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ABSTRACT

Species distribution modelling (SDM) helps direct biodiversity conservation, monitoring and forest
management plans. To target vulnerable areas, modelling distribution of species like owls as apex
predators is useful since they are very good indicator of biodiversity and health of the ecosystem.
Glancidinm passerinum and Aegolius funereus are two owl species whose habitat selection behaviour in the old
growth forest of Rhodopes Mountains in Bulgaria was studied for this research.

Collecting ground truth data on occurrence points of species is not easy though especially if they inhabit
dense forest and rough terrain. Therefore this study tried to use remote sensing techniques to test whether
indicators derived from high resolution imagery provide equally significant inputs for distribution models
as field based data. Distribution models were generated with topographic variables and image based forest
structure parameters and importance of variables in occurrence of either species were compared.

This research also tried to find an appropriate spatial scale of species home range size that explains their
distribution best.

The results of generated models could confirm the importance of some previously known predictors in
occurrence of both owl species like “Slope”. The results also verified preference of A. funereus to inhabit
trees with larger crown diameters. Moreover the research contributed to existing ecology knowledge of
these forest dwelling species in western Rhodope by detecting importance of forest edge to owls presence.
However, the accuracy indicators of generated models were not high enough for the models to be
extrapolated. There was also no trend over different home range sizes to indicate which scale can best
predict the distribution of either species.

Possible reasons for acquiring models with low accuracy could be due to not including right variables, not
having the right range of values for relevant variables, error in data or having generalist species that
doesn’t respond top strongly to any variables

Thus the usefulness of RS techniques in generating SDMs can not be rejected. Including other predictors
like age and DBH of the trees, using LIDAR data to extract tree heights and calibrating the detected
individual trees can produce better quality data to improve model accuracy.

Keywords: distribution model, forest stand structure, high resolution imagery, Glancidium passerinum,

Aegolius funerens, Rhodopes.
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1. INTRODUCTION

“Species Distribution Modelling” (SDM) is a technique for describing or predicting distribution patterns
of species. SDMs, also known as “Ecological Niche Modelling”, relate occurrence data of species at
known locations with spatial and environmental attributes of those spots (Elith & Leathwick, 2009). This
relationship between a species occurrence and elements within the ecosystem it occurs is assumed to be at
equilibrium with each other (Elith & Leathwick) and they play significant role in directing biodiversity
conservation (Liu, White, & Newell, 2011) and forest management planning (Redon & Luque, 2010).
Detecting changes in conditions of one or more controlling factors also indicates changes in distribution
of a specific species. Predictive modelling helps quantify the relation between such conditions to assess the
impact of changes on species distribution. This helps to create sustainable resource management policies
for that species (Yost, Peterson, Gregg, & Miller, 2008).

According to Romulo (2012), there are species whose presence are very good indicator of biodiversity and
health of the ecosystem. Therefore studying their distribution pattern is useful for pointing out
conservation targets and vulnerable areas. Owls for instance are apex predators which can help in
achieving conservation goals at broader ecosystem levels (Romulo). Cholewiak (2003) said 95% of the
owls are forest dwelling species who rely on services that the forest offers. Defining the important forest
stand structure parameters that indicate the proper conditions in explaining owl occurrence helps
generating accordingly monitoring and managing plans. Yet accessing the exact occurrence points and
collecting all possibly related ground truth data to their presence is challenging and sometimes not
practicable as they might inhabit in remote areas with tough terrains. Advances in remote sensing
technology might be useful in overcoming this difficulty and also improve species richness or performance
of SDMs (Cotd et al., 2014). For owl species like Glaucidium Passerinum and Aegolius funerens who specially
occur at higher altitudes and lands with high degree of slope values, employing remote sensing to detect
proxies of forest stand structure parameters might be very helpful in modelling their habitat selection
behaviour. These two owl species are two protected species considered to be rare breeding in Bulgaria
(Shurulinkov & Stoyanov, 2005, 2006). There are many studies that examined correlation of their
occurrence with selected environmental variables based on extensive field surveys, however, the results
were rather inconsistent so it is not entirely clear what precisely determines owl’s distribution. Moreover,
no study has evaluated the potential of using high resolution imagery for modelling their distribution.

The benefit of using high resolution imagery in forestry research is in detecting trees by delineating the
crown of individual trees. These delineations can be used to derive important tree and forest
characteristics. Ground based measurement of tree crown width is more difficult and time consuming
than other forest stand structure parameters (Sénmez, 2009). Although it is still not entirely clear what
factors determines these two owl species distribution, it has been claimed that occurrence of them is
highly correlated to tree characteristics like tree-cover, diameter at breast height and crown width. Thus
employing remote sensing (RS) techniques to extract derivations of these predictors would save time and
cost.

Also, a successful development of spatial knowledge of habitat suitabilities of indicator species like owls
would assist producing conservation management plans for other cavity-nesting species with similar
habitat requirements (Redon & Luque, 2010).

Rhodopes (Rhodopi) Mountains with its extensive old-growth forest in central south Bulgaria looks to be
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a suitable location to study behaviour of rare breeding bird species as it is claimed to have the richest
biodiversity among all mountains of Bulgaria and perhaps even in whole Europe (Terry, Ullrich, &
Riecken, 2006). This mountain range is among most valuable areas at the level of the European Union for
Glancidinm passerinum (G. passerinum) and Aegolius funereus (A. funerens) (Kostadinova & Gramatikov, 2007). It
is known to be habitat of largest number of G. passerinum in the entire Balkan Peninsula (Shurulinkov,
Ralev, Daskalova, & Chakarov, 2007). According to Shurulinkov, Stoyanov, Komitov, Daskalova, and
Ralev (2012) the recorded number of G. passerinum territories was higher than of A. funerens in Rhodopes
Mountains. Besides that, Rhodope forest is an old growth forest with a great number of large trees and
standing dead trees. According to Angelstam, Biitler, Lazdinis, Mikusinski, and Roberge (2003), dying or
dead trees are very important habitat for many plant species and animals as well as known to be best for
forestry practices. G. passerinum also nest in woodpeckers’ holes on very old trees. Thus monitoring and
modelling their niche selection helps in understanding status of the forest resources.

Based on many bird fauna studies that have been carried out for decades in Bulgaria, there were some
geographically overlapping and also non-ovetlapping presence points of each species which indicate there
could be subtle yet principal differences between their habitat selection behaviour. These differences affect
their co existence. Recent studies provide more occurrence data and identified habitat requirements of
both species based on vegetation types and characteristics (Strém & Sonerud, 2001; Shurulinkov et al.,
2012; Henrioux, Henrioux, Walder, & Chopard, 2003), food availability (Deshler & Murphy, 2012;
Zarybnicka, 2009; Suhonen, Halonen, Mappes, & Korpimiki., 2007), hunting strategies (Suhonen et al;
Stréom & Sonerud), breeding success (Deshler & Murphy; Pacenovsky & Sotnar, 2010), geological features
(Rajkovi¢, Grujic, Novic, & Miric, 2013), human interventions (Deshler & Murphy; Flesch & Steidl, 2007)
and climatic variables (Catro, Munoz, & Real, 2008). They all tried to focus and measure certain
explanatory variables effecting habitat selection of each species independently. The analyses were based on
literature, expert knowledge or logical assumptions and estimations.

Though what still needs to be clarified are the main contributors to occurrence of overlapping presence
points and comparison between similarity and differences of their habitat requirements. The focus of this
study is to test whether such environmental variables including forest parameters can be derived from
remote sensing techniques to define their suitable habitat. According to previous studies it looks like there
are probably three main factors which explain differences, competition on food (Suhonen et al., 2007;
Andrle, 2011), different timing of activity (Pacenovsky & Shurulinkov, 2008) and surviving in a predator-
prey community.

Meanwhile it is also known that the biggest threat to both species is human interventions, mainly intensive
forestry activities and development of tourism attractions (Shurulinkov et al., 2007). Conservation
management plans at local scale like Rhodopes Mountains need fine-scale data, and such studies require
continues maps of environmental variables. So the challenge is to generate a model from small scale aerial
image to be accurate enough to be extrapolated.

To generate accurate models it is important to drive variables at a correct spatial scale. Modelling species
distribution over very large areas will not say much about suitability but at very small extents would
neither. So establishing the right home range size is a useful study to improve the modelling results for
these species. Therefore the current study also tries to find the home range size that explains their territory
best. To answer this question, the mean territory size of A. funereus as the larger owl species was estimated
from previous studies. There were inconsistency and controversial records in defining the best home
range for A. funerens. Kouba, Bartos, and Stastny (2013) considered a home range between 30-57 hectare
suitable for nesting and foraging depending on prey abundance. But Santangeli, Hakkarainen, and
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Korpirmaki (2012) found a home range between 40-293 hectare, where “spruce” forest was the best forest
type predictor but food availability didn’t change the territory size which is in contrast with Kouba et al.
findings. Although they claimed that in a dense forest, increasing the cover decrease the home range size
of this species (Santangeli et al.). From many papers and previous investigations, an average territory size
of 100 hectare was considered most appropriate for A. funerens. Rajkovic et al. (2013) suggested a roughly
estimation of one territory in 100 hectare. Also Jedrzejewska and Jedrzejewski (1998) estimated their home
range to be around 1.1 km?,

As mentioned earlier, Rhodopes forest is very old and dense, and the dominant tree species in the study
area was “spruce” which is known to provide a suitable habitat for both G. passerinum and A. funereus. So it
is a very good example of a forest where the tree cover is dominated by a single tree species and where
these bird species occur. To examine the impact of such forest structure on the territory size, the accuracy
of SDMs based on average stand characteristics measured at three different home range sizes were
investigated. The selected home range sizes to be evaluated were 100, 50 and 25 hectare.

To perform image processing operations in this study, eCognition Developer 64 and ArcMap 10.2.1 were
used. eCognition Developer employs Object Based Image Analyses (OBIA) technique to interprets the
image by certain characteristics like their smoothness, shape, size or spatial arrangement of certain features
(Lang, Albrecht, & Blaschke, 2006.). OBIA has the ability to use spatial information implicit within remote
sensing which is often neglected (Hay & Castilla, 2006). This makes it useful in studying forest-
characteristics which are not homogenous on a high resolution imagery that contains high level of details.

1.1. Rhodopes Mountains

The Rhodopes Mountains form the most extensive mountain range in Bulgaria and cover neatly one
seventh of the whole country (“Rhodope Mountains”, 2014). About 80 percent of the region is in Bulgaria
and the southernmost of it is situated in Greece. Geomorphologically, it is the oldest mountain range in
Bulgaria with a complex system of very old forest, ridges with various height and width, river valleys and
ravines. Such environmental conditions provide excellent opportunity for unique biodiversity in this vast
area (Greek biotope/wetland centre, 2008).

The great variety in vegetation, climate and terrain provides suitable habitat for over 300 species of bird
(Wild Rodopi NGO, 2012). Among them, there are 36 birds of prey which inhabit Rhodopes making it an
important habitat in Europe for many threatened species (Sierdsema, Ploeg, Jansen, & Jansen, 2010).

e

Figure 1. Rhodopes Forest in Western Rhodopes Mountain, Bulgaria.
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1.2. Owl Species

1.2.1. Glaucidium passerinum

Glaucidinm passerinnm, also known as Euroasian Pygmy owls are the sole member of the widespread genus
Glancidinm in Europe. They are diurnal owls [owls that hunt during daylight] (Hirmi et al., 2011), glacial
relict species [species remained from last glacial period], not shy of human and known to be the smallest
owl in Europe (Lewis, 2013).

This species was considered extinct in Bulgaria until recently
(Shurulinkov & Stoyanov, 20006). Therefore there are still few
published documents on their presence in different part of the
country.

On a national level their population is estimated to reach between 240-
290 breeding pairs (Shurulinkov et al., 2007). Several studies have
estimated the number of G. passerinum in Rhodopes Mountains to vary
between 120-200 (Pacenovsly & Shurulinkov, 2008; Shurulinkov et al.,
2012).

Figure 2. Glancidinm Passerinum (Breider, 2011)

1.2.2. Aegolius funereus

Aegolius funerens also knows as Boreal owl or Tengmalm’s owl after Swedish naturalist Peter Gustaf
Tengmalm (“Boreal owl”, 2014) are nocturnal small owls, they avoid humans and they have a broad
habitat ranging from the mountains in Alaska, Canada and America to northern Europe and Asia (Owl
Research Institutes, 2013).

These species are mostly found in Scandinavia but also live in
subalpine regions and forests in the northern hemisphere and
central mountain regions (Hayward & Hayward, 1991; Lewis,
2013).

Published data on occurrence of A. funereus in Bulgaria goes
back to late 1960s (Shurulinkov, 2012) though there is evidence
to claim they were widely distributed in mountains mainly in
Rhodopes at the beginning of 20t century. Their total
population is estimated to vary between 1025-1400 pairs in the
whole country (Shurulinkov & Stonyanov, 2005).

Figure 3. Aegolins funerens (Falsterbo, 2008)

1.2.3. Similarities, Differences and Threats

The greatest similarity between these two species is that they are highly dependent on forest maturity
(Strém & Sonerud, 2001) and they have similar hunting strategy as they are both “forest dwelling sit- and-
wait predators” (Hirmi et al., 2011, p 91). Yet due to the slightly larger size of A. funerens and their
bilateral ear asymmetry (Strém & Sonerud) that enables directional hearing in total darkness, it is easier for
them to find and catch preys.
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Suhonen et al. (2007) also studied the effect of predatory interactions between the two on larder size as a
function of distance and diameter of nest-boxes entrance. They have concluded that G. passerinum can co-
exist with the latter but due to competition for food resources that are only available during late autumn
and winter time each year (Suhonen, 1993), their hunting success is lower resulting in smaller larder size in
presence of A. funereus.

In a comprehensive literature review on diet selection of a number of raptor species in northern Europe
by Andrle (2011), it was reported that one third of the total diet of G. passerinum is composed of birds
whereas this number was only 3.6% for A. funerens (Andtle). On the other hand more than 90 % of the 4.
funerens diet has been recorded to be mammals as with G. passerinum it was 65 percent (Lewis, 2013;

Andtle).

It can be suggested that occurrence of G. passerinum in non-overlapping areas might be explained by their
tendency to spatially avoid (Suhonen et al., 2007) other birds of prey including A. funerens and inhabit areas
where climate condition is not suitable for their competitors. Risk of predation by other larger birds of
prey is the natural threat 7o G. passerinum. But in broader scale A. funereus are not endangered and are rarely
threatened by human hunting.

Yet both G. passerinum and A. funerens have been threatened by large scale legal and illegal logging during
previous years. The consequence is that old coniferous forests are disappearing and this affects mostly A.
funereus. In a study in Finland decreasing rate of this species was estimated by 2% each year (“Tengmalm’s
Owl- Aegolius funereus”, 2014).

On the other hand, G. passerinum can adapt itself better to forestry activities and their presence was
recorded in areas where sustainable forestry was practiced, though still the biggest threat in Rhodopes
Mountains is habitat fragmentation. Shurulinkov et al. (2007) claimed that clearing trees in the upper river
catchment has also destroyed their best habitats apart from erosion and creating higher risk of flooding in
the downstream. In the same study they claimed the density of this species was higher in closed forests
with no forestry activities compared to sites where many logging activities were illegally practiced
(Shurulinkov et al.).

1.24. Assumptions

There are other ecological factors that can affect the occurrence of both species. So according to available
time and data, three main assumptions were made that might have introduced some bias into the study.

1- Presence points of both species represent their presence regardless of nesting, roosting or foraging.

2- It is assumed that competition for food does not affect the reproductive success of G. passerinum owls
as there are no evidence yet which supports such hypothesis (Suhonen et al., 2007).

3- G. passerinum is under risk of predation by other larger birds of prey mainly S#ix aluco known as
Euroasian Tawny owl. This owl is widely distributed through whole Europe and also in Bulgaria. It is even
believed that increasing population of S#ix aluco resulted in disappearing of G. passerinum from parts of
Germany (Lewis, 2013). But this research is excluding risk of becoming prey to other animals as there is
no data available on their density and distribution.

1.3. Most Important Explanatory Variables

Among the environmental factors defined by literature to contribute to G. passerinum and A. funereus
occurrence in different places in the world, there are environmental conditions that are repeatedly
reported in various papers and surveys. The most important habitat requirements are discussed briefly in
this section.
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1.3.1. Forest type

There are many similarities between types of forest preferred by G. passerinum and A. funerens. They both
nest in mature coniferous forests in different combination of tree species.

The most important tree species that provide suitable habitat for G. Passerinum and A. funereus to nest and
forage are old forests of Spruce, Scots Pine, European Beech and European silver Fir. (Shurulinkov et al.,
2012; Romulo, 2012; Shurulinkov, 2005; Cote, Doyon & Bergeron, 2004; Strém & Sonerud, 2001;
Shurulinkov & Stonayov, 2006; Korpimiki, 1981).

Comparing G. passerinum with A. funereus, Redon & Luque (2010) suggested that the first depends more on
presence of Norway Spruce and the latter on European Beech.

1.3.2. Altitude

The recorded altitudes of both species occurrence from many studies suggested their tendency to inhabit h
igher elevation. Gattermayr et al. (2013) has called G. passerinum “birds of higher altitude”. This speciessee
ms to be quite dependant to altitudes for choosing suitable habitat as they show consistent reliability to hig
her altitudes starting from 1400m up to 1930m above sea level (Shurulinkov et al., 2005, 2007).

However the records on elevation values were not consistent for 4. funereus. Their occurrence has been
recorded in elevation ranging as low as 790 meter (Rajkovic et al., 2013) up to 1800 meter above sea level
(Shurulinkov et al., 2012; Shurulinkov & Stoyanov, 2006, 2005; Rajkovic et al.) in different places.

This inconsistency in results might be due to the fact that environmental conditions change when these
species move north or south. So they seem to be more flexible to altitude variation as long as other
favourable conditions are provided.

1.3.3. Aspect, Slope and Daylight Period for Hunting

There were some studies claiming that topography is highly correlated to distribution pattern of both
species and slope appears to contribute significantly to their occurrence (Redon & Luque, 2010;
Shurulinkov et al., 2006; Cichocki, Slizowski, & Bochenski, 2004). Yet again records on correlation
between their occurrence and slope were not consistent and their presence was recorded in not too steep
slopes of less than 35° (Gattermayr et al. ,2013).

The importance of aspect for A. funerens is explained by the fact that they are nocturnal owls who are
active in twilight. Zarybnicka (2009) suggested that male of A. funereus starts hunting after the sunset with
two peaks at late dust (20:00-22:00) and early dawn (2:00-5:00). She suggested that their activity declines
significantly between sunrise and sunset and light condition limits their hunting Thus it can be
hypothesized that their habitat is correlated to west facing slopes. These slopes provide longer twilight
time since compared to east facing slope, it is exposed to sun at an eatlier time of the day.

Western slopes also provide A. funereus with cooler climatic conditions to avoid summer heat (Hayward et
al., 1993). At high elevation, the surface facing sun warms dramatically on a clear day (Price et al, 2013),
and this can cause too hot conditions for this species.

It has also been shown that larger owl species like Sz#ix aluco which prey on G. passerinum and A. funereus,
prefer lower elevation and slopes facing the sun (Rajkovic et al., 2013). Thus the importance of westness
might also be in avoiding predation by other birds of prey.

Unlike A. funereus, the presence of G. passerinum has been recorded during day light as they lack the ability
to hunt in total darkness. Thus it seems like being more exposed to light would suit them since it provides
them longer hunting period.
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So studying the contribution of topographic variables in occurrence of each species in overlapping and
non-ovetlapping presence points would probably provide more insight into their habitat selection
behaviour.

1.3.4. Tree Diameter at Breast Height

Several studies came with a lower threshold for tree DBH above which trees would be suitable to offer
nesting locations for A. funerens ranging between 30 and 38 cm (Cote et al., 2004; Hayward, 1993; Heinrish
et al., 1999)

The required DBH for G. passerinum habitat which is addressed in fewer cases was reported to be about 45
1 9 centimetres by Ministry of Water, Land and Air protection (2004).

DBH is also a proxy of age of trees and growing condition. Both of these species inhabit trees around 80
years old or older (Shurulinkov et al., 2007, 2012; Cote et al., 2004) since they both nest in cavity holes
made by woodpeckers on very old or dying trees.

Therefore it can be suggested from previous studies that DBH plays significant role in defining suitable
nesting locations of both species but what is lacking in literature is possible correlation of variation of
DBH and average DBH with distribution pattern of owls. Since it was not possible to derive DBH directly
from an aerial image, the correlation between variations of tree crown values was studied in this research.

1.3.5. Cover Requirements/ Canopy Closure

The presence of the A. funereus is generally associated with dense coniferous forests (Johnsgard, 1988).
What was common in different observations was the importance of cover of old forest in increasing
survival (Hakkarainen et al., 2008). But habitat cover requirements seem to differ between summer and
winter times (Hayward et al.,, 1993). As a cold-adapted species they select dense and shaded sites with
lower temperature for roosting during summer time while less specific roosting site selection seems to
occur during winter (Hayward et al.). Several studies reported their favourable habitats to be stands with
multi-layered canopy which is close enough to provide shelter, and understory which is open enough to
provide food in mountainous areas (Hayward et al.; Whitman, 2001; Cote et al., 2004).

Yet there is a threshold on how open the terrestrial habitat should be since foraging habitat value in
complete openings reduced according to distance to forest edge (Cote et al., 2004). The explanation for
this behaviour could be A. funerens reluctance to cross large open areas (Cote et al.) because they try to
avoid exposing themselves to other larger and stronger birds of prey. And if the canopy closure is too
dense, no suitable ground layer and good cover of herb will develop (Guenette & Villard, 2005).

As for G. passerinum, Deutschmann (2013) said they would have food supply year-round if they are in a
light canopy closure of old stock combined with an open forest structure since diverse herb layers protect
their basic food meaning small mammals and birds. Gattermayr et al. (2013) reported a medium canopy
cover in their habitat.

1.3.6. Distance to Forest Edge

The forest edge is a transition from forest to another habitat. Plants that grow in the edge are different or
if they also grow in middle of the forest, they look different since they are more exposed to sun light
which changes the vegetation structure (McCollin, 2006). For instance shrubs are bushier and more
abundant in the edge than in the middle of the forest and this provides good habitat for voles (Barrett &
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Peles, 1999) which are an important part of owls’ diet.

But there is much confusion on the impact of distance to forest edge in selecting suitable habitat for
nesting and foraging of both species. Some older studies supported the hypothesis that 4. funerens benefit
from clear-cuts because they can hunt on voles easier (Hakkarainen et al., 1996). On the other hand many
other reports argued that forestry activities have serious negative effect on their habitat selection
(Shurulinkov et al., 2012; Zarybnicka, 2009). Also it is believed that the human-avoidance nature of this
species is another reason why they are reluctant to be close to forest edge.

On the contrary, G. passerinum are more tolerant to forestry activities and their presence was recorded in
interspersed open areas, positively associated with clear cutting (Gattermayr, 2013). According to
Deutschmann (2013) they only avoided vast clear-cuts. The tendency of being close to forest-edge could
be explained by availability of a higher density of field voles (Hakkarainen et al., 1996) and high quality of
such habitats in less woody areas (Hayward et al., 1993). Flesch & Steidl (2007) supported the importance
of distance to vegetation edge too, suggesting that such margins increase access and visibility over preys.

For clarifying the real effect of distance to forest edge on habitat selection, a hypothesis was made
assuming G. passerinum occurrence has strong negative correlation to distance to forest margin as for 4.
funereus it would be positive. Though what the optimum threshold and gradient could be is still unclear and
needs more investigation.

14. Research problem

Until 20 years ago it was believed that G. passerinum in Bulgaria was extinct but more data on occurrence of
this endangered species, as well as on A. funerens, has been recorded in different mountain ranges during
previous years (Shurulinkov & Stoyanov, 2005). The records show there are areas inhabited by both
species as well as quite distinct areas inhabited by only one. Extensive field surveys tried to define their
habitat selection behaviour based on different stand structure and landform features but there are
inconsistency and contradictions in the results of these studies. This hampers the evaluation of the
contribution of different variables in explaining the ovetlap and non-ovetlap of their home ranges

So far no studies have modelled their presence with all possible explanatory variables to analyse the
importance of environmental factors. It is also not known yet how significant variables contribute to
explain differences in overlap between these two species. The estimation of their best home range size is
also not constant in different studies. This might be due to the tough terrain of the suitable habitat of
these species which makes it difficult to reach their exact point of occurrence and collect all possible
explanatory variables in a well representative area of their territory.

Until recently, the most popular and accurate method in modelling species distribution have been relating
their occurrence to actual ground measurement of possible predictors. But according to Tzvetan Zlatanov
(personal communication, September 2014) from Forest Research Institute of Sofia, accuracy of
distribution models of these two owl species with selected ground truth data was not satisfactory. Still, no
topographic variables or distance to forest margins were introduced to their model. Besides, the question
arose about the appropriate home range size that would explain their nesting habitat better.

Thus the current study intended to model the distribution patterns of A. funereus and G. passerinum by
producing environmental data from remote sensing information. If such models are accurate enough, they
can be extrapolated to other areas, overcoming limitations of time, budget and challenging terrain.
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1.5. Research Objectives

This research aims to develop models explaining the distribution of G. passerinum and A. funereus from
forest stand structure parameters and topographic variables in Rhodopes Mountains that are derived from
high resolution imagery. Additionally, model accuracy while considering different territory sizes will be
studied.

1.5.1. General Objectives

The general objective of this study is to explain differences in habitat selection of G. passerinum and A.
Funerens in Rhodopes Mountain by identifying the most important explanatory variables in defining their
habitat selection behaviour.

1.5.2. Specific Objectives

1. Identify differences in importance of topographic variables in defining habitat requirements of G.
passerinum and A. funereus from geographically overlapping and non-ovetlapping presence points.

2. Generate distribution model from proxies of stand structure parameters derived from high resolution
imagery.

3. Find home range size of each species that explains their distribution best.

1.6. Research Questions

1. What are the differences between importance of topographic variables in generating distribution models
of G. passerinum and A. funerens?

2. Which of explanatory variables are most important in defining the occurrence of G. passerinum and A.
Sfunereus?

3. Can image based forest structure indicators provide equally-significant input for distribution models as
field based data can?

4. Do models become more accurate when forest stand structure parameters based on larger extents are
considered as explanatory variables?

1.7. Hypothesis

Hypothesis 1: Testing the concept that topographic variables explain habitat selection behaviour.

1.1. H1. There is a significant positive correlation between western aspect and occurrence of A. funereus
since western aspect provides longer twilight period for hunting.

1.2. H1. Altitude is a significant explanatory variable in defining suitable habitat for G. passerinum because it
enables them to look for preys in a larger ground area and provides safe nesting site to avoid risk from
hunting by other birds of prey.

Hypothesis 2: Testing the concept that by employing remote sensing techniques, proxies of forest stand
structure parameters can be extracted from high resolution imagery to fit distribution models with high

level of accuracy.

2.1. H1. The accuracy of distribution models based on image derived proxies is equally reliable as models
generated by ground based measurements so the models can be extrapolated to other areas.
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2.2. H1. Probability of occurrence of both species is higher with larger tree crowns (as a representative of
diameter at breast height) while occurrence of .A. funerens has greater probability with larger crown
diameter classes than G. passerinum who prefer to nest on younger trees where small birds as preys are
numerous.

2.3. H1. There is a strong correlation between “Forest Edge”-related variables and occurrence of both
species as density of small mammals and passerine prey is higher in the margins.

Hypothesis 3: Testing the concept that deriving forest stand structure parameters from larger extent of
home range size could increase the accuracy of the model.

3. H1. Models become more accurate when forest stand structure parameters as explanatory variables are

derived from a larger extent of home range size.
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2. MATERIALS AND METHODS

The approach toward meeting the objectives of this research was carried out in two main steps; image
processing to extract information from high resolution imagery, and statistical analyses to model species
habitat selection behaviour. Each step is explained in details in this chapter.

The data was taken from three sources; secondary data of presence/absence points of both owl species,
extracted geological features from Digital Elevation Model, and information extracted from high
resolution aerial photography of the study area.

21. Actual Data

21.1.  Aerial Imagery of the Study Area

The study area of this research is located in south Bulgaria, in the centre of Rhodopes Mountains and it
extends approximately from 24.514000-24.658000 longitude and 41.600000- 41.740000 latitude. It covers
an area of about 174 square kilometres.

The high resolution aerial image used in this study was produced by georeferencing aerial images from

Google-carth using 421 ground control points to cover the study area. These images were from October
2013 provided by CNES/Astrium satellite with pixel size of 0.5 * 0.7.

Romania

Serbia

Turkey

Figure 4. Map of Bulgaria with Georeferenced image of high resolution satellite imagery of the study area from
Google- Earth.

2.1.2. Presence/ Absence Data of A. funereus and G. passerinum

A database of presence/absence points of both species was provided by the Forest Research Institute of
Sofia thanks to Boris Nikolov and Iva Hristova-Nikolova. The fieldwork was conducted in autumn 2012,
with two field visits on 8-14 September and 24 September— 1 October. Autumn was chosen an
appropriate time to conduct the bird survey since in spring time the steep terrain of coniferous belt in high
mountains of central Europe is covered with lots of snow which makes it hardly accessible. Besides, the
weather condition is not good enough to conduct a field work for a long time. The vocal activity of owls is
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also well expressed similar to the springtime and their territories appear to be the same as well.

The total length of the surveyed transects was 49.9 km on altitude higher than 1450 meter. The distance
between locations (points) were set at 500- 700 meters depending on the local terrain. Presence of the
species was probed by imitating their call, in order to entice the species to respond. These imitation
sessions for each point lasted 13 minutes with first three minutes of no sound provocation. The next ten
minutes were split equally between both species to provoke owls by imitating their advertising call. The
owl survey started at dusk in the evening about sunset (19:30h; GMT+3) and lasted for three hours.
Daytime transects started at about 4:30h (GMT+3) until some time after sunrise at about 7:30h.

This data set represents 49 presence points of A. funerens, 11 presence points of G. passerinum and 12
geographically overlapping presence points of both species. Also 53 true absence points were recorded.
The coordinates of these points was accompanied by approximate mean elevation in meter close to actual
points of presence/absence.

Additionally, eight presence points were added by georeferencing two distribution maps from “Digital
Version of Red Data Book of Bulgaria” published by the Institute of Zoology (2011), and a project report
published by Shurulinkov et al. (2012).

Two out of these eight points were added as occurrence points of G. passerinum from “The Red Data
Book”. And the other six points were added from the published results (maps) of birds’ survey conducted
by Shurulinkov et al. (2012). Their findings added three presence points to each species. Their owl search
was carried out during autumn and spring when the weather condition was favourable and during day and
night. The localities of A. funerens were recorded only during dusk, down and night time whereas daytime
transects for G. passerinum showed good results.

The georeferenced maps were then digitized to make a Point shapefile on occurrence points of owls. Then
it was clipped to the extent of the study area.

21.3. Digital Elevation Model

Digital Elevation Model used for this study was based on the ASTER GDEM image downloaded from
the internet (http://asterweb.jpl.nasa.gov/gdem.asp.The ASTER GDEM has a ground resolution of
approximately 30 meter and the accuracy is estimated to be 20 meter vertically and 30 horizontally meter
at 95% confidence .From this map, aspect, altitude and slope were extracted.

2.2 Exploring and Examining the Secondary Data

Presence and absence points were displayed in same coordinate system to check possible overlap and
duplicate records.

The field recorded elevation at occurrence points and DEM based elevations were compared by a boxplot
(Figure 5 ) and histogram ( Figure 6). The DEM was covering a wider range of altitude and it represented
continues data with no gaps between records. It was also mentioned by Tzvetan Zlatanov from Forest
Research Institute of Sofia through personal communication that recorded elevation values might not be
precise and accurate enough to be used in modelling. Therefore elevation values extracted from DEM
were assumed to be more accurate for fitting the model.

12



DISTRIBUTION MODELLING OF GLAUCIDIUM PASSERINUM AND AEGOLIUS FUNEREUS USING FOREST STAND STRUCTURE PARAMETERS FROM HIGH
RESOLUTION IMAGERY IN RHODOPES MOUNTAINS, BULGARIA

2000
I

o

Elevation (m)
1600

- 5 ——
T T

DEM-Altitude Data-Altitude

1200

Figure 5. Boxplot of Altitude values extracted from DEM (left) and Altitude values from secondary data (right)
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Figure 6. Histogram representing distribution of Altitude values extracted from DEM (left) and Altitude from
secondary data (right)

2.21. Transforming Aspect to Westness

Aspect needed to be converted into westness (0 pointing east and 180 pointing west) for the hypothesis
on westness. This was done using “Folded aspect” (Equation 1) (Muthoni, 2010) to rescale 0-360 degree
to 0-180 where 0 corresponds to East and 180 to west McCune & Keon, 2002).

Westness = | (180-]| (Aspect-270)| ) | Equation 1

2.3. Image Processing and Distribution Modelling Workflow

Figure 7 on the following page illustrates the general approach to modelling distribution of owl species
with three datasets of occurrence points, Digital Elevation Map and high resolution aerial imagery of the
study area.
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Figure 7. General approach to modelling species distribution from high resolution imagery data.
24, Image Processing: Deriving Proxies of Stand Structure Parameters from High Resolution

Satellite Imagery

To extract proxies of forest stand structure parameters the image was processed in several steps. The final
results that were used in statistical analyses were total number of delineated single trees (from detecting
crown projection area) based on variation in crown width, and length of forest edge detected from high
resolution aerial imagery. Before images were processed, to save on processing time, the images were
masked for the locations for which presence and absence data was available. This reduced the total extent
that needed to be processed considerably. The masking was based on a buffer of 570 m around each
presence and absence point in the study area.

24.1. Single Tree Crown Detection

The georeferenced high resolution images from Google-Earth were in RGB band so the only tree
parameter detectable was individual tree crowns. Tree crown detection was performed by employing e-
Cognition Developer 64 and ArcMap 10.2.1 software to identify the individual crowns of trees. These
crowns are indicated as separate polygons, and from these polygons, the crown projection area (CPA) can
be derived. Also, the number of trees can be calculated. This procedure involves three main steps. First
the class of “Forest” has to be detected. Secondly individual tree-crowns in this class have to be detected.
And the finally the created crown polygons are processed to produce meaningful information for
modelling species habitat selection behaviour.

24.2. e-Cognition Developer 64; Extracting “Forest” class

In the first step, a multi-resolution segmentation was applied to simplify the image by cutting it into
smaller meaningful objects. Here the pixels were mixed based on their homogeneity (Baral, 2011).
For controlling the average object image size, an optimum scale parameter was introduced to the software
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through trial and error to find a balance in grouping pixels. So the produced segments were neither too
many nor too few.

Then the neighbouring image objects were merged with layer mean intensities below the maximum
spectral difference value. This optimum value was also achieved through trial and error.

Finally, 4 different classes were introduced using combination of “Brightness” and “Mean layer 27 as
thresholds. The defined classes were “Bareland”, “Forest”, “Shadow”, and a mixture of “Grassland-Tree-
Bareland”.

“Brightness” was used in the first attempt of classification and then “Mean layer 2 was applied on 2
classes of “Shadow” and “Grassland-Tree-Bareland” to assigned remained patches of forests within these
classes to the class “Forest”.

OBIA hierarchy was stopped at classification step and the class of “Forest” was extracted as a Polygon
shapefile. Further analyses for detecting single trees were carried out in ArcMap.

The thresholds and settings that were used for segmentation and classification are summarised in Table 1

and Table 2.

Figure 8 on the following page illustrates the window in eCognition Developer software for performing
image classification with algorithms and thresholds defined in Table 1 and Table 2.

Table 1. Threshold values for classification in eCognition.

Class Feature Domain Value

Shadow Brightness Unclassified <=59
Grassland-Scatter trees-Bare land | Brightness Unclassified 135 <= & <=180
Bare land Brightness Unclassified > 180

Forest Brightness Unclassified 5 < & <135
Forest Mean layer 2 | Shadow > =49

Forest Mean layer 2 | Grassland-Tree-Bare land <148

Table 2. Threshold values in algorithms applied in eCognition.

Algorithm Settings
Multi-resolution segmentation Scale Parameters: 10
Shape: 0.5

Compactness: 0.8

Spectral difference segmentation | Maximum spectral difference: 2
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Figure 8. eCognition window to perform classification of “Forest”.

24.3. ArcMap, Tree Crown Detection

The polygons indicating Forest were extracted from the image. A condition was specified that pixel values
between 60 and 130 of the green band could be considered as actual trees. The resulting polygons
included a few cluster of trees but mainly individual trees.

To address the objectives of this study the number of trees with a specific crown diameter had to be
derived. So clusters of trees that were delineated with one polygon, or very small trees were not needed as
input. Such unwanted polygons were removed based on their diameter. The diameter was based on the
area of a polygon and assuming it had a circular shape. First, the polygons with a diameter larger than 14
meters were removed. This threshold was according to reporting on stand properties of Rhodopes Forest
(Zlatanov et al., 2012) that recognized largest crown diameter in the study area to be around 14 meters.

The raster image of class “Forest” was masked for the second time by the final chosen polygons. The
result was a raster image containing only trees and small pieces of grasslands with few scatter trees. To
eliminate these small areas, pixel values of less than 119 were chosen as actual trees of the interest. Then
the raster image was shrunk by 10 cells to separate adjacent polygons and draw a distinct border around
each polygon (tree crown).

Finally polygons with diameter less than 3 meters were removed.

Figure 9 illustrates the approach to detect and extract individual tress with diameter of interest from high
resolution aerial image of study area.
Figure 10 illustrates a zooming into single tree detection procedure.
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Full-size Image of The Study Area Buffer Zone of 100-hectare Around All Points

Raster Image with 60 < Pixel value < 130

(To remove remaining shadow, vast areas of grasslands/grazing lands) Extracting “Forest” Class by Mask
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Figure 9. Individual Tree-Crown delineation diagram from high resolution imagery using eCognition and ArcMap.
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Figure 10. Zoom- In to Individual Tree-Crown delineation Procedure.

Next step was counting number of polygons that fell inside a buffer zone of 100 hectare around each
point. From image processing procedure two tables were generated including number of trees with their
crown width values and distance to presence/absence point of A. funereus and G. passerinum in 100 hectare.

Then summary statistics were calculated for the final tree polygons for area of 25, 50 and 100 hectares
around each presence and absence point (133 points). These statistics included total number of trees with
crown diameter larger than 3 meters up to number of trees with crown diameter larger than 13 meters (11

values for each home range size).

244, Manual Delineation of Forest Edge

To create a new feature class representing “Forest Edge”, the forest boundary detectable from the aerial
photograph of the study area was digitized in ArcMap. These consisted usually either of narrow pathways
and roads connecting dwellings and villages, or the boundaries with small villages and grasslands. The total
length of these lines in the 25, 50 or 100 hectare area around each presence and absence point was
included in the analysis as the length of forest edge. Additionally, the shortest distance between occurrence
points to the edge was obtained.

Figure 11 on following page illustrates how the “Forest Edge” was delineated on the high resolution image
of the study area.
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Figure 11. Zoom-In to Extracting “Total Length of Forest Edge” and “Shortest Distance to Edge” Around a Point.

24.5. Combining Explanatory Variables and Calculating Density of Trees with Different Crown Diameter

The above image processing yielded 2 datasets, one for each species. These datasets included all presence
and absence points of one species, elevation, aspect, slope, shortest distance to forest edge, total length of
forest edge within each home range size (3 columns) and total number of trees with crown diameter of
more than 3 up to 13 meters (33 columns).

The results of this section are explained in details in Chapter 3, section 3.1.

2.5. Data Analysis and Modelling

For each species (A. funereus and G. passerinum), each home range size (25, 50 and 100 ha) and each crown
diameter size class (3 up to 13 meters) a model was fitted, including the density of trees larger than that
size class, and all other variables (slope, aspect, altitude, shortest distance to edge, and total length of
forest in that territory size). For these combinations of explanatory variables, two models were used,
Generalized Linear Models (GLMs) and Boosted Regression Trees (BRTs). Both models are suitable for
presence/absence data.

2.5.1. Multicollinearity Test

Before fitting GLM’s and BRT’s a collinearity analysis is needed to identify highly correlated pairs of
variables. For detecting collinearity, pairwise Pearson’s correlation was computed between each
combination of predictors. Since pairwise correlation may not be sufficient to detect collinearity, the
variance inflation factor (VIF) as a common indicator was calculated. If VIF values exceed 10 as a rule of
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thumb, the collinearity is so high that it could cause problems when fitting a model and therefore that
variable might need to be removed (Myers, 1990).

The variance inflation factor equation is

VIP= ——
1-R

Equation 2

R? is the R-squared value of regressing one variable against all the other explanatory variables in the
model.

2.5.2 Logistic Regression, Generalized Linear Model

Generalized Linear Model (GLM), as a regression-based model, shows variation in species abundance and
they are widely used by ecologists who select explanatory variables according to observed importance
(Elith & Leathwick, 2009). Elith, Leathwick, and Hastie (2008) claimed that long time ago, ecologists used
linear regression models to find the predictors with most explanatory variables but they were inadequate
to explain real life situations. Then in 1980’s GLMs became widely popular since they could realistically
model nonlinear relationships and analyze presence-absence data which are not normally distributed
(Austin, 2007; Leclere, Oberdorff, Belliard, & Leprieur, 2011).

GLM uses logit link and binomial error distribution (Leclere et al., 2011) to fit models with maximum
likelihood method. The logit function calculates logarithm of the odds ratio which is the probability of
something happening against the probability that it will not.

The equation for odds ratio is [[= lfx Equation 3
The logit function is the logarithm of below function
P, .
fx)= In(J])= In( 1_’;)6) : Equation 4
For multiple cases f(x)= by + byxq + byxy + ...+ bpxy Equation 5
so the Logistic Regression can be written as follows
eb0+b1x1+b2x2+ 1 )
x— 1+4+ebo+bixy+boxa+ .. = 14+e—(bo + b1x1+baxa+ ..) Equatloﬂ 6

P, is the probability of f(x) occurring. whete by is the constant and by, b, and so on are called regression
coefficients of x4, X5 and so on.

The improvement of the model is computed by adding one or more predictors and the selection of
significant variables is done by stepwise algorithm.

Similar to t-test in linear regression, Wald statistics explain if the b-coefficient for the predictors is
significantly different from zero. This test assumes difference between maximum likelihood estimate and
zero 1s normally distributed. Then that variable is assumed to make significant contribution to prediction

of the result. The equation for Wald statistic is
2

w=Z Equation 7
where z is

_ (a-ap) .

= SEa) Equation 8

o 1s maximum likelihood estimate, g is 0 in summary of GLM (generally the value to compare with) and
SE stands for standard error.
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Yet Wald statistics should be used by caution when the sample size is small so the standard error might
increase. According to Field (2000), in such case, a predictor which contribute significantly to the outcome
might be rejected and consider insignificant (Type 11 etror).

2.5.3. Boosted Regression Tree

Elith et al. (2008) believe that Boosted Regression Tree is a flexible regression model that combines
statistical power of two algorithms, regression trees and boosting. Regression trees use recursive binary
splits to relate response to variables and boosting method combines many simple models to produce a
more accurate model with better predictive performance (Elith et al.).

Boosting is a technique for minimizing the loos function by adding a new regression tree at each step that
reduces the loos function most (Carty, 2011). The concentration in each step is on reducing the residuals
and root mean square error. In the second step, a regression tree which might have different variables and
split points with the initial one is fitted to the prediction residuals of the first regression tree. Now the final
model has two trees and the residuals from this model are calculated so that this process continues. This is
called a stagewise procedure since the existing trees are unchanged as the model increase.

Finally, the result is a BRT model which is a linear combination of hundreds to thousands of trees. This
final model is like a regression model where each tree represents a term. (Elith et al., 2008)

G(x)= sign (Xpi=1 AmGm () Equation 9

aq, Ay, ..., Ay are computed by boosting algorithm, and weight the contribution of each respective Gy,
(x). Data modification at each step is by applying weights Wy,1, Wa, ..., Wy to each training observation
(x;, ;) wherei= 1,2, ..., N.

BRT also use logit link function like Logistic regression.
D= -2 [log(likelyhood,¢gyceq) — log (likelyhood )] Equation 10

BRT technique has three important parameters; learning rate, tree complexity and number of trees. The
first two parameters are defined by the user and the value of last one is determined by their values.

The learning rate (Ir) or shrinkage parameter says how much each tree contributes to the growing model.
In general a smaller learning rate is preferred since decreasing learning rate increase the number of
required trees. Tree complexity (tc) or the number of nods sees if interactions are fitted or not. These two
parameters determine the number of trees (nt) required for optimal prediction (Elith et al., 2008).

The “bag fraction” value is also another parameter that can improve model accuracy. The “bag fraction”
specifies the proportion of data to be randomly selected without replacement from the training data set at
each iteration. Stochasticity improves the speed and precision of the model significantly and reduces over-
fitting (Friedman, 2002). The default for this value is 0.5 meaning at each step half of the data is randomly
selected.

In the current research, the tree complexity of 5, learning rate of 0.001 and “bag fraction” of 0.5 were used
for all BRT models.

2.54. Comparison between GLM and BRT

For analysing the data and interpreting the results of this research from different points of view both
models were used although BRT seems to deal better with non-linear response than GLM does.
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According to Mateo and Hanselman (2014), BRT performance was better than GLM in their research.
They claimed that BRT could easily fit non-linear relationship between response and variables. BRT also
doesn’t need elimination of outliers or transforming data prior to modelling and the effects of relations
between variables are automatically handled too.

Figure 12 illustrates how predictions of GLM compare with BRT’s. According to Smith (2012), the output
of BRT is more precise where GLM-based model might over predict the occurrence. Leclere et al. (2011)
also claimed that in their study of comparing different modelling techniques, BRT produced smaller
number of low accurate or poor models.
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Figure 12. Comparison between GLM and BRT algorithms (Smith, 2012).

2.5.5. Model Evaluation to Choose Best Fitted Model

For evaluating the performance of distribution models it is best to use an independent data set if possible.
Since such a data set was not available for this research, the original data was partition into 2 data sets of
training and testing, with the proportion of 75-25 respectively. Testing data set was for evaluating the
validity of the model fitted with training data set.

As this research was dealing with presence or absence data, MaxKappa from Cohen’s kappa (Cohen,
1960) and area under curve (AUC) of receiver operating characteristic (ROC) curve were chosen to
measure prediction errors. These two indicators were used for several purposes; finding the best fitted
model within each territory size, evaluating impact of different crown diameter classes in modelling habitat
selection behaviour of owls, and for comparing the importance of predictors between two species.

Maximum Kappa values were used to measure the accuracy of all models since AUC is not a standard
measure of model accuracy. Some scientists argue that AUC does not take predicted probability values and
goodness-of-fit of the model into account (Termansen, McClean, & Preston, 2006; Austin, 2007; Lobo,
Jimenez-Valverde, & Real, 2008).

AUC values were used to evaluate discrimination capacity of models between locations where one species
was present versus locations where it was absent.

For evaluating performance of absence and presence models a confusion matrix is used as a basis which
summarizes the model performance (Table 3).
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Table 3. Matrix of error.
Presence Absence Total

Presence a b a+b
Absence c d c+d
Total a+c b+d n
where

a is the number of correctly predicted occurrences (True Positive)

b is the number of incorrectly predicted occurrences (commission error) (Type I error)
c is the number of incorrectly predicted absences (omission error) (Type 11 error)

d is the number of correctly predicted absences (True Negative).

Section 2.5.5.1. described shortly how Cohen’s Kappa works and section 2.5.5.2. explained about AUC.

2.5.51. Cohen’s Kappa

Cohen’s kappa is the most popular measure in ecology (Allouche, Tsoar, & Kadmon, 2000) for evaluating
accuracy of presence-absence models and it eliminates problem of over estimating accuracy (Liu et al.,
2011). Kappa reports the agreement between observers by measuring the proportion of correctly classified
observed and predicted locations after accounting the probability of chance only (Freeman & Moisen,
2008).

Kappa equation is:

Kp= (OA-EA) / (1- EA) Equation 11

Where OA stands for overall accuracy and OA and EA equations are

OA= (a+d)/n Equation 12
EA= (p1 * p1. + D2 *pa2)/ 1 Equation 13
where

p1= (atc)/n Equation 14
p1.= (atb)/n Equation 15
p2 = (b+d)/n Equation 16
p2.= (c+d)/n Equation 17

Kappa is also more resistant to prevalence than other accuracy indicators like sensitivity or specificity
(Freeman & Moisen, 2008). A high prevalence increases commission error (Type I error) meaning over
prediction and a low prevalence increase omission error (Type II error) which is under prediction.

The formula for prevalence is as below

Prevalence: (at+c)/n Equation 18

Allouche et al. (2006) believe that for identifying biodiversity hotspots in conservation planning, the
accuracy evaluation of predicted model should be based on selected threshold. Therefore MaxKappa was
employed in this study to deal with prevalence effect to obtain a good model (Santika, 2011).

The maximum kappa value occurs when Kp equals to 1.

MaxKappa equation is:

MaxKp= max(Kp) Equation 19
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2.5.5.2. Area Under Curve (AUC)

Receiver operating characteristic (ROC) curve as a threshold-independent measure represents the model’s
performance in two dimensions. ROC curve plots False Positive Rate (1- specificity) against True Positive
Rate (sensitivity). The area under the curve (AUC) summarizes statistic results of a ROC plot. According
to Manel et al. (2001) AUC is a good indicator of model performance which shows how good predictions
are in models with binary response. AUC is as an independent indicator from prevalence too (Allouche et
al., 2000).

The value of AUC ranges from 0 to 1 whereas a perfect discrimination will have an AUC equal to 1.S0 an
AUC value equal to 0.5 indicates that generally the discriminatory is considered not sufficient to be helpful
(Scott et al., 2002).The developed formula for AUC (Mason & Graham, 2002) is

AUC=-L_ym ?21 I (p1i,Poj) Equation 20

ning ~i=1

where
0 ifp1; < Ppoj
L ®1iP0jy =| 0.5 if py; = poj
1 ifpy > Poj

where

P1i 1s the predicted value for presence site i,

Poj is the predicted value for absence site j,

Ny is the number of present sites,

Ny is the number of absent sites (Liu et al., 2009).

2.5.6. Comparison of Importance of Variables Between G. passerinum and A. funereus

For comparing the importance of explanatory variables in defining suitable habitat for each species in the
best fitted model (with highest MaxKappa) in three different home ranges, the percentage of relative
importance of each predictor from BRT models, and the most significant variables from GLM models
were extracted.

In a BRT model, the relative contribution or importance of variable is calculated by contribution of each
variable in reducing overall deviance of the model. The measure is based on how many times a variable is
selected for splitting. The relative contribution of each predictor is given in percentage so that the sum
adds up to 100 where the higher the number, the stronger the influence of that variable on the response is.

Multiple logistic regression analyses were performed using stepwise procedure to generate models. The
output of GLM summary also generates p-values which is probability of getting a value as high or higher
than the observed value. The p-values of significant variables in best fitted models were plotted in graphs
for interpretation

The contribution of variables in best fitted BRT models for each species ate illustrated in graphs in section
3.2.3.
Section 3.2.4. illustrates the significant variables in best fitted GLM models for each species.
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2.6. Software and Field Instruments

Technical software employed in this research were Cyber Tracker for field data collection, ArcMap 10.2.1
and eCognition Developer 64 for image processing, and Microsoft Excel and the open-source R-
programming language version 3.1.2 for data and statistical analyses.
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3. RESULTS

31 Image Processing Results

3.1.1. Single Tree Detection

The total number of individual trees detected in 100 hectare around presence/absence points of both
species was 1461601. Table 4 shows the density of trees in 100 hectare for each species. These records

include trees with different crown diameter from 3 to 14 meters.

Table 4. Total number of trees detected from high resolution imagery in a territory size of 100 hectare.

Absence/ Presence Points of Owl species Density of Trees
A. funerens presence points 543218

G. passerinum presence points 181697
Absence points of both species 597702
Overlapping presence points 138984

All presence/absence points Total= 1461601

The table of density of trees also included the shortest distance of each tree to occurrence points (centre
of the territory of 100 hectare). According to home range size of interest (100, 50 and 25 hectare),
densities of trees within that distance were extracted later using Microsoft Excel and R- software.

31.2 Length of Forest Edge

The total length of forest edge in 100 hectare buffer zone around all points (133) was 544820 meters.
By intersecting polyline shapefile of digitized forest-edge with 50 and 25 hectare buffer zones, the total
length of forest edge in each territory were calculated as presented below in Table 5.

Table 5. Total length of “Forest Edge” in 25, 50 and 100 hectare territory size.

Total length of forest opening (m)
25ha 153260
50ha 284963
100ha 544820

Appendix 1, Appendix 2, Appendix 3, and Appendix 4 present maximum, minimum and mean of all
predictors that were extracted for G. passerinum, A. funerens, ovetlapping points and absence points
respectively.

Appendix 8 and Appendix 9 displays abbreviated contents of variables in data set used for modelling G.
passerinum and A. funereus distribution respectively

3.2. Statistical Analyses Results

The collinearity between topographic variables was at acceptable levels so none of them had to be
removed from the analysis.
Table 6 and 7 summarize the VIF values of environmental variables that were repeatedly used in
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modelling distribution of G. passerinum and A. funerens in 25, 50 and 100 hectares.
The value of “Total Length of Forest Edge” was changed according to home range size. Crown-diameter
classes varied in each of 33 generated models for each species.

Table 6. VIF values of similar explanatory variables among all models on G. passerinum distribution in
different home range sizes.

VIF in 25hectare | VIF in 50hectare | VIF in 100hectare
Aspect 1.05 1.06 1.06
Slope 1.15 1.13 1.12
Altitude 1.11 1.1 1.13
Shortest-Distance-Edge 1.56 1.38 1.24
Total-Length-Edge 1.59 1.4 1.25

The maximum VIF for crown-diameter classes in 25 hectare was diameter class of 6 meters with 1.33.
The maximum VIF for crown-diameter classes in 50 hectare was diameter class of 3 meters with 1.36.
The maximum VIF for crown-diameter classes in 100 hectare was diameter class of 3 meters with 1.46.

Table 7. VIF values of similar explanatory variables among all models on A. funerens distribution in
different home range sizes.

VIF in 25hectare VIF in 50hectare VIF in 100hectare
Aspect 1.04 1.06 1.06
Slope 1.23 1.22 1.2
Altitude 1.07 1.07 1.09
Shortest-Distance-Edge 1.53 1.39 1.23
Total-Length-Edge 1.56 1.39 1.23

The maximum VIF for crown-diameter classes in 25 hectare was diameter class of 3 meters with 1.39.
The maximum VIF for crown-diameter classes in 50 hectare was diameter class of 3 meters with 1.46.
The maximum VIF for crown-diameter classes in 100 hectare was diameter class of 3 meters with 1.51.

Also no significant correlation existed between any pairs of variables that were used as predictors. So
distribution models were generated with all variables.

In 25 and 50 hectare home range size in modelling distribution of both species, the maximum pairwise
correlation occurred between “Total Length of Forest Edge” and “Shortest Distance to Edge” with 0.52
and 0.43 respectively.

In 100 hectare home range size the maximum correlation value was between “Total Length of Edge” and
crown-diameter class of 3 meters. The value was 0.38 in modelling G. passerinum and 0.42 in modelling A.
funereus.

Both GLM and BRT method as well as both AUC and MaxKappa values were used for different
purposes. The accuracy indicators of 33 models for each species were calculated to find the crown
diameter class and home range size that best predict the distribution of each species. The contribution of
significant predictors in occurrence of either species was also compared.

Depending on whether AUC or MaxKappa was used as indicator of accuracy, different models were
identified as the best fitting models. But all accuracy indicators had low values and differences were small
suggesting that these differences might be due to chance. There was also no consistency in results between
GLM and BRT though BRT showed to be more consistent.
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The best fitted models were chosen to plot graphs and interpret the result in three different home range
sizes.

Section 3.2.1. shows the result for BRT models and section 3.2.2. shows results of GLM models.

In section 3.2.3. MaxKappa values are used as accuracy indicators to study the relative influence of
variables in generating most accurate BRT models.

Section 3.2.4. presents most significant variables from GLM models on graphs. MaxKappa is chosen as an
appropriate accuracy indicator to find most accurate models. P-values were plotted on graphs with 95%
confidence interval. On these graphs, a lower p-value indicates a higher significant level of that predictor.

Appendix 5 shows best fitted BRT models in 25, 50 and 100 hectares with highest MaxKappa values in
modelling one species against the other species in all diameter classes.

Appendix 6 and Appendix 7 illustrate how each of 11 crown diameter thresholds in different home range
sizes performed as best fitted BRT models with highest MaxKappa values for either species.

3.21. Best Fitted Model with Highest Accuracy Indicators with BRT models

For evaluating the impact of variation of crown-width in achieving models with higher accuracy level,
both AUC and MaxKappa values were considered to find best fitted BRT models.

Section 3.2.1.1. illustrates best fitted BRT models on G. passerinum distribution and section 3.2.1.2.
illustrates best fitted BRT models on A. funerens distribution with figures.

The crown diameter class of the fitted model is also indicated on each bar.

3.21.1. Best Fitted Models for G. passerinum Distribution Generated by BRT

The variability of tree diameter classes selected seems to be approximately around 8 meters in different
home range sizes from different accuracy indicators.

But no trend is apparent over the home range size that gives better fits in modelling G. passerinum
distribution.

BRT: G. passerinum
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Figure 13. MaxKappa values for BRT models on G. passerinum distribution at three different home range sizes with
crown diameter threshold used in the fitted model.
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Figure 14. AUC values for BRT models on G. passerinum distribution at three different home range sizes with crown
diameter threshold used in the fitted model.

3.21.2. Best Fitted Models for a. funereus Distribution Generated by BRT

From Figures 15 and 16, it looks like in general A. funereuns prefer to inhabit trees with larger crown
diameter classes with both accuracy indicators.
But there is no trend suggesting a larger home range size would give better fits.
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Figure 15. MaxKappa values for BRT models on A. funerens distribution at three different home range sizes with
crown diameter threshold used in the fitted model.

30



DISTRIBUTION MODELLING OF GLAUCIDIUM PASSERINUM AND AEGOLIUS FUNEREUS USING FOREST STAND STRUCTURE PARAMETERS FROM HIGH
RESOLUTION IMAGERY IN RHODOPES MOUNTAINS, BULGARIA

BRT: A. funereus
0.7 -
0.6441 0.6247 0.6492
06 1 D10 D7 D12
0.5 -
0.4 -
8]
=
<
0.3 -
0.2 -
0.1 -
0.0
25 50 100
Home range size in hectares

Figure 16. AUC values for BRT models on 4. funereus distribution at three different home range sizes with crown
diameter threshold used in the fitted model.

From Figure 13, 14, 15 and 16, it can be concluded that the accuracy indicators are in general low. There
seems to be no trend over home range sizes although diameter classes from best fitted model on A.

funereus distribution seem to be a bit larger than the ones selected for G. passerinum.

3.2.2. Best Fitted Model for G. passerinum Distribution with GLM models

This section discussed most accurate GLM models from both MaxKappa and AUC values. Section 3.2.2.1
analyses distribution models of G. passerinum and section 3.2.2.2 analyses distribution model of A. funereus.

3.2.2.1. Best Fitted Models for G. passerinum Generated by GLM

When looking at MaxKappa values it seemed like there are large differences in crown widths selected. But
with AUC values, it seems that lower diameter classes ate selected.
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Figure 17. MaxKappa values for GLM models on G. passerinum distribution at three different home range sizes with
crown diameter threshold used in the fitted model.
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Figure 18. AUC values for GLM models on G. passerinum distribution at three different home range sizes with crown
diameter threshold used in the fitted model.

3.2.2.2. Best Fitted Models for A. funereus Distribution Generated by GLM

In general, from both highest MaxKappa and AUC values in GLM models on A. funereus distribution, this
species seems to prefer larger tree crown diameter classes.
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Figure 19. MaxKappa values for GLM models on A. funereus distribution at three different home range sizes with
crown diameter threshold used in the fitted model.
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Figure 20. AUC values for GLM models on A. funereus distribution at three different home range sizes with crown
diameter threshold used in the fitted model.

From Figure 17 ,18 ,19 and 20, similar to BRT models although with more variability, it seems that best
fitted A. funerens distribution models were based on larger diameter classes than G. passerinum.
Also no home range size seems to give better prediction of presence of either species.

3.2.3. Relative Contribution of Predictors From BRT Model

For evaluating the relative contribution (%) of predictors for best fitted BRT models, highest MaxKappa
values were chosen as accuracy indicator.

Figure 21 shows relative contribution of predictors for G. passerinum and Figure 22 illustrates the
contribution of variables in occurrence of A. funereus.

3.2.3.1. Relative Contribution of Predictors in Best Fitted BRT Models for G. passerinum Distribution

“Slope” contributed most to G. passerinum occurrence at all different home range sizes consistently though
with a decreasing slope as the territory size decreased.
“Altitude” also scored as the second most important variable at all different home range sizes.

“Shortest Distance to Forest Edge” appeared to be neatly as important as “Altitude” in all three territory
sizes and its relative influence remained neatly constant with a slight decreased in largest home range size.
The contribution of “Total Length of Forest Edge” increased as the home range size increased. In 100
hectares, “Total Length of Forest Edge” was most important variable after “Slope” and “Altitude”.
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Figure 21. Relative importance of variables from BRT models on G. passerinum distribution with highest MaxKappa

values at three different home range sizes in hectares

Appendices 10, 11 and 12 illustrate partial dependence plots of BRT models with highest MaxKappa
values on distribution modelling of G. passerinum in 25, 50 and 100 hectare respectively.

3.2.3.2. Relative Contribution of Predictors in Best Fitted BRT Models for A. funereus Distribution

“Slope” contributed most to occurrence of A. funerens in all home range sizes with constantly scoring
about 30 %. Then “Altitude” scored as the second with a great difference from “Slope”.

“Total Length of Forest Edge” was relatively important but with no obvious trend in different home
range sizes.
“Shortest Distance to Edge” appeared to have an upward trend but contributed little.
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Figure 22. Relative importance of variables from BRT models on A. funereus distribution with highest MaxKappa
values at three different home range sizes in hectares

From Figure 21 and 22, “Slope” and “Altitude” appeared to be the two most important contributor to
occurrence of both species in all home range sizes. Yet in general, both of these variables’ contribution
was slightly higher in modelling distribution of .A. funerens than G. passerinum.

Appendices 13, 14 and 15 illustrate partial dependence plots of BRT models with highest MaxKappa
values on distribution modelling of A. funerens in 25, 50 and 100 hectare respectively.

3.24, Importance of Variables from Best Fitted Generalized Linear Models

Like section 3.2.3, highest MaxKappa values were chosen as most accurate GLMs. GLM only returns
significant variables.

For plotting these variables, their p-values were used. In a maximum likelihood test of GLM, a lower p-
value indicates a higher significant level of that variable.
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Section 3.2.4.1. illustrates p-values of significant variable in models on distribution of G. passerinum and
section 3.2.4.2. illustrates p-values of significant predictors for A. funereus.

3.24.1. Significant Variables from GLM on G. passerinum Distribution

The only significant variable in logistic models on G. passerinum distribution appeared to be “Slope”.
This variable was slightly more significant in 50 hectare while it was equally significant in smallest and
largest home range size.

Slope

Pr-value of Significant variables

0.025 0.025
0.018

25 50 100

Figure 23. P-values of significant variables from GLM models on G. passerinum distribution with highest MaxKappa
values at three different home range sizes in hectares.

3.24.2. Significant Variables from GLM on A. funereus Distribution

“Slope” and “Total Length of Forest Edge” were returne