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ABSTRACT 

Species distribution modelling (SDM) helps direct biodiversity conservation, monitoring and forest 

management plans. To target vulnerable areas, modelling distribution of species like owls as apex 

predators is useful since they are very good indicator of biodiversity and health of the ecosystem. 

Glaucidium passerinum and Aegolius funereus are two owl species whose habitat selection behaviour in the old 

growth forest of Rhodopes Mountains in Bulgaria was studied for this research. 

 

Collecting ground truth data on occurrence points of species is not easy though especially if they inhabit 

dense forest and rough terrain. Therefore this study tried to use remote sensing techniques to test whether 

indicators derived from high resolution imagery provide equally significant inputs for distribution models 

as field based data. Distribution models were generated with topographic variables and image based forest 

structure parameters and importance of variables in occurrence of either species were compared. 

This research also tried to find an appropriate spatial scale of species home range size that explains their 

distribution best.  

 

The results of generated models could confirm the importance of some previously known predictors in 

occurrence of both owl species like “Slope”. The results also verified preference of A. funereus to inhabit 

trees with larger crown diameters. Moreover the research contributed to existing ecology knowledge of 

these forest dwelling species in western Rhodope by detecting importance of forest edge to owls presence.  

However, the accuracy indicators of generated models were not high enough for the models to be 

extrapolated. There was also no trend over different home range sizes to indicate which scale can best 

predict the distribution of either species. 

 

Possible reasons for acquiring models with low accuracy could be due to not including right variables, not 

having the right range of values for relevant variables, error in data or having generalist species that 

doesn’t respond top strongly to any variables 

Thus the usefulness of RS techniques in generating SDMs can not be rejected. Including other predictors 

like age and DBH of the trees, using LiDAR data to extract tree heights and calibrating the detected 

individual trees can produce better quality data to improve model accuracy. 
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1. INTRODUCTION 

“Species Distribution Modelling” (SDM) is a technique for describing or predicting distribution patterns 

of species. SDMs, also known as “Ecological Niche Modelling”, relate occurrence data of species at 

known locations with spatial and environmental attributes of those spots (Elith & Leathwick, 2009). This 

relationship between a species occurrence and elements within the ecosystem it occurs is assumed to be at 

equilibrium with each other (Elith & Leathwick) and they play significant role in directing biodiversity 

conservation (Liu, White, & Newell, 2011) and forest management planning (Redon & Luque, 2010). 

Detecting changes in conditions of one or more controlling factors also indicates changes in distribution 

of a specific species. Predictive modelling helps quantify the relation between such conditions to assess the 

impact of changes on species distribution. This helps to create sustainable resource management policies 

for that species (Yost, Peterson, Gregg, & Miller, 2008). 

 

According to Romulo (2012), there are species whose presence are very good indicator of biodiversity and 

health of the ecosystem. Therefore studying their distribution pattern is useful for pointing out 

conservation targets and vulnerable areas. Owls for instance are apex predators which can help in 

achieving conservation goals at broader ecosystem levels (Romulo). Cholewiak (2003) said 95% of the 

owls are forest dwelling species who rely on services that the forest offers. Defining the important forest 

stand structure parameters that indicate the proper conditions in explaining owl occurrence helps 

generating accordingly monitoring and managing plans. Yet accessing the exact occurrence points and 

collecting all possibly related ground truth data to their presence is challenging and sometimes not 

practicable as they might inhabit in remote areas with tough terrains. Advances in remote sensing 

technology might be useful in overcoming this difficulty and also improve species richness or performance 

of SDMs (Cord et al., 2014). For owl species like Glaucidium Passerinum and Aegolius funereus who specially 

occur at higher altitudes and lands with high degree of slope values, employing remote sensing to detect 

proxies of forest stand structure parameters might be very helpful in modelling their habitat selection 

behaviour. These two owl species are two protected species considered to be rare breeding in Bulgaria 

(Shurulinkov & Stoyanov, 2005, 2006). There are many studies that examined correlation of their 

occurrence with selected environmental variables based on extensive field surveys, however, the results 

were rather inconsistent so it is not entirely clear what precisely determines owl’s distribution. Moreover, 

no study has evaluated the potential of using high resolution imagery for modelling their distribution. 

 

The benefit of using high resolution imagery in forestry research is in detecting trees by delineating the 

crown of individual trees. These delineations can be used to derive important tree and forest 

characteristics. Ground based measurement of tree crown width is more difficult and time consuming 

than other forest stand structure parameters (Sönmez, 2009). Although it is still not entirely clear what 

factors determines these two owl species distribution, it has been claimed that occurrence of them is 

highly correlated to tree characteristics like tree-cover, diameter at breast height and crown width. Thus 

employing remote sensing (RS) techniques to extract derivations of these predictors would save time and 

cost. 

Also, a successful development of spatial knowledge of habitat suitabilities of indicator species like owls 

would assist producing conservation management plans for other cavity-nesting species with similar 

habitat requirements (Redon & Luque, 2010). 

 

Rhodopes (Rhodopi) Mountains with its extensive old-growth forest in central south Bulgaria looks to be 
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a suitable location to study behaviour of rare breeding bird species as it is claimed to have the richest 

biodiversity among all mountains of Bulgaria and perhaps even in whole Europe (Terry, Ullrich, & 

Riecken, 2006). This mountain range is among most valuable areas at the level of the European Union for 

Glaucidium passerinum (G. passerinum) and Aegolius funereus (A. funereus) (Kostadinova & Gramatikov, 2007). It 

is known to be habitat of largest number of G. passerinum in the entire Balkan Peninsula (Shurulinkov, 

Ralev, Daskalova, & Chakarov, 2007). According to Shurulinkov, Stoyanov, Komitov, Daskalova, and 

Ralev (2012) the recorded number of G. passerinum territories was higher than of A. funereus in Rhodopes 

Mountains. Besides that, Rhodope forest is an old growth forest with a great number of large trees and 

standing dead trees. According to Angelstam, Bütler, Lazdinis, Mikusinski, and Roberge (2003), dying or 

dead trees are very important habitat for many plant species and animals as well as known to be best for 

forestry practices. G. passerinum also nest in woodpeckers’ holes on very old trees. Thus monitoring and 

modelling their niche selection helps in understanding status of the forest resources. 

 

Based on many bird fauna studies that have been carried out for decades in Bulgaria, there were some 

geographically overlapping and also non-overlapping presence points of each species which indicate there 

could be subtle yet principal differences between their habitat selection behaviour. These differences affect 

their co existence. Recent studies provide more occurrence data and identified habitat requirements of 

both species based on vegetation types and characteristics (Ström & Sonerud, 2001; Shurulinkov et al., 

2012; Henrioux, Henrioux, Walder, & Chopard, 2003), food availability (Deshler & Murphy, 2012; 

Zarybnicka, 2009; Suhonen, Halonen, Mappes, & Korpimäki., 2007), hunting strategies (Suhonen et al.; 

Ström & Sonerud), breeding success (Deshler & Murphy; Pacenovsky & Sotnar, 2010), geological features 

(Rajković, Grujic, Novic, & Miric, 2013), human interventions (Deshler & Murphy; Flesch & Steidl, 2007) 

and climatic variables (Catro, Munoz, & Real, 2008). They all tried to focus and measure certain 

explanatory variables effecting habitat selection of each species independently. The analyses were based on 

literature, expert knowledge or logical assumptions and estimations. 

 

Though what still needs to be clarified are the main contributors to occurrence of overlapping presence 

points and comparison between similarity and differences of their habitat requirements. The focus of this 

study is to test whether such environmental variables including forest parameters can be derived from 

remote sensing techniques to define their suitable habitat. According to previous studies it looks like there 

are probably three main factors which explain differences, competition on food (Suhonen et al., 2007; 

Andrle, 2011), different timing of activity (Pacenovsky & Shurulinkov, 2008) and surviving in a predator-

prey community. 

 

Meanwhile it is also known that the biggest threat to both species is human interventions, mainly intensive 

forestry activities and development of tourism attractions (Shurulinkov et al., 2007). Conservation 

management plans at local scale like Rhodopes Mountains need fine-scale data, and such studies require 

continues maps of environmental variables. So the challenge is to generate a model from small scale aerial 

image to be accurate enough to be extrapolated. 

 

To generate accurate models it is important to drive variables at a correct spatial scale. Modelling species 

distribution over very large areas will not say much about suitability but at very small extents would 

neither. So establishing the right home range size is a useful study to improve the modelling results for 

these species. Therefore the current study also tries to find the home range size that explains their territory 

best. To answer this question, the mean territory size of A. funereus as the larger owl species was estimated 

from previous studies. There were inconsistency and controversial records in defining the best home 

range for A. funereus. Kouba, Bartos, and Stastny (2013) considered a home range between 30-57 hectare 

suitable for nesting and foraging depending on prey abundance. But Santangeli, Hakkarainen, and 
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Korpirmaki (2012) found a home range between 40-293 hectare, where “spruce” forest was the best forest 

type predictor but food availability didn’t change the territory size which is in contrast with Kouba et al. 

findings. Although they claimed that in a dense forest, increasing the cover decrease the home range size 

of this species (Santangeli et al.). From many papers and previous investigations, an average territory size 

of 100 hectare was considered most appropriate for A. funereus. Rajkovic et al. (2013) suggested a roughly 

estimation of one territory in 100 hectare. Also Jedrzejewska and Jedrzejewski (1998) estimated their home 

range to be around 1.1    .  

 

As mentioned earlier, Rhodopes forest is very old and dense, and the dominant tree species in the study 

area was “spruce” which is known to provide a suitable habitat for both G. passerinum and A. funereus. So it 

is a very good example of a forest where the tree cover is dominated by a single tree species and where 

these bird species occur. To examine the impact of such forest structure on the territory size, the accuracy 

of SDMs based on average stand characteristics measured at three different home range sizes were 

investigated. The selected home range sizes to be evaluated were 100, 50 and 25 hectare.   

 

To perform image processing operations in this study, eCognition Developer 64 and ArcMap 10.2.1 were 

used. eCognition Developer employs Object Based Image Analyses (OBIA) technique to interprets the 

image by certain characteristics like their smoothness, shape, size or spatial arrangement of certain features 

(Lang, Albrecht, & Blaschke, 2006.). OBIA has the ability to use spatial information implicit within remote 

sensing which is often neglected (Hay & Castilla, 2006). This makes it useful in studying forest-

characteristics which are not homogenous on a high resolution imagery that contains high level of details.  

 

1.1. Rhodopes Mountains 

The Rhodopes Mountains form the most extensive mountain range in Bulgaria and cover nearly one 

seventh of the whole country (“Rhodope Mountains”, 2014). About 80 percent of the region is in Bulgaria 

and the southernmost of it is situated in Greece. Geomorphologically, it is the oldest mountain range in 

Bulgaria with a complex system of very old forest, ridges with various height and width, river valleys and 

ravines. Such environmental conditions provide excellent opportunity for unique biodiversity in this vast 

area (Greek biotope/wetland centre, 2008). 

 

The great variety in vegetation, climate and terrain provides suitable habitat for over 300 species of bird 

(Wild Rodopi NGO, 2012). Among them, there are 36 birds of prey which inhabit Rhodopes making it an 

important habitat in Europe for many threatened species (Sierdsema, Ploeg, Jansen, & Jansen, 2010).  

 

Figure 1. Rhodopes Forest in Western Rhodopes Mountain, Bulgaria. 



DISTRIBUTION MODELLING OF GLAUCIDIUM PASSERINUM AND AEGOLIUS FUNEREUS FROM FOREST STAND STRUCTURE PARAMETERS USING HIGH 

RESOLUTION IMAGERY IN RHODOPES MOUNTAINS, BULGARIA 

4 

1.2. Owl Species 

1.2.1. Glaucidium passerinum 

Glaucidium passerinum, also known as Euroasian Pygmy owls are the sole member of the widespread genus 

Glaucidium in Europe. They are diurnal owls [owls that hunt during daylight] (Härmä et al., 2011), glacial 

relict species [species remained from last glacial period], not shy of human and known to be the smallest 

owl in Europe (Lewis, 2013). 

 

This species was considered extinct in Bulgaria until recently 

(Shurulinkov & Stoyanov, 2006). Therefore there are still few 

published documents on their presence in different part of the 

country.  

On a national level their population is estimated to reach between 240-

290 breeding pairs (Shurulinkov et al., 2007). Several studies have 

estimated the number of G. passerinum in Rhodopes Mountains to vary 

between 120-200 (Pacenovsly & Shurulinkov, 2008; Shurulinkov et al., 

2012). 

 

Figure 2. Glaucidium Passerinum (Breider, 2011) 

 

 

 

1.2.2. Aegolius funereus 

Aegolius funereus also knows as Boreal owl or Tengmalm’s owl after Swedish naturalist Peter Gustaf 

Tengmalm (“Boreal owl”, 2014) are nocturnal small owls, they avoid humans and they have a broad 

habitat ranging from the mountains in Alaska, Canada and America to northern Europe and Asia (Owl 

Research Institutes, 2013).  

 

These species are mostly found in Scandinavia but also live in 

subalpine regions and forests in the northern hemisphere and 

central mountain regions (Hayward & Hayward, 1991; Lewis, 

2013). 

Published data on occurrence of A. funereus in Bulgaria goes 

back to late 1960s (Shurulinkov, 2012) though there is evidence 

to claim they were widely distributed in mountains mainly in 

Rhodopes at the beginning of 20th century. Their total 

population is estimated to vary between 1025-1400 pairs in the 

whole country (Shurulinkov & Stonyanov, 2005).  

        Figure 3. Aegolius funereus (Falsterbo, 2008) 
 

1.2.3. Similarities, Differences and Threats 

The greatest similarity between these two species is that they are highly dependent on forest maturity 

(Ström & Sonerud, 2001) and they have similar hunting strategy as they are both “forest dwelling sit- and-

wait predators” (Härmä et al., 2011, p 91). Yet due to the slightly larger size of A. funereus and their 

bilateral ear asymmetry (Ström & Sonerud) that enables directional hearing in total darkness, it is easier for 

them to find and catch preys. 
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Suhonen et al. (2007) also studied the effect of predatory interactions between the two on larder size as a 

function of distance and diameter of nest-boxes entrance. They have concluded that G. passerinum can co-

exist with the latter but due to competition for food resources that are only available during late autumn 

and winter time each year (Suhonen, 1993), their hunting success is lower resulting in smaller larder size in 

presence of A. funereus. 

In a comprehensive literature review on diet selection of a number of raptor species in northern Europe 

by Andrle (2011), it was reported that one third of the total diet of G. passerinum is composed of birds 

whereas this number was only 3.6% for A. funereus (Andrle). On the other hand more than 90 % of the A. 

funereus diet has been recorded to be mammals as with G. passerinum it was 65 percent (Lewis, 2013; 

Andrle).  

 

It can be suggested that occurrence of G. passerinum in non-overlapping areas might be explained by their 

tendency to spatially avoid (Suhonen et al., 2007) other birds of prey including A. funereus and inhabit areas 

where climate condition is not suitable for their competitors. Risk of predation by other larger birds of 

prey is the natural threat to G. passerinum. But in broader scale A. funereus are not endangered and are rarely 

threatened by human hunting. 

Yet both G. passerinum and A. funereus have been threatened by large scale legal and illegal logging during 

previous years. The consequence is that old coniferous forests are disappearing and this affects mostly A. 

funereus. In a study in Finland decreasing rate of this species was estimated by 2% each year (“Tengmalm’s 

Owl- Aegolius funereus”, 2014). 

 

On the other hand, G. passerinum can adapt itself better to forestry activities and their presence was 

recorded in areas where sustainable forestry was practiced, though still the biggest threat in Rhodopes 

Mountains is habitat fragmentation. Shurulinkov et al. (2007) claimed that clearing trees in the upper river 

catchment has also destroyed their best habitats apart from erosion and creating higher risk of flooding in 

the downstream. In the same study they claimed the density of this species was higher in closed forests 

with no forestry activities compared to sites where many logging activities were illegally practiced 

(Shurulinkov et al.).  

 

1.2.4. Assumptions 

There are other ecological factors that can affect the occurrence of both species. So according to available 

time and data, three main assumptions were made that might have introduced some bias into the study.  

1- Presence points of both species represent their presence regardless of nesting, roosting or foraging. 

2- It is assumed that competition for food does not affect the reproductive success of G. passerinum owls 

as there are no evidence yet which supports such hypothesis (Suhonen et al., 2007). 

3- G. passerinum is under risk of predation by other larger birds of prey mainly Strix aluco known as 

Euroasian Tawny owl. This owl is widely distributed through whole Europe and also in Bulgaria. It is even 

believed that increasing population of Strix aluco resulted in disappearing of G. passerinum from parts of 

Germany (Lewis, 2013). But this research is excluding risk of becoming prey to other animals as there is 

no data available on their density and distribution. 

 

1.3. Most Important Explanatory Variables 

Among the environmental factors defined by literature to contribute to G. passerinum and A. funereus 

occurrence in different places in the world, there are environmental conditions that are repeatedly 

reported in various papers and surveys. The most important habitat requirements are discussed briefly in 

this section. 
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1.3.1. Forest type 

There are many similarities between types of forest preferred by G. passerinum and A. funereus. They both 

nest in mature coniferous forests in different combination of tree species.  

The most important tree species that provide suitable habitat for G. Passerinum and A. funereus to nest and 

forage are old forests of Spruce, Scots Pine, European Beech and European silver Fir. (Shurulinkov et al., 

2012; Romulo, 2012; Shurulinkov, 2005; Cote, Doyon & Bergeron, 2004; Ström & Sonerud, 2001; 

Shurulinkov & Stonayov, 2006; Korpimäki, 1981). 

 

Comparing G. passerinum with A. funereus, Redon & Luque (2010) suggested that the first depends more on 

presence of Norway Spruce and the latter on European Beech.  

 

1.3.2. Altitude 

The recorded altitudes of both species occurrence from many studies suggested their tendency to inhabit h

igher elevation. Gattermayr et al. (2013) has called G. passerinum “birds of higher altitude”. This speciessee

ms to be quite dependant to altitudes for choosing suitable habitat as they show consistent reliability to hig

her altitudes starting from 1400m up to 1930m above sea level (Shurulinkov et al., 2005, 2007). 

 

However the records on elevation values were not consistent for A. funereus. Their occurrence has been 

recorded in elevation ranging as low as 790 meter (Rajkovic et al., 2013) up to 1800 meter above sea level 

(Shurulinkov et al., 2012; Shurulinkov & Stoyanov, 2006, 2005; Rajkovic et al.) in different places.  

This inconsistency in results might be due to the fact that environmental conditions change when these 

species move north or south. So they seem to be more flexible to altitude variation as long as other 

favourable conditions are provided. 

 

1.3.3. Aspect, Slope and Daylight Period for Hunting 

There were some studies claiming that topography is highly correlated to distribution pattern of both 

species and slope appears to contribute significantly to their occurrence (Redon & Luque, 2010; 

Shurulinkov et al., 2006; Cichocki, Slizowski, & Bochenski, 2004). Yet again records on correlation 

between their occurrence and slope were not consistent and their presence was recorded in not too steep 

slopes of less than 35° (Gattermayr et al. ,2013). 

 

The importance of aspect for A. funereus is explained by the fact that they are nocturnal owls who are 

active in twilight. Zarybnicka (2009) suggested that male of A. funereus starts hunting after the sunset with 

two peaks at late dust (20:00-22:00) and early dawn (2:00-5:00). She suggested that their activity declines 

significantly between sunrise and sunset and light condition limits their hunting Thus it can be 

hypothesized that their habitat is correlated to west facing slopes. These slopes provide longer twilight 

time since compared to east facing slope, it is exposed to sun at an earlier time of the day.  

Western slopes also provide A. funereus with cooler climatic conditions to avoid summer heat (Hayward et 

al., 1993). At high elevation, the surface facing sun warms dramatically on a clear day (Price et al, 2013), 

and this can cause too hot conditions for this species.  

 

It has also been shown that larger owl species like Strix aluco which prey on G. passerinum and A. funereus, 

prefer lower elevation and slopes facing the sun (Rajkovic et al., 2013). Thus the importance of westness 

might also be in avoiding predation by other birds of prey. 

Unlike A. funereus, the presence of G. passerinum has been recorded during day light as they lack the ability 

to hunt in total darkness. Thus it seems like being more exposed to light would suit them since it provides 

them longer hunting period. 
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So studying the contribution of topographic variables in occurrence of each species in overlapping and 

non-overlapping presence points would probably provide more insight into their habitat selection 

behaviour. 

 

1.3.4. Tree Diameter at Breast Height 

Several studies came with a lower threshold for tree DBH above which trees would be suitable to offer 

nesting locations for A. funereus ranging between 30 and 38 cm (Cote et al., 2004; Hayward, 1993; Heinrish 

et al., 1999) 

The required DBH for G. passerinum habitat which is addressed in fewer cases was reported to be about 45 

± 9 centimetres by Ministry of Water, Land and Air protection (2004). 

 

DBH is also a proxy of age of trees and growing condition. Both of these species inhabit trees around 80 

years old or older (Shurulinkov et al., 2007, 2012; Cote et al., 2004) since they both nest in cavity holes 

made by woodpeckers on very old or dying trees.  

 

Therefore it can be suggested from previous studies that DBH plays significant role in defining suitable 

nesting locations of both species but what is lacking in literature is possible correlation of variation of 

DBH and average DBH with distribution pattern of owls. Since it was not possible to derive DBH directly 

from an aerial image, the correlation between variations of tree crown values was studied in this research. 

 

1.3.5. Cover Requirements/ Canopy Closure 

The presence of the A. funereus is generally associated with dense coniferous forests (Johnsgard, 1988). 

What was common in different observations was the importance of cover of old forest in increasing 

survival (Hakkarainen et al., 2008). But habitat cover requirements seem to differ between summer and 

winter times (Hayward et al., 1993). As a cold-adapted species they select dense and shaded sites with 

lower temperature for roosting during summer time while less specific roosting site selection seems to 

occur during winter (Hayward et al.). Several studies reported their favourable habitats to be stands with 

multi-layered canopy which is close enough to provide shelter, and understory which is open enough to 

provide food in mountainous areas (Hayward et al.; Whitman, 2001; Cote et al., 2004). 

 

Yet there is a threshold on how open the terrestrial habitat should be since foraging habitat value in 

complete openings reduced according to distance to forest edge (Cote et al., 2004). The explanation for 

this behaviour could be A. funereus‘ reluctance to cross large open areas (Cote et al.) because they try to 

avoid exposing themselves to other larger and stronger birds of prey. And if the canopy closure is too 

dense, no suitable ground layer and good cover of herb will develop (Guenette & Villard, 2005).  

 

As for G. passerinum, Deutschmann (2013) said they would have food supply year-round if they are in a 

light canopy closure of old stock combined with an open forest structure since diverse herb layers protect 

their basic food meaning small mammals and birds. Gattermayr et al. (2013) reported a medium canopy 

cover in their habitat. 

 

1.3.6. Distance to Forest Edge 

The forest edge is a transition from forest to another habitat. Plants that grow in the edge are different or 

if they also grow in middle of the forest, they look different since they are more exposed to sun light 

which changes the vegetation structure (McCollin, 2006). For instance shrubs are bushier and more 

abundant in the edge than in the middle of the forest and this provides good habitat for voles (Barrett & 
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Peles, 1999) which are an important part of owls’ diet. 

 

But there is much confusion on the impact of distance to forest edge in selecting suitable habitat for 

nesting and foraging of both species. Some older studies supported the hypothesis that A. funereus benefit 

from clear-cuts because they can hunt on voles easier (Hakkarainen et al., 1996). On the other hand many 

other reports argued that forestry activities have serious negative effect on their habitat selection 

(Shurulinkov et al., 2012; Zarybnicka, 2009). Also it is believed that the human-avoidance nature of this 

species is another reason why they are reluctant to be close to forest edge. 

 

On the contrary, G. passerinum are more tolerant to forestry activities and their presence was recorded in 

interspersed open areas, positively associated with clear cutting (Gattermayr, 2013). According to 

Deutschmann (2013) they only avoided vast clear-cuts. The tendency of being close to forest-edge could 

be explained by availability of a higher density of field voles (Hakkarainen et al., 1996) and high quality of 

such habitats in less woody areas (Hayward et al., 1993). Flesch & Steidl (2007) supported the importance 

of distance to vegetation edge too, suggesting that such margins increase access and visibility over preys.  

 

For clarifying the real effect of distance to forest edge on habitat selection, a hypothesis was made 

assuming G. passerinum occurrence has strong negative correlation to distance to forest margin as for A. 

funereus it would be positive. Though what the optimum threshold and gradient could be is still unclear and 

needs more investigation. 

 

1.4. Research problem 

Until 20 years ago it was believed that G. passerinum in Bulgaria was extinct but more data on occurrence of 

this endangered species, as well as on A. funereus, has been recorded in different mountain ranges during 

previous years (Shurulinkov & Stoyanov, 2005). The records show there are areas inhabited by both 

species as well as quite distinct areas inhabited by only one. Extensive field surveys tried to define their 

habitat selection behaviour based on different stand structure and landform features but there are 

inconsistency and contradictions in the results of these studies. This hampers the evaluation of the 

contribution of different variables in explaining the overlap and non-overlap of their home ranges 

 

So far no studies have modelled their presence with all possible explanatory variables to analyse the 

importance of environmental factors. It is also not known yet how significant variables contribute to 

explain differences in overlap between these two species. The estimation of their best home range size is 

also not constant in different studies. This might be due to the tough terrain of the suitable habitat of 

these species which makes it difficult to reach their exact point of occurrence and collect all possible 

explanatory variables in a well representative area of their territory. 

 

Until recently, the most popular and accurate method in modelling species distribution have been relating 

their occurrence to actual ground measurement of possible predictors. But according to Tzvetan Zlatanov 

(personal communication, September 2014) from Forest Research Institute of Sofia, accuracy of 

distribution models of these two owl species with selected ground truth data was not satisfactory. Still, no 

topographic variables or distance to forest margins were introduced to their model. Besides, the question 

arose about the appropriate home range size that would explain their nesting habitat better. 

 

Thus the current study intended to model the distribution patterns of A. funereus and G. passerinum by 

producing environmental data from remote sensing information. If such models are accurate enough, they 

can be extrapolated to other areas, overcoming limitations of time, budget and challenging terrain.  
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1.5. Research Objectives 

This research aims to develop models explaining the distribution of G. passerinum and A. funereus from 

forest stand structure parameters and topographic variables in Rhodopes Mountains that are derived from 

high resolution imagery. Additionally, model accuracy while considering different territory sizes will be 

studied.  

 

1.5.1. General Objectives 

The general objective of this study is to explain differences in habitat selection of G. passerinum and A. 

Funereus in Rhodopes Mountain by identifying the most important explanatory variables in defining their 

habitat selection behaviour. 

 

1.5.2. Specific Objectives 

1. Identify differences in importance of topographic variables in defining habitat requirements of G. 

passerinum and A. funereus from geographically overlapping and non-overlapping presence points.  

2. Generate distribution model from proxies of stand structure parameters derived from high resolution 

imagery.  

3. Find home range size of each species that explains their distribution best. 

 

1.6. Research Questions 

1. What are the differences between importance of topographic variables in generating distribution models 

of G. passerinum and A. funereus? 

2. Which of explanatory variables are most important in defining the occurrence of G. passerinum and A. 

funereus?  

3. Can image based forest structure indicators provide equally-significant input for distribution models as 

field based data can?  

4. Do models become more accurate when forest stand structure parameters based on larger extents are 

considered as explanatory variables? 

 

1.7. Hypothesis 

Hypothesis 1: Testing the concept that topographic variables explain habitat selection behaviour. 

 

1.1. H1. There is a significant positive correlation between western aspect and occurrence of A. funereus 

since western aspect provides longer twilight period for hunting.  

1.2. H1. Altitude is a significant explanatory variable in defining suitable habitat for G. passerinum because it 

enables them to look for preys in a larger ground area and provides safe nesting site to avoid risk from 

hunting by other birds of prey. 

 

 

Hypothesis 2: Testing the concept that by employing remote sensing techniques, proxies of forest stand 

structure parameters can be extracted from high resolution imagery to fit distribution models with high 

level of accuracy. 

 

2.1. H1. The accuracy of distribution models based on image derived proxies is equally reliable as models 

generated by ground based measurements so the models can be extrapolated to other areas. 
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2.2. H1. Probability of occurrence of both species is higher with larger tree crowns (as a representative of 

diameter at breast height) while occurrence of A. funereus has greater probability with larger crown 

diameter classes than G. passerinum who prefer to nest on younger trees where small birds as preys are 

numerous. 

2.3. H1. There is a strong correlation between “Forest Edge”-related variables and occurrence of both 

species as density of small mammals and passerine prey is higher in the margins.  

 

 

Hypothesis 3: Testing the concept that deriving forest stand structure parameters from larger extent of 

home range size could increase the accuracy of the model. 

 

3.  H1. Models become more accurate when forest stand structure parameters as explanatory variables are 

derived from a larger extent of home range size.  
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2. MATERIALS AND METHODS 

The approach toward meeting the objectives of this research was carried out in two main steps; image 

processing to extract information from high resolution imagery, and statistical analyses to model species 

habitat selection behaviour. Each step is explained in details in this chapter. 

The data was taken from three sources; secondary data of presence/absence points of both owl species, 

extracted geological features from Digital Elevation Model, and information extracted from high 

resolution aerial photography of the study area. 

2.1. Actual Data 

2.1.1. Aerial Imagery of the Study Area 

The study area of this research is located in south Bulgaria, in the centre of Rhodopes Mountains and it 

extends approximately from 24.514000-24.658000 longitude and 41.600000- 41.740000 latitude. It covers 

an area of about 174 square kilometres. 

The high resolution aerial image used in this study was produced by georeferencing aerial images from  

Google-earth using 421 ground control points to cover the study area. These images were from October  

2013 provided by CNES/Astrium satellite with pixel size of 0.5 * 0.7. 
 

Figure 4. Map of Bulgaria with Georeferenced image of high resolution satellite imagery of the study area from 

Google- Earth. 

 

2.1.2. Presence/ Absence Data of A. funereus and G. passerinum 

A database of presence/absence points of both species was provided by the Forest Research Institute of 

Sofia thanks to Boris Nikolov and Iva Hristova-Nikolova. The fieldwork was conducted in autumn 2012, 

with two field visits on 8-14 September and 24 September– 1 October. Autumn was chosen an 

appropriate time to conduct the bird survey since in spring time the steep terrain of coniferous belt in high 

mountains of central Europe is covered with lots of snow which makes it hardly accessible. Besides, the 

weather condition is not good enough to conduct a field work for a long time. The vocal activity of owls is 
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also well expressed similar to the springtime and their territories appear to be the same as well. 

 

The total length of the surveyed transects was 49.9 km on altitude higher than 1450 meter. The distance 

between locations (points) were set at 500- 700 meters depending on the local terrain. Presence of the 

species was probed by imitating their call, in order to entice the species to respond. These imitation 

sessions for each point lasted 13 minutes with first three minutes of no sound provocation. The next ten 

minutes were split equally between both species to provoke owls by imitating their advertising call. The 

owl survey started at dusk in the evening about sunset (19:30h; GMT+3) and lasted for three hours. 

Daytime transects started at about 4:30h (GMT+3) until some time after sunrise at about 7:30h. 

This data set represents 49 presence points of A. funereus, 11 presence points of G. passerinum and 12 

geographically overlapping presence points of both species. Also 53 true absence points were recorded. 

The coordinates of these points was accompanied by approximate mean elevation in meter close to actual 

points of presence/absence. 

 

Additionally, eight presence points were added by georeferencing two distribution maps from “Digital 

Version of Red Data Book of Bulgaria” published by the Institute of Zoology (2011), and a project report 

published by Shurulinkov et al. (2012). 

Two out of these eight points were added as occurrence points of G. passerinum from “The Red Data 

Book”. And the other six points were added from the published results (maps) of birds’ survey conducted 

by Shurulinkov et al. (2012). Their findings added three presence points to each species. Their owl search 

was carried out during autumn and spring when the weather condition was favourable and during day and 

night. The localities of A. funereus were recorded only during dusk, down and night time whereas daytime 

transects for G. passerinum showed good results.  

The georeferenced maps were then digitized to make a Point shapefile on occurrence points of owls. Then 

it was clipped to the extent of the study area. 

 

2.1.3. Digital Elevation Model 

Digital Elevation Model used for this study was based on the ASTER GDEM image downloaded from 

the internet (http://asterweb.jpl.nasa.gov/gdem.asp.The ASTER GDEM has a ground resolution of 

approximately 30 meter and the accuracy is estimated to be 20 meter vertically and 30 horizontally meter 

at 95% confidence .From this map, aspect, altitude and slope were extracted. 

 

2.2. Exploring and Examining the Secondary Data 

Presence and absence points were displayed in same coordinate system to check possible overlap and 

duplicate records.  

 

The field recorded elevation at occurrence points and DEM based elevations were compared by a boxplot 

(Figure 5 ) and histogram ( Figure 6). The DEM was covering a wider range of altitude and it represented 

continues data with no gaps between records. It was also mentioned by Tzvetan Zlatanov from Forest 

Research Institute of Sofia through personal communication that recorded elevation values might not be 

precise and accurate enough to be used in modelling. Therefore elevation values extracted from DEM 

were assumed to be more accurate for fitting the model. 
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Figure 5. Boxplot of Altitude values extracted from DEM (left) and Altitude values from secondary data (right) 
 
 
 
 

   
Figure 6. Histogram representing distribution of Altitude values extracted from DEM (left) and Altitude from 
secondary data (right) 

 
 
 

2.2.1. Transforming Aspect to Westness 

Aspect needed to be converted into westness (0 pointing east and 180 pointing west) for the hypothesis 

on westness. This was done using “Folded aspect” (Equation 1) (Muthoni, 2010) to rescale 0-360 degree 

to 0-180 where 0 corresponds to East and 180 to west (McCune & Keon, 2002). 

 
Westness = | (180-|(Aspect-270)| ) |    Equation 1 
 
 

2.3. Image Processing and Distribution Modelling Workflow 

Figure 7 on the following page illustrates the general approach to modelling distribution of owl species 

with three datasets of occurrence points, Digital Elevation Map and high resolution aerial imagery of the 

study area.  
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Figure 7. General approach to modelling species distribution from high resolution imagery data. 

 

2.4. Image Processing: Deriving Proxies of Stand Structure Parameters from High Resolution 
Satellite Imagery 

To extract proxies of forest stand structure parameters the image was processed in several steps. The final 

results that were used in statistical analyses were total number of delineated single trees (from detecting 

crown projection area) based on variation in crown width, and length of forest edge detected from high 

resolution aerial imagery. Before images were processed, to save on processing time, the images were 

masked for the locations for which presence and absence data was available. This reduced the total extent 

that needed to be processed considerably. The masking was based on a buffer of 570 m around each 

presence and absence point in the study area. 
 

2.4.1. Single Tree Crown Detection 

The georeferenced high resolution images from Google-Earth were in RGB band so the only tree 

parameter detectable was individual tree crowns. Tree crown detection was performed by employing e-

Cognition Developer 64 and ArcMap 10.2.1 software to identify the individual crowns of trees. These 

crowns are indicated as separate polygons, and from these polygons, the crown projection area (CPA) can 

be derived. Also, the number of trees can be calculated. This procedure involves three main steps. First 

the class of “Forest” has to be detected. Secondly individual tree-crowns in this class have to be detected. 

And the finally the created crown polygons are processed to produce meaningful information for 

modelling species habitat selection behaviour. 
 

2.4.2. e-Cognition Developer 64; Extracting “Forest” class 

In the first step, a multi-resolution segmentation was applied to simplify the image by cutting it into 

smaller meaningful objects. Here the pixels were mixed based on their homogeneity (Baral, 2011). 

For controlling the average object image size, an optimum scale parameter was introduced to the software 
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through trial and error to find a balance in grouping pixels. So the produced segments were neither too 

many nor too few.  

Then the neighbouring image objects were merged with layer mean intensities below the maximum 

spectral difference value. This optimum value was also achieved through trial and error. 

 

Finally, 4 different classes were introduced using combination of “Brightness” and “Mean layer 2” as 

thresholds. The defined classes were “Bareland”, “Forest”, “Shadow”, and a mixture of “Grassland-Tree-

Bareland”.  

“Brightness” was used in the first attempt of classification and then “Mean layer 2” was applied on 2 

classes of “Shadow” and “Grassland-Tree-Bareland” to assigned remained patches of forests within these 

classes to the class “Forest”. 

 

OBIA hierarchy was stopped at classification step and the class of “Forest” was extracted as a Polygon 

shapefile. Further analyses for detecting single trees were carried out in ArcMap. 

 

The thresholds and settings that were used for segmentation and classification are summarised in Table 1 

and Table 2. 
 
Figure 8 on the following page illustrates the window in eCognition Developer software for performing 
image classification with algorithms and thresholds defined in Table 1 and Table 2.  
 
 
 
Table 1. Threshold values for classification in eCognition. 

Class Feature  Domain Value  
Shadow Brightness Unclassified < = 59 

Grassland-Scatter trees-Bare land Brightness Unclassified 135 <=  & <= 180 

Bare land Brightness Unclassified > 180 

Forest Brightness Unclassified  59 <      &    < 135 

Forest  Mean layer 2 Shadow  > = 49 

Forest  Mean layer 2 Grassland-Tree-Bare land  < 148 

 
 
 
Table 2. Threshold values in algorithms applied in eCognition. 

Algorithm Settings 

Multi-resolution segmentation 
 

Scale Parameters: 10  
Shape: 0.5 
Compactness: 0.8 

Spectral difference segmentation Maximum spectral difference: 2 
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Figure 8. eCognition window to perform classification of “Forest”. 

 
 

2.4.3. ArcMap, Tree Crown Detection 

The polygons indicating Forest were extracted from the image. A condition was specified that pixel values 

between 60 and 130 of the green band could be considered as actual trees. The resulting polygons 

included a few cluster of trees but mainly individual trees. 

 

To address the objectives of this study the number of trees with a specific crown diameter had to be 

derived. So clusters of trees that were delineated with one polygon, or very small trees were not needed as 

input. Such unwanted polygons were removed based on their diameter. The diameter was based on the 

area of a polygon and assuming it had a circular shape. First, the polygons with a diameter larger than 14 

meters were removed. This threshold was according to reporting on stand properties of Rhodopes Forest 

(Zlatanov et al., 2012) that recognized largest crown diameter in the study area to be around 14 meters. 

 

The raster image of class “Forest” was masked for the second time by the final chosen polygons. The 

result was a raster image containing only trees and small pieces of grasslands with few scatter trees. To 

eliminate these small areas, pixel values of less than 119 were chosen as actual trees of the interest. Then 

the raster image was shrunk by 10 cells to separate adjacent polygons and draw a distinct border around 

each polygon (tree crown).  

Finally polygons with diameter less than 3 meters were removed. 

 

Figure 9 illustrates the approach to detect and extract individual tress with diameter of interest from high 

resolution aerial image of study area. 

Figure 10 illustrates a zooming into single tree detection procedure. 
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Figure 9. Individual Tree-Crown delineation diagram from high resolution imagery using eCognition and ArcMap. 
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Figure 10. Zoom- In to Individual Tree-Crown delineation Procedure. 
 
 

Next step was counting number of polygons that fell inside a buffer zone of 100 hectare around each 

point. From image processing procedure two tables were generated including number of trees with their 

crown width values and distance to presence/absence point of A. funereus and G. passerinum in 100 hectare. 

 

Then summary statistics were calculated for the final tree polygons for area of 25, 50 and 100 hectares 

around each presence and absence point (133 points). These statistics included total number of trees with 

crown diameter larger than 3 meters up to number of trees with crown diameter larger than 13 meters (11 

values for each home range size). 

 

2.4.4. Manual Delineation of Forest Edge 

To create a new feature class representing “Forest Edge”, the forest boundary detectable from the aerial 

photograph of the study area was digitized in ArcMap. These consisted usually either of narrow pathways 

and roads connecting dwellings and villages, or the boundaries with small villages and grasslands. The total 

length of these lines in the 25, 50 or 100 hectare area around each presence and absence point was 

included in the analysis as the length of forest edge. Additionally, the shortest distance between occurrence 

points to the edge was obtained.  

 

Figure 11 on following page illustrates how the “Forest Edge” was delineated on the high resolution image 

of the study area.  
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Figure 11. Zoom-In to Extracting “Total Length of Forest Edge” and “Shortest Distance to Edge” Around a Point.  

 

2.4.5. Combining Explanatory Variables and Calculating Density of Trees with Different Crown Diameter 

The above image processing yielded 2 datasets, one for each species. These datasets included all presence 

and absence points of one species, elevation, aspect, slope, shortest distance to forest edge, total length of 

forest edge within each home range size (3 columns) and total number of trees with crown diameter of 

more than 3 up to 13 meters (33 columns).  

The results of this section are explained in details in Chapter 3, section 3.1. 

 

2.5. Data Analysis and Modelling 

For each species (A. funereus and G. passerinum), each home range size (25, 50 and 100 ha) and each crown 

diameter size class (3 up to 13 meters) a model was fitted, including the density of trees larger than that 

size class, and all other variables (slope, aspect, altitude, shortest distance to edge, and total length of 

forest in that territory size). For these combinations of explanatory variables, two models were used, 

Generalized Linear Models (GLMs) and Boosted Regression Trees (BRTs). Both models are suitable for 

presence/absence data. 

 

2.5.1. Multicollinearity Test 

Before fitting GLM’s and BRT’s a collinearity analysis is needed to identify highly correlated pairs of 

variables. For detecting collinearity, pairwise Pearson’s correlation was computed between each 

combination of predictors. Since pairwise correlation may not be sufficient to detect collinearity, the 

variance inflation factor (VIF) as a common indicator was calculated. If VIF values exceed 10 as a rule of 
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thumb, the collinearity is so high that it could cause problems when fitting a model and therefore that 

variable might need to be removed (Myers, 1990). 
 
The variance inflation factor equation is 

VIF= 
 

           Equation 2 

 

   is the R-squared value of regressing one variable against all the other explanatory variables in the 
model.  

 

2.5.2. Logistic Regression, Generalized Linear Model 

Generalized Linear Model (GLM), as a regression-based model, shows variation in species abundance and 

they are widely used by ecologists who select explanatory variables according to observed importance 

(Elith & Leathwick, 2009). Elith, Leathwick, and Hastie (2008) claimed that long time ago, ecologists used 

linear regression models to find the predictors with most explanatory variables but they were inadequate 

to explain real life situations. Then in 1980’s GLMs became widely popular since they could realistically 

model nonlinear relationships and analyze presence-absence data which are not normally distributed 

(Austin, 2007; Leclere, Oberdorff, Belliard, & Leprieur, 2011). 

 

GLM uses logit link and binomial error distribution (Leclere et al., 2011) to fit models with maximum 

likelihood method. The logit function calculates logarithm of the odds ratio which is the probability of 

something happening against the probability that it will not. 

 

The equation for odds ratio is ∏= 
  

    
     Equation 3 

The logit function is the logarithm of below function 

f(x)= ln(∏)=    
  

    
  .      Equation 4 

 

For multiple cases f(x)=                          Equation 5 

 

so the Logistic Regression can be written as follows 

 

  = 
                  

                     =  
 

                          Equation 6 

 

   is the probability of f(x) occurring. where    is the constant and   ,    and so on are called regression 

coefficients of   ,    and so on. 

 

The improvement of the model is computed by adding one or more predictors and the selection of 

significant variables is done by stepwise algorithm.  

Similar to t-test in linear regression, Wald statistics explain if the b-coefficient for the predictors is 

significantly different from zero. This test assumes difference between maximum likelihood estimate and 

zero is normally distributed. Then that variable is assumed to make significant contribution to prediction 

of the result. The equation for Wald statistic is  

w=           Equation 7 

 

 where z is 

 

z=  
        

      
       Equation 8 

α is maximum likelihood estimate,     is 0 in summary of GLM (generally the value to compare with) and 

SE stands for standard error. 
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Yet Wald statistics should be used by caution when the sample size is small so the standard error might 

increase. According to Field (2006), in such case, a predictor which contribute significantly to the outcome 

might be rejected and consider insignificant (Type II error). 

 

2.5.3. Boosted Regression Tree 

Elith et al. (2008) believe that Boosted Regression Tree is a flexible regression model that combines 

statistical power of two algorithms, regression trees and boosting. Regression trees use recursive binary 

splits to relate response to variables and boosting method combines many simple models to produce a 

more accurate model with better predictive performance (Elith et al.).  

 

Boosting is a technique for minimizing the loos function by adding a new regression tree at each step that 

reduces the loos function most (Carty, 2011). The concentration in each step is on reducing the residuals 

and root mean square error. In the second step, a regression tree which might have different variables and 

split points with the initial one is fitted to the prediction residuals of the first regression tree. Now the final 

model has two trees and the residuals from this model are calculated so that this process continues. This is 

called a stagewise procedure since the existing trees are unchanged as the model increase.  

Finally, the result is a BRT model which is a linear combination of hundreds to thousands of trees. This 

final model is like a regression model where each tree represents a term. (Elith et al., 2008) 

 

G(x)= sign (        
   (x) )      Equation 9 

 

  ,   , …,    are computed by boosting algorithm, and weight the contribution of each respective    

(x). Data modification at each step is by applying weights    ,   , …,    to each training observation 

(  ,   ) where i= 1, 2, …, N. 

 

BRT also use logit link function like Logistic regression. 

 

D= -2 [log(                 ) – log (              )]   Equation 10 

 

BRT technique has three important parameters; learning rate, tree complexity and number of trees. The 

first two parameters are defined by the user and the value of last one is determined by their values. 

The learning rate (lr) or shrinkage parameter says how much each tree contributes to the growing model. 

In general a smaller learning rate is preferred since decreasing learning rate increase the number of 

required trees. Tree complexity (tc) or the number of nods sees if interactions are fitted or not. These two 

parameters determine the number of trees (nt) required for optimal prediction (Elith et al., 2008). 

 

The “bag fraction” value is also another parameter that can improve model accuracy. The “bag fraction” 

specifies the proportion of data to be randomly selected without replacement from the training data set at 

each iteration. Stochasticity improves the speed and precision of the model significantly and reduces over-

fitting (Friedman, 2002). The default for this value is 0.5 meaning at each step half of the data is randomly 

selected. 

In the current research, the tree complexity of 5, learning rate of 0.001 and “bag fraction” of 0.5 were used 

for all BRT models.  

 

2.5.4. Comparison between GLM and BRT  

For analysing the data and interpreting the results of this research from different points of view both 

models were used although BRT seems to deal better with non-linear response than GLM does. 
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According to Mateo and Hanselman (2014), BRT performance was better than GLM in their research. 

They claimed that BRT could easily fit non-linear relationship between response and variables. BRT also 

doesn’t need elimination of outliers or transforming data prior to modelling and the effects of relations 

between variables are automatically handled too.  

 

Figure 12 illustrates how predictions of GLM compare with BRT’s. According to Smith (2012), the output 

of BRT is more precise where GLM-based model might over predict the occurrence. Leclere et al. (2011) 

also claimed that in their study of comparing different modelling techniques, BRT produced smaller 

number of low accurate or poor models. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 12. Comparison between GLM and BRT algorithms (Smith, 2012). 

 

 

2.5.5. Model Evaluation to Choose Best Fitted Model 

For evaluating the performance of distribution models it is best to use an independent data set if possible. 

Since such a data set was not available for this research, the original data was partition into 2 data sets of 

training and testing, with the proportion of 75-25 respectively. Testing data set was for evaluating the 

validity of the model fitted with training data set. 

 

As this research was dealing with presence or absence data, MaxKappa from Cohen’s kappa (Cohen, 

1960) and area under curve (AUC) of receiver operating characteristic (ROC) curve were chosen to 

measure prediction errors. These two indicators were used for several purposes; finding the best fitted 

model within each territory size, evaluating impact of different crown diameter classes in modelling habitat 

selection behaviour of owls, and for comparing the importance of predictors between two species. 

 

Maximum Kappa values were used to measure the accuracy of all models since AUC is not a standard 

measure of model accuracy. Some scientists argue that AUC does not take predicted probability values and 

goodness-of-fit of the model into account (Termansen, McClean, & Preston, 2006; Austin, 2007; Lobo, 

Jimenez-Valverde, & Real, 2008). 

AUC values were used to evaluate discrimination capacity of models between locations where one species 

was present versus locations where it was absent.  

 

For evaluating performance of absence and presence models a confusion matrix is used as a basis which 

summarizes the model performance (Table 3). 
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Table 3. Matrix of error. 

 Presence Absence Total  

Presence a b a+b  
Absence c d c+d  
Total a+c b+d n  
 

where 

a is the number of correctly predicted occurrences (True Positive) 

b is the number of incorrectly predicted occurrences (commission error) (Type I error) 

c is the number of incorrectly predicted absences (omission error) (Type II error) 

d is the number of correctly predicted absences (True Negative). 

 

Section 2.5.5.1. described shortly how Cohen’s Kappa works and section 2.5.5.2. explained about AUC. 

 

2.5.5.1. Cohen’s Kappa 

Cohen’s kappa is the most popular measure in ecology (Allouche, Tsoar, & Kadmon, 2006) for evaluating 

accuracy of presence-absence models and it eliminates problem of over estimating accuracy (Liu et al., 

2011). Kappa reports the agreement between observers by measuring the proportion of correctly classified 

observed and predicted locations after accounting the probability of chance only (Freeman & Moisen, 

2008).  

Kappa equation is: 

  = (OA – EA) / (1- EA)      Equation 11 

 

Where OA stands for overall accuracy and OA and EA equations are  

OA= (a+d)/n        Equation 12 

EA= (     *     +     *    )/         Equation 13 

where 

    = (a+c)/n        Equation 14 

   = (a+b)/n        Equation 15 

    = (b+d)/n        Equation 16 

   = (c+d)/n        Equation 17 

 

Kappa is also more resistant to prevalence than other accuracy indicators like sensitivity or specificity 

(Freeman & Moisen, 2008). A high prevalence increases commission error (Type I error) meaning over 

prediction and a low prevalence increase omission error (Type II error) which is under prediction. 

The formula for prevalence is as below 

 

Prevalence: (a+c)/n       Equation 18 

 

Allouche et al. (2006) believe that for identifying biodiversity hotspots in conservation planning, the 

accuracy evaluation of predicted model should be based on selected threshold. Therefore MaxKappa was 

employed in this study to deal with prevalence effect to obtain a good model (Santika, 2011).  

The maximum kappa value occurs when Kp equals to 1. 

 

MaxKappa equation is: 

 

MaxKp= max(           Equation 19 
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2.5.5.2. Area Under Curve (AUC) 

Receiver operating characteristic (ROC) curve as a threshold-independent measure represents the model’s 

performance in two dimensions. ROC curve plots False Positive Rate (1- specificity) against True Positive 

Rate (sensitivity). The area under the curve (AUC) summarizes statistic results of a ROC plot. According 

to Manel et al. (2001) AUC is a good indicator of model performance which shows how good predictions 

are in models with binary response. AUC is as an independent indicator from prevalence too (Allouche et 

al., 2006). 

The value of AUC ranges from 0 to 1 whereas a perfect discrimination will have an AUC equal to 1.So an 

AUC value equal to 0.5 indicates that generally the discriminatory is considered not sufficient to be helpful 

(Scott et al., 2002).The developed formula for AUC  (Mason & Graham, 2002) is 

 

AUC =  

    
         

  
   

  
             Equation 20 

 

where  

 0     if          

I (          0.5  if          

  1     if          

 

where 

    is the predicted value for presence site i, 

    is the predicted value for absence site j, 

   is the number of present sites, 

   is the number of absent sites (Liu et al., 2009). 

 

2.5.6. Comparison of Importance of Variables Between G. passerinum and A. funereus 

For comparing the importance of explanatory variables in defining suitable habitat for each species in the 

best fitted model (with highest MaxKappa) in three different home ranges, the percentage of relative 

importance of each predictor from BRT models, and the most significant variables from GLM models 

were extracted. 

 

In a BRT model, the relative contribution or importance of variable is calculated by contribution of each 

variable in reducing overall deviance of the model. The measure is based on how many times a variable is 

selected for splitting. The relative contribution of each predictor is given in percentage so that the sum 

adds up to 100 where the higher the number, the stronger the influence of that variable on the response is. 

 

Multiple logistic regression analyses were performed using stepwise procedure to generate models. The 

output of GLM summary also generates p-values which is probability of getting a value as high or higher 

than the observed value. The p-values of significant variables in best fitted models were plotted in graphs 

for interpretation  

 

The contribution of variables in best fitted BRT models for each species are illustrated in graphs in section 

3.2.3. 

Section 3.2.4. illustrates the significant variables in best fitted GLM models for each species. 
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2.6. Software and Field Instruments 

Technical software employed in this research were Cyber Tracker for field data collection, ArcMap 10.2.1 

and eCognition Developer 64 for image processing, and Microsoft Excel and the open-source R-

programming language version 3.1.2 for data and statistical analyses. 
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3. RESULTS 

3.1. Image Processing Results 

3.1.1. Single Tree Detection 

The total number of individual trees detected in 100 hectare around presence/absence points of both 

species was 1461601. Table 4 shows the density of trees in 100 hectare for each species. These records 

include trees with different crown diameter from 3 to 14 meters. 
 
Table 4. Total number of trees detected from high resolution imagery in a territory size of 100 hectare.  

Absence/ Presence Points of Owl species Density of Trees 

A. funereus presence points 543218 

G. passerinum presence points 181697 

Absence points of both species 597702 

Overlapping presence points 138984 

All presence/absence points Total= 1461601 

 

The table of density of trees also included the shortest distance of each tree to occurrence points (centre 

of the territory of 100 hectare). According to home range size of interest (100, 50 and 25 hectare), 

densities of trees within that distance were extracted later using Microsoft Excel and R- software.  
 

3.1.2. Length of Forest Edge 

The total length of forest edge in 100 hectare buffer zone around all points (133) was 544820 meters. 

By intersecting polyline shapefile of digitized forest-edge with 50 and 25 hectare buffer zones, the total 

length of forest edge in each territory were calculated as presented below in Table 5.  
 
Table 5. Total length of “Forest Edge” in 25, 50 and 100 hectare territory size. 

 Total length of forest opening (m) 

25ha 153260  

50ha 284963 

100ha 544820 

 

Appendix 1, Appendix 2, Appendix 3, and Appendix 4 present maximum, minimum and mean of all 

predictors that were extracted for G. passerinum, A. funereus, overlapping points and absence points 

respectively. 

Appendix 8 and Appendix 9 displays abbreviated contents of variables in data set used for modelling G. 

passerinum and A. funereus distribution respectively 
 

3.2. Statistical Analyses Results 

The collinearity between topographic variables was at acceptable levels so none of them had to be 

removed from the analysis. 

Table 6 and 7 summarize the VIF values of environmental variables that were repeatedly used in 
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modelling distribution of G. passerinum and A. funereus in 25, 50 and 100 hectares. 

The value of “Total Length of Forest Edge” was changed according to home range size. Crown-diameter 

classes varied in each of 33 generated models for each species. 

 
Table 6. VIF values of similar explanatory variables among all models on G. passerinum distribution in  
different home range sizes. 

 VIF in 25hectare VIF in 50hectare VIF in 100hectare 

Aspect 1.05 1.06 1.06 

Slope 1.15 1.13 1.12 

Altitude 1.11 1.1 1.13 

Shortest-Distance-Edge 1.56 1.38 1.24 

Total-Length-Edge  1.59 1.4 1.25 

 

The maximum VIF for crown-diameter classes in 25 hectare was diameter class of 6 meters with 1.33. 

The maximum VIF for crown-diameter classes in 50 hectare was diameter class of 3 meters with 1.36. 

The maximum VIF for crown-diameter classes in 100 hectare was diameter class of 3 meters with 1.46. 
 
Table 7. VIF values of similar explanatory variables among all models on A. funereus distribution in  
different home range sizes. 

 VIF in 25hectare VIF in 50hectare VIF in 100hectare 

Aspect 1.04 1.06 1.06 

Slope 1.23 1.22 1.2 

Altitude 1.07 1.07 1.09 

Shortest-Distance-Edge 1.53 1.39 1.23 

Total-Length-Edge  1.56 1.39 1.23 

 

The maximum VIF for crown-diameter classes in 25 hectare was diameter class of 3 meters with 1.39. 

The maximum VIF for crown-diameter classes in 50 hectare was diameter class of 3 meters with 1.46. 

The maximum VIF for crown-diameter classes in 100 hectare was diameter class of 3 meters with 1.51. 

 

Also no significant correlation existed between any pairs of variables that were used as predictors. So 

distribution models were generated with all variables. 

In 25 and 50 hectare home range size in modelling distribution of both species, the maximum pairwise 

correlation occurred between “Total Length of Forest Edge” and “Shortest Distance to Edge” with 0.52 

and 0.43 respectively. 

In 100 hectare home range size the maximum correlation value was between “Total Length of Edge” and 

crown-diameter class of 3 meters. The value was 0.38 in modelling G. passerinum and 0.42 in modelling A. 

funereus. 

 

Both GLM and BRT method as well as both AUC and MaxKappa values were used for different 

purposes. The accuracy indicators of 33 models for each species were calculated to find the crown 

diameter class and home range size that best predict the distribution of each species. The contribution of 

significant predictors in occurrence of either species was also compared. 

 

Depending on whether AUC or MaxKappa was used as indicator of accuracy, different models were 

identified as the best fitting models. But all accuracy indicators had low values and differences were small 

suggesting that these differences might be due to chance. There was also no consistency in results between 

GLM and BRT though BRT showed to be more consistent. 
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The best fitted models were chosen to plot graphs and interpret the result in three different home range 

sizes.  

 

Section 3.2.1. shows the result for BRT models and section 3.2.2. shows results of GLM models.  

In section 3.2.3. MaxKappa values are used as accuracy indicators to study the relative influence of 

variables in generating most accurate BRT models. 

Section 3.2.4. presents most significant variables from GLM models on graphs. MaxKappa is chosen as an 

appropriate accuracy indicator to find most accurate models. P-values were plotted on graphs with 95% 

confidence interval. On these graphs, a lower p-value indicates a higher significant level of that predictor.  

 

Appendix 5 shows best fitted BRT models in 25, 50 and 100 hectares with highest MaxKappa values in 

modelling one species against the other species in all diameter classes. 

Appendix 6 and Appendix 7 illustrate how each of 11 crown diameter thresholds in different home range 

sizes performed as best fitted BRT models with highest MaxKappa values for either species. 
 

3.2.1. Best Fitted Model with Highest Accuracy Indicators with BRT models 

For evaluating the impact of variation of crown-width in achieving models with higher accuracy level, 

both AUC and MaxKappa values were considered to find best fitted BRT models.  

Section 3.2.1.1. illustrates best fitted BRT models on G. passerinum distribution and section 3.2.1.2. 

illustrates best fitted BRT models on A. funereus distribution with figures. 

The crown diameter class of the fitted model is also indicated on each bar. 

 

3.2.1.1. Best Fitted Models for G. passerinum Distribution Generated by BRT 

The variability of tree diameter classes selected seems to be approximately around 8 meters in different 

home range sizes from different accuracy indicators. 

But no trend is apparent over the home range size that gives better fits in modelling G. passerinum 

distribution. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13. MaxKappa values for BRT models on G. passerinum distribution at three different home range sizes with 

crown diameter threshold used in the fitted model.  
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Figure 14. AUC values for BRT models on G. passerinum distribution at three different home range sizes with crown 

diameter threshold used in the fitted model. 

 

 

3.2.1.2. Best Fitted Models for a. funereus Distribution Generated by BRT 

From Figures 15 and 16, it looks like in general A. funereus prefer to inhabit trees with larger crown 

diameter classes with both accuracy indicators. 

But there is no trend suggesting a larger home range size would give better fits. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 15. MaxKappa values for BRT models on A. funereus distribution at three different home range sizes with 
crown diameter threshold used in the fitted model. 
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Figure 16. AUC values for BRT models on A. funereus distribution at three different home range sizes with crown 
diameter threshold used in the fitted model. 

 

From Figure 13, 14, 15 and 16, it can be concluded that the accuracy indicators are in general low. There 

seems to be no trend over home range sizes although diameter classes from best fitted model on A. 

funereus distribution seem to be a bit larger than the ones selected for G. passerinum. 

 

3.2.2. Best Fitted Model for G. passerinum Distribution with GLM models 

This section discussed most accurate GLM models from both MaxKappa and AUC values. Section 3.2.2.1 

analyses distribution models of G. passerinum and section 3.2.2.2 analyses distribution model of A. funereus. 

 

3.2.2.1. Best Fitted Models for G. passerinum Generated by GLM 

When looking at MaxKappa values it seemed like there are large differences in crown widths selected. But 

with AUC values, it seems that lower diameter classes are selected. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17. MaxKappa values for GLM models on G. passerinum distribution at three different home range sizes with 

crown diameter threshold used in the fitted model. 
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Figure 18. AUC values for GLM models on G. passerinum distribution at three different home range sizes with crown 

diameter threshold used in the fitted model. 

 

 

3.2.2.2. Best Fitted Models for A. funereus Distribution Generated by GLM 

In general, from both highest MaxKappa and AUC values in GLM models on A. funereus distribution, this 

species seems to prefer larger tree crown diameter classes. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 19. MaxKappa values for GLM models on A. funereus distribution at three different home range sizes with 
crown diameter threshold used in the fitted model. 
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Figure 20. AUC values for GLM models on A. funereus distribution at three different home range sizes with crown 

diameter threshold used in the fitted model. 

 

From Figure 17 ,18 ,19 and 20, similar to BRT models although with more variability, it seems that best 

fitted A. funereus distribution models were based on larger diameter classes than G. passerinum. 

Also no home range size seems to give better prediction of presence of either species.  

 

 

3.2.3. Relative Contribution of Predictors From BRT Model 

For evaluating the relative contribution (%) of predictors for best fitted BRT models, highest MaxKappa 

values were chosen as accuracy indicator.  

 

Figure 21 shows relative contribution of predictors for G. passerinum and Figure 22 illustrates the 

contribution of variables in occurrence of A. funereus. 
 

3.2.3.1. Relative Contribution of Predictors in Best Fitted BRT Models for G. passerinum Distribution 

“Slope” contributed most to G. passerinum occurrence at all different home range sizes consistently though 

with a decreasing slope as the territory size decreased. 

“Altitude” also scored as the second most important variable at all different home range sizes.  

 

“Shortest Distance to Forest Edge” appeared to be nearly as important as “Altitude” in all three territory 

sizes and its relative influence remained nearly constant with a slight decreased in largest home range size. 

The contribution of “Total Length of Forest Edge” increased as the home range size increased. In 100 

hectares, “Total Length of Forest Edge” was most important variable after “Slope” and “Altitude”. 
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Figure 21. Relative importance of variables from BRT models on G. passerinum distribution with highest MaxKappa 

values at three different home range sizes in hectares 
 

Appendices 10, 11 and 12 illustrate partial dependence plots of BRT models with highest MaxKappa 

values on distribution modelling of G. passerinum in 25, 50 and 100 hectare respectively. 

 

3.2.3.2. Relative Contribution of Predictors in Best Fitted BRT Models for A. funereus Distribution 

 “Slope” contributed most to occurrence of A. funereus in all home range sizes with constantly scoring 

about 30 %. Then “Altitude” scored as the second with a great difference from “Slope”.  

 

“Total Length of Forest Edge” was relatively important but with no obvious trend in different home 

range sizes. 

“Shortest Distance to Edge” appeared to have an upward trend but contributed little. 
 

Figure 22. Relative importance of variables from BRT models on A. funereus distribution with highest MaxKappa 
values at three different home range sizes in hectares 
 
 

From Figure 21 and 22, “Slope” and “Altitude” appeared to be the two most important contributor to 

occurrence of both species in all home range sizes. Yet in general, both of these variables’ contribution 

was slightly higher in modelling distribution of A. funereus than G. passerinum. 

 

Appendices 13, 14 and 15 illustrate partial dependence plots of BRT models with highest MaxKappa 

values on distribution modelling of A. funereus in 25, 50 and 100 hectare respectively. 

 

3.2.4. Importance of Variables from Best Fitted Generalized Linear Models 

Like section 3.2.3, highest MaxKappa values were chosen as most accurate GLMs. GLM only returns 

significant variables. 

For plotting these variables, their p-values were used. In a maximum likelihood test of GLM, a lower p-

value indicates a higher significant level of that variable. 
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Section 3.2.4.1. illustrates p-values of significant variable in models on distribution of G. passerinum and 

section 3.2.4.2. illustrates p-values of significant predictors for A. funereus. 

 

3.2.4.1. Significant Variables from GLM on G. passerinum Distribution 

The only significant variable in logistic models on G. passerinum distribution appeared to be “Slope”.  
This variable was slightly more significant in 50 hectare while it was equally significant in smallest and 
largest home range size. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 23. P-values of significant variables from GLM models on G. passerinum distribution with highest MaxKappa 
values at three different home range sizes in hectares. 

 

3.2.4.2. Significant Variables from GLM on A. funereus Distribution 

“Slope” and “Total Length of Forest Edge” were returned as two significant predictors in modelling 

distribution of A. funereus. 

Although “Slope” did not appear to be a significant predictor in smallest home range size, “Total Length 

of Forest Edge” was most significant in 25 hectare zone. 

 

In general, “Length of Forest Edge” was more significant than “Slope” in both 50 and 100 hectares. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 24. P-values of significant variables from GLM models on A. funereus distribution with highest MaxKappa 
values at three different home range sizes in hectares. 
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From section 3.2.3. and 3.2.4. “Slope” appeared to be the most important predictor for both species.  

And “Total Length of Forest Edge” seems to be constantly important for A. funereus occurrence over all 

home range sizes. 
 
 
 



DISTRIBUTION MODELLING OF GLAUCIDIUM PASSERINUM AND AEGOLIUS FUNEREUS USING FOREST STAND STRUCTURE PARAMETERS FROM HIGH 

RESOLUTION IMAGERY IN RHODOPES MOUNTAINS, BULGARIA 

37 

4. DISCUSSION AND CONCLUSION 

As mentioned earlier, modelling G. passerinum and A. funereus distribution with ground truth data did not 

generate highly accurate results to explain confidently the contribution of predictors. The accuracy of 

generated models with selected environmental variables derived from high resolution imagery was not 

high enough either. This could be due to several reasons, 

 

-The right variables were not included 

-The range of values for the relevant variables was not right 

-There was a lot of error in the data 

-The species are generalists and did not respond top strongly to any variables 

 

Also by comparing the accuracy indicators between distribution models of each species, both MaxKappa 

and AUC values were in general consistently higher in modelling A. funereus distribution. But there was 

more inconsistency in crown diameter class selected in modelling G. passerinum distribution. This might 

indicate that niche modelling of G. passerinum is more challenging and needs further information of their 

habitat like height or DBH of the trees, food availability or presence of other predators. 

 

However, it seems like SDMs of these species with image derived proxies of stand structure can explain 

the ecology of these birds to some extent. The results were in line with previous findings on importance 

of tree crowns and slope in explaining presence of both owl species; as well as indicating importance of 

factors like “Forest Edge” which was introduced as a new variable in western Rhodopes Mountains.  

 

This section discusses how each of the explanatory variables that were used in generating distribution 

models explained habitat requirements of either of owl species. 

 

4.1. Correlation between topographic variables and Owls’ presence 

“Slope” appeared to be the most significant predictor in occurrence of both G. passerinum and A. funereus 

from best fitted BRT and GLM models. The relative importance of “Slope” scored highest in all three 

home range sizes for both species. This result confirms reporting their occurrence in steep terrains in 

many surveys. Yet it was interesting that GLM on G. passerinum distribution only returned “Slope” as the 

significant variables over all home range sizes. 

 

 

Aspect was converted to westness and it was expected to be significantly correlated to occurrence of A. 

funereus. However “Westness” appeared to be the least important predictor for this species while around 

70% of A. funereus territories were reported on western slope (Rajkovic et al, 2013) and the result 

contradicted with the findings of other studies that reported their presence on west facing slopes 

(Shurulinkov et al, 2012). 

So it seems like western Rhodope provides A. funereus with a suitable habitat regardless of aspect as the 

dense and old forest of Rhodope Mountains provides enough shadow and dim environment for this 

species. 
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On the other hand it seems like the importance of “Westness” for G. passerinum was higher than for A. 

funereus. This can be explained by the fact that sunlight reaches west facing slopes later than east facing 

slopes, so western slopes are cooler for longer period of time during the day until sunlight reaches there in 

the afternoon. It is known that G. passerinum prefers cold-weather regions and their occurrence was 

recorded after sunrise and during daylight in several studies since they cannot hunt in total darkness. Thus 

it can be assumed that westness provides G. passerinum with more favourable temperature condition for a 

longer hunting period. 

 

 

It was expected for elevation to be a more important predictor in explaining presence of G. passerinum than 

in A. funereus distribution modelling. G. passerinum is generally known as “birds of higher altitude” and the 

range of altitudes reported for occurrence of A. funereus from previous studies were quite wide. But from 

the relative importance of “Altitude” from best fitted BRT models of this study, ”Altitude” was equally 

important for both species as the second most important predictor.  

 

 

In general, the results of modelling distribution of owl species in western Rhodope is not exactly the same 

as surveys conducted in North America, Canada or even Norway.  

This inconsistency in reporting most important predictors in occurrence of either owl species might be 

due to the latitudinal effect. The relationship between environmental variables and owl distribution varies 

with latitude. So a variable which is significantly correlated to species occurrence might not be equally 

significant in other regions of the world or vice versa. In this case Bulgaria is in much lower latitudes, 

comparing to Norway or Canada, that aspect does not seem to effect habitat selection of owls. 

 

It also looks like we are dealing with interaction effect between variables. Interaction of topographic 

variables with stand structure variables can affect habitat preference of either species. For instance 

environmental conditions change over altitude and interaction of altitude with other variables can make a 

variable more significant in one region than other areas of occurrence. Thus generalisation of ecology and 

behaviour of these species must be done with caution. 

 

4.2. Importance of “Forest Edge” in habitat selection behaviour 

Predictors related to “Forest Edge” were introduced to modelling distribution of these species in 

Rhodopes Mountains for the first time. When dealing with effect of “Forest Edge” on habitat selection of 

animals, the term in general refers to two main factors, availability of food, and forestry activities. Both of 

these factors influence the presence or absence of owl species.  

 

According to initial hypothesis, “Shortest Distance to Edge” was expected to have significant correlation 

with occurrence of G. passerinum. This hypothesis was derived from the theory that forest edge provides 

higher density of preys and G. passerinum as a diurnal owl species tends to inhabit areas closer to forest-

edge so that this species can detect preys easier. It is also known that G. passerinum is more tolerant to 

forestry activities and being close to forest openings doesn’t disturb them as much as it disturbs A. 

funereus.  

The importance of this variable for occurrence of G. passerinum was confirmed by results from relative 

importance of ”Shortest Distance to Edge” from best fitted BRT models. The value was relatively as high 

as “Altitude” (as the second most important predictor) and it did not fluctuate over different home range 

sizes.  
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On the other hand, it is known that A. funereus is more reluctant to nest close to sites of human activity. 

The values of relative importance of “Shortest Distance to Edge” in modelling distribution of A. funereus 

scored very low as well. 

Although it needs further investigations to define appropriate threshold on how close to edge either 

species would like to be. 

 

 

It was expected that “Total Length of Forest Edge” to be an important factor for A. funereus. This 

hypothesis was derived from literature saying that A. funereus need access to longer forest edge (comparing 

to G. passerinum) to have more successful prey capture. 

The hypothesis was confirmed by the outputs of best fitted GLMs that returned “Length of Forest Edge” 

as a significant predictor along with “Slope”. 

This variable was also the third most important predictor after “Slope” and “Altitude” from BRT models 

on distribution of A. funereus  
 

4.3. Tree-crown Diameter Class 

According to literature on the ecology of these birds, their occurrence is related to forest cover, tree 

crowns and diameter at breast height.  

The accuracy indicators were not as strong as was expected and the inconsistency between best fitted 

models from highest MaxKappa values and highest AUC values made it difficult to conclude what crown-

width could explain owls occurrence best. 

 

However, in general, A. funereus occurrence showed a higher dependency on larger crown diameter classes 

than G. passerinum which confirmed the previous knowledge of habitat selection behaviour of A. funereus to 

nest on old trees with larger DBH (thus with a larger crown width). 

 

 

On the other hand, a variability of diameter classes was selected in modelling G. passerinum distribution. If 

we consider higher tree-cover and larger crown-diameter as indicator of age of the trees, then smaller 

crown width might imply existence of younger trees. So variability in crown diameters selected from best 

fitted models seems to indicate that only old trees are not suitable, but only young trees neither. But a mix 

of old and young trees suits G. passerinum. So a large variability and consequently standard deviation in 

crown diameter size indicates their suitable habitat.  

This result is also in line with previous studies that reported G. passerinum nesting holes on very old trees 

that were surrounded with (younger) trees with regeneration. Because such environment provides plenty 

number of birds to be preyed upon for G. passerinum (Ström and Sonerud, 2001).  

 

4.4. Home range size 

There was no trend across home range sizes from best fitted models with AUC or MaxKappa values in 

different scales. The large erratic fluctuation made it difficult to conclude which of the three studied home 

range size would explain G. passerinum or A. funereus occurrence best. 

So the scale for analysing the data needs to be adjusted in further studies to be more representative of 

their actual territory size.  
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5. RECOMMENDATION 

The following recommendations are suggested to generate more accurate models from image derived 

variables and to reduce the error in data in further studies. 

 

 

1. Possible fluctuation in food supply can affect foraging site selection of owls. Thus it is recommended to 

consider the availability of food or breeding season in modelling habitat selection behaviour. For example, 

correlation between occurrence and “Forest Edge” related variables might change if there would be 

reduced food availability within the dense forest. 

 

2. It is recommended not to limit the importance of “Aspect” just to westness. Northness could also be 

relevant since in northern hemisphere north facing slopes receive less solar heating.  

 

3. The current environmental predictors might have not been sufficient to model owls distribution 

accurately. So considering other predictors such as age, height and DBH of the trees, density of 

understory cover, food availability, presence of competitors and presence of predators might improve 

prediction capacity of distribution models.  

 

4. The purpose of the study was to test accuracy of generated model from information extracted by RS 

techniques. Crown shape or tree species can be derived from aerial photographs. If tree-parameters like its 

height could be extracted too, it would help in correlating CPA to DBH and age of the trees. Having such 

recognised predictors in their occurrence could increase model accuracy significantly. 

For instance using LiDAR data might prove very useful as it gives 3D information of the trees. Then with 

CPA values and tree-height, corresponding DBH can be calculated as well. 

 

Calibrating the image processing results to field measurements of validation stands can also reduce the 

error in data and improve accuracy of generated models. 

 

5. It is recommended to examine model accuracy in different scales starting from 100 hectares as the 

average recognized territory size and expanding it to 400 hectares as the largest recognized home range 

size. A larger scale that contains more information on suitable environmental conditions for owls 

occurrence might predict their presence better. 

But to find the proper scale that explains owls presence best, repeating the same study in other areas with 

similar environmental conditions is suggested.  

 

6. It is strongly recommended to consider interaction effects between environmental variables used in 

generating distribution models. Altitude might be interacting with distance to forest edge or tree crown 

width. As a result, different variables might take priority over one another in different environmental 

conditions.  
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Appendix 1. Brief summary of variables for presence points of G. passerinum 

 

 

 

 

 

Slope 

Minimum 8 

Mean 19.9 

Maximum 42.3 

 

Altitude 

Minimum 1385 

Mean 1659 

Maximum 1966 

 

Aspect 

Minimum 2.5 

Mean 91 

Maximum 166.8 

 

Shortest Distance to Edge 

Minimum 6 

Mean 78.9 

Maximum 228.5 

 

Total Length of Forest Edge- 25 ha 

Minimum 217 

Mean 1073.1 

Maximum 2297 

 

Total Length of Forest Edge- 50 ha 

Minimum 487 

Mean 2017.1 

Maximum 4817 

 

Total Length of Forest Edge- 100 ha 

Minimum 1433 

Mean 3948 

Maximum 10350 
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Appendix 2. Brief summary of variables for presence points of A. funereus 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Slope 

Minimum 3.9 

Mean 19.5 

Maximum 38.9 

Altitude 

Minimum 1218 

Mean 1658 

Maximum 2105 

Aspect 

Minimum 0.7 

Mean 91.7 

Maximum 177.8 

Shortest Distance to Edge   

Minimum 0 

Mean 64.1 

Maximum 272.88 

Total Length of Forest Edge- 25 ha 

Minimum 78 

Mean 1027 

Maximum 2227 

Total Length of Forest Edge- 50 ha 

Minimum 387 

Mean 1929 

Maximum 4709 

Total Length of Forest Edge- 100 ha 

Minimum 1103 

Mean 3771 

Maximum 8193 
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Appendix 3. Brief summary of variables for overlapping presence points 

 

 

Slope 

Minimum 8.3 

Mean 23.04 

Maximum 40.9 

Altitude 

Minimum 1363 

Mean 1614 

Maximum 1837 

Aspect 

Minimum 9.6 

Mean 91.1 

Maximum 169.3 

Shortest Distance to Edge   

Minimum 6.5 

Mean 108.6 

Maximum 397.2 

Total Length of Forest Edge- 25 ha 

Minimum 0 

Mean 775.2 

Maximum 2155 

Total Length of Forest Edge- 50 ha 

Minimum 3 

Mean 1490 

Maximum 5033 

Total Length of Forest Edge- 100 ha 

Minimum 911 

Mean 3074 

Maximum 8378 
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Appendix 4. Brief summary of variables for absence points 

 

 

Slope 

Minimum 2.06 

Mean 14.1 

Maximum 34.5 

Altitude 

Minimum 1259 

Mean 1645 

Maximum 1979 

Aspect 

Minimum 904 

Mean 104.6 

Maximum 177.4 

Shortest Distance to Edge   

Minimum 0 

Mean 39.51 

Maximum 249.6 

Total Length of Forest Edge- 25 ha 

Minimum 40 

Mean 1384 

Maximum 3001 

Total Length of Forest Edge- 50 ha 

Minimum 490 

Mean 2537 

Maximum 6187 

Total Length of Forest Edge- 100 ha 

Minimum 1535 

Mean 4692 

Maximum 9946 
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Appendix 5. Comparison between best fitted BRT models with highest MaxKappa values in distribution 
modelling of G. passerinum and A. funereus with crown diameter thresholds used in fitted models 
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Appendix 6. Comparison between response of different crown diameter classes over different territory 

sizes in hectares from highest MaxKappa values in BRT models on G. passerinum distribution  
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Appendix 7. Comparison between response of different crown diameter classes over different territory 
sizes in hectares from highest MaxKappa values in BRT models on A. funereus distribution 
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Appendix 8. Internal structure of data set used for fitting models of G. passerinum distribution 
 
 

$ ID                    : int  1 2 3 4 5 6 7 8 9 10 ... 

 $ Source             : Factor w/ 7 levels "Aegol_Article",..: 6 6 6 6 6 6 6 6 6 6 ... 

 $ Observation    : int  1 1 1 1 1 1 1 1 1 1 ... 

 $ Altitude           : int  1642 1387 1477 1472 1759 1739 1731 1754 1773 1649 ... 

 $ Slope               : num  11.87 8 15.5 19.85 9.81 ... 

 $ Aspect             : num  99.9 140.2 166.9 144.1 141.3 ... 

 $ Shortest.Distance.Edge  : num  198.58 96.85 121.75 7.36 6.09 ... 

 $ Sum.length.Edge.25h : int  858 1706 2185 2297 1523 217 297 1021 771 1355 ... 

 $ B25D3             : int  1434 360 926 366 1009 1336 1346 1023 1423 1069 ... 

 $ B25D4             : int  919 219 574 227 631 733 723 649 794 640 ... 

 $ B25D5             : int  561 136 336 146 406 413 387 389 443 396 ... 

 $ B25D6             : int  370 86 223 105 276 249 242 263 265 257 ... 

 $ B25D7             : int  243 51 130 80 200 150 153 171 156 172 ... 

 $ B25D8             : int  164 34 82 55 144 87 91 112 98 120 ... 

 $ B25D9             : int  101 19 55 39 98 55 58 76 62 68 ... 

 $ B25D10            : int  71 14 40 29 62 33 38 55 37 39 ... 

 $ B25D11            : int  30 7 26 14 34 21 20 34 20 22 ... 

 $ B25D12            : int  17 3 12 8 15 10 13 19 9 7 ... 

 $ B25D13            : int  4 2 3 3 2 0 4 5 2 3 ... 

 $ Sum.length.Edge.50h : int  1345 2774 4277 4817 3706 569 487 2342 1912 2135 ... 

 $ B50D3             : int  3176 1002 1591 919 1863 2570 3004 2011 2616 2477 ... 

 $ B50D4             : int  1927 584 1000 557 1163 1456 1707 1213 1501 1395 ... 

 $ B50D5             : int  1145 340 600 362 752 870 961 757 837 845 ... 

 $ B50D6             : int  723 219 391 250 502 528 573 510 514 524 ... 

 $ B50D7             : int  471 136 260 179 355 331 371 320 324 341 ... 

 $ B50D8             : int  313 82 169 124 252 206 224 208 201 230 ... 

 $ B50D9             : int  197 50 113 86 171 135 139 128 137 137 ... 

 $ B50D10            : int  128 31 77 60 109 96 85 82 85 77 ... 

 $ B50D11            : int  68 16 47 34 60 55 46 45 47 40 ... 

 $ B50D12            : int  31 7 21 16 29 29 28 21 17 16 ... 

 $ B50D13            : int  4 4 6 5 4 6 9 5 4 6 ... 

 $ Sum.length.Edge.100h: int  2067 5054 7887 10350 6534 1662 1433 4110 4809 3473 ... 

 $ B100D3            : int  6267 2558 2369 2473 4553 5527 5587 4103 4865 5338 ... 

 $ B100D4            : int  3744 1483 1487 1544 2890 3162 3194 2291 2786 2999 ... 

 $ B100D5            : int  2172 855 917 966 1835 1862 1802 1330 1593 1736 ... 

 $ B100D6            : int  1367 537 607 643 1228 1169 1099 861 1003 1078 ... 

 $ B100D7            : int  887 332 415 439 831 720 689 542 640 686 ... 

 $ B100D8            : int  563 207 271 283 556 436 431 359 431 438 ... 

 $ B100D9            : int  345 136 185 202 384 270 265 229 290 265 ... 

 $ B100D10           : int  214 85 127 136 244 181 171 147 173 158 ... 

 $ B100D11           : int  115 44 75 79 130 100 95 86 98 88 ... 

 $ B100D12           : int  54 21 28 35 61 50 53 39 43 38 ... 

 $ B100D13           : int  9 6 7 9 9 9 11 11 9 11 ... 
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Appendix 9. Internal structure of data set used for fitting models of A. funereus distribution 
 
 
$ ID                     : int  1 2 3 4 5 6 7 8 9 10 ... 
 $ Source              : Factor w/ 7 levels "Aegol_Article",..: 2 2 2 2 2 2 2 2 2 2 ... 

 $ Observation     : int  1 1 1 1 1 1 1 1 1 1 ... 

 $ Altitude            : int  1239 1218 1387 1439 2014 2077 2095 2105 1920 1549 ... 

 $ Slope                : num  30.9 25 28.5 24.1 16.1 ... 

 $ Aspect              : num  96.9 102.8 73.7 74.8 88.2 ... 

 $ Shortest.Distance.Edge  : num  118.4 28.5 272.9 270.8 15.7 ... 

 $ Sum.length.Edge.25h : int  1731 1770 78 107 1338 1085 770 499 1868 673 ... 

 $ B25D3             : int  67 489 261 220 394 451 308 81 1036 1192 ... 

 $ B25D4             : int  32 283 143 125 233 260 203 34 592 606 ... 

 $ B25D5             : int  16 184 80 74 143 151 129 21 354 324 ... 

 $ B25D6             : int  5 99 48 46 85 96 84 11 204 182 ... 

 $ B25D7             : int  3 64 26 23 57 53 49 9 125 106 ... 

 $ B25D8             : int  3 45 17 16 38 35 30 6 85 54 ... 

 $ B25D9             : int  1 30 5 7 25 22 18 3 50 29 ... 

 $ B25D10            : int  0 12 3 4 17 18 12 3 31 21 ... 

 $ B25D11            : int  0 8 1 0 7 14 8 2 18 11 ... 

 $ B25D12            : int  0 4 1 0 6 8 5 0 6 6 ... 

 $ B25D13            : int  0 0 1 0 3 0 1 0 1 2 ... 

 $ Sum.length.Edge.50h : int  3174 3005 761 576 2813 2082 1681 1141 3241 1634 ... 

 $ B50D3             : int  389 806 653 652 1273 1103 670 225 1858 2336 ... 

 $ B50D4             : int  207 441 365 398 758 626 406 108 1082 1246 ... 

 $ B50D5             : int  125 273 225 256 465 376 250 67 659 693 ... 

 $ B50D6             : int  65 160 140 168 283 232 157 39 401 410 ... 

 $ B50D7             : int  36 109 80 99 190 148 99 30 261 250 ... 

 $ B50D8             : int  23 72 48 62 121 93 64 21 179 153 ... 

 $ B50D9             : int  11 48 27 37 75 61 42 13 114 97 ... 

 $ B50D10            : int  6 25 19 23 45 42 29 9 77 63 ... 

 $ B50D11            : int  4 16 10 11 29 29 17 7 50 30 ... 

 $ B50D12            : int  3 10 3 4 13 17 9 2 25 12 ... 

 $ B50D13            : int  0 1 1 0 4 3 2 0 5 3 ... 

 $ Sum.length.Edge.100h: int  8193 5810 2411 2151 4556 4610 3552 3625 3991 5573 ... 

 $ B100D3            : int  970 1308 1720 1562 3744 2213 1858 1284 3458 4223 ... 

 $ B100D4            : int  523 726 988 900 2254 1323 1083 713 2091 2324 ... 

 $ B100D5            : int  317 444 590 570 1352 799 634 424 1306 1357 ... 

 $ B100D6            : int  176 254 353 337 851 505 407 258 839 814 ... 

 $ B100D7            : int  114 170 205 211 541 323 259 164 559 518 ... 

 $ B100D8            : int  78 108 121 136 351 206 164 111 386 331 ... 

 $ B100D9            : int  48 73 76 74 217 133 104 72 258 216 ... 

 $ B100D10           : int  26 41 48 47 133 89 68 48 171 144 ... 

 $ B100D11           : int  17 29 28 26 74 47 41 32 108 78 ... 

 $ B100D12           : int  8 17 8 9 34 29 25 15 57 35 ... 

 $ B100D13           : int  2 1 4 4 8 7 4 2 13 9 ... 
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Appendix 10. Partial dependence plots from highest MaxKappa values of BRT models on G. passerinum 
distribution in 25 hectares with y axis on the logit scale 
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Appendix 11. Partial dependence plots from highest MaxKappa values of BRT models on G. passerinum 
distribution in 50 hectares with y axis on the logit scale– 
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Appendix 12. Partial dependence plots from highest MaxKappa values of BRT models on G. passerinum 
distribution in 100 hectares with y axis on the logit scale– 
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Appendix 13. Partial dependence plots from highest MaxKappa values of BRT models on A. funereus 
distribution in 25 hectares with y axis on the logit scale– 
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Appendix 14. Partial dependence plots from highest MaxKappa values of BRT models on A. funereus 
distribution in 50 hectares with y axis on the logit scale 
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Appendix 15. Partial dependence plots from highest MaxKappa values of BRT models on A. funereus 
distribution in 100 hectares with y axis on the logit scale 
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Appendix 16. Comparison between relative influence of variables from best fitted BRT model with 

highest MaxKappa values in 25 hectares between G. passerinum and A. funereus  

Figure 25. Relative influence of variables from best fitted BRT model for G. passerinum in 25 hectares  

 

 

 

Figure 26. Relative influence of variables from best fitted BRT model for A. funereus in 25 hectares  



 

67 

Appendix 17. Comparison between relative influence of variables from beset fitted BRT model with 

highest MaxKappa values in 50 hectares between G. passerinum and A. funereus  

Figure 27. Relative influence of variables from best fitted BRT model for G. passerinum in 50 hectares  

 

 

 

 

Figure 28. Relative influence of variables from best fitted BRT model for A. funereus in 50 hectares  
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Appendix 18. Comparison between relative influence of variables from beset fitted BRT model with 

highest MaxKappa values in 100 hectares between G. passerinum and A. funereus  

Figure 29. Relative influence of variables from best fitted BRT model for G. passerinum in 100 hectares  

 

 

 

Figure 30. Relative influence of variables from best fitted BRT model for A. funereus in 100 hectares 




