
SUBMODEL-AWARE TESTING

H. (Hanna) Haven

MSC ASSIGNMENT

Committee:
dr. ir. J.F. Broenink
T.G. Broenink, MSc

dr. ir. A.Q.L. Keemink

 September, 2020

046RaM2020
Robotics and

Mechatronics EEMCS
University of Twente

P.O. Box 217
7500 AE Enschede

The Netherlands

ii Submodel-Aware Testing

Hanna Haven University of Twente

iii

Summary

An automatic test tool was developed by the Robotics and Mechatronics group (Jansen, 2019),
(Broenink et al., 2020) in 2019. This tool supports all the basic test options but it was nec-
essary to implement more options, specifically to implement submodel-awareness and co-
simulation. Submodel-awareness and co-simulation make it easier to test cyber-physical sys-
tems. Both the addition of submodel-awareness and co-simulation add value to the test tool.
In this research the test tool and existing testing methods were investigated in order to define
the best adaptation such that submodel-awareness could be implemented as efficiently as pos-
sible. After analysis it was determined that step definitions (inspired by Gherkin (Cucumber,
2019)) were the best option. The step definitions ensured that the test would be easy to read,
simple to understand and it would make the test tool easily expandable. Previously, the addi-
tion of submodel-awareness would have taken five steps, with the addition of step definitions
it takes two. The addition of step definitions also improves the human readability and usability,
as the test was sometimes hard to understand.
Additionally, to support co-simulation, the framework CoHLA (Configuring High Level archi-
tecture) is implemented in the test tool. After some research it was concluded that the test tool
needed a code adjustment to make it easier to add frameworks or simulators in the future. After
this adjustment the number of steps necessary for adding a simulator is reduced from four to
one.
The test tool now supports CoHLA, and thus co-simulation. It has also been extended to sup-
port step definitions, which makes submodel-aware testing possible. The step definitions also
make it easier to expand the test tool with new functionalities.
Improvements for the future include the addition of (error-) messages to the console and the
expansion of the results. This last improvement allows for the result to contain graphs, tables
and differences between the expected and the actual results.

Robotics and Mechatronics Hanna Haven

iv Submodel-Aware Testing

Preface
Before you lies the master thesis "Submodel-Aware Testing", where a existing test tool will be
improved and extended.

I would like to thank everyone who helped me with writing this thesis. This includes, of course,
my day-to-day supervisor Tim Broenink. Whenever I had a question you answered immedi-
ately and was always available to help.

My thanks also goes to my colleagues at TRIMM. When I needed a change from working at
home they made it possible to finish my thesis at work (of course following all the Corona reg-
ulations). To all my friends and family who helped me by giving feedback and having my back:
thank you for motivating me to keep improving my thesis.

Hanna Haven
Enschede, 19-08-2020

Hanna Haven University of Twente

v

Contents

1 Introduction 1

1.1 Context and problem statement . 1

1.2 Goals and approach . 1

1.3 Outline . 2

2 Background 3

2.1 Testing . 3

2.2 Current test tool . 6

2.3 CoHLA . 7

3 Analysis 8

3.1 Analysis of the test tool DSL . 8

3.2 Addition of the step definitions . 8

3.3 Addition of submodel-awareness . 9

3.4 Addition of a simulator . 9

3.5 Addition of co-simulation . 10

3.6 Requirements . 11

4 Design and implementation 13

4.1 Step definitions . 13

4.2 Submodel-aware testing . 16

4.3 Simulators . 16

4.4 Implementation of CoHLA . 17

4.5 Conclusion . 18

5 Results 19

5.1 Results of the step definition . 19

5.2 Co-simulation/CoHLA . 22

5.3 Automatic import . 23

5.4 Conclusion . 24

6 Conclusion and recommendations 25

6.1 Conclusions . 25

6.2 Recommendations . 26

A Grammarfile 28

Bibliography 30

Robotics and Mechatronics Hanna Haven

vi Submodel-Aware Testing

Hanna Haven University of Twente

1

1 Introduction

1.1 Context and problem statement

Cyber-physical systems are systems which consists of hard- and software. An example is a con-
trolled motor. This controlled motor consists of different sensors, motors and also includes
software with control code. The early stages of modelling of this system is done using simula-
tors. In the simulator different combinations of for example the sensors can be simulated and
different kinds of controller software can be tested. By using the simulator it is not necessary to
realize the system, first it is simulated in ideal and non-ideal environments to find the perfect
combination of hard- and software. When the perfect combination is found the realization of
the system can be done and real-life tests can be conducted.

In 2019 an automatic test tool for cyber-physical systems was developed in the Robotics and
Mechatronics group (Jansen, 2019) (Broenink et al., 2020). This test tool is developed to sup-
port the development of cyber-physical systems and make it easier to model cyber-physical
systems. This tool can test different scenarios for the cyber-physical systems, this means that
models of cyber-physical systems can be automatically tested with different parameters and
checked with constraints.

As is explained above a cyber-physical system consists of hard- and software. In the example of
the controlled motor, the different parts of the system can also be defined as submodels. The
sensors are all different submodels, just as the motor. It is important for the modelling of a new
system to test different variations of submodels. In the example of the controlled motor in the
previous paragraph, it is important to test different kind of sensors and controllers to find the
perfect combination. It is desirable that the test tool is able to test different kind of submodels
because it will make the modelling of the cyber-physical systems easier.

1.2 Goals and approach

Three goals are determined for the improvement of the test tool. These three goals are listed
below:

1. The first goals is to implement submodel-aware testing. After research on the test tool
(see Chapter 2.2) it is determined that the implementation of submodel-aware testing is
possible.

2. The second goal is the improvement of flexibility. As can be seen in Chapter 2.2, the addi-
tion of new functionalities and simulators is relatively hard. By improving the flexibility
the test tool will be improved in readability, ability to expand and ease of use. After re-
search is was conducted that the addition of step definitions (Section 2.1.2) can improve
the flexibility. The addition of new functionalities and simulators will be easier and less
work than before.

3. The last goal is to implement the ability to support the testing of submodels which are
modelled in different simulators. This is called co-simulation and is the simulation of
models, which are modelled in different simulators, in parallel with each other, while
the models have a real-time connection with each other. Different frameworks are re-
searched (see Chapter 3.5) and CoHLA is chosen.

As can be seen in the goals above, the solution of the second goal will make the first and third
goal easier. The addition of flexibility will make it easier to expand the test tool. This is why the
the addition of the flexibility will be done first, it will make it easier to implement the other two
goals.

Robotics and Mechatronics Hanna Haven

2 Submodel-Aware Testing

1.3 Outline

The report consists of six Chapter. First is the background (Chapter 2) where the psychology of
testing, the current test tool and CoHLA are explained. This background information is neces-
sary for Chapter 3, the analysis. Here the information is used for the requirements. In Chapter
4 the design and implementation of the requirements is explained: the design and implemen-
tation of the step definitions and the implementation of CoHLA. The implementation is tested
in Chapter 5, where different tests are executed to test the step definitions and the implemen-
tation of CoHLA. The report is concluded in Chapter 6. In the appendix the new grammar is
presented.

Hanna Haven University of Twente

3

2 Background

This Chapter provides the background information on a few different subjects. First testing
itself, the psychology behind testing and automated testing are explained. Then the current
test tool is explained, how it works and how it is expanded. Finally the basics of CoHLA are
explained.

2.1 Testing

Software testing is the most important part of software development (Bhatti et al., 2019). The
testing of developed software improves the certainty that there bugs or errors in the developed
software. The difference between errors and bugs are that errors is faulty software, the code
breaks and an error appears. Bugs are unwanted or undesired behaviour, which do not neces-
sarily break the code

First the psychology behind testing is explained followed by automatic testing.

2.1.1 Psychology behind testing

Most developers think about testing the wrong way, they think the purpose of testing is to make
sure the functions of the program work, or to make sure there are no errors in the program
(Myers et al., 2011). In The Art of Software Testing (Myers et al., 2011) the definition of testing
is stated as follows:

"Testing is the process of executing a program with the intent of finding errors"

Testing is used to make sure the functionalities work, but the goal of testing itself is to find er-
rors. It is stated that there are errors and bugs in every software program. These errors and bugs
must be found and dealt with to improve the quality of the program. Test cases are developed
specifically for the program. These test cases contain what the program should do when cer-
tain actions are performed plus what the result of the test case should be. These test cases must
be written before any testing is done to make sure all the important functions get tested and to
make sure the test cases have structure, are repeatable, and are feasible. These test cases con-
sist of features, which define different scenarios to test the functions of the software program.

An example of a software program with test cases is stated in The Art of Software Testing: "The
program reads three integer values from an input dialogue. The three values represent the
lengths of the sides of a triangle. The program displays a message that states whether the trian-
gle is scalene, isosceles, or equilateral."

The test cases include the scenarios where, for example, negative numbers are entered, the
entry of the number one or the insertion of valid entries which should not give an error (in con-
trast to the first two scenarios). This is important, not only the invalid entries need to be tested
(entries which should give an error) but also the entries which are the valid values. The test
cases must include every possible entry, but not every entry can be tested. As for the example
above, when the input is 1,1,1 it can be said the output will be the same as for the input of
2,2,2.

In The Art of Software Testing 10 principles are stated, these are recalled below with an addi-
tional explanation if needed:

1. A necessary part of a test case is a definition of the expected output or result.

2. A programmer should avoid attempting to test his or her own program.

Robotics and Mechatronics Hanna Haven

4 Submodel-Aware Testing

3. A programming organization should not test its own programs.

4. Any testing process should include a thorough inspection of the results of each test.

5. Test cases must be written for input conditions that are invalid and unexpected, as well
as for those that are valid and expected.

6. Examining a program to see if it does not do what it is supposed to do is only half the
battle; the other half is seeing whether the program does what it is not supposed to do.

7. Avoid throwaway test cases unless the program is truly a throwaway program.

8. Do not plan a testing effort under the tacit assumption that no errors will be found.

9. The probability of the existence of more errors in a section of a program is proportional
to the number of errors already found in that section.

10. Testing is an extremely creative and intellectually challenging task.

In addition, in the Tester Foundation Level Syllabus (Muller and Friedenberg, 2011) there are
seven different principles:

1. Testing shows presence of defects, testing can show defects, but if the testing does not
show defects it is not guaranteed that there are no defects.

2. Exhaustive testing is impossible, it is impossible to test every test case.

3. Early testing, testing should be done as early as possible to detect defects.

4. Defect clustering, testing effort should be focused proportionally on the defects density
that is expected but only found later on. If there are a lot of defects at one place in a pro-
gram this should be tested thoroughly once the defects found early on have been fixed.

5. Pesticide paradox, if the same tests are done over and over again, then the test will not
find any more defects. The tests should be reviewed, revised and expanded to find more
defects.

6. Testing is context dependent.

7. Absence-of-errors fallacy, if the system is built unusable finding and fixing defects do not
help.

The second list shows the most common principles, and are displayed on various websites
(Guru99, 2014), (Kumar, 2019), (SM, 2016). The principles from the syllabus are the ones which
are generally applicable for testing, where the principles out of the The Art of Software Testing
are more specific to the methods of testing itself.

In the syllabus the reason why testing is necessary is because defects in software can lead to
problems. These problems can be something small, such as losing lots of money but also some-
thing as significant as injury or even death. On the other hand testing is important because it
also can save a lot of money. When a defect or bug is recognized early in the process, the lower
the costs of correcting it and the higher the probability of correcting them (Myers et al., 2011).
In The Art of Software Testing the reason why testing is important is similar:

"Software testing is a process, or a series of processes, designed to make sure computer code does
what it was designed to do and, conversely, that it does not do anything unintended."

Hanna Haven University of Twente

CHAPTER 2. BACKGROUND 5

2.1.2 Automatic testing and Gherkin

Automatic testing is done with a programmed test script, which is executed every time a new
feature is introduced in the program (or an old feature deleted). This is called regression testing,
all software (even the part which is not changed) is tested again to check if the new software has
broken a functionality. Automatic testing is mainly done with a dedicated DSL (Domain Spe-
cific Language), the DSL which is used mostly is the Gherkin syntax (Cucumber, 2019). The
three main words are ’Given’, ’When’ and ’Then’. After these words steps are defined (step def-
initions) where different steps execute different commands to test the functionality. The step
definitions are written out of the users point of view, because the test is done from the users
point of view. An example:� �

Given I am on the homepage
When I log in
Then I should be on the logged-in page� �

Listing 2.1: Example of a test with Gherkin-grammar

This is an example of an automatic test for a website. The user is not logged in and with the test
the user logs in. If, for example, a function is added but the addition of that function causes the
log-in function to break, then this test fails. When these kinds of tests fail the developer can see
fairly quickly what is broken and can act accordingly.

This test itself consist of a feature, this feature is divided into different scenarios and every
scenario consists of multiple steps, with these steps a flow can be specified. An example of this
is shown in Listing 2.2:� �

Feature "Feature1"
Scenario "Scenario1"

Given When Then

Scenario "Scenario2"
Given When Then� �

Listing 2.2: Example of a test with a feature and scenarios

In the example in Listing 2.2 two different scenarios are specified, in one feature. This is the
way the scenarios and features are declared. Scenarios can fail independently, this means that
even if scenario1 fails, scenario2 is executed.

The design of a new DSL requires guidelines. Four guidelines are presented in Micallef and
Colombo (2015):

1. The DSL should be simple; people should be quick in understanding the language.

2. The DSL should exhibit similarity to another language; most of the times this is English.

3. The DSL should be highly domain-specific and parsimonious. This is so that any notions
not related to the domain in question are omitted. Yet the designers should strive to make
the language as complete as possible.

4. The DSL should be easily extensible and reusable. It should be easy to add features to the
language. It should also be reusable in that the same grammar can be used as the base of
a new language when required.

Research was done on the use of DSLs for automated software testing (Micallef and Colombo,
2015). Five studies in the industry where two use the Gherkin syntax and the three use a more
rigidly defined language grammar. The main four lessons learnt from this research are as fol-
lows:

Robotics and Mechatronics Hanna Haven

6 Submodel-Aware Testing

1. In the interest of long-term feasibility a dedicated language owner is a requirement. This
means that the standard grammar of the DSL will be maintained by this person, who will
make sure there is consistency within the language, avoids duplication etc.

2. Having a development process which caters and makes space for DSL development. Here
it is also stated that an ad hoc approach is unlikely to work, especially when deadlines
approach.

3. As the language grows, a tool might be handy. Something like a dictionary where all the
grammar rules and functions are specified. This can help new users for learning an ex-
isting DSL.

4. Finally management buy-in is essential. This is because when the process of develop-
ing and maintaining is in competition with software delivery, management will almost
certainly abandon the testing process.

Number 4 is the main reason (automatic) testing is not done in many different applications,
for example in the industry. If the software development is past the deadline, testing is almost
always omitted in the process to shorten the development time. The same happens when the
budget is exceeded.

2.2 Current test tool

The current test tool (Jansen, 2019) is developed in Python and can simulate in the simulators
20-sim and V-REP. In this Chapter the test tool and the steps for expanding the current test tool
are explained.

The current grammar is a variation on the Gherkin-syntax. The Gherkin syntax is explained in
Section 2.1.2, the alteration which is made is to expand the grammar to support LTL (Linear
Temporal Logic) formulas. An example of a test-feature can be seen in listing 2.3. The Feature,
Scenario, Given and Then are the same as is in the normal Gherkin syntax. The difference starts
at the ’WHEN’, this command is omitted at all. Instead the following keywords are declared:
include, with, in and for (only with, in and for are used in the example in listing 2.3).� �

Feature "PWM Test "
Scenario "PWM Check"
Given "PWM Conversion.emx"
in 20-sim
with "PWM.f" = 10
for 0.11 seconds
Then G(("PWM.output"== 2 U("PWM.output"== -2 U "PWM.output"== 2)))� �

Listing 2.3: Example of a test with the adjusted Gherkin-grammar

The Given imports the model, where the whole path to the model must be given. The in
specifies the simulator in which the simulation must be executed. After the specification of
the simulator the different settings can be specified. There are two kind of settings, therefore
there are two keywords: with and for. for is to set the time in which the simulation must
be executed. The keyword with is for the settings of the model. Different parameters can be
set (or changed) with this keyword. The names of the parameters must be the same as the ones
which are in the model. The last keyword, include, is to include different files which can
contain settings, constraints or other tests.

The constraints are being indicated with the Then keyword. These constraints can be defined
using LTL-indication. After the execution of the simulation, the test tool collects the data and
checks the constraints of the test. The output of the tool can be: TRUE, SOMETIMES TRUE
and FALSE.

Hanna Haven University of Twente

CHAPTER 2. BACKGROUND 7

2.2.1 Addition of a new functionality and keyword

Currently there are two different keywords which can alter the simulation: with to set a vari-
able and for to set the simulation time. The addition of a keyword requires a couple of steps.
These steps are stated in the next list but the in-depth explanation is given in Jansen (2019).

1. The addition of a keyword to the grammar. This keyword needs to refer to the function-
ality which is added in step 5.

2. The generation of the Parser, Listeners and Lexer. This is done with the tool ANTLR (Parr,
1989).

3. Implementation of the function in the Listeners.

4. Implementation of the function in the code.

5. Implementation of the function in the interface-file, where the simulator is controlled.

2.2.2 Addition of a simulator

The two simulators for which the test tool now works are 20-sim and VREP, to add an additional
simulator the following steps need to be taken:

1. The simulator must be added to the grammar.

2. The generation of the Parser, Listeners and Lexer. This is done with the tool ANTLR (Parr,
1989).

3. In the general code the simulator must be added so the right interface-file can be im-
ported.

4. A new interface-file must be made and the functions need to be implemented so the
simulator can be controlled.

2.3 CoHLA

CoHLA (Nägele (2020b)) is a framework which is able to co-simulates models. CoHLA uses
FMU’s (Functional Mock-up Unit) and is able to co-simulate these FMU’s. Co-simulation is the
simulation of submodels in parallel, where information is shared between those submodels.
These submodels can be the same but can also differ depending on the simulation (Nguyen
et al., 2017). CoHLA has its own DSL and is a command line tool. To use CoHLA an installation
manual and user manual are available (Nägele, 2020a).

CoHLA is a terminal-controlled system, different settings can be specified in the command. All
settings and models are defined in the .cohla file, in so-called Federate and Federateclasses.
From this .cohla file the config files are generated. Two important settings are the situation
and the scenario. These settings are defined in the Federate, the Federate makes sure all the
different models (called Federateclasses) are connected and the simulation can execute. A sit-
uation is a file in which different settings can be specified. A scenario is a file where the input
signal(s) can be specified in terms of time. The signal changes according to the times and values
specified in the scenario-file.

Robotics and Mechatronics Hanna Haven

8 Submodel-Aware Testing

3 Analysis

In this Chapter the principles which were stated in Chapter 2 are taken into account against the
current test tool.

3.1 Analysis of the test tool DSL

In Section 2.1.2 the four guidelines for a DSL design are specified. In the next list, the same
guidelines are specified with an addition whether this guideline is applied in the current test
tool:

1. The DSL should be simple, people should be quick in understanding the language.
The grammar is simple enough, but by just using keywords the readability (and under-
standing) of a test is not simple. When keywords are connected to functions in the test
tool it is possible that the exact meaning of the keyword becomes unclear, especially
when there are a large (20+) number of keywords implemented.

2. The DSL should exhibit similarity to another language, this is most of the times English.
It has a similarity to English, but there are no sentences, only keywords with a lot of math
behind it. It can be concluded that while it contains some English words, there is no
similarity to English.

3. The DSL should be highly domain-specific and parsimonious. This is so that any notions
not related to the domain in question are omitted. Yet the designers should strive to make
the language as complete as possible.
The DSL is highly domain-specific and parsimonious, where it is not as complete as pos-
sible, this guideline is followed.

4. The DSL should be easily extensible and reusable. It should be easy to add features to the
language. It should also be reusable in that the same grammar can be used as the base of a
new language when required.
The DSL is reusable, but it is not extensible. If a function (or simulator) is added to the
test tool (as can be read in Section 2.2.1 and Section 2.2.2) there is no quick or easy way
to do so.

As can be seen in the list above, three of the four guidelines are not followed in the test tool.
The test tool is not easily extensible or reusable, there is no similarity to another language and
the understanding of a test it not simple.

The test tool can be improved on three points: simplicity and understanding (point 1 in the
list above), similarity to another language (point 2 in the list above) and extensibility: adding
a functionality and simulator (point 4 in the list above). The addition of step definitions im-
proves the test tool on the points 1, 2 and 4 (functionality wise). Of the last point only the
implementation of additional functionalities can be solved by implementing step definitions.

3.2 Addition of the step definitions

The main reason for adding step definitions is to improve readability and similarity (point 1
and 2 in the guidelines of Chapter 3.1). The keywords alone do not provide the readability. As
more functions are added, more keywords are also added. More keywords confuse the user. By
adding the step definitions the readability improves (point 1 of the guidelines in Chapter 3.1)
and it exhibits more similarity to English (point 2 of the guidelines). For example, currently
when a user wants to change a value in the test, he uses with. When using a step the user can
define it as listed in Listing 3.1.

Hanna Haven University of Twente

CHAPTER 3. ANALYSIS 9

� �
Now I set parameter PWM.frequency to 50� �

Listing 3.1: Example of a possible step

The step in Listing 3.1 is clearer than the keyword with. An example of setting a variable with
the keyword with is listed in Listing 3.2. Where for the setting of the variable in Listing 3.2
might need additional information to explain what with means, the step in Listing 3.1 is im-
mediately clear.� �

with "PWM.frequency" = 50� �
Listing 3.2: Example of a possible step

With the addition of step definitions it becomes easier to add a new functionality, which com-
plies to guideline 4. The new functionality is called by a step instead of by a keyword. The
addition of new functionality and new keyword to the test tool takes five steps, as can be seen
in Chapter 3.1; for this addition knowledge of the tool ANTLR and the code is necessary. In
Section 2.1.2 Gherkin was explained where generic steps would be defined and to those steps
functions were linked to those steps. With the addition of step definitions it takes two steps to
add a new functionality.

3.3 Addition of submodel-awareness

The addition of submodel-awareness to the test tool is done using step definitions. Submodel-
awareness is added for 20-sim, because 20-sim has a function which can replace submodels.
With the addition of step definitions it is only necessary to define a step and to declare the
20-sim function replace_submodels (ControllabProducts, 2015) in the interface-file of 20-
sim. The step connected to this functionality is defined in Listing 3.3.

For the replacement of the submodels a couple of aspects are necessary: the submodels need
to be interchangeable, this means that the imported submodel needs to have the same amount
of ports and needs to accept the signals which are going to be connected. This requirement, the
submodels must comply with the model, is the responsibility of the user. If the user imports
a submodel which is not compatible with the model, the test tool does not give a specified
error. The function replace_submodels of 20-sim needs two variables: the name of the
submodel in the model itself and the path of the submodel which is going to be imported.
These two requirements are the name of the submodel which needs to be replaced and the path
to the submodel which is replacing the first submodel. In Listing 3.3 the step is defined. The
word replace is chosen because the submodel is literally replaced. This step is connected to
the 20-sim function replace_submodel.� �

I replace existing_submodel with path/to/external_submodel� �
Listing 3.3: The submodel-awareness step

The addition of a step is easier than the addition of a functionality and keyword. By adding
step definitions to the test tool it takes two steps instead of five steps to add a functionality and
keyword. Fewer knowledge is necessary: only knowledge of how to add a step, basic knowledge
of Python and knowledge of the simulator. The knowledge about the tool ANTLR and the in
depth knowledge about the test tool is not necessary any more.

3.4 Addition of a simulator

The addition of a new simulator to the test tool takes four steps. The first two steps are the same
as when adding a new functionality and keyword to the test tool: addition to the grammar and
the generation of the lexers, listeners and parsers. This should be easier (guideline 4 of Chapter

Robotics and Mechatronics Hanna Haven

10 Submodel-Aware Testing

3.1). These four steps can be reduced to one step, the last one: A new interface file must be made
and the functions need to be implemented so the simulator can be controlled. This is the only
step which cannot be omitted. The user always needs to make the interface file and connect the
functions in this file. The other three steps are always the same and it is possible to automate
them.

If the user only needs to make and fill the interface file, then it is sufficient to have knowledge of
Python and the new simulator. This advantage complies with guideline 4, this extension makes
it easier to add new simulators to the test tool.

3.5 Addition of co-simulation

In Chapter 2.3 co-simulation is briefly explained, and it is a goal that a co-simulation framework
is added to the test tool so models can also run in co-simulation. For the addition of a co-
simulation framework, different frameworks are researched. There are a three options:

• CoHLA

• TERRA

• DEIMOS

CoHLA (Nägele, 2020b) is a framework where cyber-physical systems can be simulated using
FMI (Functional Mock-up Interface). CoHLA supports every simulator which can export mod-
els to FMI. CoHLA has a number of advantages, including the ability to run on Windows, Linux
and Mac; the documentation is complete (Nägele, 2020a), also it is fast and supports multiple
modelling tools. But the main advantage is that the tool is easily maintained and extendible.
Which are two of the main guidelines of a test.

TERRA is a framework for model-driven development (Bezemer, 2013) which supports co-
simulation. The models can be designed using blocks and after that can be translated to code.
It uses LUNA (Bezemer et al., 2011) for model-to-code translation. TERRA supports models
from other simulators (e.g. 20-sim) and uses FMI (just as CoHLA) to simulate these models
(Kok, 2016).

Deimos is a framework which supports co-simulation (Zandberg, 2020). It is a simulator in
which the cyber-physical system can be designed and simulated. It does not support models
of other simulators (e.g. 20-sim), it does support FMU’s but is limited to SDF’s (Synchronous
Data Flow).

The frameworks are filled in table 3.1 to give an overview.

Co-simulation Simulator support OS Documentation
CoHLA 3 3 Windows, Linux, MacOS 3

TERRA 3 3 Linux 7

Deimos 3 7/3 Linux, MacOS 3

Table 3.1: The comparison of CoHLA, TERRA and Deimos

The three frameworks all have their similarities and limitations. All three support co-
simulation, this means that all three are suitable for addition to the test tool. The limitations of
TERRA are, because it uses LUNA, the limitation in operating system, it only works on Linux.
The second limitation is the documentation, there is insufficient documentation available so
TERRA is not selected. Deimos has the limitation that is only supports its own models. As can
be seen CoHLA is the best choice, it is supported on every OS and it supports FMI, which means
it supports every simulator which can export to FMU.

Hanna Haven University of Twente

CHAPTER 3. ANALYSIS 11

3.6 Requirements

This Chapter describes the requirements. First of all the requirements by Jansen (2019) still
hold. This is because the test tool is expanded, the current functionalities must still work.

The requirements by Jansen (2019) are:

1. The tool must combine simulation data with the defined tests to produce answers.

2. The tool must be modular.

3. The testing must be automated.

4. The tests must be reusable.

5. The test definitions must be Gherkin-style inspired.

6. The test definitions must support boolean equations.

7. The test definitions must support LTL formulas.

8. The test definitions must support model variables.

9. The tool should support multiple simulators.

Regarding the requirements for the expansion of the test tool, the conclusion is that the test tool
must conform to the guidelines which are stated in Chapter 3.1. The two main adjustments to
the test tool are the addition of step definitions and the change so that the addition of simulator
is simplified. The addition of the step definitions is also to make the addition of submodel-
awareness simpler.

As last the framework CoHLA is added to the test tool, because the addition of a simulator is
made simpler this consists of only the addition of a interface-file for CoHLA. As CoHLA is a
different framework and does not work with external interface. Point 13 in the following list
determines that the basic functions are supported which means a simple simulation will be
supported. It is not expected that every function of CoHLA will be implemented because of
time limitations, this is why point 14 in the following list is a wish.

The additional requirements:

10. The guidelines of Micallef and Colombo (2015):

10.1. The DSL should be simple, people should be quick in understanding the language.

10.2. The DSL should exhibit similarity to another language, most of the times this is En-
glish.

10.3. The DSL should be highly domain specific and parsimonious. This is so that any
notions not related to the domain in question are omitted. Yet the designers should
strive to make the language as complete as possible.

10.4. The DSL should be easily extensible and reusable. It should be easy to add features
to the language. It should also be reusable in that the same grammar can be used as
the base of a new language when required, which includes:

10.4.1. Addition of a function must be easy.

10.4.2. Addition of a simulator must be relatively easy.

11. The test tool must support submodel-awareness testing.

12. CoHLA will be added as a co-simulation framework.

Robotics and Mechatronics Hanna Haven

12 Submodel-Aware Testing

13. The test tool will support the basic function of CoHLA.

14. The different functions for CoHLA should be implemented.

Hanna Haven University of Twente

13

4 Design and implementation

In this Chapter the design of the step definitions, the simplification for the addition of simula-
tors and the implementation of CoHLA is discussed. First the design of the step definitions is
explained, after that the addition of submodel-awareness is explained then the simplification
of the addition of simulators is explained and then the implementation of CoHLA is explained.

The design of the addition of submodel-awareness is done after the design of the step defi-
nitions. The reason for this is because the submodel-awareness is being designed using step
definitions.

4.1 Step definitions

The implementation of step definitions has different design challenges. First the addition to
the existing grammar is explained, how the step definition is going to be addressed. After that
the matching of the step definition, the design of the step definition in the code are explained.
As last the automated import and the data-flow are explained.

4.1.1 Addition to the grammar

To add the step definition to the test tool, the grammar needs to be extended. As the step
definitions supports both settings and constraints, one keyword is added. The keyword chosen
for the step definitions is step:. This is to make it clear that what follows is a step, the step is
designed to be between quotes. Another reason for the keyword is so the step can be recognized
by the test tool. The addition to the grammar are line 13, 22 and 36 in the grammar file, which
is located in appendix A.

The step definitions for a setting and a constraint are shown in Listing 4.1.� �
step: "I set a setting"
Then step: "I check the results with a constraint"� �

Listing 4.1: Definition of how the steps can be defined in a test

The reason that the constraint step needs a Then is because this is the rule of the grammar.
All the constraints have the keyword Then in front. The additional reasons why Then is kept
before the constraint is because it is easier to parse and by keeping the keyword the old tests
(with the LTL-equations) are still compatible.

4.1.2 Match the step definition

With the adjustment of the grammar, the step definition can be recognized in the test tool but
the step itself is not matched to anything and therefore no information can yet be taken from
the step. The matching of the step is done using Regular Expression (RegEx)(Friedl, 2006). Us-
ing RegEx it is possible to match a step where some parts of the step can be different. A short
example is the match of a step with a (variable) number. This number is an integer, this means
that with Regex it can be matched with \d+. The step can be The number is 6, to match
it, the step definition isThe number is \d+, this way the number can vary but the step will
always match. This can also be implemented for textual patterns.

Information needs to be extracted from the step as well: the value, the variable name and the
path. This can also be done using RegEx. To get the number out of the example step earlier
this Chapter, all integers are found using d+. As the values given to the step definition are also
decimal a RegEx notation was formed to extract every possible number. This RegEx notation is
stated in Listing 4.2. This RegEx notation also allows for numbers like 5, +0.6, −6.8 and 24e−9.

Robotics and Mechatronics Hanna Haven

14 Submodel-Aware Testing

� �
[-+]?(?:(?:\d*\.\d+)|(?:\d+\.?))(?:[Ee][+-]?\d+)?� �

Listing 4.2: RegEx notation to find all values

The variable name and path also need to be extracted from the step, but unfortunately RegEx
cannot be used for this application. This is because there are different variations for the variable
name and path. For every new variable name and path a new RegEx needs to be configured. To
allow the variable name and path to be extracted a solution has been proposed. Both the vari-
able name and the path are between special characters. Then every other character is accepted
between these special characters. For the variable name curly brackets were chosen, for the
path brackets. Neither of these characters occurs in the grammar which means they are used
by the step definitions. In Listing 4.3 the syntax of the variable name and the path is shown.� �

step: "I declare a variable: {variable}"
step: "I declare a path: [path/to/folder/or/files]"� �

Listing 4.3: Example of a step with a variable name and path

4.1.3 Decorators, constraints and settings and the execution of the function

When the step is matched to the step definition, the function connected to that step needs to
be executed. For this decorators are used. Decorators also accept arguments to the function.
This is necessary because the function corresponding to the step definition requires the step to
get the information.

As is stated in Section 4.1.1, the setting and constraint step definitions are separated. This
means the decorators are also separated for settings and constraints. The decorators here are
defined with the step definition as an argument. An example of a decorator with step defini-
tion and function is shown in Listing 4.4. The decorator is STEP.stepSet, this example is a
setting, a constraint has the decorator STEP.stepCon. When the step definition is matched
the function step is executed.� �

@STEP.stepSet("Here is the step definition")
def step(step,interface):

code to execute
return interface.functionofsimulator� �

Listing 4.4: Example of a decorator with step definition and function

As is in Listing 4.4 the function needs arguments to get the different variables out of the step.
For this three functions are defined: get_name to get the variable name, get_number to get
the number and get_path to get the path. These functions accept the step and provide the
information (if there are multiple variable names, all are returned in a list). Also if the func-
tion needs to execute a function of the simulator, the simulator also needs to be given to the
function, hence the interface. When the step definition is a constraint, the function does
not need the simulator, as the simulation has already been done. Instead it requires the results,
this is why the constraint-function also needs the results of the simulation. An example of a
constraint-decorator with function is shown in Listing 4.5. The function needs the step to get
the variable name, values of the variable and the results to check this variable.� �

@STEP.stepCon("Here is the step definition")
def step(step,results):

code to check results
return True or False, depending on check� �

Listing 4.5: Example of a decorator with step definition and function

Hanna Haven University of Twente

CHAPTER 4. DESIGN AND IMPLEMENTATION 15

4.1.4 Automated import

The user can add a step to an existing step file, but it is also possible to add a new step file. This
is useful for overview when a lot of different steps are added. To make it easier for the user to
add a step file an automated import function has been implemented. Without this function the
user would need to import the new step file by hand (i.e. adding a piece of code to the mainStep
file). This is an extra action which is not preferred.

Only the step files which are in the folder stepdefinitions are imported by the automated
import-function. The import is done at start-up of the test tool. The textual info in the terminal
at start-up tells the user which files are not imported. If a step file is not imported and the test
uses a step out of that step file, then test tool gives an error-message that the step cannot be
found.

4.1.5 Change of data-flow

The dataflow of the test tool is changed to make sure the step definitions can control the sim-
ulator. Previously only the MainControl-file (which is the Control-block in the dataflow-figure
4.2) could control the simulator. With the addition of the step definitions, it is necessary that
the step definitions also controls the simulator. This is because otherwise every function used
in the steps also needs to be declared in the mainControl-file. As this is not desired (because
every extra step makes the addition of a function harder) the choice was made to let the steps
also control the simulators. This lead to the decision to let the mainControl be the only file
which controls the step files. The old and new data-flow is presented in figure 4.1 and figure
4.2.

Figure 4.1: The old dataflow
Figure 4.2: The new dataflow

What happens when a setting step is set is as follows: the Control-block recognizes there is a
settingstep, this step is send to the Step-Control (line A). The Step-Control matches the step and
executes the corresponding function in the block Sim-Interface (line B). When all the settings
are verified and set, the Control-block starts the simulation.

The constraint check is done in the Post-Processor block, but this is not possible for the con-
straintsteps as the Post-Processor has no connection to the Step-Control-block. The reason for
this is that the only block which has a connection to the Step-Control-block is the Control-
block. The LTL-equations are all checked in the Post-Processor: this functionality has not
been changed. The stepconstraint is checked in the Step-Control block. When the result has
returned, the Control-block does some processing with the results. Here the steps are also
checked. Via line C in figure 4.2 the result of the constraintstep is returned and is put in the

Robotics and Mechatronics Hanna Haven

16 Submodel-Aware Testing

results. This all is sent through to the Core and Post-Processor. There the LTL-equations (if
available) are checked and the results of the constraintsteps and LTL-equations are shown.

4.1.6 Step definition conclusion

Where at first it took five steps to add a new function to the test tool, this is reduced to two. First
the step definition of the new step needs to be added to the step definitions, this can be done
in a new step file or in an existing one. Then the new functionality needs to be added to the
interface-file. This functionality needs to be called in the step definition.

4.2 Submodel-aware testing

In this Chapter the step which adds submodel-awareness is designed. This step replaces one
submodel with another. The submodel-aware step is first implemented for 20-sim which is
given in Listing 4.6.� �

def replaceSubmodel(submodel, submodelrep):
return my20sim.replace_submodel(submodel, submodelrep)� �

Listing 4.6: Example of a defined step

20-sim has a replace_submodel function (which are shown on the controllab package-
page of ControllabProducts (2015)) which connects to the step. This function in Listing 4.6
needs two variables: the name of the sub-model which needs to be replaced and the path of
the sub-model which needs to be imported. In Listing 4.7 is the designed step definition, which
was designed in Chapter 3.3.� �

Now I replace \{(.*?)\} with \[(.*?)\]� �
Listing 4.7: Example of a defined step

The full step definition with decorator is shown in Listing 4.8� �
@STEP.stepSet("Now I replace \{(.*?)\} with \[(.*?)\]")
def step(stepinput,interface):

submodelold = STEP.getName(stepinput)[0]
submodelnew = STEP.getPath(stepinput)[0]
return interface.replaceSubmodel(submodelold, submodelnew)� �

Listing 4.8: Example of a defined step

The variable name is the name of the sub-model in the given model for the test. The sub-model
with which the sub-model in the model is swapped needs to be indicated with the path to the
sub-model, hence the brackets. An example for this step within a test is shown in Listing 4.9� �

step: "Now I replace {PWM} with [C:\Program Files (x86)\20-sim 4.7\
Models\Library\Signal\Block Diagram Non-Linear\SignalLimiter-Limit.
emx]� �

Listing 4.9: Example of a defined step

Here the PWM-submodel is replaced with a signal limiter.

4.3 Simulators

If the user wants to add a new simulator to the test tool, four steps needed to be taken (see
Section 2.2.2). This is reduced to one step: the addition of a interface-file. The grammar is
changed so it accepts all text. Previously it only accepted 20-sim and V-REP. As is presented in
the grammar in appendix A, line 24 is changed to TEXT, this does mean the simulator names
now also need to be between quotes. The grammar is changed so that every text behind the

Hanna Haven University of Twente

CHAPTER 4. DESIGN AND IMPLEMENTATION 17

in keyword is accepted. Before, the name would be checked in the tool, but the addition of
a simulator is only the addition of the interface file. This is why the simulator check is done
during runtime. The check is done using an extra function which is added to the interface-file.
This function is the getName function, which returns the name of the simulator.

If an additional simulator is added, the interface-file needs to be imported in the test tool. To
omit this part, the automatic import discussed in Section 4.1.4 is implemented for the simula-
tors. The automatic import is changed a bit, as the interface-object needs to be saved so the
Control file and the Step-control file are able to call it. The object is saved in a dictionary with
the name of the interface (returned by the getName function). This dictionary is returned to
the Control-file, where as the test has started the simulator can be selected and can be con-
trolled. If a simulator file has not been imported a warning message (see Listing 4.10) appears
in the terminal, like it does when a step file could not be imported.� �

vrepinterface could not be imported� �
Listing 4.10: The error message in the terminal when a simulator could not be imported

4.4 Implementation of CoHLA

In this Chapter the implementation of CoHLA is discussed. Because a CoHLA test is a com-
mand line tool, the implementation of CoHLA works a bit differently than the previously dis-
cussed 20-sim implementation, which is controlled via an external interface. The execution of
a CoHLA test is explained in the first section. Here the three main functions are also explained,
which are the bare minimum to let a CoHLA test execute. In the sections after the additional
functions are explained and as last the functions which are not implemented are explained, as
is the reason why those are not implemented.

4.4.1 The main functions

CoHLA works differently than the simulators which are currently integrated in the test tool.
CoHLA is a command line tool. This means that a CoHLA test is executed with a single com-
mand.

1. First is the connect and open function, for CoHLA this function only needs to connect.
CoHLA is a command line tool and this means no external interface needs to be opened.
This function makes sure the simulator can be controlled and checks whether a connec-
tion is possible. If the connection fails or the simulator cannot be controlled, the test
tool stops the simulation. To make sure CoHLA can be controlled the help-command
is executed and the test tool expects CoHLA to return the help-info. This means that
the command run.py -h is executed. The response should include === GENERIC
FLAGS ===, if it does not the test stops the simulation. Here the check to determine
which operating system is used is also done. This is because the commands are different
for Windows than for OSX (and Linux). This check makes sure the commands in the rest
of the simulator file is set for the specific operating system.

2. The second implementation is the run function, here the command to run the test is
constructed. Settings (if set) are added to the command. Then the command is executed
and the test is done. The run-function must give back the results of the test, for the con-
straints. After the test, CoHLA puts the result in a CSV file in a separate folder. To import
the CSV and put it into a dictionary (required format) the function csvToDict is made.

3. The last function imports the CSV file out of the folder, the name of this folder is the date
and time of the simulation. This name is filtered out of the terminal-output given by
CoHLA. Then the CSV file is imported and put in a dictionary. The name of the csv file

Robotics and Mechatronics Hanna Haven

18 Submodel-Aware Testing

can be specified in the test, this is done because CoHLA can give multiple csv files, but the
program can only handle one csv file. If only one csv file is generated it is not necessary
to specify the name of the csv file, if there are more csv files generated it is necessary to
specify the name. The step to specify the csv file is in Listing 4.11.� �

I use logger: \{(.*?)\}� �
Listing 4.11: Step for the specification of the csv file

After the csv file is imported it is converted to a dictionary and returned to the Control-
block, then the constraints are being checked.

4.4.2 Addition of a scenario or situation file

It is possible to add a scenario or situation file to the test, either can be specified with the steps
in Listing 4.12. This is added to the command made in the run-function.� �

I use the situation which is located at: \[(.*?)\]
I use the scenario which is located at: \[(.*?)\]� �

Listing 4.12: Example of a step how the function is defined

4.4.3 Setting of a variable

The test tool also has a function setValue, this function is implemented for CoHLA. CoHLA
uses situation files for settings of variables. The design for implementation is as follows, if there
is no situation file defined a new one is made in a temporary folder (which the user can delete
afterwards) where the setting is set. When there is a situation file defined, the program checks
if the variable is already in the file. If it is, the line is deleted and the new value with variable is
added. If it is not already in the file the variable and value is added. The variable name is the
instance with the variable name. So if the name of the federate is INS and the variable name is
SIGNALA then the name which must be put in the step is INS:SIGNALA.

4.4.4 Not implemented functions

Not all the functionalities of the test tool could be implemented. This is due to various reasons,
where the main reason is time-related. There was no time left to implement the functionality
for submodel-awareness and the setting of the simulation time.

Another reason for not implementing a functionality is that it is simply not possible. It is not
possible to implement the functionality close. This functionality closes the external interface
after the simulation, CoHLA does not have an external interface so it is not possible to close it.

4.5 Conclusion

The improvements made by adding step definitions and simplifying the addition of a simulator
had immediate benefits. Only an interface file addition was necessary to support CoHLA with
the test tool. CoHLA needed a couple of additional functionalities (naming the loggerfile, in-
cluding the situation or scenario file) and with the implementation of the step definitions this
is done quick and easily.

Hanna Haven University of Twente

19

5 Results

The three goals which were determined in Chapter 1.2 are the implementation of submodel-
awareness, the improvement of the flexibility and the implementation of CoHLA. The second
goal, the improvement of the flexibility, is realized by the addition of step definitions. In the
following Sections different demonstrations are done to show that these goals are achieved.
The submodel-awareness is implemented using the step definitions and the demonstration is
done using the tests out of Broenink et al. (2020).

At last the demonstration with CoHLA is done. For this a model is made, the model has one
input and one output. The model inverts this number and multiplies it with a number. This
number can be set in the .cohla file itself or can be changed by the test.

5.1 Results of the step definition

Different demonstrations are shown in this Chapter to see the workings of the step definitions.
First the addition of a setting is shown, and after that the addition of submodel-awareness.
Then the addition of a constraint step is shown and as last the error-messages in case a mistake
is made in the step.

5.1.1 Addition of a submodel-aware settingstep

This function needs two variables: the name of the submodel in the given model and the path
of the submodel which needs to replace the submodel. The defined step with the function can
be seen in Listing 5.1.� �

@STEP.stepSet("Now I replace \{(.*?)\} with \[(.*?)\]")
def step(stepinput,interface):
submodelold = STEP.getName(stepinput)[0]
submodelnew = STEP.getPath(stepinput)[0]
return interface.replaceSubmodel(submodelold, submodelnew)� �

Listing 5.1: Example of a defined step

The function replaceSubmodel is linked to the function replace_submodel in the 20-
sim interface file. The name and the path-variables are returned from the STEP.getName-
and STEP.getPath-functions, as was explained in Section 4.1.3.

To make sure the addition of the submodel-aware settingsstep is working properly a test is run.
This test is also done by Broenink et al. (2020). The test tests the torque of DC-motors with
different parameters. In the test of Broenink et al. (2020) two models are used, where the only
difference is the parameters of the two motors. The two testscripts used are shown in Listing
5.2 and Listing 5.3.� �

Feature "Maximum Torque"
Scenario "Constant voltage"
Given "TorquetestA.emx" in 20-sim for 2 seconds
with "CurrentSource.I"=3.125
Then F("DCmotor.p2.T">0.58)� �

Listing 5.2: Feature one of the motor test

Robotics and Mechatronics Hanna Haven

20 Submodel-Aware Testing

� �
Feature "Maximum torque"

Scenario "Constant current"
Given "TorquetestC.emx" in 20-sim for 2 seconds
with "CurrentSource.I"=3.125
Then F("DCmotor.p2.T">0.58)� �

Listing 5.3: Feature two of the motor test

Figure 5.1: The model of Broenink et al. (2020)

In figure 5.1 the model can be seen which was tested in the test of Broenink et al. (2020). The
overall model is the same, only the submodel motor (partDC-motor) had different parameters
for the two different tests. For this two models were made. With the addition of the step the test
can be done on one model and the test can replace the one motor for one scenario. This test is
in Listing 5.4, only one model is given, and in scenario motorCtest the motor (DCmotor) is
replaced by the motor with different parameters (DCMotorC).� �

Feature "Motortestfeature"

Scenario "motorAtest"
Given "Z:\models\TorquetestA.emx" in "20-sim"
with "CurrentSource.I"=3.125
Then F("DCmotor.p2.T">0.58)

Scenario "motorCtest"
Given "Z:\models\TorquetestA.emx" in "20-sim"
step: "Now I replace {DCmotor} with [Z:\models\DCMotorC.emx]"
with "CurrentSource.I"=3.125
Then F("DCmotor.p2.T">0.58)� �

Listing 5.4: Test with both motor tests where submodel-awareness is applied function

The first scenario uses the motor which is provided in the model, the second scenario uses a
different motor, which is imported fromZ:\models\DCMotorC.emx. The output of the test
in Listing 5.4 is as is stated in Listing 5.5.� �

Motortest.test : False
Feature Motortestfeature : False
Scenario motorAtest : False
Constraint F("DCmotor.p2.T">0.58) : False

Equation "DCmotor.p2.T">0.58 : False
Scenario motorCtest : True
Constraint F("DCmotor.p2.T">0.58) : True

Equation "DCmotor.p2.T">0.58 : True� �
Listing 5.5: Output of the test of Listing 5.4

Hanna Haven University of Twente

CHAPTER 5. RESULTS 21

Different models can be tested with different submodels without losing the parameters. When
the test is completed the models return to the state they were before the tests. This is exactly
what is wanted, as submodels can now be replaced without changing the saved model-file.

5.1.2 Addition of a constraint step

A constraint step can also be defined, this is a step which checks the results of the test. The
added step checks whether the results do not exceed a certain value. This step and function are
defined in Listing 5.6.� �

@STEP.stepCon("The \{(.*?)\} should not be more than [-+]?(?:(?:\d*\.\d
+)|(?:\d+\.?))(?:[Ee][+-]?\d+)?")

def step(step_input,result):
var = STEP.getName(step_input)
var1 = STEP.getNumber(step_input)
resultlist = result[var[0]]
resultcon = all(i <= var1[0] for i in resultlist)
return resultcon� �

Listing 5.6: Definition of the constraint step

In Listing 5.7 is the test with the constraint out of Listing 5.6. The output of the PWM-signal
should not exceed 2.5.� �

Feature "TestconstraintStep"

Scenario "Test1"
Given "C:\Program Files (x86)\20-sim 4.7\Models\Examples\Electric

Motors\Components\PWM Conversion.emx" in "20-sim"
with "PWM.f" = 100
for 0.11 seconds
Then step: "The {PWM.output} should not be more than 2.5"� �

Listing 5.7: Test of the constraintstep� �
Test1scen.test : True
Feature TestconstraintStep : True
Scenario Test1 : True
Step step:"The {PWM.output} should not be more than 2.5" : True� �

Listing 5.8: Result of the test of the constraintstep

The result of test of Listing 5.7 is in Listing 5.8. The output is True, to check this the simulation
has been paused when the results came back. This list of values did not contain any value
which was more than 2.5. The constraint is working like it should be.

5.1.3 Error-messages

If a step is not defined correctly in the test, such that there is no matching step defini-
tion, an error-message appears in the terminal. This error-message is shown in Listing
5.9. The test of Listing 5.4 is used, only the step "Now I replace {DCmotor} with
[Z:\models\DCMotorC.emx]" is changed into "Now I replaceeee {DCmotor}
with [Z:\models\DCMotorC.emx]".� �

Settingstep not found
Now I replaceeee {DCmotor} with [Z:\models\DCMotorC.emx]
An error occurred in the simulation.
Returned data is incorrect.� �

Listing 5.9: Error message when the test has an incorrect step syntax

Robotics and Mechatronics Hanna Haven

22 Submodel-Aware Testing

As can be seen the error message also prints the step which cannot be found, this is so the user
can check quickly what is wrong with the step. When the step is fixed the test executes without
any problems.

5.2 Co-simulation/CoHLA

For CoHLA not all the functions are integrated in the test tool. The three functions which are
integrated are (as can be seen in Chapter 4.4): Change value, add scenario, add situation. For
these three functions a test is written, this test is shown in Listing 5.10.� �

Feature "testCoHLA"

Scenario "Noscenarionosituation"
Given "/Users/hanna/eclipse-workspace/PWM/src-gen/PWM/conf/

multiplierblock.topo" in "CoHLA"
step: "I use logger: {Logger}"
step: "I set a variable: {GEN.Modulator} to -50"
Then step: "The {GENOutput} should not be more than 20"
Then step: "The {GENOutput} should be more than -9"

Scenario "situation"
Given "/Users/hanna/eclipse-workspace/PWM/src-gen/PWM/conf/

multiplierblock.topo" in "CoHLA"
step: "I use the situation which is located at: [conf/Multiplierblock/

Standard.situation]"
step: "I set a variable: {GEN.Modulator} to -50"
Then max("GENOutput") == 0.0

Scenario "scenario"
Given "/Users/hanna/eclipse-workspace/PWM/src-gen/PWM/conf/

multiplierblock.topo" in "CoHLA"
step: "I use logger: {Logger}"
step: "I use the scenario which is located at: [conf/Multiplierblock/

firstTest.scenario]"
step: "I set a variable: {GEN.Modulator} to 1"
Then step: "The {GENOutput} should not be more than 5"

Scenario "situationscenario"
Given "/Users/hanna/eclipse-workspace/PWM/src-gen/PWM/conf/

multiplierblock.topo" in "CoHLA"
step: "I use logger: {Logger}"
step: "I use the situation which is located at: [conf/Multiplierblock/

Standard.situation]"
step: "I use the scenario which is located at: [conf/Multiplierblock/

firstTest.scenario]"
step: "I set a variable: {GEN.Modulator} to 4"
Then step: "The {GENOutput} should not be more than 21"� �

Listing 5.10: The test where the three different functions can be tested

Hanna Haven University of Twente

CHAPTER 5. RESULTS 23

� �
DemoCoHLA.test : True
Feature testCoHLA : True
Scenario Noscenarionosituation : True
Step step:"The {GENOutput} should be more than -9" : True
Step step:"The {GENOutput} should not be more than 20" : True

Scenario situation : True
Equation max("GENOutput")==0.0 : True

Scenario scenario : True
Step step:"The {GENOutput} should not be more than 5" : True

Scenario situationscenario : True
Step step:"The {GENOutput} should not be more than 21" : True� �

Listing 5.11: Results of the test of CoHLA

The result of the test in Listing 5.10 can be seen in Listing 5.11. For CoHLA .csv-files are
generated, in these files the test-constraints can be checked. This has been done to check if
the results are read in correctly and the test tool checks the result. This is the case. The re-
sults of the csv-files comply with the constraints given in the test. As can be seen in scenario
Noscenarionosituation the function setValue is also being called. After the test the
temporary situation file is checked and the value is what it was supposed to be: −50.

5.3 Automatic import

The automatic import is made so when extra step files or simulators are added, the user does
not need to this to an import list. The automatic import is done at the start of the test tool, so
when there are files which could not be imported, the file-names appear in the terminal. In
Listing 5.12 this output is listed as it is in the terminal.� �

Importing the step files
Importing the simulator-interface files
example_interface could not be imported
[errormessage]
vrepinterface could not be imported
[errormessage]� �

Listing 5.12: Automatic import, feedback

The first interface, example_interface, is an example code-file and cannot compile thus
also not import. In the second interface, vrepinterface, there is some faulty code which it
also makes it unable to compile. All the step files are compiled and imported. When a step
file cannot be imported, the output is as in Listing 5.13, here it is shown that the step file
set_steps is not imported.� �

Importing the step files
set_steps has not been imported
[errormessage]
Importing the simulator-interface files
example_interface could not be imported
[errormessage]
vrepinterface could not be imported
[errormessage]� �

Listing 5.13: Automatic import, feedback when a step file is not imported

Robotics and Mechatronics Hanna Haven

24 Submodel-Aware Testing

5.4 Conclusion

What can be concluded from the results is that the addition of the steps is an improvement,
the addition of new functions and simulators is easier and takes less steps. The steps to add a
new keyword and functionality is reduced from five to two steps. The in depth knowledge of
the test tool is not needed any more, it is necessary to have (some) knowledge of RegEx and
of Python. For the addition of a new functionality, knowledge of the simulator is needed to
connect the new step definition to the functionality. The addition of the steps made it easy to
add the submodel-aware function in the test tool, and more importantly it also works.

The addition of CoHLA is working and the results can be checked. All the tests of Jansen (2019)
can still be executed, this can be seen in the test in Listing 5.4. A step is defined but also a
setting and constraint as was defined by Jansen (2019), the test executes which means that all
the old tests are still compatible with the new test tool.

Hanna Haven University of Twente

25

6 Conclusion and recommendations

6.1 Conclusions

In the introduction (Chapter 1) three goals were determined:

1. The implementation of submodel-awareness

2. The improvement of the flexibility

3. The addition of co-simulation

The first goal is achieved, it is possible to replace sub-models in the test.

The second goal is achieved by the two modifications: the addition of the step definitions and
the modification of the code to make the addition of new simulators simpler. The addition of
the step definitions makes it simpler to add new functionalities and keep the test easy to read
and understand. Instead of multiple (confusing) keywords steps can be used which are easy to
understand.

The third goal is achieved. With the use of the modification of the code to make the addition of
new simulators possible, the user only needs to add a new simulator file and connect the func-
tions. This modification made it possible to easily add the co-simulation. This is because the
framework, CoHLA, could be identified as a new simulator. So by adding CoHLA as a simulator,
co-simulation is also added to the test tool, which means the third goal is achieved.

In Chapter 1 the requirements were determined. All the requirements listed are achieved. The
first nine requirements are from the previous version of the test tool (Jansen, 2019):

1. The tool must combine simulation data with the defined tests to produce answers.

2. The tool must be modular.

3. The testing must be automated.

4. The tests must be reusable.

5. The test definitions must be Gherkin-style inspired.

6. The test definitions must support boolean equations.

7. The test definitions must support LTL formulas.

8. The test definitions must support model variables.

9. The tool should support multiple simulators.

These requirements still hold, the test tool supports these requirements. For the additional
requirements stated in the analysis (Chapter 3.6):

10. The guidelines of Micallef and Colombo (2015):

10.1. The DSL should be simple, people should be quick in understanding the language.

10.2. The DSL should exhibit similarity to another language, most of the times this is En-
glish.

10.3. The DSL should be highly domain specific and parsimonious. This is so that any
notions not related to the domain in question are omitted. Yet the designers should
strive to make the language as complete as possible.

Robotics and Mechatronics Hanna Haven

26 Submodel-Aware Testing

10.4. The DSL should be easily extensible and reusable. It should be easy to add features
to the language. It should also be reusable in that the same grammar can be used as
the base of a new language when required, which includes:

10.4.1. Addition of a function must be easy

10.4.2. Addition of a simulator must be relatively easy

11. The test tool must support submodel-awareness testing

12. CoHLA will be added as a co-simulation framework

13. The test tool will support the basic function of CoHLA

14. The different functions for CoHLA should be implemented.

From the results, it is concluded that the guidelines of Micallef and Colombo (2015) are met.
The first one, the DSL should be simple, point 10.1, is met because of the step-definitions. The
tests are simple to understand. The second one, the DSL should exhibit similarity to another
language, is also fulfilled. The steps are in English and therefore the DSL exhibits similarity to
another language. The third guideline was already met, the test tool is highly domain specific
and parsimonious, and it still is.

The fourth guideline, point 10.4 in the list, is met because of the step-definitions but also be-
cause of the alterations made for the simplification of the addition of a new simulator. Because
of this the DSL is now easily extensible. It takes less effort to add new functionalities with cor-
responding step definitions. Only two steps need to be taken, instead of the previous five, and
the steps take less knowledge and effort. Requirement 10.4.1 and 10.4.2 are met, so the four
guidelines are met.

Requirement number 11 is fulfilled, the test tool is able to replace sub-models and thus can test
with submodel-awareness.

As last the requirements about CoHLA. CoHLA is implemented in the test tool and the basic
functions are supported. The last requirement is met halfway, it is possible to add a situation
and/or scenario to the test but more functions of CoHLA should be implemented, for exam-
ple the adjustment of a scenario, or the submodel-awareness. The implementation of these
functions was not conducted due to time-constraints.

6.2 Recommendations

The test tool can be improved further in different aspects. The first recommendation is the last
requirement of this project: The different functions for CoHLA should be implemented. Not all
functions for CoHLA are implemented and it would be an improvement of the test-tool to add
all the functions of CoHLA to the test-tool.

Another aspect to improve the test tool is usability, as an extension of the addition of the step
definitions the test tool can be improved on the GUI and the visualization of the results. This
includes the following points:

• An improvement could be the the upgrade of the GUI (Graphical User Interface). This
could show the error messages which are now shown in the terminal. The layout can be
improved, a large space in the GUI is not used. This could be used for the display of the
error messages or a whole new design could be made.

• The first improvement is the results, the results of the test now are the three keywords
True,Sometimes True orFalse. This could be expanded by adding a graph or table
to the output.

Hanna Haven University of Twente

CHAPTER 6. CONCLUSION AND RECOMMENDATIONS 27

• Another improvement is that if the result is False the differences between the wanted
value and the real value is shown (if possible). For example the maximum value of a signal
must be under a certain value, say 2, it might be useful to see what the maximum signal
was so that when the signal is close to the maximum value (2.01) or not (5).

• The last improvement can be the addition of the path at the start of the test. This would
result in smaller paths in the test itself and will make the test clearer.

Robotics and Mechatronics Hanna Haven

28 Submodel-Aware Testing

A Grammarfile

1 grammar myStepsGrammar;
2 entry : feature scenario+;
3 feature: ’Feature’ TEXT methods;
4 scenario : ’Scenario’ TEXT (LPAR fVar (’,’ fVar)* RPAR)? given then+
5 | imprt (LPAR fVar (’,’ fVar)* RPAR)?;
6 imprt : ’import’ (PATH | TEXT);
7 methods : method*;
8 given : ’Given’ model settings*;
9 settings : (’for’ time) |

10 (’with’ initVars) |
11 (’in’ simulator) |
12 (’include’ (PATH | TEXT)) |
13 (’step:’ steptext);
14 time: expr ’nanoseconds’ |
15 expr ’microseconds’ |
16 expr ’milliseconds’ |
17 expr ’seconds’ |
18 expr ’minutes’ |
19 expr ’hours’;
20 initVars: initVar (’,’ initVar)*;
21 initVar: TEXT ’=’ (expr | boolean);
22 steptext : TEXT;
23 boolean : ’False’ | ’True’ | ’true’ | ’false’;
24 simulator : TEXT;
25 then: ’Then’ constraint;
26 model : PATH | TEXT;
27 fVar : expr;
28 constraint : LPAR constraint op constraint RPAR |
29 tempSing LPAR constraint RPAR|
30 tempDouble |
31 CONSPATH |
32 ’not’ constraint |
33 constraint ’for’ time |
34 equation |
35 methodCall |
36 (’step:’ steptext);
37 tempDouble : LPAR constraint tempDoub tempDouble RPAR |
38 LPAR constraint tempDoub constraint RPAR;
39 func : (’max’ | ’min’ | ’abs’);
40 tempSing : (’F’|’G’|’X’ time |
41 ’eventually’ |
42 ’globally’ |
43 ’next’ time);
44 tempDoub : (’U’|’R’|’W’ | ’until’ | ’release’ | ’weakuntil’);
45 op : (’and’ | ’or’ | ’->’ | ’<>’);
46 equation : (cons EQ cons |
47 cons LT cons |
48 cons LTE cons |
49 cons GT cons |
50 cons GTE cons |
51 cons NOT cons);
52 cons : function | boolean | methodCall;
53 function : func LPAR function RPAR | expr;
54 methodCall : ID LPAR callArgs RPAR;

Hanna Haven University of Twente

APPENDIX A. GRAMMARFILE 29

55 callArgs : expr (’,’ expr)*;
56 method : ’method’ ID LPAR args RPAR ’:’ constraint;
57 args: ID(’,’ ID)+;
58 fillVar : ’&’ NUMBER;
59 functionVariable : ’%’ ID;
60 expr : expr (PLUS | MINUS) multExpr | multExpr ;
61 multExpr : multExpr (TIMES | DIV) powExpr | powExpr ;
62 powExpr : powExpr POW atom | SQRT atom | atom;
63 atom : MINUS atom #negAtom |
64 LPAR atom RPAR #parAtom |
65 NUMBER #numAtom |
66 LPAR expr RPAR #exprPar |
67 fillVar #fVarAtom |
68 functionVariable #funcVariable |
69 TEXT #nameAtom
70 ;
71 LPAR : ’(’;
72 RPAR : ’)’;
73 PLUS: ’+’;
74 MINUS: ’-’;
75 DIV: ’/’;
76 TIMES: ’*’;
77 POW: ’^’;
78 SQRT: ’sqrt’;
79 LT : ’<’;
80 LTE: ’<=’;
81 GT: ’>’;
82 GTE: ’>=’;
83 NOT: ’!=’;
84 EQ : ’==’;
85 EXPOINT: ’!’;
86 QUOTES: ’"’;
87 CONSPATH : QUOTES (’a’ ..’z’ | ’A’..’Z’ | ’0’..’9’ | ’(’ | ’)’ | ’.’ |
88 ’\\’ | ’/’ | ’:’ | ’-’ | ’ ’ | ’_’)+ ’.constraint’ QUOTES;
89 TEXT : QUOTES (’a’ ..’z’ | ’A’..’Z’ | ’0’..’9’ | ’(’ | ’)’ | ’.’ |
90 ’\\’ | ’/’ | ’:’ | ’-’ | ’ ’ | ’_’ | ’{’ | ’}’ | ’[’ | ’]’)+
91 QUOTES;
92 PATH : QUOTES (’a’ ..’z’ | ’A’..’Z’ | ’0’..’9’ | ’(’ | ’)’ | ’.’ |
93 ’\\’ | ’/’ | ’:’ | ’-’ | ’ ’ | ’_’)+ QUOTES;
94 ID : (’a’..’z’ | ’A’..’Z’)+;
95 NUMBER : (’0’..’9’)+ (’.’ (’0’..’9’)+)?;
96 COMMENT: ’/*’ .*? ’*/’ -> skip;
97 LINE_COMMENT: ’//’ ~[\r\n]* -> skip;
98 WS : [\t\r\n]+ -> skip;

Robotics and Mechatronics Hanna Haven

30 Submodel-Aware Testing

Bibliography
Bezemer, M. (2013), Cyber-physical systems software development: way of working and tool

suite, Ph.D. thesis, University of Twente, Netherlands, doi:10.3990/1.9789036518796.

Bezemer, M. M., R. J. Wilterdink and J. F. Broenink (2011), LUNA: Hard Real-Time, Multi-
Threaded, CSP-Capable Execution Framework., in CPA, pp. 157–175.

Bhatti, I., J. A. Siddiqi, A. Moiz and Z. A. Memon (2019), Towards Ad hoc Testing Technique
Effectiveness in Software Testing Life Cycle, in 2019 2nd International Conference on Com-
puting, Mathematics and Engineering Technologies (iCoMET), IEEE, pp. 1–6.

Broenink, T., B. Jansen and J. Broenink (2020), Tooling for automated testing of cyber-physical
system models, ICPS.

ControllabProducts (2015), 20sim modeling and simulation, https://www.20sim.nl (accessed
August 10, 2020).

Cucumber (2019), Gherkin Documentation, https://cucumber.io/docs/gherkin/ (accessed
March 10, 2020).

Friedl, J. E. (2006), Mastering regular expressions, " O’Reilly Media, Inc.", ISBN 9780596528126.

Guru99 (2014), 7 Principles of Software Testing, https://www.guru99.com/software-testing-
seven-principles.html (accessed August 10, 2020).

Jansen, B. (2019), Automated Testing of Models of Cyber-Physical Systems, Master’s thesis, Uni-
versity of Twente, the Netherlands, 042RaM2019.

Kok, K. (2016), TERRA support for architecture modeling, Master’s thesis, University of Twente,
040RaM2016.

Kumar, D. (2019), Software Engineering, Seven Principles of software testing,
https://www.geeksforgeeks.org/software-engineering-seven-principles-of-software-
testing/ (accessed August 10, 2020).

Micallef, M. and C. Colombo (2015), Lessons learnt from using DSLs for automated software
testing, in 2015 IEEE Eighth International Conference on Software Testing, Verification and
Validation Workshops (ICSTW), IEEE, pp. 1–6.

Muller, T. and D. Friedenberg (2011), Certified tester foundation level syllabus, Journal of Inter-
national Software Testing Qualifications Board.

Myers, G. J., C. Sandler and T. Badgett (2011), The art of software testing, John Wiley & Sons,
ISBN 9781118031964.

Nägele, T. (2020a), 20sim modeling and simulation, https://cohla.nl/docs/ (accessed July 28,
2020).

Nägele, T. C. (2020b), CoHLA: Rapid Co-simulation Construction, Ph.D. thesis, Radboud Uni-
versity Nijmegen.

Nguyen, V. H., Y. Besanger, Q. T. Tran, T. L. Nguyen et al. (2017), On conceptual structuration
and coupling methods of co-simulation frameworks in cyber-physical energy system valida-
tion, Energies.

Parr, T. (1989), Antlr, https://www.antlr.org (accessed May 13, 2020).

SM, R. (2016), Seven Principles of Software Testing, Software Testing Material,
https://www.softwaretestingmaterial.com/principles-of-software-testing-2/ (accessed
August 10, 2020).

Zandberg, K. (2020), Dataflow-Based Model-Driven Engineering of Control Systems, Master’s
thesis, University of Twente, 003RaM2020.

Hanna Haven University of Twente

	Summary
	Preface
	Contents
	1 Introduction
	1.1 Context and problem statement
	1.2 Goals and approach
	1.3 Outline

	2 Background
	2.1 Testing
	2.2 Current test tool
	2.3 CoHLA

	3 Analysis
	3.1 Analysis of the test tool DSL
	3.2 Addition of the step definitions
	3.3 Addition of submodel-awareness
	3.4 Addition of a simulator
	3.5 Addition of co-simulation
	3.6 Requirements

	4 Design and implementation
	4.1 Step definitions
	4.2 Submodel-aware testing
	4.3 Simulators
	4.4 Implementation of CoHLA
	4.5 Conclusion

	5 Results
	5.1 Results of the step definition
	5.2 Co-simulation/CoHLA
	5.3 Automatic import
	5.4 Conclusion

	6 Conclusion and recommendations
	6.1 Conclusions
	6.2 Recommendations

	A Grammarfile
	Bibliography

