

COMPRESSION AND ENCRYPTION FOR

SATELLITE IMAGES:

A COMPARISON BETWEEN SQUEEZE

CIPHER AND SPATIAL SIMULATIONS

GETACHEW MEHABIE MULUALEM

FEBRUARY, 2015

SUPERVISORS:

Prof. Dr. Ir. Alfred Stein

Dr. Ir. Rolf A.de By

Thesis submitted to the Faculty of Geo-Information Science and Earth

Observation of the University of Twente in partial fulfilment of the

requirements for the degree of Master of Science in Geo-information Science

and Earth Observation.

Specialization: Geoinformatics

SUPERVISORS:

Prof. Dr. Ir. Alfred Stein

Dr. Ir. Rolf A.de By

THESIS ASSESSMENT BOARD:

Prof.dr.ir. M.G. Vosselman (Chair)

Dr. A. Peter (External Examiner, University of Twente - EWI)

COMPRESSION AND ENCRYPTION

FOR SATELLITE IMAGES:

A COMPARISON BETWEEN SQUEEZE

CIPHER AND SPATIAL SIMULATIONS

GETACHEW MEHABIE MULAUELM

ENSCHEDE, THE NETHERLANDS, FEBRUARY, 2015

DISCLAIMER

This document describes work undertaken as part of a programme of study at the Faculty of Geo-Information Science and

Earth Observation of the University of Twente. All views and opinions expressed therein remain the sole responsibility of the

author, and do not necessarily represent those of the Faculty.

i

ABSTRACT

For solving network bandwidth, and security problems, image compression, and encryption technologies

need to be combined. This paper presents two techniques for real-time compression and encryption aimed

at satellite images that are performed simultaneously.

The paper analyzes a modification of the LZW dictionary-based compression algorithm that is adapted to

provide security, this algorithm known as the squeeze cipher algorithm is implemented for satellite images.

The proposed method can protect and compress satellite images while keeping the contents of the image

intact.

Spatial simulations are investigated as an alternative approach to the existing image compression

algorithms. Spatial simulation models were established to predict the DN values of satellite images from

neighbor pixels. To compare the simulated and actual values several statistical analysis tests such as

variogram analysis, RMSE and MSE tests are performed between the restored and the original image.

Advanced encryption standard (AES) is then added as a post-processing on top of the proposed

compression algorithm to provide security for communications. The performances of image compression

and encryption methods employed in this paper are compared on the basis of the compression ratio,

elapsed time and differences between the input image and restored image.

ii

ACKNOWLEDGEMENTS

First and above all, I praise God, the Almighty for providing me this opportunity and granting me the

capability to proceed successfully.

I offer my sincerest gratitude to my first supervisor Prof. Dr. Ir. Alfred Stein, who has supported me

throughout my thesis. Without his encouragement and patient instruction, this thesis would not have been

completed.

I would like to express appreciation to my second supervisor Dr. Ir. Rolf A.de By, for constructive

comments and suggestions that have been invaluable to this work to take its present shape.

I am also grateful to Dr. Andreas Peter for the in-depth discussions, suggestions, critical and useful

comments. I remain grateful to him for he helped me find the path to the completion of this work.

I would especially like to thank Bas Retsios, Claudio Piccinini and Getachew Feleke for providing me

technical support during the thesis work.

I thank my parents; they have always loved me and supported my every choice. I also like to thank all my

friends and ITC HABESHA communities for the great joys and happiness that make our stay in

Netherlands enjoyable and full of memories.

iii

TABLE OF CONTENTS

List of Figures………………………………………………………………………………………...…iv

List of Tables……………………………………………………………………………………………..v

1. INTRODUCTION .. 7

1.1. Motivation and problem statement ..7

1.2. Research identification ...7

1.2.1. Research objectives ... 8

1.2.2. Research questions .. 8

1.2.3. Innovation aimed at .. 8

1.3. Method adopted...9

1.4. Overview of the research ...9

2. LITERATURE REVIEW .. 11

2.1. Image compression .. 11

2.1.1. Dictionary-based methods .. 11

2.1.2. Geostatistics-based methods .. 12

2.2. Image encryption .. 12

2.3. Image compression and encryption methods ... 13

3. MATERIAL AND METHODS... 14

3.1. Study area ... 14

3.2. LZW compression .. 14

3.3. Basic cryptography ... 19

3.4. Squeeze cipher... 20

3.5. Geostatistics .. 23

3.5.1. Variogram and kriging ... 23

3.6. Geostatistical simulation ... 24

3.7. Sequential Gaussian Simulation (SGS) ... 25

3.8. Geostatistical simulation validation ... 27

3.9. Advanced Encryption Standard (AES) ... 27

3.9.1. AES CTR mode on OpenSSL ... 29

4. IMPLEMTATIONS AND RESULTS .. 30

4.1. LZW outputs ... 30

4.2. Squeeze cipher outputs .. 32

4.3. Geostatistical simulations results ... 34

4.3.1. Dataset analysis... 35

4.4. Encryption of the random samples ... 38

4.5. Realization from Sequential Gaussian Simulations .. 38

4.6. Comparison based on compression ratio and speed.. 41

5. Discussion ... 42

6. CONCLUSION AND RECOMMENDATIONS ... 44

6.1. Conclusions ... 44

6.2. Recommendations .. 45

List of References…………………………………………………………………………………….…47

APPENDIX A………………………………………………………………………………………….52

APPENDIX B………………………………………………………………………………………….54

APPENDIX C………………………………………………………………………………………….56

iv

LIST OF FIGURES

1.1: Image compression and encryption...…..8

1.2: Flow chart showing the steps used by both methods..…..............10

1.3: Study area..…..14

1.4: Encryption and decryption procedures……...20

1.5: The construction of an experimental variogram………………………………………………...…24

1.6: Flow chart of sequential Gaussian simulation in two dimensions………………………….…….26

1.7: AES-128 encryption process…..…………………………………..………………………….….….28

1.8: AES encryption combined with spatial compression…….. ………..………………………….…….29

1.9: Original image and its corresponding ASCII text file ..…….……………………………………….30

1.10: Histogram match of the original and decompressed image …….……………………………….31

1.11: File comparisons using Altova DiffDog software …….………………………………………….31

1.12: Experimental results of squeeze cipher encrypted and compressed image…….….………..……….32

1.13: Distribution of adjacent pixels………………………………...……………………….…………..33

1:14 Variogram fit of the original and squeeze encoded image ...……..…….……………………………34
1.15: The study area and ten percent of the randomly selected pixels………………...………………….34

1.16: Scatter plots of data…………………………………………..………………...………………….35

1.17: Variogram computed for the pixel values (DN) without a trend ...……………...………………….35

1.18: Realizations generated from kriging and conditional simulation …………..………...……………..36

1.19: Histograms plots for kriging and conditional simulation ………….…………………………….....37

1.20: Spatial distribution of errors in cross-validation as represented by a color plot of the errors ..……..37

1.21: Scatter plot computed for the kriged vs. original and simulated vs. original values………………....37

1.22: Plots of the random samples and output of AES encryption ………….……………...…………....38

1.23: Conditional simulations and difference map for thirty and fifty percent. …………………………..39

1.24: Study area, simulation, the difference image, histogram, and normal qq-plot………….. ………….40

1.25: Compression ratio for the squeeze and geostatistics scheme ………….. …………...…..…...….......41

1.26: Time elapsed for the squeeze and geostatistics scheme …………….………….. …………..............42

v

LIST OF TABLES

1: Initial LZW dictionary………………………………………………….………………………..…...17

2: LZW compression table ………………………. ……………………….……………………............18

3: LZW decompression table ……………………. ……………………….…………………….............19

4: Initial squeeze dictionary………………………. ………………………………..……………….......22

5: Squeeze dictionary after first iteration ………………………. …………..……………………...........22

6: Squeeze dictionary after second iteration..……………………….……..…………………………......23

7: Summary statistics comparison of original image vs. the squeeze output…………………….….....…..33

8: Compression ratio for the squeeze and LZW decoded image………………………..………………..34

9: Summary statistics for conditional simulations ……………….……………………...………………..40

10: Summary statistics for prediction errors………. ……………………………………...……………..40

vi

Acronyms

AES--------------------Advanced Encryption Standard

LZW-------------------Lempel–Ziv–Welch

GIF--------------------Graphic Interchange Format

TIFF-------------------Tagged Image File Format

PDF--------------------Portable Document Format

JPEG-------------------Joint Photographic Expert Group

SGS---------------------Sequential Gaussian Simulation

MPS--------------------Multiple Point Statistics

DES--------------------Data Encryption Standard

IDEA------------------International Data Encryption Algorithm

RSA--------------------Rivest – Shamir - Adelman

PNG-------------------Portable Network Graphic

Cdf---------------------Cumulative Distribution Function

GGS-------------------Gaussian Geostatistical Simulation

NIST-------------------National Institute of Standards and Technology

7

1. INTRODUCTION

1.1. Motivation and problem statement

Images and other multimedia files are frequently transmitted via computer networks (Forouzan, 2010).

The transmission of information across untrusted networks endangers the security of the information.

For example, due to continuous attempts of hackers, images end up in the hands of illegal third parties

during communication that might profit or amend them without the awareness of the appropriate receiver

(Huang et al., 2012). Such alterations cause a major disaster since reliable transmission of images, is needed

in many applications such as military operations, business transactions and medical systems (Lee, Chen, &

Lee, 2003). We, for this reason, need to protect information from unauthorized access, guarantee their

content from the change and prevent them from network attacks during transmission (Stallings, 2006).

For this reason, a secure way, to communicate in the presence of adversaries, is important. This demand,

to prevent the contents of messages from intruders, gave birth to cryptography, the science and art of

sending messages in secret. This technique will change the transmitted information into an unreadable

form by encryption; the process of converting the original data into a scrambled unreadable format. So,

encryption plays utmost step to assure confidential communication (Khan & Shah, 2014). Subsequently,

no eavesdropper, who has access to the transmission channel, gets back the plain message.

On one hand, the fast growing demand of transmitting images via public networks has raised up interest

in image compression (Yuen & Wong, 2011). The magnitude of data sent has become bigger, and thus

data compression is becoming a vital tool (Aldossari, Alfalou, & Brosseau, 2014). In particular due to the

increase in resolution and size of satellite images they have become an important unaffordable source of

information. Thus, frequent transmission of these images in different corners of our universe is inevitable,

this uplifts a high demand to compress such images. By compressing images, we aim to ease worthless and

redundant data in order to be able to stock or communicate them in an efficient form. Accordingly, the

size of the images and also the time needed to send images over the network will become shorter. Study

on compression of images has been carried out for long (Yuen & Wong, 2011) with the goal of reducing

the image size for sufficient storage and fast communication (Zhu et al., 2013).

Independent compression and encryptions of images, however, are slow to meet the demand for many

multimedia applications (Moo, 1999). Consequently many scholars including (Zhu et al., 2013), (Zhou,

Bao, & Chen, 2014) and (Muhaya & T., 2011) propose algorithms that does not require extra processing

to perform simultaneously encryption and compression. One idea is to push in the encryption operation

into the compression process and perform them in a single step (Xiang, Qu, & Xiao, 2014). Especially by

means of dictionary-based encoding, compression and encryption are addressed simultaneously (Kelley &

Tamassia, 2014) as a single simplified process. Otherwise, we treat them as two independent procedures,

one after the other. In such cases, encryption comes after compression since in theory encrypted data is

incompressible (Xiang et al., 2014).

In this paper, we consider combining compressions and encryption by taking both approaches; joint

compression and encryption and compression followed by encryption for satellite images.

1.2. Research identification

The research paper aims to use the squeeze cipher and spatial statistics approach to perform compression

and encryption of satellite images. The squeeze cipher algorithm, as designed by James & Roberto in 2014,

is a text encryption and compression cipher based on the standard LZW algorithm. On the other hand,

spatial statistics provides procedures to express the distribution of data in space, study the spatial patterns

8

of the data, designate spatial relationships and create a model from sampled data. Note that, spatial

simulations have a potential to reflect a spatial dataset as if it could have been by generating it using spatial

correlation. We developed scientific interest to what the spatial simulations are doing and make

comparisons between the squeeze and spatial simulations.

1.2.1. Research objectives

The proposed MSc research primary purpose is to evaluate and compare the squeeze cipher encryption

and compression technique (S1) with the geostatistical based encryption technique (S2).

The paper includes the following specific objectives:

 To adapt S1 to encrypt and compress satellite images.

 To investigate data loss caused by image compression in S2.

 To apply both S1 and S2 to satellite images.

 To investigate the efficiency of both S1 and S2.

 To study the effects of different input restrictions.

 To analyze image compression performed together with encryption systems.

1.2.2. Research questions

In this study, we will address the following issues:

 Should S1 be adapted to encrypt and compress satellite images?

 How can we minimize data loss during image compression in S2?

 What degree of compression gives an acceptable result in S2?

 How to examine the efficiency of both S1 and S2?

 How to use additional information on the input image to improve the compression accuracy?

 Should image compression and encryption be done in one go? Alternatively, independently?

1.2.3. Innovation aimed at

Many researchers have tried various approaches to conceive procedures that compromise combinations of

encryption and compression schemes for images (Zhu, Zhao, & Zhang, 2013) and(N. Zhou, Zhang, Wu,

Pei, & Yang, 2014). Theoretically it is believed that compression and encryption are two independent

processes (Xiang et al., 2014). However, because encrypted files are incompressible due to their

randomness and most compression algorithms fail to isolate such redundancies, compression has to be

performed before encryption. Figure 1.1 depicts the standard way to combine image encryption and

compression.

Fig 1.1. Image compression and encryption

According to(Shine, 2001) spatial statistics, gives an approach to compression of enormous images. By

adding an encryption on top of a standard compression method, we can meet the needs of secure

compression. In general, the spectral values of neighboring pixels of a satellite image are highly correlated.

Due to this it is not required to represent all neighboring pixels independently in an image. Pixels can be

reconstructed from neighboring ones by applying spatial redundancy methods. Spatial statistical methods

are employed to generate data at unsampled locations from data collected at a finite number of places.

Since random sampling gives all pixels equal chance to be chosen, it is used as a way to get a representative

of the whole image. The outcome of the sampling is an obscure version of the original image that is small

Compression Decryption Decompression
Image

Encryption
Image

Insecure

Channel

9

in size and has less detail. We consider the sampling as a compression technique. At the receiver end, we

reverse the compression by applying conditional simulations.

(Lantuéjoul, 2002)suggest that conditional simulations can be used as an alternative to the existing image

compression algorithm. Conditional simulation generates realizations that approximate data and honor the

sampled observations. Such procedure is considered, and the results will be evaluated in this study.

In addition, the research adapts the squeeze cipher algorithm to compress and encrypt satellite images.

Originally squeeze cipher is designed for encrypting and compressing texts in one go. The cipher bases on

the LZW algorithm, named after the developers Lempel–Ziv–Welch.

1.3. Method adopted

LZW is a standard dictionary-based data compression algorithm developed by Welch in 1984. Dictionary

based compression algorithms create a dictionary when the data is processed and look for repeated strings.

Based on the strings recognized in the dictionary a much shorter string will be used as a replacement. This

process outputs a compression of the overall information. The method is found in several image file

formats, such as the (GIF), (TIFF) and PDF (Fulton, 1997). By changing the management of the

dictionary of the LZW, a random dictionary is formulated (Kelley & Tamassia, 2014). The new dictionary

incorporates encryption, and it is named as squeeze cipher.

In addition, we explore in depth the theories of spatial statistics to integrate them into a standard

compression method. In each step, by selecting pixels from the whole image randomly we can form

compressed image. The features, size and quality of the compressed image heavily rely on the eminence of

the sampling technique. The sampling is done randomly in an unbiased way to produce an unclear version

of the original image. The outcome of the sampling is a set of randomly selected pixels and their

corresponding coordinates. We next form a variogram fit and simulation model. The models contain

relevant information and assumptions to recover the original image (Lantuéjoul, 2002). After the

compression and decompression methods are fixed we then, apply encryption on top of this process.

Upon communications, to the receiver we send the selected pixels and the model parameters encrypted

with AES counter mode. The legitimate receiver provided with the right key will then recover the

randomly selected pixel together with their locations and the model parameters. Decompression is

achieved by running spatial simulation models. In such simulations, we use a model already developed

together with computer programs to determine the simulation iteratively over time (David & Perry, 2013).

With this encryption scheme, an attacker in the middle of the communication will not defeat our method

and use our resources.

The two proposed approaches take as input satellite image and produce a scrambled unclear image. From

such vague image, the receiver will recover the original input image. The methods will be carried out by

following the workflow depicted in Figure 1.4.

1.4. Overview of the research

The thesis is organized into six chapters. Chapter one describes the motivation behind the combination of

compression and encryption, the research objectives, the method adopted and the utility of the study.

Following the introductory is chapter 2, which acquaints us to the basic concepts and review the literature

of the existing compression and encryption techniques. Chapter 3 deals with the resources that are used

and present the overall compression and encryption algorithm including a thorough description of the

decompression methods. The squeeze cipher and spatial statistics based encryption are discussed. Chapter

4 discuss the implementations, experimental results, and the aftermath of the results supported by figures.

Chapter 5 presents a discussion of the results and future research directions. Finally, Chapter Six presents

10

the conclusions we made and enclosed the recommendations. At the last we include the appendix.

Appendix contains the details of the algorithms and additional information.

 Fig 1.2: Flowchart showing the steps used by both methods

11

2. LITERATURE REVIEW

The aim of this chapter is to provide background information on the proposed strategies of image

compression and encryption. The first two sections are dedicated to the broader concepts of compression

and encryption. The last sections establish the significance of the general field of study and identify areas

where a new approach could be used.

2.1. Image compression

The fast growth of remote sensing technology accelerate the collection of vast amounts of satellite data

(Ghosh & Singh, 2009). This data has become the source of information; nevertheless its enormous size

limits their emerging application in different areas of our life. The increase in spectral and spatial

resolutions of satellite images raises the cost of transmission, processing and storage of these image data.

Consequently, image compression practices become vital despite the advance in storage capacity.

Compression targets to shrink the size of the file by removing redundant information. It converts data

into a new format that takes small bandwidth and small space. Most compression algorithms are designed

to use effectively storage capacity and reduce transmission time with the aim of saving resources (Mukesh

& Smiley, 2012).

In uncompressed data, the adjacent values contain repetitive information. For instance, in satellite images

the spatial, spectral and temporal correlation between adjacent pixels is high, which makes sense to

compress them (Munish & Anshul, 2014). Not only images but other types of digital files require

compression too namely text files, source codes, audio data and videos. Nowadays, there are many

compression techniques widely accessible that are developed for different data types.

A file can be reduced with a loss in quality of the data when it is uncompressed, which is known as lossy

compression or without a loss in quality that is referred as lossless compression. Lossy compression

algorithms are "tunable" i.e. we can turn the compression ratio 1up to the level we want, but at a loss of

quality (Sheldon, 2001). Lossy image compression can accomplish a high compression rate but then an

image reconstructed with this method is corrupted relatively to the original (Sha, 2008). The reconstructed

image from this method is often indistinguishable for a human eye though they are bitwise different. The

JPEG and fractal compressions are the most widely used lossy compression techniques.

In contrast, in lossless compression all the information is recovered after the file is uncompressed which

upturn its importance in many fields such as medical image analysis, security, defence and remote sensing

(Hu & Chang, 2000). However, lossless compression can only attain a reasonable extent of compression

(Sha, 2008). A lossless data compression is implemented using either statistical or dictionary-based

approach (Nandi & Mandal, 2013). Statistically based compression reads in and encodes a single character

by considering the probability of that character's presence. On the other hand, dictionary-based

compression uses a unique code (entries) to replace string of characters (Nandi & Mandal, 2013). Some

traditional lossless compression algorithms are PNG, TIFF, JPEG 2000 and GIF.

2.1.1. Dictionary-based methods

The dictionary-based compression schemes are among the most common compression algorithms used in

practice (Langiu, 2013). This process is widely held because it offers equally noble compression ratio and

firm decompression technique. The notion is to exploit repeating sequences by using a dictionary (Seong

& Mishra, 2006). A dictionary-based compression stores strings in a dictionary and assign distinct integers

known as indexes. The algorithm constructs a dictionary of strings and replaces substrings of an input text

1 Compression ratio is defined as the size of the compressed data divided by the size of original data. It is
regarded as measure of efficiency of compression.

12

with indexes in the dictionary. New strings generated by adding character to the end of an existing string

will be added to the dictionary until it is full.

Dictionary-based compression uses two kind of dictionary namely static and adaptive. The static

dictionary is built up before compression occurs, and it does not change during the processing of data.

The receiver of the message cannot reconstruct the same dictionary by processing the decompressed file.

So, the dictionary has to be transmitted along with the file that results in a certain add to the compressed

file (Nandi & Mandal, 2013). Adaptive dictionary scheme helps avoid this problem by reconstructing the

dictionary while the data is compressed.

The introductory (Ziv & Lempel, 1978) dictionary-based algorithm is the beginning of nearly all the well-

known dictionary compression algorithms such as gZip, Zip, RAR, and LZMA (Langiu, 2013). Different

variant of this algorithm has existed that improve the speed of compression, compression ratio and the

formation of the dictionary. The most popular one considered as the standard dictionary-based data

compression technique is LZW.

2.1.2. Geostatistics-based methods

To reduce repetition of an image data and able to transmit them in small size we can use sampling as a

way of compression. The primary intent of sampling is to gather samples in 1-, 2-, 3-dimensionional

spaces and estimate the parameters of the whole population(Wang, Stein, Gao, & Ge, 2012). It selects a

subsection from a population to assess features of the entire community. By repeatedly sampling an area

spatial sampling, ensures analogous result will be obtained at a lower cost. Thus, a well-established

approach of sampling is crucial to compression procedures. A computer-supported random sampling is

used to generate unbiased samples. Such random samples have no pattern and serve as a representative of

the whole image. Further, to decompress the image we build simulation models and estimate their

parameters based on the natures of the samples.

2.2. Image encryption

In a digital age, due to the fast increase in communication technology there is a huge plea for information

security. Image conveys indispensable data and is extensively used in numerous fields of society and

equivalent to its practice, it is essential to keep them safe (ur Rehman, Liao, Kulsoom, & Abbas, 2014).

Encryption is one way to scramble image data so that unapproved person cannot recognize its content

(Panduranga & NaveenKumar, 2013). Several text encoding schemes such as DES, IDEA, AES, and RSA

were used for images (ur Rehman et al., 2014). However, in line with the inherent characters of the image

such as an immense size and high correlation (Socek et al., 2007), encryption of image demands its own

approach (Jin, 2012).
For many purposes, AES guarantees the tightest security currently available. Nevertheless, it has

shortcomings such as high computation costs and hardware requirements (Salim Muhsin Wadi & Zainal,

2014). A minor modifications of AES existed for enciphering images, a typical one by (Salim M. Wadi &

Zainal, 2013) replace the S-Box with the new S-Box to decrease hardware requirements. To enhance the

key space and strength the security of satellite images chaotic and AES-based satellite image cryptosystem

have been used (Usama, Khan, Alghathbar, & Lee, 2010) and (Muhaya & T., 2011) such schemes give

high level of security.

A contemporary trend developed due to the computational requirements is selective encryption. This

method moderates the execution time since it encrypts only portion of an image (Panduranga &

NaveenKumar, 2013). This paper discusses AES encryption methodology that is applied to the randomly

selected pixels of an image.

13

2.3. Image compression and encryption methods

In recent years study has been done to combine compression and encryption for secure and fast image

communication. Several procedures have been suggested to combine compression and encryption so as to

reduce the whole processing time. However, they are either insecure or computationally rigorous (Cheng,

2000).

In 2005, Xie & Kuo formulated an algorithm to include security on the dictionary-based compression. In

particular, they presented data compression method that incorporates encryption algorithm into the LZ78

compression method. The main idea is to construct multiple dictionaries with different entries order and

randomly select one of the dictionaries by using a pseudo-random sequence. Unless someone gets the

correct pseudo-random numbers used to choose the dictionaries, the decompression will lead to an

incorrect result. So the key components of this approach are the construction of multiple dictionaries and

the formation of random sequence that is used to select the dictionaries. In 2008, (J. Zhou, Au, Fan, &

Wong, 2008) came up with an algorithm that inserts and permutes the dictionary entries of the LZW. The

basic idea was to add the dictionary entries randomly and randomly permute them and also use a key

scheduler. The key scheduler will generate key streams. Then, the final output of the LZW algorithm is

XORed with the key stream generated by the key scheduler. The security analysis performed show that the

algorithm can provide a high level of safety. Further, Yuen & Wong in 2011 also proposed a chaos–based

joint image compression and encryption algorithm that uses the discrete cosine transform (DCT) and hash

function SHA-1. The DCT, which is adopted in the JPEG compression standard, transforms the spatial

domain into the frequency domain i.e. It destroys the correlation between image data. Also, SHA-1 is

designed in such a way that it is fast and sensitive to input the image; a small change in the plain image will

affect the whole process. The key sensitivity, plain-image sensitive tests performed reveal that the scheme

has a high-level security and large key space. In addition, (Zhu et al.., 2013) introduced a technique to

compress and encrypt images simultaneously using a hyperchaos and the Chinese remainder theorem. The

2D hyperchaos shuffles the plain image and applies the Chinese remainder theorem to diffuse and

compress the shuffled image. Keyspace, histogram, correlation, key sensitivity and information entropy

analysis carried out in the paper show that the method is valid.

14

3. MATERIAL AND METHODS

3.1. Study area

Remotely sensed images constitute a record of distinct spatial properties of the Earth’s surface (Zhang et

al., 2009). Images are treated as field data depicted by varied digital numbers (DN). In this study, the data

being analyzed is a small area subset from an ETM+ panchromatic image acquired on 2009-11-03 of Bahir

Dar; a city in the north-western of Ethiopia and the capital of Amhara Region.

Fig 1.3 Study Area

A 101×101-pixel subset was selected from the image and highlighted in the image. The subset comprised

a total of 10,201 pixels. The image is 15 m spatial resolution. It covers 22,725 ݉ଶ of the region. The

subset image, as shown in Fig 3.1, is stored as a tiff file and has a size of 11,686 bytes. The data sets were

exported as ASCII text files. The data file from this image contains the coordinates of the pixels and the

pixel values. The data file was then imported into R statistical software and converted into a geostatistical

data set.

3.2. LZW compression

LZW is a widely used text compression algorithm (LAKHANI, 2006). It is a dictionary-based

compression algorithm that constitutes a lossless algorithm since the original data is entirely reconstructed

from the compressed data. Let us pause here to define terms that are used throughout this document:

Character: is a single object used to represent text, numbers or symbols. In computer representation of

text, one character is commonly equal to one byte (consisting of eight bits).

String: a sequence of characters, length zero or higher. The ‘empty string’ is a character sequence of

length zero, and we denote it as Λ.
Concatenation: Placing two or more separate strings side-by-side following each other so that they

become a single string, this operation is denoted by ||.
Prefix: a string that precedes a character of interest.

15

Index: an integer number, used as an address in a dictionary.

Entry: is a string, stored in a dictionary at some index.

Dictionary: a table that stores (index, entry) pairs, and because index values are unique within the

dictionary, it realizes a functional relationship that maps index values to entries.

XOR: is a boolean operator that operates as the exclusive disjunction operator and its denoted by ⨁.

In the process of LZW compression, the first step is to initialize the dictionary. For that, we need to

choose with how many bits a character is represented. Let us assume that a character representation size is

12 bits, and then our initial dictionary will hold ʹଵଶ = 4Ͳ96 entries in the dictionary, as for each string of

length one the initial dictionary has an entry holding that one-character string (Blackstock, 2001). In the

case of a panchromatic image, with an 8-bit quantization, the first 256 entries of the dictionary are

assigned to the gray levels encoded as \00, \01, \02, ..., \FF. 2 The remaining entries in the table are left

blank. The byte strings formed, which are not in the dictionary, are later assigned to additional entries in

the dictionary. For instance, if the first two pixels of an image are black then the sequence ‘\00\00’ is
inserted as an entry of the dictionary index 256, which is the first available free slot in the dictionary.

The decompression starts by receiving the continuous stream of encoded output values (indices) that refer

to the dictionary table. Then, the LZW decompression is merely copying bytestrings from the dictionary

according to these indices (Xie & Kuo, 2005). To start, we look at the first index of the encoded output,

the bytestring corresponding to this index is part of the initial dictionary thus we output it. Make this

index ‘prefix’. Then look at the next index, this new index may not have an entry associated with it in the
dictionary. Assume for now it is; output the bytestring corresponding to it. Then find the first character in

the bytestring converted, call this c. Add this to the bytestring created by ‘prefix’ to form a new string
‘bytestring || c’, add this string ‘bytestring || c’ to the dictionary entry and set the ‘previous’ to the new
index. We repeat this process until we are set. In the exceptional case where the bytestring associated to an

index is not in the dictionary (or not defined yet), it outputs the first character of the bytestring related to

the ‘prefix’ index and concatenates it with the ‘bytestring’ itself and add this new string to the dictionary.
In the end, an identical dictionary to that of compression is constructed.

The LZW compression algorithm (Kelley & Tamassia, 2014):

Input: Character stream �

Output: Stream of table indices

Initialize dictionary ܶ to contain all single-character strings. ݔ�݂݁ݎ ← � − − − − − − − − − − − − − − − − ⊳ The current prefix of the input is empty � ← number of single-character strings---------------- ⊳ The index of the first free entry in ܶ

while there is more input in � do

read next character ܿ

if ݔ�݂݁ݎ || ܿ is an entry in ܶ then

2 The notation \XY in which X and Y is any single character in the range [0..9A..F] is the hexadecimal (base-16)
representation of a byte.

16

ݔ�݂݁ݎ ← Extend prefix with ܿ and continue processing input ⊲-----------------------ܿ || ݔ�݂݁ݎ

else

Output index of ݔ�݂݁ݎ in ܶ-------------------------------------- ⊳ ݔ�݂݁ݎ || ܿ not inܶ: add it to ܶ ܶ[�] ← � ܿ || ݔ�݂݁ݎ ← � + ͳ ݔ�݂݁ݎ ← ܿ-- ⊳ Continuing processing the input starting at c

if ݔ�݂݁ݎ ≠ � then--------------------------------------- ⊳ Output index of the remaining input

Output index of ݔ�݂݁ݎ in ܶ

The decompression starts by receiving the continuous stream of encoded output values (indices) that refer

to the dictionary table. Then, the LZW decompression is just copying bytestring from the dictionary

according to these indices (Xie & Kuo, 2005). To start, we look at the first index of the encoded output,

the bytestring corresponding to this index is part of the initial dictionary thus we output it. Make this

index ‘prefix’. Then look at the next index, this new index may not have an entry associated with it in the
dictionary. Assume for now it is; output the bytestring corresponding to it. Then find the first character in

the bytestring converted, call this c. Add this to the bytestring created by ‘prefix’ to form a new string
‘bytestring || c’, add this string ‘bytestring ||c’ to the dictionary entry and set the ‘previous’ to the new
index. We repeat this process until we are set. In the exceptional case where the bytestring associated to an

index is not in the dictionary (or not defined yet), it outputs the first character of the bytestring related to

the ‘prefix’ index and concatenates it with the ‘bytestring’ itself and add this new string to the dictionary.
In the end, an identical dictionary to that of compression is constructed.

The LZW decompression algorithm (Kelley & Tamassia, 2014)

Input: Sequence of indices �

Output: Stream of characters or the error symbol ⊥

 Initialize dictionary ܶ to contain all single-character strings. ܿ ← � --⊳ first character of next output string, initialize to empty ݔ�݂݁ݎ ← �--⊳the previously output string, initialize to empty

i ← number of single-character strings while

while there is more input in I do

read next index �

if ܶ[�] is defined then -- ⊳ � is a valid index ܿ ← ℎ݁ܽ݀ሺܶ[�]ሻ-- ⊳ Take the first character of ܶ[�]. ܶ[�] ← ܿ || ݔ�݂݁ݎ -- ⊳ ܿ || ݒ݁ݎ was the value inserted after

encoding ݔ�݂݁ݎ.

17

i←i+1

else

if ܶ[�] is not defined and � = � then--- ⊳ Special case: original input was ݒ݁ݎ || ݔ�݂݁ݎ || ܿ ܿ ← ℎ݁ܽ݀ሺݒ݁ݎሻ----------------------------------- ⊳ the first character of ݔ�݂݁ݎ is c. ܶ[�] ← � .ܿ || ݔ�݂݁ݎ We’re decoding ⊲ --------------------------------- ܿ ݒ݁ݎ ← � + ͳ

else

Output ⊥ and exit---⊳ Decoding failed: invalid index

Output ܶ[�] -- ⊳ Finally: output ܶ[�] and update ݒ݁ݎ ݔ�݂݁ݎ ← ܶ[�]
 For better understanding of the LZW algorithm, let us consider a 4×4, monochrome 8-bit image.

\3A---\3A---\15---\15

\3A---\3A---\15---\15

\3A---\3A---\15---\15

\3A---\3A---\15---\15

The starting point of the dictionary is the table shown below and consists of just the single characters.

Dictionary T

Table 3.1 Initial LZW Dictionary

In the beginning, the dictionary locations above 255 are not assigned. After receiving the first character

\3A, it matches with the entry at index value 58. But the pattern \3A\3A (prefix || ch) does not have a

matching bytestring entry in the dictionary, in which case the index for the string, i.e. the longest substring

that is in the dictionary (\3A) is sent out to the output, thus outputting the index value 58 and we add

bytestring \3A\3A to the dictionary as a new entry. The whole encoding table is depicted below.

index entry

0 \00

1 \01

… …

255 \FF

256 -

… …

511 -

18

Current prefix Current
string

Seen this
before?

Encoded
Output Value

Dictionary
Index

Dictionary
Entry

Empty \3A Yes Nothing None None

\3A \3A No 58 256 \3A\3A

\3A \15 No 58 257 \3A\15

\15 \15 No 21 258 \15\15

\15 \3A No 21 259 \15\3A

\3A \3A Yes Nothing None None

\3A\3A \15 No 256 260 \3A\3A\15

\15 \15 Yes Nothing None None

\15\15 \3A No 258 261 \15\15\3A

\3A \3A Yes Nothing None None

\3A\3A \15 Yes Nothing None None

\3A \3A \15 \15 No 260 262 \3A \3A \15\15

\15\3A \3A No 259 263 \15\3A\3A

\3A \15 Yes Nothing None None

\3A\15 \15 No 257 264 \3A\15\15

\15 \15 No 21

Table 2: LZW compression table

The outcome of the decompression for the image is presented in the table below.

Current prefix

Encoded Input

Encoded

Output

Dictionary Index Dictionary Entry

Empty 58 \3A Nothing Nothing

58 58 \3A 256 \3A\3A

58 21 \15 257 \3A\15

21 21 \15 258 \15\15

19

21 256 \3A\3A 259 \15\3A

256 258 \15\15 260 \3A\3A\15

258 260 \3A\3A\15 261 \15\15\3A

260 259 \15\3A 262 \3A\3A\15\15

259 257 \3A\15 263 \15\3A\3A

257 21 \15 264 \3A\15\15

Table 3: LZW decompression table

There are repeating strings, and, as a result, the LZW manages to reduce the original 128-bit image to 90

bits. If the file contains, repetitive data LZW compression works best. If the file does not contain

repetitive information, the compressed file can grow bigger.

3.3. Basic cryptography

Cryptography is concerned with the transmission of information in the presence of a foe, who is working

firmly to retrieve the contents of data transmitted. Though ancient people were practicing it starting from

500 BC, it emerged as part of science with the development of computers in the past 50-60 years

(Goldreich, 2007). It has gone from art to a science to secure systems for ordinary people (Katz & Lindell,

2007). It encompasses encryption, decryption, authentication, integrity to name a few.

The fundamental issue in cryptography is how to make secure communication over insecure network. An

answer to this problem is to encrypt the information to be communicated i.e. converting data into a

cipher, a form that can’t be easily understood. An encryption converts plaintext to ciphertext and

decryption does the reverse. For the basic cryptography terminology we refer the reader to (Goldreich,

2007). Suppose Party A want to send the plaintext over insecure channel to Party B, the encryption

procedure can be done as ܿ = ሺ�ܧ , .is the encryption function ܧ ሻ, where � is the encryption key and

A key is simply a piece of information that is used to specify the transformation of plaintext into

ciphertext and vice versa. Similarly, the decryption is = ሺ�ௗܦ , ܿሻ where �ௗ is the decryption key and ܦ

is the decryption function. When, � = �ௗ , it is called private-key encryption or symmetric key

encryption. In such schemes, the key must be transmitted from the sender to the receiver via a secured

secret channel or prior communication between both parties to agree up on a key is required. When � ≠ �ௗ , and the encryption is called a public-key encryption or asymmetric encryption. I this scheme its

computationally infeasible to get from � to �ௗ . In public key encryption the key � is published, and the

decryption key �ௗ is kept private, for which no additional secret channel as well as no prior

communication is required.

Note that the requirement of an encryption scheme is that for every key � and every plaintext message

it holds that ܦ�ሺܧ�ሺሻሻ = .
An encryption system must have the property that decrypting a ciphertext with the appropriate key yields

the original message that was encoded (Katz & Lindell, 2007). Apparently if the adversary knows the

decryption function and the key �, the adversary is in a position to decrypt all communications. Thus, in

designing a secure cryptosystem we assume the attacker knows the details of our cryptographic algorithm,

and only the key is kept secret and hence the security relies on the knowledge of the keys. This is

commonly referred to as Kerckhoff’s principle. The encryption and decryption process is shown in Fig 1.4.

20

Fig 1.4: Encryption and decryption procedures

The key and the cryptographic algorithm are the two primary components of cryptography. The algorithm

is a mathematical function used for applying protection to our data, and the key is a parameter used by the

function. The key determines the operation in such a way a person with the appropriate key can reproduce

the operations. The strength of the keys is vital since the reliability of the entire cryptographic practices

depend upon them. It is important to utilize a longer key length to resist brute force attack. In computer

cryptography, we use integers as keys. It then requires the generation of keys using pseudo-random

number generators (PRNG). PRNG is a function that is initialized with a random value called the seed

and output a sequence of numbers that “appears random”: if an outsider does not know the value of the

seed, then he cannot differentiate the output of PRNG from that of a true random sequence(van Tilborg

& Jajodia, 2011). The process is deterministic as it always produces the same sequence when initialized

with the same seed. In cryptography, we demand a highly secured random number that resist attacks in

which nobody using advanced cryptanalysis methods can predict the output. Some well-known pseudo-

random generator examples are the Linear Feedback Shift Registers and the Blum-Blum Shub generators.

The application of PRNG in cryptography include the generation of cryptographic keys and initialization

vectors (Fischer & Bernard, 2011).

3.4. Squeeze cipher

On top of the LZW algorithm, a secure squeeze cipher encryption scheme is designed with the following

assumptions:

 High security: -The encryption algorithm plans to use random swap and random insert functions

that provide high security to protect the LZW compression (Kelley & Tamassia, 2014).

 Light encryption cost: - It aims to reduce the high encryption cost that comes along with the

traditional first compress then encrypt way of first compressing and only then encrypting (Xie &

Kuo, 2005).

The squeeze cipher is designed to combine encryption and compression of texts by attaching encryption

as a post-processing to the LZW compression algorithm. Its central idea is on developing a way of

handling the dictionary formed in the process of compression. The dictionary constructed will have the

same entries as in LZW though the entries are in some random order. The initial dictionary is filled with

all the single characters, but unlike to LZW their entry is picked arbitrarily. The dictionary entries are

partially altered for each step of the algorithm. The dictionary entries are permuted by a pseudo-random

number generator (PRNG) function ܩ . This means from a set of predefined algorithm ܩ produces a

sequence of random integers that is indistinguishable from a true random but on real sense it is a

deterministic process. It follows that encryption can be achieved by changing correct indices to some

other random index value (Xie & Kuo, 2005). To process the squeeze cipher encryption an initialization

vector (IV), sometimes called a nonce is required at the beginning. An IV is an arbitrary number that can

be used along with the secret key for data encryption. It avoids repetition in data encryption so as to make

life difficult for a cracker to break a cipher. One instance could be if there are repeated sequences in the

encrypted file, an attacker may assume that their corresponding sequences in the plain message were also

identical. In such cases, the IV will prevent the appearance of identical duplicate sequences in the

Decryption Encryption

Ciphertext

Public

channel

Plaintext
Recovered Plaintext

 � �ௗ

21

ciphertext (TechTarget, 2014). The squeeze cipher algorithm requires the seed for the pseudo-random

number generator ܩ to be constructed at both ends, thus we employ pseudo random-permutation (PRP3) ݂ for this purpose.

Given a PRP function ݂: ݂: {Ͳ,ͳ}� × {Ͳ,ͳ}� → {Ͳ,ͳ}�

where λ is the length of the ��, and its inputs are the shared common key k and the ��, it computes the

seed sd of the PRNG as fሺIVሻ = sd (Kelley & Tamassia, 2014). The �� and � have the same length

and the key � is big enough to provide security. The output of this function is computationally

indistingushable from random. As long as we keep the key � secret, even if we send the �� on the clear,

the chance of constructing the same seed by an attacker is significantly low or impossible. Because of this,

the IV is attached to the output of the compressed data that makes decryption to be possible for the

receiver of the message to generate the same initial seed as the sender.

Let the first source alphabet be A = {aଵ, aଶ,···, aN }. let us also assume that the input string, which is to

be encoded, has a sequence M = mଵm ଶ ··· m . Assume that we use z = ͳʹ -bits to denote each

dictionary index i.e. the size of the initial dictionary is ʹz = 4Ͳ96. Let sd be the seed generated from the

cryptographically secure PRNG G. From sd we then create a pseudo-random key stream k. The squeeze

cipher encoding procedure is as follows.

Step 1: We first construct an empty dictionary with ʹz entries. Then randomly N entries are selected

according to a random key k and those entries are filled, one at the time with a୧, with ͳ ≤ I ≤ N. Recall

in the LZW scheme that only the first N entries are assigned to a୧, where ͳ ≤ i ≤ N. In this case, we

obtain a more sparsely populated dictionary.

Step 2: We read the characters from M one by one. After each character c is read and concatenated to

the prefix, the dictionary is searched for prefix || c. If the prefix || c is found in the dictionary, then prefix becomes prefix || c, and the process continues. However, when prefix is in the dictionary, but

string prefix || c is not, we move to the next step.

Step 3: We perform the following:-

i. Output the dictionary index that points to the prefix.

ii. Swap the prefix entry with another entry selected at random.

iii. Randomly select an empty entry in the dictionary and insert prefix || c into that entry.

iv. Initialize prefix to c.

In LZW algorithm, the string prefix || c is inserted into the dictionary entry next to the entry used by the

previous strings in a sequential way.

As proposed by different authors (Kelley & Tamassia, 2014), (Xie & Kuo, 2005) and (J. Zhou, et.al.,

2008), the significant difference between the randomized dictionary and the traditional LZW algorithm

boils down to the following :

3 PRP- is a permutation selected at random from the family of all permutations.

22

I. Initial random dictionary: - In the squeeze version, we arrange the first dictionary into a random

order different from the order in LZW. The order follows a random permutation, which is

generated by the pseudo-random cryptographic algorithm (Xie & Kuo, 2005).

II. Random swap and insert: - Here, we select an arbitrary position to a prefix that was matched and

exchange it. Also, new entries are not added to the dictionary by sequential order as in LZW

rather an empty position is selected at random from the entries of the dictionary (J. Zhou et al.,

2008).

The detailed algorithm and implementation of the squeeze cipher are found in the paper by (Kelley &

Tamassia, 2014). To help us better understand the squeeze cipher algorithm; let us work out some of the

preliminary steps to show the significant difference between LZW and the squeeze cipher. Like the LZW,

the initial dictionary contains all the entries but in a random order.

Table 4: Initial Squeeze dictionary

We first match first \3A, and output index 255 and then swap entry at index 255 with a random position,

say the entry at index 5. Then, insert \3A\3A into a random empty position, say entry 10.

Index Entry

0 \15

1 \3E

5 \3A

….

10 \3A\3A

….

255 \14

 Table 5: Squeeze dictionary after first iteration

Then next we match character \3A, output index 5 and then swap entry at index 5 with a random

position, say the entry at index 100. Then, insert \3A\15 into a random empty position; say the entry at

index 20.

Index Entry

0 \15

1 \3E

… …

255 \3A

256 -

… …

511 -

Randomly

insert

\3A\3A

23

 Index Entry

0 \15

1 \3E

…

5 \12

20 \3A\15

…

100 \3A

Table 6: Squeeze dictionary after second iteration

The process continues and generates a sequence of indexes. To enable the decryption process, the

initialization vector will be added to the set of indexes during communication.

3.5. Geostatistics

Geostatistics is an area of statistics that deals with spatially distributed data. It differentiates from classical

statistics in the assumptions that data are correlated, as nature produces only in rare occasion’s phenomena
that are not spatially associated. The goal of spatial analysis is to model spatial relationship between

observations at different locations and use them in the process of interpolation (Vanloocke, 2012). The

famous interpolation practice that relies on spatial analysis is kriging.

3.5.1. Variogram and kriging

In order to make estimations based on correlation between spatial data, one has to know how the variable

at the location to be estimated correlates with this variable in the surrounding area (Vanloocke, 2012).

Suppose that the variance between the observation �ሺݔሻ, �ሺݔ + ℎሻ which are located at ݔ and ݔ + ℎ

respectively depends only on the spatial distance between the observations ℎ i.e. the variance is a function

only of ℎ. The variogram function �ሺℎሻ is defined as:

γሺhሻ = ͳʹ E{[zሺxሻ − zሺx + hሻ]ଶ}

It is simply the expected squared difference between two data values separated by ℎ . According to

(Cressie, 1993) the first estimate of the variogram is computed from the experimental variogram. The

experimental variogram measures the average degree of dissimilarity between unsampled values and a

nearby data value (Deutsch & Journel, 1998) and thus can depict autocorrelation at various distances. The

value of the experimental variogram for a separation distance of lag ℎ is half the average squared

difference between the value of zሺx୧ሻ , and the value of zሺx୧ + hሻ (Robinson & Metternicht, 2006).

Consider the following observations �ݖ , � = ͳ, … , ݊ at the locations ݔଵ, ,ଶݔ … , �ݔ the empirical

variogram γ̂ሺℎሻ is defined as:

Randomly

insert

\3A\15

24

 γ̂ሺhሻ = ଵଶNሺ୦ሻ ∑ [zሺx୧ሻ − zሺx୧ + hሻ]ଶNሺ୦ሻ୧=ଵ ……………………… Eq. (1)

Where Nሺhሻ is the set of pairs separated by ℎ, zሺx୧ሻ and zሺx୧ + hሻ are the data values at locations x and x + h, respectively. The experimental variogram increases from small values near the origin to larger

values as ℎ increases. The function becomes stable for large ℎ values; this maximum value is called the sill,

and it represents the total variance. The lag ℎ, for which the sill is reached, is referred to as the range

beyond this value the observation becomes independent. The value at the origin is called the nugget. If the

values of zሺx୧ሻ and zሺx୧ + hሻ are autocorrelated the result of Eq. (1) will be insignificant compared to an

uncorrelated pair of points. Commencing the study of the experimental variogram, the appropriate model

such as spherical, exponential is then fitted, and the parameters range, nugget and sill are used in the

prediction process (Robinson & Metternicht, 2006).

Fig 1.5.: The construction of an experimental variogram (Vanloocke, 2012)

Kriging is an interpolation procedure with the objective of providing estimates that are statistically close to

the unknown true value at any particular location. In order to do kriging for estimation of data at

unsampled locations, we assume the variance of the spatial data depends merely on the lag ℎ and the mean

is constant, these two assumptions are referred to as intrinsic hypothesis. Kriging is a linear regression

method for estimating values at any location of a region. It calls for the variogram model of spatial

correlation. The outcome of kriging is the kriging mean and kriging variance calculated for every single

point in the study area. Nevertheless, the spatial distribution of kriging estimates tend to be too smooth

(Arpat & Caers, 2007).

3.6. Geostatistical simulation

Simulation requires a model be developed; the model represents the behaviors of the selected physical or

abstract process. The simulation then replicates reality using a model defined a priori (J., Carson, et.al.,

2001). Geostatistical simulation maintains the variance observed in the data unlike to interpolation that

preserve the mean (PetroWiki, 2014). Specifically Gaussian Geostatistical Simulation(GGS) is suitable for

continuous data. GGS assumes the mean, variance, and variogram do not change over the spatial domain

of the data. Sequential Gaussian Simulation(SGS), comes with a solution to the smoothing complication

of kriging (Arpat, 2005) by enhanced descriptions of the local variability. Consequently, a simulation map

characterizes the spatial distribution of the data more accurately than a kriged map. Geostatistical

simulations try to replicate the entire random field, and conditional simulation does it while preserving the

data. The conditional simulation procedure generates an array of simulated values consistent with known

values at measured locations, and with a given variogram model (Delbari, Afrasiab, & Loiskandl, 2009).

Unlike kriging interpolation, the goal of conditional simulation is to represent the inherent spatial

variability of a medium. It, for this reason, reproduces the second-order statistical attributes such as the

 ሻݔሺݖ

 ሻݔሺݖ

�

1h 2h 3h 4h

�ሺݔ + ℎሻ

ℎ

Distance

Variogram h- Scatter plot

Z(x+h)

25

mean value and auto-covariance function of the considered dataset. One should note that; conditional

simulation does not accurately replicate the complete random field, but it provides an impression of what

it might be like. Further, conditional simulations have many desirable applications in mining, soil science,

hydrology, environmental control, agriculture and other earth sciences (Journel, 2008).

Simulations evaluate the uncertainties in unsampled values of a spatial attribute at a single and several

multiple locations (Emery & Lantuéjoul, 2006). It leads to the two mainstream families of conditional

simulations: pixel-based and object-based simulation (Liu, 2006). Pixel-based methods are important to

reproduce the variogram (R.Gebbers & Bruin, 2010), but are unable to reproduce shapes and patterns that

exist in the simulations and have difficulty in reproducing complex geometric shapes(Remy, Boucher, &

Wu, 2009). Some of the most traditional pixel-based algorithms include the turning bands, sequential

Gaussian, sequential indicator and simulated annealing (PetroWiki, 2014). On the other hand, object-based

approaches function on sets of pixels that are coupled and organized to represent shapes of features

(PetroWiki, 2014). The object-based methods simulate many grid nodes at one time. Their realizations are

built by releasing one object or pattern at a time onto the simulation grid; hence they are more close to the

geometry of the object (Remy et al., 2009). They do not generate values at the nodes of a pre-defined grid,

but rather produce shapes in space according to some probability laws (Allard, Froidevaux, & Biver,

2007). However, in contrast to pixel-based modeling respecting conditioning data is more complicated.

3.7. Sequential Gaussian Simulation (SGS)

In this report, we apply the SGS algorithm to generate realizations. SGS is widely used to model spatially

distributed continuous variables because it is simple, fast and efficient (Pyrcz & Deutsch, 2014). Sequential

simulation reproduces the histogram and spatial covariance of the attributes being simulated (Arpat, 2005).

Their implementations consist of reproducing the desired spatial properties through the sequential use of

conditional distributions. Consider a set of ܰ random variables �ሺݑ�ሻ, � = ͳ, . . . , ܰ defined at ܰ

locations ݑ� . The aim is to generate ܮ joint realizations {ݖሺݑ�ሻ, � = ͳ, . . . , ܰ} with ݈ = ͳ, . . . , of the ܰ random variables, conditional to ݊ available data and reproducing the properties of a given multivariate ܮ

distribution. To achieve this goal, the ܰ-point multivariate distribution is decomposed into a set of ܰ

univariate conditional distributions: ܨ ሺݑଵ, . . . , ;� ݑ ,ଵݖ . . . , �ݖ |ሺ݊ሻሻ ; � ݑሺ ܨ = �ݖ |ሺ݊ + ܰ − ͳሻሻ � ݑሺ ܨ × − ͳ; ݖ� − ͳ|ሺ݊ + ܰ − ʹሻሻ × . . .×
;ଶݑሺ ܨ + ଶ|ሺ݊ݖ ͳሻሻ × ;ଵݑሺ ܨ ଵ|ሺ݊ሻሻݖ

Where � ݑሺ ܨ ; + ሺ݊| ܰݖ ܰ − ͳሻሻ = � ݑሺ�} ܾݎܲ ሻ ≤ + ሺ݊| ܰݖ ܰ − ͳሻ} is the conditional cdf

of �ሺݑ � ሻ given the set of ݊ original data values and the ሺܰ − ͳሻ realizations �ሺݑ�ሻ, � = ͳ, . . . , ܰ of

the previously simulated values. This decomposition of equation is analytically available for multivariate

Gaussian distribution. The governing spatial law of the Gaussian model is characterized by the variogram

model (Arpat, 2005).

SGS starts by assigning the conditioning data to the grids (Pyrcz & Deutsch, 2014). Next, it selects one

grid node at random and applies simple kriging at the selected location by using neighborhood data and

previously simulated values. The simulated value assigned to this grid node is drawn at random from a

normal distribution whose variance and mean are set to the kriged variance and the kriged value,

respectively. We add this new value to the conditioning data. We then select a new grid node at random,

and we repeat the process until all the nodes are visited. These steps provide the first realization. Then, the

same process is repeated to produce several realizations using a different random number sequence (Syed,

2003). To reconstruct the same realization, the seed of the pseudo-random number generator utilized in

the random selection needs to be retained as it allows generating a realization by sequentially visiting each

node on the simulation grid. Suppose that we have data at locations ݖሺݕଵሻ, ݖሺݕଶሻ, ݖሺݕଷሻ, and ݖሺݕସሻ and

we would like to simulate the values at the locations ݔଵ, ,ଶݔ … , ଽ shown in Figure 3.7. The SGS algorithmݔ

26

first defines a random path visiting each node of the grid. For each node, u, we collect the conditioning

data, consisting of neighboring original hard data and previously simulated values. We then draw a value

from that Gaussian cdf and add the simulated value of the data set to construct realizations. At each

simulation grid, to determine the Gaussian cdf, the algorithm uses simple kriging. In case, the random

function Zሺuሻ is non-Gaussian it needs to be converted into a Gaussian random function Yሺuሻ. The

simulated values are then be back-transformed (Nicolas, Alexandre, & Jianbing, 2009).

Fig 1.6: Flowchart of sequential Gaussian simulation in two dimensions (R.Gebbers & Bruin, 2010)

 ଷݔ ଶݔ ଵݔ

 ହݔ ݔ ସݔ

 ݔ
 ଽݔ ଼ݔ

ଶݕሺݖ (ଶݕሺݖ (ଵݕሺݖ

Define a random path

 ሻ�ݔభሺ�ݖ

 ሻ�ݔలሺ�ݖ ሻ�ݔమሺ�ݖ

 ሻ�ݔభሺ�ݖ

 ሻ�ݔళሺ�ݖ ሻ�ݔమሺ�ݖ

 ሻ�ݔఱሺ�ݖ

 ሻ�ݔరሺ�ݖ ሻ�ݔయሺ�ݖ ሻ�ݔఴሺ�ݖ

 ሻ�ݔళሺ�ݖ

Proceed to the

next node and

repeat the above

steps until all

nodes are visited

Draw a randomly

simulated value

from the ccdf

and assign value

to node.

 ሻ�ݔభሺ�ݖ

 ሻ�ݔభሺ�ݖ

Use the

variogram

for kriging

Model variogram

Simulation

of values

ଶݕሺݖଷݕሺݖ
ଶݕሺݖ (ସݕሺݖ

27

3.8. Geostatistical simulation validation

One method of validating geostatistical simulation is by performing cross-validation against a data set

(Emery, 2008). Cross-validation is a way to evaluate the predictive ability of a model. The word model in

this context refers to the entire geostatistical model, the mean, and the spatial dependence structure.

Generally, cross-validation is achieved by eliminating information at a particular location and estimate the

value at those locations by forming a model with the remaining data, and finally compute the difference

between the actual and estimated value for each data location (Robinson & Metternicht, 2006). As

(Cressie, 1993) points out, cross-validation is used to assure the model predictions are okay. Cross-

validation practices were commonly used to validate the accuracy of an interpolation. To compare the

results of the conditional simulations and the accuracy of the spatial analysis methods, we frequently

examine the difference between the data values and the predicted data using the mean error and the root

mean squared error. Moreover, the correlation coefficient which is a normalized measurement of how two

variables in a data are linearly related is also used to compare the linear relationship between the variables.

These indicators are an important parameter in GIS and remote sensing. Suppose ݖሺݔ�ሻ is the observed

value and ̃ݖሺݔ�ሻ is the predicted value for location ݔ� and ܰ be the number of values in the dataset. The

Mean error ME and the root mean square RMSE are defined as follows:

ܧܯ = ͳܰ ∑ሺ ݖሺݔ�ሻ − �ሻሻ�ݔሺݖ̃
�=ଵ

ܧܵܯܴ = √∑ ሺݖሺݔ�ሻ − ሻሻଶ��=ଵ�ݔሺݖ̃ ܰ

The correlation coefficient is defined as ݎ = �ೣ�ೣ�.

In this formula �௫ and �௬ are the standard deviations of the variables ݔ and ݕ and �௫௬ is the covariance.

The correlation coefficient takes on values on the range between -1 and 1. If the simulation results are

worthwhile at the end we expect a strong positive linear relationship between the simulated and sampled

values, a mean error close to zero and a small root mean square error. In addition, different graphical plots

such as scatter plots that measure the predicted values versus the original sample values, the spread of

prediction errors, the qq plots and histogram analysis can be performed to validate the outcome of

simulations.

After deciding which model we use, we can apply different encryption schemes on top of the model to

ensure our communication is secured. In this study, we employed the advanced encryption scheme for

encrypting and decrypting the file that is transmitted to the receiver.

3.9. Advanced Encryption Standard (AES)

AES, which is also known as Rijndael, was developed by Daemen & Rijmen in 2002 (Heron, 2009). It

emerged from a competition in which cryptographers were asked to submit a secure encryption scheme. It

was evaluated comprehensively and then accepted by NIST in 2001 for categorized communications

(Westlund, 2002). Nowadays, it materialized as an attractive choice for encrypting secured data such as

online transactions.

AES is a symmetric block cipher. So, information that is to be encrypted will be broken up into 128 bit

blocks, and the operations will be carried out in blocks. The standard implementation of AES applies 128

bit block size (16 bytes). The 16 bytes are treated as a 4 x 4 byte matrix. This matrix is referred to as the

state array. Padding is added if the information is not a multiple of 128bits. The algorithm works for

28

different encryption key lengths, and here we use a key of 128 bits. This key is also ordered in the form of

a matrix of 4 × 4 bytes. The encryption consists of 10 rounds of processing. All other rounds are identical

except the last round. Encryption and decryption consist of identical procedures, but the order to perform

the procedures is different.

Before all processing begins, the input plain block is XORed with the first round key(the round keys come

from a 16 byte AES key using key expansion), and then we apply certain functions that include

substitution, permutation, and linear transformations. Then XORed with the next round key, we do that

again and again ten times with the exception of the last round, where the Mixcolumn step is missing. In

every phase, we keep the four by four matrices, so the size of the output is 16 bytes. The overall structure

of AES encryption is shown in Figure 1.7.

BytesSubs is a static byte-wise substitution and can be represented by a single lookup table. We took the

plain128 bit block byte by byte and replace them according to the table. The entries in the lookup table are

formed with the ideas of multiplicative inverses in the ܨܩሺʹ଼ሻ. 4 The result goes to ShiftRows, here the

transformation operations do not shift the first row of the 4 x 4 matrix but they rather shift the remaining

three rows. Shift the second row of the matrix by one byte to the left; shift the third row of the matrix by

two bytes to the left and finally shift the last row of the matrix by three bytes to the left (Kak, 2014). The

result goes to MixColumns, which is a more complicated substitution. Instead of doing it byte-wise

substitution it is substituting four bytes by another four byte. Thus, the initial 128-bit plain block undergo

mixing and turning and get more complicated treatments as a result it’s more difficult to take the cipher

text and roll it back to obtain the plain block.

Fig 1.7 AES-128 encryption process

We encrypt large files by partitioning them into several blocks of size 18-bits and choose the respective

mode of encryption. A mode of operation define how these several blocks are linked with each other to

transform larger data (Menzes, Oorschoot, & Vanstone, 1996). The mode of operation selected

determines the security of encryption. Different encryption methods such as the electronic code book

(ECB), Cipher Block Chaining (CBC), Cipher Feedback (CFB), Output Feedback (OFB) and Counter

 .ሺʹ଼ሻ is a finite field consisting of 256 elementsܨܩ 4

Input
1) ByteSubs
2) ShiftRow
3) Mixcolumn

�ͳ

⊕

�Ͳ

1) ByteSubs
2) ShiftRow
3) Mixcolumn �ʹ

1) ByteSubs
2) ShiftRow

Output �ͳͲ

Key
Key expansion

⋯

�9

10 rounds

⊕ ⊕ ⊕
⊕

29

mode (CTR) are supported for symmetric-key block ciphers (Paar, Pelzel, & Preneel, 2011). Most

cryptographers recommend the CTR mode for encrypting large files as it is appropriate to function on a

multi-processor device where blocks are encoded in parallel. The cipher operation takes place for each

block using a secret key and a unique counter. The counters are started from an initial random value and

increment it to process the next blocks; this ensures uniqueness of the cipher. In CTR mode, the counter

bits are encrypted together with the secret key and then XORed with the input plaintext block. So the

input plaintext is not directly encrypted. Because each block in CTR mode is independent of each other,

CTR mode runs more rapidly than other modes of AES without losing the security requirements of a

secure cipher. Usually, a unique nonce is joined with the counter to make sure the same plaintext generate

different ciphertexts during encryption. This number is prepended to the ciphertext to facilitate

decryption.

3.9.1. AES CTR mode on OpenSSL

Down to known tested experiments against ill-natured attacks of ciphers this paper used the AES counter

mode to safeguard the content of the file transmitted. Recall that spatial simulation requires the input data

i.e. the selected samples together with their coordinates and the variogram model that quantify the spatial

variability of the data. These two together with the header file form the text file that requires protection

during communication to the receiver. We then just encrypt the resulting file. The whole process of

encryption and compression will then take the form shown in Fig 1.8.

Fig 1.8 The AES-128 encryption combined with the spatial compression

OpenSSL is one of the most broadly used cryptographic library in the open source environment (Parziale

et al., 2013). It implements different cryptographic procedures such as symmetric key encryption, public

key encryption, hash functions, digital signatures, random number generation, etc. Thus, we can utilize

OpenSSL library and encrypt a file easily and quickly. OpenSSL toolkit comes installed with Ubuntu and

includes a feature that offers command-line access to the most important cryptographic processes of the

library. To see the available ciphers we can type ‘openssl –h’. In general, for encrypting large amounts of

data, less computationally demanding algorithms are chosen. To encrypt a file using OpenSSL we enter

information in this format: ‘openssl enc –cipher –salt -in file.txt -out encryptedfile.txt.enc’. Where, openssl

is the command line tool, enc stands for encoding with ciphers, cipher represents the encryption cipher to

be used, -salt defines the use of salt in key derivation process that add strength to the encryption -in file.txt

specifies the input file and -out encryptedfile.txt.enc specifies the output file. Then we enter a password

twice. Finally, the data will be encrypted and saved. To decrypt the file, we type ‘openssl enc –cipher -d -

salt -in encryptedfile.txt.enc -out file.txt.new’. The data receiver needs to know the password and the type

of the encryption cipher used.

Note that salt is a random 8 byte string that is deposited on the header of the encrypted file with the

purpose of altering the encrypted file when its encrypted frequently with a particular password. The salt

and password are used in the computation of the key and IV. Upon decryption, the salt will be recovered

and together with the password they will generate the key and IV. In this paper, we use the AES-128

counter mode algorithm for encrypting and decrypting data.

Input

Image

AES

Encryption

Random

pixels

AES

Decryption

Random

pixels

Recovered

Image

Channel

30

4. IMPLEMTATIONS AND RESULTS

This chapter discusses the implementation and obtained results. The study area is a square size of side

length, 101. We present here the experiments that resulted from the different methods we used.

4.1. LZW outputs

In this section, we present the outcome of the LZW compression and decompression applied to the study

area. The LZW algorithm implemented in Python takes as input a text file and compresses it. For that, we

convert the raster dataset into an ASCII file that represents the raster data. The structure of the output

ASCII file consists of header information containing the number of columns, number of rows,

coordinates of left corner, cell size and the cell values in row order.

 Fig 1.9: Original image and its corresponding ASCII text file representing raster data.

We observe that satellite images contain repetitive sequences of DN values; the LZW compression

algorithm focuses on removing such repeating sequences. To reconstruct the image from the

uncompressed file we use the conversion tool, ASCII to Raster in ArcGIS. The LZW implementation in

Python takes as input the study area, which is of size 30.2 KB and compresses it to 9.04 KB, with a

compression ratio of approximately 1:3.

To check how similar the decompressed and the original satellite image are, we calculate the difference

between the two images on a pixel by pixel basis and compute the root mean square error (RMSE). The

difference image is a zero image, with all values zero. Thus, the RMSE is zero. Fig 1.10 shows the

histogram of the two images; they are identical. No error has been registered in the decompression

process.

31

Fig 1.10 Histogram match of the original and LZW decompressed image

Alternatively we can use a change detection algorithm in ERDAS Imagine that compares two satellite

images and or we can use comparison software such as Altova Diff Dog, Winmerge, or Linux’s diff. A

screenshot of the results of the Altova DiffDog are presented in Fig 1:11, it shows that LZW is a

reversible process with no information loss.

Fig 1.11: Screenshot of the results of the file comparisons using Altova DiffDog software

32

4.2. Squeeze cipher outputs

This section discusses the implementation of the squeeze cipher. As described in Chapter 3 the squeeze

cipher is a lossless text compression and encryption method. The squeeze code is implemented in C and

can take as input any binary file. The parameter we need to set is the size of the dictionary to be used. The

dictionary sizes have entries ʹଵଶ and ʹଵ entitled as squeeze-12 and squeeze-16 respectively. The program

implementation outputs the compressed and encrypted file, the compression ratio, and the elapsed time

measured in MB/s. The Study Area is an 11.78 KB file (image in tiff format) that compresses to 9.1 KB

binary file. As the input file contains modest repetitive information, there is a slight file reduction in the

output data. The encrypted and compressed data can be reconstructed back to an image. Since images

require header files, we can reapply the headers back to the encrypted and compressed output. The steps

in Appendix B explain the process to put back the headers. The original and squeeze encrypted and

compressed outputs are shown in Figure 1.12. The squeeze encrypted, and compressed image is

completely random image that show no particular pattern that makes it infeasible for attacks during

communications.

Figure 1.12 Experimental results of Squeeze cipher encrypted and compressed image.

Table 7: Summary statistics comparison original image vs. the squeeze output.

Summary Min 25% Median Mean 75% Max
Original 33 53 58 58.09 63 83
Squeeze output 0 65 126 127.6 192 255

33

As a result of the squeeze encryption, the DN values of the encrypted image are like random garbage

values. In addition, the histogram and the summary statistics show that the squeeze has destroyed all the

patterns that exist in the original image. Especially the histogram of the encrypted and compressed image

is relatively uniform and significantly different from the histogram of the original image. Further analysis

on the correlation between adjacent pixels, after they are compressed and encrypted, is shown in Fig.1.13.

The correlation coefficient between two vertically and horizontally adjacent pixels of the original and

squeeze encoded image together with their distribution support the claim that the encoded image has lost

all configurations that occur in the original image. Consequently, it avoids any form of statistical attack.

Fig 1.13: The first two top plots show the distribution of two horizontally adjacent pixels of the original

image and the squeeze output image. Similarly, the bottom two plots show the distribution of two

vertically adjacent pixels of the original image and the squeeze output image. The implementations of

these plots are performed in Matlab.

Further, we compare the spatial structure of the original and the compressed and enciphered image by

using variogram plots. The sample variogram points of the enciphered image fall on a straight line, and it

results in a singular model. This is because of a nugget effect, i.e.; the squeeze encoded image has no

spatial dependence. In other words, if we compute the covariance between the DN values at all distances ℎ we will get zero.

34

Fig 1:14 Variograms fit of the original and squeeze encoded image

4.3. Geostatistical simulations results

The study area image was processed in R (http://www.r-project.org/) statistical computing software and

converted into a data frame with10201 observations of three variables. Figure 1.13 shows for the study

area ten percent of the randomly selected pixels. These points are used as input points for the conditional

simulation that tries to recover the remaining ninety percent of the missing data using Sequential Gaussian

Simulation (SGS).

Fig 1.15: The study area and ten percent of the randomly selected pixels

The SGS algorithm we use is the one implemented in Gstat package in R, it is robust in using data and the

simulated values in a local neighborhood to approximate the conditional distribution at that location. We

can choose the number of nearest observations that contribute to the simulation process if we use a larger

number of nearest observations the better the approximation but the slower the process. If we use a

smaller number of nearest observations the simulation process will be faster. Gstat uses a bucket PR

quadtree neighborhood search algorithm to select the closest observations data or previously simulated

points (Pebesma, 2004).

 Model psill nugget range

Original Image Exponential 56.2778 0 62.67

Squeeze output Exponential 0 5481.31 100

http://www.r-project.org/

35

4.3.1. Dataset analysis

If data are normally distributed and spatial stationary i.e. the mean and variance do not vary considerably

in space then, geostatistical techniques can be applied. The first thing then is to test the data against these

assumptions. If the data significantly differs from these assumptions, it will cause problems. In such cases,

a transformation of the data is recommended. The scatter plots of the randomly selected pixels shown in

Figure 1.16 consist of four subplots, which are an x versus y coordinate plot, data versus y coordinate

plot, x versus data plot, and the histogram plot. By looking at the histograms of the subplots, severe

deviations from normality are not observed.

Figure 1.16: Scatter plots of the data

These spectral values of pixels are spatially auto-correlated, and their spatially dependent structures are

represented by the variogram (Zhang et al., 2009). Variograms are computed and fitted with the

exponential model (Figure 1:17). Since the semivariance does not increase continuously over the

separation distance, it indicates there is no significant spatial trend in the variable. The range of the

variogram is 65 pixels, the sill is 60, and the nugget is zero. Since there is no nugget effect, which indicates,

the kriging predictions will go exactly through the observations. The kriging variance will be zero at the

observations because there is no residual.

Fig 1.17: Variogram computed for the pixel values (DN) without a trend

36

Now, we have built a model of spatial dependence that can be used for prediction. We can use kriging as

well as conditional simulations to predict at particular points. In Fig 1:18, we plot two realizations that are

generated by the ordinary kriging and conditional simulation methods of Gstat. For each set of

realizations in this section, we use set.seed so that the results presented here are reproducible.

Fig 1.18: Realizations generated from kriging and conditional simulation

We see remarkable differences between the kriging and conditional simulation. We observe artificial

smoothing in the kriging image, as it tends to overestimate the small DN values and underestimate the

high DN values. A major weakness of the kriging map is that it does not account for spatial

autocorrelation of errors, and thus does not provide a realistic picture (Evan, 1993). This property of

kriging can be a severe problem when the resulting models are used for prediction. On the other hand,

the conditional simulation realizations appear closer to the spatial structure of the original image, yet they

are noisier. The conditional simulation algorithms provide realizations that honor the global structure

specified by the variogram. However, a simulated value is not necessarily the best estimation in a statistical

sense at a particular point (Lantuéjoul, 2002).

Remember that we used ten percent of the data i.e.1020 of the observations, the calibration dataset, to

model the spatial structure using a variogram model. In addition, to predict the remaining 9180 points,

where we also sampled data that is commonly referred to as the validation dataset. Since we do not use the

9180 points of the validation dataset either to make the model, these are an independent data set to test

the model. We can compare the predictions with the actual values using numerical summary, histogram

and the plot of the differences.

37

 Fig 1:19 Histograms plots for kriging and conditional simulation (10%)

Fig 1.20: Spatial distribution of errors in cross-validation as represented by a color plot of the errors

The bias and the precision that are referred to as mean prediction error (MPE) and root mean square error

(RMSE), respectively, are computed. The scatter plot in Fig.1.21 is made between the kriged vs. original

and the simulation vs. original values.

Fig 1.21: Scatter plot and regression line computed for the kriged vs. original and simulated vs. original

values.

The MPE, RMSE and ݎ values for kriging are -0.159, 4.151 and 0.83 whereas they are -0.110, 6.353 and

0.64 for the simulations. The kriging estimate appears to have an advantage over the simulation as it

provides best estimate in a minimum error variance sense at each location locally regardless of estimates

38

made at other places. On the other hand, sequential simulation algorithms are globally correct as they

reproduce a global structured statistics. Finally, we combined, the image compression with a standard

encryption algorithm AES as a post-processing step to obtain compressed and encrypted data.

4.4. Encryption of the random samples

We can perform simple file encryption in OpenSSL from the command line. All that we need is to

remember a password used. So we encrypt the file that contains 80% percent of the samples by passing

the following command: ‘openssl enc -aes-128-ctr –salt -in 80.csv -out 80.csv.enc’. It will then prompt for

a password, for this study, the password we used is "BahirDar". Consequently, we create a binary file

80.csv.enc, in the same manner we did for the squeeze output we add the headers back to this file and

visualize it as an image. To decrypt 80.csv.enc, the data recipient needs to remember the cipher and the

password ‘openssl enc - d -salt -aes-128-ctr -in 80.csv.enc –out 80.csv.new’.

 Fig1.22: Plots of the random samples and output of AES encryption

4.5. Realization from Sequential Gaussian Simulations

To investigate the effect of the sampling size, how the variogram fit and its parameters change with the

sample size, the data set were randomly subsampled in R. The sub-samples were taken independently from

each other. For each sub-sample, the locations were selected randomly and independently. To evaluate, we

compare the simulations for different sizes of random samples. In particular we selected 30 %, 50 % and

80%. The figures shown below represent the outputs of the conditional simulations that resulted in

increasing the sampled points.

39

Fig 1.23: Conditional simulations and difference map for thirty and fifty percent.

These results of the simulation plots give an idea of the uncertainty of the estimates. Due also to the

graphical information contained in the variogram models (Evan, 1993) all the simulated plots have

textures. They are coarser but can be taken as continuous. A closer look at Fig 1.23 shows when the

number of conditioning data increases the conditional simulations look more and more original image

(Lantuéjoul, 2002). The mean error and root mean square, in Table 4.1, show they are gradually

decreasing. Hence, to know how much further we compromise the compression ratio we compute

realizations constructed by using 80% of the data. The histogram and normal qq plot summary analysis of

the difference image show that the errors are distributed uniformly around zero.

40

 Fig 1.24: On the top, from left to right study area, simulation, the difference image, histogram, and

normal qq-plot.

Samples

Selected

SD Minimum 25th 50th Mean 75th Maximum ݎ MPE RMSE

Original 7.60 33 53 58 58.09 63 83 -- -- ---

10% 7.56 29.2 53.04 57.93 57.98 62.73 87.46 0.64 -0.110 6.353

20% 7.55 31.02 53.17 58.05 58.03 62.80 84.35 0.78 0.060 4.98

30% 7.701 29.97 53.08 58.01 58.06 63.06 85.35 0.84 -0.026 4.304

40% 7.66 28.79 53.17 58.13 58.11 62.9 87.27 0.88 0.023 3.732

50% 7.61 33.81 53.17 58.20 58.12 62.93 88.36 0.908 0.032 3.254

60% 7.69 34.89 53.21 58.13 58.11 62.83 85.73 0.93 0.015 2.82

70% 7.65 32.38 53.3 58.15 58.11 62.87 83.74 0.94 0.016 2.516

80% 7.62 31.47 53.22 58.2 58.1 62.79 83.96 0.96 0.012 2.118

90% 7.62 33.2 53.18 58.28 58.1 62.71 84.53 0.97 0.006 1.608

Table 9: Comparison of summary statistics for conditional simulations. Mean, standard deviation,

minimum, 25th, 50th, 75th quantiles, maximum, correlation, mean prediction error and root mean square.

41

Samples

Selected

Minimum 25th 50th Mean 75th Maximum

10% -26.98 -3.79 -0.05 -0.11 3.68 27.18

20% -21.22 -2.60 0.05 0.06 2.63 21.69

30% -20.81 -2.06 -0.03 -0.02 1.94 25.76

40% -18.2 -1.59 -0.01 0.02 1.60 22.08

50% -17.02 -1.27 0.02 0.03 1.32 19.07

60% -17.31 -1.09 -0.01 0.01 1.15 22.84

70% -14.09 -1.01 -0.01 0.01 1.01 20.9

80% -13.06 -0.91 -0.002 0.01 0.914 18.21

90% -14.25 -0.78 0.009 0.006 0.833 13.56

Table 10: Summary statistics of the prediction errors caused by conditional simulations

From the summary statistics and cross-validation measurements, we are convinced that as the sample size

increases the difference between the simulated realizations and the original image significantly decreases.

The experiments reported here reveal that conditional simulation can be one means of performing lossy

compression of satellite images.

4.6. Comparison based on compression ratio and speed

The compression ratio is defined as the compressed output size divided by the original uncompressed

input size. A compression algorithm that compresses a 20MB file to 5MB has a compression ratio of

5/20 = 0.4, often represented as a ratio 1:4. A smaller number signifies better compression is achieved.

The compression ratio results obtained in the paper (Kelley & Tamassia, 2014) reveal that squeeze can

achieve high compression ratios compared to standard compressions. In this study, the squeeze cipher

applied on the study area does not offer a significant compression ratio as shown in the figure 1.25 below;

it shows that in some cases the compressed file even can grow larger than the original.

 Figure 1.25: Compression ratio for the squeeze and geostatistics scheme

On the other hand, the geostatistical method is tunable, and the compression ratio depends on the size of

the samples selected. The variogram model parameters together with the samples selected are encrypted

using encryption standard (AES) CTR mode and will be transferred to the receiver at the other end. In

this paper, we have sampled the study area on a constant basis from 10% to 80%. Hence, the compression

ratio achieved by applying encryption on the 80% samples is 0.81 and as the previous sections show the

image reconstructed does not lose too many details. The low compression ratio attributed to the squeeze

cipher can be further studied by comparing it with a standard encryption performed on top of the LZW

0,78

0,85

0,81

Squueze 12 Squeeze 16 geostatistics

Compression Ratio

42

compression. For instance, LZW followed by AES gives a slightly better compression ratio than the

squeeze scheme. However, be aware that though the geostatistical scheme achieves high compression

ratios, in extreme cases it can cause substantial biases of the compressed image.

Further, in each case we recorded the elapsed compression and decompression CPU times. We consider

the time taken for the compression and decompression separately. In the squeeze case the compression

and decompression time the code prints out the time elapsed for compression and decompression. In the

geostatistical scheme as it is a sequential compress then encrypt method we measure the

compression/decompression and encryption/decryption time independently. However, note that this

factor depends on the performance of the computers used and with the development of high-speed

computers we get subtle values. The algorithms were tested on a 2.4 GHz core i7 computer with 8 GB

RAM.

In R the proc.time command defines the time elapsed by the running R process and computes the real and

CPU time in seconds. The real elapsed time that took to select 80% percent of the samples and writing a

file that contains those samples is 0.14 sec. Then we encrypt this file using AES cipher. To measure the

elapsed time when encrypting using OpenSSL we enter $time openssl enc -aes-128-ctr -salt -in 80.csv -out

80.csv.enc at the shell command and pass the password. We do these consecutively and on the average it

took 0.008 s. To decrypt the file we pass the command $ time openssl enc -d -salt -aes-128-ctr -salt -in

80.csv.enc -out 80.csv.new and the password. On a similar approach the time it took to decrypt is 0.008 s,

note that in AES CTR mode both encryption and decryption are fast as they can be parallelized. In

Appendix C, we present the commands and their corresponding outputs. The figure below summarizes

the time comparison between the two schemes.

 Figure 1.26: Time elapsed for the squeeze and geostatistics scheme

5. DISCUSSION

This study analyzed compression and decompression, encryption and decryption of satellite images.

Compression and decompression are linked as the original satellite image remains unaltered after their

successive application. Similarly, encryption and decryption are related as the orignal image can be

recovered from encrypted file. The quality of a satellite image is to be maintained while reducing its

volume. In this thesis, the squeeze compression and encryption, in brief, the squeeze scheme, is applied

that was already available to texts. It is compared with image compression and encryption by geostatistical

simulations, in short, the geostatistical scheme.

0,0027 0,0039 0,148 0,0015 0,0026

1,548

Squueze 12 Squeeze 16 geostatistics +AES (80

%)

Time elapsed

Compression Decompression

43

The study has shown that the squeeze scheme maintains an excellent quality of the image and that no loss

of information occurs after recovering the image. The image reconstructed with the squeeze scheme is

identical to the original image on a pixel-by-pixel basis. This can only be achieved for small compression

ratios (0.8) because squeezing is initially formulated to reduce the one-dimensional correlation in texts.

Adapting this algorithm to two-dimensional images, for this reason, causes several difficulties.

1. The squeeze scheme reads the image data by joining the rows of the image in a horizontal line and

searching for repetitive strings along that line. Satellite images pixels, however, have a high spatial

correlation between neighbor pixels. Thus, reading the file along a horizontal line by placing each

row next to another row forces the algorithm to create dictionaries with a large lookup time and

additional CPU cycles.

2. In addition, the squeeze scheme misses repetitive information that cannot be joined along a

horizontal line. For this reason, the compression ratio is significantly low as compared to other

standard image compression algorithms. Nevertheless, the results obtained by Kelley & Tamassia

(2014) assure that due to the random permutation of the dictionary entries the squeeze cipher

provides safety.

The geostatistical scheme is based on the assumption (in the field of image compression) that reads “small
numerical errors in decoded values lead to small visual errors that are unrecognizable” (Salomon & Motta,
2010). This is the main idea when an image is reconstructed from a smaller data set. This however is not

always true. The current study has shown that spatial prediction methods can produce results that are

closer to the reference image. Notably, when the amount of conditioning data increases the simulated

images will be unidentifiable from the original by the naked eye.

Overall, for large conditioning data sets the Gaussian conditional simulation methods provide smaller

RMSE and MRE values and higher accuracy when assessed by means of the cross-validation methods.

Conditional simulations, unlike kriging, however, are not standard methods for interpolations, and they

rather preserve the general spatial variability of data.

The geostatistical scheme, for this reason, is a compression with loss of accuracy. Even though it offers

high compression ratio, we might still choose the squeeze scheme if the quality of the reconstructed image

is the most important issue to deal. We further note that a high compression ratio leads to a poor resulting

image. The trade-off between compression ratio and the quality of the reconstructed images is an

important factor worth considering when deciding upon an image compression schemes.

In geostatistical image compression and protection schemes, the image is first compressed. Then, the

compressed image is entirely encrypted using a standard AES cipher. The AES encryption uses a

password when encrypting the file and once the image file is encrypted it cannot be decrypted without

using the correct password. In this scheme compression and encryption are completely disjoint processes.

For big data like a satellite image the compression method used requires a considerable size of samples to

recover a seemingly image, this will in turn increase the amount of data to be encrypted. This approach

demands high computation and might not be desirable especially in reserved communications such as real-

time networking and mobile communications which has limited computational power devices.

In principle, the senders of an image can apply any of the two schemes and thus protect the content of the

image file upon sending. Both schemes compress an image to save space when transmitting and offer the

best security currently available. The output file can be restored to the original image by the receiver who

has the right password and the necessary application installed to run the spatial simulations.

In this paper, we have established a detailed comparison between the squeeze scheme and the

geostatistical scheme. We managed to analyze the outcomes for one satellite image. The study further

provided a toy example that gives the basics of the LZW compression and its modification towards

squeeze ciphers. The comparison mainly focuses on the compression ratio that determines the quality of

the restored image.

44

In the future, we also need to consider different kinds of satellite images such as multispectral images,

hyperspectral images and test the reliability of the squeeze, as well as the geostatistical scheme. In addition,

different geostatistical simulation methods like turning bands, simulated annealing should be established

and performed to support the claim that spatial simulations gave alternative approach for image

compression.
For users of big data such as satellite images choices have to be made on the level of compression ratio,

type of compression, security requirements we entail for our applications. The security standards for both

schemes are safe to be used for practical use and, in theory, it is hard to assume it will be possible to crack

them. The main difference between the two schemes lies in the compression ratio and quality of the

reconstructed image. The squeeze cipher compression depends on the nature of the data, and the

compression ratio is not tunable to a level that we want but yet it is a reversible and secure scheme.

The geostatistical scheme however is a lossy compression technique that is tunable to the level required by

the user and is safe as it uses the standard encryption algorithm. The primary weakness lies in its inability

to replicate the reference image.

Image compression and encryption are a growing field. The study shows that currently available methods

can further be implemented and analyzed for different types of images. In addition, it opens door to use

object base analysis in compressing and encrypting images.

6. CONCLUSION AND RECOMMENDATIONS

This section presents the conclusions and recommendations through applying the methodologies

explained in the previous chapter. In the first part we present the conclusions and answers to the research

questions and in the second part recommendations are discussed.

6.1. Conclusions

The purpose of this thesis is to compare the squeeze scheme with the geostatistical scheme based

encryption and encryption. We will address here the answers we found to the research questions.

 Should S1 be adapted to encrypt and compress satellite images?

The statistical tests showed that a modification of the LZW, the squeeze cipher, provides safety from

attacks during communication for satellite images. It removes spatial redundancy without adding artifacts

after decoding the image. Though the compression ratio found from the squeeze cipher is significantly

lower than from the LZW algorithm, the findings of this study show that adjusting and using the squeeze

cipher and perform secure compression instead of compression alone is preferable.

 How can we minimize data loss during image compression in geostatistical scheme?

From the results presented in Tables 9 and 10, we observe that the magnitude of the difference between

the original image and restored image gradually decreases as we increase the number of samples and hence

that the size of the samples is the primary factor to minimize the data loss in the geostatistical scheme.

Thus, the data loss is reduced by adding the conditioning data and fit those with the appropriate

variogram model. This study thus has shown that conditional simulation can be a suited routine for

uncertainty analysis.

 What degree of compression gives an acceptable result in geostatistical scheme?

The statistical measures such as RMSE, ME, and correlation coefficient that are computed on a pixel basis

for the different realizations show that we get higher accuracy if the conditioning data is significantly large.

A comparable compression ratio to the squeeze scheme is obtained when we choose samples in the range

of 75% to 80%. Thus, a compression ratio calculated from realizations generated from such datasets

45

provides higher values. As we presented in Table 9, we can reasonably choose the size of conditioning

data we want and reconstruct an image. For instance, if we choose 10% of the samples the reconstructed

image will be noisier due to the high difference on a pixel level. We can increase the number of samples

and continue the process until we are happy with the reconstructed image. Thus, it depends on the

requirement of the particular user and task at hand.

 How to examine the efficiency of both squeeze scheme and geostatistical scheme?

The effectiveness of both schemes is explored on the basis of compression ratio and time elapsed. The

results on Figure 1.25 and Figure 1.26 show that the squeeze scheme has achieved lowest compression

ratio in relatively small time to encode and decode images (0.78 compression ratio in 0.0027 sec), whereas

the geostatistical scheme is slow and is not reversible, for 80% of the samples we obtain (0.81

compression ratio in 0.148 sec).

 How to use additional information on the input image to improve the compression accuracy?

Unfortunately, we are unable to extend the study to include application to classified images and further

study the object basis analysis. We recommend those alternative approaches for future study.

 Should image compression and encryption be done in one go? Alternatively, independently?

Compression alone is not sufficient as it can be accessed. But systems like squeeze cipher where security is

embedded into the compression algorithm provide safety and thus can meet the demand of fast and

secure transmission of data. But as Kelley & Tamassia (2014) pointed out combining compression and

encryption in a naïve way has drawabacks. As the compression leak information about the length of the

input.

6.2. Recommendations

This study works on a pixel basis analysis. One should note that neighboring pixels of satellite images are

spatially auto-correlated. Hence, we can group these pixels based on some criteria and perform the

operation at the object level. In general, object-based analysis starts with grouping pixels into meaningful

objects through image segmentation techniques. Consequently, recently different image analysis like a

satellite image classification has been on the object analysis. For the future, we recommend extending the

squeeze algorithms to work at the object level. One way could be by integrating the algorithm to the

simplest compression algorithms such as quadtree decomposition and run length encoding. One will recall

that quadtree decomposition subdivides an image into homogeneous blocks. First, it divides a square

image into four blocks and tests whether each block meets some criterion of homogeneity, a block that

satisfies this criterion will not be divided further. However, if it does not, it will be split again into four

blocks, and test each of these blocks and continue the process until each block satisfies the criterion.

Previous works show that quadtrees play a vital role in compression of images and can work hand in hand

with different compression techniques such as fractal compression. In contrast, run length encoding is a

simple form of data compression in which consecutive elements are replaced by a counter showing how

many times some data is repeated. If we use squeeze cipher as a post-processing step after run-length

encoding may be a better compression as well fast communication could be achieved.

Further, if we can devise a better way of joining the rows of an image high compression ratio and small

compression time could be achieved. Recall that, we form the squeeze dictionary by placing one row of

the image next to the other, an alternative could be to join them in a reverse order i.e. joining the last

elements of two rows of an image, such approaches could be further studied to improve the squeeze

scheme.

About the geostatistical scheme, note that sequential simulation algorithms are based on a variogram

model, and hence are limited to the reproduction of two-point statistics. Thus, they fail to reproduce

complex structures. This triggers the concept and the possible need for object-based conditional

simulations. In addition, in recent times, multiple-point statistics have been applied to the field of geology

46

that is established to honor large amounts of local data. The variogram was the building block to read the

spatial variability of the data set but in case of multiple point statistics all information is drawn from a

training image. In addition, applying better sampling approaches, we can reduce the prediction errors. In

the future, we recommend a better sampling strategy, object-based conditional simulations, multiple points

statistics and analysis from the security point of view have to be considered during satellite image

compression and decompression procedures.

47

LIST OF REFERENCES

Aldossari, M., Alfalou, A., & Brosseau, C. (2014). Simultaneous compression and encryption of closely
resembling images: application to video sequences and polarimetric images. Optics Express, 22(19),
22349–68. doi:10.1364/OE.22.022349

Allard, D., Froidevaux, R., & Biver, P. (2007). Conditional Simulation of Multi-Type Non Stationary
Markov Object Models Respecting Specified Proportions. Mathematical Geology, 38(8), 959–986.
doi:10.1007/s11004-006-9057-5

Arpat, G. B. (2005). Sequential simulation with patterns. Stanford University. Retrieved from
https://pangea.stanford.edu/ERE/pdf/pereports/PhD/Arpat05.pdf

Arpat, G. B., & Caers, J. (2007). Conditional Simulation with Patterns. Mathematical Geology, 39(2), 177–203.
doi:10.1007/s11004-006-9075-3

Blackstock, S. (2001). LZW and GIF explained. Retrieved October 15, 2014, from
http://gingko.homeip.net/docs/file_formats/lzwgif.html

Cheng, H. (2000). Partial encryption of compressed images and videos. IEEE Transactions on Signal
Processing, 48(8), 2439–2451. doi:10.1109/78.852023

Cressie, N. A. C. (1993). Statistics for spatial data. J. Wiley. Retrieved from
http://books.google.nl/books?id=4SdRAAAAMAAJ

Daemen, J., & Rijmen, V. (2002). The Design of Rijndael: AES - The Advanced Encryption Standard (p. 238).
Springer Science & Business Media. Retrieved from
http://books.google.com/books?hl=en&lr=&id=tfjd6icCUoYC&pgis=1

Delbari, M., Afrasiab, P., & Loiskandl, W. (2009). Using sequential Gaussian simulation to assess the field-
scale spatial uncertainty of soil water content. CATENA, 79(2), 163–169.
doi:10.1016/j.catena.2009.08.001

Deutsch, C. V., & Journel, A. G. (1998). GSLIB: geostatistical software library and user’s guide (2nd ed., p. 384).
Oxford University Press, New York.

Emery, X. (2008). Statistical tests for validating geostatistical simulation algorithms. Computers &
Geosciences, 34(11), 1610–1620. doi:10.1016/j.cageo.2007.12.012

Emery, X., & Lantuéjoul, C. (2006). TBSIM: A computer program for conditional simulation of three-
dimensional Gaussian random fields via the turning bands method. Computers & Geosciences, 32(10),
1615–1628. doi:10.1016/j.cageo.2006.03.001

Evan, E. (1993). Spatial simulation: Environmental Applications. Environmental Modelling with GIS, M.F.
Goodchild et Al., Eds., Oxford University Press, 423–437. Retrieved from
http://epa.gov/esd/cmb/research/papers/ee104.pdf

Fischer, V., & Bernard, F. (2011). Security Trends for FPGAS. Dordrecht: Springer Netherlands.
doi:10.1007/978-94-007-1338-3

Ghosh, J. K., & Singh, A. (2009). Fractal compression of satellite images. Journal of the Indian Society of
Remote Sensing, 36(4), 299–311. doi:10.1007/s12524-008-0031-1

48

Goldreich, O. (2007). Foundations of Cryptography: Basic Tools (p. 380). Cambridge University Press, New
York. Retrieved from http://www.amazon.com/Foundations-Cryptography-Volume-Basic-
Tools/dp/0521035368

Heron, S. (2009). Advanced Encryption Standard (AES). Network Security, 2009(12), 8–12.
doi:10.1016/S1353-4858(10)70006-4

Hu, Y.-C., & Chang, C.-C. (2000). A new lossless compression scheme based on Huffman coding scheme
for image compression. Signal Processing: Image Communication, 16(4), 367–372. doi:10.1016/S0923-
5965(99)00064-8

J., B., Carson, J., Nelson, B., Nicol, D., & Banks, J. (2001). Discrete-Event System Simulation. Prentice Hall.

Jin, J. (2012). An image encryption based on elementary cellular automata. Optics and Lasers in Engineering,
50(12), 1836–1843. doi:10.1016/j.optlaseng.2012.06.002

Journel, A. G. (2008). Geostatistics for Conditional Simulation of Ore Bodies. Economic Geology, 69(5),
673–687. doi:10.2113/gsecongeo.69.5.673

Kak, A. (2014). AES: Lecture Notes on “Computer and Network Security.” Purdue University. Retrieved
January 24, 2015, from https://www.scribd.com/doc/251641555/Aes

Katz, J., & Lindell, Y. (2007). Introduction to Modern Cryptography: Principles and Protocols (p. 552). Chapman
and Hall/CRC; 1 edition. Retrieved from http://www.amazon.com/Introduction-Modern-
Cryptography-Principles-Protocols/dp/1584885513

Kelley, J., & Tamassia, R. (2014). Secure Compression: Theory & Practice. Dept. of Computer Science, Brown
University. Retrieved from http://eprint.iacr.org/2014/113.pdf

Khan, M., & Shah, T. (2014). A Literature Review on Image Encryption Techniques. 3D Research, 5(4), 29.
doi:10.1007/s13319-014-0029-0

LAKHANI, G. (2006). Reducing coding redundancy in LZW. Information Sciences, 176(10), 1417–1434.
doi:10.1016/j.ins.2005.03.007

Langiu, A. (2013). On parsing optimality for dictionary-based text compression—the Zip case. Journal of
Discrete Algorithms, 20, 65–70. doi:10.1016/j.jda.2013.04.001

Lantuéjoul, C. (2002). Geostatistical Simulation: Models and Algorithms (p. 256). Springer Science & Business
Media. Retrieved from http://books.google.com/books?id=4FxPoZ4t898C&pgis=1

Menzes, A. J., Oorschoot, P. C. V., & Vanstone, S. (1996). Handbook of Applied Cryptography (p. 780). CRC
Press; 1 edition. Retrieved from http://www.amazon.com/Handbook-Cryptography-Discrete-
Mathematics-Applications/dp/0849385237

Muhaya, B., & T., F. (2011). Chaotic and AES cryptosystem for satellite imagery. Telecommunication Systems,
52(2), 573–581. doi:10.1007/s11235-011-9462-z

Mukesh, S., & Smiley, G. (2012). Compression and Encryption: An Integrated Approach, Vol.1 - Is(Vol.1 -
Issue 5 (July - 2012)). Retrieved from http://www.ijert.org/view.php?id=446&title=compression-
and-encryption-an-integrated-approach

49

Munish, K., & Anshul, A. (2014). Research Publish Journals. International Journal of Computer Science and
Information Technology Research, 2(2), 77–81. Retrieved from
http://www.researchpublish.com/journal/IJCSITR/Issue-2-April-2014-June-2014/45

Nandi, U., & Mandal, J. K. (2013). Modified Compression Techniques Based on Optimality of LZW Code
(MOLZW). Procedia Technology, 10, 949–956. doi:10.1016/j.protcy.2013.12.442

Nicolas, R., Alexandre, B., & Jianbing, W. (2009). Applied Geostatistics with SGeMS A User’s Guide (p. 286).
Cambridge University Press, New York.

Paar, C., Pelzel, J., & Preneel, B. (2011). Understanding Cryptography: A Textbook for Students and Practitioners
[Hardcover] (p. 372). Springer; 1st ed. 2010 edition. Retrieved from
http://www.amazon.com/Understanding-Cryptography-Textbook-Students-
Practitioners/dp/3642041000/ref=pd_sim_sbs_b_1?ie=UTF8&refRID=1YF1YZMJBM45HCZ31
6D6

Panduranga, H. T., & NaveenKumar, S. K. (2013). Selective image encryption for Medical and Satellite
Images. International Journal of Engineering and Technology (IJET), 5(1), 115–121.

Parziale, L., Barney, J., Cross, V., Johnston, W., Kienetz, E., Marins, E., … Redbooks, I. (2013). Security for
Linux on System z (p. 348). IBM Redbooks. Retrieved from
https://books.google.com/books?id=bFjAAgAAQBAJ&pgis=1

Pebesma, E. J. (2004). Multivariable geostatistics in S: the gstat package. Computers & Geosciences, 30(7),
683–691. doi:10.1016/j.cageo.2004.03.012

PetroWiki. (2014). Geostatistical conditional simulation -. Retrieved September 28, 2014, from
http://petrowiki.org/Geostatistical_conditional_simulation

Pyrcz, M. J., & Deutsch, C. V. (2014). Geostatistical Reservoir Modeling (p. 433). Oxford University Press.
Retrieved from https://books.google.com/books?id=wNhBAgAAQBAJ&pgis=1

R.Gebbers, & Bruin, S. d. (2010). Geostatistical Applications for Precision Agriculture (p. 300). Springer Science
& Business Media.

Remy, N., Boucher, A., & Wu, J. (2009). Applied Geostatistics with SGeMS: A User’s Guide (p. 264).
Cambridge University Press. Retrieved from
https://books.google.com/books?id=AFlegl0OLacC&pgis=1

Robinson, T. P., & Metternicht, G. (2006). Testing the performance of spatial interpolation techniques for
mapping soil properties. Computers and Electronics in Agriculture, 50(2), 97–108.
doi:10.1016/j.compag.2005.07.003

Seong, S.-W., & Mishra, P. (2006). A bitmask-based code compression technique for embedded systems.
In Proceedings of Conference on Computer-Aided Design (pp. 251–254). New York (ACM).

Sha, L. (2008). Encyclopedia of GIS. (S. Shekhar & H. Xiong, Eds.) (pp. 472–475). Boston, MA: Springer US.
doi:10.1007/978-0-387-35973-1

Sheldon, T. (2001). Compression Techniques (Linktionary term). Retrieved November 05, 2014, from
http://www.linktionary.com/c/compression.html

50

Shine, J. A. (2001). Compression And Analysis of Very Large Imagery Data Sets Using Spatial Statistics.
Retrieved from http://www.interfacesymposia.org/I01/I2001Proceedings/JShine/JShine-Paper.pdf

Socek, D., Magliveras, S., Ćulibrk, D., Marques, O., Kalva, H., & Furht, B. (2007). Digital Video
Encryption Algorithms Based on Correlation-Preserving Permutations. EURASIP Journal on
Information Security, 2007(1), 1–15. doi:10.1155/2007/52965

Syed, A. R. S. (2003). Geostatistics - Frequently Asked Questions. Retrieved from http://www.ai-
geostats.org/pub/AI_GEOSTATS/AI_GEOSTATSFAQ/FAQ_Geostatistics_01.pdf

TechTarget. (2014). WhatIs.com. Retrieved October 19, 2014, from
http://whatis.techtarget.com/definition/initialization-vector-IV

ur Rehman, A., Liao, X., Kulsoom, A., & Abbas, S. A. (2014). Selective encryption for gray images based
on chaos and DNA complementary rules. Multimedia Tools and Applications. doi:10.1007/s11042-013-
1828-7

Usama, M., Khan, M. K., Alghathbar, K., & Lee, C. (2010). Chaos-based secure satellite imagery
cryptosystem. Computers & Mathematics with Applications, 60(2), 326–337.
doi:10.1016/j.camwa.2009.12.033

Van Tilborg, H. C. A., & Jajodia, S. (Eds.). (2011). Encyclopedia of Cryptography and Security. Boston, MA:
Springer US. doi:10.1007/978-1-4419-5906-5

Vanloocke, S. (2012). Factorial Kriging of Soil Sensor Images using ISATIS. Universiteit Gent. Retrieved from
http://lib.ugent.be/fulltxt/RUG01/001/892/544/RUG01-001892544_2012_0001_AC.pdf

Wadi, S. M., & Zainal, N. (2013). Rapid Encryption Method based on AES Algorithm for Grey Scale HD
Image Encryption. Procedia Technology, 11, 51–56. doi:10.1016/j.protcy.2013.12.161

Wadi, S. M., & Zainal, N. (2014). High Definition Image Encryption Algorithm Based on AES
Modification. Wireless Personal Communications, 1–19. doi:10.1007/s11277-014-1888-7

Wang, J.-F., Stein, A., Gao, B.-B., & Ge, Y. (2012). A review of spatial sampling. Spatial Statistics, 2, 1–14.
doi:10.1016/j.spasta.2012.08.001

Welch, T. A. (1984). A Technique for High Performance Data Compression [Terry A. Welch]. IEEE
Computer, 17(6), 8–19. Retrieved from http://dret.net/biblio/reference/wel84

Westlund, H. B. (2002). NIST reports measurable success of Advanced Encryption Standard. (News
Briefs). - Free Online Library. Journal of Research of the National Institute of Standards and Technology. .
Retrieved from
http://www.thefreelibrary.com/NIST+reports+measurable+success+of+Advanced+Encryption+S
tandard....-a090984479

Xiang, T., Qu, J., & Xiao, D. (2014). Joint SPIHT compression and selective encryption. Applied Soft
Computing, 21, 159–170. doi:10.1016/j.asoc.2014.03.009

Xie, D., & Kuo, C.-C. J. (2005). Secure Lempel-Ziv compression with embedded encryption. In E. J. Delp
III & P. W. Wong (Eds.), Electronic Imaging 2005 (pp. 318–327). International Society for Optics and
Photonics. doi:10.1117/12.590665

51

Yuen, C.-H., & Wong, K.-W. (2011). A chaos-based joint image compression and encryption scheme
using DCT and SHA-1. Applied Soft Computing, 11(8), 5092–5098. doi:10.1016/j.asoc.2011.05.050

Zhang, H., Lan, Y., Lacey, R. E., Huang, Y., Hoffmann, W. C., Martin, D., & Bora, G. C. (2009). Analysis
of variograms with various sample sizes from a multispectral image. International Journal of Agricultural
and Biological Engineering, 2(4), 62–69. doi:10.3965/ijabe.v2i4.201

Zhou, J., Au, O. C., Fan, X., & Wong, P. H.-W. (2008). Secure LEMPEL-ZIV-WELCH (LZW) algorithm
with random dictionary insertion and permutation. In Multimedia and Expo, 2008 IEEE International
Conference (pp. 245 – 248). Hannover,GERMANY: IEEE. doi:10.1109/ICME.2008.4607417

Zhou, N., Zhang, A., Wu, J., Pei, D., & Yang, Y. (2014). Novel hybrid image compression–encryption
algorithm based on compressive sensing. Optik - International Journal for Light and Electron Optics.
doi:10.1016/j.ijleo.2014.06.054

Zhu, H., Zhao, C., & Zhang, X. (2013). A novel image encryption–compression scheme using hyper-
chaos and Chinese remainder theorem. Signal Processing: Image Communication, 28(6), 670–680.
doi:10.1016/j.image.2013.02.004

Ziv, J., & Lempel, A. (1978). Compression of individual sequences via variable-rate coding. IEEE
Transactions on Information Theory, 24(5), 530–536. doi:10.1109/TIT.1978.1055934

52

APPENDIX A

I. Squeeze Cipher Encryption algorithm (Kelley & Tamassia, 2014)

Input: key ����, input character stream �

Output: encrypted output stream ܱ

 InitSqueeze(����, �ݔ�݂݁ݎ ,ܩ ,ݒ, ܿ, ܶ)

while there is more input in � do -----------------------⊳ Start compressing and encrypting stream �
Read next character ܿ

if ݔ�݂݁ݎ || ܿ in ܶ then ݔ�݂݁ݎ ← ܿ || ݔ�݂݁ݎ
else

Output index � of prefix in ܶ
RandomSwapሺ�, ܶሻ --- ⊳ swap prefix with a random entry in ܶ

RandomInsertሺݔ�݂݁ݎ || ܿ, ܶሻ -------------⊳ insert ݔ�݂݁ݎ || ܿ randomly into empty entry in ܶ

ݔ�݂݁ݎ ← ܿ

if ݔ�݂݁ݎ ≠ � then --- ⊳ Make sure we get any irregular input

Output index � of prefix in ܶ

II. Squeeze Random Insert and InitSqueeze Functions

function InitSqueeze (����, � ,ܩ ,ݒ, ܿ, ܶ)

Generate fresh �ݒ

Compute ݂ ���ሺ�ݒሻ = ݀݁݁ݏ

Initialize ܩ with seed ⟵ �, ܿ ⟵ �

Initialize table ܶ

for each single character string ݏ do

RandomInsert ሺݏ, ܶሻ

53

function RandomInsert ሺݏ, ܶሻ

Choose a random index ݎ in ܶ

While ܶ[ݎ] ≠ � do

Choose a new random index ݎ in ܶ

[ݎ]ܶ ⟵ ݏ

function RandomSwap ሺ�, ܶሻ

Choose a random index ݎ in ܶ

Swap ܶ[�] and ܶ[ݎ]
III. Squeeze Cipher Decryption Algorithm (Kelley & Tamassia, 2014)

 Input: key ����, input stream of indices �
Output: output character stream ܱ

Read �ݒ from � ---------------------------------------⊳ Initialize PRG ܩ, dictionary ܶ, and variables ݒ݁ݎ and ܿ

InitializeSqueeze(����, �ݒ݁ݎ ,ܶ ,ܩ ,ݒ, ܿ, ݉)

while there is more input in � do----------------------------⊳ Start decompressing and decrypting stream �

Read next index �
Compute the pseudo-random index ݎ of the new entry---------------⊳ i.e., where the new ݒ݁ݎ || ܿ will be

 if ܶ[�] is undefined and (� ≠ = ݒ݁ݎ or ݎ �) then

Output ⊥ and fail--⊳ decoding failed: invalid index

 ---⊳Skip these two tests on the first iteration

if ܶ[�] is defined and � ≠ ݒ݁ݎ and ݎ = � then-----------------------⊳ � is valid and not part of a collision ܿ ←head ሺܶ[�]ሻ
RandomInsert ሺݒ݁ݎ || ܿ, ܶሻ

else if � = ≠ ݒ݁ݎ and ݎ � then---------------------⊳ particular case: original input was ݒ݁ݎ || ݒ݁ݎ || ܿ ܿ ←headሺݒ݁ݎሻ

RandomInsertሺݒ݁ݎ || ܿ, ܶሻ---------------------⊳ We’re decoding ݒ݁ݎ || ܿ and it will be in position ݎ = �

54

Output ܶ[�] --⊳ Finally: output ܶ[�] and update ݒ݁ݎ ݒ݁ݎ ← ܶ[�]
RandomSwapሺ�, ܶሻ-- ⊳ Move ݒ݁ݎ to a random position

 APPENDIX B

 The squeeze file generates in our case an ouput 100.tif.sec-12, depending the size of the dictionary used.

Step1: read the gdal info of the tiff using the following code by : gdalinfo 100.tif

Step 2: gdal_translate -of ENVI 100.tif 100.envi

Step 3: Create a file 100.tif.sec-12.hdr where the haders of these from 100.hdr file, where the samples

and lines of this file are modified to the size of the encrypted ouput.

ENVI

description = {

100.tif.sec-12}

samples = 100

lines = 98

bands = 1

header offset = 0

file type = ENVI Standard

data type = 1

interleave = bsq

byte order = 0

map info = {UTM, 1, 1, 425985, 1279215, 15, 15, 37, North,WGS-84}

coordinate system string =

{PROJCS["WGS_1984_UTM_Zone_37N",GEOGCS["GCS_WGS_1984",DATUM["D_WGS_198

4",SPHEROID["WGS_1984",6378137,298.257223563]],PRIMEM["Greenwich",0],UNIT["Degree",

0.017453292519943295]],PROJECTION["Transverse_Mercator"],PARAMETER["latitude_of_origi

n",0],PARAMETER["central_meridian",39],PARAMETER["scale_factor",0.9996],PARAMETER["f

alse_easting",500000],PARAMETER["false_northing",0],UNIT["meters",1]]}

55

band names = {

Layer_1}

Step 4: gdalinfo 100.tif.sec-12. It outputs:

Driver: ENVI/ENVI .hdr Labelled

Files: 100.tif.sec-12

100.tif.sec-12.hdr

Size is 100, 98

Coordinate System is:

PROJCS["WGS_1984_UTM_Zone_37N",

GEOGCS["GCS_WGS_1984",

DATUM["WGS_1984",

SPHEROID["WGS_84",6378137,298.257223563]],

PRIMEM["Greenwich",0],

UNIT["Degree",0.017453292519943295]],

PROJECTION["Transverse_Mercator"],

PARAMETER["latitude_of_origin",0],

PARAMETER["central_meridian",39],

PARAMETER["scale_factor",0.9996],

PARAMETER["false_easting",500000],

PARAMETER["false_northing",0],

UNIT["meters",1]]

Origin = (425985.000000000000000,1279215.000000000000000)

Pixel Size = (15.000000000000000,-15.000000000000000)

Metadata:

56

Band_1=Layer_1

Image Structure Metadata:

INTERLEAVE=BAND

Corner Coordinates:

Upper Left (425985.000, 1279215.000) (38d19'16.15"E, 11d34'15.95"N)

Lower Left (425985.000, 1277745.000) (38d19'16.27"E, 11d33'28.09"N)

Upper Right (427485.000, 1279215.000) (38d20' 5.68"E, 11d34'16.06"N)

Lower Right (427485.000, 1277745.000) (38d20' 5.79"E, 11d33'28.21"N)

Center (426735.000, 1278480.000) (38d19'40.97"E, 11d33'52.08"N)

Band 1 Block=100x1 Type=Byte, ColorInterp=Undefined

Description = Layer_1

Step 5: gdal_translate -of GTiff 100.tif.sec-12 100.tif.sec-12.encrypted.tif

Input file size is 100, 98

0...10...20...30...40...50...60...70...80...90...100 - done.

APPENDIX C

a) AES CTR ENCRYPTION TIMING

getch@getch-ubuntu:~$ time openssl enc -aes-128-ctr -salt -in 80.csv -out 80.csv.enc

real 0m17.627s

user 0m0.004s

sys 0m0.004s

getch@getch-ubuntu:~$ time openssl enc -aes-128-ctr -salt -in 80.csv -out 80.csv.enc

real 0m7.742s

user 0m0.008s

57

sys 0m0.000s

getch@getch-ubuntu:~$ time openssl enc -aes-128-ctr -salt -in 80.csv -out 80.csv.enc

real 0m7.885s

user 0m0.008s

sys 0m0.000s

B) AES CTR DECRYPTION TIMING

getch@getch-ubuntu:~$ time openssl enc -d -salt -aes-128-ctr -salt -in 80.csv.enc -out 80.csv.new

real 0m5.462s

user 0m0.008s

sys 0m0.000s

getch@getch-ubuntu:~$ time openssl enc -d -salt -aes-128-ctr -salt -in 80.csv.enc -out 80.csv.new

real 0m5.801s

user 0m0.008s

sys 0m0.000s

getch@getch-ubuntu:~$ time openssl enc -d -salt -aes-128-ctr -salt -in 80.csv.enc -out 80.csv.new

real 0m4.216s

user 0m0.004s

sys 0m0.004s

	1. INTRODUCTION
	1.1. Motivation and problem statement
	1.2. Research identification
	1.2.1. Research objectives
	1.2.2. Research questions
	1.2.3. Innovation aimed at

	1.3. Method adopted
	1.4. Overview of the research

	2. LITERATURE REVIEW
	2.1. Image compression
	2.1.1. Dictionary-based methods
	2.1.2. Geostatistics-based methods

	2.2. Image encryption
	2.3. Image compression and encryption methods

	3. MATERIAL AND METHODS
	3.1. Study area
	3.2. LZW compression
	3.3. Basic cryptography
	3.4. Squeeze cipher
	3.5. Geostatistics
	3.5.1. Variogram and kriging

	3.6. Geostatistical simulation
	3.7. Sequential Gaussian Simulation (SGS)
	3.8. Geostatistical simulation validation
	3.9. Advanced Encryption Standard (AES)
	3.9.1. AES CTR mode on OpenSSL

	4. IMPLEMTATIONS AND RESULTS
	4.1. LZW outputs
	4.2. Squeeze cipher outputs
	4.3. Geostatistical simulations results
	4.3.1. Dataset analysis

	4.4. Encryption of the random samples
	4.5. Realization from Sequential Gaussian Simulations
	4.6. Comparison based on compression ratio and speed

	5. Discussion
	6. CONCLUSION AND RECOMMENDATIONS
	6.1. Conclusions
	6.2. Recommendations

