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Abstract

Introduction Early patient mobilisation is important to ensure fast recovery after cardiac surgery.
Mobilisation can be improved using patient-specific information and exercises that match their
current functional level. To achieve this, first patient mobilisation should be quantified objec-
tively.

Purpose To determine a method to quantify in-hospital mobility objectively in patients after
cardiac surgery.

Methods A list of device requirements was made, used to select a tri-axial accelerometer suitable
for clinical research. A neural network algorithm was developed to classify accelerometer data into
classes of physical activities of interest. In experimental setting, optimal dual sensor placement
configuration was determined. A clinical pilot study was conducted aimed at classifying postop-
erative physical activity of inpatients after cardiac surgery, using one sensor attached the right
upper leg and one attached to the right upper arm. To make reliable classifications, preoperative
physical activity data from patients was used to train the neural network.

Results The device regarded best for use in this research was the AX3 accelerometer (Axivity
Ltd.). Preoperative data from 31 patients resulted in a trained algorithm with overall activity
classification accuracy of 96%. Postoperative physical activity was classified in 29 patients. Pa-
tients spent most of their time lying or sitting. The amount of other forms of physical activity was
low, mostly demonstrated between 8 a.m. and 11:59 a.m. No significant differences were found
between male and female patients.

Conclusion The method used was successful at obtaining objective quantification of inpatient
mobilisation after cardiac surgery. Results suggest sufficient scope to motivate inpatients to be
more (frequently) active on a daily basis.

Keywords: cardiac surgery, inpatient mobilisation, objective quantification, accelerometry, Ma-
chine Learning, neural network
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1 Introduction

In the Netherlands, 16.000 open heart surgeries are performed annually [1], 1100 are performed
at Thoraxcentrum Twente (TCT) of Medisch Spectrum Twente (MST) (Enschede, The Nether-
lands). After undergoing cardiac surgery, the average hospital stay is five to seven days [2]. Early
patient mobilisation is important to ensure fast recovery after cardiac surgery [3], [4]. Mobili-
sation improves postoperative physiological functional capacity, accelerates functional recovery,
and shortens hospital stay [5]–[11]. In addition, it reduces postoperative complications, pain and
depression, and is associated with lower mortality, morbidity and costs [5], [12].

Physical therapists and nurses play an important role in stimulating patient mobilisation in order
to optimise recovery. Under supervision of a physiotherapist, patients should make physical efforts
such as walking (stairs), cycling on a hometrainer and practising breathing techniques. Besides
that, recovery benefits from additional unsupervised physical activity of the patient. Despite
the importance of mobilisation after surgery, patients frequently display inactive behaviour and
are bed-bound. Patients are often unaware of the importance of mobilisation, they are afraid to
damage the wound area or fear chest pain. Next, patients overestimate intensity of mobilisation
and can be hindered by pain and fatigue [13], [14]. Inactivity results in loss of muscle strength,
decreases physical function, lengthens hospital stay and increases cardiovascular mortality and
morbidity [15]–[18].

1.1 Improving postoperative mobilisation

In TCT, interventions (project called ’Moving is improving!’) have been carried out to improve
mobilisation [19]. In order to improve mobilisation, posters have been developed which hang in
every room in TCT (Figure 1).

Figure 1: The mobilisation poster developed in TCT [19]. The poster shows the patient journey
from lying in bed to sitting in a chair and walking (out of the hospital).
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The poster provides information and exercises to patients after cardiac surgery. With this inter-
vention, patients gain insight into the importance of mobilisation, how the process of mobilisation
is organised, and how to contribute to it. Therefore, patients regain control of recovery. Also
visitors can motivate patients to exercise. As a result, patients show a rapid increase in functional
mobility after discharge from the intensive care unit (ICU) (Table 1).

Table 1: Patients achieving mobilisation milestones after cardiac surgery [19].

Day(s) after ICU-discharge
1 (n = 188) 3 (n = 157) 5 (n = 60)

Milestone
Always lying in bed 55% 5% 3%
Walking in the corridor 30% 85% 95%
Bicycling on a hometrainer 0% 45% 62%

An unexpected finding is that males appear to mobilise faster than females. For example, 20% of
males can cycle and walk stairs again after four days, while only 6% of females can. It has not been
investigated whether the cause lies by a significant gender difference in baseline characteristics (e.g.
age and/or Body Mass Index). Doppelbauer et al. [20] and Mungovan et al. [5] also observed
gender differences in mobilisation. These respective studies demonstrate that male patients after
orthopaedic and cardiac surgery showed a higher level and/or greater increase in mobilisation
compared to female patients. These observed differences consolidate the desire to improve upon the
interventions performed in TCT to stimulate mobilisation. Interventions should advance towards
a patient-specific mobilisation strategy as functional mobility of patients recovering from cardiac
surgery is thought to increase faster with patient-specific information and exercises that match
their current functional level [19]. This might also be the solution to minimise gender differences.
Adequate patient-specific mobilisation can be achieved when in-hospital patient mobilisation is
quantified objectively. Objective quantitative insight in patient mobilisation is also valuable for
investigation of differences between male and female patients in TCT.

Regardless of the importance of adequate postoperative mobilisation, this is not monitored sys-
tematically and objectively as part of clinical care [21]. Mobilisation is often determined based on
patient’s self-reports and direct observations of medical personnel. The literature shows a wide
range of possibilities to assess patient mobilisation. In general these can be divided into three
categories. Monitoring by patient-reports, professional scoring and wearable devices. An overview
of these methods is presented in Appendix A in tables 12 and 13. When determining a method to
measure mobilisation several things must be considered [22]. Quality of physical activity measured
(e.g. activity type, duration, frequency, and intensity) and objectivity of the data are important
[22]. Also patient burden, costs, and patient characteristics (e.g. age, gender, body weight, and
co-morbid conditions) are decisive [22]. Unfortunately we can conclude that patient mobilisation
is challenging to quantify objectively.
The growing emergence and availability of low cost, reliable wearable activity monitors (e.g. “Fit-
bits”) offers possibilities towards objective quantification of mobilisation. These devices often per-
mit simple, objective, and continuous quantification and remote real-time monitoring of physical
activity [21]. Devices commonly used to monitor physical activity are pedometers, accelerometers,
heart-rate monitors and armbands [22]. Pedometers often work by accelerometry and estimate
the number of steps taken through detecting motion of a person’s hands or hips. Accelerometers
measure acceleration in one, two or three directions (uni-, bi- or tri-axial accelerometers), allowing
determination of movement quantity and intensity. Integrated multisensor systems (armbands)
often combine accelerometry with other sensors (e.g. heart rate or skin temperature) to optimise
physical activity assessment [23]. Pedometers provide a limited measure of physical activity, due to
insufficient ability to detect certain activity patterns. Multisensor devices are sensitive to assessing
the energy expenditure associated with complex and non-ambulatory activities, but often expen-
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sive and offer limited battery capacity. Multi-axial accelerometers are able to detect movement
in different orientations, providing information about the type, intensity and duration of phys-
ical activity [22]. In addition, accelerometers are often small, allow versatile use, are relatively
inexpensive and have sufficient battery capacity.

Relevant mobilisation parameters must be determined if wearable activity monitors are deployed
to quantify postoperative mobilisation in patients after cardiac surgery. Relevant inpatient mobil-
isation parameters differ from day to day in TCT. In the first one to two days after ICU-discharge,
patients are mostly bed-bound and are instructed to perform upper-body exercises. During the
following days until hospital discharge, physical activity should increase in the following order:
patients get out of bed, sit in a chair, increasingly walk (in the corridor), bicycle on a hometrainer,
and eventually walk stairs. Accordingly, relevant mobilisation parameters are the different forms
of physical activity, which can be divided in static activity and dynamic activity. Static activities
include lying, sitting and standing and dynamic activities include walking, cycling and walking
stairs. Both the static and dynamic activities need to be measured in order to obtain an objective
picture of mobilisation.

1.2 Objective

Patients recovering from cardiac surgery benefit from an adequate, patient-specific, amount of
mobilisation. To achieve this, it is important to quantify patient mobilisation objectively. The
aim of this research, therefore, is to determine a method to quantify in-hospital mobilisation
objectively in patients after cardiac surgery. This method should be capable to measure both the
static activities (i.e. lying, sitting, and standing) and dynamic activities (i.e. walking, cycling,
and walking stairs) in order to provide information throughout the entire postoperative in-hospital
phase at the surgical ward.

The following questions are central in this research:

• How can the static activities and dynamic activities be measured objectively?

• What (commercially available) device is suited best to quantify both the static activities and
dynamic activities?

• How can this device be deployed in a clinical pilot study to quantify mobilisation of patients
after cardiac surgery objectively?

• Based on results of the clinical pilot study, what are differences in mobilisation between men
and women after cardiac surgery?

The remainder of this thesis is organised as follows. Composition of device requirements is pre-
sented in the methodology section. These requirements are used to select a device appropriate
for use in this research. Subsequently, there is elaborated on the working principle of the device
chosen, which is accelerometry, possible sensor placements, and how Machine Learning is applied
for automatic activity classification. Experimental methods and a clinical pilot study are then
described. Experimental methods are performed to determine optimal sensor placement, which is
used in the clinical pilot to classify physical activity of patients after cardiac surgery. The results
section describes the conclusion from device selection and demonstrates optimal sensor placement.
Ultimately, results of the clinical pilot study are presented. The discussion focuses on the (clinical)
implication of the results, limitations of this research and recommendations for research in the
future. This thesis is finalised with a conclusion.
This thesis contributes to science in several ways. First, it offers an overview of devices that can
be used for research and/or direct application in (non-)clinical setting. Second, insight is provided
into the application of Machine Learning for classifying human accelerometer data from wearable
devices. Third, clinical research has been performed in which postoperative physical activity of
patients has been measured objectively at a highly specific level. The results obtained can serve
as foundation for improvements on postoperative mobilisation.
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2 Methodology

This section presents methods used to arrive at the selection of an accelerometer device and sensor
placement suitable for this research. Besides that, there is elaborated on the application of ML
to classify physical activity from accelerometer data. The conduction of a clinical pilot study is
also demonstrated. This study was designed in such manner that a neural network algorithm was
trained on preoperative patient data, and subsequently applied to classify postoperative physical
activity of patients after cardiac surgery.

2.1 Device requirements

Numerous devices are available to monitor physical activity, and the amount increases with ad-
vancements of technology. Discussions with experts in different fields (physiotherapy, rehabil-
itation, telemonitoring, eHealth, and activity monitoring) served as foundation for the device
requirements depicted in Tables 2 and 3. An overview of these conversations is presented in Ap-
pendix B Table 14. A list of potential devices was established through literature research. The
specifications and properties of devices were examined (Appendix B Tables 15 - 17). The devices
were subjected to the device requirements, and scored accordingly, in order to include in this
research. Scoring was performed by the author.

Table 2: Technical requirements for developing a method to classify inpatient physical
activity after cardiac surgery. Requirements are ranked from highest to lowest importance.

Requirements Consideration

(1) Classification of various activities. As mentioned in the introduction, over a period of 5-7 days, patient
Activities of interest: physical activity changes from lying in bed and sitting towards
- Static: standing, sitting, and lying walking on the ward, bicycling on a home trainer and finally walking
- Dynamic: walking, cycling, and walking stairs stairs (personal communication, see Appendix B Table 14 (1)).
Nice-to-have: Step count, distance covered and fall
detection.

(2) Sampling rate between 60-100Hz is necessary to Body movements quickly have a bandwidth of 10Hz. For adequate
develop proprietary algorithms for activity classification. movement analysis, raw signals should be measured with sampling
Nice-to-have: A (commercially available) device with rates of 60-100Hz. Devices using adequate classification algorithms
adequate analysis and classification algorithms can allow lower sampling rates.
allowing lower sampling rates.

(3) Battery capacity enables measuring up to five to seven Patients have an average hospital stay of 5-7 days after cardiac
consecutive days. surgery. It would be inconvenient if measurements are interrupted by

means of charging the device, considering patient comfort, privacy,
and preventing loss of information (personal communication, see
Appendix B Table 14 (4)).

(4) Minimal five to seven days of local data storage. Patients have an average hospital stay of 5-7 days after cardiac
Nice-to-have: Data streaming (storage in Europe) surgery. Measurements cannot be interrupted by means of exporting
for direct feedback towards patients. data from the device, considering patient comfort, privacy, and

preventing loss of information (personal communication, see
Appendix B Table 14 (6)).

(5) Measured data must be exportable from the device. For (statistical) data analysis, measured data must be exportable.
Nice-to-have: Raw exportable data. Raw data needs to be available to develop proprietary algorithms

for activity classification (personal communication, see Appendix B
Table 14 (4-6)).
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Table 3: Clinical requirements for deploying a method to classify inpatient physical
activity after cardiac surgery. Requirements are ranked from highest to lowest importance.

Requirements Consideration

Patient related
(1) No burden during hospital stay and no hindrance Patient discomfort is undesirable. Hindrance would negatively affect
in mobilisation. actual mobilisation (personal communication, see Appendix B

Table 14 (3-5)).

(2) Minimal soft tissue deformation. Considering patient comfort, the device is not allowed to cause
damage and pain (personal communication, see Appendix B Table
14 (3-5)).

(3) Device placement is outside wound area. Wound healing and wound care (risk of infection) must not be
compromised. Wound areas: sternum, radial artery and greater
saphenous vein.

(4) Official regulations regarding patient privacy and In order to obtain (patient) permission to execute a clinical trial
integrity can be met. patient privacy is important and subject to regulation (GDPR,

MST, UT and/or VSNU regulations).
Practical
(5) No impediment in daily nursery care. Quality of patient care is essential and should not decrease.

Besides that, adaptations to perform daily care (such as taking
off the device) could cause data manipulation and loss.

(5) Device is CE certified. In order to perform a clinical pilot, the device is required to be
Nice-to-have: Device is validated in (heart) surgical or CE certified.
general hospital target groups and/or is already in use
in MST.

(7) Total costs to execute a clinical pilot study should A sum of 3000 euros has been made available from Stichting
not exceed e3000. Hartcentrum Twente.

(8) Data analysis is attainable with supplied software The need of separate software could be costly and inconvenient,
and/or with software from the University of Twente. potentially slowing the process of data analysis.
Nice-to-have: Analysis in Matlab.

2.2 Device properties

From extensive comparison of eighteen devices (Results Section 3.1), the AX3 accelerometer (Ax-
ivity Ltd.) was regarded best suitable for this research (Appendix B Tables 18 and 19). The
AX3 is a small, waterproof, and relatively inexpensive tri-axial accelerometer (Figure 2). It is
capable of logging acceleration at a sample rate of 100Hz for 14 days. A real time quartz clock
and temperature sensor are also incorporated in the device.

Figure 2: The AX3 accelerometer (Axivity Ltd.). 23x32.5x7.6mm (length x width x height), IPX8
waterproof rating, 512 MB flash memory, and priced e123 [24].

2.3 Sensor placement

Different parts of the human body can be used for sensor placement. Gemperle et al. [25] described
the interaction between wearables and the human body by proposal of the ergonomic guideline
of wearability. They designed a ”wearability map” to indicate locations for unobtrusive sensor
placement (Figure 3). Locations include the collar area, rear of upper arm, forearm, front and
rear sides of rib cage, waist, thighs, shin, and top of the foot. These locations are similar for men
and women and are characterised by a relatively large continuous surface, and low amounts of
movement and flexibility [26]. In patient populations, sensors placed at these locations should not
interfere with necessary medical care.

10



Figure 3: Areas most unobtrusive for placement of wearable devices: a) collar area, b) rear of
the upper arm, c) forearm, d) rear, side, and front rib cage, e) waist and hips, f) thigh, g) shin,
and h) top of the foot [25].

How to attach sensors to the human body is an important aspect of wearability. Attachment can
be direct to the skin [27]–[29] and indirect by accessories as straps, belts, wristbands [30]–[32] or
integrated into clothing [33]. Sensors should be securely fitted and attached to prevent relative
motion between sensors and the human body. Vibration and displacement as a result of loose
attachment produces extraneous signal artefacts and degrades sensing accuracy [26].

In general populations, sensors are commonly placed on the waist, sternum and lower back as
it enables to measure whole-body movement [26]. These locations are, while ideal for postural
classification, not desirable in terms of comfort and practicality considering patients after cardiac
surgery. Placement on the lower back interferes with patient comfort as patients often lie on their
back in bed, sternum placement is impractical because patients have had a median sternotomy
that should not infect, and waist placement is not optimal due to the fact that patients are often
limited by objects such as chest drains and external pacemakers around the waist. Sensors can
also be attached to the wrist, ankle and thigh. While the ankle and wrist are convenient locations,
they are subject to a lot of (irrelevant) movement which can affect classification of both postures
and movements negatively. In addition, a sensor on the wrist can interfere with infusions and
the wound area of a radial artery that has been removed. As for no medical interference and
as less irrelevant bodily movement as possible, the thigh or upper leg is a suitable location for
sensor placement. Two sensors are necessary to distinguish postures accurately. Standing, sitting
and lying can be distinguished using one accelerometer placed on the thigh and one on the chest
[34]. As mentioned before sensor placement on the chest (i.e. sternum) is not desired considering
patients after cardiac surgery. Therefore, an alternative second location is necessary, which could
be the upper arm, shin or foot. In the case of this research, the upper arm was chosen as an
acceptable second sensor placement location. Upper arm placement was chosen as it provides
information about orientation of the upper body. Next, the upper arm was assumed to provide
information relatively similar to information from a sensor placed on the sternum. An experiment
to determine optimal sensor placement configuration, using one sensor on the upper leg and one
sensor on the upper arm, is described in Section 2.8. Results of this are presented in results section
3.2.
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2.4 Classification of physical activity using accelerometry

Wearable devices operating according to the principle of accelerometry, such as the AX3, are useful
to measure human physical activity, in either clinical/laboratory setting or free-living environment
[35]. These devices are often small, low in costs and provide quantitative measurements [35]. A tri-
axial accelerometer unit is a transducer that measures acceleration and gravity in three directions.
Accelerometers consists of a mass, suspended by a spring in a housing [36]. The mass is allowed
to move in so called sensitive directions. The displacement of the mass is a measure of difference
of acceleration (a) and gravity (g) along sensitive axis (n) (Figure 4(a)) [36]. This results in an
electrical signal SA,n related to these variables according to:

SA,n = kA,n(a− g) ∗ n + OA,n (1)

with kA,n representing a scaling factor and OA,n an offset. An output vector SYA can be related
to the original acceleration and gravity according to:

SYA =S a−S g (2)

The S on the left of the vector is used to indicate that it is expressed in a coordinate system
of the sensor housing. Tri-axial accelerometers are assembled by mounting three single axis ac-
celerometers in a box with their sensitive axes in different directions or using a sensor constructed
using a single mass, which is the case with the AX3 [37] (Figure 4(b)). In both constructions
measured displacement is related to the difference between acceleration and gravity in the same
way as stated in equations (1) and (2) [36].

(a) (b)

Figure 4: (a): A single axis accelerometer, containing a mass suspended by a spring. The dis-
tance d of the mass with respect to the sensor housing is measured and is a function of acceleration
and the direction of gravity with respect to the direction of distance measurement. The unit vector
n represents the sensitive axis of the sensor [36]. (b): Schematic representation of the accelerom-
eter designed by Lötters et. al. [38]. A cubic mass is suspended by springs on all six sides. The
displacement of the mass with respect to the housing is measured capacitively, enabling the sensor
to be used as a tri-axial accelerometer [36].

Tri-axial accelerometers measure both inertial and gravitational acceleration. Inertial acceleration
is acceleration due to any force except for the gravitational force applied on a rigid body. Grav-
itational acceleration is due to gravitational force. Acceleration is proportional to external force
and hence reflects intensity and frequency of human movement. Velocity and displacement can
be derived from accelerometry data. In response to gravity, accelerometry provides tilt sensing
with respect to reference planes when accelerometers rotate. The resulting inclination data can be
used to classify body posture orientations. Therefore, measured accelerometry data can be used
to identify postures and to classify daily movements related to a patient’s functional status [26],
[35].
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In order to classify posture and activity, knowledge of patient’s movements is required. Movements
need to be identified from the accelerometer signals to recognise movements of individuals in a
free-living (in-hospital) setting [35]. In general human, activity can be divided in static activities
and dynamic activities (Figure 5). Biomechanically, the human body can be considered to consist
of rigid body segments, linked by joints [39], [40]. Positions and orientations of body segments do
not vary significantly over time during static activities (e.g. lying, sitting, and standing). Static
activities can therefore be identified by body segment orientation with respect to gravitation [40].
During dynamic activity, positions and orientations of body segments do vary over time. During
dynamic activities (e.g. walking, cycling, and walking stairs) body segments are naturally moved
in cyclical manner. Noncyclical movements are normally present only during short transitions
between static and cyclical dynamic activities [40].

Figure 5: Human activity classification tree based on division between static and dynamic activ-
ities.

Systems utilising multiple body-worn accelerometers have been used to successfully classify pos-
tures and activities [34], [40]–[43]. Postures and activities in these researches include standing,
sitting, lying, walking, cycling and walking stairs. This provides support for the viability of
classifying movements using accelerometry [35]. Different approaches to classification have been
proposed. Research includes fixed-threshold classification [34], [41], [42], reference-pattern-based
classification [40], pattern recognition strategies that use statistical algorithms [40], conventional
or fuzzy logic [44] or artificial neural networks [45], [46]. More recent research using Machine
Learning (ML) and Deep Learning (DL) algorithms to classify human physical activity from tri-
axial accelerometer data demonstrates high classification accuracy [47]–[49].
Considering the nature of data provided by body-worn sensors, use of an adequate algorithm for
classification of physical activity is required. This algorithm should be capable to deal with non-
linear (i.e. linearly inseparable) data, is able to reconfigure, learn, generalise and tolerate noise
[50]. ML algorithms known as Artificial Neural Networks (ANN) are suitable in this regard as
they can learn and generalise, are flexible, and perform parallel computation [50].

2.5 Development of an Artificial Neural Network algorithm

In general, several steps are required for developing ML algorithms and specifically for the com-
position of an ANN. First, it is important to find the right topology of a network. An optimum
can be achieved through simulations with different topologies, in terms of numbers of neurons per
layer and number of hidden layers [50].
A classification algorithm does not make classifications directly from raw sensor data. The next
step, therefore, is to perform feature extraction to obtain important data characteristics from
which classification is pursued. Choosing highly informative features for classification is impor-
tant and a problem-dependent task [47]. Janidarmian et al. [51] presented an overview of most
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effective time/frequency-domain and heuristic features. Time-domain features are employed most
frequently due to high discriminatory ability and low computational cost [51].
An additional process called ’feature selection’ can be performed as third step. Feature selection
is the technique of selecting a subset from a given set of features by eliminating irrelevant features
[52]. Feature selection has become progressively important [53]. It reduces the dimensions of fea-
tures and hence amount of data used in learning, alleviates the effect of the curse of dimensionality
to improve algorithms’ generalisation performance and increases execution speed and the models’
interpretability [52]. Neighbourhood Component Analysis (NCA) is a non-parametric feature se-
lection method suitable for small data sets [54]. This method computes feature weight vectors (i.e.
added value of a given feature for its classification purpose) such that irrelevant feature weights
get reduced to zero and can be discarded [52], [54].
In order to evaluate performance of a ML algorithm on limited data sample, K-fold cross-validation
is often used. K, which is commonly 10, refers to the number of subsamples that the data sample
is split into [55]. K-1 of these subsamples are used for training of the algorithm and the single
remaining subsample is used for testing performance. This procedure is repeated K times. A
single estimation can then be produced by averaging K results, providing an expectation of the
algorithm’s classification performance on data not used during training. Leave-One-Subject-Out
(LOSO) validation is a good approach for estimation of more realistic algorithmic performance
and also avoids possible overfitting [51]. With LOSO-validation, for n = number of subjects in
the data sample, the algorithm is trained on all data except for one subject and performance is
tested for that single subject. This process is repeated n times and then averaged to make a
single estimation on performance. Classification performance of an algorithm can be expressed
in different ways. Metrics commonly used are accuracy, precision and recall. Confusion matrices
are used to visualise these three metrics. Classification accuracy is the percentage of number of
correct predictions to the total number of input samples. Precision (or positive predictive value)
is the percentage correctly classified samples of all samples to belong to that class. Recall (or true
positive rate) is the percentage correct classifications of the number samples that should have been
identified as that class.

In the case of this research an ANN algorithm was developed in Matlab (2019b, the MathWorks
Inc, Natick, MA), based on a Matlab script from Bunkheila [56], openly available as part of a
Matlab webinar. The script uses a feed forward network comprised of one hidden layer with
eighteen hidden nodes. The hidden layer operates by sigmoid activation functions (having a char-
acteristic S-shaped curve) and the output layer by a softmax (normalised exponential) function.
A scaled conjugate gradient back propagation function was used to train the network. This func-
tion updates weight and bias values according to the scaled conjugate gradient method. Network
performance was calculated using a cross-entropy function. The function returns a result that
penalises inaccurate outputs, with little penalty for correct classifications. Bunkheila built the
algorithm to classify human physical activity from a data set consisting of smartphone accelerom-
eter data [57]. This data set has been used several times in research towards Human Activity
Recognition (HAR) [58]–[62]. Bunkheila’s code was used as foundation as his aim was to classify
similar activities (i.e. lying, sitting, standing, walking, walking upstairs, and walking downstairs)
as holds for this research. Bunkheila’s Matlab code was adapted to function with data from two
AX3 devices. Code adaptations included noise filtering and simultaneous data import from two
tri-axial accelerometers with corresponding activity class labels and subject number. Data was
categorised in variables from a sensor attached to the arm and a sensor attached to the leg. Ad-
ditional code was written in order to divide data into segments with a fixed window and remove
segments that contained more than one activity class. The activity classes ’walking upstairs’ and
’walking downstairs’ were changed to ’cycling’ and ’walking stairs’. Finally, adjustments were
made to calculate features over all signals measured from both sensors.
The features Bunkheila selected to use in his algorithm were also used in this research. Time-
domain features included average of total acceleration (i.e. sum of static and dynamic acceleration)
and root mean square of body acceleration (i.e. dynamic acceleration). Both features aid in distin-
guishing static from dynamic features and classification of postures. Frequency-domain features,

14



for recognising type of dynamic activity, include autocorrelation (height of main peak, height and
position of second peak), spectral peaks (height and position of first six peaks) and spectral power
(total power in five adjacent and pre-defined frequency bands). These five features are all included
in the overview presented by Janidarmian et al. [51]. In attempt to improve the algorithm, the
following features were added: median of total acceleration, standard deviation of body acceler-
ation, median absolute deviation and signal magnitude area of both total acceleration and body
acceleration. These added features are also included in the overview presented by Janidarmian
et al. [51]. Only time-domain features were added for the sake of preserving computation costs.
Features were calculated for all three acceleration components of both sensors, resulting in a total
of 160 features.
Based on an open-source Matlab script [63], NCA was performed in Matlab to determine weights of
these 160 features. NCA was executed on features calculated on data collected from all patients in
the labelling measurement of the clinical pilot study (Section 2.8.1). Features with feature weight
of zero were eliminated. This resulted in feature selection of a subset of 59 features (Appendix
F Table 24). For the sake of computation time, the neural network using only these 59 features
was applied in the clinical pilot study to classify physical activity of patients after cardiac surgery
(Results Section 3.3.3).

2.6 Signal processing

OmGui software was used to initiate and stop measurements, and to download data from the AX3
devices. Data was downloaded as .cwa files. Matlab was used to convert the .cwa files and to
perform all other signal processing in this research. The AX3 devices collected tri-axial acceleration
data set at a sampling rate of 100Hz and sensitivity range of ± 8 g. Signals were preprocessed for
noise reduction with a third order median filter and a third order low-pass Butterworth filter with
a 20Hz cutoff frequency [57]. The measured acceleration data, contains gravitational and body
motion components. Body acceleration was obtained by passing the acceleration signal through
a high-pass filter with a cutoff frequency of 0.8Hz. Measured data was divided into subsequent
segments of 256 samples (2.56 seconds), using fixed-size sliding window method [57]. Thus, the
neural network determined a classification every 2.56 seconds. The window size was similar to
the window size determined in [57], based on a person’s average walking cadence, which is at
least 1.5 steps per second [64]. A full walking cycle of two steps is preferred on each window
sample. Data used for training of the algorithm was divided into segments using a fixed-size
overlapping sliding window method. Window size was 256 samples and overlap was 128 samples
(50%). Overlap creates an artificial increase in the number of available training samples. Fixed-
size sliding window methods are common and overlap between adjacent windows is effective in
classification problems using wearable sensors [51], [65], [66].

2.7 Experimental methods

As mentioned in Section 2.3, sensors can be placed on the upper arm and and upper leg in the
case of patients after cardiac surgery. An experiment was performed to determine optimal sensor
placement on these body segments. Four able-bodied subjects participated in the experiment, two
male and two female. Age ranged between 21 and 27 years, height between 169 and 184 cm, and
weight between 63 and 76 kg. Due to the restrictive measures imposed by the COVID-19 pandemic,
the experiment was performed in both indoor and outdoor setting (i.e. inside and outside one single
house). The experiment was performed for measurement purposes and no invasive actions were
imposed to the subjects. By verbal informed consent, all subjects gave permission for usage of
personal data (gender, age, length, and weight) and measurement data in this research. The
subjects performed static and dynamic activities according to a fixed protocol. They were asked
to subsequently stand, sit on a chair, and lie on a bench (on the back, right side and left side).
Each posture was held for 30 seconds. Transition time between posture was approximately 10
seconds. Afterwards, the subjects were asked to perform three dynamic activities subsequently:
walking back and forth in a hallway, cycling laps around a courtyard and walking stairs in the
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house. The length of the hallway was approximately ten meters. All subjects cycled in the same
direction and on the same bicycle, without adjustments to the saddle or handlebar height. The
staircase consisted of approximately fifteen steps and was both ascended and descended. The
dynamic activities were performed at slow, comfortable, and fast speed (the different speeds were
instructed using similar terms). All speeds were performed for a minimal duration of 30 seconds
and were alternated with 10 seconds of standing still. The experiment also contained short parts
of free movement (e.g., walking through the house from the static activities to outdoors for the
dynamic activities). The fixed protocol was repeated twice. For each subject, the experiment had
a duration of approximately 35 minutes. Eight tri-axial AX3 accelerometers were mounted to the
subjects using TegadermTM patches (Figure 6). Four devices were placed on both the right upper
leg and the right upper arm. Device placement was anteroproximal (AP), lateroproximal (LP),
anterodistal (AD) and laterodistal (LD) on both body segments.

Figure 6: Right upper arm and right upper leg sensor locations: anteroproximal (AP), latero-
proximal (LP), anterodistal (AD) and laterodistal (LD).

Segments of measured data were manually labelled as being lying, sitting, standing, walking,
cycling or walking stairs. The process of data labelling was done via hard coding. The measured
data was plotted with Matlab (Appendix C Figures 17 and 18). Through visual inspection of the
plots, data samples were labelled as one of the six activities. The labelled data was used to train the
neural network algorithm and determine its performance using sixteen possible sensor placement
configurations. Performance was determined using results on overall classification accuracy from
K-fold (K = 10) cross-validation and LOSO-validation (n = 4 subjects). The sensor configuration
with highest accuracy, averaged from both validation methods, was used in clinical measurements
of this research. Results of the experimental methods are presented in Section 3.2.

2.8 Clinical pilot

A clinical pilot study was conducted as part of this research. This study is reported as per the
STROBE recommendations on the quality of reporting observational studies [67].
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2.8.1 Study design and population

Physical activity of inpatients after cardiac surgery was measured with AX3 accelerometers in order
to obtain objective quantification of inpatient mobilisation. The accelerometers were applied in
dual configuration, placed lateroproximal on the right upper arm and anterodistal on the right
upper leg (Appendix D Figure 19). This placement configuration was regarded optimal from
results of the experimental methods (Section 3.2.).

This single centre, exploratory study was conducted at TCT (MST Hospital, Enschede, The
Netherlands), a tertiary nonacademic teaching hospital. The study was exempted from the Med-
ical Research Involving Human Subjects Act by the Medical Ethics Committee Twente (METC
Twente) and approved by the local institutional review board. The study received number K20-14
and was named MOVeMeNTT.
Patients were recruited from 2 June to 31 July 2020. Patients did not make additional hospital
visits, therefore, conform to the hospital measures during the COVID-19 pandemic. Adult pa-
tients undergoing Coronary Artery Bypass Grafting (CABG) surgery, valve surgery and CABG
plus valve surgery were included. Patients with a Katz Index of Independence in Activities of
Daily Living functioning (KATZ-ADL) score larger than 2 before surgery (i.e. patient is not inde-
pendent in daily life mobilisation) [68], patients with an ICU stay longer than 72 hours, patients
with post-operative Cerebro Vasculair Accident (CVA) and patients mentally incompetent were
excluded from the study.
Patient inclusion occurred during the day of hospital admission. After approval with informed con-
sent, a short (ten-fifteen minutes) measurement was performed (protocol in Appendix D), the so
called ”labelling measurement”. During labelling measurement, patients performed six activities
of interest with the AX3 devices attached to the intended locations. Activities were lying, sitting,
standing, walking, cycling and walking stairs. Implementation and sequence of activities was as
spontaneous as possible. TegadermTM patches were used for sensor attachment. The purpose of
this measurement was to collect data suitable for labelling. Data was labelled in similar manner as
described in Section 2.7. The labelled data was used to train the neural network (Section 3.3.2),
resulting in an algorithm able to classify postoperative physical activity of these same patients.
All patients were admitted to ICU after surgery. Measurements of postoperative mobilisation
started after patient transfer from the ICU to the surgical ward. After arrival, AX3 devices were
attached at identical locations as during the labelling measurement, again using TegadermTM

patches. The devices were to be worn for an entire postoperative clinical phase with a maximum
of seven days.

Primary outcome was daily amount of time in activities of interest between 7 a.m.-11 p.m. Sec-
ondary outcomes included length of ICU stay and surgical ward stay. Baseline characteristics were
determined based on Body Mass Index (BMI) (kg/m2) and The European System for Cardiac
Operative Risk Evaluation II (EuroSCORE II) definitions [69].

Both sensor attachment and starting measurements were performed by the author. Problems
with fixation of the AX3 devices were reported to this same person and resolved when nursing was
unable to do so. Dedicated physiotherapists trained for cardio-thoracic physiotherapy practice
participated in the study. Physiotherapists recorded patient activity on forms developed for this
purpose, the so called ”activity forms” (Appendix D Figure 20). Activity type, time and duration
were noted. An A3-poster with study instructions for nursing was placed in patient rooms and at
the surgical ward coffee room (Appendix D Figure 21).

2.8.2 Statistical analysis

Statistical analysis on patient characteristics and patient physical activity was performed with
GraphPad Prism 5 (GraphPad Software Inc, San Diego, CA). Results were considered statistically
significant at the 5% level. Continuous variables were presented as mean with standard deviation
(SD) or median with interquartile range (IQR) depending on the distribution. Depending on
the distribution, groups of continuous variables were compared using unpaired t-tests or Mann-
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Whitney tests. Continuous variables were tested for normality with inspection of skewness and
kurtosis measures. In addition, normality was tested using the Kolmogorov-Smirnov test, Shapiro-
Wilk test, and D’Agostino-Pearson test. If necessary, normality test were supplemented by visual
inspection of histograms. Categorical variables were presented as number with corresponding
percentages and compared between groups using Chi-square or a Fisher Exact Test. Kruskal-
Wallis tests were used to assess whether the amount of patient physical activity differed over the
days measured. Dunn’s multiple comparison post hoc test was used to pinpoint which day differed
significantly from others and to determine whether activity differed significantly per day between
genders.
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3 Results

This section demonstrates results from device selection and findings concerning optimal sensor
placement configuration. Results from the clinical pilot study are also presented, including patient
characteristics, neural network performance after training and postoperative physical activity of
patients after cardiac surgery.

3.1 Device selection

Based on specifications, a total of eighteen devices were subjected to the requirements (Appendix
B Tables 18-23). Three devices were eligible for use in clinical setting. It concerned the AX3,
ActiGraph and MOX1. The other fifteen devices were discarded as they were unable to meet the
first technical requirement concerning classification of activities of interest. The AX3, ActiGraph
and MOX1 are relatively equivalent devices and, therefore, met the device requirements to an
equal extent (Appendix B Tables 18-19). The decisive factors on which final device selection is
based were sample rate with corresponding battery capacity and price (Table 4). Both the AX3
and ActiGraph offer sufficient battery capacity of fourteen days at a sample rate of 100Hz. The
MOX1 battery capacity is less than seven days when measuring with necessary sample rates of
60-100Hz. The MOX1 was therefore considered inferior. Based on the price (per one device), a
selection was made between the AX3 and the ActiGraph. The AX3 price is less and above all
within budget, which was not the case for the Actigraph. Therefore, device selection has led to
the AX3.

Table 4: Decisive factors for device selection: sampling rate, battery capacity and price.

AX3 ActiGraph MOX1

Sampling rate 12.5-3200Hz [24] 30-100Hz [70] 25-100Hz [71]
Battery capacity 14 days at sampling 16 days at sampling 7 days at sampling

rate of 100Hz [72] rate of 100Hz [73] rate of 25Hz [71]
Price e123* e225** e195**

* Software costs nonexistent
** Software costs excluded

3.2 Experimental methods

Neural network performance with sixteen different sensor placement configurations, from com-
binations of AX3 sensors placed on the upper arm and on the upper leg, is reported in Table
5 and Table 6. Data from four subjects was available. The configuration using lateroproximal
(LP) upper arm location and anterodistal (AD) upper leg location demonstrated highest overall
classification accuracy (98.1%) determined by 10-fold cross-validation (Table 5). Configurations
consisting of anterodistal (AD) or lateroproximal (LP) upper arm location, and anterodistal (AD)
upper leg location demonstrated highest overall classification accuracy (93.3%) determined by
LOSO-validation (Table 6). The sensor placement configuration using the lateroproximal (LP)
upper arm location and the anterodistal (AD) upper leg location was considered optimal as its
average value calculated from estimated classification accuracy of both validation methods was
highest.
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Table 5: Overall classification accuracy of the neural network trained with experimental data
from sixteen sensor placement configurations. Activities classified were lying, sitting, standing,
walking, cycling, and walking stairs. Accuracy was determined by averaging results from K-fold
cross-validation (K = 10).

Right upper leg
AX3 location

Anteroproximal Lateroproximal Anterodistal Laterodistal

Right upper arm

Anterodistal 96.5 [94 100] 95.0 [93 98] 96.5 [92 100] 93.9 [87 97]

Laterodistal 94.8 [89 100] 97.7 [95 100] 95.2 [87 100] 95.9 [91 100]

Anteroproximal 93.9 [90 97] 93.4 [87 100] 96.8 [92 100] 93.6 [88 99]

Lateroproximal 97.0 [93 99] 96.5 [89 100] 98.1 [94 100] 96.5 [92 100]

Data are percentages [Min Max]

Table 6: Overall classification accuracy of the neural network trained with experimental data from
sixteen sensor placement configurations. Activities classified were lying, sitting, standing, walking,
cycling, and walking stairs. Accuracy was determined by averaging results from LOSO-validation
(n = 4 subjects).

Right upper leg
AX3 location

Anteroproximal Lateroproximal Anterodistal Laterodistal

Right upper arm

Anterodistal 92.3 [90 97] 84.9 [84 85] 93.3 [91 97] 89.6 [87 94]

Laterodistal 86.6 [83 89] 83.3 [76 86] 87.4 [85 89] 84.7 [83 87]

Anteroproximal 85.9 [70 95] 78.5 [69 84] 85.1 [69 95] 85.8 [69 91]

Lateroproximal 91.7 [91 92] 87.0 [86 89] 93.3 [91 95] 92.3 [91 95]

Data are percentages [Min Max]

3.3 Clinical pilot

Out of 75 patients selected for eligibility, in total 44 patients were excluded based on, inability to
perform the labelling measurement (n=18), patient transfer from ICU to surgical ward planned
during weekend days (n=9), no available sensors (n=8), patients referred from other hospitals
(n=6), or patients unwilling to participate (n=3). Thus, 31 patients were included for the pre-
operative labelling measurement. It concerned 24 male patients and 7 female patients of which
labelled data was used for neural network training. Out of 31 patients, two male patients were ex-
cluded from the postoperative physical activity measurement. Exclusion was based on prolonged
ICU-stay over 72 hours. Postoperative data of 29 patients was classified and analysed regarding
time per activity. A flow diagram of the process is visualised in Appendix E Figure 22.
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3.3.1 Patient characteristics

Patients had a median age of 70 [64-75] years, a BMI of 27 [25-29] kg/m2, 42% had multivessel
disease and 7% a recent myocardial infarction. There were no significant differences between men
and women for baseline or in-hospital characteristics (Tables 7-9). ICU stay was 1 [1-2] day for
male patients and 2 [1-2] days for female patients. Surgical ward stay was 5 [3-6] days for men and
5 [2-6] days for women (Table 9). No complications such as wound infection, sternum dehiscence,
or ventricular tachycardia related to early mobilisation were reported.

Table 7: Baseline patient characteristics. P values represent absence or presence of statically
significant differences between genders. No significant differences were found.

Variable Total Male Female P value
(n = 31) (n = 24) (n = 7)

Age, years 70 [64-75] 72 [64-75] 68 [56-75] 0.52
Body Mass Index, kg/m2 27 [25-29] 26 [25-29] 29 [24-35] 0.64
Diabetes 6 (19%) 3 (13%) 3 (43%) 0.11
Multivessel disease 13 (42%) 11 (46%) 2 (29%) 0.67
Recent myocardial infarction 2 (7%) 2 (8%) 0 (0%) 1.00
Left Ventricular Function ... ... ... 0.23
- Poor, <30% 4 (13%) 4 (17%) 0 (0%)
- Moderate, 30-50% 14 (45%) 9 (37%) 5 (71%)
- Good, >50% 13 (42%) 11 (46%) 2 (29%)
COPD 1 (3%) 1 (4%) 0 (0%) 1.00
Extracardiac arteriopathy 3 (10%) 3 (13%) 0 (0%) 1.00
Neurological dysfunction 3 (10%) 2 (8%) 1 (14%) 0.55
Previous cardiac surgery 0 (0%) 0 (0%) 0 (0%) ...
NYHA class ... ... ... 0.37
- I 12 (39%) 8 (33%) 4 (57%)
- II 8 (26%) 6 (25%) 2 (29%)
- III 11 (35%) 10 (42%) 1 (14%)
- IV 0 (0%) 0 (0%) 0 (0%)
Urgency ... ... ... 0.29
- Elective 25 (81%) 18 (75%) 7 (100%)
- Urgent 6 (19%) 6 (25%) 0 (0%)
- Emergency 0 (0%) 0 (0%) 0 (0%)
- Salvage 0 (0%) 0 (0%) 0 (0%)
EuroSCORE I, log 3.5 [1.5-6.3] 3.8 [1.7-6.4] 3.5 [1.2-6.3] 0.72
EuroSCORE II, log 1.4 [0.9-2.2] 1.5 [0.9-2.6] 1.0 [0.7-1.5] 0.21

COPD = Chronic Obstructive Pulmonary Disease
NYHA = New York Health Association
Data are medians [IQR] or numbers (proportions)
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Table 8: Periprocedural patient characteristics. P values represent absence or presence of stati-
cally significant differences between genders. No significant differences were found.

Variable Total Male Female P value
(n = 31) (n = 24) (n = 7)

Type of surgery ... ... ... 0.78
- CABG 15 (48%) 12 (50%) 3 (43%)
- Valve surgery 10 (32%) 7 (29%) 3 (43%)
- CABG + valve surgery 6 (20%) 5 (21%) 1 (14%)
Surgical approach ... ... ... 1.00
- Median sternotomy 27 (87%) 21 (88%) 6 (86%)
- Anterolateral mini-thoracotomy 4 (13%) 3 (12%) 1 (14%)
Cardiopulmonary bypass 24 (77%) 18 (75%) 6 (86%) 1.00
Cardiopulmonary bypass time, min 99 [84-134] 96 [83-125] 116 [82-163] 0.53

CABG = Coronary Artery Bypass Grafting
Data are medians [IQR] or numbers (proportions)

Table 9: Postoperative patient characteristics. P values represent absence or presence of statically
significant differences between genders. No significant differences were found.

Variable Total Male Female P value
(n = 31) (n = 24) (n = 7)

ICU stay, days 2 [1-2] 1 [1-2] 2 [1-2] 0.29
Surgical ward stay, days 5 [3-6] 5 [3-6] 5 [2-6] 0.88
Discharge to ... ... ... 1.0
- Home 23 (74%) 18 (75%) 5 (71%)
- Referring hospital 8 (26%) 6 (25%) 2 (29%)

ICU = Intensive Care Unit
Data are medians [IQR] or numbers (proportions)

3.3.2 Neural network training

The neural network was trained using labelled data from 31 patients (24 male patients and 7
female patients). For each patient an average of eleven minutes of labelled data was used. The
amount of activity classes in data used for training were not balanced, while classes in data used to
test classification performance of the algorithm were balanced. Neural network performance after
training is reported in Table 10. The classification accuracy of the neural network with increase
in the number of patients is shown in figure 7. Neural network performance after feature selection
is reported in Table 11.

The algorithm demonstrated 98% overall accuracy, determined by 10-fold cross-validation (Table
10). Recall was highest for cycling (100%) and lowest for walking stairs (94%). Precision was
highest for both standing and cycling (100%) and lowest for walking (94%). Overall accuracy
determined by LOSO-validation was 96% (Table 10). Recall was highest for both standing and
cycling (99%) and lowest for sitting and walking stairs (93%). Precision was highest for both
standing and cycling (99%) and lowest for lying (93%). Estimations from LOSO-validation showed
an increased [Min Max] range, compared to results from K-fold validation. Decrease of minimum
values caused the increase of this range. Additional information on performance is visualised in
confusion matrices in Appendix F Figure 23.
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Table 10: Precision and recall per activity and overall classification accuracy of the neural network
trained with patient data from the labelling measurement (number of features = 160). Variables
were determined by averaging results from K-fold cross-validation (K = 10) and LOSO-validation
(n = 31 subjects).

K-fold LOSO

Recall Precision Recall Precision
Lying 97 [92 99] 98 [95 99] 94 [59 100] 93 [53 100]
Sitting 98 [95 100] 98 [93 99] 93 [12 100] 94 [71 100]
Standing 99 [98 100] 100 99 [91 100] 99 [85 100]
Walking 98 [96 100] 94 [91 96] 97 [82 100] 94 [82 100]
Cycling 100 100 99 [86 100] 99 [76 100]
Walking stairs 94 [90 96] 98 [97 99] 93 [42 100] 97 [85 100]

Accuracy 98 96
[97 98] [85 100]

Data are percentages [Min Max]

As the number of patients in the training data set increased, overall classification accuracy of the
neural network remained fairly constant (Figure 7). Both the total patient group and the male
patient group demonstrated accuracies starting at 98% and sustaining between 96-97%. Accuracy
of the female patient group ranged from 96% to 95%. Appendix F Figure 24 provides insight in
the development of precision and recall per activity with increasing number of patients.

Figure 7: Overall activity classification accuracy with n number of patients (starting from n =
2) in the data set used for training of the neural network. Classification accuracy was determined
by averaging results from LOSO-validation over n number of patients. Activities classified were
lying, sitting, standing, walking, cycling, and walking stairs.

Overall classification accuracy was 98% after feature selection, determined by 10-fold cross-validation
(Table 11). Recall was highest for cycling (100%) and lowest for walking (95%). Precision was
highest for cycling (100%) and lowest for walking stairs (96%). Overall accuracy determined by
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LOSO-validation was 96% (Table 11). Recall was highest for cycling (100%) and lowest for sitting
(92%). Precision was highest for cycling (100%) and lowest for lying (91%). Again estimations
from LOSO-validation showed an increased [Min Max] range, caused by lower minimal values.
Additional information on performance is visualised in confusion matrices in Appendix F Figure
25.

Table 11: Precision and recall per activity and overall classification accuracy of the neural network
trained with patient data from the labelling measurement (number of features = 59). Variables were
determined by averaging results from K-fold cross-validation (K = 10) and LOSO-validation (n =
31 subjects).

K-fold LOSO

Recall Precision Recall Precision
Lying 99 [96 99] 98 [96 100] 94 [66 100] 91 [53 100]
Sitting 98 [98 100] 99 [97 99] 92 [12 100] 94 [75 100]
Standing 99 [98 100] 99 [98 100] 99 [91 100] 99 [87 100]
Walking 95 [96 99] 98 [92 98] 97 [77 100] 93 [82 100]
Cycling 100 [99 100] 100 [99 100] 100 [93 100] 100
Walking stairs 98 [92 99] 96 [96 100] 93 [75 100] 96 [83 100]

Accuracy 98 96
[98 99] [85 100]

Data are percentages [Min Max]

Tables 10 and 11 demonstrate equal overall classification accuracies using 160 features and 59
features. Also, estimations on average recall and average precision are similar with small shifts
over the activities. A large amount of the minimal values for recall and precision are equal or
lower using 160 features compared to using 59 features.

Results on training the algorithm on both upper arm sensor data and upper leg sensor data only
is presented in Appendix F Tables 25 and 26. Using upper arm data yielded accuracies of 80%
and 74%, respectively determined by K-Fold and LOSO-validation. For upper leg sensor data this
was 95% and 92%. For experimental purposes, classification performance of the algorithm was
also determined using segments larger than 256 samples. It concerned segments of 512 samples
and 1024 samples, both yielded high overall classification accuracy (Appendix F Tables 27 and
28).

3.3.3 Postoperative physical activity

Patient physical activity was measured in 29 patients for a median [IQR] of 4 [2-5] days. The
minimum and maximum time lying, sitting, standing, walking, cycling and walking stairs between
7 a.m.-11 p.m. were respectively 1-811 minutes, 45-858 minutes, 0-131 minutes, 0-68 minutes,
0-67 minutes and 0-25 minutes. Minimum and maximum percentage of time spent lying, sitting,
standing, walking, cycling and walking stairs were 0-93% , 11-92%, 0-25%, 0-12%, 0-8%, 0-3%,
respectively. Daily, patients were lying for a median [IQR] time of 278 [212-380] minutes, sitting
336 [274-383] minutes, standing 26 [19-40] minutes, walking 7 [4-14] minutes, cycling 3 [1-6] minutes
and walking stairs 2 [1-5] minutes. The days on which median time was greatest for these respective
activities were, day 2, day 6, day 4, day 3, day 3, and day 4.

Figure 8 demonstrates the median percentage of time spent lying, sitting, standing, walking,
cycling, and walking stairs during daytime on an hour-by-hour basis. Patients were lying mostly
between 7 a.m.-7.59 a.m., 1 p.m.-1.59 p.m., and 10 p.m.-10.59 p.m. All other hours patients were
mostly sitting. Percentages standing and walking are highest (both 1% ) between 9 a.m.-9.59 a.m.
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Cycling is highest between 9 .a.m.-10.59 a.m. Median percentage of time spent walking stairs
was always 0%. Appendix G Figure 26 provides additional information on amount of minutes per
activity during daytime on an hour-by-hour basis.

Figures 9 and 10 outline median amount of minutes and percentage of time spent in static activity
(i.e. lying, sitting, or standing) and in dynamic activity (i.e. walking, cycling, or walking stairs)
during daytime for each day at the surgical ward. Median amount of minutes and percentage
of time spent in both static and dynamic activity differed significantly over the days measured.
Median percentage of time lying at the first day at the surgical was 55%, and decreased to 23%
on day five. Median percentage of time sitting on day one was 39%, which increased to 74% at
day seven. Standing increased from 0% at day one to 7% at day six. Median percentage lying is
highest on day one and lowest on both day five and seven. For both sitting and standing median
percentage is lowest on day one, highest on day seven for sitting and on day six for standing. The
median amount of minutes walking was 0 on day one, and increased to 13 at day three. Median
minutes for both cycling and walking stairs increased from 0 to 3 over the first three days. Day
one and day nine demonstrated the lowest median amount of minutes for all dynamic activities.
Median amount of minutes walking was highest on day three. For both cycling and walking stairs
median amount of minutes was highest on day three and four. Appendix G Figure 27 provides
additional information on mean percentage of time per activity for all patients visualised in a
stacked bars diagram.

Male patients demonstrated minimum and maximum amounts of 1-811 minutes laying, 45-858
minutes sitting, 0-179 minutes standing, 0-68 minutes walking, 0-67 minutes cycling, and 0-25
minutes walking stairs. Minimum and maximum percentages of time in activity were, 0-93%
laying, 7-92% sitting, 0-25% standing, 0-12% walking, 0-8% cycling, and 0-3% walking stairs.
For female patients, minimum and maximum time lying, sitting, standing, walking, cycling and
walking stairs were respectively 24-626 minutes, 51-788 minutes, 0-131 minutes, 0-32 minutes, 0-13
minutes and 0-9 minutes. Minimum and maximum percentages were 8-80% lying, 19-83% sitting,
0-19% standing, 0-5% walking, 0-4% cycling, and 0-2% walking stairs.

Median amount of minutes and percentage of time spent in static activity and in dynamic ac-
tivity during daytime for both male and female patients are demonstrated in Figures 11 and 12.
Between genders, no significant daily differences were found. Median amount of minutes differed
significantly over the days for all activities in male patients. Female patients demonstrated no
significant difference for median minutes sitting. Median percentage of time lying, sitting, cycling
and walking stairs for female patients did also not differ significantly over the days. However,
percentages differed significantly for all activities in male patients. Median percentage lying is
lowest on day five for females, and lowest on day nine for males. Males demonstrated highest
median percentage sitting on day nine, and females on day six. The median percentage time
spent standing is greatest on day five and seven for females an males respectively. For all dynamic
activities, male patients showed highest median minutes on day three. Female patients showed
highest median minutes on day five for walking and on day six for both cycling and walking stairs.
Appendix G Figure 28 provides additional information on mean percentage of time per activity
for males and females visualised in a stacked bars diagram.

Figure 13 shows the findings of concentrating on two equivalent patient cases, concerning a male
patient and a female patient after elective mitral valve surgery via median sternotomy. These
specific cases do not show obvious daily decrease in sedentary activities (i.e. lying and sitting)
accompanied by increase in the other activities. In contrast to the male patient, increasing and
decreasing trends were discerned for several activities in the female patient. The female patient
showed a daily decrease in the percentage lying and an increase in percentages standing and
walking. The male patient cycled on day three and five at the surgical ward, while the female
patient only cycled on day five.
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Figure 8: Median percentage of time spent lying, sitting, standing, walking, cycling, and walking
stairs per hour between 7 a.m. and 11 p.m. The 7 a.m. interval contains data measured between
7 a.m. and 7.59 a.m. Medians are determined using all patient data. Error bars represent IQR.
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Figure 9: Median amount of minutes and percentage of time spent lying, sitting, and standing
for all patients. Daily intervals contain data between 7 a.m.-11 p.m. Error bars represent IQR. P
values represent absence or presence of a statically significant difference between the days at the
surgical ward.
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Figure 10: Median amount of minutes and percentage of time spent walking, cycling, and walking
stairs for all patients. Daily intervals contain data between 7 a.m.-11 p.m. Error bars represent
IQR. P values represent absence or presence of a statically significant difference between the days
at the surgical ward.
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Figure 11: Median amount of minutes and percentage of time spent lying, sitting, and standing
for male (M) and female (F) patients. Daily intervals contain data between 7 a.m.-11 p.m. Error
bars represent IQR. P values represent absence or presence of a statically significant difference
between the days at the surgical ward.
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Figure 12: Median amount of minutes and percentage of time spent walking, cycling, and walking
stairs for male (M) and female (F) patients. Daily intervals contain data between 7 a.m.-11
p.m. Error bars represent IQR. P values represent absence or presence of a statically significant
difference between the days at the surgical ward.
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Figure 13: Focus on two equivalent patient cases. It concerns a male patient and a female
patient after elective mitral valve surgery via median sternotomy. Relevant patient characteristics
and percentage of time spent in the static and dynamic activities for the male (M) and female (F)
patient are presented. Daily intervals contain data between 7 a.m.-11 p.m.
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4 Discussion

This research aimed to determine a method to quantify in-hospital mobilisation objectively in pa-
tients after cardiac surgery. Several research questions were formulated to achieve this goal. These
research questions focused on finding an approach and a suitable device to measure mobilisation
objectively, and how these then could be deployed to conduct a clinical pilot study.
A method to automatic classification of physical activity to pursue objective quantification of in-
hospital mobilisation of patients after cardiac surgery is described in this research. The technique
of accelerometry combined with Machine Learning analysis was selected to measure and quantify
physical activity objectively. The AX3 tri-axial accelerometer was regarded suitable as measure-
ment tool based on requirements set. Towards conducting a clinical pilot study, a neural network
algorithm has been developed to classify static and dynamic activities of interest. This algorithm
is used to determine optimal sensor placement configuration based on experimental data. Ulti-
mately, a clinical pilot study was conducted in which postoperative patient physical activity was
quantified objectively. Results of the clinical pilot study were utilised to propose an answer to the
research question regarding differences in mobilisation between men and women.
From execution of the clinical pilot, the method used to measure inpatient physical activity ap-
peared feasible. There were no technical problems with the AX3 devices as measured data was for
100% usable, and the TegadermTM patches did not unbind prematurely from any of the patient’s
skin. In addition, patients (except for one) did not experience any inconvenience or pain from
wearing the sensors.
The strong point of this research is the combination of simultaneous use of two accelerometer
sensors, specifically one placed on the upper leg and one on the upper arm, and usage of Machine
Learning for classification of physical activity. To the best of our knowledge, no research has been
performed in which similar approach has been used to objectify mobilisation especially in patients
after cardiac surgery. Additionally, equivalent specific quantification of various types of physical
activity in patients has not been reported before.

Postoperative patient physical activity

The exploratory clinical pilot study illustrates time lying, sitting, standing, walking, cycling, and
walking stairs of patients after cardiac surgery during postoperative hospital stay on the surgical
ward. Patients daily spent most time sitting and lying. The decreasing daily time spent laying is
largely due to increasing time spent sitting. Daily time in non-sedentary activities (i.e. standing,
walking, cycling, or walking stairs) was low, with most time spent standing. Patients were most
active between 8 a.m. and 12.59 a.m. Daily amounts of static and dynamic activities did not
differ significantly between male and female patients. Where males showed significant different
amounts per activity over the days measured, females did not. For females, time lying, sitting,
cycling, and walking stairs did not differ significantly over nine days. This is believed to be due
to the small number of female patients.
Notably, our results demonstrate an increasing trend in dynamic activities over day one to day
three for males, females, and all patients (Figures 10 and 12). This trend is fluctuating or decreas-
ing over the rest of the days. Possibly, due to decrease in number of patients in the data sample
after day three, the proportion of ”less active” patients increases. This might explain why the
increasing trend does not continue after day three.
Another remarkable point is that, patient movements were classified as cycling (in males only)
and walking stairs on day one. According to protocol, patients start cycling from day two and
walk stairs before or on the day of discharge. The activity forms on which physical therapists
noted patient activity supported this, as no cycling or walking stairs was reported on day one.
The explanation for these deviating findings lies with misclassifications of the algorithm. Misclas-
sifications can include transfers between activities and other atypical movement of one or body
segments to which sensors are attached. The amount of these misclassifications is assumed to be
similar for all days and patients.
Finally, it is worth mentioning that the amount of minutes lying is not highest on the first day at
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the surgical ward. Given the patient’s status shortly after transfer from the ICU, this would be
expected. The explanation for this is that, on the first day measurements were started earliest at
11 a.m.

Comparison of results to the relevant literature

Absence of significant gender difference in our study is not in line with observations in previous
research performed by Halfwerk et al. [19] performed in TCT. This study aimed on improv-
ing early-mobilisation after cardiac surgery and used ACSM-scores (American College of Sport
Medicine) and TCT-scores (TCT Matrix of functional activities and frequency descriptors) to
monitor mobilisation. Halfwerk et al. found higher ACSM scores for male patients than for female
patients, indicating males being more active. Our results fail to demonstrate that male patients
are significantly more active than female patients. This is due to the small data sample of patients
(n=29) and the relatively large difference between subset males (n=22) and females (n=7). In
addition, two female patients (29%) were transferred to referring hospitals. This was the case with
four male patients (18%). Statistical methods used in this research could be a part of the expla-
nation of the absence of significant difference between male and female patients. A Kruskal-Wallis
test was used to assess whether the amount of physical activity differed over days measured and
a Dunn’s multiple comparison post hoc test was used to determine and whether male patients
significantly differed from female patients. The influence of previously measured data on current
data is was not factored in, as a repeated measures ANOVA test or Friedman test does. Our
results are not totally dissimilar to the work by Halfwerk et al. They reported that patients were
mostly lying in bed on day one at surgical ward, decreasing up to day five. They also reported an
increasing time of patients sitting in a chair over the days. Similar trends are demonstrated in our
research (Figure 9). They also showed that on days three to five patients spent highest amounts
of time ”on toilet”, ”on corridor”, ”on home trainer”, and ”on stairs”. This is to some extent in
line with our results showing that patients are most active on days three and four (Figure 10).
The difference of one day is caused by the relatively large daily decrease in amount of patients in
the data sample from day two. This decrease was largely caused by patients transferred to their
referring hospital. In case of patient transfer to referring hospital, remaining recovery is performed
there. Actual mobilisation data is therefore not measured.
Mungovan et al. [5] quantified physical activity in 83 patients during the first five days after car-
diac surgery using the SenseWear Pro 3 Armband (BodyMedia, Inc, Pittsburgh, PA, USA). The
study was conducted at Westmead Private Hospital (Sydney, Australia) and primary outcomes
were step count and Metabolic Equivalent of Task (MET). These patients displayed at most 22
minutes of physical activity time in MET ≥ 3, indicating most of time was spent inactive or in
light activity (i.e. walking slowly). Both time MET ≥ 3 and step count increased significantly
over the days after surgery. They also demonstrated a significant difference between males and
females in the rate of increase in both outcomes as males showed greater increase rates. Our
research indicates to some extent that patients are increasingly active over the first five days after
surgery (Figures 9 and 10), unfortunately the trend is not statistically significant demonstrated.
Step count was also measured in research by Doppelbauer et al. [20] in patients after orthopaedic
surgery. They found that male patients take a significantly higher number of steps on the day
before hospital discharge than female patients. Levels of physical activity in patients before the
day of discharge was not investigated in our study, so unfortunately nothing can be stated about
this.
Koenders et al. [74] performed similar research on quantification of physical activity in patients
admitted to the internal medicine or surgical nursing wards of the Radboud University Medical
Centre (Nijmegen, the Netherlands). They measured time lying, sitting/standing and walking
using HealthPatch sensors. Despite the difference in activities of interests, our results are com-
parable to those of Koenders et al. They visualised average percentages of time in activities per
hour, between 7 a.m. and 12 p.m. The percentage lying first appeared to decrease, followed by
an increase until the early afternoon. The remainder of the hours until 12 p.m. again showed
a decrease and increase. Percentage sitting/standing showed an opposite tendency. Comparable
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trends in time spent per activity on different daytime hours are demonstrated in our results (Fig-
ure 8).
Hussey et al. [75] measured postoperative mobilisation after oesophagectomy in patients at the
Oesophageal and Gastric Cancer Centre at St James’s Hospital (Dublin, Ireland). They measured
postoperative physical activity objectively using the Actigraph GT3X+. Results from Hussey et
al. are in line with our findings as they demonstrated that patients spent the majority of time
(over 96%) sedentary. Their study showed that daily step count and amounts of light intensity
activity in patients were low but did increase daily from the first to the fifth postoperative day.
This trend is also in line with our findings.
Results from studies by Au et al. [76] and van der Meij et al. [77] demonstrate that patients were
daily sedentary for approximately 90% and 78% of time in the first week after surgery. Au et al.
measured physical activity in Canadian patients after radical prostatectomy using the Actiwatch 2
by Philips Healthcare. Van der Meij et al. used Actigraph wGT3X-BT accelerometers to measure
physical activity in Dutch patients after laparoscopic abdominal surgery. The lower percentages
in these two studies are due to the fact that patients were not required to, and did not, always
wear the sensors.

4.1 Limitations

This research has limitations divided into general limitations and specific limitations of the clinical
pilot study.

General limitations

General limitations of this research include the method of device selection. The number of devices
tested is based on literature research conducted by a single person. Research into devices by more
researchers could provide a more complete, and possibly less biased overview. In addition, specific
attention could be given to devices working with the same technology (e.g. accelerometers).
Technical and clinical device requirements set were based on advice from experts and general
knowledge of (clinical) limitations of device application. A more valid list of requirements could
have emerged if a complete group of stakeholders (i.e. patients, nurses, physiotherapists, and
surgeons) was involved. The devices found were subjected to the requirements based on their
specifications, again by one person. A more valid selection can be made when the devices are
actually tested and benchmarked, preferably by multiple researchers.

Another limitation is the modest amount testing with other types of algorithms. In this research
a relatively simple neural network was built for pragmatic reasons, however there are potentially
better and/or more efficient algorithms. It is debatable whether the involvement of neural net-
work classification does exceed the complexity of the activity classification problem. Based on
physiological interpretation of measured data, a simple ”classification tree” could have been made
and used as an algorithm for classification. Static and dynamic activities can be distinguished by
determining whether measured signals vary over time, thereby assuming that static activities yield
constant accelerometer signals and dynamic activities time-varying signals. A measure of signal
variation over time can be obtained by, respectively, high-pass filtering, rectifying, and low-pass
filtering of the measured signal [40]. By applying a threshold to the resulting signal, activities
can be classified as static or dynamic. Determination of accelerometer orientation can be used to
distinguish type of static activity. Orientations of accelerometers can be estimated from the angle
between accelerometer axes and the gravity vector when the measured signal is constant. Knowing
sensor orientation provides information of body segment orientation and is, therefore, useful to
detect postures. Dynamic activities are normally cyclical in nature and can differ in several facets:
mean, signal morphology determined by the maximum correlation coefficients of cycles with tem-
plates from the different activities, cycle time, and standard deviation [40]. These differences can
be used to determine type of dynamic activity such as walking (stairs) and cycling.

In addition, the construction of the neural network algorithm in terms of feature selection was
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partially well-grounded. The same features as Bunkheila [56] proposed in his code were used as they
yielded high overall classification accuracy. Additional features were added based on findings from
the literature. Hence a limiting aspect of this research is the fact that a large number of features
was used of which the actual individual added value per feature was not fully explored.

The experimental methods towards determining optimal sensor placement configuration were also
fairly limited, with merely four subjects available for measurements. A number of twenty subjects
would be advised. Sensor placement configuration using one sensor on the upper leg and one
on the lower leg was not investigated while this also may enable classification of the static and
dynamic activities of interest [78]. In addition, it would benefit validity of sensor configuration
selection when the experimental methods were performed with actual patients.

Limitations of the clinical pilot

Limitations of the pilot study include unknown error margins of the neural network used for classi-
fication. Readers should note that outcomes regarding actual time spent per activity might differ.
The neural network was trained based on semi-controlled preoperative data from 31 patients. It
was not tested how the semi-controlled data relates to real life postoperative data measured. In-
evitably, there are differences between both circumstances which raise the question to what extent
the algorithm can be applied [79]. Although the environment and setting were similar for the
patients in both pre- and postoperative phases, there were differences in postures and the way pa-
tients moved. For example, patients frequently lied with their head up at an angle instead of flat.
The neural network might misclassify such as sitting, of which cases were found after inspecting
the algorithm’s classifications. Additionally, patients are likely to walk more slowly after surgery
compared to before surgery and should start walking with a walker. During the labelling mea-
surement all patients walked without any form of support. This could have caused a classification
shift from walking to standing, thereby overestimating amounts standing and underestimating
walking. As stated before, amounts of cycling and walking stairs are likely to be overestimated
due misclassifications of data unrecognisable for the neural network.

A validation of correctness of classifications from the postoperative measurement was attempted
via inspection of the activity forms. Adequate validation was not possible as the forms were filled
in infrequently, incompletely and inaccurately. Nevertheless, data retrieved from the forms was
reflected in the actual classifications. It mainly concerned periods of cycling and walking, since
documentation on the other activities was scarce. These findings are positive concerning precision
(or positive predictive value) of the neural network in recognising cycling and walking. In order to
be more conclusive on the validity of the classifications, segments of classifications were inspected
of which could be assumed that a patient was in a certain activity (e.g. laying at night time).
Also, classifications on the first day at the surgical ward were inspected, as patients mostly lie
or sit. Both inspections showed that cycling and walking stairs emerged in classifications. These
observations are negative concerning recall (or true positive rate) of cycling and walking stairs.
Actual amounts of cycling and walking stairs is therefore expected to be less.

In this study, postoperative physical activity of patients is classified using a neural network trained
with preoperative data from these same patients. The setting and environment of training and
application of the neural network can be considered as almost identical. In our case, this is
beneficial, given that the algorithm is more likely to recognise certain data. It is therefore assumed
that this has benefited classification accuracy. However, this aspect limits the generalizability of
the algorithm in other patients, patient groups, or (hospital) setting. The group of patients used
in this study does not represent all types of patients. We included only patients with KATZ-ADL
score > 2 and able to perform the labelling measurement (including walking, cycling and walking
stairs). This has resulted in training data biased towards more able-bodied patients. Application
of our classification method in less able-bodied and/or disabled patients could lead to unreliable
outcomes.

The number of patients included in the training data, specifically the small number of female pa-
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tients, may be too small to cope with intraclass variability (i.e. a patient performs similar activity
differently) and interclass variability (i.e. patients perform similar activity differently). In general,
a larger number of subjects is important to perform pattern recognition [80], [81]. Jandidarmian et
al. [51] aggregated a data set containing approximately 35 million acceleration samples from 228
subjects. This data set was stated as ”most complete, realistic, and transparent” in the context
of designing a HAR model working in realistic conditions. Research into HAR, in a broad sense,
is challenging due to differences in and differences between individual’s movement patterns [82].
It is challenging to make a statement on to what extent relevant variability exists between in-
dividuals for the static and dynamic activities measured in this research. Graphs in Figure 7
(Results Section 3.3.2) imply that an increase in patients has little influence on overall classifica-
tion accuracy. This makes sense given the fact that several activity classes (e.g. postures) can be
distinguished on purely physiological grounds and without training. The low number of female
patients cannot justify the assumption of stagnation of accuracy. Therefore, addition of female
patients is necessary. Ideally, amount of males and females should be equal to make a further
statement. Appendix F Figure 24 reveals that an increase in patients influences recall and preci-
sion of lying, sitting, walking ans waking stairs. For all four of these activities additional data of
new patients is necessary to investigate further development of these variables. Neural network
performance after training demonstrated low minimum recall and precision values for various ac-
tivities, determined with LOSO-validation (Results Section 3.3.2 Tables 10 and 11). Thus, as
result of variability of certain patients the algorithm does not recognise movement patterns ade-
quately. Testing the current algorithm’s performance on labelled data from new patients should
reveal whether the algorithm is able to accommodate to this variability. If so, no lower minimum
recall and precision values will be found.

Statistical methods could also be considered as a limiting factor. For the sake of time, relatively
simple statistical tests were applied. These tests did not specifically assess day-to-day statistical
differences in amounts of activity and did not factor in that data is measured over increasing
time (i.e. the influence of the increasing number of days after surgery). It is likely that the
level of patient physical activity on the previous day(s) affects amount of physical activity on the
current day as well as days in the future. A repeated measures ANOVA test or Friedman test can
be used for improvement. In addition, when performing the statistical tests, no correction was
made for the fact that the patient data sample decreased over the days. This resulted in varying
patients in the daily data samples. Therefore, it would be relevant to split patients in groups
based on postoperative hospital stay and compare within these groups or limit statistical analysis
corresponding to the least amount of postoperative days measured.

Furthermore, a small sample of patients was included in this pilot study (n<50) [83]. The results
on measured physical activity will need to be confirmed by larger studies. The number of female
patients was also too small to make a thorough gender comparison. Doppelbauer et al. [20] have
attempted to objectify mobilisation using Fitbit activity trackers. They performed measurements
in of 50 male and 50 female patients after total hip arthroplasty. These numbers may be used as
a guideline with regard to a suitable patient sample size. Moreover, the number of patients in our
data sample decreased substantially after day three resulting in data represented by merely two
patients. Such small numbers are not representative to make conclusions.

Finally, it could be possible that the Hawthorne Effect has influenced levels of patient physical
activity positively [78], [84]. The Hawthorne Effect is the effect of an intervention (i.e. application
of accelerometers) on participants that is solely due to their participation in research. Thus, the
actual average amounts of physical activity of patients after cardiac surgery may be lower than
shown in this study.

4.2 Clinical relevance

This research demonstrates the feasibility to quantify in-hospital patient mobilisation objectively.
Classification of relevant static and dynamic activities of patients is achieved using two tri-axial
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accelerometers. The degree of objectivity and specificity of the obtained results regarding physical
activity of patients is rare and clinically relevant, directly enabling objective evaluation of inter-
ventions aimed to stimulate inpatients’ mobilisation. Results of the clinical pilot study confirm
that patients spend majority of their time sedentary during daytime. This is an important outset
as it can be used to create more awareness in healthcare professionals of the actual amount of
in-hospital patient physical activity, which can have a positive indirect effect on patient care. A
higher degree of awareness can initiate processes generating changes for the benefit of the patient.
An important clinically relevant insight is the daily distribution of physical activity. Where there
is still some amount of physical activity in the morning, this is hardly the case in the afternoon.
Research into the cause of this finding is relevant to adequately address it. A possible explanation
could be fatigue and/or pain in patients after exercises in the morning [11]. Nevertheless, this find-
ing indicates the need for further improving of current mobilisation strategy in TCT. Improvement
should stimulate patients being more (frequently) active during the entire day. Physiotherapists in
TCT generally only mobilise patients in the morning. Patients can reach a higher level of activity
when nurses and/or physiotherapists would actively mobilise patients more frequently on a daily
basis. For example, it would be advantageous to provide patients with regular supervised mobili-
sation both in the morning and in the afternoon. Mungovan et al. [5] found significant and strong
correlation between exercise supervised by physiotherapists and independent patient physical ac-
tivity which suggests that supervised physical activity fosters more independent physical activity
in patients after cardiac surgery. Readjustment of schedules or hiring of more medical personnel
would possibly be necessary to achieve standardised physiotherapist-supervised exercises twice a
day. This might be a time-consuming process or significantly add to the costs. Therefore, a first
step should be to instruct patients more emphatically to be active throughout the entire day.
These instructions deserve more emphasis during preoperative patient education.
In order to reach higher levels of activity, intrinsic motivation in patients regarding mobilisation
is beneficial [85]. This can be achieved by informing patients personally on their level of physical
activity via a certain medium (e.g. an application on a smartphone or tablet). This information
should be provided when patients are (or have been) sufficiently active and when this is not the
case. Only sharing patient-specific objective information, and thereby increasing the patient’s
knowledge on its own recovery, is a first step. The shared information must also be converted
into useful actions. For example, a medium could give stimulating notifications when the patient
should start to be physically active and rewarding notifications when the patient has been suffi-
ciently active. This medium should also provide patient-specific tips and exercises based on the
level of activity of the patient. Aspects of ’serious gaming’ could be integrated in this medium, as
it is suggested to increase motivation in rehabilitating patients [86].

4.3 Recommendations and future research

This research serves as a foundation for further research. There are several recommendations for
research in future. First, it is important to validate the correctness of the algorithm’s classifications
during postoperative measurements. Validation can be performed in healthy subjects and in
patients, of which the first option is easier to set up and the latter is more specific. In a group
of new subjects and/or patients, physical activity could be measured using the AX3 sensors while
simultaneous and accurate (in minutes) documentation is assembled on this activity. Simultaneous
recording of video images is also an option, which is less labour intensive but could entail difficulties
regarding privacy. Validation then relies on comparing classifications with the documentation or
video images. Regardless of importance, validation seems to be a time consuming process. It is
therefore advised to experiment with other instruments beforehand to optimise correctness of the
classifications. A decision threshold approach can be applied to the output of the neural network.
For each classification the network calculates a quantitative output of a score per activity. Setting
thresholds scores may result in more realistic classification performance. Research showed that
increasing thresholds lower the algorithm’s sensitivity and higher specificity with limited effect
on concordance of the classifications [87]. Another instrument is ’majority voting’, whereby the
largest number of classifications over a certain period is chosen as classification. This lowers the
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classification resolution, but can reduce the number of misclassifications. A lower resolution is
not a problem in a clinical context. A classifications every 2.56 seconds is not necessary to get an
impression of patient mobilisation, this is also feasible with classifications per 10-60 seconds.

As already mentioned, there is a discrepancy in the way patients move pre- and postoperatively.
Adequate training data should be collected to solve this problem. The same labelling measurement
can be performed, supplemented with the necessary adjustments. Additional data for adequate
training of the neural network can also be obtained from actual postoperative measurements,
which optimises specificity of the data.

A topic discussed before, is the decision of using a neural network for classification and the feature
selection. It would be interesting to investigate whether a less complex algorithm, developed
based on physiological characteristics of the different activities, obtains sufficient classification
performance. When the ML approach is continued, thorough feature evaluation and selection
is advised. The algorithm makes predictions based on 160 features (59 after feature selection),
which requires a significant amount of computing power and time. An evaluation of the added
value of features used in this research, and eventually other features presented in the work by
Janidarmian et al. [51], could result in a neural network performing equally well or even better
using less features. This would ease algorithm incorporation into a system capable of continuous
real-time classification. In the context of computation costs, it would be valuable to investigate
classification performance on larger segments, and from data measured with lower sampling rates.
Testing with segments of five and ten seconds yielded positive results (Appendix F Table 27 and
28). Regarding patient comfort, research should be devoted to activity classification using one
sensor. Our research has demonstrated that the neural network is able to make classifications
with over 90% overall accuracy, only using knee sensor labelling data (Appendix F Table 26). It
is relevant to determine whether 90% accuracy is sufficient in clinical context and whether this
accuracy also holds for the postoperative measurement.

Finally, further research aimed at converting clinical measurements into acts is essential. Despite
the fact that measurements on physical activity offer valuable insights, they are not yet of direct use
to the patient. As already discussed, patients should be informed on amount of physical activity,
and be motivated to act accordingly. This is a process with several important facets. Firstly,
the device for data collection needs to be improved. A device supporting wireless connection
in order to provide real-time data analysis is needed, such as the Actigraph (Appendix B figure
14b). Subsequently, the measured data must be linked to a certain medium that can inform
both clinicians and patients and offers patient-specific motivation. This medium can take various
forms. For example, an application on a smartphone or tablet, eventually incorporating aspects
of serious gaming, a band around the wrist that provides notifications, or a television screen that
acts according to amount of patient activity. By informing clinicians, they receive a more complete
objective impression of the patient’s status and can intervene when necessary. Ultimately, future
research should analyse effects of this medium as intervention to stimulate physical activity of
patients after cardiac surgery.
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5 Conclusion

Mobilisation of inpatients after cardiac surgery was successfully objectively quantified with the use
of two body-worn tri-axial accelerometers and a Machine Learning classification approach. This
current study proves that inpatients spent most of their time laying or sitting. The decreasing time
spent laying is a result of an increase in time spent sitting. The amount of other forms of physical
activity is low, mostly demonstrated between 8 a.m. and 11:59 a.m. This suggests sufficient scope
to motivate inpatients to be more and more frequently active in order to raise overall daily level
of patient mobilisation.
This research is a valuable first step serving as foundation for further research. Future work should
focus on further development of the classification algorithm and the validation of its classifications
on data measured in uncontrolled setting. Furthermore, it is important to devote research to using
objective physical activity measurements for interventions directly affecting patient care.
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Appendix A

Table 12: Overview of methods to assess patient mobilisation (part 1 of 2).

Method Outcomes Principle Patient population Limitations Research

Patient-reported
Criteria of The Corpus Activity level Activity scoring (1-5) Cardio-thoracic Not suited for in-hosptal Van Laar
Christi Heart Project based on self-reporting surgery Overestimates true et al., 2017 [88]
(CCHP) assessment activity

Not specific enough

International Physical Sitting time Outcomes derived from Pelvic exenteration Under and/or Steffens
Activity Questionnaire Walking time answers of questionnaire surgery overestimation of et al., 2019 [89]
-Short Form (IPAQ-SF) Moderate physical activity

activity
Vigorous physical
activity
Metabolic equivalent
minutes per day

Activity diary Post-operative dates Dates on which patients Laparoscopic abdominal Not validated Van der Meij
were able to perform surgery Subjective measure et al., 2017 [77]
specific activities for the
first time

Professional scoring
Functional milestones Daily milestones Daily recording of CABG surgery Observer dependent Van der Peijl

Degree of dependance outcomes by observaton et al., 2004 [10]
RPE scores

AM-PAC “6-clicks” Basic mobility level Daily scoring (1-4) Internal medicine Only includes basic Geelen et al.,
Basic Mobility of six activities mobility items 2019 [90]

6-min walk test Distance (in meters) Submaximal excersise CABG surgery Wound pain can be Hirschorn
(6MWT) walked in six minutes test entailing measurement Gastrointestinal cancer limiting et al., 2008 [9]

of distance walked over a surgery No insight in mechanisms van der Leeden
span of six minutes Cardiac rehabilitation of exercise limitation et al., 2016 [91]

Alexiev et al.,
2017 [92]

Behavioural mapping Physical activity Scoring acording to General care Large workload Valkenet
Persons attending predefined items based ICU Patient privacy et al., 2019 [93]
Location on intermittent observation Berney et al.,
Daily activity 2015 [94]

the Johns Hopkins Mobility milestones Capturing mobilty General medicine Data cannot fully Hoyer
Highest Level of score milestones with 8-point describe total mobility et al., 2016 [95]
Mobility (JH-HLM) ordinal scale based on and activity

patient observation
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Table 13: Overview of methods to assess patient mobilisation (part 2 of 2).

Method Outcomes Principle Patient population Limitations Research

Wearable devices
Actigraph wGT3X-BT Wear time Tri-axial accelerometer Laparoscopic Wear location impedes Van der Meij

Step count worn around hip abdominal surgery full wearing compliance et al., 2017 [77]
Physical activity
intensity

The Dynaport/ Sitting time Tri-axial accelerometer CABG surgery Wear location impedes full Van der Peijl
MoveMonitor Walking time worn on the lower back General medicine wearing compliance et al., 2004 [10]

Lying time Pelvic exenteration Detection of low amplitude Valkenet
Physical activity surgery movements is challenging et al., 2019 [93]
intensity Peripheral arterial disease Steffens
Wear time et al., 2019 [89]

Fokkenrood
et al., 2014 [96]

SenseWear Pro 3 Step count Bi-axial accelerometer Cardiac surgery Overestimation of Mungovan
Armband Physical activity and multiple skin sensors via median walking activities et al., 2017 [5]

intensity sternotomy

Fitbit Step count Accelerometer worn Metastatic peritoneal Underestimation of steps Low
around wrist or ankle cancer for patients moving et al., 2018 [21]

Cardiac surgery slowly or with assistance Cook
Orthopedic surgery No validation for slow et al., 2013 [97]

and assisted walking Dopperlbauer et al.,
2019 [20]

MOX activity monitor Sedentary time Tri-axial accelerometer Colorectal cancer Limited reproducibility at Van Roekel
Standing time attached above the knee moderate-to-vigorous et al., 2016 [98]
Physical activity intensity levels
intensity

Step Activity Monitor Step count Accelerometer attached Acute elderly care Limited outcomes Fisher et al.,
(SAM) at the ankle 2010 [99]

Active Style Pro Step count Waist-mounted tri-axial Cardiac surgery Limited outcomes Takahashi et al.,
HJA-350IT accelerometer 2015 [100]
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Appendix B

Table 14: Expert discussions on inpatient mobilisation monitoring.

Person Field of expertise Topic

(1) N. Wielens BSc Physical therapist TCT Relevant measures and outcomes.
- Patient’s posture over time
- Step count
- Physical activity intensity
- Upper and lower body movement
- Automatic activity detection

(2) Prof. J.S. Rietman PhD Technology and Devices for monitoring inpatient physical
rehabilitation activity.

Suggestion: McRoberts MoveMonitor

(3) Prof H.J. Hermens PhD eHealth and Feasibility of using the McRoberts
telemonitoring MoveMonitor from own experience.

Conclusion: considering patient comfort
an alternative device is advised.

(4) M. Cabrita PhD Personalized eHealth Devices for monitoring inpatient physical
technology activity.

Suggestion: MOX Physical Activity
Monitor (Maastricht Instruments bv).
Important features:
- Raw data
- Product support
- Patient comfort
- Battery life
- Price

(5) D. van Dartel MSc Activity monitoring in User experience of the MOX device.
patients after hip surgery - Easy to use

- Good patient comfort
- Raw data analysis in Matlab
- Good product support

(6) F. Boesten MSc Product line manager Demonstration of the MOX devices.
Maastricht Instruments Points of interest:

- Device is easy to use, not uncomfortable
for patients and already used in hospitals
- MOX1 saves raw data
unable to stream the data
- MOX2 does only stream filtered data
but does not save the raw data
- Posture detection with one sensor is
not optimal, two sensors are needed
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Table 15: Specifications and properties of devices suitable for activity monitoring (part 1 of 3).

AX3 ActiGraph wGT3X-BT MOX1 MoveMonitor Fibion Activ8 A8015 Bluetooth
Activity Tracker

Axivity Ltd ActiGraph, LLC Maastricht Instruments BV McRoberts BV Fibion Inc Remedy Distribution Ltd
[27][101] [24] [72] [70][102][73] [71][103] [104][105] [106][107] [108]

Technology Tri-axial accelerometer Tri-axial accelerometer Tri-axial accelerometer Tri-axial accelerometer Tri-axial accelerometer Tri-axial accelerometer
Logarithmic light sensor Capacitive touch sensor
Linear thermistor Ambient light sensor

Outcomes Raw acceleration Raw acceleration Raw acceleration Posture detection Energy expenditure Duration and intensity
(lying, sitting, per activity class
standing, walking, (sitting, standing,
cycling, walking stairs) walking, cycling,

running)
Ambient light Activity counts Posture detection Physical activity Physical activity types Energy expenditure

(sedentary and standing) intensity (sitting, standing
walking and cycling)

Temperature Energy expenditure Physical activity Step count Physical activity
intensity intensity

(light, moderate and
vigorous)

Step count Physical activity
classification
(low, medium, high)

Physical activity
intensity
Activity time
Sedentary time
Body position

Size (LxWxH) 23x33x9mm 46x33x15mm 35x35x10mm 106.6x58x11.5mm 30x32x10mm 30x32x10mm
& weight 11 grams 19 grams 11 grams 55 grams 20 grams 20 grams
Placement Wrist Wrist Thigh Lower back Thigh Upper leg

Upper arm Waist Hip Chest
Waist Ankle Sacrum Wrist
Ankle Thigh Arm

Patient comfort ++ + ++ − + +
Raw/filtered data Yes/No Yes/Yes Yes/Yes No/Yes No/Yes Yes/Yes
Sampling rate 12.5Hz-3200Hz 30-100Hz 25-100Hz 100Hz 12.5Hz 12.5Hz
Data streaming No Yes No No Yes Yes
Data storage 512 Mb 4 Gb 1.5 Gb 1 Gb ? ?
Battery life 14 days 25 days 7 days 14 days 20 days 30 days
Waterproof Yes Yes Yes No No No
Validated Yes Yes Yes Yes Yes Yes
In-hospital use/
in MST use

Yes/
No

Yes/
No

Yes/
No

Yes/
No

No/
No

Yes/
No

Price e123 e225 e195 e295 e298 e139

++ = causes no/minimal discomfort + = may cause light discomfort − = causes discomfort ? = specification or property unknown
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(a) AX3 [24] (b) ActiGraph [70] (c) MOX1 [103]

(d) MoveMonitor [105] (e) Fibion [107] (f) Activ8 [108]

Figure 14: Devices suitable for activity monitoring (part 1 of 3).
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Table 16: Specifications and properties of devices suitable for activity monitoring (part 2 of 3).

activPAL VitalPatch disposable Philips Health Watch SenseWear Pro3 HeartGuide Fitbit
biosensor Armband

PAL Technologies Ltd VitalConnect Philips Micro Star Instruments Omron Healthcare Inc Fitbit Inc
Co. Ltd

[109][110][111][112] [113] [114] [115] [116] [117][21][20][118]

Technology Tri-axial accelerometer Tri-axial accelerometer Tri-axial accelerometer Bi-axial accelerometer Tri-axial accelerometer Tri-axial accelerometer
ECG electrodes Optical heart rate Skin temperature Photoplethysmography Optical heart rate
Thermistor sensor Galvanic skin response sensor sensor

Heat flux sensor Oscillometric blood
pressure sensor

Outcomes Energy expenditure Time active Step count Step count Step count Step count
Body posture time Posture detection Energy expenditure Energy expenditure Energy expenditure Energy expenditure
(sedentary and standing) Single-lead ECG Distance covered Time lying Distance covered Distance covered
Stepping time Heart rate Physical activity Physical activity Heart rate Physical activity
Step count Respiratory rate intensity duration and intensity Blood pressure intensity

Body temperature Heart rate Heart rate

Size (LxWxH) 35x53x7mm 120x40x9.5mm 36x3x12mm ? 48x30x14mm 48x19x10mm
& weight 15 grams 13 grams ? 80 grams 115 grams 8 grams
Placement Thigh Chest Wrist Triceps right Wrist Wrist

Thigh Waist
Ankle

Patient comfort ++ + ++ + ++ ++
Raw/filtered data No/Yes No/Yes No/Yes ?/Yes No/Yes No/Yes
Sampling rate 20Hz 62.5Hz ? ? ? ?
Data streaming No Yes Yes ? Yes Yes
Data storage ? 10 hours ? ? 7 days ?
Battery life 14 days 5 days 4 days 14 days 2 days Up to 7 days
Waterproof No Yes No (IP44) ? No Potential
Validated Yes Yes Yes Yes Yes Yes
In-hospital use/ Yes/ Yes/ No/No Yes/? No/No Yes/No
in MST use No No No No No No
Price $450 e80 e250 $500 $499 From e90

++ = causes no/minimal discomfort + = may cause light discomfort − = causes discomfort ? = specification or property unknown
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(a) activPAL [110] (b) VitalPatch [113] (c) Philips Health Watch [114]

(d) SenseWear Pro3 [115] (e) HeartGuide [116] (f) Fitbit [117]

Figure 15: Devices suitable for activity monitoring (part 2 of 3).
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Table 17: Specifications and properties of devices suitable for activity monitoring (part 3 of 3)

Garmin VivoSmart Alvita Ultimate HJ-325 Motiv Ring wellsense vu BCGMCU/SCA11H E4 Wristband

Accelerometer-based
ballistocardiographic sensor

Garmin Omron Healthcare Inc Motiv inc wellsense Murata Manufacturing Co., Ltd Empatica Inc
[119] [120] [121] [122] [123] [124]

Technology Tri-axial accelerometer Tri-axial accelerometer Tri-axial accelerometer Pressure sensor Tri-axial accelerometer Tri-axial accelerometer
Optical heart rate Optical heart rate Photoplethysmography
senor senor sensor

Electrodermal activity
sensor
Infrared thermopile

Outcomes Step count Step count Step count Pressure map Heart rate Raw acceleration
Energy expenditure Energy expenditure Physical activity Heart rate variability Electrodermal activity
Distance covered Distance covered intensity Respiration rate Heart rate
Physical activity Energy expenditure Stroke volume Skin temperature
intensity Distance covered Activity indication
Heart rate Resting heart rate Bed occupancy status

Size (LxWxH) 21x15x12mm 57x42x13mm 8x2.5mm 2315x1125mm 84x41x18mm 44x40x16mm
& weight 31 grams 23 grams 3 grams 3000 grams ? 25 grams
Placement Wrist Waist Ring finger Over mattress Under matress Wrist

Patient comfort ++ + ++ ++ ++ ++
Raw/filtered data ?/Yes No/No No/Yes ?/Yes ?/Yes Yes/Yes
Sampling rate ? ? ? ? 1Hz 32Hz
Data streaming Yes No Yes No Yes Yes
Data storage ? 7 days ? ? ? 60 hours
Battery life 5 days 6 months 3 days ? ? 20 hours
Waterproof Potential No Yes Yes No No
Validated Yes Yes No Yes ? Yes
In-hospital use/ Yes/ Yes/ No/ Yes/ ?/No -/No
in MST use No No No No No No
Price From e90 $30 From e90 Over e10000 From e150 $1690

++ = causes no/minimal discomfort + = may cause light discomfort − = causes discomfort ? = specification or property unknown
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(a) VivoSmart [119] (b) Alvita Ultimate [120] (c) Motiv Ring [121]

(d) wellsense vu [122] (e) BCGMCU/SCA11H [123] (f) E4 Wristband [124]

Figure 16: Devices suitable for activity monitoring (part 3 of 3).
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Table 18: Results of device subjection to the technical requirements (part 1 of 3).

AX3 ActiGraph MOX1 MoveMonitor Fibion Activ8

1. Activity classification
- Lying X* X* X* X × ×
- Upper body movement X** [125] X** [126] X** [127] × × ×
- Sitting X* X* X* X X X
- Standing X X X X X X
- Walking X X X X X X
- Bicycling X X X × X ×
- Walking stairs X X X × × ×

In-device analysis: In-device analysis: In-device analysis: In-device analysis: In-device analysis: In-device analysis:

N/A [101]
- Posture: lying, sitting
and standing [70]

- Posture: standing and
sedentary [71]

- Posture: lying, sitting
and standing

- Posture: sitting and
standing

- Posture: sitting and
standing

- Activity: walking and
cycling [104]

- Activity: walking and
cycling [106]

- Activity: walking,
cycling and running [108]

2. Sampling rate X(12.5-3200Hz) [24] X(30-100Hz) [70] X(25-100Hz) [71] X(100Hz) [105] × (12.5Hz) [106] × (25Hz) [108]
3. Exportable data /
raw data

X/
X

[24]
X/
X

[102]
X/
X

[71]
X/
× [105]

X/
× [107]

X/
× [108]

4. Battery life
X(14 days at
sampling rate of
100Hz) [72]

X(approximately 16
days at sampling rate
of 100Hz) [73]

× (7 days at sampling
rate of 25Hz) [71]

X(14 days) [105] X(30 days) [106] X(30 days) [108]

5. Data storage /
streaming

X(14 days)/
× [72]

X(93 days) /
X

[73]
X(up to 14 days) /
× [103]

X/
× [105]

X/
× [107]

X/
X

[108]

X= device does meet requirement × = device does not meet requirement
* Classification of lying and sitting separately only possible using two sensors
** Detection of upper body movement requires a sensor attached to upper arm/shoulder

Table 19: Results of device subjection to the clinical requirements (part 1 of 3).

AX3 ActiGraph MOX1 MoveMonitor Fibion Activ8

1. No discomfort and hindrance in mobilisation X[101] X[70] X[71] X[105] X[107] X[108]
2. No tissue deformation X[101] X[70] X[71] ×* [105] X[107] X[108]
3. Device placement outside wound area X[101] X[70] X[71] X[105] X[107] X[108]
4. Patient privacy X X X X X X
5. No impediment of daily care X[101] × [70] X[71] X[105] × [107] × [108]
6. CE certification X[72] X[70] X[71] X[105] X[107] ?
7. Costs X[24] × [128] X × X[107] X[108]
8. Analysis software X[101] X[70] X[71] X[105] X[107] X[108]

X= device does meet requirement × = device does not meet requirement ? = unknown whether device meets requirement
* Stress on lower back when lying supine due to sensor location
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Table 20: Results of device subjection to the technical requirements (part 2 of 3).

activPAL VitalPatch Philips Health Watch SenseWear Pro3 HeartGuide Fitbit

1. Activity classification:
- Lying × × × × × ×
- Upper body movement × × × × × ×
- Sitting × × × × × ×
- Standing X X × × × ×
- Walking X × X X X X
- Bicycling × × × × × ×
- Walking stairs × × × × × ×

In-device analysis: In-device analysis: In-device analysis: In-device analysis: In-device analysis: In-device analysis:
- Posture: standing and
sedentary

- Posture: standing
and sedentary [113]

- Activity: walking [114] - Activity: walking [115] - Activity: walking [116] - Activity: walking [21][20][118]

- Activity: walking [109]

2. Sampling rate × (20Hz) [109] X(62.5Hz) [113] ? ? ? ?
3. Exportable data /
raw data

X/
× [110]

X/
× [113]

X/
× [114]

X/
× [115]

X/
× [116]

X/
× [117]

4. Battery life X(14 days) [110] X(5 days) [113] × (4 days) [114] X(14 days) [115] × (2 days) [116] X(up to 7 days) [117]
5. Data storage /
streaming

X/
× [111]

×/
X

[113]
X/
X

[114]
? /
× [115]

X/
X

[116]
X/
X

[117]

X= device does meet requirement × = device does not meet requirement ? = unknown whether device meets requirement

Table 21: Results of device subjection to the clinical requirements (part 2 of 3).

activPAL VitalPatch Philips Health Watch SenseWear Pro3 HeartGuide Fitbit

1. No discomfort and hindrance in mobilisation X[110] X[113] X[114] X[115] X[116] X[117]
2. No tissue deformation X[110] X[113] X[114] ? X[116] X[117]
3. Device placement outside wound area X[110] ×* [113] X[114] X[115] X[116] X[117]
4. Patient privacy X X X X X X
5. No impediment of daily care × [110] X[113] × [114] × [115] × [116] X[117]
6. CE certification X[110] X[113] X[114] ? X[116] X[117]
7. Costs × ? X[114] × × [116] X[117]
8. Analysis software X[110] ? X[114] X[115] ? X[117]

X= device does meet requirement × = device does not meet requirement ? = unknown whether device meets requirement
* Close to sternum
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Table 22: Results of device subjection to the technical requirements (part 3 of 3).

Garmin VivoSmart Alvita Ultimate Motiv Ring wellsense vu BCGMCU/SCA11H E4 Wristband

1. Activity classification
- Lying × × × X X ×
- Upper body movement × × × × × ×
- Sitting × × × × × ×
- Standing × × × × × ×
- Walking X X X × × ×
- Bicycling × × × × × ×
- Walking stairs × × × × × ×

In-device analysis: In-device analysis: In-device analysis: In-device analysis: In-device analysis: In-device analysis:
- Activity: walking [119] - Activity: walking [120] - Activity: walking [121] N/A [122] N/A [123] N/A [124]

2. Sampling rate ? ? ? ? ? × (32Hz) [124]
3. Exportable data /
raw data

X/
× [119]

× /
× [120]

? /
× [121]

? /
× [122]

X/
× [123]

X/
X

[124]

4. Battery life X(5 days) [119] X(6 months) [120] × (3 days) [121]
X(power supply
without battery)[122]

X(power supply
without battery)

[123] × (20 hours) [124]

5. Data storage /
streaming

X/
X

[119]
X/
× [120]

X/
X

[121]
? /
× [122]

X/
× [123]

×/
X

[124]

X= device does meet requirement × = device does not meet requirement ? = unknown whether device meets requirement

Table 23: Results of device subjection to the clinical requirements (part 3 of 3).

Garmin VivoSmart Alvita Ultimate Motiv Ring wellsense vu BCGMCU/SCA11H E4 Wristband

1. No discomfort or hindrance in mobilisation X[119] X[120] X[121] X[122] X[123] X[124]
2. No tissue deformation X[119] X[120] X[121] X[122] X[123] X[124]
3. Device placement outside wound area X[119] X[120] X[121] X[122] X[123] X[124]
4. Patient privacy X X X X X X
5. No impediment of daily care X[119] × [120] X[121] X[122] X[123] × [124]
6. CE certification X[119] X[120] X[121] X[122] X[123] X[124]
7. Costs X[119] X[120] X[121] × [122] X[123] × [124]
8. Analysis software X[119] × [120] X[121] ? X[123] X[124]

X= device does meet requirement × = device does not meet requirement ? = unknown whether device meets requirement

61



Appendix C

Figure 17: An example of accelerometer data captured with the AX3 attached to the right upper
arm, with and without colour marking per activity.
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Figure 18: An example of accelerometer data captured with the AX3 attached to the right upper
leg, with and without colour marking per activity.
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Appendix D

Protocol labelling measurement

Below an example of a standardised protocol of the labelling measurement. Implementation and
sequence of activities was as spontaneous as possible and, therefore, differs for each patient. The
static activities were held for a minimum of 30 seconds, and the dynamic activities for at least
60 seconds (except of walking stairs). With a stopwatch and notations, the exact moment of
execution of the various activities was recorded.

1. Attachment of AX3 devices according to figure 19.

2. Patients start the labelling measurement sitting or standing.

3. Patients stand or sit.

4. Patients walk from their room to the home trainers.

5. Patients immediately start cycling or sit on a chair before cycling.

6. After cycling, patients stand still.

7. Patients walk to the stairwell where one staircase consisting of about 15 steps is walked up
and down at least twice.

8. After walking stairs, patients stand again still and subsequently walk back to their room.

9. Once arrived in the room, patients lie in bed, on the back and on both sides.

10. The labelling measurement is concluded with sitting on the edge of the hospital bed.

Figure 19: Final AX3 application in dual arrangement, placed lateroproximal on the right upper
arm and anterodistal on the right upper leg. This exact sensor placement configuration was used
in the clinical pilot study.
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Figure 20: The ”activity forms” on which physiotherapists reported patient physical activity.
Text is in dutch.

Figure 21: A3-poster with study instructions for nursing. Text is in dutch.
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Appendix E

Figure 22: Flow chart of the clinical pilot study.
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Appendix F

(a) K-fold cross-validation

(b) LOSO-validation

Figure 23: Confusion matrix for the true labels targets and predicted labels outputs after K-fold
cross-validation and LOSO-validation using 160 features. 1 = lying, 2 = sitting, 3 = standing, 4
= walking, 5 = cycling, and 6 = walking stairs. The column on the far right of the plot shows the
precision (or positive predictive value) and false discovery rate. The row at the bottom of the plot
shows the recall (or true positive rate) and false negative rate. The cell in the bottom right of the
plot shows the overall classification accuracy.
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Figure 24: Neural network precision and recall per activity using n number of patients (starting
from n = 2) in training data set. Precision and recall were determined by averaging results from
LOSO-validation over n number of patients.
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Table 24: Overview of features used after feature selection. Demonstrated are name of the features
with the corresponding type of acceleration, sensor, sensitive axis, and variable computed.

Feature name Acceleration Sensor Sensitive axis Computed variable

′TotalAccXMeanshoulder′ Total Upper arm X Mean
′TotalAccY Meanshoulder′ Total Upper arm Y Mean
′TotalAccZMeanshoulder′ Total Upper arm Z Mean
′TotalAccXMeanknee′ Total Upper leg X Mean
′TotalAccY Meanknee′ Total Upper leg Y Mean
′TotalAccZMeanknee′ Total Upper leg Z Mean
′BodyAccXRMSshoulder′ Body Upper arm X Root Mean Square
′BodyAccY RMSshoulder′ Body Upper arm Y Root Mean Square
′BodyAccZRMSshoulder′ Body Upper arm Z Root Mean Square
′BodyAccY RMSknee′ Body Upper leg Y Root Mean Square
′BodyAccZRMSknee′ Body Upper leg Z Root Mean Square
′BodyAccXCovZeroV alueshoulder′ Body Upper arm X Autocorrelation, height of main peak
′BodyAccY CovFirstPosshoulder′ Body Upper arm Y Autocorrelation, position of second peak
′BodyAccZCovFirstPosshoulder′ Body Upper arm Z Autocorrelation, position of second peak
′BodyAccY CovFirstPosknee′ Body Upper leg Y Autocorrelation, position of second peak
′BodyAccXSpectPos5shoulder′ Body Upper arm X Spectral Peaks, position of fifth peak
′BodyAccY SpectPos5shoulder′ Body Upper arm Y Spectral Peaks, position of fifth peak
′BodyAccXSpectPos4knee′ Body Upper leg X Spectral Peaks, position of fourt peak
′BodyAccXSpectPos5knee′ Body Upper leg X Spectral Peaks, position of fifth peak
′BodyAccY SpectPos1knee′ Body Upper leg Y Spectral Peaks, position of first peak
′BodyAccY SpectPos3knee′ Body Upper leg Y Spectral Peaks, position of third peak
′BodyAccY SpectPos4knee′ Body Upper leg Y Spectral Peaks, position of fourth peak
′BodyAccY SpectPos5knee′ Body Upper leg Y Spectral Peaks, position of fifth peak
′BodyAccY SpectPos6knee′ Body Upper leg Y Spectral Peaks, position of sixth peak
′BodyAccXPowerBand2shoulder′ Body Upper arm X Spectral Power, total power in second band
′BodyAccXPowerBand3shoulder′ Body Upper arm X Spectral Power, total power in third band
′BodyAccY PowerBand3shoulder′ Body Upper arm Y Spectral Power, total power in third band
′BodyAccZPowerBand2shoulder′ Body Upper arm Z Spectral Power, total power in second band
′BodyAccXPowerBand2knee′ Body Upper leg X Spectral Power, total power in second band
′BodyAccXPowerBand3knee′ Body Upper leg X Spectral Power, total power in third band
′BodyAccY PowerBand1knee′ Body Upper leg Y Spectral Power, total power in first band
′BodyAccY PowerBand2knee′ Body Upper leg Y Spectral Power, total power in second band
′BodyAccY PowerBand3knee′ Body Upper leg Y Spectral Power, total power in third band
′BodyAccY PowerBand4knee′ Body Upper leg Y Spectral Power, total power in fourth band
′BodyAccZPowerBand2knee′ Body Upper leg Z Spectral Power, total power in second band
′BodyAccZPowerBand3knee′ Body Upper leg Z Spectral Power, total power in third band
′BodyAccZPowerBand4knee′ Body Upper leg Z Spectral Power, total power in fourth band
′TotalAccXMedianshoulder′ Total Upper arm X Median
′TotalAccY Medianshoulder′ Total Upper arm Y Median
′TotalAccZMedianshoulder′ Total Upper arm Z Median
′TotalAccXMedianknee′ Total Upper leg X Median
′TotalAccY Medianknee′ Total Upper leg Y Median
′TotalAccZMedianknee′ Total Upper leg Z Median
′BodyAccXStdshoulder′ Body Upper arm X Standard Deviation
′BodyAccY Stdshoulder′ Body Upper arm Y Standard Deviation
′BodyAccZStdshoulder′ Body Upper arm Z Standard Deviation
′BodyAccY Stdknee′ Body Upper leg Y Standard Deviation
′BodyAccZStdknee′ Body Upper leg Z Standard Deviation
′BodyAccXMadknee′ Body Upper leg X Mean Absolute Deviation
′BodyAccY Madknee′ Body Upper leg Y Mean Absolute Deviation
′BodyAccZMadknee′ Body Upper leg Z Mean Absolute Deviation
′TotalAccSMAshoulder′ Total Upper arm All Signal Magnitude Area
′TotalAccSMAknee′ Total Upper leg All Signal Magnitude Area
′TotalAccXMadshoulder′ Total Upper arm X Mean Absolute Deviation
′TotalAccY Madshoulder′ Total Upper arm Y Mean Absolute Deviation
′TotalAccZMadshoulder′ Total Upper arm Z Mean Absolute Deviation
′TotalAccXMadknee′ Total Upper leg X Mean Absolute Deviation
′TotalAccY Madknee′ Total Upper leg Y Mean Absolute Deviation
′TotalAccZMadknee′ Total Upper leg Z Mean Absolute Deviation
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(a) K-fold cross-validation

(b) LOSO-validation

Figure 25: Confusion matrix for the true labels targets and predicted labels outputs after K-fold
cross-validation and LOSO-validation using 59 features. 1 = lying, 2 = sitting, 3 = standing, 4
= walking, 5 = cycling, and 6 = walking stairs. The column on the far right of the plot shows the
precision (or positive predictive value) and false discovery rate. The row at the bottom of the plot
shows the recall (or true positive rate) and false negative rate. The cell in the bottom right of the
plot shows the overall classification accuracy.
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Neural network performance Upper arm sensor and Upper leg sensor only

Table 25: Precision and recall per activity and overall classification accuracy of the neural network
trained with patient data from the upper arm sensor (number of features = 80). Variables were
determined by averaging results from K-fold cross-validation (K = 10) and LOSO-validation (n =
31 subjects).

K-fold LOSO

Recall Precision Recall Precision
Lying 94 [91 96] 60 [51 65] 93 [39 100] 81 [17 100]
Sitting 78 [70 84] 70 [64 75] 71 [0 100] 64 [25 100]
Standing 71 [64 78] 81 [77 85] 66 [0 100] 77 [0 100]
Walking 92 [85 96] 69 [60 75] 84 [0 100] 65 [51 100]
Cycling 86 [79 90] 87 [83 92] 76 [0 100 ] 79 [0 100]
Walking stairs 60 [51 65] 89 [84 94] 53 [34 60] 83 [59 100]

Accuracy 80 74
[77 83] [17 95]

Data are percentages [Min Max]

Table 26: Precision and recall per activity and overall classification accuracy of the neural network
trained with patient data from the upper leg sensor (number of features = 80). Variables were
determined by averaging results from K-fold cross-validation (K = 10) and LOSO-validation (n =
31 subjects).

K-fold LOSO

Recall Precision Recall Precision
Lying 93 [88 96] 87 [83 90] 89 [46 100] 80 [42 100]
Sitting 86 [80 90] 93 [89 95] 78 [0 100] 88 [0 100]
Standing 99 [97 100] 99 [97 100] 99 [91 100] 99 [89 100]
Walking 98 [96 99] 92 [88 94] 96 [51 100] 91 [69 100]
Cycling 100 [99 100] 100 100 [93 100] 100 [92 100]
Walking stairs 92 [88 95] 98 [96 99] 91 [55 100] 96 [68 100]

Accuracy 95 92
[94 95] [76 100]

Data are percentages [Min Max]
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Neural network performance using data divided in larger segments

Table 27: Precision and recall per activity and overall classification accuracy of the neural network
using patient data divided in segments of 512 samples (number of features = 160). Variables were
determined by averaging results from K-fold cross-validation (K = 10) and LOSO-validation (n =
31 subjects).

K-fold LOSO

Recall Precision Recall Precision
Lying 98 [93 100] 99 [96 100] 95 [66 100] 94 [53 100]
Sitting 99 [95 100] 98 [93 100] 93 [13 100] 95 [74 100]
Standing 100 [98 100] 99 [93 100] 99 [88 100] 100 [94 100]
Walking 99 [98 100] 98 [93 100] 99 [91 100] 97 [82 100]
Cycling 100 [98 100] 100 100 [93 100 ] 100 [95 100]
Walking stairs 98 [94 100] 99 [98 100] 98 [72 100] 99 [91 100]

Accuracy 99 97
[98 100] [85 100]

Data are percentages [Min Max]

Table 28: Precision and recall per activity and overall classification accuracy of the neural network
using patient data divided in segments of 1024 samples (number of features = 160). Variables were
determined by averaging results from K-fold cross-validation (K = 10) and LOSO-validation (n =
31 subjects).

K-fold LOSO

Recall Precision Recall Precision
Lying 96 [79 100] 98 [95 100] 97 [90 100] 92 [52 100]
Sitting 98 [95 100] 96 [85 100] 93 [9 100] 96 [75 100]
Standing 100 [96 100] 100 99 [71 100] 100
Walking 100 98 [89 100] 99 [71 100] 96 [67 100]
Cycling 100 100 97 [50 100] 100
Walking stairs 98 [90 100] 96 [96 100] 91 [50 100] 97 [50 100]

Accuracy 99 97
[98 99] [83 100]

Data are percentages [Min Max]
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Appendix G

Figure 26: Median amount of minutes lying, sitting, standing, walking, cycling, and walking
stairs per hour between 7 a.m. and 11 p.m. The 7 p.m. interval contains data measured between
7 a.m. and 7.59 a.m. Medians are determined using all patient data. Error bars represent IQR.
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Figure 27: Stacked bars diagram of mean percentage time spent per activity for all patients.
Daily intervals contain data between 7 a.m.-11 p.m.

Figure 28: Stacked bars diagram of mean percentage time spent per activity for male (M) and
female (F) patients. Daily intervals contain data between 7 a.m.-11 p.m.
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