
1

Formal Methods & Tools

Impacts of programming
environments and practices

on energy consumption

Tycho L. Braams
M.Sc. Thesis
August 2020

Supervisors:
dr. L. Ferreira Pires

dr. T. van Dijk
dr. A. Fehkner

H. Logmans (Alten)

Formal Methods & Tools
Faculty of Electrical Engineering,

Mathematics and Computer Science
University of Twente

P.O. Box 217
7500 AE Enschede

The Netherlands

Abstract

Energy consumption and sustainability are of increasing importance in our current
society. In the early 2000s, predictions on the growth of energy consumption of ICT
were worrying. Due to improvements made in hardware development to reduce idle
consumption, the reduction of overhead costs in data centres and the use of more
efficient devices, the predicted growth was not reached. Since the use of ICT and
the amount of data being transferred continues to increase, it is important to look at
other possibilities for reducing energy consumption.

We looked at the energy consumption of Object-Oriented software, specifically
focusing on C#. By performing empirical experiments, we developed a methodology
for performing energy consumption measurements and we analysed the impact of
compiler settings on the energy consumption of software. We found that the compiler
settings can have a different impact based on the software being run, but there was
one setting that performed the worst for both energy consumption and execution
time. This setting should be avoided, while further analysis is necessary to discover
if the differing impact can be linked to programming structures. We also propose
experiments for analysing the energy consumption of programming structures which
could lead to guidelines for programmers.

iii

IV ABSTRACT

Contents

Abstract iii

List of acronyms vii

1 Introduction 1
1.1 Motivation . 1
1.2 Project background . 2
1.3 Goals . 2
1.4 Contributions . 3
1.5 Overview . 4

2 Related Work 5
2.1 Energy measurement . 5
2.2 Software energy consumption . 9

3 Methodology 15
3.1 Approach . 15
3.2 Hardware . 15
3.3 Benchmark . 16
3.4 Tested variables . 17
3.5 Measurement Tools & Methodology 18

4 Data Analysis 21
4.1 Analysis & Visualisation . 21
4.2 Process . 23
4.3 Statistical Analysis . 23

5 Measurement 25
5.1 Energy Measurement . 25
5.2 Idle energy consumption . 27
5.3 Validity . 28
5.4 Conclusion . 28

v

VI CONTENTS

6 Hardware Settings 31
6.1 Idle consumption . 31
6.2 C# Benchmarks . 32
6.3 Comparison to related work . 34
6.4 Validity . 36
6.5 Conclusion . 36

7 Compiler Settings 37
7.1 QLRT . 37
7.2 Compiler setting comparison . 39
7.3 Statistical Analysis . 42
7.4 Validity . 47
7.5 Conclusion . 47

8 Architectures 49
8.1 Operating System . 49
8.2 Results . 51
8.3 Validity . 55
8.4 Conclusion . 56

9 Programming Choices 57
9.1 Loops . 57
9.2 Pattern Matching . 59
9.3 LINQ . 61
9.4 Validity . 63
9.5 Conclusion . 63

10 Conclusions & Recommendations 65
10.1 Validity . 65
10.2 Conclusions . 66
10.3 Recommendations . 68

References 69

Appendices

A CSV example 75

B Data Analysis Chart Examples 79

C Toll Calculations 81

List of acronyms

ICT Information & Communication Technology

RAPL Running Average Power Limit

MSR Machine Specific Registers

CPU Central Processing Unit

JIT Just-in-time

Q Quick JIT

L Quick JIT for loops

R ReadyToRun

T Tiered Compilation

SMM System Management Mode

SFL Spectrum-based Fault Localization

SPELL Spectrum-based Energy Energy Leak Localization

CLBG Computer Language Benchmark Game

GHC Glassgow Haskell Compiler

VB Visual Basic

LINQ Language Integrated Query

vii

VIII LIST OF ACRONYMS

Chapter 1

Introduction

1.1 Motivation

Currently, climate change, resource usage and energy use are important points of
discussion. It has been suggested that Information & Communication Technology
(ICT) solutions can be used to reduce the energy use of other industries or to im-
prove processes to reduce the emission of greenhouse gases [1]. Such efforts are
often referred to as Greening by ICT. It is also important to look at the energy
consumption of the ICT sector itself. In the early 2000’s multiple research projects
made estimations about energy consumption and made predictions about future
trends based on observed trends. These estimations indicated that the emissions
caused by the production of the energy consumed by the ICT sector were equal to
2% of global emissions [2]. Furthermore, the predictions on future energy consump-
tion showed a strong growth that would likely become untenable [3]. Later research
found that this growth had slowed down, partly due to improvements made by hard-
ware producers, which were sometimes induced by governmental policies such as
Energy Star [4]. New technologies such as mobile devices and increased use of
laptops over desktops also contributed, since these devices are inherently more ef-
ficient [5]. Furthermore, these devices also provide an incentive to reduce energy
consumption since the energy available on the devices is limited by their battery
capacity. Data centre operators also worked on reducing their energy consumption
in order to reduce operating costs by improving the effectiveness of cooling and in-
creasing the use of virtualisation to make better use of the available resources [6].
Recently, it was estimated that these reduction efforts have caused the energy con-
sumption of data centres to plateau instead of continuing to grow.

Research also created and analysed methods to measure the energy consump-
tion of specific machines or programs [7]. In 2011, Intel introduced the Running
Average Power Limit (RAPL) which can be used to manage the power usage of the
Central Processing Unit (CPU) [8]. It also introduced registers that keep track of the

1

2 CHAPTER 1. INTRODUCTION

energy consumed by the CPU. Research has shown that this is very accurate [9].
Different measurement methods have been used to analyse the energy consump-
tion of software. They have been used to find inefficiencies in energy consumption
of mobile devices [10], rank programming languages according to energy consump-
tion [11] [12], analyse the energy consumption of different data structure implemen-
tations in Java [13] and Haskell [14], analyse the impact of Design patterns [15], etc.
These efforts have shown that it is possible to obtain significant reductions in the
energy consumed by software.

1.2 Project background

An initial literature study was performed on the energy consumption of ICT. This
showed that it is a new field of study. It also became clear that programmers some-
times have vague ideas about what could reduce the energy consumption of their
software, they lacked evidence to support these ideas. We decided to look into
the energy consumption of Object-Oriented programming. Some research had al-
ready been done on the energy consumption of Java, partially since it is linked
with Android. The energy consumption of application on mobile systems is particu-
larly important as they have a limited battery capacity. As the literature study also
showed that energy reduction efforts in data centres had already reduced most of
the overhead, we decided to focus on C#. C# is another popular Object-Oriented
programming languages, often used for web-development and back-end systems. If
it is possible to reduce the energy consumption of C# software, this could lead to
a reduction in the energy consumption of software running in data centres. We de-
cided to focus our research on the compiler options provided by the C# development
framework.

1.3 Goals

As mentioned previously, there has been a lot of research on the energy consump-
tion of ICT and software in particular. However, it is not yet clear to practitioners how
they can manage energy consumption in their projects. Research is often focused
on a single platform and programming language, with researchers pointing out that it
is unknown if or how their research can be generalised. In this research, we hope to
make a step towards bridging the gap between researchers and practitioners. The
first step is to find out if it is feasible for practitioners to make energy consumption
measurements so that they can become aware of the energy consumption of the
software they are creating. The next step is to help practitioners make choices to

1.4. CONTRIBUTIONS 3

reduce the energy consumption of their software.
Specifically, we focus on the following research question: RQ: How can the en-

ergy consumption of software systems be reduced? To answer this question, several
sub-questions have been defined that split the problem into smaller steps.

RQ1: How can developers obtain reliable results on the energy consumption of
their software? If developers want to make use of energy consumption information, it
should be clear how they can obtain reliable results. Complicated initialisation steps
or restrictive settings make it less likely that the average developer will perform such
measurements. It should be investigated how performing measurements can be
made accessible while still producing reliable results.

RQ2: How do hardware settings influence the energy consumption of software
systems? There are many different hardware settings that can be changed. It is
useful to know how such settings impact energy consumption measurements.

RQ3: How do C# compiler settings influence the energy consumption of soft-
ware systems? .NET Core offers several compiler settings. These settings were
introduced to reduce the start-up time associated with the Just-in-time (JIT) com-
piler. It is not yet clear if and how these settings impact the energy consumption of
software.

RQ4: How consistent is the impact of compiler settings across hardware ar-
chitectures? In order to make decisions about which compiler setting to use, it is
important to know if the impact of such settings is consistent across different archi-
tectures.

RQ5: How do functionally equal programming choices impact energy consump-
tion? In order to reduce the energy consumption of software, it is necessary to
investigate if different choices can have an impact on energy consumption.

To answer research questions 1 to 4, empirical measurements are performed us-
ing existing benchmarks. We have no empirical measurements to answer research
question 5, but we provide code examples that could show energy consumption
differences.

1.4 Contributions

This thesis adds to the body of knowledge on energy consumption of software. In
particular, hardware measurement showed results similar to those reported in a pa-
per published during the course of this research. Furthermore, the influence of com-
piler options offered in .NET Core on energy consumption is analysed. No research
was found that treated the influence of these compiler options. We also expanded
on previous research to create a methodology for performing energy consumption

4 CHAPTER 1. INTRODUCTION

measurements that can be used in future research. Finally, a step is made towards
making the results of research usable by practitioners.

1.5 Overview

The rest of the report is structured as follows. In Chapter 2, related work is dis-
cussed. We discuss research on how the energy consumption of software can be
measured and research on the impact of programming choices on the energy con-
sumption software. In Chapter 3, the methodology used in the research is described.
In Chapter 5, the initial measurements on energy consumption are analysed. In
Chapter 6, the impact of hardware settings on energy consumption is discussed.
In Chapter 7, the impact of compiler settings on energy consumption is discussed.
In Chapter 8, the results of performing the experiments on different hardware is dis-
cussed. In Chapter 9, we make suggestions for experiments that could be performed
to measure the energy consumption of programming choices. Finally, in Chapter 10,
we summarise validity threads, conclusions of the research and possibilities for fu-
ture research.

Chapter 2

Related Work

In this chapter, we discuss related research on energy consumption. In particular,
we look at methods to measure energy consumption of IT devices in Section 2.1 and
how such methods have been used to analyse the energy consumption of software
in Section 2.2.

2.1 Energy measurement

Ghaleb [7] analysed different methods for measuring the power and energy con-
sumption of software programs. Based on this analysis, a taxonomy is proposed
to classify these methods into multiple categories. Hardware methods make use of
specialised devices that contain sensors to perform measurements or use a power
meter to measure the usage via the power supply. Software methods make use
of models or system variables to estimate the energy consumption of the device.
They focused on looking at the sampling frequency, measurement granularity and
the hardware components that are measured. Most software methods have a lower
sample frequency, making it more difficult to obtain energy consumption estima-
tions/measurements for lower levels of software or specific sections of code. Hard-
ware methods have a higher sample frequency but offer less information on which
component is consuming the energy, mostly limited on information for the entire ma-
chine. Ghaleb et al. did not look at the accuracy of measurement results, only look-
ing at which methods are available. Jagroep et al. [16] analysed different software
tools that can be used to measure energy consumption. They selected fourteen
energy profilers but were only able to successfully install six of them. Furthermore,
of these six, they only managed to get two energy profilers fully operational. They
encounter problems with configuring the other profilers, where even contacting the
developers of the tools did not help them in fixing the issues they encountered. They
performed measurements with the two profilers they managed to get operational.

5

6 CHAPTER 2. RELATED WORK

They found significant differences when comparing the profilers estimations to mea-
surements obtained from hardware tools. To improve the results of the profilers,
they calculated correction factors for both tools, that should be applied to their re-
sults. However, they did find that the profilers were timely with their measurements,
and could be used to get a feel for the trends in energy consumption.

Figure 2.1: Power domains supported by RAPL, by Khan et al. [9]

In 2011 Intel introduced the RAPL interface with the Sandy Bridge micro-architecture.
This interface can be used to manage the power usage and temperature of the CPU.
It also provides Machine Specific Registers (MSR) that contain information about
the energy consumption of different “domains”. Figure 2.1 displays the different do-
mains supported by RAPL. Domain support varies for different processor models.
The Package domain is universally supported. The Psys domain was introduced
with the Skylake architecture but requires extra system-level implementations and is
therefore not supported in all Skylake versions.

Hähnel et al. [17] analysed the suitability of using RAPL to perform energy mea-
surements on short code paths. They looked at the update frequency of the machine
registers by continually reading the registers and a time stamp. They found that most
register updates occur within a range of 2% above and below the expected update
time. A small number of updates showed a significant delay They deduced that these
delays are caused by the CPU switching into System Management Mode (SMM),

2.1. ENERGY MEASUREMENT 7

which cannot be controlled by the Operating system. By experimenting, they found
that this occurs every 16 ms. Based on these findings, they created a framework to
measure the energy consumption of short code paths. This framework consists of
multiple steps. First, a loop delays the execution of the code under test until a RAPL
update is detected. Then the code is executed and once it is finished, another loop
reads the register to detect the next update. They found that reading the register
introduced a constant energy cost, so by counting the number of register reading
operations, they can subtract the cost of this loop from the total energy consumption
to find the consumption of the code under test. They also note that it is possi-
ble to delay execution until a delay caused by the CPU entering SMM is detected.
This does limit the possible execution time of the code to under 16 ms to miss the
next SMM delay. Finally, Hähnel et al. compared the results of RAPL energy con-
sumption measurements to external measurements. They found that there was a
consistent offset between the two measurements. This can be explained by the fact
that RAPL measurements are limited to the CPU, while the external measurement
includes other components that also consume energy.

Spencer et al. [18] added to the validation of RAPL measurements by analysing
the performance of DRAM measurements. They analysed multiple types of memory
using multiple tests. They measured the consumption under load by the CPU, idle
and under load by the GPU. They found that the behaviour differed based on the type
of memory. The RAPL measurements differed up to 20%. However, the differences
were constant, meaning that the measurements accurately tracked the behaviour
of the energy consumption, with an offset compared to actual measurements. The
largest differences were encountered when the system was idle or when the memory
is being used by the GPU. Finally, they found that Haswell-EP server machines
use actual measurements, while earlier architectures provided estimations. This
improves the accuracy of the energy consumption reported byRAPL.

Khan et al. [9] studied several aspects of RAPL such as accuracy and granu-
larity. They studied the results reported by different architectures. They found that
the introduction of on-chip voltage regulators in Haswell considerably improved the
results compared to Sandybridge. In the Skylake architecture, the PP0 domain is
updated every 50-70 µs, a considerable change compared to Haswell with updates
approximately every 1 ms. This improves possibilities to measure the energy con-
sumption of short code paths. Khan et al. also investigated if it is possible to use
RAPL to identify different execution phases of a program. The results of one such
test can be seen in Figure 2.2. This shows the measurements provided by RAPL
as well as the results by measuring the power consumption of the plug at the wall
socket. A test with a different benchmark showed the impact of different sampling
rates. The wall power was measured with a sampling rate of 100ms while RAPL was

8 CHAPTER 2. RELATED WORK

Figure 2.2: Wall and RAPL package power consumption with time.

sampled every 5ms. The phases of the second benchmarks switched faster than the
wall measurement sampling rate. RAPL was able to capture these phase switches,
while they were not visible in the wall measurements. Khan et al. also investigated
the impact of temperature changes. They found a correlation between temperature
increase and power consumption. Furthermore, Skylake showed improved perfor-
mance, reducing the increase in power consumption due to increased temperature.
Finally, they looked at the timing of RAPL MSR updates. They found that there is a
measurable delay between updates of different registers. They thus indicate that if
polling is used to find when registers are updated, the update order should first be
investigated. The polling can then be used on the register that is updated last, to
ensure all registers have been updated.

Liu et al. [19] produced jRAPL, a library that allows Java developers to access
RAPL MSRs that contain energy consumption information within their java code.
This can be used to obtain information about arbitrarily chosen code segments,
although it remains important to be aware of the update frequency of the MSRs.
Pereira et al. [20] proposed an adaptation to Spectrum-based Fault Localization
(SFL), which they named Spectrum-based Energy Energy Leak Localization (SPELL).
This is a language-independent technique to identify ”hot spots” in code to help de-
velopers find where they should focus their optimisation efforts. This technique re-
quires energy consumption information as input. By combining this technique with
jRAPL, they performed empirical studies with Java programmes. They found that
their technique could reduce the time spent on optimising software for energy con-
sumption and performance by 50%, while attaining energy consumption reductions

2.2. SOFTWARE ENERGY CONSUMPTION 9

of 18% on average.
Beyer et al. [21] developed the “CPU energy meter” tool which uses RAPL to

obtain energy consumption information. It makes it easier for users to obtain this
information by handling the interaction with the registers. A user can start and stop
the tool, obtaining information about the energy consumption during the run, or the
tool can be given a program as an argument and it will measure energy consumption
while the program is executing. They also integrated their tool into “BencExec”, a
benchmarking tool used by researchers and for competitions in the formal methods
domain.

During our research, Ournani et al. [22] published a study where they looked at
the variability of energy consumption measurements and the influence of multiple
hardware settings on this variability. They looked at the influence of the experiment
protocol, different CPU settings, the hardware generations and the operating sys-
tems. They used RAPL and PowerAPI, which is a tool that also uses RAPL data,
to monitor energy consumption. One of the things they found was that disabling C-
states, which handles switching CPU frequency based on workload, can significantly
reduce variability with low workloads, but has almost no impact at high loads. At high
loads, all CPU cores are used which means that no cores are scaled back. Although
disabling C-states can reduce variability, it significantly increases energy consump-
tion, since all cores run at the highest setting and are not scaled down if they are
idle. They also discovered that pinning processes to cores can influence variability.
They found that the best strategy was to pin processes to a single socket, with dis-
abling hyper-threading while pinning to multiple sockets shows a higher variability
but slightly lower total energy consumption. Using hyper-threading to pin multiple
processes to cores while also utilising multiple sockets showed the worst variability
and energy consumption.

2.2 Software energy consumption

Couto et al. [11] developed an approach to rank the efficiency of programming lan-
guages. They used solutions for the same problems in different programming lan-
guages. As developing such solutions is complex and time-consuming, they used
the ”Computer Language Benchmarks Game” project’s repository to obtain imple-
mentations. These benchmarks have been used in several research projects. Couto
et al. selected 10 programming languages to compare. They decided to use RAPL
to perform energy consumption measurements. As RAPL was only usable from C
and Java directly, they wrote a small C program that handles the RAPL interaction
and starts the implementation to be tested. They verified that this program intro-
duced a small overhead, but that this was insignificant, consistent and negligible. A

10 CHAPTER 2. RELATED WORK

later study [12] extended this research to include 27 programming languages. Fur-
thermore, the measured data was extended with data about peak memory usage.

Beyer et al. [21] used the “CPU energy meter” they developed to measure the
energy consumption of different software verification implementations at a yearly
international competition. An additional green ranking was created that used the
information on energy consumption gathered by the tool. They found that the rank-
ing differed considerably from the main score-based ranking, with no overlap in the
top 3. Furthermore, they discovered that the winner of the ”green” ranking had an
energy consumption two orders of magnitude lower than the worst scoring imple-
mentation. This could indicate that there is a lot of potential to reduce the energy
consumption of software if developers have access to energy consumption informa-
tion. By studying two tools in detail, they found that verification tasks with similar
execution times showed significantly different energy consumption. This indicates
that execution time is not necessarily linked to energy consumption and information
on execution time is not enough to draw conclusions for energy consumption.

Pereira et al. [13] used jRAPL to investigate the energy consumption of differ-
ent Java Collection Framework implementations. They analysed different Set, List
and Map implementations by measuring the energy consumption of the available
methods with different collection sizes. They found that there was no one best im-
plementation, but that it was possible to make a choice that reduced energy con-
sumption based on the methods that are used in the software. This does mean that
if the software is changed, a different collection implementation might use less en-
ergy However, it is not always trivial to change the collection that is used, as they
are not all equivalent. They also developed a tool that uses static analysis to find
the use of collection classes in a Java project, jStanley [23]. This tool then uses
information about energy consumption from their previous work to suggest a more
energy-efficient alternative. Hasan et al. [24] also investigated the energy consump-
tion of Java classes. Their tests were performed on a Raspberry Pi with an Arduino
board collecting the energy consumption measurements. They used smaller col-
lection sizes and a different set of collections, with some overlap, compared to the
work by Pereira et al. They found that collections with more elements showed larger
differences in energy consumption. They also found that the type of element used in
a collection can impact energy consumption. Primitive types increased energy con-
sumption, most likely because extra operations are required to box primitive types
before they can be used with collections. They also found that when execution time
and energy consumption increased, power use showed no change. This indicates
that the extra energy consumption is caused by the increased time spent. Pinto et
al. [25] also looked at the energy consumption of Java Collection Framework imple-
mentations, focusing on thread-safe implementations. They investigated the energy

2.2. SOFTWARE ENERGY CONSUMPTION 11

consumption of different methods and the impact of the number of threads on en-
ergy consumption. During their experiment, they found that calculating upper bound
limits for loops in each iteration consumed twice as much energy compared to cal-
culating the limit once and storing it in a variable for a specific collection. They do
warn that operations that change the length of the collection require calculating the
length in every iteration for correct performance. By using the information obtained
from their experiments they managed to half the energy consumption of their micro-
benchmarks while applying the changes to real-world benchmarks improved energy
consumption by 10%. The impact of for-loop syntax was also studied by Tonini et
al. [26] as one of the practices suggested by Google to improve performance on an-
droid. They focused on iterating arrays, also finding that calculating length in every
iteration increases energy consumption. They also investigated the for-each syntax,
finding that it can increase energy consumption even more.

Gabriel Lima et al. [27] [28] investigated the impact of data structures in Haskell
on energy consumption. For sequential programs, they found that execution time
and energy consumption were strongly correlated. Faster execution times also lead
to a reduction in energy consumption. They also looked at concurrent program-
ming constructs. While they used micro-benchmarks to analyse the energy con-
sumption of sequential data structures, they used benchmarks from Computer Lan-
guage Benchmark Game (CLBG) and Rosetta Code as well as some self-developed
benchmarks to analyse the energy consumption of concurrent programming struc-
tures. They found that it is possible to obtain significant energy reductions with small
changes to the code, such as changing the data type of a variable or using a different
fork method. Furthermore, they found that execution time and energy consumption
are not correlated in concurrent programs. Several programming changes reduced
the execution time while increasing energy consumption. Finally, they found that
using more capabilities, virtual processors in the Haskell run-time system, than the
number of cores available on the CPU can drastically increase execution time and
energy consumption. They found that most benchmarks also showed a decreased
performance when setting the number of capabilities equal to the number of virtual
cores provided by Intel’s hyperthreading. Only one benchmark showed improved
performance.

Melfe et al. [14] elaborated on the study by Gabriel Lima et al., focused on study-
ing the energy consumed by DRAM by different data structures in sequential pro-
grams. They found that DRAM energy consumption was also correlated with the
execution time. They also found that DRAM was responsible for approximately 15%
to 30% of the total energy consumption. Melfe et al. also looked at the impact of
Glassgow Haskell Compiler (GHC) optimisation options on execution time and en-
ergy consumption. They found that optimisations reducing the execution time also

12 CHAPTER 2. RELATED WORK

decreased energy consumption. However, they encountered some cases in which
the optimisations increased execution time and energy consumption. So the relation
between execution time and energy consumption is maintained but the optimisation
options do not guarantee an improved performance based on execution time and
energy consumption.

A different study by Melfe et al. [29] compared the impact on energy consumption
of lazy evaluation of Haskell data structures to strict evaluation. They use micro-
benchmarks to analyse three map implementations, using both lazy and strict eval-
uation. They once more found that execution time and energy consumption are
related. In most cases, strict evaluation showed a reduced execution time and en-
ergy consumption while lazy showed a better performance in specific cases. Their
analysis is limited to micro-benchmarks. They had plans to analyse more complex
programs to find out if these findings could be generalised.

Chantarasathaporn. [30] analysed programming strategies in C#. They looked at
the execution time of different strategies as a proxy for energy consumption. They
compared choices that can be functionally equivalent such as using a struct or a
data-member-only class, static or dynamic attributes and methods and method and
variable accessibility. Some of the choices showed significant differences in execu-
tion time while others showed no significant difference. For example, they found a
protected variable was slower than a private or public variable by 40% while the ac-
cessibility of methods showed no difference. As they created small pieces of code to
specifically test their alternatives, it is unclear how this translates to actual software.
As they only measured execution time, it is also not certain that the differences in
execution time also indicate differences in energy consumption. However, the fact
that differences were observed indicates that there is a potential for different energy
consumption behaviour if different programming choices are made.

Litke et al. [31] applied five different design patterns to embedded C++ code.
They measured the energy consumption of the code with the design pattern and
compared it to the energy consumption of the code without the design pattern. For
one of the design patterns (Observer) they found a significant increase in energy
consumption compared to the code without the pattern. The other patterns showed
no difference in energy consumption. It appears they made use of small code exam-
ples to perform their tests, so it is unclear if their findings can be generalised. Bunse
et al. [15] also investigated the impact of design patterns, focusing on mobile Java
apps. They selected six design patterns and created applications with and without
the design patterns. They found that three of the patterns showed no difference in
energy consumption (including Observer) while two showed a small increase in en-
ergy consumption. For one pattern (Decorator), the energy consumption more than
doubled. As the applications were specifically developed to test the impact of the

2.2. SOFTWARE ENERGY CONSUMPTION 13

patterns, it is unclear how a design pattern might impact the energy consumption of
more complex software. Sahin et al. [32] used an FPGA to investigate the energy
consumption of design patterns. They obtained sample code for 15 design patterns.
For some design patterns, the code with the pattern applied reduced the energy con-
sumption, for some the energy consumption was not significantly different while for
others it was increased. Interestingly, they found that applying the observer pattern
increased the energy consumption by 60% while the decorator pattern increased
the energy consumption by 700%. Feitosa et al. [33] investigated the impact of De-
sign patterns in two non-trivial Java software systems. They detected the uses of
design patterns and manually created a second version of the software, replacing
applications of design patterns with alternative solutions. Measuring the energy con-
sumption of both versions, they found that the alternative versions showed reduced
energy consumption. By further analysing the instances where the patterns were
replaced, they found that the reduction in energy consumption was smaller for more
complex code. This could have implications for the generalisability of results from
research with sample code. The differences in energy consumption observed by
such research could be reduced when the patterns are applied to non-trivial pro-
grams. However, the implementation of design patterns in non-trivial programs is
likely to differ, as developers make different choices. This makes it difficult to repeat
the research using such systems.

Noureddine et al. [34] investigated if and how the energy consumption impact
of design patterns could be reduced. They focused on the Observer and Decorator
pattern, as research has shown that they significantly increase energy consumption.
They created small transformation rules aimed at reducing the energy consumption
of these patterns, with the eventual goal to apply them automatically. By applying
these transformations to existing software, they found that the overall energy con-
sumption was decreased by 4% to 25%. More savings were attained in software
that made more extensive use of the design patterns. Such transformation rules
can help developers retain the advantages of design patterns while reducing their
impact on energy consumption. Furthermore, it shows that programming choices
can have an impact on overall energy consumption.

Agosta et al. [35] investigated Java programs for the financial sector and if mem-
oization could have an impact on the energy consumption of such programs. Mem-
oization is a technique were calculated results are stored in memory along with the
input and function that created the results. If a calculation is encountered at a later
stage, the results can be retrieved from memory instead of repeating the calculation.
As storing results in memory incurs new energy costs, it needed to be investigated
if the process could attain overall energy savings. They used bytecode analysis to
identify pure functions, functions that do not have side effects and are determin-

14 CHAPTER 2. RELATED WORK

istic. Although functions that create objects are sometimes seen as pure in Java,
these are also excluded, as the created object has to be unique for every invocation,
preventing the use of memoization. Based on a set of empirically tuned criteria,
candidates for memoization are selected. These functions are wrapped to perform
memoization. If a new calculation is performed, a trade-off function decides if the
results should be stored, for example, based on the available memory. Agosta et
al. created a performance model to calculate the effectiveness of using memoiza-
tion. This is based on the difference between performing a calculation and reading
a value from memory and the hit rate of the stored values. The hit rate is in turn
based on the variance of the parameters and the available memory. They applied
this process to several open-source financial functions and a part of a well-known
benchmark. Several executions are necessary before the memoization version sta-
bilises, as the lookup table needs to be filled and stabilised. They found that the
memoization version reduced execution time and energy consumption in all cases.
For two of the four tested functions, the energy consumption was reduced by sev-
eral orders of magnitude. This shows that it is not only possible to reduce energy
consumption by making changes to the syntax, but also by reworking the overall
process. Of course, this is a much more complicated task requiring a lot of in-depth
knowledge.

Chapter 3

Methodology

This chapter describes the methodology we used in the experiments. We describe
the hardware and the benchmarks that were used, the measurement approach, the
variables that were measured with a justification for these variables and how the
results were analysed.

3.1 Approach

There are still a lot of unknowns in the field of energy consumption of software.
Especially for the programming language that we focus on, C#, there is a lack of
evidence. Thus, we perform an empirical study to obtain evidence so that we can
answer our research questions. We document factors that might have an impact
on the observed results in this chapter. Hopefully, this will make it possible for any
future research to replicate the results we observed.

All energy measurements are performed with existing code, requiring no new
implementation on our part. Some small changes had to be made to remove com-
piler warnings and errors. To automate the testing process, some shell scripts were
created. Furthermore, we created some Visual Basic (VB) macros to assist us in
analysing the results of the measurements.

3.2 Hardware

The main platform on which the experiments were performed is a Lenovo P1 gen 2,
which contains a 9th generation (Coffee Lake) Intel Core i7-9750H CPU. This CPU
has 6 cores and uses a 16GB RAM (DDR4-2666, 2 SoDIMM). It uses a Dual boot,
Windows 10 and Ubuntu 18.04.04, with the experiments performed under Ubuntu.

To check if the patterns observed in the experiment results are unique to this
hardware system, tests were also performed on a multitude of other systems. Tests

15

16 CHAPTER 3. METHODOLOGY

were performed on a Dell Precision M2800, an HP Elitebook and a Dell Precision
M2800, the specifications can be found in Table 3.1

Model CPU architecture CPU Model Cores RAM
Lenovo P1 gen 2 9th generation i7-9750H 6 16 GB

Dell Latitude E5570 6th generation i5-6300U 2 8 GB
HP Elitebook 840 G3 6th generation i5-6300U 2 8 GB
Dell Precision M2800 4th generation i7-4710MQ 4 8 GB

Table 3.1: Hardware systems

All tests not executed on the Lenovo P1 were executed using a USB with Ubuntu
18.04.04 installed and using a live boot, without installing Ubuntu on the system.
These systems were available for a short time and it was not viable to install Ubuntu
on the system.

3.3 Benchmark

The experiments that tested the influence of hardware and compiler settings on the
energy consumption of software used code from the Computer Language Bench-
mark Game (CLBG), in particular the C# implementations. The CLBG initiative
was created to compare the performance of solutions to problems written in dif-
ferent programming languages. It includes a framework for running, testing and
comparing similar implementations. Solutions have been gathered in many differ-
ent programming languages, but for direct comparisons, the solutions have to follow
a given algorithm and specific implementation guidelines. Although it was created
to compare performance, it has recently also been used to evaluate energy con-
sumption [11] [12] [27]. The code used in our experiments was retrieved from the
repository published by Pereira et al. [12] on the accompanying website1. Some
changes had to be made to be able to execute the code and perform the measure-
ments. These changes concerned syntax changes caused by updates to .NET Core
and Python. The code was compiled with .NET SDK 3.1. In Table 3.2, an overview
of the benchmarks that are used in this research is given, with a short description
and an indication if they make use of parallel programming.

1https://sites.google.com/view/energy-efficiency-languages

https://sites.google.com/view/energy-efficiency-languages

3.4. TESTED VARIABLES 17

Name Description Parallel
Binary-trees Allocate and deallocate many bi-

nary trees
X

Fannkuch-redux Indexed-access to tiny integer-
sequence

X

Fasta Generate and write random DNA
sequences

X

K-nucleotide Hashtable update and k-nucleotide
strings

x

Mandelbrot Generate Mandelbrot set portable
bitmap file

X

N-body Double-precision N-body simula-
tion

x

Pidigits Streaming arbitrary-precision arith-
metic

x

Regex-redux Match DNA 8-mers and substitute
magic patters

X

Reverse-complement Read DNA sequences - write their
reverse-complement

X

Spectral-norm Eigenvalue using the power
method

X

Table 3.2: Benchmarks description

3.4 Tested variables

The experiments around the influence of hardware settings on energy consumption
focused on two CPU hardware settings. These settings are Hyper-threading, a set-
ting on Intel CPUs that allows the operating system to address one physical core
as two virtual cores, and the CPU scaling governor. Hyper-threading is a setting
that can be enabled/disabled in the BIOS, while the governor can be set to power-
save or performance from the command line. The default setting is Hyper-threading
enabled and the governor set to power-save. These settings were chosen as this
research is focused on the availability of energy consumption information for general
developers. Changing the governor can be easily automated while changing a BIOS
setting might be more complicated, as BIOS settings might be locked on company
laptops. More complicated settings were not tested, as this requires more specific
knowledge on the part of the developer to understand what they are doing. If such
knowledge is not available, changes might damage a system.

The experiments around compiler settings tested different combinations of com-

18 CHAPTER 3. METHODOLOGY

piler settings offered by .NET Core2. C# uses a just-in-time (JIT) compiler and .NET
Core offers options to adapt the compilation behaviour. These options produce sub-
optimal code in a shorter amount of time. If a method is used often, the code can be
replaced by an optimised version to improve the execution behaviour. The settings
are Quick JIT, Quick JIT for loops, ReadyToRun and Tiered compilation. Quick JIT
compiles methods without loops more quickly but without optimisations. This can
reduce the startup time of a program but can reduce overall performance. This set-
ting is enabled by default since .NET Core 3.0. Quick JIT for loops applies Quick
JIT to methods that contain loops. This may improve startup time but can cause
long-running loops to get stuck in less-optimised code. This setting is disabled by
default. ReadyToRun is a form of ahead-of-time compilation. It improves startup
time by reducing the amount of work that the JIT compiler has to perform. The
created binaries when using ReadyToRun are larger, as they contain both the in-
termediate language code and the native code. Furthermore, it has to be compiled
for a specific runtime environment. Tiered compilation starts with first-tier code from
Quick JIT or ReadyToRun and will then work on optimising this code in the back-
ground. Tiered compilation is enabled by default since .NET 3.0. Throughout this
paper, these settings will be abbreviated as follows:

Q Quick JIT

L Quick JIT for loops

T Tiered compilation

R ReadyToRun

The experiments tested Q, QL, QT, QLT, T, R, RT, QLTR. According to the docu-
mentation, enabling Quick JIT for loops while Quick JIT is disabled has no effect,
thus this combination was omitted. Furthermore Tiered compilation without Quick
JIT or ReadyToRun should behave the same as disabling Tiered compilation. The
documentation is also unclear on what happens when combining Quick JIT and
ReadyToRun with Tiered compilation.

3.5 Measurement Tools & Methodology

Energy consumption information was obtained using the Intel Running Average
Power Limit interface. This is an easy to use method available on Linux systems
with Intel CPUs with a Sandy Bridge architecture or newer. The energy consump-
tion measured by RAPL has been proven to be accurate. It should be noted that it is

2https://docs.microsoft.com/en-us/dotnet/core/run-time-config/compilation

https://docs.microsoft.com/en-us/dotnet/core/run-time-config/compilation

3.5. MEASUREMENT TOOLS & METHODOLOGY 19

limited to energy consumption of the CPU, including the cores, on-chip GPU, DRAM
and on Skylake, more on-chip systems, as can be seen in Figure 2.1.

For the experiments run on the Lenovo P1, the Psys domain is used to compare
the results of different settings. This domain tracks the entire CPU and should thus
provide the most complete view of the energy consumption. For the HP and Dell
Precision, Psys results are not available and as such the package domain is used
instead.

The Lenovo P1 contains 2 GPUs, an Intel GPU on the CPU and an NVIDIA GPU
separated from the CPU. On Ubuntu, it is possible to indicate which GPU should
be used. The results of running the test using either GPU were compared to ver-
ify how the GPU impacted the energy consumption results. It was found that while
measuring 10 executions of a benchmark, 2 or 3 executions showed GPU energy
consumption. For some benchmarks, every execution showed GPU energy con-
sumption, however, this was a negligible amount. As such, we decided to execute
the tests while using the NVIDIA GPU to remove the possibility of different processes
using the GPU impacting the energy consumption results.

During the benchmark tests, a small C script, created by Pereira et al. [12], han-
dles the interaction with the RAPL registers and starting an individual test. While
testing energy consumption while running idle, it was discovered that the C method,
system(command), used to call the code under test introduces an overhead of 2 to
5 milliseconds. This was measured by comparing the results of the original C script
calling code that sleeps for 10 milliseconds to an edited C script that directly sleeps
10 milliseconds. The execution time of individual benchmarks ranges from .3 to 20
seconds, thus the overhead of 2 to 5 milliseconds was deemed acceptable.

A separate Python script is responsible for calling the C script for every bench-
mark test that should be run. Every benchmark that is used is measured 10 times.
The Python script then waits 5 seconds before measuring the next benchmark. For
the tests on live Ubuntu, this Python script was replaced by a shell script. This
change was made because the live Ubuntu session ran out of memory during tests,
making it impossible to perform the tests. We verified that this change did not change
the energy measurement results, and found no significant difference.

When executing a benchmark, the initial runs show increased variability. Thus a
benchmark is executed 10 times to reduce the impact of this initial variability. The
results of the benchmarks are then stored in a CSV file. The set of benchmarks is
then executed a total of five times. This is done to check if benchmarks show similar
energy consumption in different runs. One execution of the benchmarks takes about
15 minutes, meaning that the tests for one variable take approximately 1 hour and
15 minutes to 1 hour and 30 minutes. The initial set of tests was executed 10 times.
As the results of these additional tests did not significantly impact the results, 5 sets

20 CHAPTER 3. METHODOLOGY

of tests were chosen to keep the execution time manageable.
To automate the process of running tests, a shell script has been created that

compiles the code, starts a set of tests, stores the result of the tests and then starts
another set of tests. It will execute the set of tests a total of 5 times. A further au-
tomation step was made by creating a repository with different compilation settings
on different branches. Another shell script is used to switch to a repository branch,
execute the tests and continue to the next branch.

Since the RAPL MSRs store the energy consumption in 32 bits and are contin-
uous, they will sometimes overflow. The rate at which they overflow depends on
how much energy is consumed. Khan et al. [9] calculated that a Haswell machine
using 84W would cause an overflow every 52 minutes and argue that sampling the
registers every 5 minutes should be sufficient to detect overflows. During this re-
search, the registers are checked with a much higher frequency. All overflows occur
because a register is close to the overflow value at the start of the test and will re-
sult in a negative value in the resulting CSV. Since any negative value indicates an
overflow, these can easily be (manually) detected and excluded from the data used
to compare results.

Chapter 4

Data Analysis

In this chapter, we discuss the different methods we used to analyse the results
of the experiments. We used multiple methods to analyse and visualise the data
before we settled on the approach we use to visualise them in this thesis. The
analysis and visualisation are discussed in Section 4.1. In Section 4.2, we discuss
how we performed the analysis. The statistical analysis we used to check if observed
differences are significant is discussed in Section 4.3

4.1 Analysis & Visualisation

Every run of a set of tests produces a CSV file. This CSV file contains the results
for 10 run sequential runs of each benchmark. It contains the values for each RAPL
domain, as well as the CPU temperature at the start and the end of a benchmark
execution and the total execution time. An example of such a CSV file is visualised
in Appendix A. When automatic tests are executed, a name for the CSV files is
required as a parameter. The CSV files for the five executions of the benchmark set
will then automatically get this name along with a number from 1 to 5. We created a
VB macro that takes the location and name of the CSV files without the number. It
will then import all 5 CSV files into individual Excel worksheets.

In our first approach to analysing the results, we used Excel functions to calculate
the average value for each benchmark, while keeping each set of benchmark exe-
cutions separate. Standard deviation, the difference between the maximum result
and the average value and the difference between the minimum result and the aver-
age value were calculated in a similar fashion. We used a visual comparison to see
if the results showed an acceptable variation and if we could already observe any
trends. We then elaborated on this approach by calculating the average and stan-
dard deviation for each benchmark but combining multiple executions of the set of
benchmarks. This allowed us to test if multiple executions of the set of benchmarks

21

22 CHAPTER 4. DATA ANALYSIS

showed an increased variation or if the variation was stable. We also calculated a
second average, using the last four results of the ten results for each benchmark.
This was calculated to see if the initial startup or caching could have an impact on
energy consumption.

We then took a slightly different approach in order to be able to make proper
comparisons. We calculated a combined average over the five executions for each
benchmark, focused on the PKG and Psys domain. We then calculated the stan-
dard deviation and the standard error so we could calculate a confidence interval.
This was then used to create graphs to visualise the data. Bar graphs were used
to indicate the average energy consumption with error bars used to visualise the
confidence interval. An example of such a graph can be found in Figure B.1. Com-
paring these graphs allowed us to observe trends in energy consumption for different
compiler options.

Since there were differences in execution time and energy consumption, we
wanted to know if we could learn something from calculating the energy consumed
per time unit. For each execution of a benchmark, we calculated a new value by
dividing the energy consumption reported according to the Psys domain by the ex-
ecution time. This gave us the Joules consumed per millisecond. For this, we also
calculated average values, standard deviations and standard errors and created
charts for each benchmark. An example of such a chart can be found in Figure B.2.

However, as these methods require an individual chart for every benchmark, it is
difficult to easily compare results for multiple variables. To make such comparisons
easier, we combined the results of the different benchmarks. This was done by
summing the averages for each benchmark to obtain an overall average. The overall
standard deviation was calculated according to Equation (4.1)

σtotal =
√
σ2
a + σ2

b + σ2
c + ... (4.1)

The overall standard error was calculated according to Equation (4.2)

SE =

√
σ2
a

Na

+
σ2
b

Nb

+
σ2
c

Nc

+ ... (4.2)

By calculating these values for the Psys domain and the execution time, we created
a two dimensional graph to compare different settings. An example of such a graph
can be found in Figure B.3.

While looking into a newly published article [22], we encountered the use of
box-and-whisker plots to visualise and compare energy consumption measurement
results with different variables. A box-and-whisker plot visualises groups of data
through their quartiles. The line in the box represents the median, the top of the
box represents the median of the upper half of the dataset and the bottom of the

4.2. PROCESS 23

box represents the median of the lower half of the data. The lines, or whiskers,
represent the minimum and maximum value, while any dots above or below these
whiskers are values classified as outliers. An example of a box-and-whisker plot can
be found in Figure 5.1. We found that such charts better represent the total range
of the measurement results, allowing for a better comparison of results. As these
charts only have one axis, we represent the data with two box-and-whisker plots,
one for the energy consumption, either PKG or Psys, and one for the execution
time. Excel can automatically create these plots from a dataset.

4.2 Process

To reduce the effort required to perform the analysis we are using, we created a
VB macro. We created a template worksheet in an Excel workbook. This template
contained all the formulas and charts that we wanted to obtain based on the data
from five sets of benchmark executions. After the CSVs have been imported into
individual Excel worksheets, in a separate workbook, the macro can be used to re-
trieve the data from these worksheets and correctly place it in a copy of the template
worksheet. The formulas and charts will then update based on the new data. Charts
that combine results for multiple variables are still created manually, based on which
worksheets should be included.

Initially, we encountered an issue when copying charts from one worksheet to
another. The chart will still use the data from the original worksheet. We created a
macro to automatically replace the references to the worksheet based on an input
parameter. This turned out only partially successful for the charts with error bars, VB
can be used to access the data range for the bars themselves. However, the data
range for the error bars is not exposed to VB and it is thus impossible to change
the worksheet reference with a macro. This problem is avoided by using a template
sheet. When copying an entire worksheet, the new charts will automatically use the
identical data range on the new worksheet.

4.3 Statistical Analysis

To ensure that the differences and trends we observed are significant, we performed
a statistical analysis. Firstly, we investigated how the data is distributed. We used
the Shapiro-Wilk test to check if the data is normally distributed. The Shapiro-Wilk
test tests the null hypothesis that a given sample (x0, x1, ..xn) came from a normal
distribution. We performed this test, taking the results for one benchmark as the
samples. For some benchmarks, the results indicated that the null hypothesis can

24 CHAPTER 4. DATA ANALYSIS

be rejected, meaning that the samples are not from a normal distribution. For other
benchmarks, the results did not support rejecting the null hypothesis. Furthermore,
after we repeated this test for the results from runs with different compiler settings,
the results of the Shapiro-Wilk test were not consistent. While the null hypothesis
could be rejected for a benchmark for one compiler setting, this was not true for all
compiler benchmarks. For all benchmarks, there was at least one setting where the
null hypothesis could be rejected and at least one where it could not be rejected.

Based on the Shapiro-Wilk test results, we decided to use the Wilcoxon rank-
sum test. This is a nonparametric test that can be used to test if two independent
samples were selected from populations with the same distribution. We selected this
test as we cannot treat our results as being from a binary distribution. We performed
this test for individual benchmarks. Similar to what we did for the analysis described
in Section 4.1, we created a VB macro that retrieves the results for each benchmark
from the worksheet they have been imported into and place it in the correct location
on a copy of a template worksheet. The test requires the results for two variables,
grouped per benchmark. Analysing the results of the Wilcoxon rank-sum test, we
found that for some compiler settings, the energy consumption of some benchmarks
was significantly lower, while for others it was significantly higher. Therefore we
decided to report the results of the Wilcoxon rank-sum test along with the average
energy consumption. This gives a better indication of the actual impact, as some
benchmarks have an energy consumption that is magnitudes of order smaller than
other benchmarks.

Chapter 5

Measurement

In this chapter, we discuss how developers can perform energy consumption mea-
surements. We discuss how developers can use RAPL for energy measurements
and how they can reduce the variability of such measurements in Section 5.1. We
also analyse the idle consumption of the system we used and how this compares
to the energy consumption under load in Section 5.2. In Section 5.4, we give an
answer to RQ1.

5.1 Energy Measurement

It should be noted that to be able to use RAPL to measure energy consumption, a
Linux distribution is required. Accessing registers requires special access (Ring-0).
To achieve this in a Windows distribution, a special driver needs to be used and no
such driver is publicly available for Windows at this time.

On Linux, there are multiple methods that use RAPL to obtain energy consump-
tion information. The first method is to manually read the machine-specific registers.
This requires root access and knowledge about the location of these registers. The
registers should be read once at the start of the measurement and once at the end
of the measurement. The difference between these values can be used to calcu-
late the energy consumption. The value read from the register is stored in a unit
of measurement defined by Intel. It needs to be multiplied by a factor stored in a
different register to obtain the energy consumption in Joules. This is done to in-
crease the capacity of the register, as Intel uses 32 bits of a 64 register which would
overflow more frequently without this conversion. As RAPL starts tracking energy
consumption once a computer boots, no action is required before the registers can
be accessed. A second method is to use a tool that handles the interaction with the
registers and provides the results to the user. An example of such a tool is the CPU
energy meter developed by Beyer et al. [21]. Perf is another tool that can be used.

25

26 CHAPTER 5. MEASUREMENT

It is provided on Linux by default and can be used to track a multitude of system
information, including RAPL on Intel systems. Performance API is a similar tool that
can provide information on a range of system information and has been extended to
include RAPL information [36].

Figure 5.1: Energy consumption with different applications running in the back-
ground

RAPL tracks the energy consumption of the different domains without tracking
which process is actually using those domains. As such it is important to perform
measurements while minimising the number of other processes that are running.
Tests were performed while running other applications. In Figure 5.1, the results of
a measurement without other applications are compared to the results of running a
Firefox browser without a web page, with google.com, with nu.nl and with Visual
Studio minimised in the background. The limited activity already showed increased
usage and having web pages open further increased consumption and variability.

Initial measurements showed stable results with limited variability. However, over
the course of the research project, some tests were performed again, showing dif-
ferent results. The variability still overlapped but combining the results would show
an increased total variability. As tests were performed over a longer period of time,
on different locations and with different external temperatures, these factors could
be responsible for some of this increased variability.

We also found that it should be ensured that a system does not fall asleep while
executing the tests. If this occurs, the results will be unreliable, as it is unclear what
happens, which processes are stopped and which continue. Furthermore, waking
up introduces extra costs. This can be avoided by changing the display settings to

google.com
nu.nl

5.2. IDLE ENERGY CONSUMPTION 27

always stay on. When performing tests on a laptop, tests should be executed while
connected to an external power source. If tests are performed while relying on the
battery, the results will be impacted by the remaining charge in the battery, as the
operating system will take additional power-saving measures when the remaining
power passes certain thresholds.

5.2 Idle energy consumption

To get a baseline of the energy consumption, we measured energy consumption
while running idle. We performed these measurements with different lengths, namely
10 milliseconds, 100 milliseconds, 1 second (1000 milliseconds) and 10 seconds.
In this experiment, we measured the energy consumption 500 times. These 500
measurements were repeated 5 times, except for the 10 second measurements, for
which the set of 500 measurements was executed just once.

During these measurements, we discovered the overhead cost caused by the C
function system(command), which was also mentioned in Section 3.5. The results for
measuring 10 milliseconds idle showed an execution time of 11 to 15 milliseconds,
while the results for 100 milliseconds showed an execution time of 101 to 105 mil-
liseconds and the results for 1000 milliseconds showed an execution time of 1001 to
1005 milliseconds. We noticed this constant offset and some changes to the code
running the test allowed us to pinpoint the cause. This overhead has a significant
impact on the shorter measurements. Repeating the measurements for 10 millisec-
onds while excluding this function gave results with an average execution time of
10.5 milliseconds.

Table 5.1: Average Energy consumption while running idle. The last column shows
the results of removing a function introducing overhead costs.

Duration 10ms 100ms 1000ms 10s 10ms*
Average Energy
Consumption

0,142J 0,949J 8,582J 85,69J 0,0927J

J/ms 0,0142 0,0095 0,0086 0,0086 0,0093

The results for the energy consumption while running idle are very stable with
limited variability. The average energy consumption can be found in Table 5.1.
The last column provides the average consumption for the experiment where the
system(command) function was excluded. This shows that this call has a serious
impact on short measurements while running idle. From these results, it is also pos-
sible to see a linear trend between execution time and energy consumption. The
second row in the table shows the energy consumed per millisecond. This value is

28 CHAPTER 5. MEASUREMENT

pretty similar, with a slightly lower value for the longer execution times. This can be
explained by the fact that energy is measured once per execution, thus longer idle
times will reduce the impact of any overhead costs incurred.

We compared these values to the energy consumption while performing the
benchmark. The energy consumption per millisecond while executing the bench-
marks ranges from 0,03 J/ms to 0,07 J/ms, depending on the benchmark. From
these values, we can conclude that the baseline costs are at most 30% of the en-
ergy consumption while running a benchmark test. Most of the energy consumption
is caused by the code being executed.

5.3 Validity

There are several factors that can influence the validity of the results presented in
this chapter. First of all, the applications that were left running while performing the
benchmark measurements were left idle. If a user were to continue to use a system
while a measurement is being performed, it is likely that the energy consumption
will show more variability. While the applications are idle, the scheduler should
give priority to the active benchmark. If the system is being used, it is likely that
the benchmark will get less time from the scheduler. As it is not trivial to perform
multiple automatic measurements with comparable user input, it was decided to
continue with an idle system without any other idle or active applications.

Secondly, it is not yet clear how idle energy consumption relates to baseline
consumption or consumption under load. [22] et al. found that systems showed
an increased variability while idle compared to running a task. This indicates that
there could be a difference in energy consumption behaviour of a system under
load compared to while running idle. So, while we can conclude that the energy
consumption while executing a task is higher than while running idle, it is not possible
to make further conclusions.

5.4 Conclusion

Based on this information, we can give an answer to RQ1: How can the energy
consumption of software systems be measured?

Although we saw a limited impact from leaving other applications idle, it is best
to reduce the number of applications that are open/active. Furthermore, it should
be ensured that a system executing tests is connected to an external power source
and that it does not change the operating state while executing the tests, such as
shutting off the display, going to a lock screen, or falling asleep.

5.4. CONCLUSION 29

There are several tools that can help a developer obtain energy consumption
measurements using RAPL. If the software being tested has a short execution time,
such tools could have a significant impact on the measured results. It is preferable
to execute tests with a longer execution time, to reduce the impact of any overhead.
Furthermore, it is advisable to perform multiple measurements, as there is always
some variability in the results. If you want to compare results from two or more tests,
it would be best to (automatically) run all tests in one session. Multiple sessions
might introduce additional variance.

30 CHAPTER 5. MEASUREMENT

Chapter 6

Hardware Settings

In this chapter, we discuss the impact of different hardware settings, both on the
energy consumption of an idle system in Section 6.1 and on the energy consumption
of C# software in Section 6.2. As mentioned in Chapter 3, this concerns the Hyper-
threading setting and the CPU governor. In Section 6.5, we give an answer to RQ2.

6.1 Idle consumption

The energy consumption measurements of an idle system discussed in Section 5.2
were also performed with the different hardware settings. The measurements for 100
milliseconds of idle time can be found in Figure 6.1 and the measurements for 1000
milliseconds of idle time can be found in Figure 6.2. It can be seen that the energy
consumption in performance mode is slightly higher than the energy consumption
in power-save mode. This is to be expected, as the CPU is running at a higher
frequency in performance mode. However, the difference is very limited. Producers
of hardware have put a lot of effort into reducing energy consumption while running
idle.

There are a number of outliers visible in both charts, but the outliers in Figure 6.2
show a large variation. It should be kept in mind that these charts use 2500 data
points and that there are 5 to 10 outliers. The outliers for the power-save mode with
Hyper-threading disabled came from a cluster of sequential data points. The two
most extreme outliers for the performance mode with Hyper-threading disabled are
also two sequential data points. It seems likely that the system was interrupted by a
different process, leading to increased energy consumption. Finally, the first results
of a set of 500 measurements are also slightly higher than the majority of the results.
This is likely due to the system settling into a reduced operating level.

31

32 CHAPTER 6. HARDWARE SETTINGS

Figure 6.1: 100ms Idle Energy consumption

Figure 6.2: 1000ms Idle Energy consumption

6.2 C# Benchmarks

The results of the initial measurements of the benchmarks with varying hardware
settings can be found in Figure 6.3 and Figure 6.4. It shows that setting the governor
to performance mode can slightly increase the energy consumption while the execu-
tion time decreases. Disabling Hyper-threading shows a stronger increase in energy
consumption combined with shorter execution time. Disabling Hyper-threading and

6.2. C# BENCHMARKS 33

setting the governor to performance shows the strongest increase in energy con-
sumption and a decrease in execution time. Furthermore, disabling Hyper-threading
reduces the overall variability of the results.

Figure 6.3: Energy consumption

Figure 6.4: Execution time

However, when measurements were repeated at a later time, disabling Hyper-
threading showed different results. The results can be seen in Figure 6.5 and Fig-
ure 6.6. It still reduces the variability of the results but the energy consumption was

34 CHAPTER 6. HARDWARE SETTINGS

reduced instead of increased. The difference between these sets of measurement
results is the fact that in the initial experiment, the compilation files were not changed
after applying the hardware setting change. Furthermore, all tests showed an overall
decreased execution time while no such general change is present in energy con-
sumption. For the second measurement results, the compilations are discarded at
the start of the test and the code is compiled anew. This seems to indicate that the
C# compiler adapts to the hardware settings at the time of initial compilation. Fur-
thermore, it does not automatically detect that these settings have changed. This
could mean that when hardware settings on a system are changed in order to im-
prove energy consumption if the software is not correctly recompiled, the desired
results are not obtained.

Figure 6.5: Energy consumption

6.3 Comparison to related work

The work published by Ournani et al. [22] similarly looks at the impact of hardware
settings on energy consumption. They also measured the energy consumption us-
ing RAPL in combination with PowerAPI, which builds a model on top of information
from system counters to provide process specific energy consumption information.
They performed their research on server nodes, which provide two core sockets,
while this research uses laptops which provide a single core socket. Ournani also
made use of a different set of benchmarks to perform their tests.

6.3. COMPARISON TO RELATED WORK 35

Figure 6.6: Execution time

Although they did not look at the effect of Hyper-threading by itself, they looked
at the effect of pinning processes to specific cores, where one strategy did not make
use of Hyper-threading. They found that pinning the processes to different cores re-
duces energy consumption and variability. They attribute this to the reduced context
switching, as spreading the processes while using Hyper-threading to pin two pro-
cesses to one core showed increased consumption and variability. Of note is that
they disabled C-states, which reduced the energy consumption variability but in-
creased overall consumption. C-states adapt the frequency of the CPU to the work-
load, by disabling this functionality, the CPU runs at a higher frequency. Changing
the governor of the CPU to performance is comparable, as it increases the default
frequency of the CPU on the Lenovo P1 from 800MHz to 4Ghz.

In the second measurement results, a similar result can be observed as by Our-
nani et al. Disabling Hyper-threading reduces the variability while setting the gover-
nor also reduces the variability. Combining these settings further reduces variabil-
ity. Although it was not tracked how the processes were spread across the cores,
this could be one explanation for why disabling the Hyper-threading showed an in-
creased energy consumption in the initial measurement. If the benchmark made
use of more than 6 threads, disabling Hyper-threading would lead to extra context
switching. In the second experiment, the new compilation might have adapted to the
reduced number of cores available, thus removing this additional context switching.

The work by Ournani et al. was published while this research was taken place.
Their research was focused on the hardware settings, while this research main focus
was compiler settings. However, it is interesting to see that the limited hardware

36 CHAPTER 6. HARDWARE SETTINGS

settings that were measured show results that match their findings.

6.4 Validity

The measurements for the impact of the hardware settings were performed using
the Ubuntu operating system. It is possible that using a different Linux distribution, a
Windows distribution or an iOS installation could produce different results. The use
of Ubuntu as an operating system also has another impact, as it means the software
is executed using .NET Core. On a Windows installation, a different .NET version
could be used which might alter the results. However, the drivers required to perform
these tests on Windows are currently not available.

It is also possible that dust build-up in the fans of the used hardware affected
the results of the tests. Similarly, the position of the system under test or the room
temperature could influence the results.

Finally, software that puts a different type of load on the system than the bench-
marks used in our measurements could show different results. Such loads might
be affected by the hardware settings. This risk was already reduced by the fact that
we used multiple different benchmarks, however, these benchmarks were mainly
developed to compare programming languages and not to test the hardware perfor-
mance.

6.5 Conclusion

Based on the results for the hardware settings measurements, we can provide an
answer for RQ2: How do hardware settings influence the energy consumption of C#
software?

We found that switching to performance mode increased energy consumption,
which is what is to be expected. We also found that disabling hyper-threading can
reduce energy consumption. These findings are in line with other research.

Interestingly, we obtained different results if we recompiled the code after chang-
ing hardware settings compared to only changing hardware settings. We hypoth-
esise that the C# software fails to adapt to the reduced number of cores available
when disabling hyper-threading without recompiling. This can explain the observed
increase in energy consumption, as this would require additional context switching.

When changes are made to reduce energy consumption, it might be useful to
test that the changes have the desired impact.

Chapter 7

Compiler Settings

In this chapter, we discuss the impact of different C# compiler settings on the energy
consumption of the software. We start by analysing one of the settings that we
tested to verify if it behaves as expected in Section 7.1. We then discuss the results
of performing the benchmark tests with different compiler settings in Section 7.2. A
statistical analysis of these results is presented in Section 7.3. Finally, we give an
answer to RQ3 in Section 7.5.

7.1 QLRT

As explained in Section 3.4, .NET offers a number of compiler settings, namely
Quick JIT (Q), Quick JIT for loops (L), ReadyToRun (R) and Tiered Compilation (T).
While C# can be compiled using the build command, ReadyToRelease requires
the publish which is used to publish an application and its dependencies for de-
ployment. It also requires information about the platform that the application will be
deployed on. According to the documentation, Tiered compilation will start with the
code compiled by Quick JIT or ReadyToRelease. As the different compilation com-
mands place the compiled files in different locations, it was not clear what happens
when Quick JIT and ReadyToRelease are both enabled in the compilation settings.

To test what occurs when all settings are enabled (QLRT), we used both compi-
lation methods and executed the code from both locations. We then compared the
results to the results of using the comparable compilation, QLT and RT. The energy
consumption results can be found in Figure 7.1 and the execution time can be found
in Figure 7.2. It can be seen that the energy consumption and execution time of
QLRT while executing the published code is equal to the energy consumption and
execution time of RT. Similarly, the execution time and execution time of QLRT while
executing the build code is equal to QLT. From this, it can be concluded that Quick
JIT and ReadyToRelease should be treated as exclusive options and it is not possi-

37

38 CHAPTER 7. COMPILER SETTINGS

ble to use both. As QLRT is thus not a real possibility, it will be excluded from the
other results.

Figure 7.1: Energy consumption comparison of QLRT setting.

Figure 7.2: Execution time comparison of QLRT setting.

7.2. COMPILER SETTING COMPARISON 39

7.2 Compiler setting comparison

The measurements for the different compiler settings were executed with Hyper-
threading enabled and with Hyper-threading disabled. The results of the measure-
ments with Hyper-threading enabled can be seen in Figure 7.3 and Figure 7.4. The
results of the measurement with Hyper-threading disabled can be seen in Figure 7.5
and Figure 7.6.

Figure 7.3: Energy consumption of different compiler settings.

The first thing that can be seen from the results of the measurements that one
combination of settings performs considerably worse on both energy consumption
and execution time. This is the combination of Quick JIT, Quick JIT for loops and
Tiered compilation. This is an unexpected finding, as Tiered compilation is supposed
to optimise frequently used code. The shorter compile time of Quick JIT is supposed
to save more than the cost of running sub-optimal code before Tiered compilation
can perform optimisations.1 Overall, combining a setting with Tiered compilation
seems to increase the energy consumption and execution time, but this impact is
limited for RT and QT compared to QLT.

When looking at the measurement results for QLT in more detail, the increase
in energy consumption is not the same for every benchmark. Spectral-norm is im-
pacted the strongest, tripling the energy consumption and execution time, followed
by Fannkuch-redux with a doubled energy consumption and execution time. In com-

1https://github.com/dotnet/runtime/blob/master/docs/design/features/

tiered-compilation.md

https://github.com/dotnet/runtime/blob/master/docs/design/features/tiered-compilation.md
https://github.com/dotnet/runtime/blob/master/docs/design/features/tiered-compilation.md

40 CHAPTER 7. COMPILER SETTINGS

Figure 7.4: Execution time of different compiler settings.

parison, Pidigits is barely affected. The average energy consumption for the bench-
marks can be found in Table 7.1.

Figure 7.5: Energy consumption of different compiler settings with Hyper-threading
disabled.

A second observation is that ReadyToRelease seems to reduce the variability
of the energy consumption measurements. Almost all settings appear to reduce
the variability of the basic version that does not use any of the compilation settings.

7.3. STATISTICAL ANALYSIS 41

Figure 7.6: Execution time of different compiler settings with Hyper-threading dis-
abled.

However, the total energy consumption for most options is very similar to the energy
consumption when all settings are disabled. As of .NET Core 3.0, the default setting
is QT. From these tests, removing Tiered compilation from the default settings could
reduce energy consumption slightly. The execution time of Q and QT overlap, with
QT having a larger variability.

By comparing Figure 7.3 and Figure 7.5, it is possible to see that the conclusion
from Chapter 6, that Hyper-threading reduces the variability of the energy consump-
tion also holds for these tests. However, this does not appear to be true for the
energy consumption of QLT.

In Figure 7.7, the energy consumption is shown in Joules per millisecond. This
has been calculated by dividing the total energy consumption by the execution time.
In this figure, it can be seen that energy consumption varies slightly. However, the
severely increased energy consumption of QLT can not be explained by the energy
consumption per millisecond. This seems to indicate that when using QLT, the in-
creased energy consumption is linked to the increased execution time. For all other
settings, the relation between the total energy consumption and energy consumption
per millisecond seems to match.

42 CHAPTER 7. COMPILER SETTINGS

Figure 7.7: Energy consumption in Joule per millisecond of different compiler set-
tings.

7.3 Statistical Analysis

As described in Section 4.3, we performed statistical analysis to verify that the dif-
ferences observed in Section 7.2 are statistically significant. The average energy
consumption of the benchmarks with different compilation settings can be found in
Table 7.1. The results of the Wilcoxon ranksum test can be found in Table 7.2,
Table 7.3, Table 7.4, Table 7.5 and Table 7.6. To reject the null hypothesis that
two sample sets come from the same distribution with 95% confidence, the p-value
should be smaller than 0.05. If the p-value is larger than 0.05, the null hypothesis
can not be rejected. In the tables, white cells indicate that the null hypothesis can
not be rejected. The results of one setting are compared to other settings, so in
Table 7.2, the first column contains the results for comparing C# to C#T. Green and
yellow cells indicate a significant difference, with the energy consumption of the col-
umn’s setting lower than the setting it is compared to. Orange and red cells indicate
that the column’s setting has a higher energy consumption than the setting it is com-
pared to. Red and green are used for very low p-values, indicating high confidence
that they are significantly different. Yellow and orange indicate that the p-value is
closer to the decision value.

From these results, it can be seen that QLT uses significantly more energy. How-
ever, it also becomes clear that for the other settings, it is harder to draw a clear
conclusion. For example, when comparing C#Q to C#R, some benchmarks con-
sume significantly more energy, while others consume significantly less energy. As

7.3. STATISTICAL ANALYSIS 43

C#T C#R C#RT C#Q C#QL C#QT C#QLT C#
Binary 375,5 377,5 387,8 375,4 380,0 398,4 448,4 373,4
Fasta 65,2 63,8 64,8 66,4 65,4 67,2 71,8 67,8
Fannkuch-red. 387,9 446,4 453,3 422,7 409,4 404,1 859,4 413,7
K-nucleotide 215,5 251,6 248,9 230,2 226,0 220,4 250,1 225,8
N-body 128,3 131,4 131,0 134,8 134,2 138,7 136,6 132,5
Pidigits 30,0 29,2 30,0 30,9 30,4 31,3 30,3 30,1
Reverse-comp. 28,2 31,8 32,0 29,3 28,5 29,9 45,3 28,9
Spectral-norm 24,0 27,7 28,1 24,0 23,6 24,9 75,4 24,3
Regex-redux 656,3 581,1 674,3 586,1 578,4 686,9 671,6 579,8
Mandelbrot 119,0 120,5 123,5 127,0 123,1 127,4 131,5 125,2

Table 7.1: The average Psys energy consumption of different compiler settings. Re-
ported values are in Joules, rounded to 1 decimal value

can be seen in Table 7.1, regex-redux, binary and fannkuch-redux consume most
of the energy. When comparing two compilation settings, these benchmarks thus
dominate the consumption trends.

To better understand when energy consumption is increased and when it is de-
creased, the code of the benchmarks should be analysed in more detail. There
might be certain coding structures that show up in benchmarks that show similar
energy consumption behaviour. We can already see that the difference cannot be
explained based on whether a benchmark makes use of parallel programming. K-
nucleotide and N-body both don’t make use of parallel programming but often show
different energy consumption, with one consuming more energy while the other con-
sumes less.

44 CHAPTER 7. COMPILER SETTINGS

C# compared to:
C#T C#R C#RT C#Q C#QL C#QT C#QLT

Binary 0.16 0.01 0.004 0.25 0.001 <0.001 <0.001
Fasta <0.001 <0.001 <0.001 0.013 <0.001 0.21 <0.001

Fannkuch-red. 0.15 0.004 <0.001 0.032 0.0018 0.22 <0.001
K-nucleotide <0.001 <0.001 <0.001 0.011 0.47 0.0054 <0.001

N-body <0.001 0.012 0.002 <0.001 0.002 <0.001 <0.001
Pidigits 0.20 <0.001 0.28 <0.001 0.016 <0.001 0.11

Reverse-comp. <0.001 <0.001 <0.001 0.009 0.0026 <0.001 <0.001
Spectral-norm <0.001 <0.001 <0.001 0.06 <0.001 <0.001 <0.001
Regex-redux <0.001 0.30 <0.001 0.031 0.47 <0.001 <0.001
Mandelbrot <0.001 <0.001 0.016 0.002 <0.001 <0.001 <0.001

Table 7.2: P-values of Wilcoxon rank-sum test comparisons of different compiler
settings vs C#. Green indicates a significantly lower energy consumption
and orange and red indicate a significantly higher energy consumption.

C#Q compared to:
C#T C#R C#RT C#QL C#QT C#QLT

Binary 0.39 0.072 0.0031 0.015 <0.001 <0.001
Fasta 0.065 <0.001 0.0046 0.046 0.044 <0.001

Fannkuch-redux <0.001 0.16 <0.001 <0.001 0.022 <0.001
K-nucleotide <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

N-body <0.001 <0.001 <0.001 0.14 <0.001 0.001
Pidigits <0.001 <0.001 <0.001 0.002 0.006 0.0036

Reverse-comp. <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
Spectral-norm 0.056 <0.001 <0.001 0.0013 <0.001 <0.001
Regex-redux <0.001 0.11 <0.001 0.0012 <0.001 <0.001
Mandelbrot <0.001 <0.001 <0.001 <0.001 0.28 <0.001

Table 7.3: P-values of Wilcoxon rank-sum test comparisons of different compiler
settings vs C#Q. Green indicates a significantly lower energy consump-
tion and orange and red indicate a significantly higher energy consump-
tion.

7.3. STATISTICAL ANALYSIS 45

C#QL compared to:
C#T C#R C#RT C#QT C#QLT

Binary 0.039 0.16 0.32 <0.001 <0.001
Fasta 0.43 0.01 0.23 <0.001 <0.001

Fannkuch-redux 0.24 <0.001 <0.001 0.004 <0.001
K-nucleotide <0.001 <0.001 <0.001 0.0072 <0.001

N-body <0.001 <0.001 <0.001 <0.001 0.001
Pidigits 0.0035 <0.001 0.0092 <0.001 0.19

Reverse-comp. 0.029 <0.001 <0.001 <0.001 <0.001
Spectral-norm 0.009 <0.001 <0.001 <0.001 <0.001
Regex-redux <0.001 0.19 <0.001 <0.001 <0.001
Mandelbrot <0.001 <0.001 0.18 <0.001 <0.001

Table 7.4: P-values of Wilcoxon rank-sum test comparisons of different compiler
settings vs C#QL. Green indicates a significantly lower energy consump-
tion and orange and red indicate a significantly higher energy consump-
tion.

C#QT compared to: C#T to:
C#T C#R C#RT C#QLT C#QLT

Binary <0.001 <0.001 <0.001 <0.001 <0.001
Fasta <0.001 <0.001 <0.001 <0.001 <0.001

Fannkuch-redux <0.001 <0.001 <0.001 <0.001 <0.001
K-nucleotide 0.013 <0.001 <0.001 <0.001 <0.001

N-body <0.001 <0.001 <0.001 0.0018 <0.001
Pidigits <0.001 <0.001 <0.001 <0.001 0.0036

Reverse-comp. <0.001 <0.001 <0.001 <0.001 <0.001
Spectral-norm <0.001 <0.001 <0.001 <0.001 <0.001
Regex-redux <0.001 <0.001 0.0097 0.0016 <0.001
Mandelbrot <0.001 <0.001 <0.001 <0.001 <0.001

Table 7.5: P-values of Wilcoxon rank-sum test comparisons of different compiler
settings vs C#QT and vs C#T. Green indicates a significantly lower en-
ergy consumption and orange and red indicate a significantly higher en-
ergy consumption.

46 CHAPTER 7. COMPILER SETTINGS

C#R compared to: C#RT compared to:
C#T C#RT C#QLT C#T C#QLT

Binary 0.14 0.33 <0.001 0.067 <0.001
Fasta 0.006 0.031 <0.001 0.14 <0.001

Fannkuch-redux <0.001 <0.001 <0.001 <0.001 <0.001
K-nucleotide <0.001 0.12 0.33 <0.001 0.23

N-body <0.001 0.23 <0.001 <0.001 <0.001
Pidigits <0.001 <0.001 <0.001 0.35 0.042

Reverse-comp. <0.001 0.12 <0.001 <0.001 <0.001
Spectral-norm <0.001 0.004 <0.001 <0.001 <0.001
Regex-redux <0.001 <0.001 0.0016 <0.001 0.30
Mandelbrot < 0.011 0.0019 <0.001 <0.001 <0.001

Table 7.6: P-values of Wilcoxon rank-sum test comparisons of different compiler
settings vs C#R and C#RT. Green indicates a significantly lower energy
consumption and orange and red indicate a significantly higher energy
consumption.

7.4. VALIDITY 47

7.4 Validity

The validity of the observed differences in energy consumption for different compiler
settings could be affected by several factors. Firstly, similarly to what was mentioned
in Section 6.4, the type of operating system used to perform the tests could influence
the results. This is especially relevant since C# and .NET Framework were originally
developed for Windows. The tested compiler options are only offered by .NET Core,
which was developed for cross-platform development. This does mean that these
results should not be compared to software developed with other .NET versions.
However, it is possible that different versions of .NET Core could produce different
results.

It is also possible that executing energy consumption measurements with dif-
ferent software programs could produce different results. We already noted that
for some compiler settings, certain benchmarks showed a reduction in energy con-
sumption while other settings showed an increased energy consumption. As such,
larger programs with longer execution times could produce different results.

Longer or more complex programs would likely most affect the Tiered compila-
tion setting. According to the official description, this setting attempts to optimise
the initial compilation provided by Quick JIT or ReadyToRelease during the execu-
tion. As such, if a program executes code sections multiple times, it increases the
chances for optimisations to be found and for the optimisations to show their effect.

7.5 Conclusion

Based on our findings, we can provide an answer to RQ3: How do C# compiler
settings influence the energy consumption of software?

We found that there is one compilation setting that should be avoided, namely
QuickJIT combined with QuickJIT for loops and Tiered compilation, as it significantly
increases energy consumption and execution time. We further found that one com-
bination of settings (QLRT) should not be used as Tiered compilation uses either
the Quick JIT code or the ReadyToRelease code based on what files are used to
start the program. For the other settings, we found out that there are significant dif-
ferences between the compiler settings, but that the impact differs between bench-
marks. Further research is necessary to discover when the energy consumption is
reduced and when it is increased before general guidelines can be given. However,
as there are significant differences, we can advise performing tests to find which
settings reduce the energy consumption of your software.

We observed that when comparing compiler settings, it is possible for some
benchmarks to show reduced energy consumption while other benchmarks show

48 CHAPTER 7. COMPILER SETTINGS

an increased energy consumption. This could indicate that the performance of com-
piler settings is influenced by the programming structures that are used. Further
research is required to verify if there is such a correlation.

Chapter 8

Architectures

In this chapter, the results of executing the compiler setting tests on different hard-
ware architectures are discussed. These tests were performed to investigate if the
observations discussed in Chapter 7 were unique to the system under test or if they
were applicable to a broader set of hardware.

8.1 Operating System

Since the tests on the different architectures are executed using a live USB boot
version of Ubuntu, we also performed the tests on the original system using a live
USB boot. By comparing the results of these tests to the results obtained from an
installed Ubuntu version, we can see how the use of a live USB boot impacts the
measurements.

The energy consumption measured on the live USB boot can be found in Fig-
ure 8.1, while Figure 8.2 shows the results of the installed boot with the same axis
scale. Figure 8.3 and Figure 8.4 show the execution time of the live USB boot and
installed boot respectively.

When comparing the charts, it can be seen that the trends stay the same, but the
energy consumption on the live USB boot is approximately 500 Joules higher. The
execution time is also increased by approximately 3000 milliseconds. Furthermore,
when looking at the energy consumption per time unit, as shown in Figure 8.5, it
can be seen that the energy consumption per millisecond is also increased. Inter-
estingly, the variability of the energy consumption is reduced. The increased energy
consumption on the live USB boot can be explained by the fact that it is limited to
using the CPU and RAM. The hard disk storage can not be used, thus increasing
the CPU activity.

Since the trends in energy consumption are equal, we conclude that live USB
boot can be used to perform tests on other architectures. The reported values are

49

50 CHAPTER 8. ARCHITECTURES

Figure 8.1: Psys energy consumption of different compiler settings on Lenovo P1
with USB boot.

Figure 8.2: Psys energy consumption of different compiler settings on Lenovo P1
with normal boot.

higher then they would be on an installed boot, but the comparison of different com-
pilation settings remains valid.

8.2. RESULTS 51

Figure 8.3: Execution time of different compiler settings on Lenovo P1 with USB
boot.

Figure 8.4: Execution time of different compiler settings on Lenovo P1 with normal
boot.

8.2 Results

The tests were executed on a 4th generation i7 CPU and two 6th generation i5
CPUs. The 4th generation CPU does not support the Psys domain, as this had
not yet been introduced by Intel. The Psys domain was introduced with the 6th

52 CHAPTER 8. ARCHITECTURES

Figure 8.5: Energy consumption in Joule per millisecond of different compiler set-
tings on Lenovo P1 with USB boot.

generation (Skylake), however, not all CPU versions support this domain. This is
also the case with one of the 6th generations CPUs used to perform tests. It is
possible to read data from the Psys domain, however, the data is incorrect. The Psys
domain is supposed to cover all on-chip systems, but the values reported on this
particular system are half or even a quarter of the values reported by the Package
domain. As the Psys is supposed to encompass the Package domain, we concluded
that it was not supported on this model. For the systems that do not support the Psys
domain, the Package domain is used instead.

The results of executing the tests on the Dell Latitude, supporting the Psys do-
main, can be found in Figure 8.6 and Figure 8.7. The results of executing the tests
on the Dell Precision and HP Elitebook, using the Package domain, can be found
in Figure 8.9, Figure 8.10, Figure 8.11 and Figure 8.12. Since these systems use
a different domain, the results of executing the tests on the Lenovo are displayed in
Figure 8.8 based on the Package domain instead of the Psys domain.

It is important to note that on the Dell Latitude, the Tiered compilation setting
with all other settings disabled was not executed, due to the limited availability of
the system. Furthermore, on the Dell Precision and HP Elitebook, the test with all
settings disabled was not executed. They are included in the legends of the figures
to improve comparability, but no data is displayed.

It is interesting to see that enabling Quick JIT, Quick JIT for loops and Tiered
compilation (QLT) is the worst performing set of settings on all architectures. Fur-
thermore, the other settings also show approximately the same pattern. The actual

8.2. RESULTS 53

Figure 8.6: Psys energy consumption of different compiler settings on Dell Latitude

Figure 8.7: Execution time of different compiler settings on Dell Latitude

energy consumption and execution time differ between architectures, but the relative
relations stay the same.

The tests performed on the other architectures also show the reduced variability
that was discussed in Section 8.1. As explained, all actions and storage are handled
entirely by the CPU and RAM. This removes possible impacts caused by retrieving
data from disk compared to from memory, as everything is already available in mem-

54 CHAPTER 8. ARCHITECTURES

Figure 8.8: Package energy consumption of different compiler settings on Lenovo
P1

Figure 8.9: Package energy consumption of different compiler settings on Dell Pre-
cision

ory. Furthermore, it is possible that the number of background processes is reduced
in a live USB boot compared to an installed boot.

8.3. VALIDITY 55

Figure 8.10: Execution time of different compiler settings on Dell Precision

Figure 8.11: Package energy consumption of different compiler settings on HP
Elitebook

8.3 Validity

The validity of the results presented in this chapter can be affected by several factors.
First of all, the tests were run without installing the operating system, instead, they
were performed with the use of a live USB boot. This risk was mitigated by also
performing the tests with the live USB boot on the original system. This showed that

56 CHAPTER 8. ARCHITECTURES

Figure 8.12: Execution time of different compiler settings on HP Elitebook

both energy consumption and execution time increased by using a live USB boot,
but the trends remained the same. It is likely, but not guaranteed that this is also the
case on the other hardware systems.

Secondly, research has shown that the accuracy of the RAPL energy consump-
tion measurements has increased with newer versions. This also indicates that the
results on the older systems could be less accurate. Since we intended to compare
the overall trends and not the precise energy consumption, the impact of the lower
accuracy is reduced.

Finally, all tested systems were laptops with CPUs for laptops. It is possible that
CPUs for servers could produce different results. Furthermore, the tested systems
are all Intel CPUs. CPUs from different manufacturers could also provide different
results, but energy consumption measurements can not be performed using Intel’s
RAPL on such CPUs.

8.4 Conclusion

Based on the presented results, we can provide an answer for RQ4: How consistent
is the impact of compiler settings across hardware architectures?

These tests indicate that the compiler settings offered by .NET show a consistent
energy consumption on different architectures. It is thus likely that if a setting is found
to reduce the energy consumption of software on one architecture, this will also be
true for other systems.

Chapter 9

Programming Choices

In this chapter, we propose programming choices that could be measured to dis-
cover if they impact energy consumption. We discuss why the choices might pro-
duce differences in energy consumption as well as examples of code that can be
used to perform experiments.

9.1 Loops

In their best practices for performance on Android, Google suggests using the en-
hanced for loop, or for-each loop, for collections with an iterator. They also mention
that a hand-written counted loop is three times faster for an ArrayList. As mentioned
in Chapter 2, Tonini et al. [26] analysed the energy consumption of for loops. They
found that the hand-written counted loop was not only faster but also reduced en-
ergy consumption. Furthermore, they found that providing a loop with the collection
length reduces the energy consumption compared to requesting the length at every
iteration.

In C#, the size of a collection is an attribute of the collection. It is thus not a
method call but a property access. The only exception is the GetLength method
that can retrieve the length of an array based on a given dimension. Arrays also
have a length property, this method can be used to obtain the length of a specific
dimension in a multidimensional array. As a property access instead of a method
call, it is possible that there is a smaller impact on energy consumption or even no
detectable impact.

C# also has an enhanced for loop, which can be used on instances of types that
implement the IEnumerable interface or types that provide a GetEnumerator method
with the correct return type. Furthermore, the type of the variable being iterated can
be explicitly defined or left for the compiler to infer. The type inference needs to
check if the type is iterable, which could increase energy consumption.

57

58 CHAPTER 9. PROGRAMMING CHOICES

There could be a difference in energy consumption between an enhanced for
loop and a normal for loop. In Listing 1, we provide the code for four methods that
implement the same functionality but use the different syntax possibilities discussed.
The collection used in the methods could be changed to detect if this has an impact
on the energy consumption results.

Public Class ForTest

{

public void One()

{

int numbers = new List<int> {0, 1, 2, 3, 4, 5, 6, 7, 8, 9};

int sum = 0;

for(int i = 0; i < numbers.Count; i++)

{

sum+= List[i];

}

}

public void Two()

{

int numbers = new List<int> {0, 1, 2, 3, 4, 5, 6, 7, 8, 9};

int sum = 0;

int len = numbers.Count;

for(int i = 0; i < len; i++)

{

sum+= List[i];

}

}

public void Three()

{

int numbers = new List<int> {0, 1, 2, 3, 4, 5, 6, 7, 8, 9};

int sum = 0;

foreach(int number in numbers)

{

sum+= number;

}

9.2. PATTERN MATCHING 59

}

public void Four()

{

int numbers = new List<int> {0, 1, 2, 3, 4, 5, 6, 7, 8, 9};

int sum = 0;

foreach(var number in numbers)

{

sum+= number;

}

}

}

Listing 1: Methods implementing the same functionality with different for loop syn-
tax.

9.2 Pattern Matching

The release of C# 8.0 expanded the possibilities for pattern matching. At the 2020
NDC conference in London, Bill Wagner1 showed how the new capabilities could be
used to rewrite a sample program that calculates a toll rate based on a number of
parameters. The initial code used a number of conditional statements to check the
parameters. By grouping the parameters into a tuple and making use of the new
switch expression, the lines of code were significantly reduced. Using wildcards
then further reduced the number of conditions. This reduced the original 50 lines
of code to 11 lines. While the functionality remained the same, this makes it much
easier to see what the function does. However, since it is a completely different
syntax, it is unclear how this is handled by the compiler. Furthermore, it is not yet
known if or how this impacts performance and energy consumption. In Listing 2 and
Listing 3 we show the relevant portions of the code. The complete code is provided
in Appendix C

public static decimal PeakTimePremiumImperative

(DateTime timeOfToll, boolean inbound)

{

if (IsWeekDay(timeOfToll))

{

1Change your habits: Modern techniques for modern C# - Bill Wagner

https://www.youtube.com/watch?v=aUbXGs7YTGo&list=WL&index=2&t=0s

60 CHAPTER 9. PROGRAMMING CHOICES

if(inbound)

{

var timeBand = GetTimeBand(timeOfToll);

if (timeBand == TimeBand.MorningRush)

{

return 2.00m;

}

else if (timeBand == TimeBand.Daytime)

{

return 1.50m;

}

else if (timeBand == TimeBand.EveningRush)

{

return 1.00m;

}

else

{

return 0.75m;

}

}

else

{

var timeBand = GetTimeBand(timeOfToll);

if (timeBand == TimeBand.MorningRush)

{

return 1.00m;

}

else if (timeBand == TimeBand.Daytime)

{

return 1.50m;

}

else if (timeBand == TimeBand.EveningRush)

{

return 2.00m;

}

else

{

return 0.75m;

}

9.3. LINQ 61

}

}

else

{

return 1.00m

}

}

Listing 2: Code for calculating a toll rate based on a set of parameters using condi-
tional statements.

public static decimal PeakTimePremium

(DateTime timeOfToll, boolean inbound) =>

(IsWeekDay(timeOfToll), GetTimeBand(timeOfToll), inbound) switch

{

(true, TimeBand.MorningRush, true) => 2.00m,

(true, TimeBand.MorningRush, false) => 1.00m,

(true, TimeBand.Daytime, _) => 1.50m,

(true, TimeBand.EveningRush, true) => 1.00m,

(true, TimeBand.EveningRush, false) => 2.00m,

(true, TimeBand.Overnight, _) => 0.75m,

(false, _, _) => 1.00m,

};

Listing 3: Code for calculating a toll rate based on a set of parameters using pattern
matching.

9.3 LINQ

Language Integrated Query (LINQ) was introduced in .NET framework 3.5. It ex-
tends C# with query capabilities. Traditionally, queries were strings without type
checking and with language difference for each data source. LINQ integrates queries
into the C# language, making it a first-class member of the language, just like
classes and methods. It can be used with strongly typed collections, providing a
consistent method for interactions with objects, relational databases and XML. It al-
lows grouping, filtering and ordering of data with the same pattern for interacting
with different data sources.

To use LINQ to perform operations with data, three steps are necessary. First,
the data has to be made available, either by loading it into memory or by creating a

62 CHAPTER 9. PROGRAMMING CHOICES

link to an external data source such as an SQL database. The second step is the
definition of the query and storing it in a query variable, while the third and final step
executes the query using a foreach loop. Queries that perform an aggregation over
a range of elements require an iteration over these elements and do not require an
explicit foreach loop.

LINQ can be used to create smaller code that can be easier to understand
and maintain. However, it is a generic approach to solving problems. This inher-
ently comes with additional overhead. Furthermore, when you search “LINQ perfor-
mance”, a lot of results come up explaining how LINQ code is slower than manually
written for loops. In some cases, the performance can be attributed to inefficient use
of query methods. For example, if data should be selected and ordered, it is more
efficient to first select the part of the data you want ordered, instead of starting by
ordering the data and then selecting the part of the data you are actually interested
in. The introduction of .NET Core also improved the performance of LINQ queries.

It is possible that the differences in performance are linked with a difference in
energy consumption, or that the energy consumption shows different trends. Sec-
tion 9.3 provides some small code that could be used to test the difference between
LINQ queries and an iterative approach.2 Section 9.3 shows two functionally equiv-
alent queries, but due to the order of the queries, the performance can differ. The
difference in performance is based on how much of the data is excluded in the se-
lection.3

public int Iterative()

{

var counter = 0;

foreach (var item in items)

{

if (item % 10 == 0)

counter += item + 5;

}

return counter;

}

public int Linq()

{

var results = items.Where(i => i % 10 == 0).Select(i => i + 5);

var counter = 0;

2Source: GitHub: LinqOptimisation-WhereSelectBenchmark
3Source: Stackoverflow: Does the order of LINQ functions matter?

https://gist.github.com/mattwarren/e528bc7c43864baad93ff33eb038005b
https://stackoverflow.com/questions/7499384/does-the-order-of-linq-functions-matter

9.4. VALIDITY 63

foreach (var result in results)

{

counter += result;

}

return counter;

}

Listing 4: LINQ and iterative code selecting and manipulating a sequence of num-
bers.

var query = myCollection.OrderBy(item => item.CreatedDate)

.Where(item => item.Code > 3);

var query = myCollection.Where(item => item.Code > 3)

.OrderBy(item => item.CreatedDate);

Listing 5: Two LINQ queries with a different order of the queries.

9.4 Validity

If measurements are performed with the code suggested in this chapter, several
factors could influence the results. The duration of the code under test should be
considered, as the overhead costs and timing of RAPL register updates become
important factors for short code paths. This could be mitigated by repeating the
code under test multiple times in one measurement, increasing the execution time.

Furthermore, if a function is tested where parameters decide the execution path,
the choice of parameters could influence the results. This can be mitigated by per-
forming tests with different paths to ensure that all execution paths are measured.

Finally, a different framework version could produce different results. Develop-
ments in newer versions could change the behaviour of programming structures,
improving the performance and changing the energy consumption.

9.5 Conclusion

In this chapter, we suggest experiments that can be performed in order to provide
an answer for RQ5: How do functionally equal programming choices impact energy
consumption?

64 CHAPTER 9. PROGRAMMING CHOICES

As we did not perform the experiments, it is not possible to make a conclusion.
However, we did encounter anecdotal evidence that there are performance differ-
ences when comparing LINQ queries to imperative approaches. The analysis of the
energy consumption measurements for different compiler settings showed that in-
creased energy consumption was probably caused by the increased execution time.
This also suggests that differences in performance will be linked to differences in
energy consumption.

Chapter 10

Conclusions & Recommendations

In Section 10.1, we summarise the threats to the validity of our research. In Sec-
tion 10.2, we summarise the conclusions and in Section 10.3 we suggest possible
directions for further research

10.1 Validity

A number of issues can affect the validity of our work. Energy measurements were
performed using the Intel RAPL tool, which has evolved with the CPU generations
to become known as one of the most accurate tools for CPUs. However, when
sampling at a high frequency, the variability in the timing of the updates can cause
problems. Furthermore, sampling at a high frequency introduces additional over-
head costs. The tests performed in this research were of sufficient length that these
issues could be avoided.

The operating system adds a layer of uncertainty to performing measurements
of software, as it is not clear how tasks are scheduled. This also means that it is
unclear if the system will handle a test in the same manner if it is executed multiple
times. This adds an inherent variability to the execution of software. We attempted
to reduce the impact of this variability by repeating the tests multiple times.

The generalisability of the results could be impacted by the fact that all systems
were notebooks. Furthermore, the tests were all executed under Ubuntu. Executing
the tests under a different operating system, such as Windows, could produce differ-
ent results. This could be especially true for C#, as the initial focus of C# and .NET
was the Windows operating system. At this time, the drivers required to perform
similar tests under Windows are not available.

Another factor is the version of the .NET framework used to compile the bench-
mark used in this research. Different versions of the framework could produce differ-
ent results. As the compiler settings that were treated in this research are a feature

65

66 CHAPTER 10. CONCLUSIONS & RECOMMENDATIONS

of .NET Core, it is not possible to make a comparison to different frameworks such
as .NET. However, newer versions of .NET Core could show different results.

Finally, the experiments were performed with a set of benchmarks initially de-
veloped to compare the performance of different programming languages. These
benchmarks are relatively small. Bigger, more complex programs could produce dif-
ferent results. This would most probably most affect the Tiered Compilation setting.
According to its official description, this setting is meant to optimise code during
execution. As such, programs that run for longer or that execute code segments
multiple times in one run will probably benefit more from this setting.

10.2 Conclusions

Based on the information presented in this thesis, we can answer the research ques-
tions we started with. We first provide answers to the sub-questions before answer-
ing the main research question.

RQ1: How can developers obtain reliable results on the energy consumption of
their software?
Intel’s RAPL protocol can be used to perform energy measurements on Linux sys-
tems. There are multiple tools that can assist with these measurements. These
make it easier to perform the measurements without requiring a lot of extra knowl-
edge. As such tools can add overhead costs to the measurements, it would be
preferred to at least understand how the tools work so you can be aware of such
costs. Leaving a system idle, ensuring no other applications are active and that
the system does not switch operation modes during the tests can provide reliable
results. By repeating measurements, the impact of variability caused by the operat-
ing system can be reduced. It should be noted that executing tests under different
circumstances can increase variability.

RQ2: How do hardware settings influence the energy consumption of software
systems?
We analysed the impact of two hardware settings, namely the operating mode of
the CPU governor and the use of Intel’s Hyper-threading. We found that the per-
formance governor increased the energy consumption compared to the power-save
governor. Disabling the Hyper-threading setting, reduced the variability of the en-
ergy measurements, as well as reducing the execution time. Interestingly, in our
initial tests, we obtained different results. These tests were performed without re-
compiling the code. When the tests were performed while recompiling the code after
every hardware setting change, the Hyper-threading results changed. The Hyper-
threading setting changes the number of available processors. If it is enabled, every
physical core can act as two virtual cores. By disabling the Hyper-threading setting,

10.2. CONCLUSIONS 67

the number of available cores changes. One explanation for the differing results is
that this change is not correctly detected if the code is not recompiled.

RQ3: How do C# Compiler settings influence the energy consumption of soft-
ware systems?
By analysing the compiler settings offered by .NET Core, we found one setting that
should be avoided as it significantly increases the energy consumption and exe-
cution time. This is the combination of QuickJIT, QuickJIT for loops and Tiered
compilation. We also verified that it is not possible to combine QuickJIT with the
ReadyToRelease setting. Compilations using these settings create two distinct sets
of codes, with the behaviour of each set equal to one of the settings. Finally, for
all other settings, we found that most settings have significant differences in energy
consumption, however, these differences were not consistent across the different
benchmarks. Thus, we cannot point to one setting as the optimal setting.

By looking at the energy consumption per second, we found that all settings
showed a similar energy consumption. This points to a correlation between energy
consumption and execution time, with longer execution times showing higher energy
consumption.

RQ4: How consistent is the impact of compiler settings across hardware archi-
tectures?
By performing the measurements for the compiler settings on multiple laptops, we
found that the overall trends were consistent. The exact energy consumption differed
between the devices, but the relationships between the settings were the same.

RQ5: How do functionally equal programming choices impact energy consump-
tion?
We provide a number of code examples that can be used to perform experiments.
As we did not perform such experiments, we cannot provide an answer to this re-
search question.

RQ: How can the energy consumption of software systems be reduced?
Overall, we found that there are a lot of factors that can influence the energy con-
sumption of software systems. Ensuring that a system is using power-save settings
can reduce energy consumption. Furthermore, the choice of compilation setting
can have serious impacts on energy consumption. Although we did not manage to
identify the best choice, we did find that the QLT setting should be avoided. It is
advisable to perform measurements to find the best choice for a software system
and to ensure that changing a hardware setting causes the intended result.

68 CHAPTER 10. CONCLUSIONS & RECOMMENDATIONS

10.3 Recommendations

There are several avenues that require further study. First of all, the code in the
benchmarks used in this study can be studied to discover if there are code seg-
ments that can be linked to the differences in energy consumption observed with
the compiler settings. If such links exist and can be found, guidelines can be cre-
ated to indicate when certain compiler settings should or should not be used.

Furthermore, the analysis of the compiler settings could be repeated with a differ-
ent, larger codebase. Since the benchmarks used in our experiments were created
to compare the performance of programming languages, they are of limited size.

Another possibility is to repeat the experiments on a different operating system.
This could be Windows or perhaps even a mobile environment. Performing tests
on Windows would require a different measurement method or the development of
a RAPL driver for Windows. A mobile environment would also require a different
measurement method.

It is also possible to perform experiments based on the programming choices
suggested in Chapter 9. Research on the differences in energy consumption of
different programming choices is required before best practice guidelines can be
created. The creation of best practice guidelines will enable developers to adapt
their programming to reduce the energy consumption of their software.

Finally, since the benchmarks we used to perform our experiments are also avail-
able for different programming languages, our research could be repeated with dif-
ferent programming languages to determine if the hardware settings show a similar
impact. Where available, our methodology can be used to compare different com-
piler options of other programming languages.

Bibliography

[1] L. M. Hilty, V. Coroama, M. O. de Eicker, T. Ruddy, and E. Müller, “The role
of ict in energy consumption and energy efficiency,” Report to the European
Commission, DG INFSO, Project ICT ENSURE: European ICT Sustainability
Research, Graz University, vol. 1, pp. 1–60, 2009.

[2] J. Malmodin, A. s. Moberg, D. Lundén, G. Finnveden, and N. Lövehagen,
“Greenhouse gas emissions and operational electricity use in the ict and
entertainment & media sectors,” Journal of Industrial Ecology, vol. 14, no. 5,
pp. 770–790, 2010. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/
10.1111/j.1530-9290.2010.00278.x

[3] A. S. G. Andrae, “Projecting the chiaroscuro of the electricity use of communi-
cation and computing from 2018 to 2030,” Researchgate. net, 2019.

[4] M. C. Sanchez, R. E. Brown, C. Webber, and G. K. Homan, “Savings
estimates for the united states environmental protection agency’s energy star
voluntary product labeling program,” Energy Policy, vol. 36, no. 6, pp. 2098 –
2108, 2008. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0301421508001092

[5] B. Urban, K. Roth, M. Singh, and D. Howes, “Energy consumption of consumer
electronics in u.s. homes in 2017,” 12 2017.

[6] M. Avgerinou, P. Bertoldi, and L. Castellazzi, “Trends in data centre
energy consumption under the european code of conduct for data centre
energy efficiency,” Energies, vol. 10, no. 10, 2017. [Online]. Available:
https://www.mdpi.com/1996-1073/10/10/1470

[7] T. A. Ghaleb, “Software energy measurement at different levels of granularity,”
in 2019 International Conference on Computer and Information Sciences (IC-
CIS), 04 2019, pp. 1–6.

[8] H. David, E. Gorbatov, U. R. Hanebutte, R. Khanna, and C. Le, “Rapl: Memory
power estimation and capping,” in 2010 ACM/IEEE International Symposium
on Low-Power Electronics and Design (ISLPED), 08 2010, pp. 189–194.

69

https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1530-9290.2010.00278.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1530-9290.2010.00278.x
http://www.sciencedirect.com/science/article/pii/S0301421508001092
http://www.sciencedirect.com/science/article/pii/S0301421508001092
https://www.mdpi.com/1996-1073/10/10/1470

70 BIBLIOGRAPHY

[9] K. N. Khan, M. Hirki, T. Niemi, J. K. Nurminen, and Z. Ou, “Rapl in action:
Experiences in using rapl for power measurements,” ACM Trans. Model.
Perform. Eval. Comput. Syst., vol. 3, no. 2, Mar. 2018. [Online]. Available:
https://doi-org.ezproxy2.utwente.nl/10.1145/3177754

[10] L. Cruz and R. Abreu, “Catalog of energy patterns for mobile applications,”
Empirical Software Engineering, 03 2019.

[11] M. Couto, R. Pereira, F. Ribeiro, R. Rua, and J. a. Saraiva, “Towards
a green ranking for programming languages,” in Proceedings of the
21st Brazilian Symposium on Programming Languages, ser. SBLP 2017.
New York, NY, USA: ACM, 2017, pp. 7:1–7:8. [Online]. Available:
http://doi.acm.org/10.1145/3125374.3125382

[12] R. Pereira, M. Couto, F. Ribeiro, R. Rua, J. Cunha, J. P. Fernandes,
and J. Saraiva, “Energy efficiency across programming languages: How
do energy, time, and memory relate?” in Proceedings of the 10th ACM
SIGPLAN International Conference on Software Language Engineering, ser.
SLE 2017. New York, NY, USA: ACM, 2017, pp. 256–267. [Online]. Available:
http://doi.acm.org/10.1145/3136014.3136031

[13] R. Pereira, M. Couto, J. a. Saraiva, J. Cunha, and J. a. P. Fernandes, “The
influence of the java collection framework on overall energy consumption,”
in Proceedings of the 5th International Workshop on Green and Sustainable
Software, ser. GREENS’16. New York, NY, USA: ACM, 2016, pp. 15–21.
[Online]. Available: http://doi.acm.org/10.1145/2896967.2896968

[14] G. Melfe, A. Fonseca, and J. a. P. Fernandes, “Helping developers write
energy efficient haskell through a data-structure evaluation,” in Proceedings
of the 6th International Workshop on Green and Sustainable Software, ser.
GREENS ’18. New York, NY, USA: ACM, 2018, pp. 9–15. [Online]. Available:
http://doi.acm.org/10.1145/3194078.3194080

[15] C. Bunse and S. Stiemer, “On the energy consumption of design patterns,”
Softwaretechnik-Trends, vol. 33, pp. 7–8, 05 2013.

[16] E. Jagroep, J. M. E. M. van der Werf, S. Jansen, M. Ferreira, and J. Visser,
“Profiling energy profilers,” in Proceedings of the 30th Annual ACM Symposium
on Applied Computing, ser. SAC ’15. New York, NY, USA: ACM, 2015, pp.
2198–2203. [Online]. Available: http://doi.acm.org/10.1145/2695664.2695825

[17] M. Hähnel, B. Döbel, M. Völp, and H. Härtig, “Measuring energy
consumption for short code paths using rapl,” SIGMETRICS Perform.

https://doi-org.ezproxy2.utwente.nl/10.1145/3177754
http://doi.acm.org/10.1145/3125374.3125382
http://doi.acm.org/10.1145/3136014.3136031
http://doi.acm.org/10.1145/2896967.2896968
http://doi.acm.org/10.1145/3194078.3194080
http://doi.acm.org/10.1145/2695664.2695825

BIBLIOGRAPHY 71

Eval. Rev., vol. 40, no. 3, p. 13–17, Jan. 2012. [Online]. Available:
https://doi.org/10.1145/2425248.2425252

[18] S. Desrochers, C. Paradis, and V. M. Weaver, “A validation of dram
rapl power measurements,” in Proceedings of the Second International
Symposium on Memory Systems, ser. MEMSYS ’16. New York, NY, USA:
Association for Computing Machinery, 2016, p. 455–470. [Online]. Available:
https://doi-org.ezproxy2.utwente.nl/10.1145/2989081.2989088

[19] K. Liu, G. Pinto, and Y. D. Liu, “Data-oriented characterization of application-
level energy optimization,” in Fundamental Approaches to Software Engineer-
ing, A. Egyed and I. Schaefer, Eds. Berlin, Heidelberg: Springer Berlin Hei-
delberg, 2015, pp. 316–331.

[20] R. Pereira, T. Carção, M. Couto, J. Cunha, J. P. Fernandes, and J. Saraiva,
“Helping programmers improve the energy efficiency of source code,” in 2017
IEEE/ACM 39th International Conference on Software Engineering Companion
(ICSE-C), 05 2017, pp. 238–240.

[21] D. Beyer and P. Wendler, “Cpu energy meter: A tool for energy-aware algo-
rithms engineering,” in Tools and Algorithms for the Construction and Analysis
of Systems, A. Biere and D. Parker, Eds. Cham: Springer International Pub-
lishing, 2020, pp. 126–133.

[22] Z. Ournani, M. C. Belgaid, R. Rouvoy, P. Rust, J. Penhoat, and L. Seinturier,
“Taming energy consumption variations in systems benchmarking,” in
Proceedings of the ACM/SPEC International Conference on Performance
Engineering, ser. ICPE ’20. New York, NY, USA: Association for Computing
Machinery, 2020, p. 36–47. [Online]. Available: https://doi-org.ezproxy2.
utwente.nl/10.1145/3358960.3379142

[23] R. Pereira, P. Simão, J. Cunha, and J. a. Saraiva, “jstanley: Placing a
green thumb on java collections,” in Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering, ser. ASE
2018. New York, NY, USA: ACM, 2018, pp. 856–859. [Online]. Available:
http://doi.acm.org/10.1145/3238147.3240473

[24] S. Hasan, Z. King, M. Hafiz, M. Sayagh, B. Adams, and A. Hindle,
“Energy profiles of java collections classes,” in Proceedings of the
38th International Conference on Software Engineering, ser. ICSE ’16.
New York, NY, USA: ACM, 2016, pp. 225–236. [Online]. Available:
http://doi.acm.org/10.1145/2884781.2884869

https://doi.org/10.1145/2425248.2425252
https://doi-org.ezproxy2.utwente.nl/10.1145/2989081.2989088
https://doi-org.ezproxy2.utwente.nl/10.1145/3358960.3379142
https://doi-org.ezproxy2.utwente.nl/10.1145/3358960.3379142
http://doi.acm.org/10.1145/3238147.3240473
http://doi.acm.org/10.1145/2884781.2884869

72 BIBLIOGRAPHY

[25] G. Pinto, K. Liu, F. Castor, and Y. D. Liu, “A comprehensive study on the energy
efficiency of java’s thread-safe collections,” in 2016 IEEE International Confer-
ence on Software Maintenance and Evolution (ICSME), 10 2016, pp. 20–31.

[26] A. R. Tonini, L. M. Fischer, J. C. B. d. Mattos, and L. B. d. Brisolara, “Anal-
ysis and evaluation of the android best practices impact on the efficiency of
mobile applications,” in 2013 III Brazilian Symposium on Computing Systems
Engineering, 12 2013, pp. 157–158.

[27] L. G. Lima, F. Soares-Neto, P. Lieuthier, F. Castor, G. Melfe, and J. P. Fernan-
des, “Haskell in green land: Analyzing the energy behavior of a purely func-
tional language,” in SANER. IEEE Computer Society, 2016, pp. 517–528.

[28] L. G. Lima, F. Soares-Neto, P. Lieuthier, F. Castor, G. Melfe, and
J. P. Fernandes, “On haskell and energy efficiency,” Journal of Systems
and Software, vol. 149, pp. 554 – 580, 2019. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0164121218302747

[29] G. Melfe, A. Fonseca, and J. a. P. Fernandes, “Evaluation of the impact on
energy consumption of lazy versus strict evaluation of haskell data-structures,”
in Proceedings of the XXII Brazilian Symposium on Programming Languages,
ser. SBLP ’18. New York, NY, USA: Association for Computing Machinery,
2018, p. 83–89. [Online]. Available: https://doi.org/10.1145/3264637.3264648

[30] K. Chantarasathaporn and C. Srisa-an, “Object-oriented programming
strategies in c# for power conscious system,” International Journal of
Computer and Information Engineering, vol. 1, no. 10, pp. 3198 – 3203, 2007.
[Online]. Available: https://publications.waset.org/vol/10

[31] A. Litke, K. Zotos, A. Chatzigeorgiou, and G. Stephanides, “Energy consump-
tion analysis of design patterns,” in Proceedings of the International Conference
on Machine Learning and Software Engineering, 2005, pp. 86–90.

[32] C. Sahin, F. Cayci, I. L. M. Gutiérrez, J. Clause, F. Kiamilev, L. Pollock, and
K. Winbladh, “Initial explorations on design pattern energy usage,” in 2012
First International Workshop on Green and Sustainable Software (GREENS),
06 2012, pp. 55–61.

[33] D. Feitosa, R. Alders, A. Ampatzoglou, P. Avgeriou, and E. Y. Nakagawa,
“Investigating the effect of design patterns on energy consumption,” Journal
of Software: Evolution and Process, vol. 29, no. 2, p. e1851, 2017, e1851
JSME-16-0030.R2. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/
10.1002/smr.1851

http://www.sciencedirect.com/science/article/pii/S0164121218302747
https://doi.org/10.1145/3264637.3264648
https://publications.waset.org/vol/10
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.1851
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.1851

BIBLIOGRAPHY 73

[34] A. Noureddine and A. Rajan, “Optimising energy consumption of design pat-
terns,” in Proceedings of the 37th International Conference on Software Engi-
neering - Volume 2, ser. ICSE ’15. IEEE Press, 2015, p. 623–626.

[35] G. Agosta, M. Bessi, E. Capra, and C. Francalanci, “Dynamic memoization for
energy efficiency in financial applications,” in 2011 International Green Com-
puting Conference and Workshops, 07 2011, pp. 1–8.

[36] V. M. Weaver, M. Johnson, K. Kasichayanula, J. Ralph, P. Luszczek, D. Terp-
stra, and S. Moore, “Measuring energy and power with papi,” in 2012 41st In-
ternational Conference on Parallel Processing Workshops, 2012, pp. 262–268.

74 BIBLIOGRAPHY

Appendix A

CSV example

A visualisation of a CSV file produced when running the benchmark tests can be
found in Table A.1. The values have been rounded to two decimals to make it legible
and to make it fit on the page. Values reported by RAPL are stored with fourteen
decimal values. The CSV file does not include the headers indicating for the columns
and uses semicolons to separate values. The values used are the results of a test
executed in power-save without any C# compiler options.

Table A.1: A visualisation of a CSV file containing the results of running the set of benchmarks.
Values rounded to two decimals for legibility.

Name PKG PP0 PP1 DRAM Psys Start End Time
J J J J J Temp Temp ms

binary-trees 279.87 250.81 0.00 11.05 375.74 36.00 54.00 9 701.77

binary-trees 264.21 235.01 0.00 11.11 362.83 54.00 52.00 9 928.49

binary-trees 266.59 238.15 0.00 10.73 362.74 52.00 53.00 9 621.90

binary-trees 282.79 252.84 0.00 11.33 385.43 53.00 55.00 10 007.40

binary-trees 270.88 243.15 0.00 10.40 366.52 55.00 80.00 9 328.66

binary-trees 275.88 245.99 0.00 11.32 379.58 80.00 56.00 10 034.40

binary-trees 272.35 244.17 0.00 10.68 373.32 56.00 55.00 9 474.38

binary-trees 269.01 241.59 0.00 10.27 367.68 55.00 54.00 9 249.91

binary-trees 254.06 224.54 0.00 11.03 355.61 54.00 57.00 9 997.99

binary-trees 278.98 249.78 0.00 11.25 380.83 57.00 57.00 9 782.01

fasta 59.08 56.46 0.00 0.68 72.26 36.00 73.00 898.99

fasta 56.74 54.13 0.00 0.69 70.23 73.00 72.00 909.06

fasta 53.06 50.45 0.00 0.69 66.42 72.00 70.00 921.12

fasta 52.99 50.11 0.00 0.75 67.57 70.00 71.00 1 001.88

fasta 52.59 49.86 0.00 0.73 66.78 71.00 74.00 970.62

fasta 53.11 50.35 0.00 0.72 67.71 74.00 72.00 968.78

fasta 50.24 47.52 0.00 0.72 64.30 72.00 69.00 951.16

75

76 APPENDIX A. CSV EXAMPLE

fasta 52.72 49.87 0.00 0.73 67.35 69.00 76.00 981.43

fasta 50.74 47.82 0.00 0.74 65.43 73.00 67.00 985.15

fasta 51.18 48.16 0.00 0.78 66.58 67.00 71.00 1 039.94

fannkuch-redux 341.30 325.58 0.00 3.77 426.03 41.00 58.00 5 595.84

fannkuch-redux 362.80 343.40 0.00 4.52 469.32 58.00 65.00 6 917.38

fannkuch-redux 345.48 326.13 0.00 4.54 456.04 65.00 64.00 6 949.73

fannkuch-redux 290.99 274.30 0.00 3.93 386.05 64.00 66.00 6 003.50

fannkuch-redux 336.71 317.50 0.00 4.50 448.71 66.00 63.00 6 884.07

fannkuch-redux 336.10 317.00 0.00 4.48 447.80 63.00 66.00 6 848.29

fannkuch-redux 285.87 268.83 0.00 4.00 382.06 66.00 62.00 6 123.06

fannkuch-redux 286.10 269.14 0.00 3.98 381.74 62.00 65.00 6 088.90

fannkuch-redux 284.94 267.97 0.00 3.99 380.60 65.00 67.00 6 102.58

fannkuch-redux 283.25 266.21 0.00 3.98 378.49 66.00 63.00 6 093.54

k-nucleotide 181.22 168.73 0.00 4.53 234.44 39.00 53.00 4 161.15

k-nucleotide 171.81 159.91 0.00 4.60 224.44 53.00 60.00 3 929.41

k-nucleotide 173.46 160.66 0.00 4.68 229.33 60.00 60.00 4 259.53

k-nucleotide 167.08 154.49 0.00 4.57 224.65 60.00 65.00 4 269.76

k-nucleotide 157.61 145.69 0.00 4.41 214.76 65.00 61.00 4 038.43

k-nucleotide 175.33 162.15 0.00 4.67 237.56 61.00 60.00 4 531.39

k-nucleotide 158.25 146.81 0.00 4.38 214.16 60.00 57.00 3 861.12

k-nucleotide 158.53 147.07 0.00 4.33 216.13 57.00 59.00 3 848.98

k-nucleotide 159.53 147.84 0.00 4.39 217.28 59.00 68.00 3 980.61

k-nucleotide 162.16 148.80 0.00 4.63 224.79 68.00 56.00 4 582.18

n-body 97.80 87.51 0.00 2.44 126.52 38.00 71.00 3 720.57

n-body 101.45 91.01 0.00 2.47 131.18 71.00 53.00 3 766.13

n-body 100.74 90.26 0.00 2.49 131.16 53.00 53.00 3 799.66

n-body 98.57 88.02 0.00 2.51 132.35 54.00 52.00 3 838.95

n-body 100.43 90.14 0.00 2.47 136.38 52.00 77.00 3 782.99

n-body 97.07 86.45 0.00 2.53 134.49 77.00 52.00 3 873.14

n-body 99.01 88.71 0.00 2.49 135.34 52.00 52.00 3 795.31

n-body 98.96 88.60 0.00 2.47 135.99 52.00 76.00 3 773.11

n-body 98.81 88.54 0.00 2.47 134.83 76.00 52.00 3 776.92

n-body 98.45 87.78 0.00 2.53 135.84 52.00 51.00 3 861.67

pidigits 24.23 21.96 0.00 0.54 30.92 36.00 45.00 825.31

pidigits 23.97 21.78 0.00 0.53 30.43 45.00 49.00 806.06

pidigits 22.97 20.74 0.00 0.53 29.09 49.00 49.00 796.59

pidigits 23.58 21.27 0.00 0.56 30.12 49.00 49.00 846.74

pidigits 22.54 20.27 0.00 0.54 28.83 49.00 51.00 819.88

pidigits 22.74 20.46 0.00 0.54 29.19 51.00 52.00 813.15

77

pidigits 22.19 19.84 0.00 0.55 29.40 52.00 50.00 825.74

pidigits 24.25 22.07 0.00 0.53 30.80 50.00 48.00 799.66

pidigits 22.88 20.58 0.00 0.55 29.67 48.00 51.00 831.20

pidigits 23.73 21.52 0.00 0.53 30.26 51.00 74.00 800.14

reverse-complement 23.00 20.73 0.00 0.92 30.80 36.00 50.00 685.29

reverse-complement 21.90 19.76 0.00 0.90 28.71 50.00 49.00 709.37

reverse-complement 22.15 20.05 0.00 0.89 28.79 49.00 52.00 694.72

reverse-complement 21.68 19.44 0.00 0.93 28.89 52.00 53.00 756.22

reverse-complement 22.61 20.59 0.00 0.86 29.21 52.00 55.00 657.24

reverse-complement 21.89 19.68 0.00 0.91 28.85 55.00 50.00 713.41

reverse-complement 22.14 20.09 0.00 0.87 28.77 50.00 52.00 671.51

reverse-complement 21.99 19.84 0.00 0.89 28.79 52.00 52.00 696.39

reverse-complement 21.99 19.89 0.00 0.88 28.75 52.00 52.00 675.41

reverse-complement 21.13 19.05 0.00 0.88 27.72 52.00 72.00 676.20

spectral-norm 20.90 19.95 0.00 0.24 25.51 39.00 56.00 348.96

spectral-norm 17.64 16.54 0.00 0.27 22.37 56.00 56.00 405.46

spectral-norm 19.04 18.02 0.00 0.25 23.77 56.00 59.00 369.42

spectral-norm 19.99 19.07 0.00 0.23 24.74 59.00 60.00 336.54

spectral-norm 19.90 18.93 0.00 0.23 24.76 60.00 60.00 339.64

spectral-norm 19.50 18.58 0.00 0.22 24.28 60.00 61.00 334.82

spectral-norm 19.59 18.65 0.00 0.23 24.56 61.00 61.00 343.60

spectral-norm 17.07 15.88 0.00 0.29 22.49 61.00 60.00 440.57

spectral-norm 19.20 18.25 0.00 0.23 24.25 60.00 61.00 345.49

spectral-norm 17.13 15.94 0.00 0.29 22.43 61.00 73.00 429.77

regex-redux 472.48 442.20 0.00 8.13 605.37 36.00 51.00 10 860.10

regex-redux 428.73 398.56 0.00 8.09 572.23 51.00 58.00 10 804.90

regex-redux 409.00 379.33 0.00 7.93 553.29 58.00 54.00 10 564.20

regex-redux 426.57 396.65 0.00 7.99 575.61 54.00 58.00 10 640.80

regex-redux 439.50 407.63 0.00 8.47 594.27 58.00 52.00 11 387.80

regex-redux 415.50 385.02 0.00 8.13 563.10 52.00 79.00 10 867.70

regex-redux 394.67 366.05 0.00 7.70 536.76 79.00 51.00 10 190.50

regex-redux 398.48 369.88 0.00 7.70 541.72 51.00 54.00 10 181.70

regex-redux 408.35 376.40 0.00 8.50 559.62 54.00 57.00 11 397.10

regex-redux 431.15 397.75 0.00 8.82 589.38 57.00 57.00 11 915.70

mandelbrot 110.64 105.84 0.00 1.15 137.63 38.00 62.00 1 710.04

mandelbrot 103.30 98.35 0.00 1.18 131.03 62.00 70.00 1 762.82

mandelbrot 98.59 93.41 0.00 1.24 126.87 70.00 61.00 1 846.45

mandelbrot 96.91 91.79 0.00 1.21 125.23 61.00 63.00 1 808.23

mandelbrot 95.50 90.23 0.00 1.23 123.75 63.00 71.00 1 836.15

78 APPENDIX A. CSV EXAMPLE

mandelbrot 93.30 87.95 0.00 1.26 122.10 71.00 74.00 1 874.35

mandelbrot 91.71 86.50 0.00 1.25 120.71 72.00 66.00 1 864.42

mandelbrot 91.48 86.29 0.00 1.25 120.58 66.00 74.00 1 871.93

mandelbrot 91.22 86.03 0.00 1.25 120.96 74.00 73.00 1 870.72

mandelbrot 89.73 84.31 0.00 1.30 120.98 73.00 66.00 1 946.47

Appendix B

Data Analysis Chart Examples

An example of the bar chart with error bars to indicate confidence intervals can be
found in Figure B.1. The blue bar represents the PKG domain with all executions.
The orange bar represents the PKG domain, using only the last 4 executions of
every run. The grey bar represents the Psys domain with all executions. The yellow
bar represents the Psys domain, using only the last 4 executions of every run.

0

50

100

150

200

250

300

350

400

Binary

Figure B.1: Results for the binary benchmark with Tiered Compilation

An example of the chart depicting the energy consumption per time unit can
be found in Figure B.2 The blue bar represents the Psys domain divided by the
execution time with all executions. The red bar represents the Psys domain divided
by the execution time, using only the last 4 executions of every run.

An example of a chart with combined averages and combined error bars can be
found in Figure B.3.

79

80 APPENDIX B. DATA ANALYSIS CHART EXAMPLES

0

0,005

0,01

0,015

0,02

0,025

0,03

0,035

0,04

0,045

Binary

Figure B.2: The energy consumption per millisecond for the binary benchmark with
Tiered Compilation

1980

2000

2020

2040

2060

2080

2100

2120

2140

40500 41000 41500 42000 42500

To
ta

l J
o

u
le

Total Time in ms

Combined energy consumption

C# Results

C# NoHyper Results

C# Perf Results

C#Perf NoHyper Results

Figure B.3: Combined chart for the initial hardware measurements

Appendix C

Toll Calculations

The complete code demonstrating the power of pattern matching from the presen-
tation by Bill Wagner at NDC London 20201 2.

using System;

namespace NDCLondon

{

public static class tollCalculations

{

private static bool IsWeekDay(DateTime timeOfToll) =>

timeOfToll.DayOfWeek switch

{

DayOfWeek.Saturday => false,

DayOfWeek.Sunday => false,

_ => true

};

private enum TimeBand

{

MorningRush,

Daytime,

EveningRush,

Overnight

}

private static TimeBand GetTimeBand(DateTime timeOfToll)

1Change your habits: Modern techniques for modern C#
2Change your habits: Modern techniques for modern C# - Bill Wagner

81

https://ndc-london.com/talk/change-your-habits-modern-techniques-for-modern-c/
https://www.youtube.com/watch?v=aUbXGs7YTGo&list=WL&index=2&t=0s

82 APPENDIX C. TOLL CALCULATIONS

{

int hour = timeOfToll.Hour;

if (hour < 6)

return TimeBand.Overnight;

else if (hour < 10)

return TimeBand.MorningRush;

else if (hour < 16)

return TimeBand.Daytime;

else if (hour < 20)

return TimeBand.EveningRush;

else

return TimeBand.Overnight;

}

public static decimal PeakTimePremiumImperative

(DateTime timeOfToll, boolean inbound)

{

if (IsWeekDay(timeOfToll))

{

if(inbound)

{

var timeBand = GetTimeBand(timeOfToll);

if (timeBand == TimeBand.MorningRush)

{

return 2.00m;

}

else if (timeBand == TimeBand.Daytime)

{

return 1.50m;

}

else if (timeBand == TimeBand.EveningRush)

{

return 1.00m;

}

else

{

return 0.75m;

83

}

}

else

{

var timeBand = GetTimeBand(timeOfToll);

if (timeBand == TimeBand.MorningRush)

{

return 1.00m;

}

else if (timeBand == TimeBand.Daytime)

{

return 1.50m;

}

else if (timeBand == TimeBand.EveningRush)

{

return 2.00m;

}

else

{

return 0.75m;

}

}

}

else

{

return 1.00m

}

}

public static decimal PeakTimePremiumPattern

(DateTime timeOfToll, boolean inbound) =>

(IsWeekDay(timeOfToll), GetTimeBand(timeOfToll), inbound) switch

{

(true, TimeBand.MorningRush, true) => 2.00m,

(true, TimeBand.MorningRush, false) => 1.00m,

(true, TimeBand.Daytime, true) => 1.50m,

(true, TimeBand.Daytime, false) => 1.50m,

(true, TimeBand.EveningRush, true) => 1.00m,

(true, TimeBand.EveningRush, false) => 2.00m,

84 APPENDIX C. TOLL CALCULATIONS

(true, TimeBand.Overnight, true) => 0.75m,

(true, TimeBand.Overnight, false) => 0.75m,

(false, TimeBand.MorningRush, true) => 1.00m,

(false, TimeBand.MorningRush, false) => 1.00m,

(false, TimeBand.Daytime, true) => 1.00m,

(false, TimeBand.Daytime, false) => 1.00m,

(false, TimeBand.EveningRush, true) => 1.00m,

(false, TimeBand.EveningRush, false) => 1.00m,

(false, TimeBand.Overnight, true) => 1.00m,

(false, TimeBand.Overnight, false) => 1.00m,

};

public static decimal PeakTimePremiumPatternReduced

(DateTime timeOfToll, boolean inbound) =>

(IsWeekDay(timeOfToll), GetTimeBand(timeOfToll), inbound) switch

{

(true, TimeBand.MorningRush, true) => 2.00m,

(true, TimeBand.MorningRush, false) => 1.00m,

(true, TimeBand.Daytime, _) => 1.50m,

(true, TimeBand.EveningRush, true) => 1.00m,

(true, TimeBand.EveningRush, false) => 2.00m,

(true, TimeBand.Overnight, _) => 0.75m,

(false, _, _) => 1.00m,

};

}

}

Listing 6: The complete code with conditional statements and two pattern matching
functions

	Abstract
	List of acronyms
	Introduction
	Motivation
	Project background
	Goals
	Contributions
	Overview

	Related Work
	Energy measurement
	Software energy consumption

	Methodology
	Approach
	Hardware
	Benchmark
	Tested variables
	Measurement Tools & Methodology

	Data Analysis
	Analysis & Visualisation
	Process
	Statistical Analysis

	Measurement
	Energy Measurement
	Idle energy consumption
	Validity
	Conclusion

	Hardware Settings
	Idle consumption
	C# Benchmarks
	Comparison to related work
	Validity
	Conclusion

	Compiler Settings
	QLRT
	Compiler setting comparison
	Statistical Analysis
	Validity
	Conclusion

	Architectures
	Operating System
	Results
	Validity
	Conclusion

	Programming Choices
	Loops
	Pattern Matching
	LINQ
	Validity
	Conclusion

	Conclusions & Recommendations
	Validity
	Conclusions
	Recommendations

	References
	CSV example
	Data Analysis Chart Examples
	Toll Calculations

