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ABSTRACT 

The overall objective of this MSc research is to develop a model-based method in order to detect and 

recognize different types of road furniture in Mobile Laser Scanning data. The proposed method first 
extracts an explicit model of the object, followed by a center based voting schema. The local maxima 

indicate the center location and the spatial configuration of the voters. The voters that correspond to the 

maxima are considered as the detected points of the objects. Generally speaking, model-based approach 
collects object model from the point cloud data and learns a pre-knowledge about the object shapes. It is 

robust to occlusion and does not require a fine segmentation beforehand; moreover, the method can deal 
with intra-class variability issue in object recognition of 3D point cloud. 

The methodology is divided into four parts: model extraction and representation, center based voting, 

peak detection and performance evaluation. Firstly, model representation is based on the 3D Generalized 
Hough Transform; it uses the concept of the R-table, which stores all the shape descriptors of an object 

and represents it with a set of mathematical parameters. Secondly, the method adopts a center based 

voting schema for all the point cloud from the dataset, and the descriptors of every point in the dataset are 
indexed into the R table in order to find matched edge point of the same object type. Thirdly, the method 

applies Metropolis-Hastings algorithm for peak searching. The dense areas after voting, also called the 
local maxima, are considered as the potential centers of the objects. Strategies of selecting the correct 

candidate peaks are proposed afterwards. Finally, performance is evaluated given precision and recall and 

overall accuracy. The computational complexity of the modified method is also evaluated. 

To sum up, the modification to the 3D GHT is feasible and reaches satisfied results; it turns the discrete 

Hough space into a continuous space. The input of the method is the object model and point cloud 

dataset, and the recognized object points are highlighted which have the same shape with input object 

model. Performance evaluation is done with confusion matrix, precision and recall. The recognized results 

reach high completeness. Correctness of the results is generally low, except for car object, the correctness 

of 82%. Thus the method can successfully find most objects from the data, but it also provides large 

amount of false positives. For most object types, the precision is extremely low, so further improvement 

need to be adopted in the future work to cope with this problem. In total, 129 out of 160 of the target 

objects have been successfully detected, which reach the overall accuracy of 80.63%. 

 

 

Keywords 

Mobile Laser Scanning (MLS), 3D Generalized Hough Transform (GHT), Mont Carlo Markov Chain 

(MCMC) sampling, Metropolis Hastings (MH), object recognition, road furniture detection 
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 INTRODUCTION 1.

1.1. Motivation 

During the urbanization process, traffic volume and car ownership have increased rapidly and road safety 

management becomes a noticeable issue. Although Europe is regarded to be one of the safest road traffic 
regions in the world, it still suffers from traffic safety problems (Shen, Hermans, Bao, Brijs, & Wets, 

2013). Three factors are considered to influence road safety: vehicle, driver behaviour and route 

environment or infrastructure (Mc Elhinney, Kumar, Cahalane, & Mccarthy, 2010). Among which, road 
environment safety is regarded to be a key issue, since broken or damage of transportation infrastructures 

like traffic light, traffic sign and lamp post can greatly lead to potential traffic accidents. Therefore, 
inspection and maintenance of the roadside facilities is of great importance and necessity.  

Currently, many inspection surveys of road furniture are based on visually analysing 2D digital maps, 

videos or by manual in-situ inspections (Mc Elhinney et al., 2010). Such works are quite time-consuming 
and subjected to human eyes. In order to ensure a frequent inspection and maintenance of road 

infrastructures, roadside object extraction and detection with Mobile LiDAR technique is adopted, due to 

its abilities to acquire detailed, complete and high resolution terrain geometry efficiently and automatically.  

Light Detection and Ranging (LiDAR) data is provided by laser scanners captured from different 

platforms. Compared with image-based 3D data acquisition, it provides more accurate and precise object 
geometry and it is less restricted to lighting conditions (Pu, Rutzinger, Vosselman, & Oude Elberink, 

2011). Mobile laser scanning (MLS), also referred to as Mobile LiDAR, is a vehicle-based mapping system 

which provides 3D point clouds with high resolution and explicit object geometry (Kukko, Kaartinen, 
Hyyppä, & Chen, 2012). MLS provides an efficient and flexible solution for fast data collection (Williams, 

Olsen, Roe, & Glennie, 2013). It also provides dense point clouds with high precision for objects 

recognition and extraction, especially along road corridors. 

In addition to MLS, airborne laser scanning (ALS) and terrestrial laser scanning (TLS) are also two 

techniques for acquiring LiDAR data. Although both approaches offer high quality point cl oud data and 

detailed geometric features, they have drawbacks compared with MLS: ALS covers larger area but it has 

insufficient point density for detecting road geometric surface because of the viewing angle; TLS provides 

high point density within a limited small-scale area, but it is cumbersome for mapping long stretches of 

roads (Lehtomäki, Jaakkola, Hyyppä, Kukko, & Kaartinen, 2010). Thus, in the aspects of data acquisition, 

MLS offers dense point clouds with high efficiency and its mobility makes it more suitable for surveying 

road structures (Kukko et al., 2012). 

1.2. Problem statement 

Currently, many algorithms for semi-automated and automated road furniture objects identification have 
been proposed. However, most existing methods are more successful in recognizing objects in category 

level and less in instance level, e.g. they aim to detect poles rather than distinguish different pole types; 

they are based on implicit object features given certain global or local properties like shape, size etc. 
(Brenner, 2009; Lam, Mrstik, Harrap, Greenspan, & Engineering, 2010). Implicit object features are 

susceptible to inaccuracy and incompleteness of the data, whereas usage of explicit object model can fulfil 

the requirements of recognizing different instance types provided that each instance model is given.  Thus, 
general approaches with an implicit knowledge of the objects are not discriminative enough to consider 

intra-class variability, e.g. distinguish and category road furniture into different instances such as different 
types of street lights, traffic signs, and traffic lights.  

Moreover, partial occlusions and gaps are inevitable in point cloud data; they affect the accuracy of object 

recognition methods which are based on segmentation, clustering and classification. Therefore, a method 

which can be robust to occlusion is also required. 
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1.3. Research identification 

1.3.1. Research objectives 

The main objective of this research is to develop a method to detect and recognize different roadside 

objects in MLS data, with the capability to identify different types of road furniture. To achieve this overall 
objective, several sub-objectives need to be addressed: 

1. Analyze the existing model-based algorithms for detection and recognition of  roadside objects in 3D 
point clouds. 

2. Develop a method according to a set of  criteria, refine the existing algorithm with the expectations to 

increase the outcome quality and reduce the computational cost. 

3. Test the results of  the method with a ground-truth dataset (roadside scene in MLS data) and evaluate 

the performance. 

1.3.2. Research questions 

The following research questions should be addressed in order to achieve the above mentioned research 
objectives.  

1. Among the existing object detection methods in 3D point cloud, which algorithms can be suitably 

applied or extended to recognize roadside instances in MLS data?  

2. What are the limitations that influence the performance of  the selected method, and how to optimize 

or reduce the drawbacks to the selected method? 

3. How to obtain and store object models on condition that a model -based approach is used in this 

research? 

4. How well or badly does the method perform in the context of  object instances detection in MLS data?  

5. What are the factors that influence the performance of  the algorithm used in this research? 

1.4. Innovation 

The innovation is to develop a model-based method that can recognize road furniture in MLS data with 

the capability to deal with intra-class variation recognition. The method should be less depends on 
segmentation and can realize the research objective according to selection of parameters. 

1.5. Thesis structure 

The thesis is documented into 6 main chapters. Chapter 1 delivers the general introduction of the 
research, namely motivation, problem statement and research objectives and questions. Chapter 2 reviews 

several previous and current literatures on object recognition in point cloud. In chapter 3, the justification 

of the selection method and detailed framework of the methodology developed for the research is given. 
Chapter 4 shows the step-by-step implementations and results. Evaluation and discussion of the results 

are delivered in chapter 5, followed by specific constraints to refine the quality of recognition process. In 

the last chapter, final conclusions and recommendations are presented. 
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 LITERATURE REVIEW 2.

In this chapter, methods that related to object detection and road furniture detection are reviewed, and in 

the based on which, the chapter justifies the methodology developing process. Section 2.1 gives working 

principle of mobile laser scanning, section 2.2 reviews and simple object detection methods, subsequently 

in section 2.3, detection methods of complex and arbitrary objects are presented. In the following two 

sections of the chapter, concept and algorithm that has been adopted by the developed method are 

introduced. At last, summary on the reviewing methods is given. 

2.1. Mobile laser scanning 

Mobile laser scanning (MLS), also referred to as mobile light detection and ranging (LIDAR) technology, 

is a rapid, flexible and high resolution 3D data acquisition (Kukko et al., 2012). Mobile LiDAR is mounted 
on mobile platforms such as boats, vehicles, trains or snow mobile sledges(Puente, González-Jorge, 

Martínez-Sánchez, & Arias, 2013). In this research, the MLS dataset is collected by the Optech’s Lynx 

Mobile Mapper system. Mobile mapping system contains five necessary components: the mobile platform; 
positioning hardware (e.g., GNSS, IMU); 3D laser scanners; photographic/video recording; computer and 

data storage (Williams et al., 2013) as shown in figure 2-1.  

The general principle of laser scanning system uses LiDAR technique for range and angle measurements. 

Currently two techniques are used for MLS range measurements: time-of-flight (TOF) and phase shift 

(Puente, González-Jorge, Arias, & Armesto, 2012). The time delay between the scanner emit the laser 
pulse to the target and the received pulse reflected from the target surface can be used to calculate to 

range (Vosselman & Maas, 2010), as the equation 2-1 shows: 

         d = 
∆𝑡

2
𝑐                                                 (2-1) 

where c is the speed of light and ∆t is the time delay. Phase shift measurement is more accurate with 
shorter range. The range is evaluated between the phase shift of emitted and received signals:  

           d =  
∆𝜑

2𝜋

λ

2
+ 

λ

2
𝑛                                                 (2-2)  

where λ is the wavelength, 𝜑 is phase difference and n is the unknown number of full wavelengths 

between sensor and the target object (Puente et al., 2013; Vosselman & Maas, 2010).  

MLS have many benefits: cost-efficient 3D data acquisition; high point cloud density (high level detail); 

increase safety of measurement (Puente et al., 2013), etc. Moreover, MLS offers more sufficient point 

cloud density than ALS because it equips more scanning angles for detecting vertical structures, and it is 

less affected by occlusion than TLS because of its mobility and the use of multiple sensors at different 

scanning planes (Cabo, Ordoñez, García-Cortés, & Martínez, 2014; Puente et al., 2012). These advantages 

make it extremely powerful for mapping navigable corridors for a wide range of applications including 

infrastructure analysis, utility mapping and inventory, 3D modelling and inspection of urban environment, 

etc.  

 

Figure 2-1: Example of a mobile laser scanning (MLS) system and its components (Williams et al., 2013). 
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2.2. Object detection in point clouds 

Existing methods of object recognition and detection in point clouds can be divided into two approaches: 
data-driven and model-driven, also known as bottom-up and top-down (Vosselman & Maas, 2010). Data-

driven approach starts by extracting global or local properties (e.g. shape, size and location etc.) from the 

data, thus they are susceptible to occlusions and gaps in the data, and are not distinguishable enough to 
recognize intra-class instances and deal with multi-connected objects issue. Different from data-driven 

approach, model-based approach builds a geometric object model and locates the object from the dataset 

by verifying the model. Model-driven approach makes use of a beforehand knowledge of the object shape 
characteristics, while data-driven approach detects object at the point level. A detailed comparison of these 

two approaches was given by Tarsha-Kurdi, Landes, Grussenmeyer, & Koehl (2007). Model-based 
recognition is accomplished by matching correspondences of certain features between the scene and the 

model (Pope, 1994), however, 3D point clouds normally contains neighboring clutter, or occlusion and 

most objects do not have a full and complete shape. Two ways of describing object appearance are 
generally adopted in order to solve this problem: global property and local property. A detailed description 

of the two approaches was given in (Pham et al., 2013). Generally speaking, global feature requires a 

complete shape of the object whereas local feature needs information form a number of object parts, thus 
global method has the drawback that it is less successful to handle with partial, deformable shapes and 

occlusion in the data, and also lack of discrimination in terms with intra-class variations (Knopp, Prasad, 
Willems, Timofte, & Van Gool, 2010).  

Simple geometric shape detection methods in point cloud such as detection of cylinders, planes, cones  and 

spheres have been proposed by many works. Segmentation methods can extract geometric information 
such as edges, curves and surfaces form the point cloud data based on certain criterion. Mainly used 

segmentation and filtering methods are scan line segmentation (Sithole & Vosselman, 2005), surface 

growing (Vosselman, Gorte, Sithole, & Rabbani, 2004), connected components analysis, slope based 
filtering (Vosselman, 2000) and random sample consensus algorithm (RANSAC) (Fischler & Bolles, 1981). 

These methods can successfully recognize simple shapes, however, for detecting complex and arbitrary 
shapes, other object recognition methods need to be combined with or adopted to these segmentation and 

filtering methods. 

Currently, object recognition methods have two categories according to the knowledge been employed: 
approach with implicit object feature and approach with explicit object model. In the former one, an 

object is represented with a feature implicitly in terms of the local or global appearances or shapes  of the 

object; then the recognition process is done by searching similar feature vectors (Luo, Liu, Lin, Wang, & 
Yu, 2005). In the latter case, model-based object recognition attempts to define an explicit object model 

for all possible shapes of an object and match each object in the data with the given explicit model (Leibe, 
Leonardis, & Schiele, 2007). To describe an explicit object model, the object model can be mathematically 

described by a set of model parameters or represented with a set of templates (Khoshelham, 2007).  

Hough transform method was an effective recognition method that was originally invented to recognize 
straight lines in 2D photographs (Hough, 1962). In this original invention, each point (x, y) in the object 

space correspond to a set of (𝛼, 𝑑) in the parameter space. Thus, Hough transform can determine the 
location of the line by analysing intersections in parameter space with the highest number of curves. 

Besides detecting lines, the standard Hough transform can also be used to detect other parameterized 
objects such as planes and cylinders. Ballard (1981) extended this method in order to detect non-analytical 

object of arbitrary complex shapes. The Generalized Hough Transform (GHT) considered directional 

information of the boundary, and object model was stored in an R-table, which greatly increased the 
accuracy and computation speed. R-table contains a set of parameters to define an object shape, 

respectively reference point, the gradient direction for each boundary point, and the length (radius) as a 
function of gradient direction angle. An accumulator array is formed, for each edge pixel, increment the 

corresponding votes in the array. After the voting process, the local maximum (the bin with maximum 
votes) in the array indicates the reference point and the edge that casts the vote of the bin indicates the 

shape of the object. The method can also be used to detect objects with rotation and scale variance,  in 

which the accumulator array is four dimensional. However, the drawback of the method to be applied into 
point cloud data is its huge time and space complexity. Later Khoshelham (2007) extended the GHT 
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method and enabled it to detect more complex and arbitrary shapes in 3D point cloud data as shown in 
figure 2-2(a). But the main drawback of the GHT still remains. 

A robust object recognition method with implicit shape model (ISM) was first proposed by Leibe & 

Schiele (2003). It was applied for object detection in MLS point cloud by Velizhev, Shapovalov, & 
Schindler (2012). The method followed the general pipeline by Golovinskiy, Kim, & Funkhouser (2009) 

and used implicit shape model for the classification phase (Knopp et al., 2010). The algorithm is shown in 

figure 2-2(b). It builds a model dictionary by extracting key points and computing their descriptors (spin 
images), and then recognize objects by voting for the object center. In the training stage, descriptors of the 

key points and their displacement from the object center of the exemplar for each class were clustered to 
build a geometric dictionary. In the classification stage, a voting-based localization was performed to 

match descriptors and cast votes for the object center. The method requires small training data, but it does 

not take density variations into account and fails on objects with badly defined shapes. 

    

                                             (a)                                                                (b) 

Figure 2-2: (a) Parameters of 3D GHT method (Khoshelham, 2007). (b) ISM algorithm (Velizhev et al., 2012). 

In object recognition by template matching method, the object model is represented with a set of voxel 

templates. Greenspan & Boulanger (1999) proposed an efficient and reliable template matching method 
that can be applied in range image data. The model was rotated at each pose and its surface was quantized 

into a voxel space. In such a way, the object was represented by each view of the model in a specific pose. 
To solve the expensive computational cost, all the templates are composed into a binary decision tree, 

where each leaf node refers to a number of templates and each internal node refers to a single voxel. 

Recognition was done by first voxelizing the range image and selecting the seed voxel randomly and 
iteratively.  

The method by Song & Xiao (2014) used depth information for object detection. Computer graphics 

(CG) CAD models were collected from internet and rendered from hundreds of viewpoints to obtain 
synthetic depth map. A feature vector was extracted from 3D point cloud projected from depth map and 

trained an exemplar Support Vector Machine (SVM) classifier for each rendering with both positive 
ground truth (renderings from CG model) and negative data (from labelled Kinect depth map). Then a 3D 

detection window was sliced to match the exemplar shape. The method claims to solve several main 

difficulties in object recognition in RGB-D images: texture, illumination and shape variance, viewpoint 
variance, noise and sensor error, clutters and occlusion. The method was illustrated in figure 2-3. During 

testing, the SVMs were used to classify the bounding box in 3D space and decided whether the target 

shape was inside the box with detection scores. The method achieved 1.7 times improvement average 
precision compared to the results of using RGB images. 
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Figure 2-3: Sliding shapes method (Song & Xiao, 2014). 

2.3. Road furniture detection in point clouds 

Road furniture is the general designation that contains all roadside objects used for traffic safety and 
control that aims to facilitate and assist drivers. Types of road furniture includes traffic signs, lights and 

utility poles, road markers, mail boxes, telephone booth or other essential elements.. Among which, 
infrastructures such as traffic lights, traffic signs, street lights can be curtail to improve traffic safety and 

control, and are important for car navigation and driver assistance. 

In recent years, researches start to address on pole-like road furniture detection and recognition in urban 
environments from mobile laser scanning data (Cabo et al., 2014). A model-based pole extraction method 

was mentioned by Brenner (2009), in which pole-like objects can be seen as a special cylinder extraction 

case. The poles are assumed with an upright characteristic, and a kernel region is used where inside the 
region are the laser points that represent the pole and outside the region there are less points or no points. 

The locations of the poles are estimated with respect to the cylinder stacks, and a pole structure is 
identified by setting a certain minimum number of stacked cylindrical stacks. However, this method 

cannot extract poles with additional structures attached to the poles and thus it cannot be used to 

recognize such road furniture as traffic signs or traffic lights with curved tops. 

Golovinskiy, Kim, & Funkhouser (2009) investigated a general pipeline for recognizing small objects in 

urban areas. The pipeline contains four steps, namely localization, segmentation, representation and 

classification. In figure 2-4, potential objects are first localized by filtering out large parts that do not 
belong to the objects, followed by a segmentation process to identify object shapes. In the feature 

extraction phase, objects are described by their shape and context properties with feature vectors. Finally 
the candidate objects are classified and labelled. In each step, the paper provided several alternative 

approaches. The performance results show that 65% of the objects are successfully recognized. However, 

the pipeline has the drawback that it is not discriminative enough for intra-class variability (Velizhev et al., 
2012) to recognize different object types. 

 

Figure 2-4: Working pipeline in Golovinskiy et al. (2009). 

Lehtomäki et al. (2010) proposed another method for pole detection and classification in road 
environments. The method uses the profile information of the vehicle-based laser scanner, and it assumes 

that pole is found from a minimum of three sweeps. The phases of the method consists of four phases: 

scan line segmentation of each profile, clustering of possible sweeps of pole with shorter point segments, 
merging of clusters, classify candidate clusters into different pole objects based on feature properties like 

shape, length, point density, etc. However the accuracy of pole detection suffers from shadowing effect 
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between objects, and it is not independent of scanning geometry (i.e. scanning angle and frequency) of the 
sweeps. 

A knowledge-based method was proposed by Pu, Rutzinger, Vosselman, & Oude Elberink (2011) shown 

in figure 2-5 to recognize roadside structures in MLS data. There are three main steps for feature 
recognition: rough classification, percentile-based feature recognition and further classification. The 

purpose of rough classification is to separate ground and non-ground objects and obtain segments that 

contain interested components. Then percentile-based algorithm was applied: candidate segment is 
divided into height percentiles, and a certain percentile is divided into horizontal slices (fit a rectangular 

plane), afterwards, the method computes the diagonal length and center point for each slice. The pole 
recognition was thus performed by counting the length and center point deviations iteratively between 

neighboring slices within a certain threshold. Finally, the detected poles are further classified with 

knowledge-based shape recognition. The performance of the method can be influenced by point cloud 
density variation and occlusion problem in the presentence of thick trees. 

 

Figure 2-5: Percentile-based algorithm in Pu et al. (2011). 

The thesis from Kemboi (2014) used another knowledge-based method to detect and extract road 

furniture, in which the author described the parameters of the segments by use of histogram and 

minimum bounding box (MBB). Then computation of the histogram correlation MBB ratios was applied 
to find similar components with a known sample. The principle behind is that different components of 

object type tend to have different pattern on the shapes of histogram, and can be described with different 

set of bounding box parameters. Then the objects are classified by decision tree based on the MBB 
parameters and correlation thresholds. Further check of the results is by use of iterative closet point (ICP) 

algorithm. Different from the method by Pu et al. (2011), this method used explicit object sample in the 
dataset for detecting and recognizing different object types. 

More recently, Cabo et al. (2014) presented a method using spatial volumetric elements of the point clouds 

to detect pole structures, as shown in figure 2-6. The method was divided the space into regular grid. The 
voxelization step simplified point cloud based on the codification of the XYZ coordinates of the points 

into a 12-digit code in voxel unit and the values of the code were stored in a vector, where points in the 

same voxel have the same code. Then the two-dimensional analysis was carried in three stages to find pole 
candidates based on the properties of the sections: segmentation on the divided horizontal sections from 

the grid, select the horizontal elements with maximum area, select the element with an isolation criterion. 
The result of the step was a 2D set segments associated with a Z coordinate. Finally a tridimensional 

neighborhood analysis was applied to group the voxels, and identified the pole structures with a minimum 

height threshold. This algorithm can detect poles without assumption of its position, however, it cannot 
distinguish different pole instances and moreover, it would fail if there are severe occlusions and existence 

of thick surroundings with respect to a pole. 
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Figure 2-6: Example of codification process (Cabo et al., 2014). 

2.4. Bag-of-words concept 

Bag-of-words (BoW) concept is popularly used for object categorization. The key idea is to quantize 

extracted features into visual words, and represent them with a sparse histogram over the vocabulary 
(Zhang, Jin, & Zhou, 2010). The BoW framework has been proposed for textual document classification 

and retrieval (Toldo, Castellani, & Fusiello, 2010). Extending the approach to non-textual data requires 

building the visual vocabulary. Sivic & Zisserman (2003) came up with the bag-of-features (BoF) approach 
to build a visual vocabulary (a set of all the visual analogue of words) to quantize the shape descriptors 

into clusters in 2D image. The BoW concept can be adopted with the model based approach in object 
recognition methods, in which, the feature characteristic of an object model can serve  as a codebook. 

Shapes from the scene can be matched with the correspondences in the codebook during the recognition 

process. Then objects can be detected by determining the similarity or correlation between the codebook 
and the matching correspondences in the data.   

The BoW concept has been applied by some methods already. In the original paper of 2D ISM method 

(Leibe & Schiele, 2003), a codebook of local appearance of the object shape was built with training objects , 
shown in figure 2-7. ISM can be seen as a combination of visual dictionary (Sivic & Zisserman, 2003) and 

generated Hough transform (Velizhev et al., 2012). ISM method generated object hypotheses with a top-
down approach by generating a codebook of the local appearance object shape, followed by a probabilistic 

voting schema to help recognize object categories. In the recognition process, image patches were 

extracted around interest points and matched to the correspondences in the codebook. Instead of activate 
single entry, the patches were firstly clustered based on their similarity, and for every codebook entry, the 

center position was stored as well. Matching patches cast probabilistic votes in the continuous voting 

space, and the hypotheses were searched and localized by recognizing the local maxima in the voting 
space.  

In the paper by Knopp et al. (2010), a shape representation with a set of 3D SURF (Speeded Up Robust 
Features) features were introduced combined with the idea of ISM method applied in 3D mesh models. 

3D SURF descriptor was computed around each interest point; it is scale and rotation invariant to 

reconstruct the object shape. An explicit model that assembles each class was built by SURF feature with 
the training data. ISM was applied to build a ‘visual vocabulary’ and to achieve correct classification in the 

query data. The voting process considered learning and statistical weights.  

 

Figure 2-7: Codebook construction process in the original ISM method (Leibe & Schiele, 2003). 
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2.5. Markov Chain Monte Carlo (MCMC) sampling 

Mont Carlo simulation (emphasizes on probabilistic machine learning) can be used to draw samples from 
target distribution in high dimensional space. Markov chain Monte Carlo (MCMC) sampling is well-known 

technique that plays a significant role in the application of statistics, physics and commutating science, etc. 

The algorithm can generate samples from probability distributions using a Markov chain mechanism 
(Andrieu, Freitas, Doucet, & Jordan, 2003). The mechanism is conducted so that it can spend more time 

on the important regions of the target distribution p(x). Given a state space 𝑥 𝑖 ∈ 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛}, a 
Markov chain is defined as: 

               p(𝑥(𝑖)|𝑥(𝑖−1) ,… , 𝑥(1)) = T(𝑥(𝑖)|𝑥(𝑖−1))                                  (2-3) 

where T is the transition matrix. The evolution of the chain only depends on the current state of the chain 
and a fixed transition matrix. In another word, regardless of the initial state, the chain will stabilizes at a 

certain value eventually. Thus for any arbitrary start point, the MCMC algorithm can converge to a stable 
and invariant distribution given the fixed transition matrix.  

MCMC method can be used to simulate multivariate density-based distributed samples. It can be used for 

local maxima filtering, especially when the distribution has large probability mass around the mode 
(Andrieu et al., 2003). The chain can be defined so that it takes more samples from the around the mode 

of the simulated distribution so that the mean of the samples show the mode of the distribution. This 

makes MCMC a suitable solution for finding the mode from a density distribution in object detection filed, 
thus it overcomes the shortcomings of the high computational complexity of peak detection process in 

3D GHT method.  

Several implementations of the MCMC method have been proposed, among which, the Metropolis 

Hastings (MH) algorithm was regarded as one of the ten algorithms that have had greatest influence on 

the development and practice of science and engineering in the 20th century (Andrieu et al., 2003). MH 
algorithm is an popular instance of MCMC sampling methods that was first developed by Metropolis, 

Rosenbluth, Rosenbluth, Teller, & Teller (1953) and generalized by Hastings (1970). The algorithm can 

obtain random samples from a density distribution; it can approximate the desired distribution based on 
the probability of acceptance or rejection of a candidate. 

2.6. Summary 

This chapter mainly reviews some existing methods of object detection and recognition in 3D point cloud 

data. The existing methods can be divided in to two kinds, data-driven and model-driven. In data-driven 

methods, object points are grouped or categorized by means of segmentation, classification or clustering. 

However with the presence of occlusion they are not very robust. Model-based approaches make use of 

shape information of an explicit object instance, and the objects are represented with global or local shape 

descriptors, templates, or mathematical parameters. The reviews mainly focus on the road furniture 

detection where many methods have attempted to classify different road inventories. Among which, the 

extended 3D Generalized Hough Transform method has the strength of model based approach and the 

ability to describe an object instance accurately. On the other hand, modifications are necessary to make 

compensate to the computational complexity issue of the selected method. MCMC sampling is selected 

for its efficiency in finding the mode from a density distribution. Therefore, by combining the two 

methods, it is considered can be feasible and promising in realizing the research objective.  
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 METHODOLODY 3.

3.1. Introduction of methdolody 

3D GHT method has the advantages that it transforms shape detection into a maximum analysis problem 

in a mathematical way. It is also very robust to partial occlusion issue as it can reconstruct object model 
explicitly and it uses a center based voting schema to solve unknown parameters in the Hough space. It is 

capable of finding multiple correspondences in the same voting process (Bevilacqua, Casorio, & 

Mastronardi, 2008). However, the main drawback of this method is that it requires large computational 
cost, especially when taking rotation and scale parameters into account, and the voting space is increased 

to 7 dimensional. Also, as GHT uses discrete voting space, information is lost to some extend for every 
voting process. To overcome these problems, the idea of modifying the discrete Hough voting space into 

continuous voting space would be a good solution. Therefore, the method draws the key idea from ISM 

method (Velizhev et al., 2012), where  shape descriptors were collected as a geometric dictionary together 
with their spatial configuration form the object center, and followed by a voting based localization process 

to detect maxima.  

As the voting results of 3D GHT is large, to reduce computational cost, MCMC method is applied for 
detecting peaks from the voted data, given the appropriate proposed distribution and parameters of MH 

algorithm. Such modification avoids the high computational complexity in the Hough space. Moreover, 
applying MCMC helps directly find target peaks and the mode point in the continuous space, which 

further improves the efficiency of the method.   

3.2. Framework 

The research applies a model-driven approach to recognize different road furniture types in MLS data 

based on explicit models. Individual model is extracted from the dataset as input, and object centers are 

calculated using a center based voting procedure of 3D GHT. The general process of the research is 

divided into four phases: data preparation, model representation, peak detection, refinement and 

evaluation of the final results. 

In data preparation phase, object models are manually extracted from the point cloud dataset to serve as 

inputs for setting up the R-table. A proper pre-examination of the data is required to choose a well -shaped 

object as the instance model. Then normal vectors are calculated for both the object model and the input 

dataset. In order to save computational burden, the dataset is been removed of ground points and been 

cut into subparts of approximately 100 meters along the trajectory.  

The second and third phases are main parts of the methodology. Object models are stored in R-table 

format according to the 3D GHT method. In R-table, the connecting vectors r presents the displacement 

information between the center and the edge point of the object. The object model is denoted with a set 

of mathematical parameters from R-table. Based on the voting schema, all points vote for their possible 

centers and thus generate a collection of center data. In the detection phase, MCMC sampling method is 

selected for finding local maxima. Given specified parameters, MCMC method simulates multivariate 

samples and its mode point from the center data. Voters that cast votes to the local maxima are 

considered as the detected points of the object. 

To refine the detected results, quality measurement strategies are applied to help eliminate the wrong 

candidates. Performance of the final results is evaluated and assessed in the last phase by visual inspection 

into the dataset and by precision and recall examination compared with a labelled ground truth dataset. 

The framework of the methodology designed is illustrated in the figure 3-1. 
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Figure 3-1: Framework of the methodology. 
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3.3. Data preparation 

A simplification and partition of the dataset is necessary to reduce the computing burden. We partition the 
dataset into subparts so that each dataset contains a certain amount of points and objects, and also for a 

large input dataset, the results of voting will be too large to fit into the memory. There is no requirement 

of a perfect segmentation of the point cloud, the dataset only has been removed of ground points and left 
only the roadside objects. 

The data preparation process also includes calculating the normal vectors of the points. For an explicit 

instance, normal vector of each point is used to set up R table with the two orientation angles for model 
representation; and for points in the dataset, since normal vector is used as index in the later stage of 

obtaining 3D GHT parameters. Therefore, for every point in both the model and the dataset, their normal 
vectors need to be calculated. This is done by triangulating the object surface and computing the normal 

vector of each point. Normal vector (n) is defined by two orientation angles with respect to the normal 

direction and is of unit length as illustrated in figure 3-2(a).  

3.4. Model representation 

Firstly, an object model is selected from the dataset. The model is extracted and saved it into a separate 

file. Then the instance model is represented with parametric equations of 3D GHT with R-table. In 3D 

GHT method, the connecting vector r is used as the shape descriptor of an object. A connecting vector r 
is denoted by the two orientation angles of the normal vector, and r is the length between the reference 

point and a surface point. For an instance model, parameters of connecting vector can be computed from 
the coordinates of the reference point and the edge points as in formula 3-1. 

               

r=[(xp−xc )
2

+(yp−yc)
2

+(zp−zc)
2

]1/2

α=arccos(
zc−zp

r
)

β=arccos(
xc−xp

rsin(α)
)

                                                        (3-1)  

To construct the R table, an arbitrary reference point need to be selected for the object, and each point of 
the object is represented by a vector r from a surface point to an arbitrary reference point. R-table cells 

store all the connecting vectors indexed by the two orientation angles of the normal vector. Regardless of 

rotations and scale, there are 3 parameters involved (figure 3-2(a)). An r vector represents the spatial 
configuration (distances and orientations) between reference point and surface points of the model. It is 

stored in R table as shown in figure 3-2(b). Object model can be reconstructed by a set of equations as 

illustrated in formula 3-2, involving the coordinates of reference point x𝑐  y𝑐  z𝑐  and the r vector. The 

shape of an object thus can be described in this R table format.  

    

    (a)                                                                                      (b) 

Figure 3-2: (a) Parameters involved in 3D GHT method. (b) Storing connecting vectors in the R-table. 

The method represents the instance model and describes the connecting information from the reference 

point 𝑐 to a surface point 𝑝 according to formula 3-2. The R-table method is efficient and accurate for 
object representation in MLS data. 
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               {

𝑥𝑝 =  𝑥𝑐 − 𝑟 ∙ sin(α) cos(β)

𝑦𝑝 =  𝑦𝑐 − 𝑟 ∙ sin (α)sin (β)

𝑧𝑝 =  𝑧𝑐 − 𝑟 ∙ cos (α)
                                                                    (3-2)                                            

3.5. Generation of center points 

For detecting objects from the dataset, the coordinates of reference point is the unknown parameters to 
be solved. We select the center point as reference point, thus the calculating of the reference point can be 

carried out by arranging the formula 3-2 into formula 3-3:  

                     {

𝑥𝑐 =  𝑥𝑝 + 𝑟 ∙ sin(α) cos(β)

𝑦𝑐 =  𝑦𝑝 + 𝑟 ∙ sin (α)sin (β)

𝑧𝑐 =  𝑧𝑝 + 𝑟 ∙ cos (α)
                                                                   (3-3) 

However, in reality, objects do not always appear in one pose, so more parameters are needed to add to 

the formula to deal with arbitrary scale and rotation, and this is also where computational complexity is 
increased. To consider the rotation and scale, the Hough space is extended into 7 dimensional:  

          c = p + s𝑀𝑥𝑀𝑦𝑀𝑧 ∙ 𝑟                                                                        (3-4) 

where c = (𝑥𝑐,𝑦𝑐 , 𝑧𝑐)𝑇 , p = (𝑥𝑝,𝑦𝑝 , 𝑧𝑝)𝑇, 𝑟 = (𝑟 ∙ sin(α) cos(β) , 𝑟 ∙ sin(α) sin(β) , cos (α))𝑇, s is the 

scale factor and 𝑀𝑥 , 𝑀𝑦 , 𝑀𝑧  are the rotation matrices around x, y, z respectively. 

Since roadside objects only have rotation differences around z axis, which frees 2 orientation parameters. 

Moreover, in real scene, the fact same kind of traffic instance has the same size, thus lead to the 
elimination of the scale parameter. Therefore, in this research, to reconstruct different kinds of road 

furniture instance, the final equations can be formulated as: 

                 c = p + 𝑀𝑧𝑟                                                                               (3-5)  

where 𝑀𝑧 = [
𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜃       0

−𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃       0
    0             0           1

], 𝜃 is the rotation angle around z axis. In this way, only 4 unknown 

parameters remain to be solved. An example of representing an object model is illustrated in figure 3-3. 

 

Figure 3-3: Representing a car model with R-table. 

3.6. Voting and peak detection 

3.6.1. Center-based voting process 

The center-based voting process generates voted center points, it follows the idea of ‘visual dictionary’ 

concept; the R table of the model serves as the dictionary. To start, the normal vectors of each point in 

the dataset are computed, the two orientation angles serve as dictionary entry during the voting process . 

The normal vector is used to look up r vectors in the R table at the corresponding angles. For every entry, 

the matched r vector evaluates the possible centers according to formula 3-5, and it is also the process of 

casting votes for the location of the object center. 
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As three coordinates of the edge point cannot provide sufficient redundancy to solve 4 unknown 

parameters, the solution is to give θ in angle intervals in discrete. So for each θ spacing around z axis, the 

voting process works as follows: 

1. Compute the normal vectors for every point in the point cloud. 

2. Look up r vectors in the R-table at the coordinates of  (α, β). 

3. Evaluate equation c = p + 𝑀𝑧𝑟  with the corresponding r, α, β, and obtain a set of  the possible 
center coordinates xc, yc, zc. 

4. Repeat the process for all points in the point cloud. 

After the voting process, the center location of the object will receive most votes and is defined as the 
local maxima. The local maxima are clusters of compact points, and their property differs with different 

input object models as shown in figure 3-4. Thus, if the property of the correct local maxima can be 
identified, and the correct object then can be detected.   

     

                     (a)                                                    (b)  

Figure 3-4: The local dense area of a car (a) and a lamppost (b). 

The voting process generates clusters of voted center points of different objects in the point cloud. The 
local maxima that has the densest distribution of center points indicates the reference point of the object, 

and the 3D points that cast votes for the local dense area belong to the instance of the object in the point 
cloud. However, a problem arises also when generating the maxima in the voting process: all points that 

satisfy the entry criterion cast votes for their possible centers and thus not only the correct area of the 

reference point is incremented, but also other areas are been accumulated. Thus it is necessary to propose 
an efficient method to detect the correct maxima. 

3.6.2. Metropolis-Hastings (MH) algorithm 

Theoretically, the correct local maxima are the densest area because it receives most votes from the voters. 

However, the density distribution of generated 3D center points is with arbitrary curves and contains 
multiple extremes. In order to analyze the distribution, in this section we applies MCMC sampling method 

to detect local maxima and find the peak of the distribution.  

The distribution that needs to be drawn samples from is the 3D distribution of the generated center points. 
MCMC method is proposed because it can be used to sample complex and non-analytical distributions 

and find the mode (mean) of the samples. After the center based voting process, we obtain an arbitrarily 
density based distribution in 3 dimensional, so it is hard to pick out the correct peaks of this distribution 

directly. To analyze such distributions (e.g. to find their mode) we need to sample them. The densest 
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point, which is the peak of the density based distribution, is found by taking adequate samples from the 
distribution and calculating the mean value of the samples.  

MH algorithm is an implementation of the MCMC sampling, the algorithm takes the samples by running a 

Markov chain starting from a random initial point. It is based on an Acceptance-Rejection (A-R) sampling 
method to generate samples from an absolutely continuous target distribution (Zhang et al., 2010). It takes 

the samples by running a Markov chain starting from a random initial point and the mode of the 

distribution is found by taking adequate samples using a Markov chain. The principle of MH algorithm is 

simple: the step involves an invariant target distribution 𝑝(𝑥) and a proposal distribution 𝑞(𝑦|𝑥), where 𝑦 

is a candidate value given the current value x according to 𝑞(𝑦|𝑥). The Markov chain moves towards 𝑦 

according to the probability of move: 𝐴(𝑥, 𝑦)  If the move is not made, the process remains at 𝑥 as a value 

of the target distribution. The value of 𝐴(𝑥, 𝑦) determines how often the movement from 𝑦 to 𝑥, and 
acceptance probability is define as: 

                    𝐴(𝑥𝑖, 𝑦) = min {1,  
𝑝(𝑦)𝑞(𝑥𝑖 |𝑦)

𝑝(𝑥𝑖)𝑞(𝑦|𝑥𝑖)
}                                                              (3-6) 

The pseudo-code is shown in figure 3-5: 

 

Figure 3-5: Pseudo-code of MH algorithm from (Andrieu et al., 2003). 

In this method, the MH algorithm finds the local maxima by learning from the information generated 

from the model. The performance of MH algorithm depends on the choice of parameters, e.g. different 

proposal distribution lead to different results. Thus, given the appropriate proposal , the MH algorithm will 
find the maxima from the target distribution. The correct dense area is composed of a set of compact 

distributed 3D points where the mode of which is the densest.  

The proposal distribution is determined to use the multivariable probability density function (mvnpdf) 
given covariance value along x, y, z axis of the data. Since the probability distribution of the points of local 

maxima is in arbitrary shapes, so it is hard to analyze by fitting curves or using a function to represent its 
shape. So we choose mvnpdf as the proposal distribution because it has an analytical form (a simple 

equation), yet it is sufficient to represent the local maxima shapes, e.g. mimic the density distribution 

(peaks) of the center points. The detected local maximum of a lamppost is shown in figure 3-6. 
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Figure 3-6: Mvnpdf distribution of the lamppost model 1 given the covariance matrix along x, y, z. 

Figure 3-7 shows that the MH algorithm randomly initializes one point from the data, following the A-R 

rule, the Markov chain moves towards to the satisfied candidate, and the sampling process will come to 

the convergence eventually.  

 

 

(a) 

 

(b) 

Figure 3-7: Convergence (a) and histogram (b) plot of the sampling points along x, y, z. 

The covariance value (sigma) of the proposal function (mvnpdf) is an important parameter of MH 

algorithm. It affects the behavior of Markov chain in two ways since it defines the range of search. Firstly, 

it affects the acceptance rate of a candidate; secondly, it affects the region of sampling space (Chib & 

Greenberg, 2012). Assume the situation that the sampling process is already come to a convergence. If the 
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moving of Markov chain is too large, the sampling point generated will be very far away from the previous 

value so that the acceptance chance is low. If the search range is too small, then the chain takes more 

times to traverse the data to find qualified density area, thus there will be under-sampled problems. 

The sigma value of proposal distribution (mvnpdf) is determined according to information generated from 

the model. Let the center based voting procedure apply on the object model itself to obtain the voted 

center points of the model. Find the densest area (around the mode point) of the center points of the 

model and calculate the covariance value in three dimensional x, y, z. When the sigma value is properly set, 

the sampling result of the MH algorithm is shown as in figure 3-8. In such a way, the peak can be detected 

and obtained by calculating the mean value of the samples and then define a neighboring area around the 

mean point. 

 

                 (a)                             (b) 

Figure 3-8: (a) Neighboring points around the mode. (b) The Markov chain in points. 

3.7. Strategy of quality measurement 

Not all the sampling results obtained from the MH algorithm are correct maxima, because this method 
not only finds out the corresponding same objects from the point cloud, it also discovers the object parts 

that have similar shape with the input model. In order to select the correct local dense area from all the 
candidates, restrictions and thresholds need to apply to differentiate the sampling results. This process is 

carried out from three aspects: shape, location and quantity of the detected local maxima. 

1. Number of  neighboring center points around the sampling mode 

For those wrong local maxima, their voters have the same entries with the input model, or because 

the algorithm discovers dense area that meet the acceptance criteria in equation 3-6. MH algorithm 

provides the mode point of  these potential local dense areas, as well as the neighboring points 
around the mode. Theoretically, the correct local maximum receives most votes from points of  the 

object, thus make it a local dense area. Correct results are denser than the wrong ones, thus the 
number of  neighboring points around the sampling mode is larger. According to this, by determining 

threshold of  the number of  neighboring center points around the sampling mode, most of  the 

wrong candidates can be eliminated. 

2. Mean height of  neighboring center points around the sampling mode  

Different objects have different location information, e.g. cars are located on the ground and have 

lower mean height value, and lampposts have a larger mean. This kind of  information can also be 
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obtained from the model. Among the detected objects, some have similar part with the model, 
however they are wrongly located in the point cloud data, e.g. a car shape can be contained on the 

wall, and a part of  lamppost shape can be contained within other pole-like shapes. Thus, provided the 

mean height information, some cognitive faults can be avoided. An example is shown in figure 3-9. 

 

Figure 3-9: Wrongly detected points in similar shapes. 

3. Sphericity of  neighboring center points around the sampling mode 

PCA (principle component analysis) is a statistical procedure that reduces the dimension and analysis 
the covariance structure of  a dataset. It is the description of  which direction or where the most the 

data is distributed. The principle components are found by calculating the eigenvalues and 

eigenvectors in pairs (Ringnér, 2008). The eigenvector with the largest eigenvalue along each direction 
represent the largest variation. 

Sphericity is used to describe how jet-like an object shape is (Hanson et al., 1975). Sphericity is an 

eigenvalue-based feature, for 𝜆1 > 𝜆2 > 𝜆3, it is denoted as in (Weinmann, Jutzi, & Mallet, 2014):  

     𝑠𝑝ℎ𝑒𝑟𝑖𝑐𝑖𝑡𝑦 =
 𝜆3

 𝜆1
                                                  (3-7) 

Different local maxima of  object instances have different sphericity property for the neighboring 
points around its density mode, although they are in general all in spherical shapes. We can 

distinguish the correct object local maxima from those wrong candidates use sphericity constraint 

threshold. For example, lampposts can be discriminated from most of  the trees, because normally 
correct candidates have more compact and denser maximum area. So within same neighboring radius, 

there will be a more linear-like distribution of  a lamppost than that of  a tree. Therefore, the 

sphericity value of  sampling points of  trees is bigger than that of  lampposts. The figure 3-10 shows 
the sphericity difference between selected center points around the detected peak of  a tree and 

selected points around the detected peak of  a lamppost. 

 

   (a) Sephericity=0.543                                     (b) Sephericity=0.295 

Figure 3-10: (a) Selected center points of a tree. (b) Selected center points of a lamppost.  
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 IMPLEMENTATION AND RESULTS 4.

4.1. Study area and the dataset 

The MLS dataset used in this research is obtained by TopScan GmbH in December, 2008 using Optech’s 

Lynx Mobile Mapper system. The study area is located in Enschede, east of the Netherlands.  

The raw dataset contains large amount of irrelevant data that add burden to the execution, thus 

simplification of the point cloud data is essential. The dataset used in this research was already been 

filtered out large horizontal planes: the ground. For computing convenience, the dataset is divided into six 
parts of approximately 100 meters along the trajectory (see figure 4-1). 

  

(a) Dataset: part1.                                  (b) Dataset: part2. 

  

(c) Dataset: part3.                                (d) Dataset: part4. 

  

(e) Dataset: part5.                                  (f) Dataset: part6.  

Figure 4-1: Dataset in six parts. 
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4.2. Model gengeration 

As the method uses a model-based approach, instance of each object type need to be extracted from the 
point cloud first, and stored for further model representation process. Model instances are extracted from 

the dataset using PCM, this step is done by simply cut out the model from the dataset and saved into a 

separate file. While selecting the model, the rule is to select an object as well -shaped as possible, so that 
the model can provide sufficient and accurate information for the later sampling and recognition stage. 

The reference point in each model is chosen as the center point of the model. Totally, 6 road furniture 

models were extracted from the point cloud as in figure 4-2. 

     

                   (a) Car model.                                     (b) Lamppost model 1.                     (c) Taffic light model 1 

      

               (d) Lamppost model 2.                 (e) Traffic light model 2.                       (f) Traffic light model 3.   

Figure 4-2: Extract object models. 

4.3. Center based voting 

4.3.1. Surface normal vectors and R table 

3D GHT method uses r vectors to describe the displacement information between the center point (as the 
reference point) and edge points of the object. The r vector is defined by two orientation angle of the 

normal vector as well as the length r. The normal vector can be obtained by triangulating the surface of 

the object or fitting planar surface to a small set of points within the neighborhood (Khoshelham, 2007) . 
In this research, normal vector is calculated in CloudCompare using triangulation method. In 

CloudCompare, the point cloud data is structured with Octree, and default orientation is around z axis. 
The resulting file contains the original x, y, z coordinates as well as the components of the normal vector, 

namely 𝑛𝑥 , 𝑛𝑦 , 𝑛𝑧 . Thus the two angles of the normal can be calculated as: 
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                     {

𝛼 = arccos(𝑛𝑧)

𝛽 = arccos (
 𝑛𝑥

√ 𝑛𝑥
2+ 𝑛𝑦

2
)                                                  (4-1) 

For each point in the point cloud, the normal vector indexed the corresponding location in the 2D R table. 
Having obtained the two angles and coordinates of center point of the model, we can recalculate the 

object points according to formula 3-2. The 3D GHT can represent the instance model correctly and 
accurately (illustrated in figure 4-3, normal vectors in red).  

       

(a) Car model with normal vectors.  (b) Lamppost model 1 with normal vectors.  (c) Traffic light model with normal 
vectors. 

        

(d) Lamppost model 2 with normal vectors. (e) Traffic light model 2 with normal vectors. (f) Traffic light model 3 
with normal vectors. 

Figure 4-3: Object models reconstructed from R-table with the normal vectors. 

4.3.2. Local maxima property of the object model 

According to the voting schema, all the points in the point cloud vote for their possible centers and we 
can obtain a density based distribution of center data which contains a large number of local maxima 

candidates. Some peaks are easy to differentiate according to their different properties, while others are 

hard to recognize and distinguish because they are similar with the correct maxima, especially for whose 
points that in the same shape with the object model. In order to select the correct local maxima from the 

generated center points, the information about property of the local maxima need to be extracted from 
the model, and by specifying the properties, correct local maxima can be identified from all the potential 

candidates. 
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Table 1: Information generated from the model. 

Local maxima Covariance Mean height (m) Sphericity 

Lamppost 1 [0.30, 0.70, 4.00] 4.75 0.242 

Lamppost 2 [0.06, 0.01, 4.00] 5.20 0.423 

Car [0.70, 0.30, 0.05] 0.72 0.257 

Traffic light 1 [5.10, 10.50, 2.30] 5.15 0.473 

Traffic light 2 [0.66, 1.43, 0.75] 2.50 0.285 

Traffic light 3 [3.60, 4.20, 2.30] 4.50 0.373 

Table 1 shows the local maximum information generated from the model. The information guides the 

choice on the threshold range of the parameters for restricting properties of the local maxima. The 
covariance value are used as the sigma of the proposal distribution, ensuring that the Markov chain can 

take sufficient big steps to converge from a far point to the correct center point; the height value is the 

mean value of object objects since we take the mode point of the sampling results as the reference point; 
sphericity value describes the compactness and distribution variation of the neighboring points around the 

sampling mode. The information value is obtained by applying the center based voting process to the 
model itself and estimating the local maximum of the voted center points. For 10 times acceptable 

estimation we calculate its mean value of the three property information and take it as the reference 

information as shown in table 1. 

4.4. Local density detection 

4.4.1. Metropolis Hastings algorithm 

In the detection stage, MH algorithm is applied to find peaks from the voted center points. MH algorithm 

performs a Markov chain to the density distributed center points and evaluates the probability at a given 

point from the target distribution. The function to evaluate the probability is shown in formula 4-2. For a 

given point (e.g. the current chain position), we calculate its number (𝑚) of neighboring points. We also 

define the constant parameter 𝑘.  

  𝑝 = 𝑒(−𝑘2 /𝑚2 )                                                                    (4-2) 

𝑝 is the function to evaluate (calculate the probability at a given point) the target distribution composed of 
the generated center points, k is a constant specifying at least how many points within a neighboring 

radius around the correct mode, and 𝑚 is the number of neighboring points at the given point. If the 

chain is at a very dense point then 𝑚 is large and the probability is close to 1. If the chain is at a low 
density point then n is small and the probability is close to 0, as illustrated in figure 4-4. 
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Figure 4-4: Probability function for evaluating the target distribution. 

The outcome of the MH algorithm gives a set of sampling points; the mode (peak) is the mean value of 

the sampling points. Around the mode, we select a set of neighboring point as the local maximum area 
and further identify them with the three property constraints.  

The neighboring area is defined as a cube, for the purpose of fast computing process; the radius of the 

cube is 0.3m, for the purpose that it fits the smallest local maxima, e.g. a lamppost (see figure 3-8). The 

constant parameter 𝑘 is different according to different input model, and it is determined based on pre-
analyses and well-tried experiments on the correct local maxima of the object model. 

4.4.2. Recognition 

Having obtain the candidate local maxima, according to information generated from the object model, the 

property constrains of the local maxima is adopted. Considering the variations of the sampling results, the 
parameter is not a threshold value; instead, it is a certain value range in order to identify as more 

candidates as possible.  

The θ angle spacing is specified according to the pose of existed objects (through a rough inspection) in 
the point cloud dataset. The number (of neighboring points) range is decided by collecting 10 acceptable 

candidates with MH algorithm on a simple test dataset (containing the target objects), and taking the 
maximum and minimum value as the range. The sphericity value range is also determined by trying the 

MH algorithm on the test dataset and optimizes it according to the information in table 1. The sigma value 
and mean height value range is decided by borrowing the covariance information from table 1. But for 

some objects like lamppost, they have a big covariance value of z, which influence the moving range of 

the chain as discussed in section 3.6.2, so the strategy is to reduce the factor of order of the sigma value in 
table 1. The recognition process ends when no more satisfied candidates can be found.  
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Table 2: Parameters defined for each kind of object instance. 

Input 

models 

Radius 
and k 

Sigma of proposal 
distribution  

Number of 
neighboring 
center points 

Sphericity of 
neighboring center 

points 

Mean height of 
neighboring 
center points 

(m) 

θ 
spacing 

Car_1 [0.3, 
1000] 

[0.70, 0.30, 0.05] 3000 ≤ n
≤ 20000 

0.15 ≤ s ≤ 0.55 0 ≤ h ≤ 1.3 90 

Car_2 [0.3, 
800] 

[0.70, 0.30, 0.05] 400 ≤ n
≤ 4000 

0.40 ≤ s ≤ 0.80 0 ≤ h ≤ 1.3 90 

Traffic 
light 1 

[0.3, 
7000] 

[0.05, 0.10, 0.02] 6000 ≤ n
≤ 30000 

0.35 ≤ s ≤ 0.85 4.5 ≤ h ≤ 6.5 180 

Traffic 
light 2 

[0.3, 
1000] 

[0.66, 1.43, 0.75] 200 ≤ n
≤ 800 

0.20 ≤ s ≤ 0.50  2.0 ≤ h ≤ 3.0 90 

Traffic 
light 3 

[0.3, 
1000] 

[0.35, 0.42, 0.23] 1000 ≤ n
≤ 3000 

0.25 ≤ s ≤ 0.45  3.5 ≤ h ≤ 5.5 0 

Lamppost 
1 

[0.3, 
1000] 

[0.03, 0.07, 0.40] 500 ≤ n
≤ 3000 

0.20 ≤ s ≤ 0.40  4.0 ≤ ℎ ≤ 7.0 180 

Lamppost 
2 

[0.3, 
1200] 

[0.006, 0.001, 0.40] 1000 ≤ n
≤ 5000 

0.30 ≤ s ≤ 0.60 4.5 ≤ h ≤ 7.5 180 

* Car_2 is cars that are badly shaped because of the scanning angle of MLS. 

4.5. Recognition results 

Recognized objects are highlighted in each of the 6 dataset from figure 4-5 to figure 4-10. 
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Figure 4-5: Recognition results of dataset part 1. 

 

Figure 4-6: Recognition results of dataset part 2. 
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Figure 4-7: Recognition results of dataset part 3. 

 

Figure 4-8: Recognition results of dataset part 4. 
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Figure 4-9: Recognition results of dataset part 5. 

 

Figure 4-10: Recognition results of dataset part 6. 
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 EVALUATION AND DISCUSSION 5.

5.1. Evaluation of the results 

5.1.1. Precision, recall and overall accuracy 

The evaluation of the results is implemented at the instance level. The reference dataset has already been 

labelled. The visual check of the reference dataset to evaluate the recognition results and the photograph 
of the ground truth are also important. The accuracy is defined in terms with precision (positive predictive 

value) and recall (sensitivity). The True Positives (TP), False Positives (FP), True Negatives (TN) and 

False negatives (FN) are defined in table 3 (Olson & Dursun Delen, 2008): 

Table 3: Descriptions of the confusion matrix. 

 Reference positive Reference negative 

Results 

positive 

TP: The number of  objects found 

both in the recognized results and the 
reference data (correct). 

FP: The recognized instances are not 

the expected objects in the reference 
data (unexpected). 

Results 
negative 

FN: The number of  objects in the 
reference data but not in the 

recognized results (missed). 

 

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

Accuracy =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 

Precision and recall are also considered as the correctness and completeness of results. Precision is the 
fraction of the retrieved instances that are correctly relevant to objects in the reference data. Recall is the 

fraction of relevant instances that are retrieved by the method. Accuracy provides the overall quality of the 

results in recognizing corresponding objects from the reference data. 

Table 4: P-R evaluation and the overall accuracy. 

Objects TP FP FN Precision Recall Accuracy 

Car 96 20 28 82.76% 77.42% 62.34% 

Lamppost 1 24 38 3 38.71% 88.89% 36.92% 

Lamppost 2 2 8 0 20% 100% 20% 

Traffic light 1 4 3 0 57.14% 100% 57.14% 

Traffic light 2 2 2 0 50% 100% 50% 

Traffic light 3 1 0 0 100% 100% 100% 

The P-R evaluation does not contain TN. TN values does not exist in the error analysis of the recognized 
results because in the recognition method, the accuracy gives the measure of how good or bad the 
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detected quality is, and there is only one situation of negative results, which is the missing objects that are 
not been found by the method. 

The evaluation of the recognized results is also carried out using the confusion matrix.  

Table 5: Confusion matrix of the recognized results. 

Objects Car Lamppost 

1 

Lamppost 

2 

Traffic 

light 1 

Traffic 

light 2 

Traffic 

light 3 

Others Recognized 

Car 96 0 0 0 0 0 20 116 

Lamppost 

1 

0 24 1 0 0 0 37 63 

Lamppost 
2 

0 2 2 0 0 0 6 10 

Traffic 
light 1 

0 0 0 4 0 0 3 7 

Traffic 
light 2 

0 0 0 0 2 0 2 4 

Traffic 
light 3 

0 0 0 0 0 1 0 1 

Missed 28 3 0 0 0 0   

Total 124 27 3 4 2 1   

Accuracy 77.42% 88.89% 66.67% 100% 100% 100%   

Table 4 shows that the method recognized not only the correct instances but also detected many false 

positives (the similar shapes). Table 5 shows that there are overlapping recognitions between lamppost 

type 1 and lamppost type 2. 

5.1.2. Computational complexity 

In this research the dominant computational burden is the peak seeking process, since Markov chain runs 

in parallel in order to find all the satisfied candidates.  

In the 3D GHT method, the computational complexity of casting votes to the accumulator bins is a main 
problem to tackle with, when the voting space is expanded to 7 dimensions. Thus, cost-reduction strategy 

such as randomized, hierarchical or adaptive voting schemas are recommended to refine the execution 

process of the method (Khoshelham, 2007). In this modified method, the discrete voting process to find 
peaks is replaced by the MH algorithm. In implementation, the computational complexity of voting 

process in the continuous Hough space is 𝑂(𝑀 ∗ 𝑁), where M  is the number of points of the input point 

cloud dataset is and N is θ angle intervals along z axis. In the MH algorithm, for each iteration time, the 
target distribution is evaluated of the local density at the given point, so the computational cost of 

sampling process is 𝑂(𝑀′ ∗ 𝑖), where 𝑀′  is the number of the generated center points (target distribution) 

and 𝑖 is the sampling steps of the MH algorithm. In addition, the efficiency improvement strategies are 
carried out as follows in two aspects:  

1. Parallel computing 
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Another computational reduction strategy on execution time is to make use of  the parallel running. 
In Matlab, parallel computing can improve the efficiency by 1.5 times in general, and the more input 

the points, the more obvious the efficiency improvement can be seen. For each input dataset, the 

method uses 4 cores for computing and runs 3 Markov chains at the same time. Subsequently, the 
wrong candidates and the corresponding center points are removed from the computing process for 

the next time to prevent duplicate detection. Thus, as the loop time increases, the number of  input 

center points will decrease, and thus the execution time for each loop will decrease.  

2. Partitioning the point cloud dataset 

The partitioning the raw point cloud dataset into overlapping subparts ensures that during the 
execution process, there will not come across memory overflow problems. However, it may not be a 

problem because the occurrence of  memory overflow mainly depends on the hardware and software 

in use.  

5.2. Discussions 

5.2.1. Discussions of the 3D GHT method 

1. The method cannot work well on objects whose normal vectors are not well distributed, because 

it makes the local maxima scattered instead of  compactly distributed. For example, a road sign in 

figure 5-1, the normals are not well defined because the point spacing relative to the object 
surface area is not small enough. Here the object surface area (the pole part) is very small so the 

normals are very noisy. This leads to a bad center points and the peak of  which are hard to be 

detect by the MH algorithm. 

 

Figure 5-1: Normal vectors and the voted center points of a road sign. 

2. The method uses a set of  mathematical parameters to define an explicit object. The method is 

very robust to occlusions as shown in figure 5-2: two cars are blocked of  some parts by the 

motorcycles and the method successfully recognized and separated them; the method also 
successfully discovered cars that lie in the car garage under the building. However in MLS data, 

most of  the roadside objects cannot be integrally scanned and deformation is inevitable, e.g. cars 

that are scanned from the front are badly detected by the method.  
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Figure 5-2: The robustness to occlusions. 

3. The 2D R table is denoted by the two orientation angles, thus the bin size of  the angle spacing 

needs to be decided. Small angle spacing leads to more r vectors in a bin and vice versa. Thus the 

number of  generated center points is different. However, a rough design of  the R table (but 
within the certain range) doesn’t influence a lot on the general distinguished property of  each 

object type. In implementation, the angle bin is recommended to be between 10 to 20 degrees.  

5.2.2. Discussions of the Metropolis Hasting parameters 

1. The performance of finding the correct peak in a density distribution depends on the selection of 

parameters of MH algorithm and the threshold range of the property for the candidates. In this 

method we choose mvnpdf as the proposal distribution because it is appropriate and the simplest.  

A proper setting on the A-R criteria also guarantees good quality of candidates. Some properties 

of the MH algorithm is remarked in (Andrieu et al., 2003) and (Chib & Greenberg, 2012): Firstly, 

the MH algorithm requires a careful design of the proposal distribution. Secondly, the normalising 

of the target distribution is not required. Thirdly, although the pseudo-code uses only one Markov 

chain, several chains can be applied independently in parallel.  

2. The idea of MCMC sampling is that the approximation of target distribution process will come to 

convergence in the end regardless of initial starting point. Sufficient iteration times make sure that 

the estimation is unbiased. In this research, iteration times around 3000 – 4000 is enough. Small 

iteration times cause under-estimation and biased results (sampling process stops before the 

convergence), while large iteration times cause duplications and make the process inefficient. 

Good convergence process is shown as in figure 5-3(a), the process starts with a random point, 

and all the sampling points are systematically distributed around the mode point. For the bad 

convergence process, sampling points jump across the invariant distribution as shown in figure 5-

3(b), thus the detected local maxima is incorrect. 
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(a) 

 

(b) 

Figure 5-3: Good (a) and bad (b) convergence process. 

3. As for the efficiency of  the MH algorithm, the computational complexity of  MH algorithm in 

high dimensions is discussed in the research of  Beskos & Stuart (2008). Given target distribution 

𝑝(x) in dimension space d, the computational complexity is O(d), which lies at the number of  

steps to run the Markov chain to explore the 𝑝𝑑(𝑥). In general, the computational complexity of  
MH algorithm depends on the optimization of  proposal parameters, the probability. It is possible 

for the number of  MCMC sampling steps to achieve O(1) given the developed random walk of  
Markov chain in (Pillai, Stuart, & Thiery, 2011). 

5.2.3. Discussions of the local maxima property 

1. The three properties of local maxima for each object type are decided from three aspects: shape, 

location and quantity, respectively the sphericity, mean height value and number of neighboring 

points around the sampling mode. The determination of the threshold range is important to the 

performance of the method. In this research, the priority is set as sphericity < height < number. 

Number is considered as the most prioritized constraint because it ensures not missing any 

possible correct candidates. This can be regarded as the process of generating hypothesis. 

Subsequently, the mean height threshold makes sure that wrongly located candidates are 

eliminated. Sphericity is the least prioritized criterion; it helps separate the rest wrong candidates 

from the correct ones, but still cannot distinguish similar local maxima.  

2. During implementation, bias of the local maxima is inevitable. If the detected local maximum is 

biased, then not all points (voters) of the object can be detected. In another word, the method 

only catches the voters that cast votes for the local maximum area. However, a small bias isn’t 

against the objective of the research to recognize and detect object from the point cloud, because 

the detected points still represent the main part of the object and as the detected object is 

highlighted, it is easy to recognize the object shape form the dataset. 
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3. The method is less effective to distinguish different types of objects when their local maxima 

properties are very similar. The method cannot separate them although two different models are 

used as input, the recognition results will be highly overlapped. For objects like big vehicles (e.g. 

trucks in figure 5-4), they are bigger sized than small cars and they only have small difference of 

mean height difference with respect to the local maxima, so they are difficult to be separated from 

small vehicles when the constraint mainly depends on the height difference. There are also 

problems to distinguish static cars from the moving cars as in figure 5-5, because the moving cars 

have strongly varied center location. 

 

Figure 5-4: Vehicles of different sizes. 

 

Figure 5-5: Problem situations of recognizing different car types. 

For two kinds of lamppost object that only have slight difference in height and the upper part (see 

figure 5-6), the method cannot separate them because their local maxima properties are highly 

overlapped. So the method regards these two kinds of instances as one lamppost type. However, 

due to the slight difference still exist, the occurrence of biased local maxima increase and there 

can overlapping detection (one object being detected by two input models).  

      

Figure 5-6: Three instances of lamppost with similar shapes and local maxima property. 

5.2.4. Discussions of the recognition results 

1. The method is based on center based voting schema to find peaks of  the voters, and all 
candidates that satisfy the criteria are regarded as the correct local maxima. Thus the results of  
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the method not only give correct objects but also recognize points from other objects that have 
similar shapes with the input model. For example in figure 5-7, it is inevitable that thin trees are 

recognized as lamppost, and some parts of  the wall influences the results of  car recognition. 

     

Figure 5-7: Recognized true positives and false positives. 

2. If  the detected local maxima are biased, the corresponding detected voters are inaccurate. This 

leads to a bad recognized shape of  the object. Another situation is that a biased local maxima 

detection result not due to bad performance of  the algorithm, but because of  the bad shape of  
the objects in point clouds (e.g. in figure 5-8). 

            

(a)    (b) 

Figure 5-8: (a) Badly detected objects because of biased detected local maxima. (b) Badly shaped objects in point 
clouds. 

3. In two circumstances the method fails to find the target object. In the first situation, the method 
cannot work well on object that is very badly shaped like figure 5-9. For object that has too few 

points, for example, the road sign, the spatial property of  its local maxima is hard to define and 

distinguished from others; Secondly, for objects that are badly scanned as shown in figure 5-8(b), 
its local maxima information is not integral thus cannot be recognized by the method. 

 

Figure 5-9: Badly shaped object. 

4. From table 4 we can see that most objects have been correctly recognized by the method and only 
few target objects are missed. The method generates few wrong results (true negatives) in general, 

which means the method can successfully separate different object categories. However, the 

drawback is that the method generates many unexpected objects (false positives), because they 
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share similar shapes with the input object model. False positives of  car mainly come from 
building walls, false positives of  lampposts mainly come from thin trees and building walls. True 

negatives of  lampposts are mainly road signs. False negatives of  cars are high because that some 

of  car objects are not well scanned thus the method missed them. Some extreme high or low 
accuracy results remain discussable: firstly of  all, there are too few object instances exist in the 

dataset, so although the method managed to recognize all the matched objects, it is still hard to 

judge whether it can be effective enough if  more instances exist; secondly, to save computational 
cost, the method is only applied to dataset part 2 to detect traffic lights. In table 5, there are 

overlapping recognition results between lamppost type 1 and lamppost type 2 because their local 
maxima property is difficult to be completely distinguished. 

5. Some models like traffic lights and lamppost type 2 are not implemented on the whole dataset; 
they are only implemented in their existing sub-datasets because of  their limited number in the 

whole dataset. Because of  too few quantities of  these objects in the dataset, although the method 
has successfully detected all the objects from the dataset, the number of  false positives is more 

than the true positives.  
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 CONCLUSIONS AND RECOMMENDATIONS 6.

6.1. Conclusions 

In conclusion, the method is proved to be feasible and effective to achieve the research objectives 

proposed at the beginning. The developed pipeline of the method can be concluded into three parts. 
Firstly, select appropriate shape descriptors to the object and generate center points for all points; 

secondly, apply peak detection method to identify local maxima candidates; thirdly, distinguish the correct 

peaks from all the possible candidates and relate them to the voters.  

1. The developed method has improved efficiency compared with the 3D GHT method. 3D GHT 

is difficult to be implemented due to its high computational cost, this research successfully 
implement the modified method and achieved fine results. The method turns the discrete Hough 

voting into a continuous space (not all the parameters are in the continuous space, the θ angle 
spacing is in the discrete space), and is capable of  finding multiple local maxima per peak 

detection process. Thus the computational complexity is greatly reduced. Efficiency also been 

improved by parallel computing and dividing the dataset into smaller subparts.  

2. The method is robust to occlusion in MLS data. Given a proper instance model, the method can 

recognize and detect objects that in same shape with the input model regardless of  partial 
occlusion. However, deformation problem cannot be fully solved since the method is limited by 

density variation of  objects in point cloud data. Since the method follows the center based voting 

schema, it cannot perform well on objects with badly scanned shapes or objects with strongly 
varying centers. 

3. The method does not require large training data as input, for each object type, only a good 

explicit model is required. The recognition process is automatic and the program stops until no 
more satisfied candidates exist. However, the method still requires manually extraction of  object 

models from the data and the local maxima properties need to be specified beforehand for each 
type of  object. 

4. The method fails to distinguish objects when they have very similar local maxima properties, and 

the recognition process is also influenced by false candidates when they are more dominant than 
the correct one within a searching area. The method is less dependent on segmentation, but more 

dependent on input parameters of  the parameters.   

5. The dataset in use contains few object types, but in reality a huge dataset may contain a large 
number of  different instance types. In that case, for each object type a model is needed to be 

extracted from the dataset, and specification of  the local maxima property of  each model  will 
make the work more complex and less efficient.  

6. In general, the recognition results are influenced by large building walls and thin trees. The 

recognition results of  car are influenced by building walls; the recognition results of  lampposts 
are be influenced by thin trees and building facades; the recognition results of  traffic lights are 

also influenced by parts of  the building. Because of  few numbers of  traffic lights in the dataset, 

the recognition process is relatively slow since the method keeps rejecting candidates until it finds 
the correct local maxima. 

7. Recall results of all the objects in the dataset are high in general, which means the method reaches 

high completeness. Precision result is because of many false positives. There are also overlapping 

detections between objects that with similar shapes, e.g. lamppost type 1 and lamppost type 2. In 

total, 129 out of 160 of the target objects have been successfully detected. 

6.2. Answers to the research questions 

1. Among the existing object detection methods in 3D point cloud, which algorithms can be suitably 

applied or extended to recognize roadside instances in MLS data? 
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Model based approaches use CAD models, normal vectors in 3D GHT method (Khoshelham, 
2007) and template set to represent an object and they are also robust to partial occlusion 

problems. Other existing descriptors to achieve this goad are spin images used in ISM method 

(Velizhev et al., 2012) and shape descriptors like 3D SURF (Knopp et al., 2010) etc. The research 
proposed a model based approach for object recognition in point clouds. By model based 

approach, it means the method uses an explicit object model as input and extracts its global 

property of  a whole object instead of  using local property of  the data point. The justification on 
3D GHT has been given in section 2.6 and section 3.1.  

2. What are the limitations that influence the performance of  the selected method, and how to 
optimize it or reduce the drawbacks on the selected method? 

The selected 3D GHT method has the drawback that it requires large computational cost, yet it 

has not been taken into implementation in the real 3D point cloud dataset. Thus the research 
reduces the computational cost by replacing peak detection phase with a continuous peak 

searching method. The efficiency also been improved by partitioning the dataset and by using 

parallel computing. 

3. How to obtain and store the object models on condition that a model-based approach is used in 

this research? 

The object models are extracted manually from the dataset. The store of  the object models is by 

constructing an R table. Generally speaking, the advantage is that manually pick a well-shaped and 

scanned object model ensures that the local maxima property is sufficient and accurate,  and one 
can decide which object model is most the suitable depends on the quality of  the obtained point 

cloud dataset. Because it is an explicit representation which allows exact reconstruction of  the 
model from the R-table. Other model representations, e.g. spin images, are not explicit but 

implicit. 

4. How well or badly does the method perform in the context of  object instances detection in MLS 

data? 

The method is considered feasible and efficient; it reduces computational complexity compared 
with the original 3D GHT. The stochastic sampling method is reliable in terms of  recognition of  

cars and lamppost type 1; however, it remains discussable of  the extreme recognition results in 
the contest of  lamppost type 2 and traffic lights type 3, a summary of  the recognition 

performance is given in section 6.1. All in all, the method achieves the overall objective of  the 

research; it improves the efficiency, and reaches reasonable accuracy. 

5. What are the factors that influence the performance of  the algorithm used in this research? 

The factors that influence the method can be considered from two aspects, the raw dataset and 

the method itself. Firstly, the method still has a high demand on the computational burden; a raw 
input point cloud dataset that contains many false hypotheses will decrease the efficiency of  the 

method. Secondly, the method is sensitive to the parameters of  MH algorithm and the defined 
properties of  the local maxima. Thus, the performance may differ if  the parameters change. 

6.3. Recommendations 

Three procedures are important to the method, shape representation, center based voting and peak 

detection. These procedures can be tried out with different approaches. In order to achieve higher 
accuracy results, several aspects of the method can be modified in future.  

1. Dataset pre-processing 

Partitioning the point cloud into overlapping subparts is a way of reducing computational burden. 

However, other pre-processing of the dataset can also be applied. Although the method proposed 

model-based approach, which initially does not require any segmentation process, it is 

recommended that apply a ‘hypotheses generation’ process before the recognition phase as in the 



RECOGNITION OF OBJECT INSTANCES IN MOBILE LASER SCANNING DATA 

45 

method by Velizhev et al. (2012). Because unnecessary part or segments will lead to large number 

of possible candidates and this adds many extra computational cost. 

2. Model representation 

Normal vector computing is an important part as it serves as the index during the voting process. 

In this research the normal vectors are computed with CloudCompare tool. Other approaches to 

compute normal vectors can be tried out and different parameters of neighboring radius can be 

adopted when triangulating the object surface. Also, a complete scanned object model can help 

further improve the recognition accuracy, thus it is recommended to use complete object instance 

as model to guarantee more accurate learning information for the voting and recognition process.  

3. Optimization of the MH algorithm 

In the recognition phase, or the peak seeking phase, MH algorithm has been applied together with 

three specified properties of the found peaks. MH algorithm is an efficient approach to detect 

peaks from a density distribution. It mimics arbitrary multivariate distribution based on the 

proposal distribution. The adopted algorithm in this research is based on the basic principle of the 

MH algorithm. The mvnpdf is used as the proposal function; however, more accurate and 

complex function can be proposed such Gaussian distribution.  Besides, many modifications to 

the methods have been proposed since it is regarded as one of the most significant algorithms in 

20th century. Algorithms such as Sequential Monte Carlo, Adaptive MCMC, and Hybrid Monte 

Carlo algorithms etc. (Andrieu et al., 2003) are expected to reach better performance. 

4. Optimization of  peak detection 

 The definition of  the sampling mode with its neighboring area is defined as a cube for the 
purpose to fast the computing process in Matlab. However, it is recommended to define a sphere 

instead of  a cube because it fits the local maxima distribution better, and by doing this, it is 
possible that the sphericity property can be no longer necessary. Besides, k nearest neighborhood 

(KNN) method can also be adopted. After obtaining the mode point, search k nearest 
neighboring points around the mode, thus the number of  sampling points’ property can be 

unnecessary. 

 Except for using MH algorithm, other methods that with the ability to detect mode area in a 
density distribution are also recommended. Among which, density-based clustering algorithms 

such as Mean Shift (Comaniciu & Meer, 2002), and KNN method are helpful. However, the 
drawbacks of  applying these methods are that they cause more computation burden compared 

with MH algorithm. 

 In order to make the local maxima more distinguishable among the candidates, a probabilistic 

voting schema is recommended to adopt. Instead of  letting all the voters cast equal votes, the 
method can use a probabilistic voting procedure as in (Velizhev et al., 2012), assign different 

weights to the votes according to the importance of  the feature property. 
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APPENDIX 

Table 6: Information of dataset subparts. 

Sub datasets Number of  points Length (m) Width (m) 

Dataset part 1 320999 99.50 88.03 

Dataset part 2 240447 123.92 92.41 

Dataset part 3 384098 108.43 78.19 

Dataset part 4 282748 94.16 72.63 

Dataset part 5 530861 84.84 64.38 

Dataset part 6 562495 125.53 84.56 

 

 

Figure 6-1: Mvnpdf distribution of car model. 
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Figure 6-2: Mvnpdf distribution of lamppost type 1. 

 

Figure 6-3: Mvnpdf distribution of lamppost type 2. 

 

Figure 6-4: Mvnpdf distribution of traffic light type 1. 
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Figure 6-5: Mvnpdf distribution of traffic light type 2. 

 

Figure 6-6: Mvnpdf distribution of traffic light type 3. 
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