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Abstract

Polymer brushes, films consisting of polymers densely grafted to a surface, are of inter-
est for a range of applications due to their intriguing behaviours in solvents. Although
their behaviour in liquid solvents has been studied extensively, their behaviour in sol-
vent vapours has not.

In this work, Molecular Dynamics (MD) simulations of two different coarse-grained
models of polymer brushes are employed to investigate the sorption behaviour of poly-
mer brushes in solvent vapours. A constant pressure solvent environment was simu-
lated using a grand-canonicalMonte-Carlo (GCMC) chemostat. For polymersmodelled
by the Kremer-Grest (KG) model, a 2D parameter sweep of polymer self-affinity and
polymer-solvent affinity was performed, after which sorption behaviour is classified by
analysing density profiles.

The KG brush exhibits strong swelling induced by absorption that appears to be gov-
erned by the relative affinity of polymer-solvent, to polymer with itself. Adsorption
on the other hand, which presents as a layer of solvent on top of the brush, appears
to be governed by polymer-solvent affinity only. A simulation of polyethylene (PE) in
acetone, both modelled by the MARTINI model revealed density profiles similar to the
results obtained from a KG brush with low-to-moderate polymer-solvent and polymer
self-affinities.

The collapse of the absorption of solvent in the brush onto a single parameter (the
relative affinity) suggests that this aspect of the system’s behaviour is not influenced by
chain stretching entropy. The MARTINI simulation of PE in acetone confirms the KG
simulations and illustrates the potential for simulating chemically different polymers
and solvents.
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Preface

Dear reader,

In front of you is a copy of my master’s thesis.

I got involved with this project about the simulation of vapour solvation of polymer
brushes after a visit to the Forschungszentrum Jülich with Sissi de Beer, Karel van der
Weg, and Guido Ritsema van Eck to consult some HPC experts at the Jülich Supercom-
puting Centre about the scaling optimisation of our simulations. During that visit, we
first thought about the idea to automate the sampling of a 2D phase diagram by MD
simulations. It led to me writing some Python scripts as wrappers around LAMMPS
that automatically classified the sorption regime a system was in, and sampling the
next point in the 2D parameter space based on that. The scripts went through a few iter-
ations as our physical understanding of the system improved and I got more involved
with the project.

It was interesting, yet somewhat unexpected, to spend a full master’s assignment doing
theoretical and computational work. At the start of my assignment, I set on continuing
(experimental) research on ultra-thick enzymatically-grown biopolymer brushes con-
sisting of hyaluronan that I worked on during my internship in a collaboration with
Jennifer Curtis and Jessica Faubel from the Curtis group at Georgia Tech in Atlanta.
However, for logistic reasons, we decided to drop the hyaluronan project and focus on
the simulation work. Of course, this means that any possible overlap between Guido’s
thesis and mine is not coincidental, as we collaborated closely on the same subject. In
our joint effort, Guido’s focus was mostly the theory while I was responsible for most
of the simulations and computational aspects.

In the first chapter of this thesis, I introduce you to the problem at hand (polymer
brushes and their behaviour in solvent vapour) and the main research method (MD
simulations). After a short primer on polymer physics, I go in-depth about the theory
of molecular dynamics before reporting the conducted simulations and discussing
their results. The appendices deal with topics that are not directly related to polymer
physics: Appendix A contains reports on various pieces of software I wrote during
this period to aid the generation, analysis, and automation of my simulation work,
with some of the more polished pieces of code also available on my GitHub. I also
had the opportunity to design and build a new (32-core!) AMD Threadripper machine
for high-performance MD simulation, intended to replace the four old PCs we had in
use for that purpose before. This build was finished just before the conclusion of my
master’s assignment, and is described in detail in Appendix B in the broader context
of LAMMPS performance and scaling.
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1 | Introduction

1.1 Polymer brushes
A polymer brush is a film consisting of polymer chains grafted with one end to the
surface, at such a density that their ideal volumes overlap and they extend away from
the surface and form a ‘brush’ structure (Figure 1.1), named by analogy with the ar-
rangement of hairs on a brush.

Rg

Figure 1.1: Polymers grafted to a surface with a density below the critical grafting density form
mushrooms (left). If the grafting density is sufficiently higher than the critical grafting density,
a brush is formed (right).

Polymer brushes have great potential as a means to control surface properties [1, 2].
As such, surface functionalisation by polymer brushes has applications in stabilisation
of colloids [1], stimulus-responsive systems (sensors) [3, 4], anti-fouling surfaces [5],
low-friction surfaces [6, 7], smart adhesives [8], among others.

1.1.1 Vapour hydration
For many of these applications, the polymer brushes are assumed to be immersed
in a liquid solvent. Yet, in many circumstances it is convenient if these functionalised
surfaces can also be applied in air. The primary constituents of air (nitrogen and oxygen)
are obviously always poor solvents, but air is seldom dry and fortunately water is a
good solvent for many polymers. Examples of applications of polymer brushes where
this is relevant are vapour-hydrated lubricants and organic vapour sensors.

Thus, if we want to apply polymer brushes in humid air or other solvent vapours, it is
imperative to understand how polymer brushes are solvated by vapours. Yet, most of
the knowledge about polymer brush solvation is about liquid solvation and significantly
less is known about the vapour-solvation of polymer brushes. [9]

Inmost theoretical studies, Flory-Huggins theory is employed tomodel the solvation of
polymer brushes. However, this model fails to capture interfacial effects as it assumes a
homogeneous distribution of solvent throughout the brush. Yet, neutron reflectometry
experiments indicate that this distribution is not homogeneous, and that in some cases
an enhancement of solvent density at the interface of the brush exists. [10, 11]
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CHAPTER 1. INTRODUCTION

1.2 Research method
In this work, Molecular Dynamics (MD) is utilised to study polymer brush solvation.
MD simulations have the advantage that they are easier and less expensive to set-up
than experiments in the laboratory; interactions between components can be freely
defined and all particles’ properties are directly observable, unlike in real systems
where e.g. density profiles can be tricky to measure.

In order to be able to simulate the behaviour of brushes in a constant concentration/-
pressure environment, a chemostat is required. MD in its most simple form results in
closed systems, where neither energy nor particles can be exchanged with the environ-
ment. Thermostats (3.4.1) are an established mechanism in MD to achieve a constant
temperature by exchanging energy with the environment. However, achieving a con-
stant chemical potential is more convoluted, as this is not possible with strictly MD.

In his master’s assignment [12], Jan-Willem Nijkamp laid the basis by applying the
GCMC chemostat, a hybrid MD/MC (Monte-Carlo) mechanism for exchanging par-
ticles with the environment with the goal of achieving a constant chemical potential
(3.4.2), to simulations of vapour hydration of polymer brushes. This work builds on
Jan-Willem’s earlier work in this field, as I improved the computational performance
of the simulation by optimising balancing of subdomains (B.2.1), thoroughly investi-
gated thermodynamic properties of the simulated solvent (4.1.1), more comprehen-
sively probed the polymer self-affinity and polymer-solvent affinity parameter space
to reveal sorption regimes (4.2.2), and extended the scope of these simulations to a
more chemically-specific coarse-graining model (4.1.3). Moreover, I developed wrap-
per scripts around LAMMPS in Python that streamline simulating large batches of
these specific simulations, a more flexible and extensible generator for initial data (A.2)
and scripts that aid the analysis of simulation results.
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2 | Theory of polymer brushes

2.1 Free polymers in solution
Polymers in solution take on different conformations depending on their interactions
with the solvent. The size of a polymer coil, often measured by its radius of gyration 𝑅g,
is described by the balance of two forces: the entropic contraction, driven by the random
motion (self-avoiding walk) of the chain, and the enthalpic extension that depends on
the interaction with the solvent. Depending on how the radius of gyration scales with
the chain length 𝑁 , three solvent regimes can be distinguished: [13]

• Good solvent conditions: 𝑅g ∝ 𝑁3/5

• Theta conditions: 𝑅g ∝ 𝑁1/2

• Poor solvent conditions: 𝑅g ∝ 𝑁1/3

If the polymer is solvated by a good solvent, the coil will expand to maximise the
interactions with the solvent. If the solvent is poor, the coil will contract, forming a
dense globule. A special case exists when the solvent interactions precisely cancel out
excluded volume effects in the chain, resulting in the chain assuming an ideal random
walk conformation, like in a melt. The latter is called the theta condition. [13]

As the entropic contribution to the chain energy depends on temperature, and the
enthalpic ones depend on the specific polymer and solvent, above conditions are only
meaningfully defined for a certain set of polymer and solvent at a given temperature.

2.2 Polymer brushes
When polymers are grafted onto a surface, they lose considerable entropy since one end
of their chains is fixed in space and the space behind the grafting surface is inaccessible,
but their conformation is still influenced by the solvent. When the chains are grafted
close enough that their ideal volumes overlap, they will stretch away from the surface
and form a structure called a polymer brush (Figure 1.1). This happens at the critical
grafting density: the point that the (mean) distance between grafting points is closer
than two times the (mean) radius of gyration of a free polymer: [13]

1√
𝜌g

= 2𝑅g (2.1)

𝜌g∗ =
1

4𝑅2
g

(2.2)

where 𝜌g denotes the grafting density, 𝜌g∗ the critical grafting density, and 𝑅g the
radius of gyration. From this derivation, it also follows that the critical grafting density
is dependent on solvent quality.
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CHAPTER 2. THEORY OF POLYMER BRUSHES

In this case the polymer brush height is dependent on both the grafting density and
the length (Equation 2.3). The swelling response when solvated by good solvents is
enhanced, because the height increases linearly with chain length since chains can no
longer expand in the two directions parallel to the grafting surface. The scaling with
grafting density is characterised by a parameter 𝜈, which depends non-trivially on the
solvent quality.

ℎ ∝ 𝜌𝜈
g𝑁 (2.3)

Better solvent

Figure 2.1:Polymer brushes collapse in poor solvents and swell in good solvents by the stretching
behaviour of the individual chains.
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3 | Theory of molecular dynamics

MD is a simulation method for studying physical behaviour of systems on a molecular
scale. The basic principle of MD is that trajectories of particles (atoms/molecules) are
simulated by numerically integratingNewton’s equations ofmotion, while they interact
with each other by pair potentials (also called ‘force fields’). A pair potential gives the
potential (energy) of a pair of interacting particles as function of the distance between
them. Differentiating this potential gives the force acting on those particles. Every ‘tick’
of the MD simulation, the positions and speeds of all particles are updated according
to the forces acting on them.

By evolving a system in time, a statistical ensemble can be sampled depending on
how the simulation is set-up. For example, integrating without thermostatting yields a
microcanonical ensemble (𝑁𝑉𝐸). Thermostats or barostats can be utilised to generate
canonical (𝑁𝑉𝑇) or isothermal-isobaric (𝑁𝑃𝑇) ensembles respectively.

MD can be used to study a wide range of systems and phenomena in physics, material
science, and chemistry. Applications include but are not limited to dynamics of solid
state physics that are hard to observe in real-life, resolving structures ofmacromolecules
such as proteins and polymers, and supramolecular interactions.

3.1 Integration schemes
Simply said, the main principle behind MD is to numerically integrate the equations of
motion of an ensemble of many particles. This is realised by discretising time by finite
difference methods. [14]

All numeric integration inevitably leads to some error, manifesting as total energy drift
inMD. An important point to realise is that forMD, we are not so much concernedwith
energy fluctuations on a short time scale, as long as the energy is conserved on long time
scales. One may be inclined to think that it is important for the algorithm to accurately
simulate the trajectories of all particles on all time scales, but that turns out not to be the
case. Many-body systems are generally chaotic: that is, the exact trajectories are very
sensitive to initial conditions, and two initially close trajectories are always expected
to diverge exponentially as time evolves. The inevitable integration error has the same
effect on the trajectories, no matter how small small it is. [15]

This is not a problem because we are not interested in the detailed, accurate simulation
of the trajectory of a chaotic system with carefully chosen initial conditions, like would
be the case for a simulation of orbital mechanics, for example: in that case we want
to know the exact trajectory of the system and any divergence in that trajectory is a
big issue. In the case of MD, we are only interested in the ensemble average behaviour
of a system in a given macrostate (e.g. a system with a set total energy). It does not
matter if the exact trajectories diverge, as long as the resulting trajectory represents
a valid trajectory and statistical predictions, such as thermodynamic properties like
temperature and pressure, can still be made. [15]
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CHAPTER 3. THEORY OF MOLECULAR DYNAMICS

Another important criterium is time reversibility. Thismeans that the integration scheme
should be symmetric with respect to time, e.g. if we reverse the momenta of all particles
in the system, the system should exactly trace back its trajectory. After all, Newton’s
equations of motion are time-reversible, so our integration scheme should be, too. The
energy-preserving and time-reversible requirements are fulfilled by so-called symplec-
tic integrators. [14, 15]

3.1.1 Verlet
A simple symplectic scheme that satisfies the criteria discussed above is the Verlet
algorithm.

As usual with finite difference schemes, the derivation starts with the Taylor expansion
of a particle coordinate (𝑟) around time 𝑡. The next two expressions give the approxi-
mate coordinates one timestep (Δ𝑡) after and before 𝑡:

𝑟(𝑡 + Δ𝑡) = 𝑟(𝑡) + d𝑟(𝑡)
d𝑡

Δ𝑡 + d2𝑟(𝑡)
d𝑡2

Δ𝑡2

2
+ d3𝑟(𝑡)

d𝑡3
Δ𝑡3

3!
+ 𝒪(Δ𝑡4) (3.1)

𝑟(𝑡 − Δ𝑡) = 𝑟(𝑡) − d𝑟(𝑡)
d𝑡

Δ𝑡 + d2𝑟(𝑡)
d𝑡2

Δ𝑡2

2
− d3𝑟(𝑡)

d𝑡3
Δ𝑡3

3!
+ 𝒪(Δ𝑡4). (3.2)

The Verlet scheme can be obtained by considering the central difference approach to
the second derivative, which is obtained by the sum of the two expressions above:

𝑟(𝑡 + Δ𝑡) + 𝑟(𝑡 − Δ𝑡) = 2𝑟(𝑡) + d2𝑟(𝑡)
d𝑡2

Δ𝑡2 + 𝒪(Δ𝑡4). (3.3)

Rearranging gives:

𝑟(𝑡 + Δ𝑡) = 2𝑟(𝑡) − 𝑟(𝑡 − Δ𝑡) + d2𝑟(𝑡)
d𝑡2

Δ𝑡2 + 𝒪(Δ𝑡4)

𝑟(𝑡 + Δ𝑡) = 2𝑟(𝑡) − 𝑟(𝑡 − Δ𝑡) + 𝑎(𝑡) Δ𝑡2 + 𝒪(Δ𝑡4) (3.4)

where d2𝑟(𝑡)
d𝑡2

= 𝑎(𝑡) is the acceleration, which is given by the total force acting on a
particle 𝐹(𝑡) divided by its mass 𝑚. The truncation error is of order Δ𝑡4, because the
conveniently cancelling odd terms in the Taylor expansion. This also makes the scheme
time reversible.

Note that in the Verlet scheme, the velocities are not explicitly given. This is problematic
for MD because the velocities are required for the computation of kinetic energy and
other thermodynamic properties derived from that. They can be computed using the
central difference approach to the first derivative, which is obtained by subtracting
Equation 3.2 from 3.1:

𝑟(𝑡 + Δ𝑡) − 𝑟(𝑡 − Δ𝑡) = 2
d𝑟(𝑡)
d𝑡

Δ𝑡 + 𝒪(Δ𝑡3). (3.5)
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Recognising that d𝑟(𝑡)
d𝑡 = 𝑣(𝑡) and rearranging gives:

𝑣(𝑡) = 𝑟(𝑡 + Δ𝑡) − 𝑟(𝑡 − Δ𝑡)
2Δ𝑡

+ 𝒪(Δ𝑡2). (3.6)

The above expression for the velocity is accurate to second order in Δ𝑡. The Verlet
scheme is also not self-starting, because a value for 𝑟(𝑡 − Δ𝑡) is required which has to
be provided by another scheme.

3.1.2 Velocity Verlet
A scheme that is functionally equivalent to Verlet, but explicitly computes velocities is
the so-called velocity-Verlet scheme.

Here, the particle coordinates are computed by a second-order forward difference:

𝑟(𝑡 + Δ𝑡) = 𝑟(𝑡) + d𝑟(𝑡)
d𝑡

Δ𝑡 + d2𝑟(𝑡)
d𝑡2

Δ𝑡2

2
+ 𝒪(Δ𝑡3). (3.7)

Velocities are computed separately:

𝑣(𝑡 + Δ𝑡) = 𝑣(𝑡) + d𝑣(𝑡)
d𝑡

Δ𝑡 + d2𝑣(𝑡)
d𝑡2

Δ𝑡2

2
+ 𝒪(Δ𝑡3)

𝑣(𝑡 + Δ𝑡) = 𝑣(𝑡) + 𝑎(𝑡)Δ𝑡 + d2𝑣(𝑡)
d𝑡2

Δ𝑡2

2
+ 𝒪(Δ𝑡3). (3.8)

Unlike the Verlet scheme, velocity-Verlet is self-starting and velocities are defined ex-
plicitly. Additionally, it can be shown that the scheme is fully equivalent to Verlet; that
is, its accuracy is identical and for the same systems and initial conditions, it generates
identical trajectories.

3.1.3 rRESPA
rRESPA (reversible REference System Propagator Algorithm) [16] is a multi time scale
integrator. It functions similarly to velocity-Verlet, but features an arbitrary number
of hierarchical iteration levels which allow some interactions to be computed more
frequently than others.

Generally, it is desirable to make the timestep Δ𝑡 as long as possible for efficiency
reasons.However,when the timestep is too long, it can result (depending on the system)
in numerical instabilities, manifesting as energy drift or even ‘exploding’ systems in
MD. As a rule of thumb, the timestep should be roughly comparable to the resonance
timescales of the highest frequency modes in the system in order for the simulation to
be stable. For example, in an all-atom simulation, this would be the bond vibrations of
hydrogen atoms which require a timestep of around 0.5 fs. [17]
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rRESPA can make the simulation more efficient by computing some interactions more
frequently. It defines an outer timestep and a number of hierarchical inner loops. For
example, it is possible to setup a 2-level rRESPA integration where the inner loop is
executed 10 times per outer timestep. Hence it is possible to evaluate the high-frequency
interactions such as the bonds to hydrogen atoms every 0.5 fs, but evaluate the much
more expensive non-bonded pair interactions only every 5 fs.

Similarly, for coarse-grained models this can be of use because here too there is a sep-
aration of modes in terms of their time scales: bond, angle, and dihedral interactions
typically require much shorter timesteps than non-bonded pair interactions.

Thus, with rRESPA it is possible to attain a speed-up over simple Verlet integration
while retaining the same numerical stability.

3.2 Pair potentials
A pair potential in MD specifies the potential energy of two interacting particles as a
function of their separation distance (𝑈(𝑟)). By differentiating with respect to 𝑟, the
interparticle force is obtained:

𝐹𝑖 , 𝑗 = −
d𝑈(𝑟𝑖 , 𝑗)
d𝑟𝑖 , 𝑗

(3.9)

One can view the choice of a potential in MD as type of material one is simulating, as
(in the absence of molecular topological features like bonds) the potential determines
the majority of thermodynamic and mechanical properties.

3.2.1 Lennard-Jones
The Lennard-Jones potential (Equation 3.10, LJ from here on) is a commonly used
potential for describing generic matter. It consists of an attractive termwhich represents
the effective vanderWaals interaction of atomswithout a permanent electrostatic dipole
moment (London dispersion), of which the potential scales with 𝑟−6, and a repulsive
term that scales with 𝑟−12 that is loosely modelled after Pauli exclusion, but has no
rigorous theoretical justification. The 𝑟−12 term is mostly chosen for computational
convenience, as it is the square of 𝑟−6. [18]

𝑈LJ(𝑟) = 4𝜖

(︃(︂𝜎
𝑟

)︂12
−

(︂𝜎
𝑟

)︂6)︃
(3.10)

In Equation 3.10, 𝜖 represents the depth of the potential well (with dimensions of
energy) and 𝜎 represents the zero-crossing distance. The minimum occurs at 𝑟𝑚 =

21/6𝜎.

Because the LJ potential only takes the effects of London dispersion into account, it
is in the first place strictly a model of monoatomic gasses. However, it enjoys a lot of
popularity in MD as a model of ‘generic fluid’. It is used combined with a bonded
potential as the Kremer-Grest model of coarse-grained polymers (see 3.5.1) [19].
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Truncation and shifting

In practical MD simulations, the LJ potential is usually truncated at a certain point
called the cut-off distance (𝑟𝑐) to make simulations of systems containing many parti-
cles interacting by the LJ potential computationally feasible. This is justifiable because
the interaction is negligible at distances beyond the cut-off. Still, simply truncating the
potential as in Equation 3.11 creates a jump discontinuity in the potential which leads to
a force singularity at that point. To solve this, the potential is shifted up by the value of
the potential at the cut-off distance𝑈LJ(𝑟c) (see Equation 3.12). This Shifted-Potential
(SP) potential avoids the discontinuity in the potential, but still suffers from a disconti-
nuity in the first derivative (the force). The Shifted-Force (SF) potential improves upon
this by shifting the force so that it goes to zero continuously (see Figure 3.1). This is
equivalent to subtracting a linear term from the potential (Equation 3.13). [20]

𝑈LJ,cut(𝑟) =
{︄
𝑈LJ(𝑟) for 𝑟 ≤ 𝑟c

0 for 𝑟 > 𝑟c
(3.11)

𝑈LJ,SP(𝑟) =
{︄
𝑈LJ(𝑟) −𝑈LJ(𝑟c) for 𝑟 ≤ 𝑟c

0 for 𝑟 > 𝑟c
(3.12)

𝑈LJ,SF(𝑟) =
{︄
𝑈LJ(𝑟) − (𝑟 − 𝑟c)𝑈′

LJ(𝑟c) −𝑈LJ(𝑟c) for 𝑟 ≤ 𝑟c

0 for 𝑟 > 𝑟c
(3.13)
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Figure 3.1: The truncated LJ-potential (𝑟𝑐 = 2.5𝜎) has a jump discontinuity causing a sin-
gularity in the force. The SP potential is continuous, but its force is not. The SF potential is
continuous in both the potential and the force.

Note that in practical simulations, truncation means that all interactions between parti-
cles separated more than 𝑟c are simply ignored. This means that the singularity in the
force corresponding to the unshifted truncated potential is not encountered and the
SP potential results in exactly the same dynamics as the unshifted truncated potential.
The only tangible difference lies in the computed energies of the system; those will
be incorrect for the unshifted case. What does make a difference for dynamics is the
discontinuity in the force, as this leads to energy drift over time. The SF potential does
not suffer from the energy drift while the SP potential does. [20]
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The LJ potential is commonly truncated at 𝑟c = 2.5 𝜎. When the LJ potential is truncated
at the energy minimum (occurring at 𝑟c = 21/6 𝜎 ≈ 1.1225 𝜎), a purely repulsive
potential knownas theWeeks–Chandler–Andersen (WCA)potential is obtained. This is
commonly utilised together with Langevin dynamics (see 3.4.1) to produce an implicit
solvent: a continuum technique to mimic the net effect of a solvent without actually
simulating the dynamics of the solvent particles. For the WCA potential it suffices to
shift the potential, as the force is naturally zero at the cut-off point.

LJ-spline

The truncation problem of the LJ potential has spawned a number of additional, more
sophisticated variants. One such variant is the Lennard-Jones Spline (LJ-spline). In
this model, The Lennard-Jones potential is replaced with a cubic spline between the
inflection point (𝑟s) and the cut-off (𝑟c). In Equation 3.14, 𝑟𝑐 and 𝐴3 are chosen in such
a way that the cubic section is continuous at 𝑟s and 𝑟c. Like the truncated LJ potential,
the thermodynamic properties are different from the full LJ potential. The advantage of
the LJ-spline potential is an even lower computational cost compared to the LJ potential
truncated at 2.5 𝜎. [21]

𝑈LJ,spline(𝑟) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑈LJ(𝑟) for 𝑟 ≤ 𝑟𝑠

𝑈LJ(𝑟s) − (𝑟 − 𝑟𝑠)𝑈′
LJ(𝑟s) −

1
6𝐴3(𝑟 − 𝑟s)3 for 𝑟s < 𝑟 ≤ 𝑟c

0 for 𝑟 > 𝑟c

(3.14)

3.3 Neighbour lists
Abig (and computationally expensive) part ofMD is the computation of forces between
all pairs of particles. If we do not apply any clever tricks, this essentially yields a 𝑛-body
problem, which is notoriously hard and expensive to solve. [15, 22]

Pair potentials are, as discussed above, usually truncated beyond a certain distance.
This means that at least the force calculation can be skipped for particles further away
than the cut-off, but we still need to calculate the distance to every particle. As the
number of pairs is equal to 𝑛 choose 2:(︃

𝑛

2

)︃
=

𝑛!

2!(𝑛 − 2)! =
(𝑛 − 1)𝑛

2
(3.15)

this implies that the algorithm has a time complexity of 𝒪(𝑛2), i.e. the time needed
scales quadratically with the total number of particles in the system. Neighbour lists
(also called Verlet lists) can be used to improve this. [15, 22]

The principle behind neighbour lists is to consider all neighbouring particles around a
particle within a radius 𝑟n that is some 𝑟s (the skin distance) larger than 𝑟c (the cut-off
radius) of the pair potential (see Figure 3.2) and put them in a list. This ‘neighbouring’
operation is of order 𝒪(𝑛2), but during the subsequent computation of pair interactions,
only the particles in the list have to be considered, which is a 𝒪(𝑛) operation. [15, 22]

When a particle has moved more than half the skin distance, the neighbour list should
be rebuilt. Usually, it is checked periodically (every 𝑛 timesteps) if this is the case.
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Figure 3.2: Illustration of a neighbour list, showing a central particle with the cut-off radius 𝑟c,
the neighbour radius 𝑟n and the skin distance 𝑟s between them.

There exists a trade-off in deciding upon appropriate values for the skin distance and
the integration timestep. Choosing a small skin distance result in lists that are smaller
so computation of pair interactions will be faster, but (depending on how much the
particles move) the neighbour lists have to be rebuilt significantly more often which
will negate that gain. Similarly for the timestep it applies that a larger timestep is more
efficient but (because particles will move more in one timestep) neighbour lists have to
be rebuilt more often and the skin distance might need to be increased to prevent that.

3.4 Statistical ensembles
WhenMD is carried out with typical integration schemes, the total energy in the system
(the sum of potential and kinetic energy) is conserved. In other words, we will sample
themicrocanonical ensemble (𝑁𝑉𝐸), since the number of particles and the total volume
are constant as well. However, this is often times not desirable in practice, because
this is not a realistic scenario in real-life experimental analogues, where the system
is thermally coupled with the environment and heat exchange occurs to equalise the
temperature of the system with that of the environment. The latter corresponds to a
canonical ensemble (𝑁𝑉𝑇). Here, the total energy is no longer conserved, since energy
flows in and out of the system. Whereas a simulation of the microcanonical ensemble
tends to maximise the entropy of the system, a simulation of the canonical ensemble
tends to minimise the system’s Helmholtz free energy. [18]

3.4.1 Thermostats
In order to sample the canonical ensemble using MD, we need to allow for some en-
ergy exchange mechanism that aims to keep the temperature of the system constant.
There are several ways to accomplish this (called thermostats), but not all of them are
computationally efficient and not all of them properly sample the canonical ensemble.
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To compute the instantaneous temperature of a system in aMD simulation, the equipar-
tition theorem, which says that every degree of freedom (𝑑f) contributes 1

2 𝑘𝑇 to the
kinetic energy is invoked:

𝑑f

2
𝑘𝑇 =

1

2
𝑚⟨𝑣2⟩. (3.16)

In practice then, for an ensemble of particles with only translational (and no internal)
degrees of freedom in three dimensions, the temperature can be calculated as:

𝑇k =
𝑚

3𝑁𝑘

𝑁∑︂
𝑖=1

|𝑣𝑖 |2 (3.17)

where 𝑇k denotes the instantaneous temperature as calculated from the average kinetic
energy of the system and 𝑁 is the number of particles in the system.

Velocity scaling and Berendsen

The simplest way to accomplish thermostatting is velocity scaling. This means that at
every timestep, the velocities for all particles in the system are multiplied by a factor
so that after the scaling operation, the average temperature of the system is equalised
with a setpoint (corresponding to the environment temperature). [23]

This factor can be calculated by considering the influence of the particle velocities on
the instantaneous temperature 𝑇k (Equation 3.17):

𝑇0 =
𝑚

3𝑁𝑘

𝑁∑︂
𝑖=1

(𝜆|𝑣𝑖 |)2

= 𝜆2𝑇k (3.18)

𝜆 =
√︁
𝑇0/𝑇k (3.19)

where 𝑇0 is the setpoint temperature and 𝜆 is the velocity scaling factor.

The main problem with this approach is that it does not allow for fluctuations in tem-
perature at all: at every timestep, the temperature is exactly equal to the setpoint. This
is obviously not realistic and does not correspond to the canonical ensemble. [23]

The Berendsen thermostat is a slightmodification of the abovemethod. Instead of rescal-
ing the velocities to make the system correspond exactly to the setpoint temperature
at every timestep, the scaling factor is chosen in such a way that the rate of change of
temperature is proportional to the temperature difference. This is essentially Newton’s
law of cooling:

d𝑇

d𝑡
=

1

𝜏
(𝑇0 − 𝑇) (3.20)
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where 𝜏 is a time constant that can be understood as a parameter controlling the degree
of thermal coupling between the system and its environment. The solution of this
first-order differential equation is the well-known exponential decay of the system’s
temperature to the setpoint. The velocity scaling factor in this case can be derived by
simply considering the desired new temperature 𝑇new and plugging it in Equation 3.19
as 𝑇0:

𝑇new = 𝑇k +
𝛿𝑡
𝜏

(𝑇0 − 𝑇k) (3.21)

𝜆 =

√︄
1 + 𝛿𝑡

𝜏

(︃
𝑇0

𝑇k − 1

)︃
(3.22)

Three limiting cases for the Berendsen thermostat can be identified. In the limit as 𝜏 →
∞ the heat flow approaches zero and the Berendsen thermostat is idle. The resulting
MD simulation will effectively sample the microcanonical ensemble, just like when no
thermostat is employed. When the time constant is equal to the MD timestep (𝜏 = Δ𝑡),
the Berendsen thermostat reduces to simple velocity scaling. For values of 𝜏 < Δ𝑡, the
thermostat is unstable and the system temperature will oscillate. Still, even for values
of Δ𝑡 < 𝜏 < ∞, the Berendsen thermostat does not formally generate the canonical
ensemble. [24]

Naive velocity scaling and the Berendsen thermostat generate what is called an isoki-
netic ensemble. The average kinetic energy per particle in this case is as expected, but
it does not obey the distribution prescribed by the canonical ensemble (the Maxwell-
Boltzmann distribution, Equation 3.23) [15, 23]. As a consequence of this fact, this
sometimes gives rise to strange effects, such as the so-called Flying Ice Cube Effect, in
which the equipartition theorem is violated and kinetic energy from high-frequency
modes drains in to low-frequency modes. The effect gains its name by the prime exam-
ple where a fluid freezes over time in a simulation with a velocity scaling thermostat
and all thermal kinetic energy is converted into zero-frequency translational energy
[25, 26].

𝑃(𝑣) =
(︃

𝛽

2𝜋𝑚

)︃3/2
exp

(︃−𝛽𝑚𝑣2
2

)︃
(3.23)

Andersen

The simplest thermostat that does produce a proper canonical ensemble is known as the
Andersen thermostat. In this method, the system is coupled to a fictitious heat reser-
voir through occasional stochastic forces on randomly selected particles. The particles
that are selected to ‘undergo a collision’ have their velocities reset, and get assigned
new velocities drawn from the Maxwell-Boltzmann distribution (Equation 3.23) corre-
sponding to the desired temperature. Collisions are uncorrelated and their frequency
follows a Poisson distribution (Equation 3.24). The average frequency that a particle
is selected to undergo collision is 𝜈𝛿𝑡. As such, this can be considered a Monte-Carlo
(MC) process. [15, 23, 27]

𝑃(𝑡) = 𝜈 exp(−𝜈𝑡) (3.24)
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It can be shown that MD with the Andersen thermostat samples the true canonical
ensemble. [15]

Langevin and Brownian dynamics

The Langevin thermostat models the (thermal) effects of an implicit solvent by adding,
besides the conservative forces arising from force field interactions, a random force
and a dissipative force to each particle at every timestep. The random force can be
interpreted as Brownianmotion: the stochastic collisions of the implicit solvent particles
rapidly bouncing arounddue to their thermalmotion, and similarly the dissipative force
represents hydrodynamic (Stokes’) drag between the particles (random collisions of
solvent particles with the simulated particles) and the implicit solvent. [28, 29]

An MD simulation using the Langevin thermostat is also said to perform Langevin
dynamics. Langevin dynamics can be regarded as a coarse-graining method since it
effectively coarse-grains away fast modes of motion of the solvent. The entire solvent
is replaced by an implicit solvent, while its net effect (Brownian motion) is retained. It
thereby takes advantage of the separation in characteristic timescales between solvent
and the explicitly simulated molecules. It goes without saying that this is only justified
if the solvent molecules are much smaller, but this is unquestionably the case in the
case of macromolecules or colloids. [30]

The Langevin equation (Equation 3.25) is a simple force balance that captures this idea.
𝐹c refers to the sum of all conservative forces (forces arising from pair interactions), 𝐹d
is the dissipative Stokes’ dragwhich is equal to−𝛾𝑣(𝑡), with 𝛾 being the drag coefficient
and 𝑣(𝑡) naturally the velocity at time 𝑡, and 𝐹b is the random force due to Brownian
motion.

𝑚
d𝑣(𝑡)
d𝑡

= 𝐹c + 𝐹d + 𝐹b

𝑚
d𝑣(𝑡)
d𝑡

= 𝐹c − 𝛾𝑣(𝑡) + 𝐹b (3.25)

The random force adds kinetic energy to the systemwhile the dissipative force removes
it. The fluctuation-dissipation theorem (FDT, Equation 3.26) states that on average, the
stochastic fluctuations are perfectly balanced by the dissipative forces so that in thermal
equilibrium, the combined energy stays constant.

⟨𝐹d + 𝐹b⟩ = 0 (3.26)

When 𝛾 is very high, i.e. Brownian motion and viscous drag dominate over the normal
motion of the particles, correlations in the velocity of a particle decay on a timescale
shorter than over which the conservative forces change (i.e. the timescale of interest).
The system is then called overdamped, and Langevin dynamics reduces to a special
case called Brownian dynamics [28]. This can be obtained formally by realising that in
that case, on average, the displacement of a particle is zero, so the Langevin equation
transforms into:
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𝑚
d𝑣(𝑡)
d𝑡

= 𝐹c − 𝛾𝑣(𝑡) + 𝐹b
𝐹c − 𝛾𝑣(𝑡) + 𝐹b = 0

d𝑟

d𝑡
=

1

𝛾
(𝐹c + 𝐹b). (3.27)

Apossibly unexpected benefit of the Langevin thermostat is that it improves the stability
of the simulation. This means we can get away with a much larger timesteps than in
the case of 𝑁𝑉𝐸 dynamics. This makes it the thermostat of choice for the equilibration
of especially polymer systems, which can have very long relaxation times. [23]

Dissipative particle dynamics

The Langevin thermostat is a fine choice when an implicit solvent is desired, but the
problem with stochastic thermostats of the Andersen and Langevin kind is that while
they correctly generate a canonical ensemble and thereby correctly reproduce time-
independent properties, the dynamic properties of the system are generally disturbed
by the unrealistic stochastic alterations to the particle velocities. For example, these
thermostats are not suitable if one wants to study the diffusion rate in a system because
momentum transport is destroyed.

Dissipative Particles Dynamics (DPD) is similar to Langevin dynamics, but only adds
pairwise forces to particles. As such,momentum is preserved in a collision, even though
the forces of the collisions are random. As such, DPD preserves momentum transport
as it does not suffer from the problems that the other stochastic thermostats treated
here suffer from. [23]

Since the random and dissipative forces are now pairwise, a cut-off is introduced just
like in the case of the pair potentials. Without it, we would again obtain a 𝑛-body
simulation. The force balance of an interaction between two particles within the cut-off
distance now reads: [15]

𝑚
d𝑣i(𝑡)
d𝑡

= 𝐹c(𝑟i,j) − 𝛾𝜔(𝑟i,j)𝑣i,j(𝑡) + 𝐹b(𝑟i,j) (3.28)

where (𝑟i,j) is the distance between the two particles, (𝑣i,j) is the relative speed between
the two particles, and 𝜔 is a factor that describes the variation of the drag coefficient
with the distance.

Nosé-Hoover

The Nosé-Hoover thermostat is a deterministic thermostat that properly samples the
canonical ensemble. Its principle is based around an extended Lagrangian that samples
that is setup in a way that samples the canonical ensemble in the real system. [15]

Synopsis

In Table 3.1, an overview of the above discussed thermostats is given. In general, stochas-
tic thermostats destroy momentum transport and should thus be avoided for simula-
tions where these properties are of interest, with the exception of DPD.
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In this work, the Langevin thermostat is used regularly for equilibrating polymer sys-
tems. For production runs, it is switched for the Nosé-Hoover thermostat.

Table 3.1: Overview of thermostats

Thermostat Short description Generates
proper
NVT

ensemble?

Conserves
momen-
tum

transport?

Stochastic?

Velocity scaling All velocities rescaled
to give exact desired
temperature every
timestep

No Yes No

Berendsen Exponentially-decayed
velocity rescaling

No Yes No

Andersen Hybrid MD/MC Yes No Yes
Langevin Stochastic collisions

and Stokes dissipation
Yes No Yes

Nosé-Hoover Extended Lagrangian Yes Yes No
DPD Pairwise Langevin Yes Yes Yes

3.4.2 Chemostatting using Grand Canonical Monte-Carlo
In the previous section, we discussed how we can use thermostats to exchange energy
with the environment with the goal to keep a constant temperature and sample the
canonical ensemble. We can do something similar for the grand canonical ensemble,
although this is less trivial in MD. It turns out that we need a kind of hybrid MD/MC
approach to exchange particles with the environment, because in a strictly MD simu-
lation, particles cannot inserted or removed from the system; in a MD simulation, a
system is inherently closed.

To overcome this limitation, we can intersperse dynamics withMonte Carlo sweeps that
insert or remove particles and keep their concentration or partial pressure (technically:
chemical potential) constant. When this is done for only one type of particles, this way
we can achieve a 𝜇𝑉𝑇 ensemble for only those particles, while the rest of the system is
simulated at constant 𝑁𝑉𝑇, as is customary for MD.

The simulation maintains a virtual reservoir (Figure 3.3), of which the chemical po-
tential (𝜇) or pressure (of a virtual ideal gas) is imposed. During a GCMC sweep, the
simulation code tries to exchange a number of particles between the virtual reservoir
and (a region of) the real simulation domain. If the free energy change of an exchanged
particle is negative (favourable), the exchange is accepted. If it is not, the exchange can
still be accepted by random chance, which probability is determined by the system’s
partition function, reflecting the Boltzmann statistics in the grand canonical ensemble.
[17]
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Virtual reservoir

Figure 3.3: Schematic illustration of the operation of the GCMC chemostat. The virtual reservoir
is only a mathematical construct and does not spatially reside next to the box.

3.5 Coarse-graining
Fully atomistic MD simulations, that is, simulations where the smallest features sim-
ulated are atoms, would be too computationally expensive for large-scale polymer
systems. Because we are not interested in the behaviour of the system on that scale
anyway, we use a technique called coarse-graining. This means that groups of atoms
are replaced by a single larger unit, or bead, which reproduces the same large-scale
phenomena as the fully atomistic simulation. Depending on the coarse-graining model,
chemical specificity can be limited or even lost.

3.5.1 Kremer-Grest
The Kremer-Grest model [19] is a coarse-grained polymer model where polymers are
represented by beads comprising several repeat units that are freely-joined and con-
nected by springs. As such, it is a specificMD implementation of a bead-springmodel of
polymers. One bead corresponds approximately to one Kuhn unit. Chemical specificity
is lost; with Kremer-Grest, one simulates a generic polymer in reduced Lennard-Jones
units. Mappings exist that can be used to convert observed properties to real units for
several examples of polymers afterwards.

In the Kremer-Grest model, non-bonded particles interact using a (truncated) LJ poten-
tial and bonded particles interact using a Finitely Extensible Non-linear Elastic (FENE)
potential (Equation 3.31) combined with a WCA potential.
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𝑈FENE(𝑟) = −0.5𝐾𝑅2
0 ln

(︄
1 −

(︃
𝑟

𝑅0

)︃2)︄
(3.29)

𝑈WCA(𝑟) =
{︄
𝑈LJ(𝑟) + 𝜖 for 𝑟 ≤ 21/6

0 for 𝑟 > 21/6
(3.30)

𝑈bond(𝑟) = 𝑈WCA(𝑟) +𝑈FENE(𝑟) (3.31)

In order to simulate an implicit solvent, a Langevin thermostat is employed, which
reproduces the effects of Brownian motion on the particles by the implicit solvent.

Figure 3.4: (a): Illustration of a bead-spring model of a polymer and the FENE+WCA potential
(b). [31]

Simulations using the Kremer-Grest model are commonly performed using reduced
LJ units defined on basis of the parameters of the LJ potential (𝜎 and 𝜖):

Table 3.2: Reduced LJ units

Length 𝑟∗ = 𝑟/𝜎
Energy 𝐸∗ = 𝐸/𝜖
Time 𝑡∗ = 𝑡/𝜏 = 𝑡

√︁
𝜖/(𝑚𝜎2)

Temperature 𝑇∗ = 𝑘𝐵𝑇/𝜖

3.5.2 MARTINI
The MARTINI force field [32] is a coarse-grained framework for modelling a wide
range of molecules. It is primarily developed for biomolecules, most particularly lipids,
but coarse-grained models for various polymers based on MARTINI have been devel-
oped as well. MARTINI is often used with the MD package GROMACS, but it can be
implemented in other MD packages as well.

The force field consists of a description of how to map groups of atoms to coarse-
grained beads, a pair potential for non-bonded interactions, a potential for bonded
interactions, and an angle potential and (possibly) a dihedral potential for representing
chain stiffness.
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In the MARTINI framework, molecules are coarse-grained by mapping (on average)
4 heavy atoms (C, N, O, etc) and their associated hydrogen atoms to one MARTINI
bead. The framework comeswith a library of standard beads (building blocks), ranging
from polar to apolar and varying in hydrogen bond capabilities and charge. By this
approach, a wide range of molecules can be coarse-grained while still maintaining
chemical specificity (see Figure 3.5). [33]

Figure 3.5: Graphical explanation of the coarse-graining principle of MARTINI showing how
atomistic models of phospholipids, proteins, water, benzene, and amino acids are mapped to
MARTINI beads. [34]

The non-bonded interactions are parametrised based on reproducing experimental
properties (top-down), while bonded interactions are parametrised based on repro-
ducing fully atomistic simulations (bottom-up).

The non-bonded interactions are described by the Lennard-Jones potential (Equation 3.10)
truncated and smoothly shifted1 at 1.2 nm. The interaction parameters (𝜖 and 𝜎 of the
LJ potential) for every pair of MARTINI beads are specified by an interaction matrix.
Charged particles additionally interact by an electrostatic (Coulomb) potential (Equa-
tion 3.32), also truncated at 1.2 nm. The latter mimics the effective distance-dependent
electrostatic screening. [32, 33]

𝑈C 𝑖 , 𝑗 =
𝑞𝑖𝑞 𝑗

4𝜋𝜖𝑟𝑖 , 𝑗
(3.32)

Bonded interactions are described by the simple harmonic potential (Equation 3.33).
Chain stiffness is described by the harmonic cosine potential (Equation 3.34) which
gives the energy as function of the angle between 1-3 consecutive atoms. Similarly, a
dihedral potential that gives the energy as function of the torsion angle between 1-4
consecutive atoms can be used. MARTINI does not specify a potential for this, but
specific models based on MARTINI can implement one. [32, 33]

1The truncation scheme used is similar to LJ/spline discussed in 3.2.1 and implemented as lj/gromacs
in LAMMPS.
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𝑈bond(𝑟) =
1

2
𝐾bond(𝑟 − 𝑟0)2 (3.33)

𝑈angle(𝜃) =
1

2
𝐾angle(cos(𝜃) − cos(𝜃0))2 (3.34)

30/68
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4.1 Model and methods
All simulationswere performed using theMDpackage LAMMPS (Large-scaleAtomic/-
Molecular Massively Parallel Simulator) [35]. Values are specified in reduced Lennard-
Jones units by default, unless a (dimensioned) unit is specified.

4.1.1 Lennard-Jones vapour-liquid equilibria
In order to study vapour hydration of polymer brushes, solvent is kept in the vapour
phase above the brush at a constant pressure. First, an appropriate value for this pres-
sure must be established.Wewant the pressure to be reasonably close to, but not higher
than the saturation pressure, as it would condense in the latter case. We can quantify
this using the relative vapour pressure, which we define here as 𝑝

𝑝sat
. Note that if the sol-

vent would be water, this term would be identical to relative humidity. Nevertheless, we
use the term relative vapour pressure here because our model is not specific to water.
Our goal here is to keep the solvent at 𝑝

𝑝sat
≈ 0.75. To know what pressure we need to

use, we first need to determine 𝑝sat.

The solvent consists of Lennard-Jones fluid (Lennard-Jonesium). The caveat is that the
thermodynamic properties of a LJ fluid are very sensitive to the exact truncation and
shifting method used [36]. Therefore, it is necessary to first determine the saturation
pressure of the LJ fluid at the conditions as it exists in our simulations before we can
proceed with the polymer brush simulations.

For a vapour in equilibrium with its liquid phase, the pressure should be constant and
equal to the equilibrium vapour pressure (saturation pressure) of the fluid. Hence, as
long as the system’s overall density is in the coexistence region, its pressure should be
independent of the overall density. If one would increase the density of a two-phase
system in equilibrium, either by decreasing the system’s volume or by adding particles,
more particles condense into a liquid and the ratio of particles in the liquid phase over
particles in the vapour phase increases but the pressure stays exactly constant.When the
overall density equals the density of the liquid phase, the entire system is in the liquid
phase and we have moved out of the coexistence region. Beyond this point, pressure
increases with increasing density again because we are then compressing the liquid.

However, it is not so trivial to simulate vapour-liquid coexistence and measure the
saturation pressure using MD as one might be inclined to think. First of all, in many
systems phase separation is suppressed at MD length and time scales, but this can be
easily overcome by choosing a sufficiently large box size. The second problem is that
we cannot simply use the total (mean) pressure in the system because this includes
(significant) contributions of interfacial tension.We can solve this by sampling pressure
profiles and looking specifically for the pressure within the bulk of each phase.

A cubic, periodic simulation box containing 𝑁 = 10000 LJ particles is set up with a
number density of 𝜌. It follows that the lengths of the box are:
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𝐿 =

(︃
𝑁

𝜌

)︃1/3
. (4.1)

The temperature is kept constant at 𝑇 = 0.85 using a Nosé-Hoover thermostat with a
time constant of 0.5 𝜏.

The simulation is run for 1M timesteps with a timestep of Δ𝑡 = 0.005 𝜏 while pressure
profiles over 𝑧 are sampled.

A set of 8 simulations is run with varying densities in the coexistence region: 𝜌 =

0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5.

4.1.2 Kremer-Grest polymer brush vapour solvation
Now that we know the saturation pressure of the LJ fluid, we can proceed to the simu-
lations of the polymer. A rough sketch of the system is shown in Figure 4.1. A polymer
brush is grafted to a planar wall at the bottom of the box (𝑧 = 0) with solvent vapour
above it. In a region at the top of the box, the solvent is allowed to enter and leave the
system through the GCMC mechanism outlined in 3.4.2.

Solvent vapour

Polymer brush

Figure 4.1: Schematic illustration of the simulated system.

The self-affinity of the polymer, the polymer-solvent affinity, as well as the solvent
pressure together determine the sorption behaviour of the solvated brush system. The
goal of these simulations is to investigate the behaviour of the brush systemas a function
of these parameters and identify distinct regimes.

All units in the Kremer-Grest simulations are reduced LJ units (Table 3.2), and the
timestep used is Δ𝑡 = 0.005 𝜏.

A system was set up consisting of a rectangular box of dimensions 31 x 35 x 46 𝜎 (𝑥,
𝑦, 𝑧 respectively) that is periodic in 𝑥 and 𝑦. A polymer brush is created by attaching
chains with lengths of 𝑁 = 30 in a random fashion to a flat stationary wall at 𝑧 = 0
consisting of LJ particles arranged in a hexagonal close-packed lattice. The wall is rigid
and fixed in place. The grafting density is 0.34 𝜎−2. This value was chosen so that the
system exists in a brush regime for all used solvent affinities.
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All non-bonded interactions are described by the potential-shifted LJ potential with
𝜎 = 1 and 𝑟c = 2.5 𝜎 unless otherwise stated. Solvent self-interactions use 𝜖ss = 1 while
polymer-solvent interaction energies (𝜖ps) and polymer self-interaction energies (𝜖pp)
are varied. Interactions with the wall are cut-off at 𝑟c = 21/6 𝜎, resulting in the WCA
potential and ensuring purely repulsive interactions of both polymer and solvent with
the wall.

Simulation procedure

The polymer system is first equilibrated from a fully-stretched initial situation for 106
timesteps. Then, solvent particles are introduced by the GCMC mechanism, which at-
tempts 500 insertions/deletions every 104 timesteps. This interval is sufficiently shorter
than the relaxation times of sorption in the brush. This simulation is run for 9 · 106
timesteps (4.5 · 104 𝜏).

Both the polymer and solvent are kept at a constant temperature of 𝑇 = 0.85 using a
chained Nosé-Hoover thermostat with a time constant of 5 𝜏. In combination with the
GCMC chemostat, this yields a grand canonical (𝜇𝑉𝑇) ensemble for the solvent, and a
canonical (𝑁𝑉𝑇) ensemble for the polymer.

Density profiles of the polymer and solvent over the 𝑧 direction are output.

4.1.3 MARTINI polymer brush vapour solvation
TheKremer-Grest simulations discussed above predict interesting results, but are chem-
ically aspecific. The affinity between the polymer and the solvent and the self-affinities
of the polymer and solvent have been chosen freely and are possibly not realistic.

The goal of performing MARTINI simulations is to identify ‘real’ combinations of poly-
mers and solvents for which we reproduce the sorption regimes found by the Kremer-
Grest simulations.

As MARTINI is chemically-specific, a MARTINI model that parametrises a specific
polymer is required. As a starting point, poly(ethylene) (PE) with acetone vapour
is evaluated. Water vapour was also considered, but was deemed computationally
infeasible because of its low volatility and thereby scarce vapour density.

A new scriptwas developed for generating the initial system (seeA.2 for details). Unlike
the Kremer-Grest system which uses a flat stationary wall consisting of LJ particles ar-
ranged in a hexagonal close-packed lattice to which the ‘grafting’ beads of the polymer
are bonded, the new generator does not use such a explicit structured wall. Instead, the
grafting beads are made stationary by fixing them in place and a flat structureless math-
ematical wall which exerts a purely repulsive harmonic force in the normal direction
only is put in place.
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Determination of saturation pressure

As with the Kremer-Grest simulations (4.1.1), as a first step, the saturation pressure
of the solvent was determined using liquid-vapour coexistence simulations. This time,
a tetragonal box with an aspect ratio of 5 was used instead of a cubic box, in order to
facilitate the slab geometry of the system at lower densities. Vapour-liquid simulations
are run with varying densities of MARTINI Na beads in the coexistence region: 𝜌 =

0.1, 0.2, 0.3, 0.4, 0.5 Å−3. The simulations are run for 5M timesteps with a timestep of
Δ𝑡 = 10 fs.

PE

For PE, the model by Panizon et al [37] is used. Here, a PE chain is coarse-grained as a
chain of MARTINI C1 beads, where a C1 bead represents two ethylene repeat units, i.e.
four carbon atoms and associated hydrogens (as is usual with MARTINI). To represent
the structural properties of PE, consecutive beads are constrained by angle and dihedral
potentials.

Matching the Kremer-Grest simulations

The MARTINI PE simulations are matched with the chemically aspecific Kremer-Grest
simulations using the mapping of the MARTINI model to the real polymer, and the
mapping of the Kremer-Grest model to that same real polymer (as described in Table
3 in Kremer and Grest [19]): In the Kremer-Grest model, one bead corresponds to 2.76
ethylene units, that is, a Kremer-Grest bead is 1.38 as large as a MARTINI bead for PE.
Also, 1 𝜎 = 5.1 Å, 1 𝜏 = 66 ps, and 1 𝜖/𝑘𝐵 = 448 K [19].

To match the Kremer-Grest simulations, a grafting density of 0.34/5.12 ≈ 0.013 Å−2 is
used. The chain length is chosen as 41 following the bead mapping relation described
above (30 · 2.76/2 ≈ 41). The box is 200Å wide in 𝑥 and 𝑦 and 225Å high in 𝑧. As
the polymer chain is 41 · 4.7 = 192.7 Å long at a fully extended state at equilibrium
bond lengths, this is sufficiently large to prevent periodic artifacts from polymer chains
interacting with their own image.

It is worth noting that the Kremer-Grest mapping is based on dynamic properties of
the coarse-grained polymer, and that the model thus does not necessarily accurately
reproduces all static properties like Kuhn length [19]. As the MARTINI model is more
sophisticated, it is expected to perform better in this regard.
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Simulation procedure

The polymer system is first equilibrated for 5000 timesteps by running dynamics with a
limit imposed on themaximummovement of a particle in one timestep (fix nve/limit)
of 1Å and thermostatted by Langevin dynamics with a damping parameter of 5000 fs.
This is followed by an energyminimisation using the conjugate gradient method (min_-
style cg) and then again 1000 timesteps of more viscous Langevin dynamics with a
damping parameter of 500 fs and without the limit. This procedure is chosen to relax
the system from the low-entropy initial state (fully-extended chains) as quickly and
efficiently as possible. The first Langevin dynamics run intentionally has a rather long
damping constant in order not to cool the system too quickly; if that happens, the sys-
temwill ‘freeze’ and take very long to relax to its equilibrium state. The longer damping
constant allows the system to first heat up and stay at a relatively high temperature
while it relaxes to ‘anneal’ the system. The second dynamics run has a much more
viscous Langevin thermostat in order to drain the energy and cool the system to the
desired temperature.

After the equilibration, solvent particles are introduced into the system in the same
way as with the Kremer-Grest simulations. The simulation is run for 5 · 109 timesteps
(0.1ms). Density profiles are output.

Timestep and numerical stability

Generally an as long as possible timestep is desired for computational efficiency rea-
sons. For MARTINI simulations, timesteps of around 20 fs are common. In some cases,
a timestep as high as 40 fs is attainable, although this cannot always be reached due
to limited numerical stability depending on the exact system [32]. In the case of the
PE model, Panizon et al mention a shorter timestep of around 10 fs to 15 fs might be
required to keep the simulation stable because the use of dihedral constraints in com-
bination with an angle constraint with an equilibrium angle of 0°, which results in
numerical instabilities as the dihedral potential assumes asymptotic values when the
relevant bond angles approach 0° [37].

We were not able to reproduce a numerical stable simulation with a timestep of 15 fs. In
fact, a timestep of 5 fs was required for the simulation not to crash and the total energy
was still not conserved in 𝑁𝑉𝐸 dynamics at a timestep as short as 1 fs.

Using the rRESPA multi time scale integrator, stable dynamics was achieved with an
outer timestep of 20 fs and a 10-fold as short inner timestep. Non-bonded pair interac-
tions are evaluated on the outer timestep, while bond, angle, and dihedral interactions
are evaluated on the inner timestep.
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4.2 Results and discussion

4.2.1 Determination of saturation pressure

On the geometry

The system phase separates and adopts a slab geometry, i.e. there is layering in 𝑧 with
𝑥𝑦 planes as interfaces (see Figure 4.2).

Figure 4.2: Snapshots at 𝜌 = 0.15 (left) and 𝜌 = 0.5 (right).

The interfacial tension dictates the geometry of the system. Depending on the overall
density, there can be one or two stable situations: a droplet of liquid, pulled into a sphere
by interfacial tension, surrounded by vapour, or a slab of liquid with vapour below
and above it. The latter is only stable because it can ‘cheat’ by the periodic boundary
conditions: there is no interface in two of the three dimensions.

In Figure 4.3 the interfacial areas are shown for the two situations depending on the
overall density. Like in the simulations, the number of particles is kept constant here,
so the system volume is varied. Only the liquid phase is considered here for simplicity
reasons, i.e. there is no vapour phase and the number of particles in the liquid phase
does not decrease when the system volume increases. This suffices for this purpose.
It follows from this that the interfacial area for a droplet is constant and given by the
surface area of a sphere of volume 𝑁

𝜌𝑙
(Equation 4.2). The interfacial area of the slab

is given by two times a face of the cubic box (Equation 4.3), which increases with
increasing box volume (and thus with decreasing overall density).

𝐴droplet = 𝜋
1
3

(︃
6
𝑁

𝜌𝑙

)︃ 2
3

(4.2)

𝐴slab = 2

(︃
𝑁

𝜌

)︃ 2
3

(4.3)

We can identify a couple of ‘critical‘ densities, plotted in Figure 4.3 as vertical dashed
lines. The first is the equilibrium density, where the interfacial areas of both geometries
are equal. Hence, below the equilibrium density, a spherical droplet is favoured but
a slab can sometimes still exist in a metastable state. The other is the critical droplet
density, above which a spherical droplet simply cannot exist, not even in a metastable
state, because its diameter exceeds the box dimensions. From this we can conclude we
can use the overall density range from 0.19 to 0.7.
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Figure 4.3: Interfacial areas for spherical and slab geometries as function of the overall density
for the LJ system.

Even though there is interfacial tension, there is nomeniscus because there are nowalls;
the system is periodic in all dimensions.

Density and pressure profiles

In Figure 4.4 an example of a density and pressure profile is shown for 𝜌 = 0.3. Along
the density profile, the gradient of the density is plotted. The gradient is used to identify
the bulk phases: all points where the gradient of the density is lower than a certain
threshold are marked as ’bulk’ and the pressure at these points is averaged.

It can be seen that the pressure in the bulk is constant and that the bulk vapour pressure
is equal to the bulk liquid pressure, as it should be. On the interfaces however, the
pressure deviates and even goes into the negatives because of the contribution of the
interfacial pressure.

Saturation pressure versus overall density

The construction described above is repeated for every 𝜌, so that the saturation pressure
for every 𝜌 is obtained. This is plotted in Figure 4.5. The data shows almost no depen-
dency on the overall density, as we expected. The first point at 𝜌 = 0.15 is considered
an outlier because the interface here was not stable and planar enough and there was
not enough bulk liquid in this case to get an accurate average bulk pressure.
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Figure 4.4:Density (top) and pressure (bottom) profiles for 𝜌 = 0.3. The orange points indicate
the bulk phases.
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Figure 4.5: Mean pressure in the bulk of both phases as a function of overall density.

The final result of this simulations is that the saturation pressure of the Lennard-Jones
fluid at 𝑇 = 0.85 is 0.021 𝜖𝜎−3.

39/68



CHAPTER 4. SIMULATIONS

4.2.2 Kremer-Grest

Analysis of a density profile

The sorption behaviour of the brush system is evaluated by analysing time-averaged
density profiles of the polymer and solvent over the 𝑧 direction. In Figure 4.6 three
examples of snapshots of vapour-solvated Kremer-Grest polymer brush system are
shown with the corresponding density profiles (rotated 90°) below them.

0 5 10 15 20 25 0 5 10 15 20 25
Z-distance ( )

0 5 10 15 20 25

Polymer

Solvent

Figure 4.6: Three snapshots at 𝜖ps = 1.40 for 𝜖pp = 0.60, 1.40, 2.00 (from left to right) with
corresponding polymer and solvent density profiles.

The oscillations in the polymer density close to the substrate (𝑧 = 0) are caused by
layering effects stemming from the perfectly flat substrate. This is a well-known effect
that also occurs in real-life systems [38, 39, 40], but is otherwise irrelevant for the scope
of this work.

In Figure 4.7, a characteristic example of a density profile is shown with three dotted
vertical lines that indicate distances significant for analysis of these profiles. The first is
the inflection point (point of maximal slope) in the polymer density profile, which is
used to define the border of the brush. There is still appreciable polymer density above
this point, but the inflection point is commonly used as a mathematically significant
definition of the brush height that does not depend on any ‘magic‘ (arbitrary) numbers.
When a more extensive measure of the brush height is desired (outer brush height), the
point ofmaximum curvature of the polymer density profile is used. For determining the
border of the adsorption layer, simply an arbitrary threshold in the gradient of the solvent
density profile is used. Above this last border, the vapour bulk starts. The methods
above are heuristic to a certain extent but were found to work well with the entire range
of Kremer-Grest results.

These points are used to define limits used in the processing of the profiles. The solvent
density profile is integrated up to the brush height to yield the amount of solvent in
the brush (absorption), and likewise from the brush height up to the adsorption layer
border to give the amount of solvent on the brush (adsorption). The adsorption layer
thickness is measured from the outer brush height to give a more conservative measure
of the thickness.
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Figure 4.7: Example of polymer and solvent density profiles with significant points indicated.

Probing 𝜖pp and 𝜖ps parameter space

A parameter sweep over both the polymer self-affinity (𝜖pp) and polymer-solvent affin-
ity (𝜖ps) was performed to obtain the grid in Figure 4.8. Each of the 16 plots shows
the density profiles (number density vs 𝑧-distance) of the polymer and solvent in the
brush system. The brush height is represented by the leftmost dotted line, and the
rightmost dotted line indicates the adsorption layer border. Several sorption regimes
can be distinguished: strong absorption in the top-left corner of the grid (low 𝜖pp, high
𝜖ps), only adsorption in the top-right corner (high 𝜖pp, high 𝜖ps), and no sorption at
the bottom (low 𝜖ps). Note that adsorption occurs in every case there is sorption, as
evidenced by the solvent density profile extending beyond the brush.

While the grid of density profiles contains all information about the sorption behaviour
of the system, it can be hard to identify trends. For that reason, the amount of absorp-
tion and adsorption (as calculated by the integrals of the solvent density profile) can
also be plotted as a heatmap (Figure 4.9). These heatmaps also have increased resolu-
tion in 𝜖ps. From this it is more clear that the absorption regime occurs in the top-left
corner of the heatmap, approximately above a diagonal line. This suggests that there
is a more fundamental parameter governing the absorption transition. Concerning the
adsorption, it is evident that polymer self-affinity has negligible influence.
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Figure 4.8: Polymer and solvent density profiles for a 4x4 grid of 𝜖pp and 𝜖ps values. The dotted
lines indicate the borders of the adsorption layer.
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Figure 4.9:Heatmaps of amount of absorbed (left) and adsorbed (right) solvent for a 8x4 grid
of 𝜖pp and 𝜖ps values.

Yet another representation of the samedata is given in Figure 4.10 in the formof sorption
curves as function of 𝜖ps for every 𝜖pp. The absorption curves have roughly the same
shape, but are shifted horizontally. The adsorption curves overlap virtually perfectly
for low polymer-solvent affinities, but diverge slightly as polymer-solvent affinities
increase.

Our suspicion is confirmed in Figure 4.11, where the 𝜖pp and 𝜖ps parameters are remap-
ped to the relative affinity:
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Figure 4.10: Absorption (left) and adsorption (right) plotted against 𝜖ps for several values of
𝜖pp. The lines connecting markers are meant to guide the eye.

𝑊 = (𝜖pp + 𝜖ss − 2𝜖ps)/2 (4.4)

where 𝜖ss is the solvent self-affinity, fixed at 1 in all simulations. When the absorbed
solvent is plotted against𝑊 , all the curves except for the case of highest polymer self-
affinity perfectly overlap. This suggests that there is only one parameter, not two, con-
trolling the absorption behaviour of the system. As 𝑊 is purely enthalpic in nature,
this also suggests that entropic contributions of the polymer stretching do not play a
significant role. Furthermore, there seems to exist a (second-order) transition in the
absorption, occurring at𝑊 = 0. This corresponds to the condition 𝜖ps = 1

2𝜖pp+ 1
2 , which

coincides with the slope we found in Figure 4.9.
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Figure 4.11: Absorption plotted against𝑊 (the relative affinity) for several values of 𝜖pp. The
lines connecting markers are meant to guide the eye.

Varying solvent pressure

As we vary the solvent vapour pressure above the brush for two cases of polymer
self-affinity (𝜖pp = 0.6 and 𝜖pp = 1.4) we obtain the density profiles in Figure 4.12.
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Figure 4.12: Polymer and solvent density profiles for varied solvent pressure at 𝜖ps = 1.0 and
two 𝜖pp values (0.6 and 1.4).

In a similar fashion as with the affinity parameter space results, these density profiles
can be converted to absorbed and adsorbed solvent. These plots are shown in Figure 4.13.
From there, it can be seen that the amount of absorbed solvent increases monotonically
with relative solvent pressure. The adsorption behaviour is virtually identical for both
cases of polymer self-affinity and it is purely the absorption behaviour which differs.
The absorption also drives the brush swelling, as the brush height stays perfectly con-
stant for the high polymer self-affinity case.

Also striking is that the brush height increases very linearly with the amount of ab-
sorbed solvent (Figure 4.14). This implies that no filling of free volume in the polymer
brush by solvent occurs, since every added particle of solvent increases the total volume
of the brush.
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Figure 4.14: Brush swelling: brush height plotted against absorbed solvent shows a linear rela-
tion.

Adsorption layer thickness

As interface effects can be very sensitive to the truncation of the potentials, the effect of
the polymer-solvent cut-off (𝑟c, ps) on the thickness of the adsorption layer (measured
from the outer brush height to the border with the bulk vapour)was investigated at two
values for the solvent pressure: 𝑝/𝑝sat = 73.3% and 𝑝/𝑝sat = 98.9%. In both cases, the
adsorption layer thickness increases monotonically with the cut-off, but both plateau
at a cut-off around 2.5 𝜎, which is reassuring for the validity of our simulations.

In both cases, the thickness of the adsorption layer exceeds the cut-off, something that
was also already seen in Figure 4.12. This seems paradoxical at first, since solvent par-
ticles that are further away from the brush surface than 𝑟c do not interact with the
brush. However, this effect also occurs in solvent adsorption on a planar substrate (Fig-
ure 4.16).
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This multi-layer adsorption in excess of the cut-off occurs because the outer solvent
layers are attracted to the local solvent density enhancement of the layer beneath, which
in turn is caused by the attractive interaction with the polymer brush.
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Figure 4.15: Influence of the polymer-solvent cut-off on the adsorption layer thickness.
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Figure 4.16: Solvent density profile of adsorption on a planar substrate with a default cut-off of
𝑟c = 2.5 𝜎 at 𝑝/𝑝sat = 98.9%, showcasing multi-layer adsorption with a thickness in excess of
𝑟c.
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Solvent-induced crystallisation

When the polymer-solvent affinity was increased to extreme values, regular ordering of
the polymer brush into ‘pillars’with solvent between themwasdiscovered (Figure 4.17).
This system appears to be genuinely crystalline, as evidenced by 𝑥𝑦 (averaged over
𝑧) density maps and (the magnitude of) their Discrete Fourier Transforms (DFTs)
(Figure 4.18). The DFT transforms a signal to the frequency domain, with points lying
farther from the origin denoting higher frequency components of the signal. It helps to
discern periodic patterns, although it is rather clear here from the density maps itself
that the polymer is ordered in a crystal lattice. Still, it resolves that both the polymer
and solvent are arranged in the same lattice since their DFTmaps are virtually identical;
the solvent just has a different basis.

Although polymer crystallisation is nothing particularly exciting, this result is because
in this system the polymer does not crystallise by itself. Rather, the crystallisation is
driven by the strong attractive interactions between the polymer-solvent binary system.
Presumably, a polymer system like this does not exist in the real world because of the
extreme interactions between polymer and solvent. A real-world example of a system
that might come closest to the behaviour seen here might be a ionic liquid, but that is
obviously not a polymer.

Figure 4.17: Snapshot of a solvent-induced crystalline polymer brush system with 𝜖pp = 0.6
and 𝜖ps = 2.0.

Octopus micelles

In some cases, when the grafting density of a polymer brush is close to critical and
the solvent quality is suddenly reduced, surface structures called octopus micelles can
form [41]. These structures are characterised by chains grafted from different locations
clumping together in a single globule upon collapse, resulting in nanoscale surface
segregation.
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Figure 4.18: 𝑥𝑦 polymer and solvent density maps (left) and the magnitude of their DFTs
(right) for a brush system with 𝜖pp = 0.6 and 𝜖ps = 1.8.

Interestingly, octopus micelles are the true free energy minimum (equilibrium), but
are only formed when the solvent quality is suddenly reduced, as the entangled chains
then collapse together in a collective globule. When the solvent quality drop is gradual,
individual chains first get the chance to relax and collapse into individual globules in
the intermediate solvent quality state which then prevents further contact with adjacent
globules when the solvent quality decreases more (Figure 4.19). Hence, the uniform
film of collapsed polymer is actually a metastable, frustrated state which is only formed
when solvent quality is slowly decreased. This is unlike most other metastable systems
such as glasses, which are formed by suddenly cooling a system so it gets kinetically
frustrated before it can reach the equilibrium state. [41]

This behaviour was found to occur with the Kremer-Grest simulations for a grafting
density of 0.17 𝜎−2, 𝜖pp = 1.0, and 𝜖ps = 1.0 (Figure 4.20). It was no longer found to
occur when the grafting density was increased to 0.34 𝜎−2.
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Figure 4.19: Illustration of the formation of octopus micelles upon decreasing solvent quality.

Figure 4.20: Snapshot of a simulation showcasing octopus micelles.
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4.2.3 MARTINI

Determination of saturation pressure

In Figure 4.21, density and pressure profiles of the coexistence simulations are shown
in a similar fashion to Figure 4.4. Compared to the analogous simulations with generic
Lennard-Jones fluid for the Kremer-Grest simulations, the pressure profiles here show
much more fluctuations in the liquid phase. The fluctuations in the liquid phase are
higher than in the vapour phase, which is strange because statistically onewould expect
the opposite since the number density in the liquid phase is orders of magnitude higher.
The reason for this behaviour is as of now unclear.

Nevertheless, the saturation pressure was determined by performing the construction
for a range of overall densities leading to the plot shown in Figure 4.22. A negative
linear trend is visible, but this is attributable to the effect that at higher overall densities,
more of the fluid is in the liquid phase and thus the fluctuations in the pressure are
given more weight. The true saturation pressure is probably closer to the upper value
(∼ 0.185) than to the lower value (∼ 0.155). For now, we go with a value of 𝑝sat ≈ 1.75.

PE

The MARTINI PE brush is in many ways different and more realistic than the Kremer-
Grest system, but in other aspects also quite similar. PE coarse-grained usingMARTINI
is still a fully linear chain of beads, just like Kremer-Grest. MARTINI also still uses the
same Lennard-Jones potential between non-bonded particles (although the truncation
and shifting is different). Hence, it is not surprising that the behaviour of the MARTINI
PE system is not that different.

The MARTINI PE model does differentiate itself in the mechanical behaviour because
chain stiffness is more accurately represented. In the Kremer-Grest model, chain stiff-
ness is completely coarse-grained away as the bead size is equal to the polymer’s Kuhn
unit. The MARTINI PE model features a somewhat smaller bead size and does imple-
ment angle and dihedral constraints which give rise to a chain stiffness. However, this
does not really influence sorption behaviour in any way.

Density profiles

The PE brush solvated by acetone (Na beads) vapour shows a little bit of adsorption
at the brush border and near the substrate, but no significant absorption. In terms of
a comparison to the Kremer-Grest results, the density profile is similar to a profile
with low-to-moderate polymer-solvent and polymer self-affinities, like 𝜖pp ≈ 0.6 and
𝜖ps ≈ 0.6.
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Figure 4.21: Density (top) and pressure (bottom) profiles for 𝜌 = 0.002Å−3 (left) and 𝜌 =

0.005Å−3 (right). The orange points indicate the bulk phases.
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Figure 4.22:Mean pressure in the bulk of both phases as a function of overall density.

0 50 100 150 200
Z-distance (Å)

0.000

0.002

0.004

0.006

0.008

0.010

De
ns

ity
 (Å

3 )

Polymer
Solvent
Polymer inflection point

Figure 4.23: Polymer and solvent density profiles of a MARTINI PE in acetone vapour.
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5 | Conclusion and outlook

The vapour-solvated polymer brush simulations using the Kremer-Grest model show
that the sorption behaviour can be predicted based on the polymer self-affinity and the
polymer-solvent affinity. The adsorption behaviour was found to be controlled by the
polymer-solvent affinity. At low polymer-solvent affinity, there is negligible sorption.
The amount of adsorption increases with polymer-solvent affinity, but was found to be
virtually independent of polymer self-affinity. Absorption was found to be controlled
by the relative affinity (𝑊). As such, absorption occurs when the polymer self-affinity
is sufficiently low, and the polymer-solvent affinity sufficiently high.

When varying the solvent pressure, the sorption increases smoothly with the solvent
pressure. The swelling was also found to be perfectly linear with absorbed solvent,
which proves that no filling of free volume occurs.

At high vapour pressures, very thick adsorption layers are formed. It was demonstrated
that accurate reproduction of this phenomenon depends strongly on the polymer-
solvent cut-off, but that a cut-off of 𝑟c = 2.5 𝜎 is sufficiently large, since the thickness
plateaus at this point.

The Kremer-Grest model is questionable in several regards. For one, in this model
the solvent particles are equal in size to the coarse-grained beads (Kuhn units) of
the polymer, which is far from realistic for most polymers and solvents. Moreover,
the interaction parameters (𝜖pp and 𝜖ps) used here are most probably very extreme
compared to values that accurately model real-life polymer and solvent combinations.
Likewise, the LJ fluid is rather volatile compared to real-life fluids like water or acetone.

The simulation of PE in acetone vapour, modelled by MARTINI, showed no drastic
differences. The MARTINI PE model suffered from severe numerical stability issues in
LAMMPS stemming from the use of a angle potential with an equilibrium angle of 0
with a dihedral potential. For further use of this model, it might be worthwhile to look
into implementing the combined bending-torsion (CBT) potential in LAMMPS, which
does not suffer from this problem.

PE in acetone showed very little sorption, as is expected because in real-life acetone
is not a particularly good solvent for PE. In follow-up work, it will be interesting to
simulate different solvents such as alkanes, which can be modelled by MARTINI C1

particles, with PE. Similarly, different polymers, like poly(ethyleneglycol) (PEG) or
poly(styrene) (PS) will be interesting.
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A | Excursions in computer anddata
science

A.1 Poisson-disk point set generation algorithms
APoisson-disk point set is a set of points randomly sampled fromauniformdistribution,
with the constraint that no pair of points is closer than a given distance 𝑟 [42, 43].

These sets see use as sources of ’blue noise’, for example for dithering noise in image
processing. However, for us, they are important for application as grafting points on a
substrate; after all, when creating a polymer brush system to use as initial conditions
for a MD simulation, we want to ’graft’ the polymers in a random, uniform fashion
to plane, however, just sampling points from a uniform distribution would inevitably
yield some points that are unrealistically close to each other. In a real-world system,
two grafting points would never be closer than a certain minimum distance, even in
grafting-from, because steric hindrance prevents two anchoring molecules to adsorb to
the substrate closer than their size.

A.1.1 Naive sifting
It is not trivial to come up with an efficient algorithm for generating Poisson-disk point
sets. A simple first candidate algorithm would be to sample 𝑛 points from an uniform
distribution, and then sift through all pairs of points using nested loops to look for
’overlapping’ points and move those. The number of pairs is equal to 𝑛 choose 2:(︃

𝑛

2

)︃
=

𝑛!

2!(𝑛 − 2)! =
(𝑛 − 1)𝑛

2
(A.1)

hence, keeping the point density (𝑛 divided by the domain area) and 𝑟 constant, this
algorithm’s time complexity is 𝒪(𝑛2), which is already not ideal. Additionally, when
the desired point density is very high compared to 𝑟, this algorithm takes very long to
converge. In practice, this means this approach is entirely unfeasible if densities higher
than approximately half the close packing density (Equation A.2) are desired.

𝜂h =
2
√
3

3𝑟2
(A.2)
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A.1.2 Naive dart throwing
It is more efficient to add points one by one, checking for overlap after sampling each
point from an uniform distribution. This algorithm also runs in 𝒪(𝑛2) time (at constant
density), but is less computationally expensive than naive sifting. Just like naive sifting,
it takes asymptotically longer to converge when densities become higher, because the
probability of a new point being accepted approaches 0 as the density approaches the
maximal Poisson-disk point set. One drawback to naive dart throwing is that unlike
the naive sifting approach, it is not possible to attain densities close to the close pack-
ing density (even with unlimited computing time), because existing points cannot be
moved. The highest attainable density is the maximal Poisson-disk point set.

Both the naive sifting and the naive dart throwing algorithms require an iteration limit
(of the outer loop) in practice because of the prohibitively huge execution times for
higher 𝑛 and point densities. The difference between the two algorithms is that the
point set the naive sifting algorithm returns when it is halted by the iteration limit is
not a valid Poisson-disk point set because it will contain points that are closer than 𝑟,
whereas the naive dart throwing algorithm does return a valid Poisson-disk point set
in that case, albeit an incomplete one; it will contain less points than requested.

A.1.3 Dart throwing accelerated by a cell list
An even better approach is to first subdivide the domain into square cells, where the
cell size is as large as possible while still being totally covered by the ’exclusion circle’
of a point anywhere in the cell. This results in a cell size of 𝑟√

2
(see Figure A.1a). This

way, every cell can at most contain one point, so if we know that a cell contains a point,
we don’t need to try to put another point in it. We can also use this grid to accelerate
the search for overlapping points, because we only need to look in the 20 neighbouring
cells (see Figure A.1b).

r/√2

r

(a) (b)

Figure A.1: a: 𝑟√
2
is the maximum size of the cells while they are still totally covered by a point

anywhere inside them. b: 20 cells surrounding the central cell could contain points that overlap
with points in the central cell: a 5x5 grid excluding the central cell and the 4 corner cells.

This algorithm functions in roughly the following way:
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APPENDIX A. EXCURSIONS IN COMPUTER AND DATA SCIENCE

1. Divide the domain into square cells of size 𝑟√
2
and put them in a (flat) list of active

cells.

2. While the number of points is less than the desired number of points:

(a) Choose an active cell and ’throw a dart’ in it: sample a point from an uniform
distribution.

(b) Check for overlap by checking the distance to all points in the 20 neighbour-
ing cells (a 5x5 grid centred around the current cell, excluding the current
cell itself and the 4 corner cells) using the cell lookup list (Figure A.1b).
If there is no overlap, add the point to the total list and to the cell lookup list,
and remove the current cell from the active cells list.

Two data structures are maintained: the active cells list, which is a list containing tuples
of cell indices of the cells that do not contain a point. It starts out containing all the cells.
When a point is added to a cell, the cell is removed form the active cells list. The cell
lookup list is a 2D matrix that starts out empty. When a point is added, its coordinates
get added to the respective cell in the list, in order to accelerate searching for overlaps.

The big advantage is that this algorithm appears (empirically) to be 𝒪(𝑛), i.e. linear
in time with respect to 𝑛 at constant 𝑟 and point density. This can be seen from Fig-
ure A.2. Note that in the constant size case, the iteration limit is hit around 𝑛 ≈ 90, as
evidenced by the plateau in the "naive dart throwing" data. Also note that the curves
in the constant size case do not appear linear in the log-log plot, which means they run
in superpolynomial time (probably exponential time).
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Figure A.2: Time complexity plots (𝑡 vs 𝑛) for constant 𝑟 and domain area (i.e. increasing point
density) (left) and for constant 𝑟 and point density (right). The bottom plots show the same
data, but in log-log form. The constant density cases are shown with polynomial fits (quadratic
fits for the naive algorithms, and a linear fit for the "dart throwing cells" algorithm).
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A.2. LAMMPS BRUSH GENERATOR

This algorithm can end in one of three ways: either the desired number of points is
reached, no active cells are left, or there are active cells left but the point set is maximal
and no extra points can be added to the set. In the first case, the result (consisting of
a set of point coordinates) is satisfactory. In the second case, the result is a valid point
set, but the density is lower than requested. In the third case, the algorithm doesn’t halt
intrinsically and a iteration limit (of the outer loop) is required to halt the program
after some time.

The code can be found at https://github.com/Compizfox/MD-scripts/blob/master/
PoissonDiskGenerator.py.

A.1.4 More sophisticated algorithms
Cline and Egbert [42] showed the above algorithm can be improved further by recur-
sively subdividing the cells into 4 smaller cells in a quadtree-like fashion every time
an overlap test fails in an active cell. This is called "Hierarchical Dart Throwing" and
improves the performance further at the cost of some additional implementation com-
plexity.

If maximal point sets are required, a very nice algorithm exists by Bridson [44] that is
𝒪(𝑛), but it only generates maximal point sets.

A.2 LAMMPS brush generator
For use with the MARTINI simulations, a new brush generator script was developed
in Python that is more extensible and thus can handle Kremer-Grest topologies as well
as more complex molecular topologies one might encounter in MARTINI models.

The script consists of a generic (abstract) class BrushGenerator that defines model-
agnostic code for building a polymer brush system and writing the initial data file
in the format LAMMPS accepts. It makes use of a Poisson-disk point set generator
(implemented in a separate class PoissonDiskGenerator) as described above in A.1.3
to generate coordinates of the grafting layer.

Model-specific classes subclass (inherit from) BrushGenerator, with themost important
method being overridden being _build_bead(). This method is called iteratively in
build() and should be implemented according to the polymer model. Its function is
to ‘build a bead’ of the polymer chain and append the coordinates, bonds, angles, and
dihedrals (if applicable) to the object’s non-final lists.

When build() is run, it calls _build_bead() for every bead for every chain and converts
the non-final lists to Pandas DataFrames afterwards. Then, in write(), the DataFrames
are read and converted to a LAMMPS data file, together with force field coefficients.

This way, the code that does not depend on the exact polymer model is contained in a
single, abstract class which can easily be subclassed to implement a specific polymer
model with minimal extra code.

The code can be found at https://github.com/Compizfox/MD-scripts/tree/master/
BrushGenerators.

57/68

https://github.com/Compizfox/MD-scripts/blob/master/PoissonDiskGenerator.py
https://github.com/Compizfox/MD-scripts/blob/master/PoissonDiskGenerator.py
https://github.com/Compizfox/MD-scripts/tree/master/BrushGenerators
https://github.com/Compizfox/MD-scripts/tree/master/BrushGenerators


B | About LAMMPS performance
and scaling

There are several factors impacting the total resultant performance (as usually mea-
sured in simulation time per wall time, e.g. ns d−1). On ‘the bottom’ (the lowest level)
we have the performance of the hardware (which can, for a certain configuration of
hardware, also be influenced by core clock boosting/throttling1). The next level is the
operating system kernel (usually Linux, in the case of HPC), followed by the MD
code itself and how it is compiled. We limit the scope here to LAMMPS. Finally, the
specific system one is simulating and the simulation settings (cut-offs, neighbouring
intervals/skin sizes, timesteps, etc) have a big impact.

Because every layer in this stack influences the performance in someway, it is non-trivial
to make general statements about performance of MD.

B.1 Compilers
The act of translating the source code of a computer program into machine code is
called compilation and is performed by a compiler. Several compilers exist, even for one
programming language (such as C++). Some popular ones for the C language family
are:

• GCC (GNU Compiler Collection)

• Clang (C language family frontend for LLVM)

• ICC (Intel C++ Compiler)

The first two are free2, while the Intel compiler is proprietary. GCC is the most used
free compiler and was developed as part of the GNU project. Clang is a newer compiler
that is built upon the LLVM compiler framework.

The compiler one uses to compile a program can have a pronounced effect on the per-
formance of resulting machine code. Compilers carry out numerous optimisations that
can be set using compile-time options and some compilers are better at these optimi-
sations than others. The Intel compiler famously excels at generating very performant
machine code for Intel CPUs specifically. However, it is less common on Linux systems
and besides rather infamously known for generating sub-optimal code for their com-
petitor’s (AMD) processors [45]. Clang has a reputation for the compilation itself being
quicker than GCC’s, but not generating as well-optimised machine code as GCC does.

1Most modern CPUs and GPUs will dynamically ‘boost’ their clock frequency above their base clock,
provided that cooling and power delivery conditions permit it. Generally, if only one CPU core is loaded,
the system will only boost that core (single-core boost). The maximum single-core boost clock is higher
than the all-core boost clock.
Similarly, when cooling or power delivery is insufficient a processor can (respectively) thermal throttle

or power throttle (adjust their clock to below the base clock). Most low-power passively-cooled mobile
hardware (in laptops) operates in this state under normal conditions, but in desktop/server hardware
this is always undesirable.

2As in freedom, see: https://www.gnu.org/philosophy/free-sw.en.html
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B.2 LAMMPS parallelisation mechanisms
Without applying any clever tricks, the MD algorithms are single-threaded and thus
only take advantage of oneCPU core. This is not ideal because contemporaryCPUs have
many cores, and supercomputers can even leverage multiple nodes at once. Luckily,
there are several ways to speed up LAMMPS performance by introducing parallelisa-
tion.

B.2.1 MPI (spatial domain decomposition)
The most obvious and (in most cases) most effective approach to this is to divide the
simulation volume (domain) into smaller subdomains in a process called spatial do-
main decomposition [22, 35]. Every subdomain is then assigned to a separate CPU core,
which runs an independent instance of LAMMPS. This does however inevitably intro-
duce complications: the simulation needs to knowwhat happens just over the interfaces
of the subdomains because particles near the interfaces are within the cut-off range of
particles that might be on the other side. Particles can also move over the interface, and
need to be handed over to the different LAMMPS instance. In other words: there needs
to be a means of communication. This is realised by the Message Passing Interface
(MPI): a general-purpose protocol for communication between parallel instances of a
wide variety of programs. Several implementations of MPI exist, of which OpenMPI is
the most popular example.

The communication overhead is proportional to the total interfacial area of the sub-
domains. Therefore, LAMMPS tries to minimise this interfacial area for a requested
number of subdomains. Another consequence of this fact is that at some point the
speed-up gained by subdividing the domain is overshadowed by the communication
overhead brought along with it, at which point the performance scaling plateaus: at
this point it is said that the simulation “does not scale" any more. [35]

Sub-domain balancing

If the simulated system is perfectly homogeneous (no large-scale density variations
exist), we don’t havemany issues; the workload is evenly distributed over all MPI ranks.
However, if this is not the case, and this is often not the case, some subdomains contain
many more particles and other subdomains might be almost (or fully!) empty. This
hurts our parallelisation efforts because some of theMPI ranks are now not doingmuch
at all.

We can correct this problem bymaking the division of the domain into subdomains non-
uniform, thus increasing the volume of subdomains in sparse regions of the simulation
domain, while subdividing dense regions into more, smaller subdomains with the goal
of balancing the number of particles (and thereby the approximate workload) over the
subdomains.

Inhomogeneities arise for example in vapour-liquid coexistence simulations, where
an interface separates the much denser liquid phase from the vapour phase, but also
in polymer brush simulations where the bottom of the simulation volume contains
grafted polymer, but the top of the box is empty or contains a solvent vapour. In both
of the aforementioned examples, the system is homogeneous in 𝑥 and 𝑦; the density
variations only exist over z. This simplifies the balancing problem considerably.
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Balancing can be performedonce (balance in LAMMPS) or periodically (fix balance),
the latter being useful if the density variations change with time (for example, because
the polymer brush collapses/swells during the course of the simulation).

B.2.2 OpenMP (threading)
An alternative to spatial domain decomposition is multi-threading of the computations,
such as force computations and neighbouring themselves. This is possible in LAMMPS
through the USER-OMP package, which implements threading through the OpenMP
libary. [17]

OpenMP threading can be enabled in conjunction with spatial domain decomposition
(MPI), in which case every MPI rank uses a number of OpenMP threads.

It is hard to make general statements about the optimal number of OpenMP threads as
this is very sensitive to the specific system that is simulated, but in general OpenMP
threading is most effective when a few threads are used. MPI parallelisation is often
more effective, but in cases where the bandwidth between processors running different
MPI tasks is very high, or in the case where the scaling limit of MPI parallelisation is
reached, it can be beneficial to reach out to OpenMP. [17]

B.3 Hardware: building aThreadripper-poweredMDmachine
A new PC (Figure B.1) specifically for runningMD simulations was designed and built
on basis of the new AMD Ryzen Threadripper 3970X. This is a 32-core CPU with SMT
and a base clock of 3.7GHz and a maximum boost clock of 4.5GHz (single-core). An
overview of the components of the PC is listed in Table B.1

Figure B.1: Picture of the new MD PC.
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Table B.1: PC components

CPU AMD Ryzen Threadripper 3970X
Mother-
board

Asus Prime TRX40-Pro

RAM Corsair Vengeance LPX 16 GB (2 x 8 GB)
DDR4-3200

Storage Samsung 970 Evo Plus 500 GB
Graphics Zotac GeForce GT 710
PSU be quiet! Pure Power 11 CM 500 W
CPU
cooler

Cooler Master MasterLiquid ML360 RGB
TR4 Edition

The CPU is cooled by a 3x 120mm fan all-in-one liquid cooler. The graphics card is
purely for video output, as the Threadripper does not have integrated graphics. At this
point, it was decided to not yet invest in high-performance GPUs. Although GPUs are
promising for molecular dynamics, at this moment we have not yet benchmarked our
simulations in LAMMPS on GPUs so the speed-up is unclear. There is the possibility
to add GPUs later on, however.

The new MD PC is intended to replace the four old i7-4790-based PCs used for MD
currently. The benchmark results are compared below in B.5.2.

B.4 Benchmark method
In order to measure the performance of LAMMPS in a reproducible way, a simple
Lennard-Jones benchmark simulation was set-up consisting of 100000 MARTINI Na

particles interacting by LAMMPS’ lj/gromacs potential at a density of 1 × 10−5Å−3. At
this density, the Lennard-Jones fluid exists in the vapour phase, so any phase separa-
tion leading to inhomogeneity and thereby spatial computational imbalance is avoided.
The neighbour skin distance is 2Å and the timestep is 10 fs. The system is first min-
imised using the conjugate gradient method (min_style cg) and dynamics are then
run for 10000 timesteps. The simulation performance (in ns d−1) of the dynamics run
is measured.

B.5 Benchmark results and discussion

B.5.1 Compiler effect
When comparingGCC8.3.0withClang 8.0.1, bothwith the compiler flags -O3 -DNDEBUG
-march=native on the Threadripper system (see B.3), it was found that LAMMPS com-
piled by Clang was consistently 15% faster than LAMMPS compiled by GCC (Fig-
ure B.2). This is a non-negligible effect and an interesting one considering that Clang
usually produces less-optimised code than GCC does. However, this result agrees with
that of a comparison test by Phoronix from 2016 [46]. Unfortunately, wewere not able to
find any more recent third-party benchmark results comparing the effect of compilers
on the performance of LAMMPS.
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Figure B.2:MPI performance scaling of the LJ benchmark on the Threadripper system compared
for Clang and GCC compilers. The core count (32) is denoted by the vertical line.

B.5.2 MPI scaling
In Figure B.3, the performance scaling across several systems is compared: the old simu-
lation machine featuring an Intel i7 4790 (4 cores with SMT), the new AMD Threadrip-
per 3970X system (32 cores with SMT) and Cartesius (Dutch National Supercomputer)
featuring two Intel E5-2690 v3 CPUs (12 cores with SMT) per node. From both the i7
4790 and the TR 3970X it is very clear that SMT does not provide any additional benefit
here; the performance even suffers when more MPI ranks than physical cores are used.
This particular benchmark system scales rather linearly with the number of MPI ranks,
up until the physical core count of the system is reached. The 48-rank Cartesius result
was obtained by employing two nodes3 and shows that the parallelisation limit of the
system is still not reached, because the performance still scales almost linearly at that
point.

Smaller systemswill show diminishing results ofMPI scaling at a much earlier point, as
they will contain much less atoms per subdomain and/or have to communicate particle
properties to other subdomains much more frequently, which means that the extra
communication overhead incurred does not weigh up against the performance gain of
parallelisation.

B.5.3 Single-core performance
In Figure B.4, the performance of the benchmark with just one MPI rank is shown for
the entire range of systems and compilers addressed above, as well as a new result with
the OMP versions of the LAMMPS styles enabled with just one thread. These are faster
than unaccelerated styles, even with one thread per MPI rank, because they contain
several optimisations that reduce overhead.

3Cartesius, being a supercomputer, features high-bandwidth interconnects that make it possible to
span one simulation over multiple nodes using MPI.
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Figure B.3:MPI performance scaling of the LJ benchmark on different systems. The core count of
each respective system is denoted by the vertical lines. The 48-rank Cartesius result was obtained
using 2 nodes.

B.5.4 OpenMP scaling
Figure B.5 shows the performance scaling of the LJ benchmark with the OMP versions
of the LAMMPS styles enabled with just one MPI rank as a function of the number
of OpenMP threads. For all simulations is 2x OpenMP faster than 1x, but the effect
is disastrous on the Threadripper system with more threads than that. On Cartesius
however, OpenMP still scales up to 16 threads, although not nearly as efficiently as MPI
would.

It is well-known that OpenMP is less effective for parallelisation of LAMMPS than MPI
in almost all cases, but OpenMP threading should still be beneficial when the number
of cores on the system is not exhausted (which is certainly not the case for 1xMPI) [17].
It is unclear why using more than 2 OpenMP threads on the Threadripper system is so
disadvantageous for performance. As ICC was used on Cartesius, but only GCC and
Clang on the Threadripper, it is possible that this difference in behaviour is caused by
the compiler. This will have to be investigated in the future.
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