltration storage. Intrinsically, surface soil moisture is an important element in the global 

circulation process and has been acknowledged as a parameter of vital potential for improving weather 

forecast and climate prediction (Fennessy & Shukla, 1999).  

The use of hydrological models for extending the forecast of soil moisture over big areas is intricate and 

depends on the nature of the selected regions and available information on soil properties, such as 

permeability, hydraulic characteristics, meteorological and climatological data (Koster & Suarez, 1999). On 

the other hand, direct field measurements permit retrieval of precise approximations of soil moisture data 

in a concentrated spot and a lot of samples must be gathered to provide a representative sampling of the 

examined area (Newton, Heilman, & Van Bavel, 1983). 

Thus, the prospect of employing remote sensing to monitor areas at global and regional scales rapidly and 

to measure integrated values of some geophysical parameters is important to soil moisture data users. An 

added advantage of remote sensing methods is the opportunity of examining the evolution in time of these 

parameters, which helps in improving hydrological model predictions using repeated satellite passages. The 

sensitivity of the electromagnetic radiation in the microwave band to the moisture of soil is a vital tool in 

global and local scale monitoring of soil moisture. Microwave sensors quantify the amount of microwave 

energy emitted (passive) or scattered (active) from land surface targets(Behari, 2005a). In soils, the detected 

energy intensity is linked to the quantity of moisture stored in the soil, although other site and location 

factors such as roughness and vegetation have an effect on emissions and scattering. Due to the sensitivity 

of microwaves to soil moisture, broad research efforts have been explored to develop ideal retrieval 

algorithms as well as to validate derived soil moisture products(EOportal Directory, 2014). 

High-quality data and retrieval approaches that provide accurate soil moisture estimations are vital if soil 

moisture products from satellites are to be of meaningful value for global, regional, and national scales. 

Validation of the SMAP soil moisture products is an important mission obligation. Post-launch validation 

is concerned with product validation improvement, and further development (Piepmeier et al., 2014). 

1.1. Theory and Background 

1.1.1. Microwave Radiometry Physics 

Passive microwave sensors detect and measure the natural thermal emission originating from the soil 

surface. The variation in the strength of this radiation is dependent on the dielectric characteristics and 

temperature of the object medium (Newton et al., 1983). For near surface soil layer dielectric properties are 

a function of the amount of moisture present (Simmer, 1999). Low microwave frequencies like the L-Band 

(1.4GHz) have the additional advantages of an almost complete transparent atmosphere which ensures the 

ability of all-weather detection (Parrens, Calvet, de Rosnay, & Decharme, 2014). Another advantage of L-

Band frequencies is that transmission of signals from the underlying soil is probable through sparse and 

moderate vegetation layers (Wigneron et al., 2007). Lastly, L-Band microwaves are free from solar 

illumination, which permits day and night sensing (Johnson, 2012). 

At microwave frequencies, the intensity of the observed emission (brightness temperature TB) is 

proportionate to the product of the temperature and emissivity of the surface based on the Rayleigh-Jeans 
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approximation theory. When the microwave sensor instrument orbits earth, the observed TB is a combined 

effect of a), energy emitted from soil and attenuated by superimposed vegetation, b) emission from the 

vegetation layer, c) the downwelling atmospheric emission and cosmic background emission reflected by 

the surface and attenuated by the vegetation, and the upwelling atmospheric emission (Kerr et al., 2001). 

The different interactions and contributions to the brightness temperature are in Figure 1.  

 

Figure 1: Contributions to TOA brightness tempereture (SMOS ATBD, 2007) 

1.2. SMAP Mission 

The SMAP mission, launched in Jan. 31st 2015, has an overall objective of monitoring global soil moisture 

at high temporal and spatial resolution with an accuracy about 0.04cm3/cm3. The novel approach of the 

SMAP radiometer instrument is its reflector antenna that guarantees that system calibration necessities are 

met (Neill, Chan, Njoku, Jackson, & Bindlish, 2012a). The reflector architecture is a mesh antenna with a 

diameter of 6 meters. Scientists have toyed with the idea of implementing large rotating antennas to increase 

the accuracy of L-Band remote sensing. The rotating reflector in a conical manner at nadir axis enables a 

1000 km swath of observations at a 40-degree constant incidence angle. The rotating joint reflector optimises 

performance while reducing operation cost and risk (EOportal Directory, 2014; Miernecki et al., 2014; Neill, 

Chan, Njoku, Jackson, & Bindlish, 2012b; West, 2014). 

The L-Band radiometer on-board SMAP provides global soil moisture products measured at 1.41GHZ with 

the V, H, T3 and T4 polarisations in the top 5cm of the surface. Brightness temperature (L1C_TB) at a 

resolution of 36 km was provided with a latency of 50 hours (Neill, Chan, Njoku, Jackson, & Bindlish, 2012). 

The L-Band radiometer instrument requirements are polarizations in V, H, U a resolution of 36 km and 
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relative accuracy of 1.3 K. L1C_TB SMAP data requires calibration and validation data over locations where 

the grids coincide with time ordered locations. 

Pre-launch calibration and validation field activities for the SMAP mission were carried out between 2008 

and 2013. The SMAPVEX08 carried out on the US east coast was centred on resolving SMAP algorithm 

issues. The CanEx-SM10 in the Saskatchewan was done in conjunction with the Canadian L-Band 

radiometer where airbone radiometer measurements and in-situ sampling was done over four individual 

SMOS pixels (Magagi et al., 2013). Other field campaigns include the SMAPEx 1-3 designed to address 

SMAP soil moisture algorithm issues in three Australian fields (Panciera et al., 2014). SMAPVEX11 was 

carried out in Oklahoma to calibrate the SMAP atmospheric sensor ( Jackson et al., 2012). SMAPVEX12 

was another main pre-launch calibration and validation field campaign by NASA and the Canadian Space 

Agency. Validation site upscaling was one of the most important targets of the SMAPVEX12 campaign 

(McNairn et al., 2015). 

1.3. Problem Statement  

Soil moisture is an important parameter for Numerical Weather Prediction where it provides initial 

conditions for the land surface boundary conditions. Ground networks, which require high investment and 

maintenance cost, provide ideal in-situ soil moisture measurements. High cost of maintenance makes it 

impossible to provide global coverage of soil moisture networks (Behari, 2005b). Scarcity of ground soil 

moisture has resulted in the use of radar and radiometer sensors aboard satellites. Satellites such as SMOS 

and SMAP offer a high global coverage of soil moisture products. Soil moisture products from satellites 

provide data at a global scale and a consistent revisit time. Nevertheless, the coarse spatial resolution 

brightness temperature from satellites may results in errors not desired by users. Spatial-temporal variability 

due to atmospheric conditions, land cover, heterogeneity of properties of the soil, vegetation and surface 

topography affects the accuracy of the retrieved brightness temperature (Su et al., 2011). 

Users and scientists have developed and applied different algorithms at local scales using modelling the land 

surface and atmospheric variables, parameters, and combining them with satellite measurements to improve 

accuracy and resolution of satellite products. This has been done to give a suitable temporal scale of soil 

moisture. However, operational application of algorithms at regional scales using satellite sensor 

measurements suffer from shortage of information regarding numerous parameters involved in radiometry 

physics and the high spatial heterogeneity within the footprint of land surface variables.  

In-situ measurements from ground radiometer instruments such as the ELBARA are ideal observations that 

provide accurate brightness temperatures at point scale ideal for validating satellite brightness 

temperature(Jackson et al., 2012). It is important to upscale in-situ instrument measurements to the satellite 

pixel scale for the measurement to be useful in validation of satellite products. The process of upscaling a 

point measurement scale in the array of metres to the size of a satellite pixel scale in the range of tens of 

kilometres introduces uncertainties (De Lannoy et al., 2007).  

For SMAP Brightness temperature to be useful at regional and local scales there is need to test and define 

uncertainties that are observed in the algorithms using the forward operator (i.e. CMEM) and in-situ 

observations. Calibrating and validating brightness temperature products using in-situ measurements is 

critical in provision of reliable soil moisture products(Su et al., 2011). 

1.4. Research Objectives 

The main objective of this study is to evaluate brightness temperature products in the Maqu network 

through modelling of in-situ brightness temperature and using it to validate SMAP Level 1C brightness 

Temperature products (L1C_Tb).  
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1.4.1. Specific Objectives 

 Model brightness temperature from soil moisture and soil temperature in-situ measurements in 

Maqu network using the CMEM model.  

 Apply the new soil effective temperature scheme (Lv, Wen, Zeng, Tian, & Su, 2014) in the CMEM 

over the Tibetan plateau.  

 Upscale point soil moisture to SMAP satellite pixel scale 

 Identify uncertainties of SMAP TB products over the Maqu network.  

1.4.2. Research Questions 

 How do land surface heterogeneity affect the CMEM in simulating brightness temperature?  

 What is the error character between modelled brightness temperature from different effective 

temperature schemes and the observed SMAP brightness temperature?  

 What is the best approach to upscale point brightness temperature to SMAP pixel? 

 What are the sources of uncertainties between modelled brightness temperature and the observed 

SMAP brightness temperature?  

1.5. Research Relevance and Contribution   

The research is important for SMAP science users to understand and reduce the sources of uncertainties of 

brightness temperature (TB) retrieval over the high latitude regions (e.g. over the Maqu catchment in Tibet 

region and other regions with similar hydro-climatic conditions). Successful implementation of the model 

provides insight into how SMAP TB can be used to derive soil moisture through inverse modelling. The 

SMAP scientific team has also indicated the need to use a more comprehensive effective temperature 

scheme in their retrieval algorithm. Through evaluation of the different effective temperature schemes in 

this study, an insight into the most appropriate effective temperature is offered.  The study implements the 

two-layered effective temperature scheme (LV, 2014) in the CMEM model in calibrating and validating the 

SMAP observation using modelled brightness temperature, at the meantime, examining the sensitivity of 

the modelled Tb to different effective temperature schemes.  

1.6. Study area 

The Maqu soil moisture and soil temperature network is located at the north-eastern edge of the Tibetan 

Plateau (33.300–34.150 N, 101.380–102.450 E) and at the first major meander between the Yellow and 

Black river.  It covers the large valley of the river and the surrounding hills, with a uniform short grassland 

cover. The elevations of the stations range between 3430 m and 3752 m above mean sea level including 

typical landscapes with hills, valleys, river, wetlands, grassland and bare soil zones.  Organic soil wetlands 

characterize a large part of the valley, while silt loam soils are observed on the hills. According to the 

Koeppen Classification System, the climate at this site is defined by rainy summers and dry winters due to 

the monsoon winds network. The network, consisting of 20 stations in an area of approximately 40 km by 

80 km, monitors continuously the soil moisture and soil temperature at different depths (from 5 to 80 cm 

below surface) at 15 min intervals (Su et al., 2011). Figure 2 shows the location of Maqu soil moisture 

network in the Tibetan plateau observatory with the exact location of the eight stations used in this study in 

the SMAP pixel. 

Su et al. (2011) demonstrate the unique nature of the Tibetan Plateau networks in quantifying errors in 

coarse soil moisture products. These characteristics are ideal for vegetation cover correction, surface terrain 

correction and soil heterogeneity correction, which are important parameters for the CMEM model. The 

study (Su et al., 2011) concludes that the coarse global resolution of soil moisture products are useful but 

they exhibit unprecedented uncertainties in cold and semi-arid regions like the Tibetan Plateau observatory. 
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The Maqu soil network stations locations are chosen to monitor the area comprehensively at diverse 

altitudes and for different soil characteristics. Appendix A is a summary of the stations based on their 

elevations, land cover characteristics, depth of probes, the locations topography and geographical 

coordinates (Su et al., 2011).  The soil probe used for recording data is the capacitance EC-TM ECH2O 

which consists of three 5.2 cm flat pins measuring the dielectric permittivity of the soil next to the pins 

hence providing volumetric soil moisture. Soil temperature is estimated using a thermistor on the probe. 

Organic matter content, bulk density and particle size distribution were estimated during the installation 

process by taking soil sample estimates (Su et al., 2011). 

Su et al., (2011) noted that because the dielectric properties of soils depend on soil texture and salinity, 

calibration for soils in Maqu was carried out using soil rings, with which the uncertainty of approximately 

3% given by the generic calibration equation (default by the datalogger) valid for all fine textured mineral 

soils can be reduced to 1–2 %. The calibration methodology abridged RMSD between the volumetric soil 

moisture measured by the rings and that by the probes from 0.06 to 0.02 m3 m−3, which can be considered 

as the absolute accuracy of each station in the network (Dente et al., 2012
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Figure 2: Maqu SMST Network showing the stations location in a SMAP pixel 
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2. THE CMEM MODELLING 

Several studies have been carried out to obtain soil moisture estimates from satellite microwave radiometer 

(Wigneron et al., 2007; De Lannoy, Reichle, & Pauwels, 2013 and Zeng et al., 2015). The current CMEM 

(Community Microwave Emission Modelling Platform) model (De Rosnay et al., 2009) is ideal for the 

retrieval of brightness temperature at low frequencies of between 1.4 GHz-20Ghz, which is subsequently 

used to retrieve soil moisture products. The CMEM was also designed to be used as a forward operator for 

computing Top of the Atmosphere (TOA) brightness temperature in the ECMWF NWP model interface 

(De Rosnay, Drusch, & Sabater, 2009). The forward operator was mainly applied in deriving brightness 

temperature for the SMOS mission (De Lannoy et al., 2013 and Parrens, Calvet, de Rosnay, & Decharme, 

2014). The model is a hybrid version of the L-MEB and LSMEM and it consists of four components that 

compute surface brightness temperature for soil, vegetation brightness temperature, snow modifications 

and atmosphere brightness temperature (De Rosnay et al., 2009). The CMEM modular model combines 

different parameterisations that compute surface and atmospheric emissions. These are the soil dielectric 

mixing model, effective temperature model, soil roughness model, smooth surface emissivity model, 

vegetation opacity model and the atmospheric radiative transfer model (De Rosnay et al., 2009).    

2.1. CMEM Physics 

The methodology employed for CMEM modelling is described by (De Rosnay, Drusch, & Sabater, 2009) 

in the ESA contract report (De Rosnay et al., 2009). The CMEM modular includes the physics and 

parameterizations that are used in the LSMEM (Drusch et al. 2001) and the L-MEB (Wigneron et al. 2007). 

The basis of the theory in CMEM is a simplified solution of the vector radiative transfer equation (Kerr & 

Njoku 1990 and Drusch & Crewell 2005). Brightness temperature in areas with no snow at TOA TBtoa,p, 

where p is stands for the polarisation, is expressed as shown in the equation 2-1 and 2-2 below 

 𝑇𝐵𝑡𝑜𝑎,𝑝 = 𝑇𝐵𝑎𝑢,𝑝 + 𝑒𝑥𝑝(−𝜏𝑎𝑡𝑚,𝑝)𝑇𝐵𝑡𝑜𝑣,𝑝 2-1 

 
𝑇𝐵𝑡𝑜𝑣,𝑝 = 𝑇𝐵𝑠𝑜𝑖𝑙,𝑝 𝑒𝑥𝑝(−𝜏𝑣𝑒𝑔,𝑝) + 𝑇𝐵𝑣𝑒𝑔,𝑝[1 + 𝑟𝑟,𝑝 𝑒𝑥𝑝(−𝜏𝑣𝑒𝑔,𝑝)]

+ 𝑇𝐵𝑎𝑑,𝑝𝑟𝑟,𝑝 𝑒𝑥𝑝(−2. 𝜏𝑣𝑒𝑔,𝑝) 
2-2 

 

Where 

TBau,p = Upwelling atmospheric emission. 

τatm,p = Atmospheric optical depth. 

TBtov,p = Top of vegetation brightness temperature with vegetation as a single-

scattering layer above a rough surface.  

TBsoil,p, = Soil layer contribution. 

TBveg,p, = Vegetation layer contribution. 

TBad,p = Downward atmospheric contributions. 

rr,p = Soil reflectivity of the rough surface (1-er,p). 

τveg,p = Vegetation optical depth along the viewing path. 

The CMEM model consists of four modules that calculate contributions from soil, vegetation, snow and 

the atmosphere. This study assumes that there was no snow cover between during the period of study from 

2015-04-01 to 2015-07-01. Hence only three modules are considered in the modelling process. The code is 

segmented to compute each microwave modelling component by offering a choice of several 

parameterizations. Table 1 is a summary of the segmented structure of the model with a list of the options 

that can be executed (De Rosnay et al., 2009).  
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Table 1: Modules of CMEM and the different Parameterisations 

Module Variable Parameterisation 

Soil 𝜀 Wang & Schmugge (1980) Dobson et al. (1985) Mironov et al. (2004) 

𝑇𝑒𝑓𝑓  Choudhury et al. (1982) Holmes et al. (2006) Wigneron et al. (2001) and Lv 

Scheme 

𝑒𝑠,𝑝 Fresnel law and Wilheit (1978) 

𝑒𝑟,𝑝 Choudhury et al. (1979) Wigneron et al. (2001) SMOS ATBD (2007) 

Wegmuller & Matzler(1999) Wigneron et al. (2007)  

Vegetation 𝜏𝑣𝑒𝑔,𝑝 Wegmuller et al. (1995), Wsimple(Wigneron et al. (2007)), Kirdyashev et al. 

(1979)  

Jackson & O’Neill(1990).  

Atmosphere 𝜏𝑎𝑡𝑚,𝑝 Pellarin et al. (2002) Liebe (2004) Ulaby et al. (1986) 

2.1.1. Soil module 

The soil element of CMEM includes four components to compute the soil dielectric constant ε, the effective 

temperature 𝑇𝐵𝑠𝑜𝑖𝑙,𝑝, smooth soil emissivity 𝑒𝑠.𝑝 and rough soil emissivity 𝑒𝑟.𝑝. Based on the Rayleigh-Jeans 

approximation for the microwave domain the soil brightness temperature is expressed as a product of soil 

emissivity 𝑒𝑟.𝑝 and effective temperature (De Rosnay et al., 2009). 

 𝑇𝐵𝑠𝑜𝑖𝑙,𝑝 = 𝑇𝑒𝑓𝑓 . 𝑒𝑟.𝑝 2-3 

2.1.2. Effective temperature 

The main surface variable that should be accounted during retrieval and modelling of soil moisture in L-

Band frequencies is the effective temperature (𝑇𝑒𝑓𝑓). Effective temperature schemes play a major role in 

determining the brightness temperature in forward modelling. At L-Band frequencies, soil temperature 

varies with sensing depth and is different from the temperature of the vegetation. 𝑇𝑒𝑓𝑓 Schemes work on 

the assumption that both soil moisture and soil temperature should be homogeneous in the first layer and 

in the deeper layer(LV et al, 2014). 

The Wilheit model (1978) estimates effective temperature using a weighting function on all soil layers. The 

disadvantage with the Wilheit model is that it is computationally costly (Wilheit, 1978). To reduce this cost, 

effective temperature can be parameterized based on surface layer temperature at 5cm and deep layered soil 

temperatures at 50cm, 80cm or even 2m (De Rosnay et al., 2009; Holmes, 2006; Njoku & Entekhabi, 1996).   

 𝑇𝑒𝑓𝑓 = 𝑇𝑑𝑒𝑒𝑝 + 𝐶(𝑇𝑠𝑢𝑟𝑓 − 𝑇𝑑𝑒𝑒𝑝) 2-4 

The 𝐶  parameter is correlated to temperature sensing depth and different authors have used different 

approaches to calibrate the 𝐶  parameter. The Choudhury scheme is not soil dependent and hence it 

considers the soil moisture as a single layer based on the soil temperature (De Rosnay et al., 2008). The 

homogenous approach of Choudhury scheme in estimating effective temperature tends to lead to a high 
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estimation of effective temperature, which results in underestimation of brightness temperature. Hence, 

Choudhury assumes a Constant 𝐶 parameter for frequencies 0.6-10 GHz (Choudhury et al., 1982). The 

Wigneron effective temperature scheme is an adaptation of the Choudhury model to account for soil 

moisture influence on the effective temperature. Thus, Wigneron calibrates a moisture dependent 𝐶 

parameter for frequencies of 1.4 GHz (Wigneron et al., 2001).  The Holmes scheme is based on the use of 

the Wang dielectric constant to model soil moisture dependence on sensing depth. The Wang dielectric 

model employs the concept of non-linear variation between sensing depth and soil moisture ( De Rosnay et 

al., 2008). This implies that the Holmes scheme assumes a dielectric constant dependent 𝐶 parameter for 

frequencies of 1.4 GHz (Holmes et al., 2006).  

Lv's scheme is capable of providing 𝑇𝑒𝑓𝑓  with a physical base. The two layered scheme discrete procedure 

has a clear physical implication, which allows for all measurements made in the soil column to be unified in 

order to attain a more accurate 𝑇𝑒𝑓𝑓, without disturbing the original part concerning the top soil layer, and 

only adapting the weights for the residual errors linked to deeper soil layers. An accurate 𝑇𝑒𝑓𝑓 could be 

computed from observations of each layer (Lv et al., 2014). 

The Lv’s scheme computes effective temperature as shown by equation 2-5. 

 Teff=T1(1-e-B1)+T2eB1 2-5 

Where 𝐵1 = 𝛼1𝑥1 B1  

In this context, 𝑥 is the vertical distance (depth) where physical temperature is measured and 𝛼1𝑥1 is an 

attenuation coefficient determined by dielectric constant 𝜀 and wavelength λ. The detailed form of α(x) is 

described by (Wilheit, 1978). The C parameter from Choudhury et al., 1982, can be described as shown 

below in the Lv Scheme (Lv et al., 2014).  

 𝑐 = 1 − 𝑒−𝐵1 = 1 − 𝑒𝑥𝑝 (−∆𝑥.
4𝜋

𝜆
.

𝜀"

2√𝜀′
) 2-6 

2.1.3. Soil roughness 

The semi-empirical approach proposed by Wang and Choudhry, (1981) to represent soil roughness effects 

on the microwave emission computes rough emissivity as a function of smooth emissivity and three other 

parameters Q, h, N: 

 𝑟𝑟,𝑝 = [𝑄𝑟𝑠,𝑝 + (1 − 𝑄)𝑟𝑠,𝑞]𝑒𝑥𝑝 (−ℎ𝑐𝑜𝑠𝑁𝜑) 2-7 

In this context, p and q represents the polarization states, Q is the polarization mixing factor, N  designates 

the angular dependency, h is roughness parameter, and ψ is defined as the incidence angle. Wigneron et al. 

2007 and Njoku, Jackson, Lakshmi, Chan, & Nghiem, 2003 consider the mixing factor Q as being very low 

at low frequencies and is generally set to 0 (De Rosnay et al., 2009). 

For the roughness parameter h, a number of parameterizations exist. They are based on  

(i) Wavenumber, empirical coefficients, and the rms surface height σ (Choudhury, Schmugge, 

Chang, & Newton, 1979 and Wegmüller & Matzler, 1999)  

(ii) Empirical coefficients, correlation length, wavenumber, the rms surface height, and (Wigneron, 

Laguerre, & Kerr, 2001) 
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(iii) Soil moisture and soil texture or  

(iv) Soil moisture and vegetation type (Wigneron et al. 2007). 

2.1.4. Vegetation module 

In CMEM, vegetation is calculated by the τ − ω approaches where the vegetation layer has a clear influence 

to the TOA signal and reduces the emission from the underlying soil (Schmugge, O’Neill, & Wang, 1986). 

 𝑇𝐵𝑣𝑒𝑔,𝑝 = 𝑇𝑐(1 − 𝜔𝑝)[1 − 𝑒𝑥𝑝 (−𝜏𝑣𝑒𝑔,𝑝) 2-8 

Tc is the canopy temperature 

ωp is the single scattering albedo at polarization p. 

With equation 2-8, Jackson & Schmugge, (1991) propose a simple parameterization to compute the 

vegetation optical thickness as shown in equation 2-9.  

 𝑇𝐵𝑣𝑒𝑔,𝑝 = 𝑏
𝑉𝑊𝐶

𝑐𝑜𝑠𝜑
 2-9 

From equation 2-9, b and VWC is the vegetation layer parameter and the vegetation water content, 

respectively. The single scattering albedo is presumed static at ω = 0.05 for low vegetation types (grass and 

crops) and for high vegetation types (forests) (De Rosnay et al., 2009). 

The Wigneron et al. (2007) vegetation optical thickness model also describes the vegetation effect with 

equation 2-9. In their formulation, the single scattering albedo depends on vegetation type and polarization. 

The polarized optical thickness is expressed as shown in equation 2-10 and 2-11.  

 𝑇𝐵𝑣𝑒𝑔,𝑝 = 𝜏𝑛𝑎𝑑𝑖𝑟(𝑐𝑜𝑠2 + 𝑡𝑡𝑝𝑠𝑖𝑛2𝜑)
1

𝑐𝑜𝑠 𝜑
 2-10 

 𝜏𝑛𝑎𝑑𝑖𝑟 = 𝑏′𝐿𝐴𝐼 + 𝑏′′ 2-11 

 𝜏𝑛𝑎𝑑𝑖𝑟 = 𝑏′′′ 2-12 

Equation 2-10 is for high vegetation. Here, ttp parameters characterise the angular consequence on 

vegetation optical thickness for each vector of polarisation and vegetation categories (at nadir, ttp has no 

effect on the simulations). The vegetation layer parameters b′, b″, and b′′′ and the single scattering albedo are 

acquired based on lookup tables in several databases (Wigneron et al. 2007). 

The Kirdyashev et al. (1979) parameterization computes optical thickness of the vegetation as a part of the 

wavenumber k (between 1 and 7.5GHz), the dielectric constant of saline water, ϵSW″ (imaginary part), VWC, 

incidence angle ψ, water density ρwater, and a vegetation structure parameter ageo: 

 𝑇𝑣𝑒𝑔,𝑝 = 𝑎𝑔𝑐𝑜𝑘
𝑉𝑊𝐶

𝜌𝑤𝑎𝑡𝑒𝑟

𝜖𝑆𝑊
𝑛

1

𝑐𝑜𝑠𝜑
 2-13 

The assumption made in equation 2-13 is that the single scattering albedo is constant at ω = 0.05. TBtov, p is 

computed for each model grid box, while accounting for the sub grid-scale variability of the land surface. 

CMEM grid box can account up to seven-grid box at a single moment: bare soil, low vegetation, high 

vegetation and open water as shown in Table 10 in Appendix D. In order to compute the vegetation tiles, 

the dominant vegetation class is acquired from an ancillary land-use classification dataset (De Rosnay et al., 

2009). 
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3. MODELLING, UPSCALING AND COMPARISON OF  

BRIGHTNESS TEMPERATURE 

3.1. Methodology 

Soil moisture and soil temperature in-situ measurements for the period 2015-4-01 to 2015-07-12 are 

modelled for eight stations in the network. The data used is from station CST03, CST05, NST01, NST03, 

NST06, NST07, NST08, and NST09.  The process employed by this study in attaining the set objectives is 

shown in Figure 3.  
 

 

Figure 3: Flowchart of the methodology employed in the study 

The input datasets as described in 3.1.1 below are prepared for CMEM model runs. The CMEM platform 

is coded in Fortran 90 and with three different options for file inputs. This include different forcing inputs 

and output file templates. The forcing files can be used as either Grib, ASCII or Netcdf files. Grib files 

provide the advantage of gridded data from various NWP, which provide gridded data. The ASCII option 

has the advantage of handling inputs from field measurements and less computing energy due to single pixel 

estimation. The ASCII option was chosen for this study because of the need to calculate outputs at pixel 

level and at the same time to input field retrieved soil texture, soil moisture and soil temperature 

measurements.  

In order to successfully decode and run the model, the Linux environment has to be created that provides 

ease of manipulation of different subroutines using the command terminal. Several packages that support 

the model configuration were installed to enable the required Linux environment for the decoding and 

manipulation of the model and the different subroutine. The Fortran 90/95 compiler was installed and in 

Ubuntu, gfortran from the software centre was used. Ubuntu has a c compiler, gcc and a C++ compiler 

g++, which are easily installed. The CMEM is then run by compiling the model with all the input files using 

the ‘Make’ to update the makefile and then using ‘./CMEM’ to run the whole module.  



EVALUATION OF L-BAND BRIGHTNESS TEMPERATURE PRODUCTS USING CMEM MODELLED IN-SITU OBSERVATIONS AND SMAP 

BRIGHTNESS TEMPERATURE 

 

12 

This research employs the default CMEM parameterisation from ECMWF the default dielectric 

parameterisation is the Wang & Schmugge (1980). Fresnel law theory is used to calculate the smooth surface 

emissivity while the Wsimple model parameterises soil roughness option Wigneron (2007) method is applied 

for vegetation opacity option and the Pellarin parameterisation is used for the atmospheric option. Because 

the objective of this study is to study the different effective temperature parameterisations, Choudhry, 

Wigneron, Lv and Holmes schemes are used with data from the eight soil stations in the Maqu network.  

The three outputs from the CMEM model, Effective Temperature (TEFF), Brightness temperature in 

horizontal polarisation (CMEM TBH) and Brightness temperature in the vertical polarisation (CMEM TBV) 

are then upscaled by use of the two methods described in 3.2 below. The upscaled products from the CMEM 

are then compared to the SMAP Brightness temperature in horizontal polarisation (SMAP TBH) and 

Brightness temperature in the vertical polarisation (SMAP TBV).  

3.1.1. Input Data  

To simulate CMEM brightness temperatures, a time series of soil moisture and soil temperature at different 

depths is required. The datasets used for this study from the Maqu network are for the period between 1st 

April 2015 and 1st July 2015 at 6.00am every day. This is to coincide with the SMAP satellite overpass times. 

Table 2 shows datasets and their sources. 

Table 2: Data sets from loggers and other sources for describing CMEM physics 

CMEM Modelling DATA Requirements 

Soil Moisture layer 5, 10, 20, 40, 80 From Maqu SMST network 

Soil Temperature  layer 5, 10, 20, 40, 80 From Maqu SMST network 

Air temperature at 2m From ERA-Interim Reanalysis data 

Surface Skin temperature From ERA-Interim Reanalysis data 

 

3.1.2. Soil moisture and Soil temperature 

All the 19 stations in the Maqu network have been fitted with ECT soil moisture probes at different depths. 

The physical mounting depths of soil moisture/soil temperature probes for each stations are shown in Table 

9. This study uses only data from eight stations because available data for the 2015 period was from eleven 

stations. Three of the 11 stations had missing datasets which after screening, it was clear they would have a 

big error on the combined model output. The postulation from the screening of the data was that either the 

three stations had broken sensors or the functionality of the sensors was compromised.  

An example of the SM/ST measurements in the CST03 is shown in Figure 4 and Figure 5. CST03 has soil 

moisture and soil temperature probes fitted at 5cm, 10cm, 20cm, 40cm, and 80cm depths. In figure 5, the 

soil moisture at depth 5 cm generally shows more variability compared to the other layers. The 

measurements at depth 40cm are less variable while measurements at depth 10 and 20 and 80 have less 

change over time during the study period.  
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Figure 4: In-situ soil moisture measurements at different soil depths 

Figure 5 shows the soil temperature measurements at different depths in CST03. The measurements of soil 

temperature at depth 5cm, 10cm, and 20cm show more variability with time compared to measurements at 

depth 40cm and 80cm. Based on the in-situ measurements it can be proposed that soil temperature 

measurements capture variability at different depths more accurately compared to soil moisture 

measurements.  

 

Figure 5: Averaged in-situ Soil temperature measurements 

3.1.3. Skin and Air temperature at 2 meter surface height 

Air temperature at 2meters and Surface skin temperature of the network are used in the model structure as 

proxy datasets for the model to be able to compute soil temperatures. Lack of in-situ measurement data is 

overcome by use of online database sources. ERA-Interim reanalysis data is used as model forcing for 

Surface skin temperature and Air temperature at 2 meters. Figure 6 shows the time series plots of the air 

temperature at 2meters and Skin temperature of the Maqu network during the study period 2015-04-01 to 

2015-07-01.  ERA-Interim reanalysis data is an hourly product and for this study, measurements at 6.00am 

are taken to coincide with the in-situ soil moisture and soil temperature measurements at 6.00am for the 

modelling process. The SMAP L1C_TB products used are for 6.00am and by ensuring that the model 

forcing is correct, the matchup between the two will reduce errors.  
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Figure 6: ERA interim Reanalysis and Merra model data used for the period of study 

3.1.4. Vertical Discretization of the land Surface model in CMEM 

The LSM vertical resolution for soil moisture and soil temperature measurements is an important factor in 

ensuring that the model runs as per the requirements. The specific depths for the ECT probes are 5cm, 

10cm, 20cm, 40cm and 80 cm. These depths define the number of layers that the model will take. Some 

stations have data for all the five layers while others have four, three, two, and one layer datasets. For each 

specific layer, an LSM vertical resolution is defined based on the number of layers. Table 3 below shows the 

adopted LSM vertical resolution which has to be defined in the model structure. 

Table 3: Adopted vertical discretization for the different soil layers 

Layer Depth LSM Vertical resolution 

0-5cm 0.025 

5-10cm 0.075 

10-20cm 0.15 

20-40cm 0.30 

40-80cm 0.60 

3.1.5. Vegetation Effect 

The model uses different parameterization in modelling the vegetation effect on the emissions from the soil 

and water layer. This determines the type of data that is required to compute the vegetation effect. In the 

setup used, the ECOCLIMAP-ECMWF vegetation classification as shown in Table 10 is used. A value for 

the low vegetation and high vegetation is used to model the vegetation effect. Based on this, the Maqu 

network is classified as having low vegetation C3 grasslands. 

3.1.6. Soil and Sand  

An important dataset for the model to work is the soil conditions, which is defined by the soil texture data. 

In this case based on field experiments carried out by Zheng, (2015), an average of the sand and clay 

percentages is used. Sand and Clay percentages for each station are provided as inputs with the specific 

geopotential height at surface. Table 4 below shows the sand and clay percentages of sample stations based 

on Zheng, (2015).  
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Table 4: Soil characteristics of four stations in the Maqu network 

Site Depth Sand Clay Texture 

CST01 5-15 34.78 9.38 Silt Loam 

20-40a 39.49 9.01 Silt Loam 

20-40b 65.56 5.45 Sandy Loam 

55-70 57.92 6.65 Sandy Loam 

NST01 5-15 36.07 7.42 Silt Loam 

20-40 52.33 6.65 Sandy Loam 

55-70 61.24 5.92 Sandy Loam 

NST04 5-15 36.57 7.10 Organic Soil 

20-40 27.29 8.94 Organic Soil 

55-70 18.24 9.42 Silt Loam 

NST11 5-15 18.56 9.01 Organic Soil 

20-40 30.17 11.01 Silt Loam 

55-70a 29.16 11.22 Silt Loam 

55-70b 48.05 6.01 Sandy Loam 

 

3.2. Upscaling of Point Brightness Temperature to Field Scale and Satellite Pixel Level  

The model outputs for the period 2015-04-01 to 2015-07-01 are used to compute the network TBH and 

TBV to provide a single pixel value to represents the Maqu network. Two methods are proposed in this 

study. The first method involves an average of all the eight station where a summation of all the station is 

divided by the number of stations. This is shown by the equation 3-1 below. 

 𝑇𝐵𝐴 =
1

𝑛
× ∑ 𝑇𝐵𝑖

𝑛

𝑖=1

 3-1 

Where, 𝑇𝐵𝐴 is the average brightness temperature, 𝑇𝐵𝑖 is the brightness temperature of an individual station 

and 𝑛 is the number of stations.  

The second method is the Lv weight functions, which considers the weights of each station (Lv, Zeng, 

WEN, ZHENG, & SU, 2016)to provide a field scale TBH and TBV respectively. The weight functions for 

each station are shown in Table 2 (Appendix C). The method infers that to estimate 𝑇𝑒𝑓𝑓  with utmost 

accuracy, the physical mounting depth of the SMST probes should be designed to have minimal residual 

effect as possible (e.g. the emission from the rest of soil layer can be neglected). Implementation of the 

weight functions is shown in the equation 3-2. 

 𝑇𝐵𝐴 =
1

∑ 𝑊𝑖
𝑛
𝑖=1

× ∑(𝑊𝑖 × 𝑇𝐵𝑖)

𝑛

𝑖=1

 3-2 

Where 𝑇𝐵𝐴 is the new spatial average Brightness temperature, 𝑊 is the weight of each station (calculated 

by using Lv’s scheme to determine the residual effect), TB is the calculated brightness temperature for each 

station and n is the number of stations. A single value of the TB representing the whole network is calculated 

based on these weights.  

The description of weight functions as proposed by (Lv et al., 2016) is further described in Appendix C to 

show the theory and calculation of each stations weight function.  
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3.3. SMAP L1C Brightness Temperature  

The SMAP satellite sensor is placed in a sun-synchronous 6:00 am to 6:00 pm orbit based on scientific 

concerns pertinent for the L2_SM_P product. The SMAP sensor radiometry physics are described in the 

ATBD handbook. The main sources of error that the SMAP scientific development team predict are the 

Faraday rotation, atmospheric effects, and low-level RFI effects.  At L-Band frequencies, the atmosphere is 

fundamentally transparent, with the atmospheric transmissivity τatm ≈ 1. The cosmic background (Tsky) is 

approximately 2.7 K. The emissions from the atmosphere are very small. SMAP L1B_TB accounts for this 

atmospheric contributions (McNairn et al., 2015; Neill et al., 2012a; Panciera, Walker, Jackson, Gray, Tanase, 

Ryu, Monerris, Yardley, Rüdiger, et al., 2014).  

Faraday rotation occurs when the polarization direction of an electromagnetic wave revolves as the wave 

propagates through the ionosphere in presence of the Earth's static magnetic field. This increases the 

polarisation as a square of wavelength. If uncorrected, the SMAP polarized (H and V) radiometer 

measurements will contain errors that translate to soil moisture error. Faraday rotation varies greatly during 

the day, reaching a maximum during the afternoon and a minimum in the pre-dawn hours. By using TB 

observations acquired near 6:00 am local solar time as the primary input to the L2_SM_P product, the 

adverse impacts of Faraday rotation are minimized. Faraday rotation correction to SMAP TB is described 

in the L1B_TB ATBD. At 6:00 am, the vertical profiles of soil temperature and soil dielectric properties are 

likely to be uniform than at other times of the day. This early morning condition will minimize the difference 

between canopy and soil temperatures and thermal differences between land cover types within a pixel. 

These factors help to minimize retrieval errors originating from the use of a single effective temperature to 

represent the near surface soil and canopy temperatures. This same effective temperature can be used as the 

open water temperature in the water body correction to TB (Yueh, 2015). 

SMAP L1C brightness temperature products were downloaded from NSIDC DAAC FTP site as shown in 

Table 5 below. The datasets provide daily brightness temperature products at different hours. The SMAP 

L1C brightness temperature files per each measurement instance are contained in HDF5 files which includes 

different datasets in EASE2 grid. The datasets that are included in the SMAP LIC Brightness temperature 

file include, cell brightness temperature in the fore and aft looking angles of the satellites for both H, V, 3rd 

and 4th stokes parameter. This are the most important datasets for the evaluation of the brightness 

temperature products. Other datasets for each individual HDF5 file include the brightness temperature 

errors in aft and fore looking H, V, 3rd and 4th stokes parameters. This datasets are important because they 

will represent the threshold of the errors from the products.  

The HDF5 files were visualized using HDFview from HDF group. In order to read the datasets in each 

LIC file, a matlab code to read hdf5 SDS was developed to retrieve brightness temperature values for the 

SMAP TBH and TBV for the period of study. Table 9 shows the corresponding SMAP satellite overpass 

time in Maqu during the study period. The Table indicates that the number of Satellite Overpass in the 

area during the study period was 37.  

The SMAP L1C_TB product is calibrated geolocated and time-ordered L1B_TB brightness temperatures 

and resampled to the global fixed 36-km EASE2 grid. The L1B_TB data also undergoes correction for 

Faraday rotation, atmospheric effects, and low-level RFI effects before the process of re-gridding is done. 

Based on the SMAP ATBD in case of a large RFI for correction, the TB data is flagged accordingly and no 

soil moisture retrieval is tried. 
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4. RESULTS  

4.1.1. Upscaling of point station data to pixel data 

The modelled outputs of the eight stations chosen for the study are upscaled to a single field value to match 

the SMAP pixel value. Two methods are used for the upscaling method as described in section 3.2. Figure 

7 shows the results of the upscaling process for point station effective temperature and the Weight function 

upscaling effective temperature.  

  

 

Figure 7: Modelled point station Teff and Weighted Teff 

Table 6 below shows the linear norm of residuals when individual stations are compared with the upscaled 

product using the weight functions and simple upscaling as references. The Lv scheme Effective 

temperature is used to illustrate the contribution of each station to the overall error budget when it comes 

to upscaling.  

Table 5: Stations error contribution 

STATION Name Norm of residuals (K) 

(Weight functions 

upscaling) 

Norm of Residuals (K) 

(Simple average 

upscaling) 

Percentage error 

contribution (%) 

CST03 11.3892 12.4467 9.414675508 

CST05 5.4755 6.1173 4.627121606 

NST01 10.1321 10.9908 8.313433728 

NST03 6.1201 6.8768 5.201606895 

NST06 16.9262 17.2008 13.01067355 

NST07 18.3875 18.6059 14.07349025 

NST08 44.1284 44.1156 33.36901017 

NST09 15.0859 15.8514 11.9899883 

The results above shows that NST08 has a large error contribution compared to the rest of the station when 

both the simple average and weight functions are used as references with station modelled effective 

temperature output. CST05 has the least error residual when matched with the simple average and weight 

function product. NST08 has an error contribution of about 33.3% while CST05 only contributes 4.6% to 
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the total error budget. Hence, for the eight stations shown above, CST05 dataset is more representative of 

the field while NST08 dataset has a poor representation at a field scale. To generate new weights, CST05 

will be given a higher weight function value while NST08 will be given the least weight function to reduce 

the error due to this station.  

4.1.2. Comparison of different Effective Temperature schemes  

The four main effective temperature schemes used to parameterize effective temperature are the 

Choudhury, Wigneron, Holmes and Lv scheme. The parameterization of the effective temperature by each 

scheme is described in the methodology (Figure 3). The different schemes are compared after upscaling the 

modelled outputs from individual stations. The comparison is done for the simple average and the weight 

functions upscaling method.  

 

Figure 8: Effective Temperature schemes simulations using simple average upscaling 

 

Figure 9: Effective Temperature schemes simulations using weight functions upscaling 

The different effective temperature schemes provide different values of modelled effective temperature. 

Figure 8 shows the results of the four different effective schemes after simple average upscaling of all the 

stations. The Choudhury scheme produces a higher effective temperature while the Lv scheme produces 

lower effective temperature values. Holmes and Wigneron result in matches, which have a near perfect 

shape. The time series above shows that Holmes and Wigneron schemes have a higher simulation compared 

with Lv scheme.  The consistency of the simulations is same for all the two methods of upscaling as shown 

in Figure 8 and Figure 9.   
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Figure 10: Comparison of simple upscaling versus Lv Weight functions upscaling 

The weighted functions upscaling method is derived from the Lv scheme for effective temperature 

parameterization. Comparing the weighted function method to the simple average method on the Lv 

parameterized effective temperature, the simple average method results in slightly higher effective 

temperature compared to the weighted function. Figure 10 above shows the comparison between the two 

upscaling methods when applied on the Lv modelled Effective temperature scheme.  

4.1.3. Modelled TBH and TBV outputs based on the different effective temperature schemes 

The effect of different effective temperature schemes can be clearly seen in the Brightness temperature 

outputs. The modelled brightness temperature based on the different effective temperature schemes and 

upscaled using the Lv derived weight functions is shown in Figure 11 and Figure 12 for H and V polarization 

for respectively. The Lv scheme results in higher modelled outputs in both the H and V polarization 

compared to the other schemes. Wigneron, Choudhury and Holmes result in brightness temperatures in H 

and V polarisations, which are far low, compared to the Lv scheme.  

 

Figure 11: Effective Temperature schemes TBH outputs using weighted function upscaling 
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Figure 12: Effective Temperature schemes TBV outputs using Lv Weight functions upscaling 

The weight functions and Simple averaged H and V are compared in Figure 13 below for the Lv scheme. 

Based on this comparison, it is clear that simple average upscaling results in higher brightness temperature 

for both the H and V polarisations.  The weighted functions upscaling provides a lower modelled estimate 

of the brightness temperature in both H and V compared to the simple average upscaling of the stations.  

 

Figure 13: Lv scheme TBH using different upscaling approaches 

4.2. Matchup between CMEM and SMAP Brightness Temperature 

The SMAP TBV and TBH pixels are averaged to provide a single pixel value which are then compared to 

the averaged modelled output. For the period between 2015-4-1 to 2015-7-1, the SMAP satellite had 37 

overpass over the Maqu network. The comparison is done between the 37 instances when the satellite passes 

over the network. The assumption for this study is that the satellite overpass is at 6am in the morning when 

the satellite is in the ascending and descending orbit.  

Figure 14 and Figure 15 show the relationship between modelled brightness temperatures in horizontal 

polarisation based on the different effective temperature scheme. The comparison is done for the two 

methods of upscaling. In both instances, SMAP TBH is higher compared to the modelled outputs for both 

instances. The Lv scheme has a higher modelled TBH compared to the other effective temperature scheme 

when compared with SMAP TBH for both instances of upscaling methods. The general trend for the period 

of study over the three months shows some correlation but there is less correlation when point-to-point 

comparison is done between SMAP TBH and the modelled outputs for all the instances.  
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Figure 14: SMAP versus simple average modelled TBH  

 

Figure 15: SMAP versus weight function upscaling modelled TBH  

Figure 16 and Figure 17 show the comparison between modelled TBV outputs upscaled by both upscaling 

methods for the different effective temperature schemes with SMAP TBV. Based on these results, there is 

some correlation between SMAP TBV and the general network output. When using the simple average 

upscaling, higher values of output TB are observed in the Lv scheme. However, a combination of the Lv 

scheme and the weighted function shows less over-estimation when compared to SMAP TBV. For the 

comparison between the modelled TBV from the other effective temperature schemes outputs, 

underestimation is clearly seen at the beginning and at the end of the study period when compared to SMAP 

TBV.  

 

 

Figure 16: SMAP versus simple average upscaling modelled TBV  



EVALUATION OF L-BAND BRIGHTNESS TEMPERATURE PRODUCTS USING CMEM MODELLED IN-SITU OBSERVATIONS AND SMAP 

BRIGHTNESS TEMPERATURE 

 

22 

 

Figure 17: SMAP versus weight function upscaling modelled TBV  

Figure 18 is a summary of the Lv scheme weighted function model outputs for TBH and TBV with SMAP 

TBH and TBV. The Lv scheme models brightness temperature, which is nearly as high as the SMAP in the 

V polarisation, while in the H polarisation, the modelled output is less compared to the SMAP output. The 

simple average upscaling has higher modelled outputs compared to the weight functions upscaling when 

compared to the SMAP observations.  

 

 

Figure 18: Lv Scheme TBH and TBV with SMAP using different upscaling approaches  
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5. DISCUSSIONS 

The correlation statistics of the validation of SMAP TB with CMEM weighted TB are shown in the scatter 

plots in Appendix E and F. Table 6 and Table 7  summarises the statistical analysis between the SMAP TB 

products and the CMEM model upscaled TB products.  

Table 6: Statististical analysis of H-polarised modelled versus SMAP TBH 

Brightness 
Temperature 
Horizontal 
Pol 

SMAP Lv Choudhury Wigneron Holmes 

Weight Avg Weight Avg Weight Avg Weight Avg 

Bias(K)   19.33 16.53 23.63 21.62 23.97 22.11 23.98 22.06 

Mean(K) 222.32 200.56 205.79 198.70 200.70 198.35 200.01 198.35 200.26 

Correlation 1.0 0.25 0.25 0.01 0.04 0.02 0.05 0.02 0.06 

RMSE   20.10 17.42 24.52 22.54 24.83 9.24 24.82 22.93 

 

Table 7: Statististical analysis of V-polarised modelled versus SMAP TBV 

Brightness 
Temperature 
Vertical Pol 

SMAP Lv Choudhury Wigneron Holmes 

Weight Avg Weight Avg Weight Avg Weight Avg 

Bias (K)   4.97 2.99 7.18 5.44 7.61 5.97 7.61 5.98 

Mean (K) 240.39 235.43 237.43 233.21 234.95  232.78 234.42  232.78 234.42   

Correlation 1.0 0.27 0.26 0.01 0.04 0.02 0.06 0.03 0.06 

RMSE   6.46 4.99 8.96 7.51 9.24 7.84 9.23 7.61 

 

Table 6 and Table 7 above show that the Lv scheme has a better bias compared to the other scheme in both 

the H and V polarisations when referenced to SMAP satellite observations. This trend is observed for both 

the Simple average and Weight functions upscaling. In both methods, a higher correlation is observed when 

compared to the other methods. The correlation coefficient indicates the similarities in patterns between 

the modelled CMEM output and the SMAP satellite observations. When we consider simple average 

upscaling which shows higher correlation compared to the weight functions upscaling, in the H polarization, 

Lv has a correlation of 0.25 compared to Choudhury (0.04), Wigneron (0.05) and Holmes (0.06).  In the V 

polarization, Lv has a correlation of 0.26 compared to Choudhury (0.04), Wigneron (0.06) and Holmes 

(0.06). The Lv scheme modelled brightness temperature has a better correlation coefficient (R) with the 

SMAP observation in both the H and V polarization.  

It is important to note that in the H polarization, the correlation of the modelled Tb is same when using 

simple average upscaling (0.25) and the weight functions upscaling (0.25) correlation.  However, in the V 
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polarization, a very slight difference in terms of correlations is observed where simple average upscaling 

correlation (0.26) is slightly lower compared to the weight functions upscaling correlation (0.27).  

The RMSE for Lv is also better compared to those of the other schemes.  When the Lv scheme is used the 

RMSE reduces considerably compared to the other scheme. In the H polarization, the RMSE error reduces 

from as high as 24.83 for Wigneron to 20.10K while in the V polarization, it reduces from as high as 9.24K 

to 6.46K. This is an indication that using the Lv scheme is optimal compared to the other schemes on a 

general scale. Applying the simple average upscaling improves the RMSE in both the H and V polarisations 

when compared to the weight function upscaling for Lv scheme and the other effective schemes. 

This RMSE is high and this may be due to several assumptions made in the study.  The Assumption that 

the vegetation in the network is C3 may be the biggest contributing factor to the large error as shown in 

Figure 19. Assuming the vegetation in the network to be C4 grassland improves this errors as shown below. 

This is shown in Figure 20, where C4 grassland increases the modelled brightness temperature to the SMAP 

pixel level in both the H and V polarization.  

 

Figure 19: CST05 comparison with SMAP using the Lv scheme in the described study.  

 

Figure 20: CST05 comparison with SMAP using the Lv scheme in using C4 grassland.  

190

200

210

220

230

240

250

260

0 20 40 60 80 100 120

Lv with C3 grassland

SMAP TBH SMAP TBV TBH(K) TBV(K)

200

210

220

230

240

250

260

0 20 40 60 80 100 120

Lv using C4 grassland

SMAP TBH SMAP TBV TBH(K) TBV(K)



EVALUATION OF L-BAND BRIGHTNESS TEMPERATURE PRODUCTS USING CMEM MODELLED IN-SITU OBSERVATIONS AND SMAP 

BRIGHTNESS TEMPERATURE 

 

25 

The best method for upscaling as shown by the results and discussions above is the use of simple average 

upscaling. However, the differences between weight functions approach and the simple upscaling is very 

minimal for all the different effective temperature schemes. This shows that the use of weight functions to 

upscale point soil data as described by Lv et al 2016, is a viable option.  

In describing the uncertainties in the Maqu network, the Lv scheme is the best option for the 

parameterization of effective temperature when considering the bias, RMSE and correlation with SMAP TB 

products. The Lv effective temperature scheme computes brightness temperature that has a better 

correlation with the SMAP satellite observation when compared to the other schemes can be attributed to 

the concept of approximating the C parameter by utilizing soil moisture, soil temperature from multiple 

layers (Lv et al., 2014). The Lv scheme proves that it can be used to calculate effective temperature for the 

SMAP satellite radiometer.  

The main sources of uncertainties between the CMEM modelled outputs and the SMAP observations may 

be due to the other modules of the CMEM model. Holmes (2006) suggests that vegetation has a huge 

influence on the dynamic range of modelled brightness temperature.  The CMEM setup used in this research 

assumes a static vegetation to parameterise the vegetation opacity model(Schwank et al., 2012). This may 

contribute to the high errors in terms of correlation between CMEM and SMAP observation.  The model 

setup uses the ECOCLIMAP-ECMWF derived inputs. TESSEL and HTESSEL are two options that can 

be used to show the sensitivity of CMEM to vegetation effects. According to Holmes (2006), vegetation 

data is a main source of this uncertainty because of the assumption by CMEM that the vegetation is static 

and not dynamic.  By improving the accuracy of the vegetation layer, it is possible to reduce the systematic 

errors in the CMEM comparisons with satellite observations.  

Drusch (2007) suggests that combination of different data sets in an advanced investigation scheme is a 

challenge due to the little knowledge on the spatial and temporal unpredictability of systematic and random 

errors in both satellite observations and the model. In this study, it is important to note that the SMAP 

satellite has been operational for less than one year and science are still working on calibrating and validating 

the satellite observation. While the SMAP L1C algorithm shows how random errors in the observations can 

be reduced, errors due to Faraday rotation and RFI contamination can be an issue. The Tibetan plateau is 

notorious for RFI contamination as shown by several studies such as (Zeng et al., 2015), Mitigation of RFI 

contamination in the Tibetan plateau has been proposed by (Zeng et al., 2015, Su et al., 2011and Njoku et 

al., 2003). Figure 21 shows the areas that have high RFI contamination based on the SMOS product. The 

Tibetan plateau is one of the area and for recent SMOS evaluation; the threshold set has resulted in lack of 

TB observations in the region. 

The SMAP satellite employs dynamic surface temperature data from GMAO GEOS-5 model as part of the 

functional processing of the SMAP passive soil moisture product (West, 2014).  GMAO baseline 

computation of brightness temperature exploits the average surface temperature and the GMAO layer 1 soil 

temperature at 10 cm. This designates a homogenous soil temperature profile between the surface and the 

deepest sensing depth. This assumption cannot hold for arid and semi-arid areas or areas with high seasonal 

variability like the Tibetan Plateau (Yueh, 2015). A more sophisticated method has to be applied in order to 

handle the soil profiles with non-uniform temperatures.  In order to address this problem, the Lv scheme is 

the most effective considering the two-layer approach, which estimates effective temperature based on soil 

moisture, soil temperature, sensing depth and wavelength of the sensor (Yueh, 2015).  
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Figure 21: Latest RFI contminated areas  map from SMOS 
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6. CONCLUSION AND RECOMMENDATIONS 

The Tibetan plateau is a unique hydroclimate that influences land atmosphere interactions on the Asian 

subcontinent. This is because of the high elevation (about 4000m.a.s.l) of the area and its characterisation 

by the South Asian Monsoon. Identifying brightness temperature and related uncertainties in the region 

provides a deeper understanding of the land surface interactions in the region. Modelling in-situ 

measurements and comparing them with radiometer observations on board satellites such as the SMAP and 

SMOS missions, allows us to understand and quantify the sources of uncertainties in this region.  

This study has shown that  

 Using Soil moisture and soil temperature in-situ measurements from the Maqu SMST network, 

makes it possible to model brightness temperature through different parameterisations in the 

CMEM model. The CMEM model simulations need soil moisture and soil temperature together 

with other ancillary data such as leaf area index, skin temperature, air temperature at 2 metres and 

soil texture information.  

 Effective temperature schemes are important in parameterisation of modelling brightness 

temperature. The two-layer approach used in the Lv scheme makes it a more effective scheme in 

ensuring that contributions by the deepest layers are included in the modelling of brightness 

temperature. The ability of the Lv scheme to model brightness temperature that shows a higher 

correlation with the SMAP brightness temperature outputs in the Maqu network proves that while 

the instrument only snaps the moisture content of the top soil layer, this contribution is based on 

the all contributions from the deepest layers of  the soil storage layer.  

 The simple average upscaling has less residuals when compared to the weight functions as proposed 

by Lv. The upscaling analysis also shows that NST08 (33.3%) has a larger contribution of errors to 

the field value while CST05 (4.6%) is more representative of the network average and can be used 

to represent the field average.  

 In the H polarization, the RMSE error reduces from as high as 24.83 for Wigneron to 20.10K for 

Lv scheme while in the V polarization, from as high as 9.24K for Wigneron to 6.46K for Lv scheme. 

Applying the simple average upscaling improves the RMSE in both the H and V polarisations when 

compared to the weight function upscaling for Lv scheme and the other effective schemes. The 

error in the H polarization is high and it can be associated with the assumption of the study area 

having C3 grassland instead of C4 grassland. Vegetation has a higher effect on the emission of this 

layers.  

 LV effective temperature scheme computes brightness temperature that has a better correlation 

with the SMAP satellite observation when compared to the other schemes. In the H polarisation, 

Lv has a correlation coefficient of 0.25 compared to Choudhury (0.04), Wigneron (0.05) and 

Holmes (0.06).  In the V polarization, Lv has a correlation of 0.26 compared to Choudhury (0.04), 

Wigneron (0.06) and Holmes (0.06).   

This research recommends that further studies be carried using the Lv scheme with different 

parameterisations for the other different modules of the CMEM. This will help understand the sources of 

errors in CMEM modelling when compared to SMAP.  The installation of an ELBARA sensor at the 

network is important in helping calibrate and validate satellite brightness temperature for this region.  A 
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study that will consider the   outputs of the ELBARA radiometer will help in quantification of uncertainties 

associated with brightness temperature in the network. 
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APPENDICES 

Appendix A: Maqu network station characteristics  

Table 8: Maqu network station information (Su et al., 2011) 

Station 
name(Sensor 
ID) 

Lat/Lon Elevation 
(m) 

Depth of 
Sensor below 
surface 

TPG LC BD(𝑘𝑔 𝑚−3

) 

STX 

CST_1 33053′
/102008′ 

3431 5,10,20,40,80 River 
Valley 

Grass  NA NA 

CST_2 33040′
/102008′ 

3449 5,10,20,40,80 River 
Valley 

Grass  NA NA 

CST_3 33054′
/101058 

3507 5,10,20,40,80 Hill 
valley 

Grass  NA NA 

CST_4 33046′
/101043′ 

3504 5,10,20,40,80 Hill 
valley 

Wetland 
grass 

NA NA 

CST_5 33040′
/101053′ 

3542 5,10,20,40,80 Hill 
valley 

Grass NA NA 

NST_1 33053′
/102008′ 

3431 5,10,20,40,80 River 
Valley 

Grass  0.96 Silt 
loam 

NST_2 33053′
/102008′ 

3434 5,10 River 
Valley 

Grass  0.81 Silt 
loam 

NST_3 33046′
/102008′ 

3513 5,10  Hill 
slope 

Grass  0.63 Silt 
loam 

NST_4 33037′
/102003′ 

3448 5,10 River 
Valley 

Grass 0.26 Silt 
loam 

NST_5 33038′
/102003′ 

3476 5,10,20,40 Hill 
slope 

Grass 0.75 Silt 
loam 

NST_6 34000′
/102016′ 

3428 5,10,20,40 River 
Valley 

Grass 0.81 Silt 
loam 

NST_7 33059′
/102021′ 

3430 5,10 River 
Valley 

Grass 0.58 Silt 
loam 

NST_8 33058′
/102036′ 

3473 5,10 Valley  Grass 1.06 Silt 
loam 

NST_9 33054′
/102033′ 

3434 5,10 River 
Valley 

Grass 0.91 Sandy 
loam 

NST_10 33051′
/102034′ 

3512 5,10,20,40 Hill 
slope 

Grass 1.05 Loam-
Silt 
loam 

NST_11 33041′
/102028′ 

3442 5,10 River 
Valley 

Wetland 
grass 

0.24 Silt 
loam 

NST_12 33037′
/102028′ 

3441 5,10,20,40,80 River 
Valley 

Grass 1.02 Silt 
loam 

NST_13 34001′
/101056′ 

3519 5,10,20,40 Valley Grass 0.67 Silt 
loam 

NST_14 33055′
/102007′ 

3432 5,10 River 
Valley 

Grass 0.68 Silt 
loam 

NST_15 33051′
/101053′ 

3752 5,10 Hill 
slope 

Grass 0.78 Silt 
loam 
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Appendix B: SMAP Satellite Overpass time 

 

Table 9: SMAP Satellite overpass over the Maqu network during the Study period 

4/2/2015 23:46:22 -234.43 KM descending 

4/4/2015 23:21:55 307.44 KM descending 

4/7/2015 23:34:19 37.04 KM descending 

4/10/2015 23:46:22 -234.43 KM descending 

4/12/2015 23:21:55 307.44 KM descending 

4/15/2015 23:34:19 37.04 KM descending 

4/18/2015 23:46:22 -234.43 KM descending 

4/20/2015 23:21:55 307.44 KM descending 

4/23/2015 23:34:19 37.04 KM descending 

4/26/2015 23:46:22 -234.43 KM descending 

4/28/2015 23:21:55 307.44 KM descending 

5/1/2015 23:34:19 37.04 KM descending 

5/4/2015 23:46:22 -234.43 KM descending 

5/6/2015 23:21:55 307.44 KM descending 

5/9/2015 23:34:19 37.04 KM descending 

5/13/2015 10:44:43 -208.51 KM ascending 

5/16/2015 10:56:59 63.24 KM ascending 

5/19/2015 11:08:50 362.14 KM ascending 

5/21/2015 10:44:43 -208.51 KM ascending 

5/24/2015 10:56:59 63.24 KM ascending 

5/27/2015 11:08:50 362.14 KM ascending 

5/29/2015 10:44:43 -208.51 KM ascending 

6/1/2015 10:56:59 63.24 KM ascending 

6/4/2015 11:08:50 362.14 KM ascending 

6/6/2015 10:44:43 -208.51 KM ascending 

6/9/2015 10:56:59 63.24 KM ascending 

6/12/2015 11:08:50 362.14 KM ascending 

6/14/2015 10:44:43 -208.51 KM ascending 

6/17/2015 10:56:59 63.24 KM ascending 

6/19/2015 10:31:59 -479.46 KM ascending 

6/20/2015 11:08:50 362.14 KM ascending 

6/22/2015 10:44:43 -208.51 KM ascending 

6/25/2015 10:56:59 63.24 KM ascending 

6/28/2015 11:08:50 362.14 KM ascending 

6/30/2015 10:44:43 -208.51 KM ascending 

7/3/2015 10:56:59 63.24 KM ascending 

7/8/2015 10:44:43 -208.51 KM ascending 

7/11/2015 10:56:59 63.24 KM ascending 
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Appendix C: Weight functions based on Lv scheme (Lv et al., 2016) 

Background 

The physical concept of soil effective temperature effT  is developed to describe the emissive capacity of a 

soil column. According to the Rayleigh-Jeans approximation, in the microwave domain the emitted energy 

from the soil is proportional to the thermodynamic temperature. The brightness temperature BT  is 

expressed as: 

B effT eT  (1) 

where BT  is the radiation intensity received by the passive microwave sensor fixed near the soil surface or 

on the satellite platforms while neglecting the attenuation of atmosphere. e  is the emissivity that is strongly 

related to soil moisture. effT  is the effective temperature and is formulated by Wilheit as: 

      
0 0

exp
x

effT T x x x dx dx 
    

     (2) 

where      
1

2
4

2x x x


  


     . Equation (2) states that effT  at the soil surface is a super position 

of the intensities emitted at various depths within the soil.  

An accurate computation of effT  is thus critical for obtaining relevant values of soil emissivity from 

brightness temperature measurements. It follows that soil moisture can be retrieved from the estimates of 

soil emissivity. However, the soil moisture and soil temperature profile information is usually limited in a 

field experiment. The discrete observation points are installed empirically or thought to be continuous with 

constant vertical intervals. Recently, a new two-layer scheme (hereafter, Lv’s scheme) has been derived 

directly from Equation (2). This is expressed by Lv et al. 2014 as: 

  1 1

1 21 B B

effT T e T e     (3) 

in which 1

4

2
B x

 

 


   


, a parameter related to wavelength   , to soil moisture through the 

dielectric constant (   is the imaginary part and   is the real part), and to sampling depth (∆𝑥). The soil 

moisture/temperature (SM/ST, hereafter) can be specified using the values obtained from observation 

networks (e.g. Maqu Network).    will be a constant for the specific sensors, i.e., 21  cm for SMOS and 

SMAP. This leaves the sampling depth (intervals) as only unknown in Equation (3). Equation (3) can be 

further developed into a complete multi-layer scheme as: 

    1

1 1 1

1

2 1 1

1 1 j ji

n i n
B BBB

eff i n

i j j

T T e T e e T e
  

 

  

        (4) 

where the first, second and third part of the right hand side of the equation represent the 1st, ith and nth layer 

(e.g. ith represents the layers in the middle, while nth represents the last layer). When the first layer has been 

fixed in field sites, the accuracy Equation (3) and (4) can achieve in estimating effT  depends on the 

determination of sampling depth (intervals) ix ( i  for i th layer). 
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Figure C-1 Schematic of subscripts related to individual soil layers notation 

Characteristics of Parameter B 

Lv’s scheme uses an exponential function to distribute the weight among different layers (see Equation (4)). 

The only parameter in this scheme is B , which is another form of   in Wilheit’s scheme. In order to 

analyze the characteristics of B , a series of extended concepts are listed in Table C-1. 

In fact, Lv’s multilayer scheme, which reveals a general form of exponential terms, is more flexible than the 

two-layer scheme. To achieve either an assessment of the Maqu Network, or a determination of the optimal 

mounting depth/combination, the multilayer scheme will be deployed. When excluding both the top and 

bottom layers in the multilayer model, the in-between layers (the i th layer) share a common expression:

 
1

1

1 ji

i
BB

i

j

T e e






  , with  
1

1

1 ji

i
BB

j

e e






  called the weight function (double underline in Equation 

(4)). Thus, the weight function could be further divided into two parts: the representative term  1 iB
e


 , 

which is dealing with B  at the i th layer, and the term
1

1

j

i
B

j

e






 , which could be computed with B above 

the i th layer. 
1

1

j

i
B

j

e






 determines how much weight from the i th layer can directly contribute to effT

without any prior knowledge of the( 1i  )th layer. In other words, if the ( 1i  )th layer exists, whatever the 

soil temperature at the( 1i  )th layer is, the soil temperature at the ( 1i  )th layer has to be multiplied by 

1

j

i
B

j

e




 . Hence, 
1

j

i
B

j

e




 can be called the residual (single–underline in Equation 4) of the i th layer. With 

these concepts in mind, it is possible to estimate the possible contributions by different layers when 

calculating effT .  
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Figure C-2 The residual (see Table C-1) for each layer, with residual refers to the percentage 

of effT  signals from deeper layers contributing to the result, as the land surface is reached.  

 

Figure C-3 The residual for each site for the first two layers as in Figure C-2.  

Table C-1 The mathematical details regarding the concepts mentioned in this study.  

Name The first layer Middle layers The deepest layer 

B  

4

2
i iB x

 

 


   


 , ix is the physical depth interval. Soil 

moisture/temperature are from the i th layer as well. 

Residual  R  1Be  
1

j

i
B

j

e




  

1

j

n
B

j

e




  

Weight Function 11 Be   
1

1

1 ji

i
BB

j

e e






   

1

1

j

n
B

j

e






  

 
 



 

37 

It can be inferred that, in order to estimate effT  as accurately as possible, the physical mounting depth 

should be designed to minimize the residual as much as possible. To provide a proof of concept 

calculation, the same mounting depth was used throughout the Maqu Network, with ∆𝑥1 = 5 𝑐𝑚 

for the first and ∆𝑥2 = 10 𝑐𝑚 for the second layer. For each site, the residual of weights for the 

second layer (
1

1

jB

j

e




 , the middle layer as in Table C-1) is shown in blue bars, while green bars 

represent the third layer (
2

1

jB

j

e




 , the deepest layer as in Table C-1, Figure C-3). The smaller residual 

signal in Figure C-3 indicates the smaller error of each site in estimating effT . Figure C-3 shows that 

the NST-04 site is relatively reliable, with an error in estimating effT  of less than 10%. This means 

that, based on the 5 cm and 10 cm installation configuration, the NST-04 site can be used to calculate 

effT representatively, especially when compared to other sites in the Maqu Network (Figure C-3). 

Table C-2 Weight Functions for each station based on the Lv scheme 

Station Name Station Normalized Residual Signal Weights 

CST03 0.773499 0.14742 

CST05 0.867363 0.168308 

NST01 0.722788 0.165309 

NST03 0.883096 0.137755 

NST06 0.600393 0.114428 

NST07 0.741575 0.141335 

NST08 0.441673 0.084178 

NST09 0.216526 0.041267 

Sum 5.246913 1 
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Appendix D: ECMWF-ECOCLIMAP Vegetation classification as adopted in CMEM 

Table 10: Vegetation classification for ECMWF-Ecoclimap 

No vegetation  0 

High vegetation Deciduous forests 1 

Coniferous forests  2 

Rain forests 3 

Low vegetation C3 grasslands 4 

C4 grasslands 5 

C3 crops 6 

C4 crops 7 
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Appendix E: Residual error between individual stations TEFF and Weighted TEFF 

1.  

2.  

3.  
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4.  

5.  

6.  
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7.  

8.  

9.  

Figure 22: Norm of residuals for individual stations 
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Appendix F: Scatter plots for matchup between SMAP TB (H and V) and weighted model outputs 

  

  

  

  

Figure 23: Scatter plots of SMAP TB  against Weighted TEFF
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Appendix G: Scatter plots for matchup between SMAP TB (H and V) and a model outputs 

  

  

 
 

 
 

Figure 24: Scatter plots of SMAP Tb versus Simple Average TEFF 


