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ABSTRACT 

Trees comprise a critical component of urban ecosystem and directly affect human habitation. Information 
on tree species is important for authorities, urban managers, landscape architects and environmentalists. 
Traditionally, identification of tree species is conducted through field based survey and visual interpretation 
of aerial photographs which are time consuming, costly and limited. In recent years, sensors have been 
launched and very high resolution imageries have become available which provide fast acquisition of 
information over a large area. However, using high resolution imagery for identification of tree species is a 
challenging issue due to increase of within class spectral variation by increase of resolution and low class 
separability between tree species and other urban vegetation. This research investigates the classification of 
urban tree species using spectral profile of tree crowns and texture.  

In this research, the spectral profile is defined as the series of values of pixels along a transect polyline, if 
one applies the spectral profile for all pixels within the tree crown on an individual band of image, the result 
would be a surface. According to the research done by Ardila et al. (2012a) some tree species show different 
profiles across their crowns which is the hypothesis for this work. However, spectral profile does not 
perfectly fit a model because of the texture effect. Actually both effects of texture and spectral profile surface 
exist simultaneously (mixed effect). This poses a problem for texture analysis because texture analysis is 
affected by low frequency signal component.  

In this research, coarse structure or low frequency signal component of tree crowns is described by bell 
curve models like Pollock, Gaussian and Paraboloid models. RMSE as a goodness of fit shows that the 
Pollock model can best approximate the coarse structure of tree crowns for all four species (Plantanus Spp., 
Corylus Spp., Alnus Spp., and Tilia Spp.) compared to Gaussian and Paraboloid models. To describe the coarse 
structure of the trees of the same species just one model (the Pollock model) is sufficient. In addition, the 
difference between the coarse structures (surface model) of different tree species is defined by Pollock 
parameters which describe the shape of the spectral profile. It is observed that the geometrical shape of the 
tree crowns matches the shape of the spectral profile. In this regard, Corylus Spp. is completely separable 
from other species and Alnus Spp. and Tilia Spp. have the lowest class separability. 

Fine structure or high frequency signal component is extracted by subtraction of the Pollock model from 
the spectral profile. In other words, the effects of texture and spectral profile surface are decomposed by 
subtraction of the fitted Pollock model from the spectral profile. GLCM texture measurements and semi-
variogram are used for classification of fine structure. Addition of texture information for classification 
improves Kappa from 0.53 to 0.56 by considering the semivariogam and from 0.53 to 0.55 by considering 
GLCM texture measurements for classification. However, this improvement is not significant. Fine structure 
obtained from subtraction of the Pollock model from the spectral profile reveales more texture compared 
to the spectral profile itself. Classification based on texture of fine structure instead of texture of spectral 
profile has improved Kappa coefficient from 0.14 to 0.19. However, this improvement is not significant.  

By applying Maximum likelihood classification based on both Pollock parameters and object-wise GLCM 
texture measurements, Corylus Spp. and Plantanus Spp. with conditional Kappa of 1.00 and 0.90 respectively 
classified almost perfectly. Tilia Spp. with conditional Kappa of 0.57 classified moderately and Alnus Spp. 
with conditional Kappa of 0.36 classified fairly. Although this research has been conducted in Delft city, the 
Netherlands, classification methods introduced in this research have this possibilities to be applied in other 
urban areas and to other species.  

i 



ACKNOWLEDGEMENTS 

My sincere thanks to the Netherlands Government through Netherlands Fellowship Programme (NFP) for 
sponsoring my studies at Faculty of Geo-Information Science and Earth Observation, University of Twente 
(ITC).  

Foremost, I would like to express my sincere gratitude to my supervisors Dr. Valentyn Tolpekin and Dr. Ir. 
Wietske Bijker for the continuous support of my research, for their patience, motivation enthusiasm, and 
immense knowledge. Their guidance helped me in all the time of research and writing of this thesis. 

Also, I would like to thank my fellow Geo-informatics classmates for classes we shared and for all the fun 
we had together. Last but not least, I would like to thank to my family for supporting me spiritually 
throughout my life. 

 
 

ii 



 

TABLE OF CONTENTS 
 
 
List of figures ................................................................................................................................................................ iv 
List of tables ................................................................................................................................................................... v 
1. Introduction ........................................................................................................................................................... 7 

1.1. Motivation and problem statement ..........................................................................................................................7 
1.2. Research identification ...............................................................................................................................................8 
1.3. Research innovation aimed at ...................................................................................................................................9 
1.4. Method adopted...........................................................................................................................................................9 
1.5. Thesis outline ............................................................................................................................................................ 10 

2. Litrature review .................................................................................................................................................. 11 
2.1. Tree species classification and remote sensing.................................................................................................... 11 
2.2. Texture information for tree species classification ............................................................................................. 12 
2.3. Shape information for tree species classification ................................................................................................ 12 
2.4. Tree modeling ........................................................................................................................................................... 12 

3. Concept and methodology ............................................................................................................................... 15 
3.1. Spectral profile .......................................................................................................................................................... 16 
3.2. Correction for the effect of geometry of sun illumination ............................................................................... 17 
3.3. Topographic normalization .................................................................................................................................... 18 
3.3. Modeling the coarse structure of tree crowns ..................................................................................................... 19 
3.4. The fine structure of a tree crown ......................................................................................................................... 21 
3.5. Textural descriptors based on Grey Level Co-occurrence Matrices (GLCM) .............................................. 22 
3.6. Variogram .................................................................................................................................................................. 24 
3.7. GLCM texture measurements as a function of lag and window size .............................................................. 25 
3.8. Texture measurements as the classification features .......................................................................................... 25 
3.9. Classification and Accuracy assessement ............................................................................................................. 26 

4. Material and study area ..................................................................................................................................... 29 
4.1. Study area location: .................................................................................................................................................. 29 
4.2. Data ............................................................................................................................................................................. 29 
4.3. Software ..................................................................................................................................................................... 30 

5. Results .................................................................................................................................................................. 31 
5.1. Fitting surface models to spectral profile of crowns .......................................................................................... 31 
5.2. Maximum Likelihood Classification (MLC) based on Pollock parameters ................................................... 34 
5.3. Maximum Likelihood Classification (MLC) based on Pollock parameters and semivariogram model .... 36 
5.4. Maximum Likelihood Classification (MLC) based on Pollock parameters and GLCM texture 

measurements ............................................................................................................................................................ 38 
5.5. Classification based on GLCM texture measurements profiles ....................................................................... 41 
5.6. Summary of Classification ...................................................................................................................................... 42 

6. Disscussion ......................................................................................................................................................... 43 
6.1. Fitting surface models to spectral profile of crowns .......................................................................................... 43 
6.2. Maximum Likelihood Classification (MLC) based on Pollock parameters ................................................... 44 
6.3. Maximum Likelihood Classification (MLC) based on Pollock parameters and texture measurements ... 45 

7. conclusion and recommendations .................................................................................................................. 49 
7.1. Conclusion ................................................................................................................................................................. 49 
7.2. Recommendations .................................................................................................................................................... 49 

List of references ........................................................................................................................................................ 51 
 

iii 



LIST OF FIGURES 
 
 
Figure 1. NDVI profile of a tree crown .................................................................................................................... 8 
Figure 2. General framework of research ................................................................................................................ 10 
Figure 3. Methodology framework ........................................................................................................................... 15 
Figure 4. Decomposition of a mixed signal to a high frequency and a low frequency signal component. .. 16 
Figure 5. Lambert’s Cosine Law ............................................................................................................................... 17 
Figure 6. Lambertian surface  .................................................................................................................................... 17 
Figure 7. Geometry defining angle of incidence (𝛽𝛽) and solar zenith angle (𝜃𝜃𝜃𝜃) ............................................. 18 
Figure 8. Pollock surfaces with different values for 𝑛𝑛........................................................................................... 19 
Figure 9. Obtaining fine structure by subtraction of the fitted surface model from the spectral profile ..... 22 
Figure 10. Obtaining fine structure by division of spectral profile by fitted Pollock model .......................... 22 
Figure 11 Original spectral profile of a Plantanus crown, and fine structure of the same crown. .................. 23 
Figure 12. Obtaining GLCM matrix with different lags from the input image ................................................ 23 
Figure 13. Study area within Delft city ..................................................................................................................... 29 
Figure 14. Changing accuracy (RMSE) by changing parameters 𝑎𝑎, 𝑏𝑏, and 𝑛𝑛 for fitting Pollock model. ...... 32 
Figure 15. Shape information for each tree species. .............................................................................................. 33 
Figure 16. Boxplots of Pollock parameters for each species. ............................................................................... 34 
Figure 17. Extracting semi-variogrm from fine structure of a crown and fitting a variogram model. .......... 36 
Figure 18. Distribution of parameters extracted from fitted variogram model for each species. .................. 37 
Figure 19. GLCM measurements as a function of lag by applying a global (object-wise) window ............... 38 
Figure 20. Transformed divergence (TD) of GLCM texture measurements for each pair of species. ......... 39 
Figure 21. Mean and standard deviation of object-wise GLCM mean for each species. ................................ 41 
 

iv 



 

LIST OF TABLES 
  
 
Table 1. Classification of Kappa coefficient. Source: Landis & Koch (1977) .................................................. 27 
Table 2. Characteristics of aerial image used for urban tree species classification. .......................................... 29 
Table 3. Reference data used as training and verification sets. ........................................................................... 30 
Table 4. Root mean square error (RMSE) of fitting surface models to spectral profile of each species by 
applying two methods grid search and nonlinear regression. .............................................................................. 31 
Table 5. Root mean square error (RMSE) as a goodness of fit of surface models .......................................... 31 
Table 6. Standards error of mean and confidence interval for mean of Pollock parameters. ........................ 32 
Table 7. Comparison of Kappa coefficient for two classifications, one based on parameters 𝑎𝑎 and 𝑛𝑛 as the 
descriptors and the other one by addition of parameter 𝑏𝑏. ................................................................................. 34 
Table 8. Conditional Kappa coefficients for two classifications, one based on parameters 𝑎𝑎 and 𝑛𝑛 as 
descriptors and the other one by addition of parameter 𝑏𝑏. ................................................................................. 35 
Table 9. Class separability (transformed divergence) between tree species based on Pollock parameters 𝑎𝑎, 𝑏𝑏 
and 𝑛𝑛 as descriptors ................................................................................................................................................... 35 
Table 10. Contingency analysis of training set based on Pollock parameters (𝑎𝑎, 𝑏𝑏, and 𝑛𝑛) ........................... 35 
Table 11. Contingency analysis of verification set based on Pollock parameters (𝑎𝑎, 𝑏𝑏, and 𝑛𝑛) ..................... 36 
Table 12. Contingency analysis of the verification set based on the Pollock parameters and semi variogram 
model ............................................................................................................................................................................ 37 
Table 13. Comparison of Kappa coefficient for two classification, one based on Pollock parameters (𝑎𝑎, 𝑏𝑏 
and 𝑛𝑛) and the other one by addition of semivariogram parameters ( sill and range). .................................... 37 
Table 14. Correlation between texture measurements of for Plantanus Spp. ..................................................... 40 
Table 15. Contingency analysis of classification base on the Pollock parameters and GLCM texture 
measurements computed from an object-wise window. ...................................................................................... 40 
Table 16. Contingency analysis of classification base on the Pollock parameters and GLCM texture 
measurements computed from pixel-wise window. .............................................................................................. 41 
Table 17. Comparison of Kappa coefficient for two classification, one based on object wise GLCM 
texture measurements of fine structure and the other one based on the object wise GLCM texture 
measurements of the spectral profile. ..................................................................................................................... 42 
Table 18. Kappa coefficient for each classification and conditional Kappa for each species. ....................... 42 

v 





URBAN TREE SPECIES CLASSIFICATION BASED ON SPECTRAL PROFILE OF CROWNS AND TEXTURE 

1. INTRODUCTION 

1.1. Motivation and problem statement 
Trees are one component of urban infrastructure that play a significant role in improving air quality, energy 
conservation, recreation and urban hydrologic processes (Dwyer, Mcpherson, Schroeder, & Rowntree, 1992; 
Wolf, 2004, 2007). Information on tree species are important for environmentalists, urban managers, urban 
designers, and landscape architects. Authorities and urban managers need information on structure of urban 
vegetation for sustainable tree management to estimate the need for implementation of an urban forestry 
program, and to plan for a community’s future. They need to incorporate species diversity when selecting a 
tree to plant. The loss of American elm from Dutch elm disease showed the danger of planting few species 
since these planting make the population prone to destruction from disease and pets (Endress, 1990). 
Moreover, choosing the right tree species in the right place is a prominent issue for urban designers and 
landscape architects, so they need to completely evaluate the site needs before selecting a tree species. In 
spite of great demand for accurate information about urban trees, recent studies (e.g., Brack, 2006) have 
shown that tree inventories are usually incomplete and need to be updated in most cities. 

Satellite imageries are the alternative to traditional techniques for detection and monitoring of urban trees 
like field survey measurements, and visual interpretation of aerial photography. Being time consuming, 
prone to human errors, considerably expensive and limited to accessible areas, using traditional methods 
especially over a large area is not applicable. Moreover, because of rapid variation of urban landscape, having 
up to date information by using these techniques is a challenging issue  (USDA, 2002). On the other hand, 
remote sensing methods provide timely effective and low cost information on urban vegetation. The main 
advantage of using remote sensing images is fast acquisition of information over large areas. Especially, with 
the advent of very of high resolution (VHR) images, the level of mapping in details have improved 
significantly (Thomas, Hendrix, & Congalton, 2003), but the needs for development of methods have been 
increased dramatically.  

Although satellite imagery is an alternative data source for identification and classification of trees, there are 
some constraining factors. Trees in urban areas are difficult to extract due to limited spatial resolution of 
satellite images with respect to size of tree crowns.  Recently numerous high resolution sensors have become 
available. However, the improvement of spatial resolution does not increase classification accuracy when 
pixel-based classification methods are used. There are some factors limiting the applicability of pixel based 
classifiers for tree species identification: (1) the increase of within class spectral variance with increasing 
resolution (Pouliot et al., 2002; Hirschmugl et al., 2007); (2) low spectral separability between tree species 
(Chepkochei, 2014) and other urban vegetation (Ardila et al., 2012a). 

To solve the limitation of pixel-based classification, object-based methods have been developed which allow 
to work with regions instead of individual pixels. To extract spatial objects from an image, segmentation 
methods are applied which divide an image into regions which correspond to different objects or part of 
objects. Using these methods allow to extract very small features like small individual trees. In addition, 
image objects offer a wide range of variables for image analysis like texture, shape, and contextual features 
(Blaschke & Strobl, 2001; Blaschke, 2004; Blaschke, 2010;  Hay & Castilla, 2008) which can be used for 
urban trees classification (Moskal, Styers, & Halabisky, 2011). 
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Texture is a property that represent the spatial variability of pixels over a region. It usually refer to high 
frequency signal component  and can be used in object based image analysis (Lucieer, 2004). Many texture 
analysis methods have been developed such as grey level co-occurrence matrix (GLCM) (Haralick, et al., 
1973), multivariate Gaussian Markov random field (Hazel, 2000), and local binary pattern (Ojala, Pietikainen, 
& Maenpaa, 2002). However, finding the reliable texture measurement and appropriate scale for tree 
classification especially in urban areas is a challenging issue.  

Spectral profile is another property that shows the reflectance characteristic and distribution of pixel values 
inside tree crown objects and can perhaps be used for tree species classification. Spectral profile is defined 
as the series of values of pixels along a transect polyline. It is also defined as the value of one pixel in 
different bands of an image. According to the first definition, if we apply the spectral profile for all pixels 
within the tree crown on an individual band of image, the result would be a surface. Generally, tree crowns 
generate a bell-curve surface with local radiometric maxima near the centre of crown, which gradually 
decreases toward the crown boundary (Figure 1). Ardila et al. (2012a) fitted a Gaussian surface model to the 
NDVI radiometric surface of tree crowns to distinguish trees from other urban vegetation. According to 
their research, some tree species show different profiles across their crowns which is the hypothesis for this 
work. It is also important to consider that pectoral profiles may differ within a species according to age and 
also according to different varieties within species. 

However, spectral profile does not perfectly fit a model because of the texture effect. Actually both effects 
of texture and crown profile surface exist simultaneously (mixed effect). This poses a problem for texture 
analysis because texture analysis is affected by low frequency signal component (Gross & Brajovic, 2003).  
This influence of the low frequency component can be a possible reason for failure of variance-based texture 
analysis of tree species in the research done by Chepkochei (2014). So decomposition of these two effect 
can be a hypothesis for this research.  

Figure 1. NDVI profile of a tree crown extracted from a Quickbird image with 2.4 m resolution and a VHR image 
with 0.25m resolution- Source: Ardila et al. (2012a) 

1.2. Research identification 
This research focuses on classification of urban tree species by using spectral profile of tree crowns by 
means of very high resolution imageries in order to provide accurate information on urban trees for strategic 
planning and decision making. The objectives and questions to be answered by this research are: 

1.2.1. Research objectives  
Main objective 

To develop and implement image analysis methods to classify urban tree species of detected tree 
crowns on the very high resolution image by using spectral profile across tree crown and texture of 
tree crown. 

Sub objectives 
1. To decompose texture and spectral profile effects in tree crown. 
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2. To determine the best fitting surface for the spectral profile of each tree species and define the 
differences between these surfaces. 

3. To define the difference between the textures of different tree species by using texture 
measurements 

4. To determine the accuracy of classification based on texture measurements and surface fitting of 
tree crown 

1.2.2. Research questions 
1. How can texture and spectral profile effects be decomposed? 
2. Which surface model can best approximate the spectral profile characteristics of each tree species? 
3. How well the difference between the surface models of different tree species can be identified? 
4. Does a single model describe profile of trees of the same species or is more than one model needed? 
5. Which texture measurement can be used for tree species classification? 
6. How well the difference between textures of different tree species can be identified? 
7. Which tree species can be successfully detected? 

1.3. Research innovation aimed at 
This research aims at assessing the applicability and accuracy of classification and extracting information 
about tree species. In this research, for the first time tree crown spectral profile specifications like shape and 
texture are analysed for classification. Texture analysis have been used before for differentiating of trees 
from other land cover classes (e.g., Zhang, 2001). However, to the best of my knowledge, they have never 
been used for classification of tree species so far. Moreover, shape analysis of tree crown spectral profile in 
three dimensions has never been used before for classification of tree species.  

1.4. Method adopted 
To reach the objectives and answer the research questions, the following steps are taken: pre-processing, 
generation of fitting surface, classification using fitting surface and texture measurements, accuracy 
assessment, and validation.  

1) Pre-processing: in this step the preprocessing functions like geo-referencing, and masking will be 
applied. Then, a suitable subset for analysis and classification and another subset for verification 
will be selected. 

2) Generation of fitting surface model: in this step by having the crown polygons and training samples 
of detected species in the study area, analysis on the surface of spectral profile will be applied. 
Different surface models will be tested and the best fitting surface model or models with the least 
residuals will be selected for each tree species. 

3) Texture analysis of spectral profile: in this step, by subtracting the fitting surface model from the 
spectral profile of the tree crown, the texture of the spectral profile will be obtained. Then the 
spectral profile texture will be analyzed by using different texture measurements like grey level co-
occurrence matrix (GLCM). 

4) Class definition: this step refers to analysis of texture and profile per class. Then, to determine how 
distinct and separable different tree species are from each other class separability will be computed. 

5) Classification based on the spectral profile and texture: after defining the classes, classification 
methods based on the spectral profile and texture will be developed.  

6) Accuracy assessment: in this step by using the verification dataset, accuracy of classified crowns will 
be estimated by using thematic accuracy assessments like Kappa and confusion matrix and different 
types of error will be identified. 
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Figure 2 shows the general frame work of the research. 

 

 

 

 

 

 

Figure 2. General framework of research 

1.5. Thesis outline 
This research is divided into seven chapters. The first chapter includes the problem statement, research 
objectives, research question, innovation that is aimed and general framework of research. The second 
chapter deals with literature review of the research regarding to tree modelling and texture measurements. 
The third chapter explains the concept and methodology applied in the research and chapter four introduces 
the study area, data and software used. Chapter five gives the results and chapter six deals with the analysis 
of results. The thesis ends with chapter seven which makes conclusion and recommendation for future 
researches in this area.
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2. LITRATURE REVIEW 

2.1. Tree species classification and remote sensing 
Trees are an essential component of urban ecosystem that affect human life and urban environment. To 
identify tree species in urban areas, researchers have applied different methods. Since traditional techniques 
relying on interpreter’s experience are not accurate enough, classification methods have been developed. 
These classification methods are based on the features, sometimes called descriptors (Brandtberg, 2002) or 
criteria  (S. E. Franklin, Wulder, & Gerylo, 2001), which provide the highest separabality between classes 
and highest within class similarity. 

Tree species classification has benefited from advances in remote sensing. In recent years, imagery from a 
wide range of sensors have become available. This trend is likely to increase in the near future. However the 
choice of the most appropriate data source is a challenging issue and depends on some factors like the size 
of analysed objects, spatial resolution and extend of the available images, and also spectral and temporal 
image characteristics  (Key, Warner, Mcgraw, & Fajvan, 2001). Medium resolution sensors like Landsat TM, 
SPOT, IRS, MOS which have a spatial resolution from 20m to 60 m, have been used for identifying tree 
species (Roller, 2000). For example, WHITE et al. (1995) applied an unsupervised classification on Landsat 
TM for defining species composition of forests. They modified spectral classification by environmental data 
and identified four classes (genus Pinus, genus Abies, non-wooded, without vegetation) with 73 percent 
accuracy. At that time, classification accuracy was dependent on spectral resolution, spatial resolution and 
study sites. 

Until 1999, before launching IKONOS-2, the spatial resolution of available satellite images was 
incompatible with the geometric precision and level of details for tree mapping (Carleer & Wolff, 2004). At 
that time, aerial photographs were a widely used data source for vegetation mapping. Meyera, Staenzb, & 
Ittena (1996) identified five tree species in forest of “Unterwald” in Switzerland by using scanned aerial 
photographs. The advent of high spatial resolution sensors like IKONOS and QuickBird provided a new 
possibility for tree mapping and image analysis. Several studies demonstrated the capacity of VHSR images 
for identification of tree species (e.g.  Hájek, 2006; Mora et al., 2010; Pu & Landry, 2012).  Zhang et al. 
(2008) combined airborne VHR optical and light detected and ranging (LIDAR) imagery for classification 
of tree species over a mixed conifer hardwood forest in Ontario, Canada. Pu & Landry (2012) explored the 
potential of newly developed high resolution satellite sensors WorldView-2 and IKONOS for mapping 
urban tree species in city of Tampa, FL, USA.  

High spatial resolution sensors generally provide data with limited spectral and temporal resolution due to 
their small field of view (FOV). A number of studies tried to overcome this limitation by combining multi-
temporal images of lower spatial resolution. For example Key et al. (2001) discriminate four deciduous tree 
species by using differences in spectral properties of multi-temporal images and phenologic events between 
tree species. Most tree classification studies have used spectral signature approaches like maximum 
likelihood classifier (Sugumaran et al., 2003; Carleer & Wolff, 2004; Hagner & Reese, 2007). Leckie (2003) 
developed spectral signature for five conifer classes and one deciduous broad leaf class to classify old growth 
conifer sites along the west coast of Canada and got average error of 7.25% over the 16 sites. 

 One of the challenges in using high spatial resolution imagery and traditional pixel based classifiers like 
maximum likelihood which apply spectral signature feature is the increase of within class spectral variation.  

11 



URBAN TREE SPECIES CLASSIFICATION BASED ON SPECTRAL PROFILE OF CROWNS AND TEXTURE 

In this regard, new multispectral classification approaches have been developed where individual tree crown, 
rather than pixel are the object of classification (Gougeon, 1995; Key et al., 2001; Leckie, 2003; Chepkochei, 
2014). For example in the research by Leckie (2003), after applying pixel based maximum likelihood 
classification, the class with the most frequently identified tree species was assigned to each crown. Also, In 
the research by Chepkochei (2014), after initial per pixel classification by SVM, each tree crown was labelled 
based on the highest total probability. 

Segmentation and delineation of individual tree crowns has been an ongoing research field for many years 
(Erikson, 2004). Several object based methods have been developed to detect individual crown boundary 
automatically. The valley following approach (Gougeon & Leckie, 2003, Gougeon, 1995a), the local maxima 
(Wulder, Hall, Coops, & Franklin, 2004), texture grouping (Warner, Lee, & Mcgraw), and morphological 
operators (Barbezat & Jacot, 1999) are the popular ones. Ardila et al. (2012a) developed object based 
methods for identification of individual trees and tree groups in urban areas. In addition, (Ardila, Tolpekin, 
Bijker, & Stein (2011) applied Markov random field based supper resolution mapping for delineation of 
urban trees and got 66 % accuracy. This method proved an improvement over other classification methods 
like maximum likelihood and support vector machine.  

The review of literature shows the deficiency of existing classification method for identifying tree species 
due to low class separability between different tree species, and shows the need for improvement of 
methods.  

2.2. Texture information for tree species classification 
Texture is a criteria for defining the characteristics of objects in vegetation and forestry application (S. E. 
Franklin et al., 2001). Several studies have demonstrated that texture analysis can improve spectral 
classification of high spatial resolution images (e.g.  Franklin, Maudie, & Lavigne, 2001; Coburn & Roberts, 
2004; Y. Zhang, 2001). Franklin et al. (2000) showed that addition of texture can make modest improvement 
in classification of mixed-wood forest stands in Alberta, Canada from 60% to 65%. Franklin, Wulder, & 
Gerylo (2001) applied first order (variance) and second order (spatial co-occurrence homogeneity) texture 
measurement methods to distinguish the forest classes from IKONOS imagery. 

2.3. Shape information for tree species classification 
Since most of remote sensing studies on tree classification have been done in forest areas, shape information 
of trees is rarely used for classification in multispectral imagery (Fournier, Edwards, & Eldridge, 1995).Trees 
in forest area are more compact and experiencing more competition for resources. Consequently, in satellite 
images of forest area only a portion of the tree tops are visible. In contrast to forest trees, in urban area trees 
are more isolated and shape information are more specific (K. Zhang & Hu, 2012). Several studies used 
shape information to classify tree species. Zhang & Hu, (2012) used the longitudinal profiles of tree crown 
to classify six tree species. Kim & Hong, (2008) used crown shape parameters and canopy texture parameters 
to identify tree species in QuickBird imagery. 

2.4. Tree modeling 
A general model for profile of a tree crown first was proposed by the botanist Henry Horn in one dimension 
(Horn, 1971). Pollock (1996) extend this model for two dimension and described, tree geometry by a 
generalized ellipsoid of revolution. A number of researches have used Pollock model as the basis for their 
work to delineate tree crowns (e.g. Larsen & Rudemo, 1997; Straub & Heipke, 2001; Gong, Sheng, & Blging, 
2002). Mayer et al. (1999) applied Pollock’s model and investigated the suitability of DSM for classification 
of trees. By parameter estimation they differentiated coniferous and deciduous trees. Ardila et al. (2012c) 
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fitted a Gaussian function to the membership images of two date to differentiate the urban trees from other 
urban vegetation and to monitor crown changes. The review of literature reveals that Gaussian model is 
more suitable for describing deciduous trees regarding to its properties. Nevertheless, Pollock model, by 
having the shape parameter has proved its suitability for modelling both deciduous and coniferous trees. 
The Pollock model mostly has been applied on the height data like DSM and been used for delineation of 
tree crowns. However, the suitability of this model for application on radiometric data and classification of 
tree species has not been explored so far. In addition regarding to properties of Gaussian model, it is more 
suitable for modelling deciduous trees.
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3. CONCEPT AND METHODOLOGY 

This chapter explains the methods applied to achieve the objectives. The methodology framework is 
shown in figure 3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. Methodology framework 
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3.1. Spectral profile 
The spectral profile shows the reflectance characteristics of pixels inside a tree crown. In some software like 
ERDAS Imagine, spectral profile is defined as the value of one pixel in different bands of an image. In this 
thesis, a spectral profile is defined as the series of pixel values of an individual band along a transect polyline. 
In ERDAS Imagine, this is called a spatial profile. According to second definition, spectral profile of all 
pixels within a tree crown forms a bell shaped surface. From now on, wherever a spectral profile is 
mentioned, the second definition applies.  

Two properties in the spectral profile of a tree crown which can be considered for analysis are as follows: 

1) The bell curve shape of the spectral profile, in some literature called coarse structure (Wolf & 
Heipke, 2007) or low frequency signal component. 

2) The  detailed structure of the spectral profile, in some literature called fine structure (Wolf & 
Heipke, 2007) or high frequency signal component 

In Figure 4, the green signal resembles the spectral profile of the tree crown that can be decomposed into 
two components, the high frequency signal component (yellow signal) and low frequency signal component 
(red signal). 

Figure 4. Decomposition of a mixed signal to a high frequency and a low frequency signal component. This figure 
shows a mixed signal (green signal) which can be decomposed into low frequency signal component (red signal), and 
high frequency signal component (yellow signal) 

A decomposed profile allows analysis of separate components that can be useful for analysis. Therefore, 
two strategies can be taken as follows: 

1) To model the coarse structure, or low frequency signal component, of the spectral profile by means 
of  fitting a bell shaped surface model; 

2) To analyze the fine structure, or high frequency signal component, of the spectral profile. 

However, before retrieving the spectral profile, one needs to correct the effect of sun illumination geometry 
and topographic effect on each individual band of the image. 

3.1.1. Green-Red Vegetation Index (GRVI) 
In this research, the spectral profile has been extracted from the Green-Red Vegetation Index (GRVI). 
GRVI can be computed as 

 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 =  
𝜌𝜌green − 𝜌𝜌red
𝜌𝜌green + 𝜌𝜌red

 (1) 
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where 𝜌𝜌g.r.e.e.n is reflectance of visible green and 𝜌𝜌𝑟𝑟.𝑒𝑒.𝑑𝑑 is reflectance of visible red. In this research, the 
spectral profile has been extracted from GRVI instead of NDVI due to the limitation of available spectral 
bands. After this, “spectral profile” refers to spectral profile of a tree crown extracted from GRVI. 

3.2. Correction for the effect of geometry of sun illumination 
Correction of sun illumination is a necessary step of pre-processing in the remote sensing application. It is 
essential to determine the effect of geometry of illumination especially the solar zenith angle. Depending on 
the solar zenith angle, the sun illumination affects the spectral profile and may cause a shift in the profile 
curve and change the location of profile maxima. Therefore, images obtained from different solar zenith 
angles need to be corrected. To do so, tree crowns are assumed to be Lambertian surfaces and a cosine 
correction is applied. The solar zenith angle can be retrieved from the dataset or can be calculated on the 
basis of the exact date, time, and coordinates of the acquired image. In this research, within one image the 
solar zenith angle is assumed to be the same for entire image. 

3.2.1. Lambert’s Cosine Law 
Lambert's Cosine Law states that radiant intensity observed at a "Lambertian" surface is directly 
proportional to the cosine of the angle between the incoming light and the normal to the surface. As one 
can see in Figure 5, the irradiance falling on any surface varies as the cosine of the incident angle 𝜃𝜃 . 
Accordingly, since at oblique angles the radiance spreads over a wider area, the irradiance is less than when 
that radiance is perpendicular to the surface. Lambert’s Cosine Law can be written as 
 𝐸𝐸𝜃𝜃 = 𝐸𝐸 cos 𝜃𝜃 (2) 

where 𝐸𝐸𝜃𝜃  is the irradiance along a direction which has angle 𝜃𝜃 with the normal to the surface, 𝐸𝐸 is irradiance 
in normal direction, 𝜃𝜃 and is the angle of incidence which is the angle between the illuminating source and 
the normal to the surface. 

Figure 5. Lambert’s Cosine Law       Source: Ryer (1998) 

In Equation 1, the assumption is that the reflecting surface is horizontal and Lambertian. A Lambertian 
surface provides a uniform diffusion of the incident radiation such that its radiation in all directions is the 
same. Accordingly, the reflected intensity is independent of the viewing direction, but dependent of the 
source orientation. Figure 6 shows a Lambertian surface. Since at 60° the radiance spreads over twice as 
large area, the reflection is half of the reflection at 0°. 

Figure 6. Lambertian surface      Source: Ryer (1998)  
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3.2.2.  Cosine correction for a horizontal surface  
According to the Lambert’s Cosine Law, the radiance observed by a sensor over a horizontal surface can be 
written as: 
 𝐸𝐸𝐻𝐻 = 𝐸𝐸 cos𝜃𝜃𝑠𝑠                                             

(3) 

where  𝐸𝐸𝐻𝐻 is irradiance on a horizontal surface at sensor, 𝜃𝜃𝑠𝑠 is solar zenith angle, and 𝐸𝐸 is irradiance in 
normal direction.  

3.3.  Topographic normalization 
Measured spectral radiances are also subject to radiometric variations according to the slope and aspect 
characteristic of imaged tree crowns, just as they are subject to the effect of varying atmospheric and 
illumination conditions (Teillet, Guindon, & Goodenough, 1982). 

3.3.1.  Cosine correction for a sloping surface 
Accordingly, for a sloping surface the radiance observed by a sensor can be written as: 
 𝐸𝐸𝑇𝑇 = 𝐸𝐸 cos 𝛿𝛿                                      (4) 

where 𝐸𝐸𝑇𝑇 is irradiance on a tilted surface, and 𝛿𝛿 is the incident angle with respect to normal of tilted surface. 
According to Figure 7, the measured spectral radiance at sensor may vary according to the slope and aspect 
of the imaged surface. Therefore, to eliminate measurement errors which may result from terrain topography 
and remove the effect of sloping surface, one can combine Equation 2 and 3 as 
 𝐸𝐸𝐻𝐻 =  𝐸𝐸𝑇𝑇 

cos𝜃𝜃𝑠𝑠
cos𝛿𝛿 

        (5) 

where 𝐸𝐸𝐻𝐻 is the irradiance on horizontal surface (normal reflectance), 𝜃𝜃𝑠𝑠 is solar zenith angle. 

Figure 7. Geometry defining angle of incidence (𝛽𝛽) and solar zenith angle (𝜃𝜃𝑠𝑠) in case of a sloped surface                   
Source: Teillet et al. (1982) 

According to Figure 7, the angle 𝛿𝛿 can be computed as 
 cos 𝛿𝛿 = cos𝛽𝛽  cos𝜃𝜃𝑠𝑠  + sin𝛽𝛽 sin𝜃𝜃𝑠𝑠 cos(𝛾𝛾𝑠𝑠 − 𝛾𝛾)                                                (6) 

Where 𝛽𝛽 is slope angle, 𝛾𝛾𝑠𝑠 is the solar azimuth angle, and 𝛾𝛾 is the aspect of the slope. 

3.3.2. C-Correction 
Teillet et al. (1982) proposed to emulate the effect of indirect illumination from the sky by adding a 
moderator (𝐶𝐶) to the cosine correction. A linear relationship exists between 𝐸𝐸𝑇𝑇  and cos 𝛿𝛿 and one can 
model this relationship as 
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 𝐸𝐸𝑇𝑇 = 𝑑𝑑 + 𝛽𝛽 cos 𝛿𝛿                                       (7) 

where 𝛽𝛽 is the slope and 𝑑𝑑 is the intercept of a linear regression between 𝐸𝐸𝑇𝑇  and cos 𝛿𝛿. Parameter 𝐶𝐶 can 
be defined as a function of regression slope and intercept as follows 

 C= 𝑑𝑑
𝛽𝛽

 (8) 

And exert a moderation to the cosine correction as 
 𝐸𝐸𝐻𝐻 = 𝐸𝐸𝑇𝑇 

cos𝜃𝜃𝑠𝑠+𝐶𝐶
cos𝛿𝛿 +𝐶𝐶

 .                                          (9) 

3.3. Modeling the coarse structure of tree crowns 
In this research, an assumption is made that geometric model of the tree crown surface can be applied to 
model the radiometric surface of the tree crown. This assumption is supported by visual inspection of 
radiometric surface of tree crowns in images. Three bell shaped surface models are considered, namely, 
Gaussian, Paraboloid, and Pollock models.  

3.3.1. Pollock model 
Horn (1971) proposed a general model for one dimension vertical profile of a crown envelope (see equation 
10). In the following equation, 𝑎𝑎 and 𝑏𝑏 are positive numbers and represent the vertical dimension (crown 
height) and horizontal dimension of a crown (crown radius), respectively, and 𝑛𝑛 is positive and non-zero 
which represents the crown curvature. 

 𝑧𝑧𝑛𝑛

𝑎𝑎𝑛𝑛
+ 𝑦𝑦𝑛𝑛

𝑏𝑏𝑛𝑛
= 1  (10) 

When 𝑛𝑛 = 1, the curve is a straight line. When 0 < 𝑛𝑛 < 1, the curve is upward concave and while 𝑛𝑛 > 1 
is downward concave. When 𝑛𝑛 = 2 the curve is part of an ellipse. 

Pollock (1994, 1996) extended Horn’s model into two dimensions and defined a crown with a generalized 
ellipsoid. See the following equation. 
 𝑧𝑧𝑛𝑛

𝑎𝑎𝑛𝑛
+ �𝑥𝑥2+𝑦𝑦2�

𝑛𝑛
2

𝑏𝑏𝑛𝑛
= 1                                       

(11) 

In this equation, 𝑥𝑥 and 𝑦𝑦 are the 𝑥𝑥 and 𝑦𝑦 coordinates and z is the height of tree crown for each location 
within tree crown. The intersection of model into the x-y plane is a circle. Pollock surfaces with different 
values of 𝑛𝑛 according to Equation 11 are shown in Figure 8.  

Figure 8. Pollock surfaces with different values for 𝑛𝑛. From left to right 𝑛𝑛 equals 0.5, 1, 1.5, 2, and 3 

As is shown in Figure 8, while 𝑛𝑛 tends to zero the shape becomes more and more concave and tends to a 
disc shape with a spike along the z axis. When 𝑛𝑛 = 1 the shape tends to a cone. For 𝑛𝑛 = 2 the crown is a 
regular ellipsoid. For 𝑛𝑛 > 2 the model tends more and more to a cylinder (Larsen & Rudemo, 1997).Gong 
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et al. (2002) investigate a range of values for 𝑛𝑛 from 1.0 to 1.8 with a typical value of 1.2 for coniferous trees 
and a range of values from 1.5 to 2.5 with a typical value of 2 for deciduous trees. 

In the previous studies, Pollock model has been used to model the height information of the tree crowns 
whereas in this research it is used for modelling the spectral profile (the reflectance information). 
Consequently, for this study parameter 𝑎𝑎 in Equation 10 and 11 represents the height of spectral profile, 
instead of the height of tree crown and 𝑧𝑧 represents the reflectance value. 

3.3.2. Isotropic and anisotropic Pollock model  

Spectral profile of tree crowns can be modelled as an isotropic object with parameters computed by surface 
fitting of a Pollock model. By converting the Cartesian coordinates into polar coordinates Equation 10 can 
be written as follows  
 𝑧𝑧𝑛𝑛

𝑎𝑎𝑛𝑛
+ 𝑟𝑟𝑛𝑛

𝑏𝑏𝑛𝑛
= 1                                                                                          (12) 

where r is the radius of tree crown and equals to �𝑥𝑥2 + 𝑦𝑦2. The Pollock model can be extended to an 
anisotropic model in order to fit any elliptical tree object. The equation of an anisotropic Pollock model 
with rotated axes (𝑥𝑥′, 𝑦𝑦′) fitted to GRVI values in the (𝑥𝑥, 𝑦𝑦) locations of the image is 

 𝑧𝑧𝑛𝑛

𝑎𝑎𝑛𝑛
+ ��𝑥𝑥′

𝑏𝑏𝑥𝑥
�
2

+ �𝑦𝑦′
𝑏𝑏𝑦𝑦
�
2
�

𝑛𝑛
2

= 1                       (13) 

Where 𝑏𝑏𝑥𝑥  and 𝑏𝑏𝑦𝑦 are width and length of an ellipse and the axes (𝑥𝑥′, 𝑦𝑦′) rotated by an angle 𝛼𝛼 in counter-
clockwise direction with respect to (𝑥𝑥, 𝑦𝑦) are defined as: 
 𝑥𝑥′ = 𝑥𝑥 cos𝛼𝛼 − 𝑦𝑦 𝛼𝛼                                    (14a) 

 𝑦𝑦′ = 𝑥𝑥 sin𝛼𝛼 + 𝑦𝑦 cos𝛼𝛼                                                                                      (14b) 

3.3.3. Gaussian and Paraboloid as tree models 

Other bell curve surface models that can be used for modelling spectral profile of tree crown are Gaussian 
and Paraboloid model. According to Equation 15, a Gaussian model can be defined by parameter ℎ, 𝜎𝜎𝑥𝑥 , 𝜎𝜎𝑦𝑦; 
where ℎ  represents the height of Gauassian and 𝜎𝜎 = (𝜎𝜎𝑥𝑥 , 𝜎𝜎𝑦𝑦)  represents the width of the elliptical 
Gaussian. In this equation, 𝑥𝑥′ and 𝑦𝑦′are rotated 𝑥𝑥 and 𝑦𝑦.  

 Ga(𝑥𝑥, 𝑦𝑦) = ℎ exp �− 1
2
��𝑥𝑥′

𝜎𝜎𝑥𝑥
�
2

+ �𝑦𝑦′
𝜎𝜎𝑦𝑦
�
2
��                   (15) 

Here is the equation of an elliptic Paraboloid 

 � 𝑥𝑥
𝜆𝜆𝑥𝑥
�
2

+ � 𝑦𝑦
𝜆𝜆𝑦𝑦
�
2

= −𝑧𝑧
𝑖𝑖
                                                                  (16) 

In this equation, 𝜆𝜆𝑥𝑥 , 𝜆𝜆𝑦𝑦  and 𝑖𝑖  are positive numbers; 𝜆𝜆 = (𝜆𝜆𝑥𝑥 , 𝜆𝜆𝑦𝑦) represents the width of the elliptic 
Paraboloid. Paraboloid has a cross section of an ellipse and if 𝜆𝜆𝑥𝑥 =  𝜆𝜆𝑦𝑦 it will have a cross section of a circle. 

3.3.4. Fitting Pollock model  

Since in the Pollock model z is in power of 𝑛𝑛, fitting of the Pollock model to the spectral profile data is 
problematic. For fitting the Pollock model two methods nonlinear regression and grid search have been 
applied. In the grid search, as is obvious from its name, a grid is generated by knowing the possible ranges 
for 𝑎𝑎, 𝑏𝑏 and 𝑛𝑛. Then for each point in the grid (for each defined combination of 𝑎𝑎, 𝑏𝑏 and 𝑛𝑛 ) the mean of 
square error (MSE) has been computed. For each pixel within tree crown, error is the difference between 
the estimated value computed from the Pollock model and the reflectance value. Then the point in the grid 
with the least mean squared error is selected as the best fitting point. 
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In the nonlinear regression method, by knowing a possible range of 𝑛𝑛 a sequence of values is defined for 𝑛𝑛. 
For each 𝑛𝑛 in the seqence, 𝑧𝑧 is risen to the power of this initial 𝑛𝑛. Then, by applying nonlinear regression 
𝑎𝑎, 𝑏𝑏 and 𝑛𝑛 are estimated and the difference between the initial 𝑛𝑛 and estimated 𝑛𝑛 is calculated. Then the 
initial 𝑛𝑛, with the least absolute difference is chosen. 

3.3.5. Goodness of fit  

Computation of goodness of fit helps to know how well each surface model fits the spectral profile. As one 
can see in Equation 17, in this research the root mean square error has been chosen to define the goodness 
of fit. 

 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �
1
𝑁𝑁

 �(𝑧𝑧′𝑖𝑖,𝑗𝑗 − 𝑧𝑧𝑖𝑖,𝑗𝑗)2
𝑖𝑖,𝑗𝑗

2  (17) 

In Equation 17, 𝑧𝑧′is the estimated value by fitted surface model and 𝑧𝑧 is the reflectance value in the 𝑖𝑖, 𝑗𝑗 
position. In addition, 𝑁𝑁 represents the total number of pixels of a crown. For choose the best model and 
comparing the performance of different models in fitting the spectral profile, one can use the RMSE as a 
goodness of fit. The model with least RMSE is the best fit of the spectral profile. 
 
3.3.6. Parameter estimation and confidence interval on mean of each parameter  

The difference between coarse structures (surface model) of different tree species can be defined by 
estimated parameters. For example, for the Pollock model this difference can be defined by parameters 𝑎𝑎, 𝑏𝑏, 
and 𝑛𝑛 for each species 

Since the reference data set is a sample and is not an exhaustive survey across the study area, there is sampling 
variability. In this research, the standard error of mean (SEm) is computed to find the sampling variability 
in the estimate of mean (𝑚𝑚) for each parameter for each species. The standard error of mean can be 
computed as 
 SEm = 𝑠𝑠

√𝑛𝑛
 , (18) 

where 𝑛𝑛  the sample is size and 𝑠𝑠  is the estimated standard deviation. Since the standard deviation of 
population  (𝜎𝜎 ) is unknown and is estimated by  𝑠𝑠 , there is some uncertainty in s which follows a 𝑡𝑡 
distribution. Then, the confidence interval (CI) is calculated as  
 CI= 𝑚𝑚  ±  𝑡𝑡 𝑠𝑠/√𝑛𝑛.  (19) 

3.3.7. Uncertainty of fit  

To find the uncertainty of fit for each parameter, first a tolerance for RMSE should be determined. Then, 
by keeping constant two parameters and changing only the third parameter, the possible range for that 
changing parameter in that certain tolerance can be computed. 

3.4. The fine structure of a tree crown 
After fitting the surface model to the spectral profile, the fine structure component can be obtained by 
subtraction of the fitted surface model from the spectral profile or by division of the spectral profile by the 
fitted model. Figures 9 and 10 show the fine structures obtained from subtraction and division respectively. 
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 a)                                                     b)   c) 

Figure 9. Obtaining fine structure by subtraction of the fitted surface model from the spectral profile; from left to 
right: spectral profile, fitted Pollock model, and fine structure of a tree crown 

   a)                                                   b)       c) 

Figure 10. Obtaining fine structure by division of spectral profile by fitted Pollock model; from left to right: spectral 
profile, fitted Pollock model, and fine structure of a tree crown 

As Figures 9 and 10 show, fine structure obtained from division is much smoother compared to the fine 
structure obtained from subtraction. By division procedure the mean of the residuals is close to zero and 
the standard deviation of the residuals is much smaller compared to the residuals obtained from subtraction. 
In fact, by division procedure there is no texture to be used for texture measurements. Therefore, the fine 
structure obtained from the subtraction procedure is used for further analysis and computing texture 
measurements. Furthermore, according to Figure 10, by division procedure the residuals close to the 
boundary are magnified because of division by a small number. 

3.5. Textural descriptors based on Grey Level Co-occurrence Matrices (GLCM) 
Difference in grey level values, scale of grey level differences, and directionality are the three variable that 
define a texture. One of the most widely used approaches to texture analysis is Grey Level Co-occurrence 
Matrix (GLCM) which was proposed by Haralick et al. (1973). They proposed a statistical method of 
examining texture by considering the spatial relationship of pixels in form of GLCM matrix. As one can see 
in Figure 11, by subtracting the fitted Pollock model from the spectral profile more texture is visible 
compared to the original spectral image.  
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                                           a)                                      b) 
Figure 11 a) Original spectral profile of a Plantanus crown, b) fine structure of the same crown obtained from 
subtraction of the fitted Pollock model from the spectral profile.  

3.5.1. Grey-Level Co-occurrence Matrix (GLCM) 
GLCM define the texture of an image by computing how often different combinations of grey levels with 
different values and specified spatial relationship occur in an image. The number of grey levels in the image 
determines the size of the GLCM which can be reduced by quantization. A single GLCM might not be 
sufficient to define the textural characteristics of the input image. Pixel relationships can be defined by 
varying direction and distance. In texture analysis the distance between the reference pixel 𝑖𝑖  and its 
neighbouring pixel 𝑗𝑗 is described as lag or separation distance (ℎ). Note that here, 𝑖𝑖 and 𝑗𝑗 do not refer to 
pixel coordinates but pixel intensities. GLCM is computed over a specific number of neighbouring pixels 
which is defined as window (𝑤𝑤). In this research, the possible range of angle orientations are reduced to 4 
angles of -45°, 0°, 45°, and 90° and the effect of lag and window size on the texture of each tree species has 
been explored. 
Figure 12 shows how the first element in a GLCM is computed in the direction 0° by different pixel 
separation distance. The element (1, 1) of GLCM matrix for the lag 1 pixel contains the value 2, since there 
are three pairs of pixels having value 1 in 0° direction in the input image. For the lag 2 pixels, this element 
of GLCM matrix contains the value 4 since there are 4 pairs of points having value 1 with separation of 2 
pixels in direction 0° in the input image. 
  

 

 

 

 

              a)                                       b)                                       c)                                           d) 

Figure 12. Obtaining GLCM matrix with different lags from the input image. a) input image, b) GLCM matrix with 
lag 1 pixel and window size 3 by 3 pixels in 0° direction, c) input image, d) GLCM matrix with lag 2 pixels and  window 
size 3 by 3 pixels in 0° direction.                       
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Several statistics can be derived from the GLCM matrix which provide information about the texture of 
an image. These statistics can be listed as follow (Haralick et al., 1973): 

3.5.2. GLCM mean 

 𝜇𝜇𝑖𝑖 = ∑ 𝑖𝑖 �𝑃𝑃𝑖𝑖,𝑗𝑗�𝑁𝑁−1
𝑗𝑗=0 ,              𝜇𝜇𝑗𝑗 = ∑ 𝑗𝑗 (𝑃𝑃𝑖𝑖,𝑗𝑗)𝑁𝑁−1

𝑖𝑖=0   (20) 

where 𝑁𝑁 is the number of grey levels and 𝑖𝑖, 𝑗𝑗 are pixel intensities. 

3.5.3. GLCM variance 

 𝛿𝛿𝑖𝑖2 = ∑ 𝑃𝑃𝑖𝑖,𝑗𝑗(𝑖𝑖 − 𝜇𝜇𝑖𝑖)2 ,𝑁𝑁−1
𝑗𝑗=0         𝛿𝛿𝑗𝑗2 = ∑ 𝑃𝑃𝑖𝑖,𝑗𝑗(𝑗𝑗 − 𝜇𝜇𝑗𝑗)2  𝑁𝑁−1

𝑖𝑖=0   (21) 

3.5.4. GLCM contrast 

GLCM contrast measures the local variations in the grey-level co-occurrence matrix. Contrast of zero in a 
vertical direction means that image has vertical stripes and contrast zero in all direction means an entirely 
uniform image. GLCM contrast can be computed as 
 ∑ 𝑃𝑃𝑖𝑖,𝑗𝑗(𝑖𝑖 − 𝑗𝑗)2𝑁𝑁−1

𝑖𝑖,𝑗𝑗=0   (22) 

3.5.5. GLCM dissimilarity 

GLCM dissimilarity is equivalent to the sum of absolute differences which can be computed as 
 ∑ 𝑃𝑃𝑖𝑖,𝑗𝑗 |𝑖𝑖 − 𝑗𝑗|𝑁𝑁−1

𝑖𝑖,𝑗𝑗=0   (23) 

3.5.6. GLCM homogeneity 

GLCM homogeneity, also called inverse difference moment, measures the closeness of the distribution of 
elements in the GLCM to the GLCM diagonal which can be computed as 
 ∑ 𝑃𝑃𝑖𝑖,𝑗𝑗

1+(𝑖𝑖−𝑗𝑗)2
𝑁𝑁−1
𝑖𝑖,𝑗𝑗=0   (24) 

3.5.7. GLCM angular second moment (ASM) and energy  

GLCM angular second moment (ASM), also known as uniformity, provides the sum of squared elements in 
the GLCM. It can be computed as  
 ∑ 𝑃𝑃𝑖𝑖,𝑗𝑗2𝑁𝑁−1

𝑖𝑖,𝑗𝑗=0   (25) 

Square root of the ASM is called energy and is used as a texture measure. High values of ASM and energy 
occur when the window is very orderly 

3.5.8. GLCM entropy 

GLCM entropy can be computed as 
 ∑ 𝑃𝑃𝑖𝑖,𝑗𝑗(− ln𝑃𝑃𝑖𝑖,𝑗𝑗)𝑁𝑁−1

𝑖𝑖,𝑗𝑗=0   (26) 

3.6. Variogram 
Variogram also called semi-variogram, 𝛾𝛾(h), is used to represent and model the spatial variation of pixels 
which can be computed as (Webster & Oliver, 2008) 

 𝛾𝛾(h) = 0.5 E[𝑌𝑌(u) − 𝑌𝑌(u+h)]2  (27a) 

 𝛾𝛾(h) = 𝐶𝐶(0) − 𝐶𝐶(h)  (27b) 
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In this equation, 𝑌𝑌 is a random function, u denotes location, and h is the distance between u1 and u2. C(0) 
is sill which is the total variability denoted also as 𝜎𝜎2 and C(h) is auto-covariance at lag h that can be 
computed as (Webster & Oliver, 2008) 
 C(h)=Cov[𝑌𝑌(u1), 𝑌𝑌(u2)] = E[𝑌𝑌(u) 𝑌𝑌(u+h)] − 𝜇𝜇𝑦𝑦2  (28) 

Variogram key parameters are range, sill and nugget. Range, denoted as 𝜙𝜙, is the distance (lag) up to which 
the regionalized variable is auto-correlated and is directly related to the size of textural features. Sill is the 
total variability and is proportional to the global variance of textural feature(Jakomulska & Clarke, 2000). 
The partial sill is computed by subtraction of nugget from the total sill a nugget is the non-spatial variability 
denoted as 𝐶𝐶0 or 𝜏𝜏2. Cut off is the maximum lag up to which the sample variogram is estimated. In analysis 
usually the slope is computed by the division of the partial sill by the effective range. One should notice that 
the number of pairs of points used to estimate variogram should not be smaller than 30 and preferably 
should be larger than 45. In addition, one should check whether the variogram reaches a sill. If the sample 
variogram has not flattened out (i.e. reached the sill), then one should increase the cutoff and check whether 
the sill is reached at a longer lag. Sample variogram values tend to become erratic at long lags since at longer 
lags data tends to be less correlated and the number of pairs of points reduces at long lags which leads to 
unreliable estimates. 

3.7. GLCM texture measurements as a function of lag and window size 
Since GLCM texture measurement is a function of lag and windows size, for computing GLCM matrix 
following approaches have been taken: 

1. GLCM with a pixel-wise window: In this approach for computing GLCM matrix a moving window 
has been considered and then for each texture measure, the lag and window size which provides 
the highest class separability have been chosen. In this approach, for each pixel inside the crown, 
there would be a GLCM matrix and a corresponding value for each GLCM texture measurement. 

2. Global GLCM or object-wise GLCM: In this approach, the GLCM matrix has been computing 
from all pixels inside a crown. Consequently, for each tree crown there is a single GLCM matrix 
and a single value for its corresponding texture measurement.  

A difference between these two approaches is that for computing GLCM with pixel-wise window, 
depending on the window size, just a limited number of pixels are involved. However, for computing global 
GLCM, all pixels inside of a crown are involved. 
Another difference is the margin effect which exists for the pixel-wise window. Considering the window 
size and the lag, for pixels near the crown boundary the GLCM matrix cannot be computed and the pixels 
information will be lost. 

3.8. Texture measurements as the classification features 
Texture measures can be used as the input layers. They can be used alone or with other features for 
supervised or unsupervised classification. The mean and range of each measure can be used for class 
definition. In this research, for supervised classification of tree species, by using texture three approaches 
can be applied:  

1. To compute the average of a pixel-wise GLCM texture measure for all pixels within a crown; assign 
the average of the texture measure for the crown and classify the tree crown based on this value. 
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2. To compute the standard deviation of a pixel-wise GLCM texture measure for all pixels within a 
tree crown; assign the standard deviation of the texture measure for the crown and classify the tree 
crown based on it. 

3. To compute a GLCM texture measurement (pixel-wise or object-wise) in different lag distance for 
a tree crown; get the corresponding profile and classify the tree crown based on this profiles. 

3.9. Classification and Accuracy assessement 
3.9.1. Maximum likelihood classification  

A maximum likelihood classification has been used to classify the crowns by considering Pollock and texture 
parameters as the classification features or bands. Maximum likelihood classifier is one of the most popular 
methods of classification in remote sensing, which usually assumes that each class is normally distributed .It 
calculates the probability that a given pixel belongs to a specific class. To do so, a Bayesian probability 
function is calculated based on mean and covariance of the training set. Then, each pixel is assigned to the 
class that has the highest probability. Accordingly, P(𝑖𝑖|𝜔𝜔) is the posterior probability of a pixel with vector 
𝜔𝜔 belonging to class 𝑖𝑖. The vector 𝜔𝜔, known as feature vector can be a pixel DN value or the mean of a 
pixel-wise GLCM texture measurement for a crown or any other classification feature. P(𝑖𝑖|𝜔𝜔) can be 
computed as 
 P (𝑖𝑖|𝜔𝜔) =  P �𝜔𝜔�𝑖𝑖� P(𝑖𝑖)

P(𝜔𝜔)
     (29) 

Where P (𝜔𝜔|𝑖𝑖) is the conditional probability to observe 𝜔𝜔 from class 𝑖𝑖 or the probability density function, 
P(𝑖𝑖) is the probability that class 𝑖𝑖 occurs, and P(𝜔𝜔) is the probability that 𝜔𝜔 is observed. 

An error matrix is an effective way to represent classification accuracy. The major diagonal of error matrix 
represents the properly classified tree crowns and the non-diagonal values of matrix show the omission and 
commission error. A commission error can be defined as including a tree crown into a species class when it 
does not belong to that class. An omission error is excluding a tree crown from the species class in which it 
truly does belong.  

3.9.2. Accuracy assessment 

An error matrix with 𝑛𝑛 samples and 𝑘𝑘 categories in the remotely sensed classification (usually rows in error 
matrix) and 𝑘𝑘 categories in the reference data (usually column in the error matrix) has 𝑘𝑘2 cells. Accordingly 
𝑛𝑛𝑖𝑖𝑖𝑖 represents the number of samples classified into species class 𝑖𝑖 in the remotely sensed data and species 
class 𝑗𝑗 in the reference data set. Let 𝑛𝑛𝑖𝑖+ be the number of samples classified into species class 𝑖𝑖 in the 
remotely sensed classification and  𝑛𝑛+𝑗𝑗  be the number of samples classified into species class 𝑗𝑗 in the 
reference data set. Then overall accuracy can be computed as 
 Overall accuracy = ∑ 𝑛𝑛𝑖𝑖𝑖𝑖𝑘𝑘

𝑖𝑖=1
𝑛𝑛

  (30) 

Kappa coefficient can be computed as 
 𝐾𝐾 = 𝑛𝑛∑ 𝑛𝑛𝑖𝑖𝑖𝑖𝑘𝑘

𝑖𝑖=1 −∑ 𝑛𝑛𝑖𝑖+𝑛𝑛+𝑖𝑖𝑘𝑘
𝑖𝑖=1

𝑛𝑛2−∑ 𝑛𝑛𝑖𝑖+𝑛𝑛+𝑖𝑖𝑘𝑘
𝑖𝑖=1

    (31) 

The test statistic for testing if two error matrices are significantly different is as follows (Russell & Kass, 
1999) 

 𝑧𝑧 = |𝐾𝐾1−𝐾𝐾2|
�var(𝐾𝐾1)+var(𝐾𝐾2)

     (32) 
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In Equation 31, 𝐾𝐾1 and 𝐾𝐾2 denote the estimated Kappa for error matix 1 and 2 respectively. var(𝐾𝐾1) and 
var(𝐾𝐾2) are the corresponding estimates of the variance which can be computed as 
 

var(𝐾𝐾) = 1
𝑛𝑛
�𝜃𝜃1(1−𝜃𝜃1)

(1−𝜃𝜃2)2
+ 2(1−𝜃𝜃1)(2𝜃𝜃1𝜃𝜃2−𝜃𝜃3)

(1−𝜃𝜃2)3
+ (1−𝜃𝜃1)2(𝜃𝜃4−4𝜃𝜃22)

(1−𝜃𝜃2)4
�   

 (33a) 

where 

 𝜃𝜃1 = 1
𝑛𝑛
∑ 𝑛𝑛𝑖𝑖𝑖𝑖𝑘𝑘
𝑖𝑖=1  ,  (33b) 

 𝜃𝜃2 = 1
𝑛𝑛2
∑ 𝑛𝑛𝑖𝑖+ 
𝑘𝑘
𝑖𝑖=1 𝑛𝑛+𝑖𝑖  ,  (33c) 

 𝜃𝜃3 = 1
𝑛𝑛2
∑ 𝑛𝑛𝑖𝑖𝑖𝑖(𝑛𝑛𝑖𝑖+ +𝑘𝑘
𝑖𝑖=1 𝑛𝑛+𝑖𝑖 ),  (33d) 

 𝜃𝜃4 = 1
𝑛𝑛3
∑ ∑ 𝑛𝑛𝑖𝑖𝑖𝑖(𝑛𝑛𝑗𝑗+ + 𝑛𝑛+𝑖𝑖 )2𝑘𝑘

𝑗𝑗=1
𝑘𝑘
𝑖𝑖=1  .  (33e) 

Given the null hypothesis as 

 𝐻𝐻0:(𝐾𝐾1 − 𝐾𝐾2) = 0,  (34a) 

and the alternative hypothesis as 

 𝐻𝐻1:(𝐾𝐾1 − 𝐾𝐾2) ≠ 0,  (34b) 

𝐻𝐻0 is rejected if 𝑧𝑧 ≥ 𝑧𝑧𝛼𝛼 where 𝛼𝛼 is the confidence level of the z test. It is most common to set 𝛼𝛼 as 0.05 or 
to set confidence level at 95%.  

Since the error matrix does not provide an accuracy assessment measure for individual classes, conditional 
Kappa is computed. One can compute it for an individual species and apply the same comparison tests for 
the Kappa coefficient to this conditional Kappa. Conditional Kappa can be computed as 
 𝐾𝐾𝑖𝑖 = 𝑛𝑛 .  𝑛𝑛𝑖𝑖𝑖𝑖 − 𝑛𝑛𝑖𝑖+ .  𝑛𝑛+𝑖𝑖

𝑛𝑛 .  𝑛𝑛𝑖𝑖+ − 𝑛𝑛𝑖𝑖+ .  𝑛𝑛+𝑖𝑖
    (35) 

And the approximate variance for the 𝑖𝑖th category is computed as 
 var(𝐾𝐾𝑖𝑖)= 𝑛𝑛(𝑛𝑛𝑖𝑖+ −𝑛𝑛𝑖𝑖𝑖𝑖)

[𝑛𝑛𝑖𝑖+ (𝑛𝑛−𝑛𝑛+𝑖𝑖)]3
[(𝑛𝑛𝑖𝑖+ − 𝑛𝑛𝑖𝑖𝑖𝑖)(𝑛𝑛𝑖𝑖+ 𝑛𝑛+𝑖𝑖 − 𝑛𝑛𝑛𝑛𝑖𝑖+) + 𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖(𝑛𝑛 − 𝑛𝑛𝑖𝑖+ − 𝑛𝑛+𝑖𝑖 + 𝑛𝑛𝑖𝑖𝑖𝑖)]   (36) 

Accordngly, Equation 34 and 33 are used to assess and compare the accuracy of individual tree species. 
Table 1 shows the classification of Kappa coefficient proposed by Landis & Koch (1977). 

Table 1. Classification of Kappa coefficient. Source: Landis & Koch (1977) 

Kappa coefficient   
0 Poor  
0.00 - 0.20 slight 
0.21 - 0.40 Fair  
0.41 - 0.60 Moderate 
0.61 - 0.80 Substantial 
0.81 - 1.00 Almost perfect 

 
This classification of Kappa can be used for interpretation of the result of classification for the further 
analysis. 
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4.  MATERIAL AND STUDY AREA 

4.1. Study area location: 
The research has been done in the city of Delft in the province of South Holland, the Netherlands. The 
study area is located at 52° 01' 01.7" N 4° 21' 01.9" E, 52° 01' 02.3" N 4° 22' 09.6" E, 52° 00' 26.17" N 4° 
22' 09.89" E, 52° 00' 25.6" N 4° 21' 02.6" E. Delft city has different species with large within species varieties 
(Chepkochei, 2014). In the study area, in total 4 main species have been detected.  

4.2. Data 

4.2.1. Very high resolution aerial image 
The image used for this research is a 25 cm by 25 cm high spatial resolution multi-spectral airborne imagery 
taken by in a sunny, clear conditions. The image comprises three spectral bands: blue (410-570 nm), green 
(480-630 nm), and red (570-700 nm). 

Table 2. Characteristics of aerial image used for urban tree species classification. 

Image  
Sensor  Ultracam XP 
Acquisition date 09/06/2009 
Local time 11:50 AM 
Elevation angle (degree) 72.96 
Solar zenith angle (degree) 17.04 
Resolution (m) 0.25  
Bands (nm) blue (410-570), green (480-630), and red (570-700) 

Figure 13 shows the study area covered by the aerial image. 

Figure 13. Study area within Delft city, RGB: green, red, and blue (2, 3, and 1) 
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4.2.2. Reference data 
Tree species information used as reference data has been collected from the Delft tree species guide by Dat 
et al. (2006) and the reference data set used in the research done by Chepkochei, (2014). The reference data 
has been divided into two sets; one to be used as training set and the other set for verification as shown in 
Table 3. 

Table 3. Reference data used as training and verification sets.  

Species Number of tree crowns 

 Training set Verification set 
Plantanus Spp. 12 11 
Corylus Spp. 6 6 
Alnus Spp. 16 15 
Tillis Spp. 48 48 
Total 82 80 

In this research, the total number of tree crowns is 162 (82 tree crowns for training set and 80 tree crowns 
for verification set). The largest data set is for Tilia Spp. and smallest data set is for Corylus Spp. All the tree 
crown polygons have been extracted manually. In addition, since interlocked tree crowns are not subject of 
this study, only single tree crowns have been delineated. 

4.3. Software 
In this research, following software were used: 

• ERDAS Imagine 2013, version 13.0.2 which was used for geo-referencing the study site; 
• ArcGIS version 10 which was used for processing of referenced data;   
• R version 3.0.2 which was used for statistical computing, graphics and data analysis. 

In addition, following packages of R were used:  
• geoR which is used for geostatistical analysis.  
• rgdal which allow access to projection and transformation operations 
• rgal which provides medium to high levels functions for 3D interactive graphics (Adler, et. al. , 

2015). 
• maptool which is used for manipulating and reading geographic data, in especially ESRI shape files.  
• glcm which is used for computing GLCM texture measurements. In this research, this package has 

been used for computing pixel-wise GLCM texture measurements. 
• lattice which is used  for  high level data visualization
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5.  RESULTS 

5.1. Fitting surface models to spectral profile of crowns 
This research has applied two methods, nonlinear regression and grid search, to fit surface models to the 
spectral profile of tree crowns. In this research, it has been observed that applying nonlinear regression for 
estimation of parameter 𝑛𝑛  (crown curvature) of the Pollock model causes large errors due to the big 
deviations in parameter estimation of some tree crowns especially for Corylus Spp. In addition, iterative 
process of nonlinear regression has a high sensitivity to the starting values in a way that not well chosen 
starting values can stop the convergence at sub-optimal estimates.  

Table 4 shows the accuracy of fit of these two methods in terms of root mean square error (RMSE). As one 
can see form the table, by applying grid search for fitting the surface model Corylus Spp. has the most 
improvement. According to Table 4, grid search performs more accurately for three species (Plantanus Spp., 
Corylus Spp., and Tilia Spp.) classes and performs as accurate as nonlinear regression for Alnus Spp. Therefore, 
grid search method is chosen for curve fitting. 

Table 4. Root mean square error (RMSE) of fitting surface models to spectral profile of each species by applying two 
methods grid search and nonlinear regression.  

 RMSE of grid search RMSE of nonlinear regression 
Plantanus Spp. 0.028 0.029 
Corylus Spp. 0.041 0.046 
Alnus Spp. 0.027 0.027 
Tilia Spp. 0.032 0.034 

 
To see how well each surface model fits the spectral profile of each species, root mean square error (RMSE) 
as a goodness of fit has been computed. In Table 5, results of fitting surface models to the spectral profile 
of each species by applying grid search has been shown. Accordingly, the best fit in terms of the lowest 
RMSE is provided by Pollock model for all four species. Therefore, Pollock model is chosen as the best 
model in terms of lowest RMSE for all species for further analysis. 

Table 5. Root mean square error (RMSE) as a goodness of fit of surface models to spectral profile of each species 

  
RMSE of 
Pollock model 

RMSE of 
Gaussian model 

RMSE of 
Paraboloid model 

Plantanus Spp. 0.028 0.034 0.032 

Corylus Spp. 0.041 0.045 0.048 

Alnus Spp. 0.027 0.033 0.043 

Tilia Spp. 0.032 0.043 0.051 

Table 6 shows estimated Pollock parameters and confidence interval on mean of each parameter (refers to 
section 3.3.7). As one can see from Table 6 and Table 2, variability decreases as sample size increases. 
Therefore, Tilia Spp. with the largest sample size has the lowest standard error for the estimates of 𝑎𝑎, 𝑏𝑏 and 
𝑛𝑛 while Corylus Spp. with the smallest sample size has the largest variability in estimate of mean of each 
parameter. However, for Corylus Spp. this large variability does not seem to be problematic for classification 
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since its ranges especially for 𝑛𝑛 and 𝑎𝑎 parameter are well separated from the range of other species. In 
addition, Corylus Spp. has the largest values for parameter 𝑛𝑛 and spectral profile for this species is closer to 
a cylinder shape whereas Tilia Spp. has the lowest 𝑛𝑛 parameter and the shape of its spectral profile is closer 
to a conical shape. 

Table 6. Standards error of mean and confidence interval for mean of Pollock parameters for each species. 

 SE𝑛𝑛 95% CI on 𝜇𝜇𝑛𝑛 SE𝑎𝑎 95% CI on 𝜇𝜇𝑎𝑎 
SE𝑏𝑏 
(m) 

95% CI on 𝜇𝜇𝑏𝑏 
(m) 

Plantanus 
Spp. 0.17 1.72 < 𝜇𝜇𝑛𝑛 < 2.07 0.01 0.21 < 𝜇𝜇𝑎𝑎 < 0.23 0.72 7.86 < 𝜇𝜇𝑏𝑏 < 9.30 

Corylus 
Spp. 

0.33 2.09 < 𝜇𝜇𝑛𝑛 < 2.75 0.02 0.32 < 𝜇𝜇𝑎𝑎 < 0.36 1.74 6.99 < 𝜇𝜇𝑏𝑏 < 10.48 

Alnus 
Spp. 0.13 1.60 < 𝜇𝜇𝑛𝑛 < 1.86 0.01 0.22 < 𝜇𝜇𝑎𝑎 < 0.24 0.22 4.60 < 𝜇𝜇𝑏𝑏 < 5.03 

Tilia Spp. 0.06 1.53 < 𝜇𝜇𝑛𝑛 < 1.65 0.01 0.25 < 𝜇𝜇𝑎𝑎 < 0.26 0.21 4.41 < 𝜇𝜇𝑏𝑏 < 4.83 

Figure 14 shows the uncertainty of fit for one crown (refers to section 3.3.8). As one can see from Figure 
14, fitting the Pollock model has the highest sensitivity to parameter 𝑎𝑎, by considering a tolerance of 0.01. 
This means that any small error in estimating parameter 𝑎𝑎 can cause a large error in fitting the Pollock model 
to the spectral profile. One possible reason could be the high precision which is needed for estimating 
parameter 𝑎𝑎 since it ranges from 0.0 to 0.4. In addition, as we get far from the optimum value for 𝑎𝑎  and 𝑏𝑏 
the rate of change in RMSE is the same for both parameters, and both for values larger and smaller than 
the optimum value. However, parameter 𝑛𝑛 has different behaviour in such a way that the rate of change in 
RMSE for values smaller than optimum 𝑛𝑛 is higher than it is for values larger than optimum 𝑛𝑛. This means 
that the possibility of error caused by overestimating  𝑛𝑛 is larger than underestimating it in a given tolerance. 

Figure 14. From left to right changing accuracy (RMSE) by changing parameters 𝑎𝑎, 𝑏𝑏, and 𝑛𝑛 for fitting Pollock 
model to spectral profile of a crown. This figure shows how accuracy (RMSE) of fitting Pollock model changes with 
parameter 𝑎𝑎, 𝑏𝑏 and 𝑛𝑛. Pollock has the highest sensitivity to parameter 𝑎𝑎 and any small changes in 𝑎𝑎 can make large 
changes in RMSE. 

Figure 15 shows how information extracted from the fitting the Pollock model matches and describes the 
real shape of each tree species. As one can see from the figure, Corylus Spp. has a dense crown which justifies 
its large value for parameter 𝑎𝑎 compared to other species. In addition, it is also dense at its crown boundary 
that justifies the cylindrical shape of its spectral profile and large value for parameter 𝑛𝑛. On the other hand, 
Tilia Spp. is denser in the centre of its crown than at its boundary which explains the conical shape of its 
spectral profile. 
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Figure 15. Shape information for each tree species. From left to the right: the real shape of a tree, spectral profile and 
fitted Pollock model to the spectral profile, respectively. From top to bottom: Plantanus Spp., Corylus Spp., Alnus Spp., 
and Tilia Spp., respectively. This figure shows how real shape of each tree species matches its spectral profile and the 
fitted Pollock model. 
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Figure 16 shows the boxplots of estimated parameters of the Pollock model (𝑎𝑎, 𝑏𝑏, and 𝑛𝑛). In the figure, the 
thick black line shows the median and the cross sign represents the mean of each parameter distribution. 
According to the figure, mean and median have approximately similar values. The boxplots for parameters 
suggest that data are symmetrically distributed. The median lies approximately in the middle of the box and 
the whiskers are approximately the same length. Therefore, according to the boxplots and other normality 
tests (histogram and qq-plot), estimated parameters for each species are approximately normally distributed. 

                 
Figure 16.Boxplots of Pollock parameters for each species. From left to right boxplots for estimated parameter 𝑎𝑎, 
estimated parameter 𝑏𝑏, estimated parameter 𝑛𝑛. The thick black line shows the median and the cross sign represents 
the mean of each parameter distribution.  

5.2. Maximum Likelihood Classification (MLC) based on Pollock parameters 
Since the estimated parameters for each species approximate normal distributions, an appropriate classifier 
that can be used to discriminate different species based on the Pollock parameters is Maximum Likelihood 
classification. 

Parameters 𝑎𝑎 and 𝑛𝑛, refer to Equation 12, which correspond to the height and shape of spectral profile, 
respectively, can be used as descriptors of tree species. However, parameter 𝑏𝑏 which represents the size of 
crowns is subject to broad variation. According to Table 6, for all species parameter 𝑏𝑏 has the highest 
standard error compared to parameters 𝑎𝑎 and  𝑛𝑛 . The reasons for this large variation can be differences in 
age of trees and pruning of tree crowns. To see if parameter 𝑏𝑏  can improve the classification, one 
classification just considers parameters 𝑎𝑎 and 𝑛𝑛 while the other classification also adds parameter 𝑏𝑏. 

Table 7. Comparison of Kappa coefficient for two classifications, one based on parameters 𝑎𝑎 and 𝑛𝑛 as the 
descriptors and the other one by addition of parameter 𝑏𝑏. 

Classification 
#1 

Classification 
#2 

K1 Var (K1) K2 Var (K2) |z| p-value Significant? 

Pollock 
parameters 
𝑎𝑎 and 𝑛𝑛 

Pollock 
parameters 𝑎𝑎, 
𝑏𝑏, and 𝑛𝑛 

0.27 0.006 0.53 0.007 2.28 0.01 Yes 

According to Table 7, by addition of parameter 𝑏𝑏 for classification, Kappa coefficient has significantly 
increased and classification has improved. To see for which species Kappa coefficient shows large 
improvement by adding parameter 𝑏𝑏, conditional Kappa for each species has been computed as well. The 
results are presented in Table 8. 

   Plantanus  Corylus  Alnus  Tilia Plantanus  Corylus  Alnus  Tilia Plantanus  Corylus  Alnus  Tilia 
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Table 8. Conditional Kappa coefficients for two classifications, one based on parameters 𝑎𝑎 and 𝑛𝑛 as descriptors and 
the other one by addition of parameter 𝑏𝑏. 

 Descriptor (feature) Plantanus 
Spp. Corylus Spp. Alnus Spp. Tilia Spp. 

Classification #1 Pollock parameters 𝑎𝑎 and 𝑛𝑛 0.14 1.00 0.16 0.46 

Classification #2 Pollock parameters 𝑎𝑎, 𝑏𝑏, and 𝑛𝑛 0.75 1.00 0.24 0.57 

Table 8 shows that addition of parameter 𝑏𝑏 has the largest effect on classification of Plantanus Spp. and has 
no effect on Corylus Spp.  Since Corylus Spp.  has the highest value for 𝑛𝑛 and is completely distinct from the 
other species in terms of 𝑛𝑛 , addition of another descriptor like 𝑏𝑏 does not influence its classification. 
However, for other species addition of 𝑏𝑏 has improved classification. 

Table 9 shows the class separability based on the Pollock parameters (𝑎𝑎, 𝑏𝑏 and 𝑛𝑛). According to the table, 
the highest class separability is between corylus Spp. and Alnus Spp. (1.99) and lowest class separability is 
between Alnus Spp. and Tilia Spp. (0.66). 

Table 9. Class separability (transformed divergence) between tree species based on Pollock parameters 𝑎𝑎, 𝑏𝑏 and 𝑛𝑛 as 
descriptors 

 Plantanus Spp. Corylus Spp. Alnus Spp. Tilia Spp. 

Plantanus Spp. 0.00 1.92 1.98 1.92 
Corylus Spp. 1.92 0.00 1.99 1.97 
Alnus Spp. 1.98 1.99 0.00 0.66 
Tilia Spp. 1.92 1.97 0.66 0.00 

 
Table 10 and 11 show the results of contingency analysis of training set and verification set based on Pollock 
parameters. As expected, classification of training set has high accuracy. 

Table 10. Contingency analysis of training set based on Pollock parameters (𝑎𝑎, 𝑏𝑏, and 𝑛𝑛) 

 Plantanus 
Spp. 

Corylus Spp. Alnus Spp. Tilia Spp. User 
accuracy (%) 

Overall 
accuracy (%) 

Plantanus 
Spp. 

12 0 0 0 100 71.95 

Corylus Spp. 0 6 0 1 86  
Alnus Spp. 0 0 12 18 40  
Tilia Spp. 0 0 4 29 88  

Producer 
accuracy (%) 

100 100 75 60   

Kappa 0.58      
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Table 11. Contingency analysis of verification set based on Pollock parameters (𝑎𝑎, 𝑏𝑏, and 𝑛𝑛) 

 Plantanus 
Spp. 

Corylus Spp. Alnus Spp. Tilia Spp. User 
accuracy (%) 

Overall 
accuracy (%) 

Plantanus 
Spp. 

11 0 2 1 79 71.25 

Corylus Spp. 0 4 0 0 100  
Alnus Spp. 0 0 8 13 38  
Tilia Spp. 0 2 5 34 83  

Producer 
accuracy (%) 

100 67 53 71   

Conditional 
Kappa 

0.75 1.00 0.24 0.57   

Kappa 0.53      

5.3. Maximum Likelihood Classification (MLC) based on Pollock parameters and semivariogram 
model 

Figure 17 shows the extraction of semi-variogram from fine structure of a tree crown and fitting a model to 
it. In the figure, normality of distribution of fine structure has been tested. Since the histogram and the qq-
plot plot suggest that data are normally distributed, one can assume that the trend in the fine structure is 
just a function of the coordinates and not an external variable. As one can see from the figure, sample 
variogram values tend to become erratic at long lags since at longer lags data tends to be less correlated. 

a)                                    b) c)                                      d)  

e)  f)  

Figure 17. Extracting semi-variogrma from fine structure of a crown and fitting a variogram model. a) fine structure 
of a crown, b) fine structure as geostatistical data c) histogram of fine structure of a crown; red line shows the mean 
of distribution, d) qqplot of fine structure; red line shows the normal distribution, e) variogram up to the lage of 8 m; 
red curve shows the fitted model, f) variogram up to the lag of 10 m; red curve shows the fitted model.  
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Figure 18 shows the distribution of parameters extracted from fitted variogram model for each species. In 
the figure, thick black line and cross sign show median and mean of each parameter, respectively. The 
boxplots suggest that sill and effective range are approximately normally distributed for most of tree species. 
The slope is computed by division of partial sill by the effective range. As Figure 18 shows, slope does not 
add extra information. Therefore, for classification just the two parameter range and sill are selected as the 
descriptors. 

    a)    b)    c)  
Figure 18. Distribution of parameters extracted from fitted variogram model for each species. From left to right a) 
effective range in meter, b) sill , c) slope which is computed by division of the partial sill by the range.  

The third classification is based on the extracted parameters from a fitted semi-variogram model (sill and 
range) and the Pollock parameters. The variogram range measures the texture coarseness and is related to 
the size of the textural features and sill is proportional to the global variance of the textural feature. Table 
12 shows the contingency analysis of the validation set. 

Table 12. Contingency analysis of the verification set based on the Pollock parameters and semi variogram model 

 Plantanus Spp. Corylus Spp. Alnus Spp. Tilia Spp. User 
accuracy 

Overall 
accuracy 

Plantanus Spp. 10 0 2 1 77 73.75 
Corylus Spp. 0 4 0 0 100  
Alnus Spp. 1 0 9 11 43  
Tilia Spp. 0 2 4 36 86  

Producer 
accuracy 

91 67 60 75   

Conditional 
Kappa 

0.73 1.00 0.30 0.64   

Kappa 0.56      

Table 13 represents the results of the Kappa analysis that compares the contingency matrices of two 
classifications, one only based on the three Pollock parameters (𝑎𝑎, 𝑏𝑏 and 𝑛𝑛) and the other one by addition 
of semivariogram parameters ( sill and range).  

Table 13. Comparison of Kappa coefficient for two classification, one based on Pollock parameters (𝑎𝑎, 𝑏𝑏 and 𝑛𝑛) and 
the other one by addition of semivariogram parameters ( sill and range). 

Classification #2 Classification #3 K2 Var (K2) K3 Var (K3) |z| Significant? 

Pollock  
Pollock + 
semivariogram 0.53 0.0070 0.56 0.0068 0.25 NO 

 

  

  Plantanus  Corylus  Alnus  Tilia Plantanus  Corylus  Alnus  Tilia Plantanus  Corylus  Alnus  Tilia 
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The significance level for rejecting the null hypothesis is set as 0.05. Table 13 shows that although addition 
of two parameters extracted from the semivariogram model has improved classification in terms of Kappa 
coefficient, this improvement is not significant. 

5.4. Maximum Likelihood Classification (MLC) based on Pollock parameters and GLCM texture 
measurements 

Figure 19 represents object-wise GLCM texture measurements (refer to 3.7) in different lags for each tree 
species. In this figure, for each species the average of texture measurements for all crowns has been 
computed. As Figure 19 shows, object-wise GLCM texture measurements are functions of lag.  

 a)  b) c) 

d) e) f) 

g)  
Figure 19. GLCM measurements as a function of lag by applying a global (object-wise) window for computing GLCM 
matrix. a) mean, b) variance, c) contrast, d) dissimilarity, e) homogeneity, f) entropy, g) angular second moment. The 
figure shows the dependence of the GLCM texture measurements on the lag. In this figure dashed lines are for visual 
interpretation purpose. 

Plantanus Spp. 
Corylus Spp. 
Alnus Spp. 
Tilia Spp. 

h (pixel) 

h (pixel) h (pixel) h (pixel) 

h (pixel) h (pixel) h (pixel) 
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To choose the most suitable lag for classification one needs to compute class separability for each lag for 
each pair of species. Figure 20 shows the results of computing transformed divergence (TD) up to the lag 
of 30 pixels.  
 

   a) b)  c)  

d) e) f) 

g)  

 

Figure 20. Transformed divergence (TD) of GLCM texture measurements for each pair of species. a) mean, b) 
variance, c) contrast, d) dissimilarity, e) homogeneity, f) entropy, g) angular second moment. In this figure dashed 
lines are for visual interpretation purpose. 

Since Tilia Spp. has the smallest crown diameter and the average parameter 𝑏𝑏 for Tilia Spp. representing the 
radius of tree crown estimated by fitting Pollock model is 3.1 m, by computing GLCM matrix for the lags 
more than 24 pixels one will lose a large number of data for this species. Therefore, for choosing the most 
suitable lag in terms of highest separability one should choose the lags smaller the crown diameter, in this 
case smaller than 24 pixel.  

Class separability between Plantanus Spp. and Corylus Spp. 
Class sparability between Corylus Spp. and Alnus Spp. 
Class separability between Corylus Spp. and Tilia Spp. 
Class separability between Alnus Spp. and Tilia Spp. 
Class separability between Plantanus Spp. and Tilia Spp. 
Class separability between Plantanus Spp. and Alnus Spp. 
 

h (pixel) h (pixel) h (pixel) 

h (pixel) h (pixel) h (pixel) 

h (pixel) 
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As Figure 20 shows, for some texture measures like angular second moment, entropy, homogeneity, and 
dissimilarity finding the lag that gives best separability is possible by visual interpretation (in this case lag 24) 
since for these texture measures different species have approximately the same behaviour. However, for 
some texture measurements like mean and variance it is not possible by visual interpretation as different 
species have completely different behaviour. In this case, one can choose the lag which provides the best 
separability for the specific species with the lowest class separability. In this research transformed divergence 
of mean and variance for Tilia Spp. and Alnus Spp. having the lowest class separability, which does not change 
much with lag. Therefore, by applying a classification based on each texture measurement in different lags, 
the lag providing the largest Kappa (lag 15 for mean and 13 for variance) have been chosen. 

Table 14 shows the correlation between the texture measurements. Considering the high correlation 
between the texture measurements, those texture measures which provide the highest separability compared 
to their correlated measures are selected. Therefore classification is limited to only mean at lag 15 and angular 
second moment at lag 24 as the descriptors. 

Table 14. Correlation between texture measurements of for Plantanus Spp. 

 

M
ea

n 

V
ar

ia
nc

e 

C
on

tr
as

t 

D
iss

im
ila

rit
y 

H
om

og
en

ei
ty

 

E
nt

ro
py

 

A
ng

ul
ar

 
se

co
nd

  
m

om
en

t 

Mean 1.00 0.96 -0.67 -0.65 0.65 0.48 0.47 
Variance 0.96 1.00 -0.67 -0.65 0.65 -0.48 0.47 
Contrast -0.67 -0.67 1.00 0.99 -0.99 0.98 -0.96 
Dissimilarity -0.65 -0.65 0.99 1.00 -0.99 0.99 -0.97 
Homogeneity 0.65 0.65 -0.99 -0.99 1.00 -0.97 0.97 
Entropy 0.48 -0.48 0.98 0.99 -0.97 1.00 -0.99 
Angular second 
moment 

0.47 0.47 -0.96 -0.97 0.97 -0.99 1.00 

Table 15 shows the results of maximum likelihood classification based on the Pollock parameters and the 
GLCM texture measurements computed from a global (object-wise) window (refers to 3.7). 

Table 15. Contingency analysis of classification base on the Pollock parameters and GLCM texture measurements 
computed from an object-wise window. 

 Plantanus Spp. Corylus Spp. Alnus Spp. Tilia Spp. User 
accuracy 

Overall 
accuracy 

Plantanus Spp. 11 0 1 0 92 73.75 

Corylus Spp. 0 1 0 0 100  

Alnus Spp. 0 0 10 11 48  

Tilia Spp. 0 5 4 37 80  

Producer 
accuracy 

100 17 67 77   

Conditional 
Kappa 

0.90 1.00 0.36 0.51   

Kappa  0.55      
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Another classification has been done based on Pollock parameters and GLCM texture measurements 
computed from a pixel wise window. Since by applying a pixel wise GLCM texture measurement for each 
pixel there is a GLCM matrix and a corresponding texture measurement, for each crown the average of 
texture measures have been computed (refer to section 3.8). Then the most separable lag and window size 
has been selected. For this research, pixel wise GLCM mean at lag 8 and homogeneity at lag 7 has been 
chosen for calssification. Table 16 shows the results of this classification. 

Table 16. Contingency analysis of classification base on the Pollock parameters and GLCM texture measurements 
computed from pixel-wise window. 

 Plantanus Spp. Corylus Spp. Alnus Spp. Tilia Spp. User 
accuracy 

Overall 
accuracy 

Plantanus Spp. 11 0 3 0 79 71.25 
Corylus Spp. 0 5 0 1 83  
Alnus Spp. 0 0 8 14 36  
Tilia Spp. 0 1 4 33 87  

Producer 
accuracy 

100 83 53 69   

Conditional 
Kappa 

0.75 0.82 0.22 0.67   

Kappa 0.55      

As one can see from Table 16 and 15 the Kappa coefficient is the same for both pixel wise and object wise 
GLCM texture measurements classifications. 

5.5. Classification based on GLCM texture measurements profiles 
Another suggested approach for classification was based on the profile of a texture measurement (refer to 
section 3.8). As one can see from Figure 21, since between classes variation is not more than within class 
variation, this approach fails to be used for classification.  

 

 

Figure 21. Mean and standard deviation of object-wise GLCM angular second moment (texture measurement) for 
each species. In the figure, the squares show the mean and error bars show the within class variation.  

Plantanus Spp. 
Corylus Spp. 
Alnus Spp. 
Tilia Spp. 

h (pixel) 
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5.6. Summary of Classification  
So far, all the classifications have been applied on the fine structure of the spectral profile. To see whether 
the fine structure adds additional information for classification compared to the spectral profile, two object 
wise GLCM texture measurements classifications, one base on the fine structure and the other one based 
on the spectral profile, have been applied. Table 17 shows the comparison of Kappa coefficient for these 
two classifications.  

Table 17. Comparison of Kappa coefficient for two classification, one based on object wise GLCM texture 
measurements of fine structure and the other one based on the object wise GLCM texture measurements of the spectral 
profile. 

Classification #6 Classification #7 K6 Var (K6) K7 Var (K7) |z| Significant? 

GLCM texture 
measures of fine 
structure  

GLCM texture 
measures of 
spectral profile 

0.19 0.0055 0.14 0.0052 0.48 NO 

Table 17 shows that using fine structure instead of spectral profile has been improved classification accuracy. 
However, this improvement is not significant. 

Table 18 shows the Kappa coefficient and conditional Kappa for all classifications which have been applied.   

Table 18. Kappa coefficient for each classification and conditional Kappa for each species.  

# Maximum Likelihood Classification 
approach based on Kappa 

Conditional Kappa 

Plantanus 
Spp. 

Corylus 
Spp. 

Alnus 
Spp. 

Tilia 
Spp. 

1 Pollock parameters 𝑎𝑎 and 𝑛𝑛 0.27 0.14 1.00 0.16 0.46 

2 Pollock parameters 𝑎𝑎, 𝑏𝑏 and 𝑛𝑛 0.53 0.75 1.00 0.24 0.57 

3 Pollock parameters (𝑎𝑎, 𝑏𝑏, 𝑛𝑛) and semi 
vairogram parameters (sill, range) 0.56 0.73 1.00 0.30 0.64 

4 Pollock parameters (𝑎𝑎, 𝑏𝑏, 𝑛𝑛) and object-wise 
GLCM texture measures 0.55 0.90 1.00 0.36 0.51 

5 Pollock parameters (𝑎𝑎, 𝑏𝑏, 𝑛𝑛) and pixel-wise 
GLCM texture measures 0.55 0.75 0.82 0.22 0.67 

6 object-wise GLCM texture measures of fine 
structure 0.19 0.21 0.28 0.09 0.41 

7 object-wise GLCM texture measures of 
spectral profile 0.14 0.17 0.19 0.01 0.36 

According to the Table 18, high accuracy of Corylus Spp. is due to Pollock parameters in a way that in all 
classification that Pollock parameters have been used Corylus Spp. has the largest conditional Kappa. 
However, in the classifications that only textural information have been used Corylus Spp. is easily confused 
with other species. In contrast, Tilia Spp. has the highest classification accuracy in all classifications that only 
textural information have been used. 

 As one can see from the table, classification based on the Pollock parameters (𝑎𝑎, 𝑏𝑏, 𝑛𝑛) and semi vairogram 
parameters (sill, range) has the largest Kappa coefficient (0.56) compared to other classifications. By addition 
of the semi variogram parameters to the Pollock paremeters, Tilia Spp. has the most improvement.
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6.  DISSCUSSION  

6.1. Fitting surface models to spectral profile of crowns 
The study shows that spectral profile is a property that can be used for classification of four main species 
(Plantanus Spp., Corylus Spp., Alnus Spp., and Tilia Spp.) in an urban area in Delft city, The Netherlands. 
According to the classification of Kappa coefficient (refer to Table 1), Corylus Spp. has been classified almost 
perfectly; Plantanus Spp. has been classified substantially; Tilia Spp. has been classified moderately and Alnus 
Spp. has been classified fairly.  

Success in classification of Corylus Spp. is of crucial importance since in the research done by Chepkochei 
(2014) Corylus Spp. was easily confused by Tilia Spp  whereas by considering spectral profile parameters  
instead of multispectral signature Corylus Spp. is completely separable from other species, in particular Tilia 
Spp. Furthermore, the classification success of Plantanus Spp. is important since this species is commonly 
used as ornamental trees in urban areas (Turner et. al., 2012).  

In this research, tree crown polygons have been delineated manually. The manual procedure of tree crown 
delineation would not be applicable for the other study areas with the large number of trees. Automatic 
delineation of tree crowns is an alternative method which is faster and cost efficient. However, it is less 
accurate than manual procedure and may cause additional errors which will affect the analysis. Several object 
based methods have been developed to detect individual crown boundary automatically (e.g. Gougeon & 
Leckie, 2003, Gougeon, 1995a). Ardila et al. (2012a) developed object based methods for identification of 
individual trees in urban areas that can be used as an alternative for automatic delineation of tree crowns. 

In this research, an assumption has been made that geometric model of the tree crown surface can be applied 
for the radiometric model of the tree crown due to constant density of leaves inside the tree crown. This 
assumption has been used for both sun illumination correction and for modelling the coarse structure of 
the spectral profile. The comparison of the real shapes of the tree crowns, corresponding spectral profiles 
and fitted models for each tree species has proven the validity of this assumption for the tree species studied 
in this research. 

Since illumination conditions are more evident in airborne rather than spaceborne data (Ardila, 2012), C-
correction has been applied for correcting the effects of uneven sun illumination in this research (refer to 
3.3.2). This method has been applied on the Green Red Vegetation Index (GRVI) rather than the original 
image bands. The vegetation indices are the relative measures and partially correct the uneven sun 
illumination effects. Accordingly, in the research done by Ardila, (2012) the vegetation index was considered 
as the uneven sun illumination correction. However, vegetation indices can only compensate the effect of 
sun illumination geometry which is the same for all the bands of the image and does not correct the effect 
of topography. In this research, since the solar zenith angle is 17.04°, the effect of sun illumination geometry 
is not such strong to affect the spectral profiles of the tree crowns. Therefore C-correction on GRVI has 
worked well enough. However, applying both vegetation index and correction for the effect of sun 
illumination geometry can cause problems for the images acquired with different solar zenith angle which 
have much stronger sun illumination effect. 

Since the spectral profile of the tree crowns generally form a bell-curved surface, Pollock, Gaussian, and 
Paraboloid models have been used for modelling of coarse structure. Fitting parameter 𝑛𝑛 (crown curvature) 
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of the Pollock model by nonlinear regression causes large errors due to the big deviations in parameter 
estimation of some tree crowns since the iterative procedure might be trapped in the local minimum. 
Consequently, one needs to use different sets of starting values to protect against local minima. In addition, 
iterative process has a high sensitivity to the starting values in a way that not well chosen starting values can 
stop the convergence. As an alternative, grid search has been proposed, based on the pre-knowledge about 
the possible ranges for each parameter. Although grid search performs more accurately for three species 
(Plantanus Spp., Corylus Spp., and Tila Spp.) classes and performs as accurate as nonlinear regression for Alnus 
Spp., the accuracy of grid search depends on precision with which these variables are defined. Consequently, 
for obtaining higher accuracy, one needs to increase the precision of the possible values of the grid which 
will increase computation time due to the large number of computations. For this research, the precision of 
one decimal number for parameter 𝑛𝑛  and two decimal numbers for parameter 𝑎𝑎  and 𝑏𝑏  have been 
considered sufficient. 

RMSE as a goodness of fit has shown that Pollock model can best approximate the spectral profile 
characteristic of tree crowns for all four species, as compared to the Gaussian and the Paraboloid models. 
It is an explanation of the better fit of the Pollock model because of its unique characteristics in defining 
the shape curvature by parameter 𝑛𝑛, denoted also as shape parameter. For Corylus Spp, 𝑛𝑛 tends to values of 
more than 2 and the fitted Pollock model tends to a cylindrical shape whereas for Tilia and Alnus Spp. 
parameter 𝑛𝑛 tends to value 1 and the fitted Pollock model approximates a conical shape.   

It has been observed that the accuracy (RMSE) of fitting the spectral profile by the Pollock model is more 
sensitive to parameter 𝑎𝑎 compared to the other parameters. This means that any small error in estimating 
parameter 𝑎𝑎 can cause a large error in the fitting of the Pollock model. As a result, for estimating of 
parameter 𝑎𝑎 high precision is needed. However, determining the most critical parameter for fitting the 
Pollock model depends on the chosen vegetation index or band for extracting of the spectral profile and its 
corresponding range and precision. Therefore, one should not expect to obtain the same result when the 
spectral profile is obtained from another vegetation index with a different range. 

The study shows that different tree species with different geometrical shape of the tree crowns show 
different spectral profiles which can be described by the Pollock parameters 𝑎𝑎 , 𝑏𝑏, and 𝑛𝑛. In this regard, 𝑎𝑎 
and 𝑏𝑏 refers to the height of spectral profile and the radius of crown respectively and 𝑛𝑛 represents the shape 
curvature of the spectral profile. The study shows that the geometrical shape a tree crowns matches the 
shape of its corresponding spectral profile. For example, in reality, Corylus Spp. has a dense crown which 
justifies its large value for mean of parameter 𝑎𝑎 ranging from 0.32 to 0.36 with 95% confidence interval. It 
is also dense in crown boundary which justifies its large value for mean of parameter 𝑛𝑛 ranging from 2.09 
to 2.75 and the cylindrical shape of its spectral profile. On the other hand, Tilia and Alnus Spp. are denser in 
the centre of the crown than at its boundary which describes their range for mean of parameter 𝑛𝑛 ranging 
from 1.60 to 1.86 and from 1.53 to 1.65 respectively and their conical shape of their spectral profile. 
Furthermore, Plantanus Spp. approximates an ellipsoidal shape which can be described by its values for mean 
of parameter 𝑛𝑛 ranging from 1.72 to 2.07. 

6.2. Maximum Likelihood Classification (MLC) based on Pollock parameters 
The lowest class separability (transformed divergence) is 0.66 between Tilia Spp. and Alnus Spp. and the 
highest is 1.99 between Corylus Spp. and Alnus Spp. In particular Corylus Spp. shows high class separability 
with a measure of 1.9, 1.99, and 1.97 from Plantanus Spp., Alnus Spp., and Tilia Spp. respectively. The reason 
is that Corylus Spp. has the highest values for parameter 𝑛𝑛 and 𝑎𝑎 and is completely separable from the other 
species. On the other hand, Tilia and Alnus Spp. have close values for parameters 𝑛𝑛, 𝑎𝑎 and 𝑏𝑏, so they have 
the lowest class seprabiltiy. 
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Addition of parameter 𝑏𝑏 as a feature for classification has the most effect for Plantanus Spp. causing an 
increase in Kappa from 0.14 to 0.75. By considering parameters 𝑎𝑎 and 𝑛𝑛 for classification, Plantanus Spp. has 
low separability from Tilia Spp. and Alnus Spp. However, the radius of Plantanus Spp. ranging from 7.86 m to 
9.30 m is completely distinctive from Tilia Spp. with an average of 4.8 m and Alnus Spp. with an average of 
4.62 m. Although for this research and this specific tree species the addition of parameter 𝑏𝑏 has improved 
the results of classification significantly, size of crowns is not always an appropriate feature for classification 
due to different age of trees and pruning of tree crowns.  

In addition, from the Pollock parameters 𝑎𝑎 , 𝑏𝑏, and 𝑛𝑛 more information than just the tree species classes can 
be extracted like age, health and sub-species variation. Once the tree species are classified, one can interpret 
the age of trees based on the parameter 𝑏𝑏 and 𝑎𝑎. Also, one can extract information about the health of tree 
crowns based on the parameter 𝑛𝑛 and 𝑎𝑎 since tree diseases can affect the shape of a tree crown or density 
of leaves in a tree crown. 

6.3. Maximum Likelihood Classification (MLC) based on Pollock parameters and texture 
measurements 

The study shows that texture is a property that can be used as additional information for improving the 
classification of four main species (Plantanus Spp., Corylus Spp., Alnus Spp., and Tilia Spp.) in an urban area in 
Delft city, The Netherlands. Accordingly, by applying classification based on object wise texture 
measurements and Pollock parameters, Corylus Spp. and Plantanus Spp. has been classified almost perfectly 
with conditional Kappa 1 and 0.9 respectively, Tilia Spp. has been classified moderately, and Alnus Spp. have 
been classified fairly.  

For classification based on object wise GLCM texture measurements, it has been observed that there is not 
necessarily an optimum lag providing the highest class separability for all tree species. Although for GLCM 
angular second moment, dissimilarity, homogeneity, and entropy by computing class separability for each 
lag one can detect the most appropriate lag, for GLCM mean and variance different tree species might have 
different behaviour and there might not be an optimal lag. In this case, one should focus on those species 
whose classification accuracy needs to be improved. 

In this research, the GLCM texture measurements have been computed at the same lag, optimum lag, for 
all tree species. However, different tree species may have different optimum lags. This might be the reason 
why by addition of pixel wise GLCM mean at lag of 8 pixels (2 m) and homogeneity at lag of 7 (1.75 m), 
Tilia Spp. has improved classification whereas by addition of object wise GLCM mean at lag of 24 pixels (6 
m) and angular second moment at lag of 15 pixels (3.75 m), it does not have any improvement in 
classification.  

In this research, the semivariogram parameters, range and sill, have been used for classification. The 
variogram range measuring texture coarseness is related to the size of the textural features and sill is 
proportional to the global variance of the textural feature. By comparison of the semivariogram range (refer 
to Figure 18a ) and the radius of the crowns (refer to Figure 16) for each species, one can find that for 
Corylus Spp., Alnus Spp. and Tilia Spp. the size of textural features, range, is the same as the size of the crowns. 
This means that the texture of these species are such a coarse that the textural feature is the crown itself. 
However for Plantanus Spp. the size of textural feature is approximately half of the size of crown. This means 
that Plantanus Spp. forms textural features half of the size of its crown. In this research, the textural feature 
can be interpreted as the sub-crown. By addition of semivariogram parameters for classification, the accuracy 
of Plantanus Spp. has been decreased since the size of textural features for Plantanus Spp. have been confused 
by the size of Alnus and Tilia Spp. crows. 
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This research shows that the fine structure obtained by subtraction of the Pollock model from the spectral 
profile reveals more texture compared to the spectral profile itself (refer to Figure 11). Classification based 
on texture of fine structure instead of texture of spectral profile has improved Kappa coefficient from 0.14 
to 0.19. Although classification has been improved, this improvement is not significant and accuracy of 
classification is still too low. Therefore, texture measurements are not suggested to be considered as a single 
feature for tree species classification and they should be applied in addition to other features like Pollock 
parameters to improve classification. This complies with findings of other studies(e.g.  Franklin, Maudie, & 
Lavigne, 2001; Coburn & Roberts, 2004; Y. Zhang, 2001). 

In addition, literature review revealed that addition of texture can make modest improvement in 
classification. It normally improves classification accuracy by 5% to 15% (K. Zhang & Hu, 2012). In this 
research however, although addition of texture measurements like GLCM texture measures or semi-
variogram to Pollock parameters as the additional classification features have improved classification 
accuracy, this improvement is not significant.  

One possible reason could be the choice of texture measurements. In this research, just GLCM texture 
measurements and semi-variogram have been applied whereas many other texture analysis methods have 
been developed such as multivariate Gaussian Markov random field (Hazel, 2000), and local binary pattern 
(Ojala et al., 2002). Finding the reliable texture measurement for tree species classification in urban areas 
could be a topic for further extensive research. 

Another reason for lack of improvement of additional texture measures to the classification can be the 
choice of classifier. In this research, just Maximum likelihood has been applied for classification and the 
performance of other classifiers like support vector machine (SVM) has not been explored. Maximum 
likelihood classifier assumes that each class in each band is normally distributed. In this research most of 
parameters which were applied for classification, like Pollock parameter 𝑏𝑏 , are approximately normally 
distributed. However, some parameter applied for classification are not normally distributed.  Maximum 
likelihood, can also be applied for classification data which are not normally distributed. For non- normally 
distributed data, one needs to explore the performance of this classifier. Moreover, in maximum likelihood 
classification the inverse matrix of the covariance becomes unstable in case where there exists very high 
correlation between two bands. This is the reason why the GLCM texture measures applied for classification 
have been limited to two measures. 

Sample size also influences classification accuracy. Maximum likelihood classification performance depends 
on reference data. Sufficient reference data should be sampled to allow estimation of mean and covariance 
matrix of population.  

Finally, classification accuracy depends on the differences between the tree species studied for this research. 
All four tree species (Plantanus Spp., Corylus Spp., Alnus Spp., and Tilia Spp.) in the urban study area are 
deciduous trees. Deciduous trees have similar texture in their tree crown. Most of studies done on 
classification of tree species, have successfully discriminated deciduous trees from coniferous trees(e.g. 
Zhang & Hu, 2012).  

In this research, by using spectral profile and textural information of tree crowns, Corylus Spp. has been 
classified almost perfectly. However, if one applies the methods introduced in this research for another 
combination of broad leaves trees, one should not expect to obtain the same results if there are other tree 
species with crown shapes similar to Corylus Spp. However, it is expected that these methods work well 
enough for separating trees at tree type level (i.e. coniferous and deciduous). In addition, these methods, 
have been applied on Delft city which mainly has different species of the same genus and large within species 

46 



URBAN TREE SPECIES CLASSIFICATION BASED ON SPECTRAL PROFILE OF CROWNS AND TEXTURE 

varieties (Chepkochei, 2014). If one applies these methods for another location with another tree species 
which have less within species variation, one can expect to get more accurate results. Furthermore, once 
tree species are classified, these method can also be used for extracting more information than species classes 
like health, age and within species varieties. Moreover, if these methods are applied for another image with 
coarser resolution, although fine structure information (texture effect) may be lost, coarse structure (spectral 
profile surface effect) can still be used for classification. In this regard, exploring the effect of scale on the 
coarse and fine structure of the spectral profile and finding the most appropriate scale for urban tree species 
classification can be a topic for further studies. 
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7. CONCLUSION AND RECOMMENDATIONS 

7.1. Conclusion  
Coarse structure or low frequency signal component of tree crowns can be described by bell curve models 
like Pollock, Gaussian and Paraboloid models. RMSE as a goodness of fit showed that the Pollock model 
with the average RMSE of 0.032 can best approximate the coarse structure of tree crowns for all four species 
(Plantanus Spp., Corylus Spp., Alnus Spp., and Tilia Spp.) compared to Gaussian and Paraboloid models with 
average RMSE of 0.039 and 0.043 respectively. To describe the coarse structure of the trees of the same 
species just one model (the Pollock model) is sufficient. In addition, the difference between coarse structure 
(surface model) of different tree species can be defined by Pollock parameters 𝑎𝑎, 𝑏𝑏, and 𝑛𝑛. In this regard, 
Corylus Spp. which has the highest values for parameters 𝑎𝑎 and 𝑛𝑛 is completely separable from other species. 
However, Tilia Spp. and Alnus Spp. which have similar values for parameters 𝑎𝑎, 𝑏𝑏, and 𝑛𝑛 have the lowest 
separability.  

Fine structure or high frequency signal component can be extracted by subtraction of the Pollock model 
from the spectral profile. In other words, the effects of texture and spectral profile effect can be decomposed 
by subtraction of the fitted Pollock model from the spectral profile. GLCM texture measurements and semi-
variogram have been used for classification of fine structure. Addition of texture information for 
classification improved Kappa from 0.53 to 0.56 by considering the semivariogam and from 0.53 to 0.55 by 
considering GLCM texture measurements for classification. However, this improvement is not significant. 

Fine structure obtained from subtraction of the Pollock model from the spectral profile revealed more 
texture compared to the spectral profile itself. Classification based on texture of fine structure instead of 
texture of spectral profile has improved Kappa coefficient from 0.14 to 0.19. However, this improvement 
is not significant. Tilia Spp. with conditional Kappa 0.41 has the highest accuracy in classification based on 
only texture of fine structure. 

By applying Maximum likelihood classification based on both Pollock parameters and object-wise GLCM 
texture measurements, Corylus Spp. and Plantanus Spp. with conditional Kappa of 1.00 and 0.90 respectively 
classified almost perfectly. Tilia Spp. with conditional Kappa of 0.57 classified moderately and Alnus Spp. 
with conditional Kappa of 0.36 classified fairly. 

7.2. Recommendations  
In this research, for texture analysis GLCM texture measurements and semi-variograms have been applied 
whereas there are many other texture analysis methods. In addition, this research was done on an aerial 
image with 0.25 m resolution and spectral profile and texture analysis on a different image with different 
resolution has not been tested. Therefore, further research can be done to find the most reliable texture 
measurement and scale for tree species classification in urban areas.  
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