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ABSTRACT 

Inventory has long focused on timber production but less on other non-timber forest values such as 

biodiversity. It provides goods and services which are a lifeline for existence. Biodiversity has been 

declining over the years with growing economic development. This has made it even more important now 

that this resource is monitored for conservation purposes. The European Union has moved towards this 

end through the Natura 2000 legislation ratified in the year 1993. This policy has seen the establishment of 

protected sites in forest that are of ecological importance for all European member countries. For better 

management and conservation for sustainable development, these sites require monitoring. Measurement 

of the biodiversity in forest is therefore necessary. Indicators of biodiversity have been used to quantify 

this resource and canopy gaps in most studies have proved to be the best indicator. 

 

To date, studies on canopy gap delineation are few and methods to delineate canopy gaps even fewer. 

Traditional methods of classification using spectral reflectance of pixels have proven to generally not 

perform well due to saturation in areas with high levels of biomass and noise in the classification which 

reduces the accuracy. Object oriented methods that work best with high resolution images are not limited 

by these issues and have therefore been chosen for use in this study. The study explores two object 

oriented methods; Object Based Image Analysis (OBIA) and a novel method Image Texture Based 

Analysis (ITBA) as the main object oriented methods. OBIA has been known to give high classification 

accuracies in forestry studies but is not lacking in limitations. It has also not been extensively applied to 

canopy gaps delineation. The new method seeks to reduce these limitations. The evaluation of their 

relative performance was carried out finally and the implication of the performance on biodiversity was 

briefly discussed. 

  

A visual evaluation of performance of the methods was looked at in terms of the different parameter 

settings chosen. Statistical comparison of the methods was performed using Pearson’s correlations and 

Root Mean Square Error. Over and under estimation of gap fractions was observed from a 1:1 

relationship scatter plot. The results show that correlations of the estimates from the image with field data 

are moderate ranging from 0.30 to 0.43 and are not very different between the methods. However the 

error analysis shows that the novel method gives the lowest error (14%) with field data at a parameter 

setting of 21. 
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1. INTRODUCTION 

1.1. Background, Literature review and Justification. 

1.1.1. Inventory and biodiversity 

 

Information based on the quantity and quality of forest resource is achieved through carrying out a forest 

inventory (Husch et al., 2002). This procedure was first carried out in the mid-19th Century for the 

purpose of assessing the timber supply available to sawmilling companies (Peters, 1996). These companies 

came to the realization that inventory data was important for forest management and planning purposes 

(Gillis & Leckie, 1993). Although most inventories focus on timber estimation, there is a rising need for 

information on non-timber values such as the biodiversity that exists in forests, so that management from 

this kind of information aims at maintaining and enhancing forest health (Husch et al., 2002; Kohm & 

Franklin, 1997).  

 

We see this increasing need for sustainable development policies in Europe where in the year 1992, 

European Union governments took a legislative initiative towards protection of the most seriously 

threatened habitats and species in Europe. All Member States contribute to the network of sites. The 

Birds Directive calls for the creation of Special Protection Areas (SPAs) for birds. The Habitats Directive 

likewise calls for Special Areas of Conservation (SACs) to be selected for other species, and habitats. 

Collectively, SPAs and SACs constitute the network of protected sites known as Natura 2000 (Gruber et 

al., 2012).  Studies by Grodzinska-Jurczak & Cent (2011); Keulartz (2009) indicate that there is still a 

problem with implementation which are related to among other issues, lack of scientific data and tools. 

  

Biodiversity has been simply defined by Kangas & Kuusipalo (1993) as the “variety of life” of both plants 

and animals. It provides a basis of various goods from the forest that include, but are not limited to, 

fuelwood, medicinal herbs, fruits, game and fodder and with services such as soil conservation, nutrient 

recycling, genetic and species diversity. Gao, Hedblom, Emilsson, & Nielsen (2014) observed that one of 

the ways of integrating biodiversity conservation in forest management planning, was by monitoring the 

spatial and temporal changes of the extent of the forest. Quantification of this information for better 

management and decision making is important (Husch et al., 2002). Measurable indicators of biodiversity 

are therefore used for quantification as direct measurement is difficult to achieve (Boutin et al., 2009).  

 

1.1.2. Indicators of biodiversity 

 

A direct indicator of potential biodiversity is structural diversity which is known to offer better habitat for 

both plants and animals (Powelson, 2001; Gao et al., 2014). This is contributed by temporal changes in 

understory vegetation, regeneration patterns and microclimatic variations (Spies & Franklin, 1989; Song et 

al., 1997). Among the three significant components of forest structural diversity as stated by Pommerening 

(2002) in (Figure.1-1), species diversity studies carry the majority of remote sensing applications (Foody & 

Cutler, 2006; Gillespie & Foody, 2008). Spatial distribution and variations in tree sizes are relatively newer 

issues in forest inventory (Ozdemir & Karnieli 2011). The two issues are important components of forest 

structure and can be characterized by several variables, including canopy cover, tree density, basal area’ 
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stem volume, biomass, leaf area index, tree species mixture and spatial arrangement of vegetation 

(Ozdemir & Karnieli, 2011). 

 

 
 

Figure 1-1: Overview of the three major characteristics of forest structure and the groups of variables by 

which it is assessed (adapted from a modification by Albert, 1999). 

Forest structural parameters have conventionally been assessed by manual means (Herold & Ulmer, 2001) 

which proved time and again to be tedious, expensive and time consuming. Aerial photo interpretation 

then supplemented field measurements in the mid-1900s as the first method of remote sensing (Campbell 

& Wynne, 2011). It provides a faster, cheaper and less tedious method for determining forest structural 

parameters Yao et al., (2011) and is still widely used today along with other newer techniques of imagery 

such as LiDAR. Aerial imagery has important advantages over other forms of remote sensing, specifically 

the higher spatial resolution that it offers. Airborne techniques have been observed to generally have a 

higher resolution than space borne ones (1-10 m and 0.01-5 km respectively) (Bongers, 2001).  

1.1.3. Remote sensing for forestry 

 
Recently, digital aerial photography offers additional advantages over analogue aerial photographs and 

other remote sensing methods.  Digital aerial imagery compared to analogue aerial photos can be captured 

with a resolution of 10cm per pixel or less (White, 2012). High resolution imagery has been beneficial in 

forest resource inventory and monitoring (Muinonen et al., 2001) for instance the case of Canada where 

forest inventories have been produced primarily from the interpretation of aerial photographs (Gillis & 

Leckie, 1993).  

 

Remote sensing has been used for modeling and mapping forest structural parameters such as basal area 

(BA), stem volume, mean tree height, biomass, leaf area index (LAI) and mean diameter at breast height 

(DBH) (Ozdemir & Karnieli, 2011; Gillespie & Foody, 2008; Kayitakire, Hamel, & Defourny, 2002; 

Cosmopoulos & King, 2004). Cho, Skidmore, & Sobhan (2009) used hyperspectral images to estimate 

structural attributes in closed canopy beech forest (Fagus sylvatica) while the study by Anderson et al (2008) 

integrated hyperspectral data and LiDAR to improve performance in estimation of forest measurements 

of basal area(BA), above-ground biomass (AGB) and quadratic mean stem diameter (QMSD). This shows 

the potential of remote sensing for forest mensuration. While other forest structures have been studied 
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extensively using remote sensing, canopy gaps have been studied less relative to other forest structural 

parameters.  

1.1.4. Canopy gaps 

 
As noted above, canopy cover is one of the important forest variables that affect species diversity and 

distribution (Gao et al., 2014). This study focuses on canopy gaps in the forest as an essential parameter 

which supports many plant and animal species as compared to forests without canopy gaps (Moore & 

Vankat, 1986). A lot of research has focused on canopy structure in terms of crown percentage area, 

crown diameter, canopy density and crown volume among other crown parameters for biomass estimation 

but few on canopy gaps for biodiversity. 

 

First and foremost, understanding stand dynamics, including quantification of canopy gap patterns is 

important. It is an area that has been studied intensively by ecologists (Lawton, Putz & Lawton, 1988). 

Ozdemir et al. (2012) stated that a structurally diverse stand provides living space for a number of 

organisms. These naturally occurring gaps contribute to the rich diversity in the forest. According to 

Lorimer (1989), canopy gaps are defined as openings in the tree canopy of a forest. The sizes can range 

from <25m2 to about 0.1 ha on a small scale with disturbances characterized by death of one or a group 

of trees; while large scale canopy gaps can range from 1 to 3000ha caused by periodic disturbances 

(Runkle, 1989). These disturbances can be caused by a number of factors including natural disasters, tree 

fall, diseases, logging among others (Runkle, 1989). 

 

There are some studies that have been carried out in forests regarding canopy gaps by; Zeibig et al. (2005) 

who carried out a study based on an inventory of the horizontal canopy structure. They investigated 

disturbance patterns of a (Fagus sylvatica) virgin forest residue in Slovenia. In addition to canopy gaps 

structure, Danková & Saniga (2013) also studied tree regeneration patterns in these gaps. They were able 

to answer the questions concerning the spatial scale of disturbance events, how gap sizes affected the 

density of tree seedlings and saplings and what differences there were in species composition of the same 

between the closed canopy and expanded gap in a mixed old growth forest in Slovakia. Ihók et al. (2007) 

conducted a study on gap regeneration patterns where the goal was to examine the effect of gaps on 

regeneration processes. A more related study to this research was by (Blackburn & Milton, 1997) whose 

aim was to characterize spatial properties of gaps using an airborne spectrographic imager. The results 

were used to infer ecological status of the forest. These studies not only show the importance of canopy 

gaps, but also tell the avenues have already been taken to quantify them.  

1.1.5. Detection of canopy gaps  

 

The mapping and detection of forest gaps has been found to be important as far as forest management 

and biodiversity conservation is concerned (Scarth et al., 2002). Forest gaps have been mapped and 

detected by manual means where the survey involves measuring the length and the width of the gaps then 

calculating the area with the assumption that the gap is either a circle or an ellipse (Stewart, Rose, & 

Veblen, 1991). This of course is not a true representation of the gap as we know that natural features are 

not regular in shape. They have also been mapped on aerial photos or by ground measuring tools like a 

hemispherical camera (Schwarz et al., 2003). Bucha & Stibig, (2008) suggested that canopy openings in 

forests can be mapped using remotely sensed image methods like visual interpretation and unsupervised 

classification. Supervised classification was also used earlier in land cover mapping and involved pixel 

based analysis which was later found to have limitations (Raines, 2008;  Cracknell, 1998). The key issue 

was reduced accuracy due to the “salt and pepper” effect in classification which hampers proper planning 

and decision making (Raines, 2008). These issues are highlighted in the next paragraph. 
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To begin with, pixel based analysis uses spectral information known as digital numbers to generate clusters 

of similar spectral reflectance, Campbell & Wynne (2011) and although the technique is well developed, 

the method disregards the spatial dimension of objects (Yan, Mas, Maathuis, Xiangmin, & Van Dijk, 

2006). Secondly, it uses spectral band ratios such as Normalized Difference Vegetation Index (NDVI) to 

map vegetation which can also help to separate gaps from areas with trees. The problem comes in when 

the region has high biomass like in multi-storied forest canopies where the method saturates (Huete, Liu, 

& Leeuwen, 1997). Synthetic Aperture Radar (SAR) is a technique that is also very reliable in mapping of 

biomass and is also important to mapping gaps but as in the aforementioned technique, it also saturates in 

regions of dense forest canopy (Kasischke, Melack, & Dobson, 1997; Ouchi, 2013). LiDAR is the most 

recent technology in remote sensing and the most dependable for mapping forest structure relative to field 

data, it is however a very expensive technology in terms of the equipment, the expertise and the availability 

of data (Dubayah & Drake, 2000; Lim et al., 2003). Ultimately, object oriented classification has no such 

constraints and has been known to improve classification accuracy (Raines, 2008 and Blaschke, 2010).  

1.1.6. Object oriented methods 

 
Documented work in segmentation techniques began in 1976 as an alternative to pixel classification (Kok 

et al., 1999; Benz et al., 2004). Segmentation not only uses spectral qualities of pixels but also other 

qualities like the tone, texture, association etc. Even though image segmentation began being used in the 

70s, it was not until later with more availability of high resolution imagery and improved software and 

hardware capabilities that object based approach took a forefront (Kok et al., 1999). As object based 

approach gained more use with high resolution imagery, pixel based analysis declined in use because of the 

problems it encountered with high resolution images, notably the “salt and pepper effect” (Mansor et al., 

2003). Object oriented approach was found to eliminate the problem.  

1.1.6.1. Object based image analysis (OBIA) 

 

This is a technique used to analyze digital imagery that involves segmenting an image into units called 

image objects. It is done by considering the homogeneity of objects in terms of their spectral properties, 

size, shape, texture and a neighborhood surrounding the pixels (Hay et al., 2005; Benz et al., 2004). The 

objects formed are primarily based on scale parameter which is the value that determines maximum 

possible change of heterogeneity and thus how large the objects can grow (Mansor et al., 2003). Software 

known as eCognition was developed in the early 2000s which is currently being used for object based 

image analysis. OBIA segmentation can create image objects that closely resemble the size and shape of 

real features as in the image. OBIA, like any other automated techniques, has its limitations, the main one 

being the inability to separate objects spectrally and the shadow effects (Koukoulas & Blackburn, 2004). 

 

OBIA has been used to successfully delineate forest stands. A study by (Chant & Kelly, 2009) used the 

method to quantify changes on a canopy structure by identifying dead oak trees in a forest and as well the 

extent of the dead tree on the ground. The method had the ability to detect within object variability and 

therefore enable monitoring. Hese & Schmullius (2005) also used OBIA to detect changes in a forest due 

to deforestation and the classification with this method were found to increase accuracy of the change 

classes. Wang (2012) was able to successfully extract canopy gaps from high resolution aerial images for a 

tropical forest.    
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1.1.6.2. Texture based image analysis (ITBA) 

 

This is also an object oriented approach. Fourteen texture features were defined by (Haralick, 1979). 

These texture features have been used in a number of studies as shown in (Table 1-1). According to 

Wulder et al. (1998), texture describes the relationship between elements on surface of the earth. It refers 

to the smoothness or roughness of a surface and in particular the frequency of change in tone of pixels in 

images (Haralick, 1979). ITBA uses a predefined number of pixels known as the window size, which 

defines the area that is used for statistical calculations (Coburn & Roberts, 2004). Like scale parameter in 

OBIA, the size of the moving window determines the size of texture objects created. Studies by Cohen & 

Spies (1992) show that texture features extracted from higher spatial resolution images have advantages 

for forestry applications. High variability in texture indicates high variability in structure of vegetation 

signifying variable habitat types (Hepinstall & Sader, 1997). Indeed, Wulder et al., (1998) noted that 

textural features had more information content than spectral features especially in forest stands where the 

spectral information was heterogeneous. In Canada, research carried out by Ozdemir & Karnieli, (2011) 

showed that forest structural parameters were significantly correlated with image texture features. 

Commonly used texture features such as contrast, entropy, homogeneity (Table 1-1) in remote sensing, 

have shown to be useful for modelling forest structure attributes (Cosmopoulos & King, 2004). 

Texture features have already been used to estimate stand structure variables (Table 1-1) but few studies 

have used texture analysis to study gaps. Betts, Brown, & Stewart (2005) described the use of texture 

analysis based on high resolution DEM to detect and characterize canopy gaps.  

 

Table 1-1: Studies on forest variables using texture features 

 

The two object oriented methods (Object based and texture based) emphasize on two different criteria for 

the formation of meaningful objects. That is the color criterion for OBIA Gao & Mas (2008) and texture 

criterion for ITBA. It is therefore quite interesting to look at how the different basis for formation of 

meaningful objects compare to each other in terms of mapping of canopy gaps. We therefore look at two 

object oriented methods which emphasize on two basic elements of digital numbers in pixels from digital 

images that aid in identifying objects; tone and texture for OBIA and ITBA respectively. 

1.2. Problem Statement 

Bulgaria joined the European Union in 2007 and since then, selected sites in the country have been added 

to the birds and habitat directive under Natura 2000. However, since the inclusion of some Bulgarian 

forest areas under Natura 2000, there is still no management plan (Nikolov, Kornilev, Popgeorgiev, 

Stoychev, & Georgiev, 2014). Only research has been done but no full inventory; hence the need for this 

study which might contribute to the building of a management plan. 

Since 1990, the disturbance of the forest in the Bulgaria (Table.1-1) has been studied and monitored 
statistically, but not spatially. 
 

FOREST VARIABLES REFERNCES 

Species (Solberg, 1999) 

Height, age class, density, basal area, DBH and crown diameter (Kayitakire et al., 2002) 

Density, Basal area, Stem volume and structural diversity indices (Ozdemir & Karnieli, 2011) 

Biomass (Eckert, 2012) 

Crown sizes and positions, canopy closure, understory and ground vegetation, of 

standing and fallen dead wood. 

(Pasher & King, 2010) 

DBH and height. (Tuominen & Pekkarinen, 2005) 
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Table 1-2: Average annual area of forest in Bulgaria affected by disturbance (1000 hectares). 

 Data source: FAO, Global Forest Resources Assessment 2010. 

 

 

Forest resource inventory and monitoring are among the major goals of remote sensing applications in 

forestry (Muinonen et al., 2001). The goals for forest inventory in protected natural forest differ from 

those in plantation and production forest and hence the need for supplementary information and 

measurements that include; 

 Ground vegetation  

 Regeneration  

 Fallen or standing dead wood and/or decomposing wood  

 The diameter and height so as to obtain picture of the structure of the forest 

Most of these information is found inside gaps and support many plant and animal species as compared to 

forests without gaps (Moore & Vankat, 1986). It has been shown that, too much forest fragmentation can 

also affect the organisms in the forest negatively (Lenor, 2014). Previous research has focused on the 

structural patterns and the biodiversity within canopy gaps but few have explored ways in which to 

accurately map the canopy gaps. This is necessary for purposes of constant monitoring of the forest 

(Perotto-Baldivieso et al., 2009). Conservationists have been known to require maps of gap size  and 

location to assess spatial relationship between canopy gap and wildlife species (Fox et al., 2000) and that is 

why there is need for accurate mapping and detecting forest gaps for forest management and biodiversity 

conservation (Scarth et al., 2002).  

Monitoring of canopy gaps, like any other resource monitoring, requires acquisition of accurate 

information to be able to detect accurate changes in the gap size. Delineation of gaps from images to 

closely match ground situation is therefore necessary. OBIA is a more relatively reliable method in land 

cover mapping that has been used extensively in forests but less so in explicitly mapping canopy gaps. 

This method has its limitations as mentioned in section 1.1 above. New methods that delineate canopy 

gaps have also not been extensively looked into.  This research seeks to use advances in remote sensing 

technology that includes digital aerial photography and new methods of canopy gaps analysis using object 

oriented methods where a comparison is made between object based image analysis (OBIA) and image 

texture based analysis (ITBA) methods. The two methods are explored in terms of ability and to what 

extent they are able to estimate canopy gap fractions. This is with the expectation of offering opportunities 

for accurate delineation of gaps and the need for further investigation. 
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1.2.1. Main Objective 

The aim of this research is to explore two methods, Object Based Image Analysis (OBIA) and Image 

Texture Based Analysis (ITBA), for delineating canopy gaps from a very high resolution aerial imagery. 

1.2.2. Research Objectives and Questions 

1. To detect and quantify canopy gaps from OBIA and ITBC. 

 What are the suitable parameters to use for extracting canopy gaps from the methods? 

2. To assess the results of quantification of canopy gaps. 

 Do the canopy gaps obtained with both methods correspond to the sampled gaps in the 

field? 

 How different is the quantification of the individual gaps between the two methods? 

 How accurately can canopy gaps be estimated from the two methods? 

3. To investigate the influence of forest type on assessments of the two methods. 

 To what extent does forest type influence accuracy of the two methods? 

1.2.3. Hypothesis 

 

1. H1: There is significant relationship between canopy gaps from field collected data and image 

estimated canopy gaps.  

2. H1: OBIA and ITBC methods are not significantly different in quantification of canopy gaps.  

3. H1: Change in parameter settings within ITBA and OBIA method leads to a significant change in 

results. 

4. H1: Detection of canopy gaps in needle leaved forest is more accurate than in broadleaved forest. 
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2. MATERIALS AND METHODS 

2.1. Study area 

The study were located in two regions, the Balkan Mountain ranges and Rhodope Mountain ranges in 

Bulgaria,  at co-ordinates (42°43′00″N 24°55′04″E) and (41°36'04'' N 24°34'27''E) respectively (Figure. 2-

1). The Balkan mountain range in the west of Bulgaria has a length of 530 Km and a width of 15–50 Km. 

It borders Serbia to the West.  

 

The altitude is between 550m to 2376m. The wooded area covers 44,000.8 ha and treeless area 27,668.7 

ha. The Balkan mixed forest belongs to the temperate broadleaf and mixed forest biome. The topography 

of the study area is characterized by high valleys and sheltered slope with European beech (Fagus sylvatica) 

as the dominant species.  

 

The Rhodopes covers an area of 11, 596 Km2. It is spread over 14, 735 km2, of which 12,233 km2 are on 

Bulgarian territory the rest falls in Greece to the south. The Mountains are about 240 Km long and about 

100 to 120 Km wide with an average altitude of 785 m. The Rhodopes are a comprised of deep valleys and 

ridges. 

The temperature varies from 5 to 9 °C and can go as as low as −15 °C. Due to this the Rhodopes are the 

southernmost place in the Balkans where tree species that dominate are Norway spruce (Picea abies) and the 

silver birch (Betula pendula) can be found. Some fir trees (Abies alba) are also found here.  

 

The forests in both the mountain ranges fall under the Habitats Directive and Birds Directive which 

forms the cornerstone of Europe union's nature conservation policy.  It is built around two pillars: the 

Natura 2000 network of protected sites and the strict system of species protection. These directives 

protects over 1,000 animals and plant species and over 200 so called "habitat types" which are of 

European importance (Gruber et al., 2012). 
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Figure 2-1: Location of study area showing the Natura 2000 sites. 
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2.2. Data 

The study was based on data provided by the Forestry Research Institute in Sofia. Very high resolution 

true colour pre-processed aerial image of a spatial resolution of 13cms was captured in the year 2011. 

 

The image was made available in 100 clipped sections of 300m×300m for each of the ground based 

sampled plot where inventory data was available. Some of the images for each plot area were eliminated by 

the processing tools, some were missing and some could not be used due to image corruption. Eventually 

only 93 images were used for the study. 

 

The field work took place in different years, 2013 for West Balkan Mountains and 2014 for Rhodope 

Mountains. The fieldwork was for a project that was aimed at sampling old growth forests and proposing 

areas with less forestry activity in Bulgaria. As relates to this study, the objective was to identify and 

estimate canopy gaps. The datum of the areas of study is WGS_1984_UTM_Zone_35N. 

2.3. Methods 

2.3.1. Field data collection 

 
Plot selection was purposive and mostly depended on the accessibility of the terrain. 100 square plots each 

of the size (150×150m) were established over two types of forests. In each plot 25 circular sub-plots were 

made each with a radius of 5.6m. The sub-plots were separated from one another by a distance of 

30meters from the centers. This is illustrated in (Figure 2-2). 

 

 

 
 

Figure 2-2: Formation of the sampling plot. 

 

This was to remove any bias of choosing sub-plots that had our desired quality. 48 square plots were 

established in the West Balkan mountain ranges and predominantly consisted of broadleaved trees. 52 

square plots were also sampled in the Rhodope Mountains and more than half of the plots sampled were 

in a needle leaved type of forest. In total, 66 sample plots were sampled in a broadleaved type of forest 

while a total of 34 plots were sampled in a needle leaved type of forest. In total there were 2500 sub-plots 

for the study. 

30m 

30m 

Radius=5.6m 

150 m 

15
0
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A canopy gap was defined as an opening within trees that were more than half the height of the tallest tree 

on the boundary of the gap and had an area not less than 50m2. Each gap was considered closed if the tall 

trees adjacent to the boundary had their tips at a distance of less than 7m between them.  

 

The gaps within the plot were estimated visually and then the fraction of the gap intersecting into the 

circular sub-plots estimated in percentage. Only the center sub-plot (sub-plot 13) had the coordinates 

recorded. The average gap fractions were calculated over all 25 sub-plots to create an average gap fraction 

for the entire plot. 

 

The sampling method was line intersect sampling method where circular sub-plots were made along the 

invisible transect line established along a compass direction (Figure 2-3). Gaps were likely to be sampled if 

part or whole of it intersected with the 100m2 sub-plot made along the transect line. The fraction of the 

gap in the sub-plot was recorded after estimating the area of the larger gap.  

 

 

 
 

Figure 2-3: Checked areas represent gap fractions intersecting the sub plots. 
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2.3.2. Canopy gap detection 

The process of canopy gaps detection is generally described in (Figure 2-4). 

 

 

 
 

Figure 2-4: Overview of step by step process of methods. 

One of the advantages of using very high resolution  imagery was that for each pixel, the likelihood of 

only one object being represented is high, improving the potential to separate gaps from non-gaps 

(Nackaerts et al., 2001). Another advantage is that many combinations of techniques could be applied to 

any or all of the three RGB bands (Fernandes et al., 2004).  

There is no known literature with a standard parameter setting for object based approaches for 

segmenting features in forest stands therefore; several tests are run until appropriate parameters are found. 

The final selection of the chosen parameters included small parameter setting which was chosen to 

represent intra-object variation (within-crowns and shadows) while larger ones were to represent inter-

object variation (crowns or canopy objects versus between –crown shadows). Parameter settings below 5 

for OBIA and 5×5 for ITBA were tested but not used because the over estimation was too much and this 

was vice versa for parameter settings larger than 21 for OBIA and 21×21 for ITBA where under 

estimation was too much. The other criteria used in the study are set standard for all images for the 

purposes of repeatability. 
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2.3.2.1. Texture Based Image Analysis 

Texture based image analysis was done using ArcGIS software from ESRI. It involves characterizing 

regions of an image using the smoothness or the roughness. This refers to variation in reflectance values. 

In this method we use standard deviations to find the texture boundaries which would be indicative of the 

change in the structure of the canopy. This helps in detecting the gaps.   

The selection of the chosen parameters setting ranged from small to large. Before this selection ten sample 

images were chosen randomly from the total number of images and the different criteria tested until a 

suitable criterion was reached. Suitability was judged by the criteria allowing detection of gaps to be as 

close to reality as possible.  

The first step is to create texture features which eventually will be used to detect gaps using the 

appropriate parameters.  To create the texture features, a decision was made to use a moving window 

approach where a standard deviation statistic type was derived as an indicator of variability in such a 

moving window. For this approach moving window sizes had to be chosen (5×5, 7×7, 11×11, 15×15 and 

21×21). The result was a texture feature image. A transition point from high standard deviations to low 

standard deviations of pixel values indicated a change in land cover as shown in (Figure 2-5). 

 

 

 

This texture feature image gives us standard deviation values for each pixel which was used in setting the 

threshold for gaps. Areas with homogenously low texture values (smooth areas) and were surrounded by 

extremely high values of standard deviation were defined as gaps (Figure 2-5). This part of the process led 

to detection of smooth canopy surfaces as gaps. A decision was therefore made to add an extra criterion 

of including greenness values to the selection of threshold. This was done by use of the combine tool to 

integrate values from the filtered image and the green pixel values of the RGB image. The result was a 

raster image with unique output values of a combination of the values from the two input raster images 

(Figure 2-6). 

 

 

 

Figure 2-5: Grey scale filtered image showing the meaning of the grey scale colour range to signify texture 
differences. 
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The output values were used to set the threshold for gaps. For uniformity the chosen threshold was 

applied to all the images. The thresholds differed for the different moving windows as shown in (Table 2-

1). 

Table 2-1: Increasing moving windows with increasing thresholds. 

 

With the selected criteria, the images were converted from raster to polylines and then converted to 

polygons which were then dissolved and clipped to the plot area. The total areas of the gaps were 

calculated and finally a record of gap fractions for each plot was derived for each moving window. The 

files were then joined with the database from the field, matching stand to stand so that finally a database 

of field based estimates was matched with image based gap estimates per moving window (Appendix 3 

and 4). 

2.3.2.2. Object Based Image Analysis 

Object based image analysis uses eCognition software from Definiens Developer®. The instructions given 

to the software by the user to carry out functions based on chosen parameters is called a ruleset (Figure 2-

7). The first basic rule in the method involves cutting the image into image objects in a process known as 

segmentation and this is the building block for further analysis and refinement of the ruleset. 

Segmentation considers the homogeneity of objects in terms of their spectral properties, size, shape, 

texture and a neighborhood surrounding the pixels (Benz et al., 2004; Hay et al., 2005).  

+ = 

Figure 2-6: Combination of aerial image and filtered image to produce a raster map with values that include   
standard deviation values and RGB values. 
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Figure 2-7: eCognition interface for setting rulesets for segmentation process 

Multi-resolution segmentation was chosen in this study as it has been successfully used in other 

mountainous regions (Drăguţ & Blaschke, 2008). It implies that objects can be created at any chosen 

resolution and therefore allows separation of many levels of object categories (Rahman & Saha, 2008). 

This type of segmentation lumps together objects based on relative homogeneity which is a combination 

of spectral and shape criteria to create a larger object. It can be modified by a scale parameter which is the 

value that determines maximum possible change of heterogeneity. It therefore influences how large the 

objects can grow by how many pixels can be grouped into an object (Figure 2-8) (Üreyen, Hü, & 

Schmullius, 2014).  

 

Figure 2-8: More objects in small scale parameter and fewer objects in large scale parameter. 

It was therefore decided to use five scale parameters; 5, 7, 11, 15 and 21 which were chosen to vary 

possibilities of results. The values corresponded to the pixel sizes that were selected for texture method 

for ease of comparison. The problem of under segmentation is reduced because the algorithm gives the 

option of merging small segments (Saliola, 2014).  

The other homogeneity criterion used in segmenting was shape and compactness. Both Shape and 

compactness values can go up to 0.9(Gao & Mas, 2008; Kim, 2009). 

 Shape indicates how much of the spectral values affect heterogeneity of the objects. It is the 

relative weighting that determines the degree in which shape influences the segmentation 

compared to color. In this study, a value of 0.1 was chosen meaning that color was given 

more weight of 0.8. We want color to have more weight because the spectral values are 

important for separating shadows from trees. 
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 In the same way the value chosen for compactness is a relative weighting against smoothness. 

A value of 0.3 was chosen meaning smoothness had a value of 0.6 therefore giving slightly 

more weight to smoothness. We want smoothness to have more weight because gaps are 

natural features and therefore less compact but can also be quite irregular. 

A weight of 2 for the green layer was chosen in preference to the red or blue layer. This was due to the 

importance of separating the green color of trees from gaps. These were the optimum fixed values to be 

used for segmentation obtained after trial and error method (Figure 2-9). Meaning that the process is 

repeated severally using different values until one is satisfied with the segmentation that appears closest to 

the real features. Since the image was homogenous (forest area), the values for shape and compactness 

were applied to all the images. 

 

Figure 2-9: eCognition interface for setting of layer weights, scale parameter, shape and compactness 

criteria. 

The segments created are a mixture of trees and gaps. To separate the two features, first a classification of 

the objects into trees and gaps was done then a separation of trees from the gaps was made which was the 

class of interest. A brightness threshold was chosen for classifying, where the brightness values of the 

objects were used to separate the two classes. Trees had higher reflectance values than gaps. Assign class 

algorithm was used to define the rules of classification. It included assigning a maximum brightness value 

in which almost all gaps were selected and the values above this maximum value represented the trees. 

These brightness values differed for each image and therefore the threshold for gaps differed per image. 

This was also a trial and error process until the values chosen, selected most of the gaps in the image 

(Campbell & Wynne, 2011). 

After creating the two classes, the tree class was masked out so that only gaps remained. Since many 

objects were created within one class, a merge region algorithm was used to merge the split gap objects 

into one. Finally the extracted gaps were exported into ArcGIS for further analysis of area and gap 

fraction calculation. A join operation is performed with the field database which was also containing gap 

fraction estimates from the texture based analysis method to form one database used for statistical 

analysis. 
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2.3.3. Statistical analysis 

The statistical analyses were done using R and excel software. The overall performance of the methods 

was evaluated based on two parameters; Pearson’s Correlation (r) and Root Mean Square Error (RMSE) 

a) Pearson’s Correlation (r) to analyze the linear relationship between the images based gap fractions 

and the field based gap fractions.  

(1) 

𝑟 =  
∑(𝑥𝑖 − 𝑥̅)(𝑦𝑖 − 𝑦)

√∑(𝑥𝑖 − 𝑥̅)2 √∑(𝑦𝑖 − 𝑦)2
 

 

 

Where, 

r = Correlation coefficient 

x = Observed gap fractions 

𝑥̅ = Mean quantified gap fractions 

y = Estimate of gap fractions  

𝑦 = Mean estimated gap fractions  

 

 

b) Root Mean Square Error (RMSE).  

RMSE was used to measure how much error there was between the field based gap fractions and 

the image estimated gap fractions by OBIA and ITBA methods. This calculation was done based 

on the following equation; 

𝑅𝑀𝑆𝐸 = √
∑(𝑥𝑖 − 𝑦𝑖)2

𝑛
  

(2) 

 

Where, 

RMSE = Root mean square error 

𝑥 = Observed gap fractions 

𝑦 = Estimate of gap fractions  

𝑛 = Number of observed values  
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3. RESULTS 

3.1. Detected canopy gaps from very high resolutiom imagery 

3.1.1. Image Texture Based Analysis (ITBA) and Object Based Image Analysis (OBIA). 

The bright colored areas show areas with high standard deviation values meaning a high variability in the 

tone values while the darker areas are low standard deviation areas with smoother texture and  therefore 

low variability in tone values.  Smaller parameter setting produce much more objects than larger parameter 

setting as shown in (Figure 3-1). More objects are formed in OBIA than in ITBA method. 

 

 

 

Figure 3-1: Extraction process of texture features and image objects using ITBA Method (a) and OBIA 

method (b). 

  

(a) 

(b) 
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3.2. Statistical Analysis 

3.2.1. Image Texture Based Analysis and Object Based Image Analysis 

Gap fraction distribution in the field data indicates that most of the gaps lie on the lower end. Larger gaps 

are undetected or are very few in both methods. OBIA method shows a slight normal distribution as 

illustrated in (Figure 3-3). ITBA method shows distribution closer to the field estimates. Observations 

from the field were expected because the data collection was not targeted towards canopy gaps so most of 

the plots did not record presence of gaps. This is why we see that from the field collected data, most of 

the gaps lie on the extreme lower end of the histogram (Figure 3-2). 

 

 

Figure 3-2: Distribution of field observed gap fractions. 
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Figure 3-3: Distribution of estimated gap fractions in different parameter settings in ITBA and OBIA 

method. 

OBIA METHOD 

 

ITBA METHOD 
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3.2.2. Correlation analysis 

3.2.2.1. Field based estimation Vs Image based estimations 

The relationship between the field gap fractions and the image estimated gap fractions generally gave 

moderate positive correlations (Figure 3-4) and (Appendix 4). There was generally no trend with the 

changes in parameter settings. However, both OBIA and ITBA method proved to be statistically 

significant (Pearson’s correlation test, N=93, P < 0.05) for ITBA and (Pearson’s correlation test, N=93, P 

< 0.001) for OBIA method. We therefore reject null hypothesis 1. 

 
  

 

Figure 3-4: Correlations between the field based estimation of gap fractions with OBIA and ITBA based 

estimates of gap fractions in all forest types.  

 

3.2.2.2. Broadleaved Field based estimations Vs Image based estimations 

 

The relationship of values from the field with values from both methods generally gave very weak 

correlations close to zero (Figure 3-5) indicating no relationship exists. The negative correlation with the 

ITBA method means that with every increase in value there is a decrease in estimation of the value from 

the ITBA method. Both The methods were slightly statistically insignificant (Pearson’s correlation test, 

N=62, P > 0.05). 
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Figure 3-5: Correlations between the field based estimation of gap fractions in the broadleaved forest type 

with OBIA and ITBA based estimates of gap fractions. 

 

3.2.2.3. Needle leaved Field based estimation Vs Image based estimations 

 

The relationship between field measurements and image estimated gap fractions from the image gave 

overall moderate correlations (Figure 3-6). OBIA method gave a stronger relationship with field data than 

ITBA method.  There is no trend with change in parameter settings in both methods. The methods were 

statistically significant (Pearson’s correlation test, N=31, P < 0.05) for OBIA method and (Pearson’s 

correlation test, N=31, P < 0.05 and P<0.1) for ITBA method. The null hypothesis is rejected. 

 

 
 

Figure 3-6: Correlations between the field based estimation of gap fractions in the needle leaved forest type 

with OBIA and ITBA based estimates of gap fractions. 
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3.2.2.4. Correlations between methods 

 

There was an overall high correlation between the ITBA and OBIA methods in estimating gap fractions 

(Figure 3-7). There is an increasing trend where agreement increases with parameter setting increase then a 

decrease at the largest parameter setting. 

 

 
 

Figure 3-7: Strength of relationship between ITBA and OBIA methods in estimation of gap fractions.  

There was an overall high agreement (Figure 3-8) between the methods in detecting gap fractions from a 

broadleaved forest and needle leaved forest. Generally, methods had a better agreement in the 

broadleaved forest type than in the needle leaved type of forest. The methods agreed best at larger 

parameter setting but generally we see a trend with broadleaved methods than with methods in needle 

leaved forest.  

 

 
 

 

Figure 3-8: Strength of relationship between ITBA and OBIA methods in estimation of gap fractions the 

Broadleaved and Needle leaved forest types. 
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3.2.3. Root Mean Squared Error 

3.2.3.1. RMSE between methods 

 

Overall, the result shows that ITBA method gives lower RMSE values than OBIA method in estimations 

with field observed gap fractions (Figure 3-9). For ITBA method, the moving window 21 gives the lowest 

RMSE (14.438%) while scale parameter 7 gives the highest relative RMSE of 30.51%. In both methods, 

Moving window 21 gives the lowest RMSE in the group.  

 

 

Figure 3-9: Root Mean Square error of ITBA and OBIA estimations of forest gaps with reference to 

estimations with field estimated gap fractions. 

3.2.3.2. RMSE between methods forest types 

 
RMSEs were generally high in both forest types. They were much higher in needle leaved forest type than 

broadleaved forest type. OBIA method gives higher errors in both forest types. The result shows a 

reducing trend in errors with increasing parameter settings especially in ITBA method (Figure 3-10 and 

Figure 3-11). 
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Figure 3-11: RMSE between image based gap fractions and field based gap fractions in a broadleaved type 

of forest. 

3.2.3.3. Over/under estimation of gap fractions for different methods 

There was an overall over estimation of gaps (Figure 3-11) with both the methods especially at the lower 

values of gap fractions. There was more underestimation of the medium sized gap fractions in all methods 

and more so with ITBA method but OBIA had better estimations of the medium sized gap fractions. 

However, ITBA method had much lower rates of overestimation as compared with the OBIA method 

and the points are scattered approximately on both sides of the 1:1 line and with decreasing errors. The 

scatter plots indicate the r value and the RMSE. The dots correspond to the estimated values. 
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Figure 3-10: RMSE between image based gap fractions and field based gap fractions in a needle 
leaved type of forest. 
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Figure 3-12: A 1:1 scatter plot of image estimates with field estimates that show over and under estimations. 
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4.  DISCUSSION 

4.1. Suitability of parameter settings for extraction of canopy gaps from OBIA and ITBA methods. 

 
The results in (Figure 3-1) show that the parameters used in ITBA method and OBIA method were 

suitable in detecting canopy gaps from high resolution imagery. Results of gap fraction detection by ITBA 

were influenced by window size chosen. From the five window sizes chosen, moving window 5×5 led to 

detection of the smaller gaps but also to the under representation of larger gaps. A high moving window 

of 21×21 led the under-detection of small gaps and over generalization of the larger gaps as indicated in 

(Figure 3-1). These results match with the results of the research carried out by (Betts et al., 2005). It was 

observed that different parameter settings chosen for the study gave different results because of the 

effects of the number of objects that could be formed per parameter setting (Gao & Mas, 2008). It was 

noticed that the smaller parameter setting had a rough texture as compared with the larger parameter 

setting that looked smoother. This was probably due to the fact that the smaller parameter setting gave 

more detail of the canopy cover than the larger parameter setting. There is similarity of results with the 

ones in the study by Moskal & Franklin (2002), who used six window sizes from 3×3 to 21×21 and 

observed that the smallest window size had a rougher texture as opposed to the larger window size. Kelsey 

& Neff (2014) attributed the high roughness to differences within individual crowns and shadow areas 

while the lower roughness to variations between crown cover and shadows from crowns. This also 

suggests that with small parameter settings, the smaller gaps could be detected accurately but less so with 

the large parameter settings where larger gaps where detected more accurately. 

 

It would be logical then, that there is an optimum parameter measure, probably an intermediate point 

where both the small gaps and the larger gaps are represented almost equally. This is demonstrated by 

studies  of Betts et al., (2005) who chose three moving windows to detect and characterize canopy gaps 

from a high resolution digital elevation model. The intermediate window size of 17×17 was chosen as 

from window sizes of 9×9 and 25×25. However, this is not the case with this study where in figure 

(Figure 3-4) the correlations of estimates from methods with field data range between r values of 0.30 to 

0.35 for ITBA and 0.39 to 0.43 for OBIA. This indicates no trend with change of parameter settings 

(Appendix 4). This suggests that there was no sensitivity of the results to change in parameter settings. 

Coburn & Roberts (2004) also observed that accuracies of forest stand classification using texture features 

increased with increasing window sizes between 5×5 to 15×15pixels. This is an indication that parameter 

settings are unpredictable and other additional factors play a role in their performance. This thwarted our 

theory that a change in parameter settings leads to a significant change in results. 

 

 

For the purposes of repeatability, criterion of shape and compactness for OBIA method were set at 

standard values for all images. Only the thresholding step for both images is not standard due to 

differences in illumination and insufficient contrast of features per image. This was a necessary but time 

consuming activity especially with the large amounts of images. In addition, manual thresholding lacks 

transferability due to the subjectivity of the decision. Jonckheere et al. (2005), agreed with this and called 

for the use of automatic thresholding methods which was successfully applied to his study. His main aim 

was to find an alternative to manual thresholding in estimation of gap fractions and leaf area index by 

means of digital hemispherical photography. This would help to save time in the trial and error testing 

method and reduce subjectivity as well. Lievers & Pilkey (2004) also suggested a local thresholding 

technique that takes into account regional variations in sunlight illumination where this would be 

appropriate for this study considering that area is large area and has steep slopes. 
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4.2. Agreement of OBIA and ITBA based gap fractions with field based gap fractions. 

The strong positive skewness of the gap fraction distribution (Figure. 3-2) from the field sampled data is 

common in most studies carried out in both needle leaved forests and deciduous forests (Miura, Manabe, 

Nishimura, & Yamamoto, 2001; Liu & Hytteborn, 1991; Hunter & Parker, 1993; Stewart et al., 1991). In 

field sampling, there was a lower threshold before a gap would be considered a gap while in the two 

methods; all open spaces were considered gaps. This is why higher frequencies are observed in gap 

fractions between 10% and 40% (Figure. 3-3). However, when we look at the histogram from ITBA 

method, the distribution of gap fractions resembles the field data in terms of frequency of distribution. 

This could be because the ITBA method is able to detect smaller gap fractions between 0% and 10% as 

compared to OBIA method which as seen in the distribution detects very little small gaps in that range.  

Correlation was carried out to test for the most accurate parameter setting that gave strong correlations 

with field observed gap fractions. The result showed that there was a moderate relationship with field data 

in both methods and the r values all varied within a small range. This could be because the field data was 

not accurately estimated and therefore high correlations were not expected. It is assumed then that since 

there is no trend, we did not achieve an optimum parameter setting. Other performance evaluation 

signifiers like RMSE and over and under estimations would be used for evaluation. Karl, Duniway, & 

Schrader (2012) suggested that estimates of canopy gaps from the field were in some cases less precise 

than estimates from high resolution imagery. This would mean that maybe the estimates from the 

methods were more accurate that the field estimation. However, there is no way of knowing this in the 

study. Despite this, the results suggest that indeed there was a significant relationship between field based 

gap estimations and image derived gap estimations proving that at least some relationship existed between 

the field and image estimates. 

 

4.3. Quantification of gaps between OBIA and ITBA methods. 

The methods are not significantly different in detection and quantification of canopy gaps as we can 

observe by the high correlations in (Figure 3-7 and Figure 3-8). Generally there is a high agreement 

between methods in estimation of gap fractions from the image for all parameter settings, this could mean 

that the methods estimate gaps in a similar manner and this we can assume is because both methods are 

object oriented methods that divide an image into homogenous regions using features of association, 

spectral properties, size, shape, texture but with emphasis on different elements of colour for OBIA and 

texture for ITBA (Gao & Mas, 2008). At higher parameter settings, the methods agreed in detection of 

canopy gaps more than at lower parameter settings. The highest agreement is at parameter settings 15 

(Figure 3-7). The methods agree less at the lowest parameter setting 5. This is due to the detection of 

smaller gaps differently in both methods (Figure 3-11) at the lower parameter measure where small gaps 

are detected more readily with ITBA method and not in OBIA method. The theory that the methods are 

not significantly different in estimating canopy gaps is proven to be true. 

4.4. Comparison of gap estimation between OBIA and ITBA methods. 

 
In (Figure 3-4 and Figure 3-9) there is high correlation at the smallest parameter measure and the lowest 

RMSE for the largest parameter measure. It would be expected that the method with the higher 

correlation would have the lowest RMSE. This is not evident in our results. The high correlations at 

OBIA method could have been created by the larger number of objects at the smaller scale parameter 

setting than the larger ones which had been estimated in the image and not the field. Low RMSE at ITBA 

method could have been due to the fact that the estimations in this method did not form many small 
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objects and therefore the bias was less thus estimates were closer to the field based data. This phenomenal 

finding was also found by (Eckert, 2012) in his research on improved forest biomass and carbon 

estimations from texture measures in degraded and non-degraded forest areas. He also found that in the 

degraded forest, the strongest relationship existed with the smallest scale parameter while larger window 

sizes had the best fitting. This result is also supported and explained by the findings of Karl et al., (2012) 

where they found that association between the field and image based estimates increased with increase in 

canopy gap sizes as they were more easily distinguished from a high resolution imagery. Zhang et al. 

(2004) found that when using fine spatial resolution, texture measure became more highly sensitive to 

small variations in pixel values within the small moving window while larger widow sizes were seen to 

provide stable and more accurate estimations and even reduce random error.  

 

 

4.4.1. Over and under estimation of gaps fractions 

 
The study shows that there was a general overestimation of canopy gaps (Figure 3-11). This could possibly 

be because of shadowing so that shadows were detected as gaps (Figure 4-1). OBIA emphasizes on colour 

for formation of objects while ITBA emphasizes on texture for object formation. It would be assumed 

that colour has more sensitivity to shadows than texture and this could be why shadows are recognized as 

gaps in more in OBIA than ITBA methods. Texture was reduced in areas with a lot of shadow and so low 

standard deviation values while areas with low spectral reflectance values were detected as gaps by OBIA 

method. This is similar to findings by Betts et al., (2005) whose study on detection of gaps using texture of 

high resolution DEM, revealed that detection of gaps from aerial image are affected by sun angle and the 

angle at which the image is captured causing a problem of shadowing. Blackburn & Milton (1997) also 

found similar results when it was observed that there was reduced classification accuracy of gaps using 

moving window sizes was in a deciduous forest due to shadows within and around the canopy edges of 

trees. This could explain the higher overestimation of gaps in the OBIA method than in the ITBA method 

which is less affected by illumination differences (Thakare, Patil, & Sonawane, 2013). This over estimation 

is contrary to the studies by (Karl et al., 2012b) who concluded that there is a possible under estimation of 

gaps when using only high resolution imagery. This would be true in cases where shadows are classified as 

canopies while they are in fact a gap which is not the case in this study. 

 

 

Figure 4-1: Shadows as observed from an aerial image and which are detected as gaps by methods. 
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There was a problem with highly illuminated objects which made canopies appear smooth and so reducing 

the texture efficiency (Figure 4-3) so that these areas were categorized under gaps in the texture analysis. 

(Figure: 4-3) shows (a) Before and (b) after applying the new criteria. The correlations improved slightly 

but the RMSE had a significant reduction meaning that the estimates moved closer to the field based 

measurements therefore improving the method. 

 

 
 

 

 

 

 

 

 

 

 

4.5. Forest management and ecological implications. 

 

The two methods detect gaps differently, with the larger gaps more accurately identified by OBIA method 

while the small gaps accurately detected by the ITBA method. This is the main benefit of application of 

these methods to forestry. The methods can be applied in different studies such as inventory of 

regeneration and invasive species. Whitmore (2014) observed that larger gaps were more likely to be prone 

to invasion by pioneer species while the smaller gaps allowed the regeneration of climax trees to take 

place. Conversely, Blackburn & Milton (1997) sited that the large gaps were able to harbor both the 

processes; invasion by pioneer species and regeneration of climax species because of the complex shape 

that allowed an array of light intensities.  

Kennedy and Swaine (1992) further found that these processes were independent of gap size but 

performance of the species on the other hand was more related to gap size. This would call for 

management practices that seek to enlarge or introduce gaps to boost performance of the two kinds of 

species and indirectly may contribute in solving the problem of under representation of some species in 

the network of Natura 2000 sites. This was a problem that was identified by Keulartz (2009) in his study 

on the problems of the conservation policy of Natura 2000. He lastly recommends that a representation 

index that recognizes species that are underrepresented could be used to guide future conservation efforts. 

4.6. Influence of forest type on OBIA and ITBA methods. 

There were very weak correlations of estimated gap fractions by the methods in a broadleaved forest and 

were insignificant at an alpha value of 0.05. The assumption is that both methods somehow fail to 

estimate gaps fractions from the image in a broadleaved type of forest. Many studies have reported 

difficulty in segmentation in a deciduous forest (Erikson & Olofsson, 2005). This could be an issue with 

the structure of this type of forest where it is very complex in that the crowns are very irregular in shape.  

(a) (b) 

Figure 4-2: Image showing detection of canopies with smooth texture as gaps and detection after 
application of new threshold criteria. 
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The robust region growing algorithm used for segmentation favors the structure of a needle leaved forest 

which has a conical shape where the algorithm uses the tip as a seed point that grows to encompass the 

whole crown. This is difficult for the type of crown in a broadleaved forest so the algorithm does not 

work as well as it does in needle leaved forest where we see high correlations in (Figure 3-6). Wang, Gong, 

& Biging (2004) reached to this similar conclusion in his study of individual tree-crown delineation and 

detection of treetops. The results (Figure 3-5 and 3-6) favor the assumption that detection of canopy gaps 

in needle leaved forests is more accurate than in broadleaved forest.  

The results as illustrated in (Figure. 3-8) reveal that the methods agree more in the broadleaved forest than 

in the needle leaved forest. It also shows that as the parameter setting increases in the broadleaved forest, 

the agreement between methods increases. While in the needle leaved forest there is no trend in 

agreements between the methods. This suggests that both the methods are unable to estimate canopy gaps 

in an image for a broadleaved forest (Figure 3-5). It is suggested therefore that accurate detection of gaps 

using only object oriented methods is not suitable in broadleaved forests.  Lower agreement of methods in 

needle leaved forest suggests that there is room for improvement with one or both of the methods in 

detecting canopy gaps in that forest type. 
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5. CONCLUSION AND RECOMMENDATIONS 

The measurement of gaps from the field was more or less mere estimations. It is therefore difficult to test 

the effectiveness of a particular method as we do not know the precise measure of the gaps. Nevertheless, 

we were able to objectively look at each method and evaluate the implication of the results in terms of 

suitability of the methods for gap fraction estimation and ecologically in view of the main objectives of the 

study. 

LiDAR data collected on a rough terrain would be a more reliable data source for testing against our 

methods. It is however, an accurate source of data but equally expensive to acquire. Use of such 

instruments as the fish eye or hemispherical cameras can be a better and cheaper option to collecting more 

accurate field data. High resolution digital elevation models on such a terrain would also be helpful in 

increasing accuracies. 

 

What are the suitable parameters to use for extracting canopy gaps from both methods?  

 A moving window of 21 for ITBA method gives the closest estimates (RMSE = 14%). This method is 

new and has shown potential for improvement and so is suitable to monitor, plan, manage and assess 

biodiversity in a forest.  

 

Do the canopy gaps obtained with both methods correspond to the sampled gaps in the field? 

OBIA method gives a slightly stronger relationship with field data as compared to ITBA method. 

Nonetheless, a scale parameter of 5 and a moving window of 7 give the strongest relationship and 

therefore are the parameter settings that give a more accurate estimation of gap fractions.  

However, ITBA method would be the ‘go to’ method in terms of precision as it appears to give closer 

estimates to the presumed truth. ITBA estimates of gap fractions are better to monitor smaller gaps while 

OBIA method is better to monitor larger gaps. The choice of method would help in quick identification 

and assessment of plots that need further investigations by ecologists when monitoring gaps. 

 

How different is the quantification of the individual gaps between the two methods? 

At parameter setting of 15, the methods highly agree (r=0.87) in estimating gap fractions from the field. 

The study concludes that this is the optimal parameter setting for detection of gaps by the two object 

oriented methods and can be interchanged for the other depending on preference.  

The high spatial resolution aerial image helped in identification of even very small gaps formed by death of 

single trees in both the methods but especially for ITBA which identified them more precisely. However, 

both methods facilitated the identification of a large range of gap fractions important for monitoring 

purposes.  

 

How accurately, can canopy gaps be estimated from the two methods? 

Smaller gaps are more accurately estimated by ITBA and larger gaps more accurately estimated by OBIA. 

However, ITBA methods have moved towards counteracting the weaknesses of OBIA method. 

Investigations to improve this method would be the ultimate option to accurately delineate gaps from a 

high resolution aerial image.  Furthermore, another option would be to combine the two methods where 

they could be used for separating different canopy size classes. 

Automatic thresholding such as cluster-based thresholding methods and histogram shape based methods 

among others should be considered to eliminate the problem of subjectivity and save processing time.  
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To what extent does forest type influence accuracy of the two methods? 

Algorithms, criteria and aassumptions that work in needle leaved type of forest may not be necessarily 

transferable to a broadleaved type of forest due to the different architecture of the crowns. This is 

especially for OBIA method which uses a region growing algorithm that favors the conical shaped crowns 

of needle leaved tress. Algorithms and other parameters that work best in a broadleaved forest need to be 

investigated. 

At parameter setting 15 (r=0.87), the methods highly agree that detection of gaps in a broadleaved forest 

from object oriented methods is poor. Lower parameter setting 5 (r=0.78) have room for improvement in 

one or both methods. 

ITBA is the best choice to use in delineating gaps from images that have features under low exposure. It 

does not perfectly eliminate the shadow problem but has relatively less sensitivity to it and needs further 

investigation. Studies in a flatter terrain with images taken at nadir should be researched on to see whether 

shadowing is the only cause of under/over-estimation of gaps or that there are other factors in play 

 

Final reflection of the methods in the research 
Detection of gaps opens more possibility to deriving other gap features other than gap sizes . Such features 

would include gap connectivity and gap shapes which are relevant to ecology. Further studies can look 

into which of these methods provide this extra information more accurately and contribute to the efforts 

in sustainable development. This is especially important for Natura 2000 sites. Further investigation into 

how well image estimated gaps correlate with biodiversity would be interesting in evaluating performance 

of the methods. 
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APPENDICES 
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Appendix 2 Field and image data of the Needle leaved forest type 

 
Plot Forest_type SP_5 SP_7 SP_11 SP_15 SP_21 MW5_R MW7_R MW11_R MW15_R MW21_R 

5 Needle 19.31 23.12 23.01 26.18 22.74 4.68 5.98 3.63 3.58 1.53 

26 Needle 44.11 50.04 50.04 50.04 47.90 31.05 21.45 9.02 18.71 9.87 

49 Needle 52.57 59.59 59.51 59.41 52.77 28.81 28.06 28.35 25.60 25.10 

50 Needle 50.49 62.08 62.13 62.05 62.26 55.15 30.32 54.14 45.49 50.48 

52 Needle 30.76 40.14 35.72 35.69 39.82 14.59 10.23 12.57 11.78 6.93 

55 Needle 46.76 52.78 46.91 46.94 52.76 20.46 28.45 18.49 17.21 13.85 

57 Needle 56.72 61.45 61.40 61.40 61.29 27.98 36.21 32.50 25.10 23.50 

63 Needle 35.26 28.39 28.36 28.41 28.39 23.81 19.24 18.68 16.70 10.63 

64 Needle 40.91 40.92 37.16 32.74 32.69 26.67 20.00 19.57 17.44 10.46 

65 Needle 16.59 16.52 13.78 11.00 11.09 8.64 5.54 6.11 5.59 1.93 

66 Needle 47.82 40.75 37.11 37.05 36.55 23.28 18.49 17.26 13.71 8.30 

67 Needle 61.32 64.98 61.41 55.61 56.92 83.38 36.72 52.44 33.69 25.16 

68 Needle 65.65 65.66 61.98 61.79 63.31 47.79 45.47 66.09 36.10 29.95 

69 Needle 64.61 64.82 64.94 64.98 64.86 67.59 51.29 55.94 41.93 43.27 

70 Needle 48.32 48.42 48.40 48.28 44.75 26.45 21.29 14.29 20.93 10.12 

71 Needle 47.87 51.09 52.86 47.87 48.04 15.03 17.03 12.06 11.57 6.88 

72 Needle 67.89 71.38 68.09 67.95 70.83 76.47 75.36 68.67 47.50 49.40 

73 Needle 59.84 59.88 59.82 59.87 59.85 31.82 33.76 28.50 24.99 21.97 

74 Needle 51.49 59.15 51.52 51.65 41.43 43.43 24.61 60.40 42.67 31.61 

75 Needle 21.05 23.63 23.65 20.94 12.61 11.03 8.91 6.63 10.10 2.22 

76 Needle 27.41 27.42 27.28 24.13 17.46 16.40 13.10 11.93 9.68 5.15 

77 Needle 47.02 51.89 46.80 51.90 46.81 45.06 34.78 33.19 29.59 21.41 

78 Needle 35.57 35.63 31.01 35.54 35.64 28.13 20.89 20.58 18.41 12.00 

79 Needle 38.49 38.52 38.41 35.00 34.72 28.78 23.60 22.76 19.54 13.24 

80 Needle 23.23 23.20 20.71 17.62 17.71 15.09 12.14 10.96 8.77 4.74 

81 Needle 45.30 50.41 45.23 45.30 45.15 43.47 37.02 41.00 31.55 22.51 

85 Needle 56.96 56.94 56.91 49.58 49.66 27.73 20.10 26.90 25.95 22.13 

88 Needle 44.97 44.98 44.90 44.74 44.48 36.57 28.80 27.69 23.93 16.57 

89 Needle 33.21 37.24 39.12 32.90 32.70 25.09 13.06 19.29 15.67 10.46 

93 Needle 45.96 46.01 40.05 40.12 45.91 50.25 38.71 41.44 34.11 29.53 

99 Needle 51.64 61.82 59.24 55.99 55.51 84.23 64.01 56.16 53.04 45.65 
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Appendix 3 field and image data of the Broadleaved forest type 

 
Plt Forest_type SP_5 SP_7 SP_11 SP_15 SP_21 MW5_R MW7_R MW11_R MW15_R MW21_R 

1 Broadleaved 43.92 48.86 48.89 48.84 48.88 27.65 24.10 28.16 23.33 20.85 

2 Broadleaved 3.55 8.83 6.33 5.21 4.26 1.34 0.96 0.92 0.63 0.36 

3 Broadleaved 11.82 11.63 12.84 14.77 13.21 2.09 1.18 1.47 1.18 0.67 

4 Broadleaved 24.86 28.05 27.98 27.97 26.31 9.42 13.70 13.22 7.68 9.06 

6 Broadleaved 11.93 11.86 11.76 11.81 14.14 2.42 2.86 1.86 1.77 0.95 

7 Broadleaved 28.11 28.06 27.94 26.63 27.83 12.76 14.00 11.24 11.52 8.38 

8 Broadleaved 20.11 24.19 19.93 19.93 19.71 6.29 6.95 5.38 3.15 4.23 

9 Broadleaved 7.00 10.01 9.89 9.61 13.85 1.80 2.07 1.14 1.02 0.35 

10 Broadleaved 31.14 34.99 31.08 33.60 34.72 19.88 21.55 18.27 17.05 14.42 

11 Broadleaved 14.88 20.71 20.60 17.87 17.63 6.83 4.80 5.72 4.97 3.36 

12 Broadleaved 7.22 10.18 10.07 12.94 12.70 2.01 1.11 1.43 1.09 0.51 

13 Broadleaved 19.50 24.88 24.71 24.67 24.44 4.88 3.60 3.73 3.58 1.95 

14 Broadleaved 11.94 15.75 15.76 18.59 15.48 3.47 2.26 2.66 2.49 1.28 

15 Broadleaved 9.60 9.55 12.07 9.35 11.81 1.11 0.52 0.65 0.47 0.23 

16 Broadleaved 33.15 37.11 33.55 38.67 33.40 15.45 12.19 13.57 13.90 9.41 

17 Broadleaved 18.37 18.38 21.44 21.42 21.27 7.69 5.05 5.82 4.86 3.22 

18 Broadleaved 12.27 16.82 13.69 13.70 13.65 5.41 3.07 4.22 2.87 2.23 

19 Broadleaved 45.59 50.05 45.72 45.75 46.73 35.99 24.30 36.73 16.93 27.31 

20 Broadleaved 14.19 19.11 13.61 18.92 13.48 2.31 1.84 2.76 2.36 0.93 

21 Broadleaved 16.78 24.04 17.39 20.39 20.42 6.70 3.40 4.15 3.75 1.97 

22 Broadleaved 29.02 28.99 28.83 33.96 28.56 7.42 3.89 6.52 5.23 3.33 

23 Broadleaved 32.83 32.79 32.87 32.90 32.67 20.07 12.92 16.85 12.65 5.97 

24 Broadleaved 31.53 42.53 31.40 35.69 31.34 18.66 10.50 15.13 15.68 10.74 

25 Broadleaved 48.91 59.35 56.47 56.48 54.94 61.33 20.57 49.79 34.52 40.05 

27 Broadleaved 39.55 42.57 42.55 42.49 42.44 22.26 12.42 19.70 17.70 14.93 

28 Broadleaved 33.21 35.21 35.09 35.24 34.99 17.70 11.50 15.21 13.24 10.91 

29 Broadleaved 55.47 63.76 60.53 60.56 60.56 28.87 25.15 50.53 24.19 21.62 

30 Broadleaved 32.57 36.31 31.53 31.65 33.51 14.13 15.94 19.04 18.42 13.21 

31 Broadleaved 31.68 37.78 31.59 37.80 37.61 10.96 8.53 9.15 8.58 5.79 

32 Broadleaved 51.52 51.46 51.48 51.57 52.66 21.38 19.98 20.63 25.09 16.39 

33 Broadleaved 54.91 58.75 54.80 54.67 52.17 12.38 21.79 32.34 20.62 23.43 

34 Broadleaved 25.07 33.20 27.99 30.75 30.73 13.36 9.80 11.07 10.75 7.07 

35 Broadleaved 26.83 29.36 26.80 29.23 23.91 16.25 13.15 12.96 12.04 8.89 

36 Broadleaved 44.68 49.66 49.51 44.72 49.43 34.84 21.33 26.64 26.00 19.48 

37 Broadleaved 14.47 17.37 14.31 14.22 14.02 5.94 3.83 4.45 4.26 2.48 

38 Broadleaved 21.75 24.04 21.75 24.04 26.26 7.48 4.38 5.73 5.33 3.30 

39 Broadleaved 40.65 46.72 40.72 40.61 40.55 23.23 20.26 20.69 19.11 15.52 

40 Broadleaved 33.18 36.99 32.99 33.06 28.96 18.87 11.58 14.67 13.53 10.97 

41 Broadleaved 18.46 20.46 18.43 16.03 18.38 6.06 3.88 4.48 3.89 2.25 

42 Broadleaved 37.44 40.19 37.57 40.18 37.36 20.22 23.73 18.37 22.92 13.92 

43 Broadleaved 22.06 27.56 22.09 21.97 21.81 7.42 4.45 5.08 4.65 2.14 
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44 Broadleaved 18.66 16.89 16.83 14.80 14.77 6.47 4.42 4.68 4.25 2.26 

45 Broadleaved 14.23 14.18 11.70 14.16 14.13 3.95 2.72 2.88 3.13 1.53 

46 Broadleaved 24.63 24.63 24.48 24.60 24.40 7.34 6.37 5.32 4.79 2.58 

47 Broadleaved 14.17 14.14 14.03 13.94 13.80 4.37 3.61 3.27 3.10 1.90 

48 Broadleaved 21.38 25.58 25.65 22.91 22.85 5.50 6.35 6.76 6.34 4.04 

51 Broadleaved 22.93 22.91 28.45 22.84 23.09 10.35 6.12 6.42 8.52 5.11 

58 Broadleaved 17.79 17.79 17.76 17.79 17.61 6.12 4.31 0.30 4.37 0.09 

59 Broadleaved 24.82 24.80 24.85 19.66 19.55 13.81 8.88 10.93 10.93 5.11 

60 Broadleaved 35.17 40.63 35.10 35.14 34.96 20.77 22.89 22.26 20.75 14.62 

61 Broadleaved 28.41 28.38 21.36 24.64 24.55 24.07 17.29 17.92 17.16 10.43 

62 Broadleaved 22.32 19.24 19.28 16.27 16.36 10.00 6.38 6.54 5.68 2.28 

82 Broadleaved 26.86 24.10 26.68 29.46 26.87 7.72 10.07 5.44 5.35 2.46 

84 Broadleaved 41.89 41.92 41.99 41.96 42.13 12.63 12.05 12.29 12.08 10.24 

90 Broadleaved 41.79 39.78 36.70 30.48 30.57 24.32 17.60 16.03 13.14 6.89 

91 Broadleaved 29.08 29.03 29.01 24.48 18.93 10.84 7.52 6.43 4.61 2.07 

92 Broadleaved 51.12 51.15 51.24 51.24 51.12 74.74 58.95 66.95 42.37 33.78 

94 Broadleaved 16.31 14.27 10.01 10.32 10.24 1.88 1.09 0.80 0.42 0.10 

95 Broadleaved 43.81 43.83 43.71 42.23 39.34 49.87 46.58 46.41 26.91 32.67 

96 Broadleaved 35.90 35.86 35.86 35.58 35.38 16.65 12.01 12.75 12.33 8.33 

97 Broadleaved 45.25 45.32 45.30 35.26 37.00 38.64 27.03 25.39 22.35 14.68 

98 Broadleaved 39.30 39.19 35.00 38.99 31.26 37.84 29.39 26.12 24.54 14.97 
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Appendix 4 Scatter plot of scale parameters with field data 

 

 


